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ABSTRACT OF THESIS 

 
 

OPTIMIZING COVER CROP ROTATIONS FOR WATER, NITROGEN AND WEED 
MANAGEMENT 

 
Winter cover crops grown in rotation with grain crops can be an efficient 

integrated pest management tool (IPM). However, cover crop biomass production and 
thus successful provisioning of ecosystem services depend on a timely planting and cover 
crop establishment after harvest of a cash crop in the fall. One potential management 
adaptation is the use of short-season soybeans to advance cover crop planting date in the 
fall. Cover crops planted earlier in the fall may provide a greater percentage of ground 
cover early in the season because of higher biomass accumulation that may improve 
weed suppression. However, adapting to short-season soybeans could have a yield 
penalty compared to full-season soybeans. In addition, it is unclear if further increasing 
cover crop growing season and biomass production under environmental conditions in 
Kentucky could limit nitrogen and water availability for the next cash crop. This thesis 
combines the use of field trials and a crop simulation model to address the research 
questions posed.  

In Chapter 1, field trials evaluating yield and harvest date of soybean maturity 
group (MG) cultivars from 0 to 4 in 13 site-years across KY, NE, and OH, were used to 
calibrate and evaluate the DSSAT crop modeling software (v 4.7). The subsequent 
modeling analysis showed that planting shorter soybean maturity groups (MG) would 
advance date of harvest maturity (R8) by 6.6 to 11 days per unit decrease in MG for May 
planting or by 1 to 7.3 days for July planting. The earliest MG cultivar that maximized 
yield ranged from MG 0 to 3 depending on the location, allowing a winter-killed cover 
crop to accumulate between 257 to 270 growing degree days (GDD) before the first 
freeze occurrence when soybean was planted in May, and between 280 to 296 GDD 
when soybean was planted in July. Winter-hardy cover crops could accumulate 701 to 
802 GDD following soybean planted in May and 329 to 416 GDD after soybean planted 
in July. 

In Chapter 2, a two-year field trial was conducted at Lexington, KY to evaluate 
the effect of a soybean – cover crop rotation with soybean cultivars MG 1, 2, 3 or 4 on 
cover crop biomass and canopy cover, and on weed biomass in the fall and the following 
spring. Results showed that having cover crops was an efficient management strategy to 
reduce weed biomass in the fall and spring compared to no cover treatment. Planting 
cover crops earlier in the fall after a short-season soybean increased cover crop biomass 
production and percentage of ground cover in the fall, but not the following spring. 
Planting cover crop earlier after a short-season soybean did not improve weed 
suppression in the fall or spring compared to a fallow control with full-season soybean. 
Having a fall herbicide application improved weed control when there was a high 
pressure of winter annual weeds. By the spring, delaying cover crop termination 
increased cover crop biomass but also did weed biomass. 

In Chapter 3, a soybean – cover crop – corn rotation was simulated to evaluate the 
effect of different soybean MG and cover crop termination, as well as year to year 



variability on water and nitrogen availability for the next corn crop in Lexington, KY. 
Simulations showed that when cover crops were terminated early, they did not reduced 
soil available water at corn planting. However, introducing a non-legume cover crop 
reduced total inorganic nitrogen content in the soil profile by 21 to 34 kg ha-1 implying 15 
to 30 kg ha-1 less in corn nitrogen uptake. Cover crop management that was able to 
maintain similar available water values than fallow treatment while minimizing nitrogen 
uptake differences was cover crops planted after soybean MG 4 with an early 
termination. However, the best management strategies that will maximize ecosystem 
services from cover crops as well as cash crop productivity may need to be tailored to 
each environment, soil type, irrigation management, and must consider year-to-year 
variability. 

 
KEYWORDS: model calibration, DSSAT, soybean maturity group, cover crops, weed 
control, nitrogen balance, water balance, corn. 
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Chapter 1: Evaluating short-season soybean management adaptations for cover crop 

rotations with a crop simulation model. 

ABSTRACT 
 

Cover crop fall biomass production and thus successful provisioning of ecosystem 

services depend on the previous cash crop harvest date. Late cover crop plantings may 

not allow sufficient biomass accumulation. Hence, with this study, we wanted to explore 

short-season soybean as a management adaptation to advance cover crop planting date. 

We used a process-based eco-physiological model to investigate the potential of short-

season soybean maturity groups (MG) to extend the cover crop growing window while 

achieving yields similar as full-season MG cultivars. The DSSAT – CROPGRO model 

was calibrated with data from soybean MG cultivars 0 to 4 grown during 13 site-years (in 

2017 and 2018) across Kentucky, Nebraska, and Ohio. The model was efficient in 

predicting differences in harvest maturity date (R8; Model efficiency [ME] = 0.61; Root 

Mean Square Error [RMSE] = 7.4 days) and yield (ME=0.38; RMSE = 0.452 Mg ha-1) 

across the range of MG cultivars in the study. After calibration, a multi-factor sensitivity 

analysis across 30-yr of historical weather data revealed that MG selection was 

responsible for a relatively low percentage of yield variability. Yield was most sensitive 

to planting date under irrigated conditions, and soil type and precipitation patterns under 

rainfed conditions. Adapting cultivar selection to shorter-season MG would advance the 

date of R8 by 6.6 to 11 days per unit decrease in cultivar maturity when planted on May 

15, or by 1.0 to 7.3 days when planted on July 1. The earliest MG cultivars that 

maximized yield (MG 0 to 3 cultivars dependent on the location) would provide a cover 
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crop growing window following harvest and before the first freeze in the fall of 34 to 51 

days or 186 to 670 growing degree days (GDD; base 4.4 ºC) when soybean was planted 

on May 15. For a July 1 planting date, this cover crop growing window was reduced to 

11 to 25 days or 45 to 167 GDD. Establishment of a winter-hardy cover crop would 

increase the fall growing window to 432 to 819 GDD following soybean planted in May, 

and to 238 to 353 GDD after soybean planted in July. The potential to further lengthen 

the cover crop growing window by adapting to shorter season cultivars was greatest for 

planting dates in May and the warmest locations in our study region, but would have a 

yield penalty of 0.20 – 0.60 Mg ha-1 per unit decrease in cultivar maturity. Our analysis 

provides a useful framework to apply crop simulation models to identify management 

adaptations that can facilitate rotations with cover crops.  

ABREVIATIONS 
 

DUL: drainage upper limit; RMSE: Root mean squared error; ME: Model efficiency; 

GDD: growing degree days; GDDR8-FREEZE: growing degree days from soybean harvest 

date until first freeze occurrence; GDDR8-END: growing degree days from soybean harvest 

date until the end of the year; MG: Maturity Group; rMG: relative maturity group. 

1. INTRODUCTION 
 

Soybean (Glycine max (L.) Merr.) maturity group (MG) selection could be used 

as a management adaptation strategy to increase resource use efficiency and ecosystem 

services. The MG classification is based on the length of the cultivar’s growing cycle, 

which depends on the response to temperature and photoperiod (Cober et al., 2001; 

Summerfield et al., 1998). Further, gradations within each MG (1 to 10) are also 
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commonly noted by adding a decimal to the MG number to get a relative MG (rMG) 

number (Alliprandini et al., 2009). Soybean is classified in 13 MGs that range from 000 

to 10, with short-season or early-season MG, cultivars being best adapted to higher 

latitudes, and full-season or late-season MG, cultivars to lower latitudes with longer 

potential growing seasons (Mourtzinis and Conley, 2017; Zhang et al., 2007). However, 

producers can usually choose from a range of MGs well-adapted and commercially 

available for a given location. 

Relatively early MG cultivars for a given location have a shorter growing season 

and can have the advantage of reducing irrigation requirements compared to later MGs 

(Purcell et al., 2007). In addition, early soybean MGs planted after wheat (Triticum 

aestivum L.) harvest in a double-crop system can increase the overall productivity of a 

given environment (Egli, 2011). A less studied soybean MG adaptation is the rotation of 

early soybean MGs followed by winter cover crops. Planting earlier in the fall after short-

season soybean MGs can lengthen the cover crop growing window and increase biomass 

production (Mirsky et al., 2011; Webster et al., 2016). Greater biomass production can 

improve cover crop benefits for weed control (Haramoto, 2019; Sarrantonio and 

Gallandt, 2003; Teasdale and Mohler, 2000), reduce nitrogen leaching (Di and Cameron, 

2002; Reeves, 2017; Salazar et al., 2019), and increase soil aggregation and water 

infiltration (Fageria et al., 2005; Hargrove, 1986; McVay et al., 1989). However, the use 

of early-season soybeans that would allow cover crops to be established in a crop rotation 

might result in a yield penalty depending on the location, soil type, annual weather 

variability, and management practices.  
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Several researchers have evaluated yield differences across soybean MG choices 

for a given environment (De Bruin and Pedersen, 2008; Egli and Cornelius, 2009; 

Salmerón et al., 2016). Late soybean MGs have a longer growing season and thus greater 

cumulative intercepted solar radiation compared to early soybean maturities, which is 

often associated with higher yields (Edwards et al., 2005; Egli, 1998; Salmeron et al., 

2014). However, in some instances early MG cultivars can provide yields that are similar 

to late MGs. Under rainfed conditions in central Argentine Pampas, MG 3 had similar 

yields to MG 5 cultivars planted in November and December (i.e., mid to late spring) as a 

result of a higher resource uptake and irradiance during R1-R5 period for the MG 3 

cultivars (Santachiara et al., 2017). Under irrigated conditions in Kentucky, MG 2 

cultivars planted in May attained yields similar to MG 3 and 4 cultivars (Egli and 

Bruening, 2000). Similarly, under irrigated conditions in Missouri and Tennessee, MG 3 

cultivars had yields similar to MG 4 cultivars, and higher than MG 5 and 6 (Salmerón et 

al., 2016). One explanation for the relatively high productivity of early MG cultivars 

under irrigated conditions is that  reproductive stages start earlier in the season allowing 

them to grow under more optimal environmental conditions (i.e., higher solar radiation 

intensity) compared to late MGs (Egli and Bruening, 1992; Kantolic et al., 2013), and 

avoid end of season low temperatures and frost damage (Heatherly, 1999).  

Under rainfed conditions, the year-to-year variability in the timing and intensity 

of water stress can influence yield across cultivars of different maturities. However, some 

MG choices can reduce the risk of water stress and increase yields depending on 

precipitation patterns at different locations. For instance, midsouth producers may avoid 

late-season drought by selecting earlier MG cultivars, as MG 3 and 4 cultivars planted 
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early (April/ May) have greater yields compared to MG 5 to 7 in irrigated conditions, 

suggesting their yield potential is similar if drought stress is avoided (Bowers, 1995).  On 

the other hand, for later planting dates (in late May and June), late MG cultivars usually 

provide greater yields compared to early MG cultivars by avoiding summer drought and 

benefiting from precipitation in the fall (Purcell et al., 2003).  

Although there are many studies evaluating yield differences across different MG 

choices, there is limited research on early MG cultivars providing better adaptability for 

rotations with cover crops or double- cropping. In addition, studies conducted in U.S. 

regions with a high percentage of rainfed acreage have not investigated the interaction of 

MG selection with water availability and soil characteristics. Under similar 

environmental conditions, soils with different physical properties (i.e., water holding 

capacity, texture, bulk density) will influence the crop available water (Afyuni et al., 

1993; Doraiswamy et al., 2004; Wright et al., 1990) and final crop yield (Miller et al., 

1988; Stone et al., 1985). Thus, the selection of MG cultivars that can optimize yield and 

resource use efficiency is likely to depend on the location, specific environmental 

conditions, water availability, and soil type. However, exploring all these different 

scenarios with field trials is often not feasible due to financial and time limitations. 

Process-based crop models offer the advantage of exploring a number of management 

strategies across a range of environmental conditions, provided they have been 

adequately calibrated (Boote et al., 1996; Kovács et al., 1995; Royce et al., 2001; Ruı́z-

Nogueira et al., 2001; Salmerón et al., 2014).  

The Decision Support System for Agrotechnology Transfer (DSSAT) 

(Hoogenboom et al., 2015; Jones et al., 2003) is a software system comprising many crop 
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models that can be used to evaluate management options. The CROPGRO-Soybean 

model in DSSAT (K. J. Boote et al., 1998; Wilkerson et al., 1983) has previously 

demonstrated its applicability to predict soybean crop growth and development in a wide 

range of locations in the U.S. (Ma et al., 2005; Nielsen et al., 2002; Salmerón and Purcell, 

2016; Salmerόn et al., 2017) and used to explore effects of management and 

environmental conditions on yield (Curry et al., 1995; Egli and Bruening, 1992). 

However, before models can be used to study different scenarios, they require calibration 

and evaluation with field data from the environment(s) of interest (Jones et al., 2011; 

Timsina and Humphreys, 2006). Calibration of cultivar coefficients requires detailed in-

season growth data (i.e. crop biomass over time; Boote and Jones, 1988) that is difficult 

to collect for a large number of cultivars and environments. Further, calibration of 

cultivar specific coefficients short-lived because it is necessary to calibrate new cultivars 

as they are released every year. As a result, there has been an increasing use of alternative 

approaches to obtain cultivar coefficients based on MG or on low input data (phenology, 

yield, and yield components) across many sites with an acceptable level of uncertainty 

that makes these models suitable for most agronomic applications (Archontoulis et al., 

2014; Irmak et al., 2000; Mavromatis et al., 2001; Salmerón and Purcell, 2016; Salmerόn 

et al., 2017; Setiyono et al., 2007). We hypothesized that DSSAT-CROPGRO-Soybean 

cultivar coefficients obtained based on the cultivar’s MG will provide similar accuracy to 

cultivar specific calibration. 

The objectives of this study were: (i) to calibrate and evaluate the DSSAT - 

CROPGRO v 4.6.1.0 to predict soybean harvest date and yield of MG cultivars 0 to 4 

using data from two years (2017 and 2018) across experimental sites in Kentucky, 



7 
 

Nebraska, and Ohio; ii) to determine whether MG specific coefficients could substitute 

for cultivar specific coefficients in DSSAT-CROPGRO-Soybean model calibration; and 

(iii) to quantify the potential use of early soybean MGs as a management adaptation to 

advance harvest date and consequently advance cover crop planting date with DSSAT-

CROPGRO model.  

2. MATERIALS AND METHODS 

2.1. Field experiments for model calibration and evaluation. 
 

Experimental data for model calibration and evaluation were obtained from a 

multi-state project across Nebraska, Ohio and Kentucky (USA). Experiments were 

conducted in six locations in 2017 and seven locations in 2018 (Table 1.1). At each 

location 16 commercial soybean cultivars ranging from MG 0 to 4 were evaluated at each 

location, except in Custar and South Charleston, OH, where MGs ranged from 0 to 3 and 

1 to 4, respectively. Some cultivars changed from one year to another due to seed 

availability but cultivars were replaced with a similar rMG. Soybean was planted at 37 

seeds m-2 from May 8 to June 8 in 0.38 or 0.76 m row spacing depending on the year and 

location. Details on the experimental design and methods can be found in Proctor et al. 

(in preparation).  All locations were rainfed in 2017 except the North Platte, NE, site 

which was irrigated. In 2018, an additional irrigated location was included in Concord, 

NE, and both irrigated and rainfed water management sites were added in Lexington, KY.  

The date of key developmental stages was recorded at all locations based on Fehr and 

Caviness, (1977). These stages included onset of flowering (R1), physiological maturity 

(R7), and harvest maturity (R8) across sites and years. Yield and yield components 
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(individual seed weight and the number of seeds per unit area) were obtained by 

harvesting 4.9 meters of the four center rows in each plot except for the Nebraska 

locations where yields were obtained from only two center rows. 

2.2. DSSAT – CROPGRO model description.  
 

 DSSAT v.4.6.1.0 (Hoogenboom et al., 2015; Jones et al., 2003) is a software 

program comprising several crop models such as CROPGRO-Soybean, which was used 

in our study for the simulation of soybean growth and development. DSSAT-CROPGRO 

is a dynamic and process-based model that simulates crop growth and development, as 

well as carbon, nitrogen, and water balance (K. J. Boote et al., 1998; Hoogenboom et al., 

2015; Jones et al., 2003). To perform model simulations management, weather, soil, and 

genotype input data is required. The hourly leaf-level, hedgerow photosynthesis option in 

CROGPRO was selected to simulate photosynthesis (see detailed description in Boote 

and Pickering, 1994). Reference evapotranspiration was calculated based on the FAO-

Penman approach (Allen et al., 1998), and soil evaporation with the CERES-Ritchie soil 

method (described in Jensen et al., 1990). A water stress index in the model is calculated 

as the ratio of the potential daily water uptake and the crop potential evapotranspiration 

(Ritchie, 1998). The model was run with biological N fixation activated, which is driven 

by the crop N demand, and influenced by temperature, soil water, and plant age (Boote et 

al., 1998).  

2.3. Model inputs.  
 

Daily weather inputs for estimation of potential evapotranspiration based on the 

FAO-Penman method are maximum and minimum air temperature, precipitation, solar 
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radiation, average wind seed, dew point temperature and/or relative humidity. For KY, 

daily weather data was obtained from the UK Ag Weather Center 

(http://www.agwx.ca.uky.edu), in NE from the HPRCC (https://hprcc.unl.edu/), and in 

OH from the OARDC Weather System (http://www.oardc.ohio-state.edu/weather1/). One 

exception was daily solar radiation in Ohio and Kentucky obtained from NASA – Power 

(https://power.larc.nasa.gov). To obtain soil input parameters for Nebraska and Ohio, 

percent clay and silt, drainage class, runoff potential, curve number, soil albedo, percent 

slope, percent organic carbon, CEC, and pH in water were gathered from USDA – NRCS 

(2018) whereas bulk density (BD), saturated hydraulic conductivity (Ks), and drainage 

upper limit (DUL), lower limit (LL),saturation (SAT) were estimated with the DSSAT 

pedotransfer functions (Rawls and Brakensiek, 1985; Saxton et al., 1986). For Kentucky, 

drainage class, runoff potential, curve number, soil albedo, percent slope, were gathered 

from USDA – NRCS (2018). Percent organic carbon, CEC, pH in water, percent clay and 

silt, bulk density (BD), drainage upper limit (DUL), lower limit (LL), and saturation 

(SAT) were obtained from direct field measurements. Saturated hydraulic conductivity 

(Ks) was estimated with DSSAT pedotransfer functions. On a later step, DUL was then 

adjusted between ± 8 to 28% DUL to improve model predictions.  A summary of the 

final soil input parameters can be found in Table 1.1. Finally, common genotype model 

inputs that describe cultivar differences consist of eighteen crop cultivar coefficients (see 

Table 1.2) that were obtained as described in the following section.  

2.4. Calibration of DSSAT-CROPGRO-Soybean cultivar coefficients. 
 

 Five common cultivars, one within each MG 0 to 4, were consistently used across 

all years and locations for the purpose of calibration, which will be referred from now on 

https://hprcc.unl.edu/
http://www.oardc.ohio-state.edu/weather1/
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as the calibration cultivars. The remaining 11 cultivars at each location changed between 

years or across locations and will be referred to as the evaluation cultivars. First, cultivar 

coefficients for the five calibration cultivars were obtained with the following steps: i) 

calibration of phenology coefficients with data across all locations, and ii) calibration of 

growth coefficients using data from sites under no water stress. Second, crop cultivar 

coefficients for the evaluation cultivars were estimated based on cultivar maturity (Table 

1.2). 

 The phenology and growth cultivar coefficients for the five calibration cultivars 

were optimized with the DSSAT - GLUE tool (Generalized Likelihood Uncertainty 

Analysis) (Jones et al., 2011). Details on the input coefficients and their units are 

provided in Table 1.2. The GLUE tool uses a Bayesian method based on a random 

parameter search method called Monte Carlo that compares simulated and observed 

variables, selecting the set of parameters that minimizes root mean squared error (RMSE) 

between simulated and observed variables (Jones et al., 2011). As a first step, due to the 

relatively small range of environmental conditions tested, most phenology coefficients 

(XFRT, PODUR, THRSH, SDPRO, and SDLIP) were estimated as a function of rMG 

based on Grimm et al (1994, 1993) and Salmerón and Purcell (2016) or standard 

coefficients by MG in DSSAT v 4.6 (Table 1.2) and fixed prior to the GLUE 

optimization. Subsequently, coefficients CSDL and SD-PM were optimized by 

performing 5000 runs across all sites and years (n = 13) for each coefficient. Next, 

coefficients FL-SH and FL-SD were recalculated assuming that the changes in duration 

of different developmental stages are not independent from each other and will 

increase/decrease proportionally (see Table 1.2 for more details). Lastly, cultivar 
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coefficients LFMAX, SLAVR, SIZLF, WTPSD, SFDUR and SDPDV were calibrated 

simultaneously by conducting 200,000 runs with GLUE across the non-water stressed 

sites to optimize prediction of yield and yield component data. To determine non-water 

stressed sites, we performed crop simulations deactivating the water balance from the 

model. Sites under water stress were not included in the calibration because we wanted to 

obtain coefficients that approximate to crop yield potential. Coefficients for the 

remaining cultivars in the study (evaluation cultivars) were then obtained based on each 

cultivar rMG as described in Table 1.2 (total of 42 different cultivars of rMG 0.3 to 4.5). 

Similarly, cultivar coefficients for MG 0 to 4 (rMG 0.5, 1.5, 2.5, 3.5, and 4.5) were 

obtained with the same approach and were used to conduct the subsequent sensitivity 

analysis. 

2.5. Sensitivity analysis.  
 

 A multi-factor sensitivity analysis was conducted with model simulations for 30 

years of historical weather data (1987 - 2017) at four selected locations in our study 

(Lexington, KY; Custar, OH; and Havelock and North Platte, NE). Across the seven sites 

in our study, these four sites provided the widest variation in weather data and predicted 

model outputs (data not shown). The treatment factors investigated were two water 

managements (irrigated vs. rainfed), two planting dates (May 15 and July 1), soybean 

cultivars of MG 0 to 4, and three levels of soil water holding capacity (unmodified soil, -

20% and +20% change in drainage upper limit) using a common silty clay loam soil 

across all sites (Table 1.1). The purpose of including a common soil type was to compare 

results across locations without the confounding effect of soil types for each site. Overall, 
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the sensitivity analysis included a total of 7200 simulations (30 years x 4 locations x 5 

MG cultivars x 2 water managements x 2 planting dates x 3 soils). 

2.6. Statistics for model evaluation and data analysis. 
 

 Model performance during calibration and evaluation was assessed by computing 

the RMSE between the observed and simulated date of R7 and R8 developmental stages 

and grain yield. In addition, the model efficiency (ME) was computed as: 

ME = 1 −
� (𝑆𝑆𝑐𝑐−𝑂𝑂𝑐𝑐)2𝑁𝑁

𝑐𝑐=1

� (𝑂𝑂𝑐𝑐−𝑂𝑂𝑎𝑎𝑎𝑎)2𝑁𝑁
𝑐𝑐=1

        (1) 

where Oc is the observed value for R7, R8, or yield for a given cultivar, Sc is the 

simulated value, Oav is the mean of the environment, and N is the number of observations 

for each cultivar. The ME ranges from -ꝏ to 1, with 1 being the optimal value. ME 

values between 0 and 1 indicate the model is more efficient in describing observed values 

than using the mean of the environment, while values <0 indicate that the observed mean 

is a better predictor than the model. Yield data from some MG 3 cultivars in Lexington, 

KY, during 2018 were omitted for model calibration and evaluation based on field notes 

reporting unusual stunted growth and final low yields. 

Simulated results from the multi-factor sensitivity analysis across the 30 years 

were analyzed with an analysis of variance. The PROC GLM procedure in SAS (v. 9.4, 

SAS Institute, Cary, NC) was used to test the effect of the different factors evaluated on 

yield. The assumptions of the model, including normality and homogeneity of variances, 

were met.  Fixed factors were MG, soil type, planting date, and location, while year was 

treated as a random factor. This analysis was performed for rainfed and irrigated 
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conditions separately. The relative effect of the different factors and interactions on yield 

was quantified as the sum of squares for each factor obtained from the analysis of 

variance, divided by the total modeled sum of squares, and expressed as a percentage. 

The LSMEANS procedure was used to identify MG cultivars with greatest yields within 

each location, planting date, irrigation management, and soil type. 

The potential to advance the cover crop planting window with early-season 

soybean maturities was investigated with the predicted dates of R8 by the model. In 

addition, cumulative thermal time or growing degree days (GDD) were calculated from 

the date of R8 until the first frost (GDDR8-F), and from R8 until the end of the year 

(GDDR8-E). The first frost date is based on  daily minimum temperature ≤ -4°C, and on 

the condition that 80% of freeze damage occurs in winter killed cover crops (i.e., oat 

(Avena sativa L.; Webb et al., 1994).  The base temperature for computing cumulative 

thermal time for over-wintering cover crops was set to 4.4 °C based on previous work on 

cereal rye (Secale cereal sp.), a widely used cool season cover crop (Nuttonson, 1957).  

3. RESULTS 

3.1. Model Calibration and Evaluation. 
 

 After calibration of cultivar specific coefficients for the five common cultivars 

across locations, the model was able to predict date of R7 and R8 with a RMSE of 3.5 to 

7.4 days, and yield with a RMSE of 0.219 to 0.540 Mg ha-1 (Table 1.3). When cultivar 

coefficients were derived based on rMG for the remaining cultivars, the RMSE for the 

predicted R7 date changed from a 1.8 day decrease to a 3 day increase for MG 2. 

Similarly, the RMSE for the predicted R8 date changed from a 2.5 day decrease for MG 0 

to a 0.3 day increase for MG 2. Finally, the yield RMSE changed from a 0.185 Mg ha-1 
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decrease for MG 2 to a 0.341 Mg ha-1 increase for MG 1 when coefficients were derived 

based on rMG compared to cultivar specific calibration (Table 1.3). Although changes in 

RMSE depending on the source of the cultivar coefficients (calibrated or based on rMG), 

were relatively small, the overall reduction in ME with the evaluation cultivars indicated 

that the model was less efficient with cultivar coefficients derived from rMG (Table 1.3). 

However, the positive overall ME regardless of the source of the cultivar coefficients 

indicates that the model was still efficient in predicting differences across MG cultivars 

(ME = 0.72, 0.61 and 0.53 for prediction of R7, R8 and yield, respectively).  

 To evaluate the overall model accuracy to predict yield differences across MG, 

statistics were calculated by location and year, including water-stressed sites and cultivars 

used for both calibration and evaluation (Figure 1.1 to 1.3). In Lexington, KY, observed 

yields increased with MG, and the model was able to predict this trend in all cases with a 

RMSE of 0.340 to 0.456 Mg ha-1 (Figure 1.1). In both years, the model was able to mimic 

the yield trend. However, the model under-predicted MG 0 in 2017 and MG 4 in 2018 

under rainfed and over predicted MG 2 in 2018 in both rainfed and irrigated conditions. 

When looking at yield simulations under an automatic irrigation, there was a yield gap in 

2017 and 2018 in rainfed environments due to water stress (Figure 1.1). 

 For the sites in Nebraska, the model predicted yield with a RMSE ranging from 

0.053 to 0.712 Mg ha-1 depending on the year and location (Figure 1.2). The lowest 

model efficiency (- 7.4) occurred at Havelock in 2017, but the model still predicted the 

observed yield trend with a RMSE of 0.321 Mg ha-1 (Figure 1.2c). Simulations when the 

water balance was deactivated indicated that there was a yield gap due to water stress in 

Mead and Havelock (rainfed) (Figure 1.2 a-d), but not at North Platte and Concord 
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(irrigated) (Figure 1.2 e-g). It is interesting to note that the model was efficient at 

predicting differences across MGs in locations that did not experience significant water 

stress (ME= 0.58 – 0.65; Figure 1.2 f,g), with the exception of North Platte in 2017 (ME 

= - 0.29). In contrast, the model was less efficient in two site years with significant water 

stress (ME = - 4.69 and - 7.39) (Figure 1.2 c,d).  

 In Ohio, the model predicted yield with a RMSE of 0.00025 to 0.680 Mg ha-1, 

with South Charleston 2018 being the least accurate (RMSE = 0.680 Mg ha-1) (Figure 1.3 

a-d). In this location, yield of MGs 2 to 4 was over-predicted. The over predictions might 

be due to the lack of measured soil data for this site which made it extremely difficult to 

accurately estimate soil parameters. When comparing yield simulations for non-water 

stress and water stress production system, there was a larger yield gap in South 

Charleston 2017 and in Custar 2018, than in South Charleston 2018 and Custar 2017. 

Sufficient precipitation during the growing season produced yields closer to the no-water-

stress simulation scenarios at these particular sites.  

3.2. Analysis of simulation scenarios. 

 3.2.1. Multi-factor sensitivity analysis. 
 

Analysis of variance (ANOVA) results on the impact of different management, 

environmental, and soil factors on simulated soybean yield grown under rainfed or 

irrigated conditions, and partitioning of sums of squares, are shown in (Table 1.4). Under 

rainfed conditions, the soil main effect explained the greatest percentage of the yield 

variability (35.5 % of the model sum of squares), and its interactions with location and 

planting date explained 0.4 and 2.8% more of the yield variability, respectively. The 

planting date main effect explained 20.7% of the yield variability, and its interactions 
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with location explained an additional 0.4%. Not surprisingly, year to year variability 

represented 12.9% of the yield variability. Location main effect explained 19.6% of the 

yield variability and its interaction with MG an additional 3.6%. Interestingly, the MG 

main effect explained only 2.9% of the yield variability, and the interaction of MG with 

other factors only added up to 4.2% (Table 1.4). 

The factors that explained yield variability were largely different under irrigated 

conditions. Planting date explained the greatest percentage of the yield variability 

(66.8%), with an additional 1.2 and 0.7% when interacting with location and MG, 

respectively. Year–to-year variability explained only 7.1% of the yield variability. The 

MG main factor explained 7.1% of the yield variability, and its interaction with other 

factors added up to 8.2%. Thus, MG cultivar explained a larger percentage of the yield 

variability compared to rainfed conditions, but was still relatively low. Location main 

effect explained 9.4% of the total yield variability. As expected, the soil main effect 

explained fewer yield changes under irrigated conditions (0.1%), and there were no 

interactions with other factors.  

 3.2.2. Effect on soybean harvest date and cover crop planting window. 
 

The simulated date of harvest maturity (R8) for 30-yr of historical weather data 

was plotted by MG to investigate the potential to advance the cover crop planting date 

when switching from late to earlier MGs (Figure 1.4). The median date at each location 

when the minimum daily temperature reached -4 °C based on 30-yr of historical weather 

data is shown in Figure 1.4 with a red solid horizontal line. Thus, the time difference 

from soybean harvest to this horizontal line provides an estimated cover crop planting 

and growth window before freezing damage or mortality may occur in the fall. We 
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considered that frost-sensitive cover crop species like oats and oilseed radishes would 

start to senesce and stop accumulating additional biomass after this date. Only data from 

simulations under irrigation or under rainfed conditions with a 20% reduction in DUL 

were included in Figure 1.4, since they provided the largest variation in water availability 

and differences in predicted date of R8. Results from MG 4 cultivars planted in July are 

not presented for Custar, OH and Havelock and North Platte, NE since this cultivar 

experienced late season freeze in > 80% of the simulations at these locations. 

Date of R8 showed a positive linear relationship with soybean maturity in all 

locations, planting dates, and soil types (R2 >0.85) (Figure 1.4). Under irrigated 

conditions, using an early MG allowed to advance soybean harvest and lengthen the 

cover crop planting window by 6.6 to 10.2 days per unit delay in cultivar maturity when 

planted in May, and by 1 to 7 days when planted in July. Overall, the slope of the 

relationship between soybean MG and date of R8 increased under rainfed conditions and 

for the warmest sites in our study. To further evaluate the potential for cover crop growth 

after soybean harvest in the fall, the thermal time accumulation as a function of cultivar 

maturity was calculated across sites and planting date treatments under irrigation (Figure 

1.5). As expected, adapting to short-season MG cultivars increased GDDR8-F  and GDDR8-

E and thus the potential cover crop growing window after soybean harvest (Figure 1.5).  

3.2.3. Effect on soybean yield. 
 

Simulated yield differences across MG cultivars by location, planting date, and 

soil type are shown in Figure 1.6. Simulations under irrigation provide an indication of 

the yield potential at each environment and planting date without water stress. Soybean 

yields under irrigation and planted on May 15 were the highest at the warmest location 
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(4.105 Mg ha-1 in Lexington, KY), and lowest at the coolest location (2.649 Mg ha-1 in 

North Platte, NE). As expected, delaying planting date to July 1 reduced irrigated yield 

by 28 to 59% depending on the location and cultivar MG. To compare yield responses 

across sites under rainfed conditions, the same common silty clay loam soil was used 

across the four locations in the sensitivity analysis. Overall yield gap from irrigated vs 

rainfed conditions for soybean planted on May 15 was 50% (North Platte), 26% 

(Havelock), 21% (Custar) and 16% (Lexington). When planting date was delayed to July 

1, the yield gap due to water stress was reduced to 33% (North Platte), 15% (Havelock), 

9% (Custar) and 13% (Lexington). When the soil water holding capacity was increased 

(+20% DUL), planting dates on May 15 would still experience water stress in the North 

Platte (18% yield gap), Havelock and Lexington (3%), but water stress would be 

negligible in Custar (1.5%). For planting dates on July 1 and soils with a high water 

holding capacity (+20% DUL) the yield gap would be minimal across locations (1-3.4%).  

In contrast, simulations with a soil that had reduced water holding capacity (-20% DUL) 

had a profound effect on yields and increased the yield gap to 40 to 80 % across locations 

and planting dates. 

 The simulated yield data was further analyzed by conducting lsmeans by location, 

planting date, soil type, and MG cultivar to identify the range of MG cultivars that 

provided the highest yields or not different from the highest yielding MG (Figure 1.6). In 

Custar, MG 1 to 3 cultivars had the highest yields for both May and July planting dates, 

except when DUL was reduced by 20% for a July 1 planting date, where all MG cultivars 

yielded the same (Figure 1.6 a,b). Similarly, in Havelock, yields were highest with MG 1 

to 3 cultivars planted in May, except when decreasing DUL by 20%, when MG 1 to 4 had 
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the highest yields (Figure 1.6 c). However, for July 1 planting dates in Havelock, MG 2 

and 3 cultivars yielded the highest under irrigation, and MG 1 to 3 cultivars under rainfed 

conditions (Figue 1.6 d). In Lexington, MG 3 and 4 cultivars had the highest yields across 

soil and planting date treatments, excluding irrigated conditions with a July 1 planting 

date, where the highest yields were only achieved with MG 4 cultivars (Figure 1.6 e f). 

Finally, MG 0 to 3 cultivars had the highest yields in North Platte under rainfed 

conditions and a May 15 planting date (Figure 1.6 g). However, only MG 1 and 2 

cultivars maximized yields under irrigation at this planting date. Interestingly, when 

delaying planting date to July 1, there were no yield differences across MG cultivars in 

North Platte (Figure 1.6 h).  

 4. DISCUSSION 

4.1. Evaluation of crop model applicability. 
 

 In this study, five common cultivars across locations in Kentucky, Nebraska and 

Ohio were used to derive crop cultivar coefficients as a function of rMG for cultivars MG 

0 to 4. Our results showed that the model was still efficient at predicting the date of R8 

and yield with this simplification. Similar results were obtained with DSSAT-CROPGRO 

simulations with generic coefficients based on cultivar maturity for MG 3 to 6 in latitudes 

30.6 to 38.9°N in the Midsouth (Salmerón and Purcell, 2016; Salmerόn et al., 2017). Our 

study evaluated model simulations with the same simplification but across 39.9 to 42.4 

°N latitudes and MG 0 to 4. This approach to obtain cultivar coefficients based on the 

rMG provided by seed production companies and previously calibrated coefficients in 

similar environments can increase model application for agronomic purposes and the 

opportunity to explore management adaptation strategies. Although the model was 
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efficient for the prediction of R7, R8, and yield across the range of MG cultivars in our 

study, the applicability of the generic crop cultivar coefficients that we obtained is limited 

to our study region. In addition, calibration of cultivar coefficients with experiments that 

include different planting dates, more cultivars, and years, would increase the model 

robustness and regional applicability to study management adaptation strategies. 

Our results also indicate a high degree of model sensitivity to the parameterization 

of soil inputs for simulations under rainfed conditions. Increasing the intensity and 

quality of soil data collection in agronomic trials would aid in reducing model uncertainty 

in calibrations with regional data. Further experiments performed under both irrigated 

and rainfed conditions, and with information on crop growth and soil moisture would be 

necessary to reduce model uncertainty to study management adaptations that maximize 

yield productivity and water use efficiency across our study region. 

Overall, results from the 30-yr simulations were in agreement with the yield 

analysis by Proctor et al. (in preparation) from the same data used for model calibration 

for this study. One exception was the yield analysis at Havelock, where surprisingly, 

early MG 0 yielded as high as later maturities at a 0.76 m row spacing. In contrast, our 

model simulations predicted a yield reduction with MG 0 cultivars at this location despite 

using a narrower row spacing (0.38 m) that could benefit early-season maturities. As 

expected, the 30-yr sensitivity analysis indicated that the year effect on yield was higher 

under rainfed compared to irrigated conditions (12.9 and 7.2 % of the total sum of 

squares, respectively). Thus, results from a limited number of irrigated sites or years 

would be still relatively robust. In contrast, model simulations might be more necessary 

to investigate different management options under rainfed conditions, where results from 
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a limited number of sites or years might be less representative of environmental 

conditions in a region. 

4.2. Soybean MG adaptation for cover crop rotations. 
 

The third objective in this study was to use a calibrated crop simulation model to 

evaluate the potential of early-season soybeans to advance harvest and cover crop 

planting date to lengthen the growing window without soybean yield penalty. 

Interestingly, our multi-factor sensitivity analysis from 30-yr simulations revealed that 

MG selection contributed to a relatively low percentage of the yield variability in both 

irrigated and rainfed environments. Instead, under rainfed conditions yield variability was 

mostly explained by soil type, and under irrigated conditions, yield was mostly dependent 

on the planting date. Hence, early MGs can provide a means to adapt growing season 

length with relatively low impact on yield potential, compared to other practices such as 

changing planting date and water supply. 

Our simulations indicated that at any location, planting date, water management, 

and soil type, there was a range of maturities with similar yields (i.e. MG 1-3 yielded the 

same for May 15 planting dates in Custar, OH). This means that while producers may 

select from a number of MG cultivars within a location that yields similarly, they could 

plant relatively early MGs for their location to simplify crop rotations and field 

operations. These results also have strong implications for increasing water use efficiency 

with short-season cultivars, as reported in irrigated trials in the Midsouth (Purcell et al., 

2007). We found that producers may advance soybean harvest by 6.6 to 11 days per unit 

decrease in MG when soybean was planted in May. However, advancing harvest in 
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double-crop soybean would be more challenging, with harvest occurring 1 to 7.3 days 

earlier per unit decrease in MG.  

An earlier soybean harvest can be beneficial to advance cover crop planting date, 

thus increasing biomass production in the fall (Prabhakara et al., 2015; Teasdale et al., 

2004; Thapa et al., 2018). However, not only the duration of the cover crop growing 

window is important for crop planting and field operations, but temperatures during this 

period are more critical for cover crop growth, and will partially determine the success of 

a cover crop and the biomass produced in the fall (Mirsky et al., 2011; Webster et al., 

2016). Previous studies in the U.S. estimated biomass gains of 1.8 – 5.3 kg ha-1 GDD-1 in 

a hairy vetch cover crop (Lawson et al., 2015; Mirsky et al., 2017; Teasdale et al., 2004), 

4.1 – 11.0 kg ha-1 GDD-1 for cereal rye (Lawson et al., 2015; Mirsky et al., 2017), and 6.7 

– 7.5 kg ha-1 GDD-1 in cereal rye-vetch mixtures (Lawson et al., 2015). At Custar and 

Havelock, the earliest maturity that maximized yields were MG 1 soybeans and provided 

a growing window of 602-627 GDD before the first frost (at -4°C). Considering a 

relationship of cover crop biomass with cumulative thermal time of 5 kg ha-1 GDD-1, a 

warm-season cover crop (i.e. oats) would be able to produce above 3000 kg ha-1 of 

biomass before the first frost in these locations. For winter cover crops (i.e. cereal rye and 

hairy vetch) the growing window after MG 1 soybeans would be extended to 732-819 

GDD, and cover crop biomass would increase to 3,658-4,095 kg ha-1 (considering 5 kg 

ha-1 GDD-1). At the coolest location in our study (North Platte, NE), yield under irrigated 

conditions was also maximized with MG 1 cultivars, but due to relatively lower 

temperatures, a warm-season cover crop may produce 1,495 kg ha-1 in the fall, whereas a 

winter cover crop may produce 2,795 kg ha-1 (considering 5 kg ha-1 GDD-1). Adapting 
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from MG1 to MG 0 soybeans under irrigation in North Platte would reduce yield by 390 

kg ha-1 and increase biomass production by 723 kg ha-1 on average. Finally, at our 

warmest site in Lexington, the estimated cover crop biomass produced after MG 3 

soybeans would be 3,348 kg ha-1 until the first frost, or 4,062 kg ha-1 until the end of the 

year. Adapting to MG 2 in Lexington would reduce yield by 220-440 kg ha-1 and increase 

cover crop biomass by 845 kg ha-1 on average. As expected, the growing window for 

cover crops after a double crop soybean was reduced across all locations. A warm-season 

cover crop after double-crop soybean when selecting the earliest MG that maximizes 

productivity would produce 519-1,127 kg ha-1, whereas a winter cover crop would 

produce 166-2,080 kg ha-1, depending on the location. Adapting to earlier MG at Custar, 

Havelock or Lexington would reduce yields by 70 – 382 kg ha-1 and increase cover crop 

biomass by 332 – 562 kg ha-1. 

The application of a calibrated crop model combined with the analysis of GDD 

after soybean harvest provided a means to investigate the potential for growth of cover 

crops in our study region. This approach could be further investigated by considering 

different cover crop sensitivity to frost injury, as well as different baseline temperatures 

for growth. However, additional information on cover crop responses to cumulative 

thermal time in our study region is necessary to reduce uncertainty in cover crop biomass 

estimations. Moreover, while this simple approach may be sufficient to evaluate the 

potential to grow cover crops under different sites and MG management options, a more 

mechanistic eco-physiological model where growth is a function of radiation (and 

temperature) and that considers water stress may provide more accurate cover crop 

biomass estimations. 
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5. CONCLUSION 
 

Our study demonstrates that DSSAT-CROPGRO model calibrated with cultivar 

coefficients derived from rMG was efficient predicting date of harvest maturity and yield 

across MG 0 to 4 cultivars and latitudes 39.9 to 42.4°N. However, calibration with data 

obtained from a wider range of planting dates, cultivars, and years would improve the 

robustness of the cultivar coefficients and reduce uncertainty in model predictions in the 

study region. Our multi-factor sensitivity analysis revealed that under rainfed and 

irrigated conditions, MG selection was responsible for a relatively low percentage of 

yield variability. Instead, under rainfed conditions yield variability was mostly explained 

by soil type and variability in precipitation patterns, and planting date was the main factor 

influencing yield under irrigated conditions. Given the high sensitivity of model 

predictions to factors that influence water availability, more detailed data collection under 

water stress conditions is required to simulate management adaptations in our study 

region, where soybean is mostly grown under no irrigation. 

This study provides a simple framework to apply crop simulation models to 

identify management adaptations that can facilitate cover crop establishment after a grain 

crop. Overall, our results indicate that it was possible to adapt soybean maturity selection 

and reduce MG by 0 to 3 units without a yield penalty, depending on the site, planting 

date, and water availability. The cultivars that maximized yield ranged from MG 0 to 3 

across our sites for a planting date in May, and could provide sufficient cover crop 

growing window for both winter and warm season cover crops. However, the cover crop 

growing window after a double-crop soybean planted in July was not sufficient for warm-

season cover crops, and provided less potential for cultivar maturity adaptation than when 



25 
 

soybean was planted in May. An analysis of environmental conditions in the fall with 

specific temperature sensitivities for different cover crop species would help improve 

best cover crop management recommendations for our study region. 
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6. CHAPTER 1: TABLES AND FIGURES  
 

Table 1. 1.  Summarized soil properties at each experimental site and year, and for the 
common soil utilized for the sensitivity analysis. Soil hydrological parameters include the 
soil lower limit (LL), drained upper limit (DUL), and saturated volumetric water content 
(SAT), saturated hydraulic conductivity (Ks), and bulk density (BD). 

Location Year Soil name Depth 
(cm) 

Clay 
(%) 

Silt 
(%) 

LL 
(m3m-3) 

DUL 
(m3m-3) 

SAT 
(m3m-3) 

Ks 
(cm h-1) 

BD 
(g cm-3) 

Mead    
NE 2017 Tomek Silt loam 

0 - 60 26.5 67.5 0.22 0.43 0.63 0.68 1.20 
60 - 140 37.0 57.0 0.23 0.41 0.59 0.15 1.36 
140 - 200 27.0 66.0 0.18 0.36 0.57 0.68 1.42 

Mead    
NE 2018 Yutan Silty clay 

loam 

0 - 60 34.6 57.1 0.21 0.35 0.46 0.15 1.35 
60 - 109 24.4 62.3 0.15 0.29 0.47 0.68 1.32 
109 - 200 19.3 63.3 0.13 0.27 0.49 0.68 1.27 

Havelock 
NE 2017 Butler Silt loam 

0 - 38 22.7 53.0 0.19 0.38 0.54 0.68 1.12 
38 - 86 50.0 28.0 0.30 0.44 0.48 0.06 1.29 

86 - 152 38.7 54.0 0.23 0.41 0.46 0.15 1.37 

Havelock 
NE 2018 Butler Silt loam 

0 - 30 23.0 53.0 0.19 0.37 0.52 0.68 1.12 
30 - 86 50.0 28.0 0.30 0.43 0.47 0.06 1.29 

86 - 152 39.0 54.0 0.24 0.41 0.45 0.15 1.33 

North 
Plate NE 2017 Cozad Silt loam 

0 - 30 19.0 60.0 0.15 0.40 0.62 0.68 1.14 
30 - 46 18.3 49.7 0.14 0.28 0.56 1.32 1.29 

46 - 200 13.0 46.0 0.10 0.28 0.54 1.32 1.34 

North 
Platte NE 2018 Cozad Silt loam 

0 - 30 19.0 60.0 0.15 0.41 0.64 0.68 1.14 
30 - 46 18.3 49.7 0.14 0.35 0.58 1.32 1.29 

46 - 200 13.0 16.0 0.10 0.28 0.56 1.32 1.34 

Concord 
NE 2018 Moody-Leisy 

Complex 

0 - 40 21.8 41.0 0.18 0.35 0.49 1.32 1.24 
40 - 132 27.3 49.5 0.19 0.37 0.41 0.23 1.20 
132 - 152 27.3 58.0 0.17 0.34 0.49 0.15 1.28 

Lexington  
KY 2017 Armour Silt loam 

0 - 60 21.7 68.7 0.17 0.28 0.39 0.68 1.44 
60 - 90 36.5 53.6 0.20 0.29 0.39 0.15 1.51 

90 - 120 40.3 48.7 0.23 0.31 0.39 0.09 1.51 

Lexington  
KY 2018 Maury Silt loam 

0 - 60 22.4 66.5 0.17 0.36 0.49 0.68 1.59 
60 - 90 39.5 48.5 0.21 0.37 0.47 0.15 1.62 

90 - 175 43.2 41.2 0.24 0.41 0.47 0.09 1.56 

South 
Charleston 

OH 

2017 
& 

2018  

Strawn-Crosby 
Complex 

0 - 23 19.8 59.0 0.16 0.29 0.53 0.68 1.14 
23 - 55 35.5 41.5 0.21 0.29 0.48 0.23 1.31 

55 - 203 21.8 38.5 0.14 0.30 0.44 1.32 1.43 

Custar OH 
2017 

& 
2018  

Hoytville Clay 
loam 

0 - 89 35.7 38.0 0.26 0.47 0.56 0.23 1.19 
89 - 145 44.7 37.0 0.26 0.44 0.52 0.06 1.33 
145 - 190 38.7 38.7 0.23 0.40 0.51 0.23 1.34 

Common 
soil 

1987-
2017 Silty clay loam 

0 - 30 30.0 60.0 0.21 0.41 0.49 0.15 1.27 
30 - 90 30.0 60.0 0.20 0.40 0.48 0.15 1.29 

90 - 150 30.0 60.0 0.19 0.37 0.46 0.15 1.35 
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Table 1. 2.  Cultivar crop coefficients for DSSAT-CROPGRO by cultivar relative maturity group (rMG) obtained after calibration and 
used in the sensitivity analysis. 

Coefficient Unit rMG 
0.5 

rMG 
1.5 

rMG 
2.5 

rMG 
3.5 

rMG 
4.5 Equation for parameter prediction Source 

CSDL h 13.76 13.56 13.36 13.16 12.96 y = -0.201 x + 13.90 Calibrated in this study 
PPSEN h-1 0.206 0.223 0.239 0.255 0.271 y = 0.016 x + 0.20 (Hoogenboom et al., 2015; Jones et al., 2003)  
EM-FL PTD 17.5 17.5 17.5 17.5 17.5 - Salmeron and Purcell, (2016) 

FL-SH  PTD 6.3 6.5 6.6 6.8 8.1 (FLSH/SDPM)MG * 
SDPMCALIBRATED 

Mavromatis et al., (2001); Salmeron and Purcell, 
(2016) 

FL-SD PTD 13.7 14.1 15.0 15.9 17.4 (FLSD/SDPM)MG * 
SDPMCALIBRATED 

Mavromatis et al., (2001); Salmeron and Purcell, 
(2016) 

SD-PM PTD 32.4 34.2 35.9 37.6 39.3 y = 1.724 x + 31.58 Calibrated in this study 
FL-LF PTD 26.00 26.00 26.00 26.00 26.00 - (Hoogenboom et al., 2015; Jones et al., 2003)  
LFMAX  mg CO2 m-2 s-1 0.94 1.02 1.10 1.17 1.25 y = 0.076 x + 0.91 Calibrated in this study 
SLAVR cm2 g-1 337.0 352.4 367.7 383.0 398.3 y = 15.317 x + 329.40 Calibrated in this study 
SIZLF cm2 138.2 139.0 139.7 140.5 141.2 y = 0.752 x + 137.84 Calibrated in this study 
XFRT - 1.00 1.00 1.00 1.00 1.00 - (Hoogenboom et al., 2015; Jones et al., 2003)  
WTPSD g 0.181 0.175 0.169 0.163 0.157 y = 0.006 x + 0.18 Calibrated in this study 
SFDUR PTD 24.2 24.6 24.9 25.3 25.6 y = 0.343 x + 24.08 Calibrated in this study 
SDPDV # pod-1 1.83 1.94 2.05 2.16 2.27 y = 0.109 x + 1.77 Calibrated in this study 
PODUR PTD 10.00 10.00 10.00 10.00 10.00 - (Hoogenboom et al., 2015; Jones et al., 2003)  
THRSH % 77.0 77.0 77.0 77.0 77.0 - (Hoogenboom et al., 2015; Jones et al., 2003)  
SDPRO - 0.405 0.405 0.405 0.405 0.405 - (Hoogenboom et al., 2015; Jones et al., 2003)  
SDLIP - 0.205 0.205 0.205 0.205 0.205 - (Hoogenboom et al., 2015; Jones et al., 2003)  
PTD: Photothermal days; CSDL: critical short day length below which reproductive development progresses with no daylength effect; PPSEN: slope of the relative 
response of development to photoperiod with time;  EM-FL: time between plant emergence and flower appearance; FL-SH: Time between first flower and first pod; FL-
SD: Time between first flower and first seed; SD-PM: Time between first seed and physiological maturity; FL-LF: Time between first flower and end of leaf expansion; 
LFMAX: Maximum leaf photosynthesis rate at 30 C, 350 vpm CO2, and high light;  SLAVR: Specific leaf area of cultivar under standard growth conditions; SIZLF: 
Maximum size of full leaf; XFRT: Maximum fraction of daily growth that is partitioned to seed and shell; SFDUR: Seed filling duration for pod cohort at standard 
growth conditions for the crop; SDPDV: Average seed per pod under standard growing conditions; PODUR: Time required for cultivar to reach final pod load under 
optimal conditions for the crop; THRSH: Threshing percentage; SDPRO: Fraction protein in seeds; SDLIP: Fraction oil in seeds.                                                                                                                                                                                                                              
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Table 1. 3. Root mean square error (RMSE) and model efficiency (ME) in the prediction 
of days from planting to physiological maturity (R7), to harvest maturity (R8), and dry 
grain yield (Mg ha-1) in soybean. 

 
Cultivar 
Maturity 
Group 

n 
R7 R8 Yield 

RMSE 
(days) ME  

RMSE 
(days) ME  

RMSE 
(Mg ha -1) ME  

Calibration cultivars 
0 11 4.2 0.60 5.4 0.51 0.540 0.34 
1 14 4.6 0.50 6.3 0.59 0.219 0.85 
2 13 3.5 0.74 7.4 0.36 0.255 0.84 
3 14 5.7 -0.45 7.4 0.46 0.477 0.46 
4 12 7.1 -0.74 6.1 0.32 0.423 0.40 

All cultivars 64 5.1 0.80 6.6 0.78 0.396 0.68 
Evaluation cultivars 

0 12 5.7 -3.47 7.9 0.08 0.198 0.73 
1 39 5.2 0.20 6.4 0.48 0.383 0.40 
2 42 5.3 0.32 7.0 0.18 0.440 0.23 
3 43 5.0 -0.10 8.1 0.11 0.403 0.45 
4 15 4.1 0.69 8.4 0.19 0.350 0.41 

All cultivars 151 5.1 0.72 7.4 0.61 0.391 0.53 
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Table 1. 4. Analysis of variance for simulated rainfed and irrigated soybean yields from 
30-yr of historical weather data. Year was considered a random factor, and fixed factors 
were location (Custar, OH, Lexington, KY, Havelock and North Platte, NE), planting 
date (15 May, 1 July), soybean maturity group (MG) (MG 0, 1, 2, 3, and 4), and soil type 
(unmodified, -20, and +20 % change in soil drainage upper limit). 

 

Factor Rainfed Irrigated 
p % Sum of squares p % Sum of squares 

Year <.0001 12.9 <.0001 7.1 
Location <.0001 19.6 <.0001 9.4 
Planting date <.0001 20.7 <.0001 66.8 
MG <.0001 2.9 <.0001 7.1 
Soil <.0001 35.5 <.0001 0.1 
Planting date*Location <.0001 0.4 <.0001 1.2 
Planting date*Soil <.0001 2.8 0.7661 < 0.1 
MG*Planting date 0.014 0.2 <.0001 0.7 
MG*Location <.0001 3.6 <.0001 7.6 
MG*Soil 0.0005 0.4 0.0745 < 0.1 
Location*Soil <.0001 0.4 0.6677 < 0.1 
Location*Planting date*Soil 0.1148 0.1 0.9747 < 0.1 
Location*Planting date*MG 0.8497 0.1 0.1746 < 0.1 
Location*Soil*MG 0.6233 0.3 1 < 0.1 
Planting date*Soil*MG 0.9158 < 0.1 0.9414 < 0.1 
Location*Planting date*Soil*MG 1 < 0.1 1 < 0.1 
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Figure 1. 1. Observed and simulated soybean yields by cultivar relative Maturity Group 
in experimental sites in Kentucky. Dots indicate observed values with error bars, black 
line indicates simulated values and blue dashed line indicates non-water stress 
simulations performed deactivating the water balance from the model.  Planting density 
(PD), row spacing (RS), root mean squared error (RMSE) and model efficiency (ME) to 
evaluate the model accuracy are indicated in the figure.  
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Figure 1. 2. Observed and simulated soybean yields by cultivar relative Maturity Group 
in experimental sites in Nebraska. The root mean squared error (RMSE) and model 
efficiency (ME) to evaluate the model accuracy are indicated in the figure. 
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Figure 1. 3. Observed and simulated soybean yields by cultivar relative Maturity Group 
in experimental sites in Ohio. The root mean squared error (RMSE) and model efficiency 
(ME) to evaluate the model accuracy are indicated in the figure. 
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Figure 1. 4. Regression of the predicted soybean harvest maturity date (R8) as a function 
of cultivar maturity group (MG) for two planting dates (PD; May 15 and July 1), under 
irrigated (blue symbols) or rainfed conditions (black symbols), and at four select sites. 
Data averaged across 30-yrs. Red solid horizontal lines indicate the day of the year when 
freeze damage would occur in frost sensitive cover crops.  
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Figure 1. 5. Growing degree days (GDD) accumulated from soybean harvest until the 
first freeze in the fall (GDDR8-FREEZE) (red solid line) or until the end of the year (GDDR8-

END) (black dashed line) at four different locations and two planting dates (PD). Results 
averaged across 30-yr simulations under irrigation. 
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Figure 1. 6. Predicted soybean yield for maturity group (MG) 0 to 4 at four locations and 
two planting dates (PD). Results obtained from 30-yr simulations under irrigated (blue 
symbols) and rainfed (black symbols) conditions and with different soil modifications of 
a common silty clay loam soil (unmodified, -20 and +20 % change in drainage upper 
limit, DUL). Solid symbols indicate cultivar MG with the highest yield or not 
significantly different than the highest yielding, within a location, planting date, irrigation 
management, and soil type. 
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CHAPTER 2: Optimizing management options in soybean – cover crop rotations for 

improved weed control.  

 

ABSTRACT 
 

Winter cover crops grown in rotation with grain crops can be used as an 

integrated pest management tool (IPM) for the management of hard to control weed 

populations. However, cover crop establishment before the cold temperatures in the fall is 

challenging.  Short-season cash crops that are harvested earlier (e.g., early season 

soybean [Glycine max (L.) Merr.] cultivars) could advance cover crop planting date 

resulting in a longer growing window and more biomass production that improves weed 

management. A rotation experiment was planted at Spindletop Farm in 2017 and 2018.  

The objectives of this study were : (i) to quantify differences in cover crop and weed 

biomass and ground cover planted after soybean MG cultivars 1 to 4 at two termination 

times; and (ii) to evaluate weed biomass across different herbicide treatments. Results 

showed that having a cover crop was an efficient management strategy to reduce weed 

biomass in the fall and spring compared to a no cover treatment. However, cover crops 

planted after MG 1 cultivars produced more biomass in the fall and covered the ground 

sooner, but were not able to reduce weed biomass in the fall and spring compared to 

cover crops planted after MG 4 cultivars. Having a fall herbicide application improved 

weed control in one out of two years with higher pressure of winter annual weeds. 

Delaying cover crop termination increased cover crop biomass but did not reduce weed 

biomass in the spring. 
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1. INTRODUCTION 
 

Soybean (Glycine max (L.) Merr.) is one of Kentucky’s main grain crops with an 

average yield of  3.5 t ha-1 and a harvested area of 805,300 hectares (USDA-NASS 2018). 

Like other crops, there are environmental and biotic stressors that threaten the ability to 

increase or maintain productivity for this crop. One major challenge is the increase in the 

number and frequency of glyphosate-resistant weeds in the USA since glyphosate-

resistant soybean introduction in 1996 (Heap, 2014; Owen and Zelaya, 2005). For 

instance, seven glyphosate-resistant weeds species have been reported in the states of 

Ohio and Nebraska, and five weed species in Kentucky (ISHRW, 2014). This increase in 

glyphosate-resistant weeds introduces more competition for resources between weeds and 

cash crops, and adds more complexity and costs for managing cropping systems. Finding 

additional and alternative management practices to herbicides for weed control in grain 

crops is critical. 

Cover crops are defined as vegetation that protects the soil surface, and grows 

between two regular cash crops (Reicosky and Forcella, 1998; Singer, 2008). These cover 

crops can be legumes (i.e., cowpea, soybeans, clover) or non-legumes/ cereals (i.e., cereal 

rye, oat, barley, wheat). Among other benefits, cover crops can decrease nutrient leaching 

(Dabney et al., 2001; Di and Cameron, 2002; Jackson, 2000; Meisinger et al., 1991; 

Reeves, 2017; Salazar et al., 2019), reduce soil erosion (Dabney, 1998; Langdale et al., 

1991; Mutchler and McDowell, 1990),  increase soil aggregation and water infiltration 

(Dapaah and Vyn, 1998; Fageria et al., 2005; Hargrove, 1986; McVay et al., 1989; 

Meisinger et al., 1991), and increase the natural abundance of beneficial insects 

(Letourneau et al., 2011; Sunderland and Samu, 2000; Tillman et al., 2004).  
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Winter cover crops grown in rotation with grain crops can be used as an 

integrated pest management tool (IPM) for the management of hard to control weed 

populations, such as glyphosate resistant weeds (Sarrantonio and Gallandt, 2003; 

Wiggins et al., 2016, 2015). Cover crops with abundant above ground biomass can 

prevent solar radiation from reaching the soil surface (Upadhyaya and Blackshaw, 2007). 

Since several weed seeds require light to germinate, this process is inhibited and weeds 

are suppressed (Haramoto, 2019).  However, providing a full ground cover and abundant 

biomass early in the fall with one single species could be challenging. Indeed, 

introducing cover crops species mixes, such as oat (Avena sativa L.) and cereal rye 

(Secale cereale L.), into the crop rotation might increase cover crops benefits by 

providing sufficient ground cover over time. While oat has a higher biomass production 

during fall but winterkills, cereal rye is characterized by its winter hardiness and a rapid 

regrowth the following spring (Mirsky et al., 2009).   

Despite the potential of using winter cover crops as IPM tools in grain cropping 

systems, one of the biggest challenges for their introduction in grain crop rotations is 

their timely establishment in the fall (Bich et al., 2014; Hively and Cox, 2001; Johnson et 

al., 1998; Sarrantonio and Gallandt, 2003). Previous research found that when cover 

crops are planted earlier, they produce a greater amount of aboveground biomass 

(Hashemi et al., 2013; Hively et al., 2009; Mirsky et al., 2009). In addition, other studies 

found that terminating cover later in the spring increased their  biomass production 

(Mirsky et al., 2011; Nascente et al., 2013). Greater cover crop biomass and/or a faster 

establishment is associated with better weed control (Akemo et al., 2000; Brennan and 

Smith, 2005; Crutchfield et al., 1986; Mirsky et al., 2011; Mohler and Te Asdale, 1993), 
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reduced N leaching (Di and Cameron, 2002; Meisinger et al., 1991; Salmerón et al., 

2010), and increased organic matter (Kuo et al., 1997; Sainju et al., 2005). However, in 

large parts of the U.S. grain cropping regions, cover crops planted after the harvest of a 

cash crop (mid-September to late-October) may not have the time to produce enough 

biomass before the onset of cold temperatures. Finding strategies that ensure an earlier 

cover crop establishment after grain crops in the fall may enhance their application as 

IPM management tools and increase other benefits provided by cover crops. 

One potential management adaptation is the use of relatively short-season 

soybean maturities within a region to facilitate earlier soybean harvest and seeding of 

cover crops in the fall. Short-season soybean maturities would provide a longer fall 

growing window for cover crops and under better environmental conditions, compared to 

cover crops planted after full-season soybeans. A recent simulation study across 

Kentucky, Ohio and Nebraska showed that adapting short- season soybeans maturities 

into crop rotations could advance soybean harvest by 6.6 to 10.2 days per unit decrease in 

maturity group without yield penalty for mid-May planting dates (Sciarresi et al., under 

review). Thus, we hypothesize that planting cover crops earlier after short-season 

soybeans will increase their biomass production and percentage of ground cover, 

resulting in a better weed control. We also hypothesize that adding a fall herbicide 

application will improve weed suppression in the spring. 

The objectives of this study were : (i) to quantify differences in cover crop and 

weed biomass and ground cover planted after soybean MG cultivars 1 to 4 at two 

termination times; and (ii) to evaluate weed biomass across different herbicide 

treatments.  
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2. MATERIALS AND METHODS 

2.1. Field experiment – Rotation study. 
 

Field experiments were conducted at Spindletop farm (38° 7' 20'' N, 84° 29' 56'' 

W).  The fields in both years were adjacent to each other and under a no-till system. In 

2017- 2018 the entire field was Lowell – Bluegrass silt loam (Fine, mixed, active, mesic 

Typic Hapludalfs), while in 2018- 2019 85% of the field was Bluegrass – Maury Silt 

loam (fine, mixed, active, mesic Typic Peleudalfs) and 15% Lowell – Bluegrass silt loam. 

Previous crop in 2017 was fescue sod (Festuca arundinacea (Schreb.)) while in 2018 was 

tobacco (Nicotiana tabacum).  

Experiment consisted of a split-plot design with the rotation type as the main split 

factor and different herbicide management treatments and cover crop termination times 

randomized within each sub-plot. The main split-plot treatments consisted of soybean – 

cover crop – corn rotations with different soybean MG cultivars ranging from 1 to 4 

(referred from now on as rotations MG1-C, MG2-C, MG3-C, and MG4-C), and a control 

with a MG 4 soybean cultivar – fallow – corn rotation (referred from now as MG4-F). 

This last treatment was considered as the control following current common management 

practices in Kentucky (Figure 2.1). Each of these main split-plots was 6 m wide by 23 m 

long and was subdivided into 6 sub plots. Subplots contained a fully factorial 

combination of two cover crop termination dates and three different herbicide treatments, 

applied between the fall and early stages of corn development (Figure 2.1). The first 

herbicide treatment included a fall broadleaf herbicide application plus two herbicide 

applications in the spring (pre and post corn emergence); the second herbicide treatment 

included the two herbicide applications in the spring only; and the third herbicide 
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treatment consisted on a single corn post-emergence application. All these herbicide 

programs included early and late cover crop termination. Further details on the herbicide 

treatment rates, active ingredients, and application dates, are summarized in table 1.1. 

The cover crop was chemically terminated using Roundup Powermax (glyphosate 720 g 

a.e. ha-1) in spring. In 2018, the first termination date was 26 April and the second 3 May; 

whereas in 2019, the fist termination was 15 April and the second 30 April.  

2.2. Crop management. 
 

Soybean was sown on 17 May in 2017 and 24 May in 2018 in 0.38 m rows at a 

rate of of 37 seeds m-2.  Each MG cultivar was harvested on a different date, soon after 

each cultivar reached harvest maturity (R8) and at approximately 13% grain moisture. In 

both years, soybean received two herbicide applications. The first application included a 

soybean PRE emergence herbicide application with Sharpen (saflufenacil 20.8 g a.i. ha-1) 

and Roundup Powermax (glyphosate 720 g a.e. ha-1) the day after soybean was planted; 

and a second application with Roundup Powermax (glyphosate 720 g a.e. ha-1) at soybean 

post emergence (12 June 2017 and 19 June 2018). In addition, soybeans were sprayed for 

control of Japanese beetle (Popillia japonica) with Warrior 2 (lambda-cyhalothrin 14.4 g 

a.i. ha-1) on 19 July 2017 and 16 July 2018.  

A mix of oat and cereal rye at a proportion of 60:40 (weight basis) was used as a 

cover crop. Seeding rates were 56 kg ha-1 for oat and 34 kg ha-1 for cereal rye. Cover 

crops were sown on 0.19 m wide rows using a grain drill immediately after soybean 

harvest. Weeds were not controlled prior to cover crop planting.   



42 
 

Dekalb corn hybrid (DK 63-55) was planted on 9 May 2018 and 7 May 2019. 

Nitrogen fertilizer was split in one application before planting, and a second side-dress 

application at V5. A total of 160 kg N ha-1 of UAN nitrogen were applied one day before 

planting. At V5, 56 kg N ha-1 of urea nitrogen was hand-broadcast on the soil surface. On 

the date of corn planting, a pre-emergence herbicide was applied in the subplots that 

receive this treatment (Figure 2.1). Around thirty days after planting, all subplots 

received a post-emergence herbicide application (Figure 2.1).   

2.3. Field measurements. 

2.3.1. Cover crop and weed biomass. 
 

Cover crop and weed biomass were collected at two different times: i) in the fall, 

prior to oat winterkill (on 28 November 2017 and 12 December 2018),  and ii) in the 

spring, prior to each cover crop termination (on 26 April 2018 and 15 April 2019 for 

early termination and 3 May 2018 and 30 April 2019 for the late termination).  For 

biomass samplings in the fall, two biomass samples were collected from each main plot 

in subplot areas that did not received the fall herbicide application.  For biomass 

sampling in the spring, two samples were collected from each subplot (Figure 2.1). 

Samples were collected by clipping all the aboveground biomass at the soil surface in an 

area of 0.25 m2. Biomass was separated into cover crop and weed fractions. Each sample 

was dried at 60oC until a constant weight was reached and then weighed.   

2.3.2. Ground cover. 
 

Digital images were taken during the cover crop growing season from each sub 

plot to quantify the percentage of ground cover. Two images were taken from two 
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randomly assigned locations within each subplot. Images were taken weekly at a 

consistent height above the soil surface with a Nikon Coolpix camera (S6900, 16 

megapixels Nikon, Tokyo, Japan) from 27 October 2017 and 14 November 2018 (after 

fall broadleaf herbicide application) until stem elongation began in the Spring.  

After adjusting image quality from each individual photo to a standard pixel size 

(800 pixels by 600 pixels), photos were analyzed using Image J (Schneider et al., 2012) 

following procedures outlined in Purcell (2000) and Haramoto (2019). The range of hue, 

saturation and brightness was adjusted to best differentiate pixels containing green, living 

plants (cover crops + weeds) from those containing soil and/or previous crop residue. The 

range of hue values before the oat was winter-killed ranged from 31 to 117 to capture 

green, live canopy cover in the image. However, after the oat was winter-killed, these 

settings resulted in a mix of green and light brown pixels that captured living cereal rye 

but also dead oat residue. Hence, the lower hue threshold was adjusted to values ranging 

from 46 to 21 with a maximum threshold fixed in 117 to best capture green, living 

canopy on each set of pictures.  

2.4. Data Analysis. 
 

Analysis of cover crop and weed biomass in the fall was performed with a one-

way ANOVA to test the effect of the rotation type (i.e., cover crop after different MG and 

fallow control). The rotation type was treated as a fixed factor, and block and its 

interaction with other factors as random effects. For the analysis of weed biomass in the 

spring, a three-way ANOVA was used with rotation type, cover crop termination, 

herbicide treatment, and their interactions included as fixed effects in the model, and 
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block as a random effect. For cover crop biomass in the spring, the ANOVA analysis 

included rotation type, cover crop termination and their interactions as fixed effects in the 

model, and block and its interaction with other factors as random effects. Both tests were 

conducted with SAS (v. 9.4, SAS Institute, Cary, NC) using PROC MIXED. For all 

ANOVA, significant means comparisons were performed using slicing and Tukey HSD 

method. Effects were considered significant in this and subsequent analyses when p 

values were less than 0.05. Before conducting the ANOVA, the normality of residuals 

and homogeneity of variances was checked. Weed biomass data collected in the fall 

(2017 and 2018) and spring 2018 as well as cover crop biomass collected in spring 2018 

were log transformed to meet assumptions of normality except for weed biomass in 

spring 2017 were square root transformed.  

Ground cover were analyzed with an ANOVA using PROC MIXED in SAS (v. 

9.4, SAS Institute, Cary, NC) and considering data collected over time as repeated 

measures. The rotation type (without the control fallow), herbicide treatment and time 

were considered as fixed factors, and block as random. The heterogeneous Toeplitz 

matrix was used as the variance / covariance structure as it resulted in the most 

parsimonious model fit (assessed by having the lowest AIC value).  Additionally, we 

selected one key date, before the oat was winter-killed, to analyze the effect of cover crop 

planting date on percentage of ground cover with a PROC MIXED procedure and 

without considering the time factor. In addition, we analyzed percentage of ground cover 

for no cover crop treatments using repeated measurements to determine the evolution of 

weed ground cover. Herbicide treatment and time were considered as fixed factors, and 

block as random. Data were also analyzed with a PROC MIXED procedure with 
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herbicide treatment as fixed factor, time as a random repeated measure, and block as the 

subject. The same variance/covariance structure described above was also used in this 

case since it resulted in the best model fit. 

3. RESULTS 

3.1. Cover crop and weed biomass in the fall. 
 

 The ANOVA for cover crop and weed biomass showed that there was a 

significant effect of the rotation type on cover crop biomass in both years (Table 2.2). 

Results show that oats represented between 88 to 65% of the total cover crop biomass in 

2017 and between 95 to 44% in 2018 while cereal rye represented between 12 to 35% in   

2017 and 5 to 56 in 2018 (Figure 2.2). Nonetheless, when cover crop planting date was 

delayed the difference between oat and cereal rye biomass decreased as a consequence of 

less optimal conditions for oat growth, except for cover crops planted after MG 2 and 3 

which resulted in similar oat/cereal rye biomass.  

In both years, cover crop biomass showed a clear trend, with treatments in 

rotation after MG 1 cultivars producing the most biomass, and cover crop biomass 

decreasing with later MG cultivars and planting dates (Figure 2.2). In 2017, cover crop 

biomass after full season MG 4 cultivars was lower compared to any other rotation type 

(Figure 2.2a). In 2018, cover crop biomass after a full season MG 4 cultivar was only 

statistically different compared to cover crops biomass produced after MG 1 soybeans 

(Figure 2.2b). 

 Interestingly, data collected on weed biomass in the fall showed a similar pattern 

to that of cover crop biomass (Figure 2.3). There was also a significant effect of the 
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rotation type in weed biomass by this time (Table 2.2). Fall weed biomass in cover crop 

treatments after MG 1 soybeans was highest on average, and fall weed biomass decreased 

in cover crops planted after later MG soybeans. In 2017, weed biomass with cover crops 

planted after MG 1 soybeans was 410 kg ha-1 higher than after MG 4 soybeans (p=0.003), 

but did not differ from weed biomass after MG 2 (p=0.7837), MG 3 soybeans (p=0.0798) 

or after MG 4 soybeans with no cover (p=0.219) (Figure 2.3a). Plots had a high 

proportion of volunteer soybeans in 2017 that was included in the total weed biomass. In 

2018 biomass from volunteer soybeans was separated and analyzed independently from 

the total weed biomass (Figure 2.3b). Net weed biomass analysis for 2018, was 

performed on a sampling on 8 November, over one month before oats were winter killed 

in mid December. In December, most plots had negligible weed biomass at this time and 

we were not able to adequately analyze these data. In plots with enough biomass to 

sample, more weed biomass was observed in the earlier plantings. Weed biomass in the 

control treatment averaged 83.4 kg ha-1. 

Results from 2018 obtained from the sampling on 8 November show that biomass 

from volunteer soybeans contributed to increase weed biomass in the fall after MG 1 and 

2 soybeans. Weed biomass was greatest in cover crop treatments planted earlier in 

rotation after short- season soybeans (Figure 2.3). Weed biomass in cover crop treatments 

after MG 1 soybeans biomass was similar to MG 2, and greater than MG 3 (p=0.0278), 

MG 4 (p=0.0134), and no cover (p=0.0012) treatments.  

3.2. Cover crop and weed biomass in the spring.  
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 By the time of cover crop termination in the spring, cover crop aboveground 

biomass was comprised of a single species, cereal rye. Only the fall herbicide had been 

applied by the time of cover crop termination. Hence, factors included in the ANOVA of 

spring weed biomass included the rotation type, the herbicide treatment (fall herbicide or 

no fall herbicide), and termination time (Table 2.3).  The cover crop biomass was only 

influenced by termination time (p <0.0001) in both years, indicating that planting a cereal 

rye-oat mix earlier in the fall did not lead to an increased cereal rye biomass production 

in the spring (Table 2.2). There was a significant increase in cover crop biomass when 

delaying cover crop termination of 2331 and 2316 kg ha-1 in 2017 and 2018 respectively 

(Figure 2.4). These biomass differences can be associated to a longer cover crop growing 

season in the spring during a period of favorable environmental conditions (temperature, 

solar radiation) and with sufficient soil moisture, which favored fast cereal rye growth.  

In 2018, the ANOVA of spring weed biomass showed significant main effects of 

rotation type, termination time, and herbicide treatment on weed biomass (p<0.0001), as 

well as a significant rotation type by herbicide treatment interaction (p=0.0008) (Table 

2.3). However, in Spring 2019 weed biomass was affected only by the rotation type 

(p<0.0001) and the termination time (p=0.0002), but not by the herbicide treatment 

(p=0.9264). The main effect of termination time on weed biomass indicated that weed 

biomass was highest by the time of the late cover crop termination in both 2018 and 2019 

(Figure 2.5). By the spring, in both growing seasons, results indicate that cover crops 

planted earlier in the fall after a short-season MG cultivar did not improve weed 

suppression the following spring (Figure 2.6 a,b). Relative to the no cover treatment, all 

cover crop treatments were able to reduce weed biomass in the spring by 60% or more in 
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2018, and by 80% or more in 2019. In addition, weed biomass in 2018 was reduced with 

the fall herbicide application across in rotation types, except for the MG 1 and 3 

treatment (Figure 2.5a). This suggests that when there is a high pressure of winter annual 

weeds, the combination of cereal rye plus a fall broadleaf herbicide would be the most 

effective management strategy.  

 3.3. Cover crop and weed ground cover. 
 

 The repeated measures analysis of cover crop ground cover indicated that only 

rotation type and its interaction with date had a significant impact on the percentage of 

ground cover over time in both 2017/18 and 2018/19 growing seasons (Table 2.3). Thus, 

the percentage of ground cover over time is shown by cover crop rotation type treatment 

in Figure 2.7. Percentage of ground cover was different among rotation type treatment 

until 26 March (2018) and 28 January (2019), in where ground cover was similar across 

all cover crop treatments (Figure 2.7). Based on these results, we chose the date in were 

oat winterkilled to quantify differences in percentage of ground cover (indicated with the 

arrow in figure 2.7) across the different cover crop treatments. Results from the first 

growing season show that before the oat was winterkilled (28 Nov 2017), percentage of 

ground cover was different across rotation type treatments. Cover crops planted after MG 

1 had 27% more ground cover than MG 2, 36% more than MG 3 and 75% more than MG 

4 (p<0.0001). In 2018/19 growing season, the percentage of ground cover before oat 

winterkilled (11 Dec 2018) for MG 1 did not differ from MG 2 (p=0.2875). However, 

cover crops planted after MG 1 were able to have 24 % more of ground cover than MG 3 

(p = 0.0004) and 39 % more than MG 4 (p < 0.0001).  
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 The analysis of repeated measured from fallow treatments was used to test the 

effect of the different herbicide treatments on weed canopy cover (Table 2.4). Results 

indicated that herbicide and its interaction with date had an effect on percentage of 

ground cover during the 2017/18 growing season, but during 2018/19 only the interaction 

was significant (Table 2.4). In 2017/18, weed biomass was different across herbicide 

treatments from the 9 February until 26 March. In 2018/2019 herbicide and its interaction 

with time was significant. However, differences in herbicide treatments for a given date 

resulted in not being significant.  

4. DISCUSSION 

4.1. Evaluation of management strategies to increase cover crop biomass. 
 

We observed differences in cover crop biomass produced during 2017/18 and 

2018/19 that can be associated to differences in environmental conditions each year, such 

as temperature and water availability (Vernard and Roberts, 2017, 2018; Mirsky et al., 

2011; Webster et al., 2016). When evaluating treatment effects on cover crop biomass, 

our results indicate that planting cover crops after MG 1 soybeans was effective to 

increase biomass from a mixed cover crop in the fall in comparison to planting cover 

crops after MG 4. However, cover crop biomass the following spring, composed only of 

cereal rye, was similar across all cover crop treatments regardless of the previous soybean 

MG cultivar in the rotation, and the cover crop planting date in the fall. Instead, it was the 

date of termination that influenced cereal rye biomass in the spring. Previous research has 

found that cover crop biomass increases when advancing cover crop planting date, as a 

consequence of a longer cover crop growing window (Prabhakara et al., 2015; Teasdale 

et al., 2004; Thapa et al., 2018). Data from our study would be consistent with these 
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studies when total cover crop biomass is added up (spring + fall biomass), including 

senesced oat biomass. However, when evaluating only treatment effects on the cereal rye 

cover crop, differences across treatments and overall fall biomass were very small (< 200 

kg ha-1), likely due to competition from oats. This could partially explain the lack of 

differences in cereal rye biomass across rotation type treatments which survived the 

winter and regrowth the following spring. It would be interesting to evaluate in another 

study if a winter cereal rye without the oat competition would have greater differences in 

biomass in the fall, and if these differences would be sustained the following spring as 

Lawson et al (2015) did.  

4.2. Cover crop management strategies for enhanced weed suppression. 
 

An unexpected outcome from our study was that cover crops planted earlier in the 

fall after a short-season soybean did not improve weed suppression. Instead, total weed 

biomass increased when cover crops were planted after early MG soybeans, contrary to 

our initial hypothesis. These outcomes are likely because weed biomass is not solely 

influenced by cover crop biomass, but other environmental and physical factors might 

have contributed to differences in weed biomass across treatments. First, full-season 

soybean maturities have a longer growing season, increased vegetative biomass and crop 

residue at harvest compared to short-season soybeans (Edwards et al., 2005; Egli, 1993). 

Thus, these conditions would lead to less light reaching the soil surface, which is 

associated with enhanced inhibition of weed germination (Upadhyaya and Blackshaw, 

2007). Second, environmental conditions for the time of soybean harvest were more 

favorable in short-season MG soybeans, than later on when full-season MG 4 cultivars 

were harvested. These improved environmental conditions and longer growing season for 
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weed or cover crops after early MG soybeans did not only increase fall cover crop 

biomass production, but weed biomass growth during the same period. Daily average 

temperature and solar radiation during this critical fall period will decrease rapidly over 

time, resulting in less optimal environmental conditions at the start of the fallow/cover 

crop period after a late harvested cash crop. For instance, the historical monthly average 

temperature in Lexington, KY is 20.2ºC in September, but decreases to 8ºC in November 

(UK Ag Weather Center http://www.agwx.ca.uky.edu). Hence, environmental conditions 

for weed germination and growth would be less favorable after full-season MG cultivars, 

and could explain the results obtained in our study.  

The amount of solar radiation reaching the soil surface has a large effect on weed 

emergence, and fast development of a canopy cover can be an effective weed control 

measure (Upadhyaya and Blackshaw, 2007). Our results showed that cover crops planted 

earlier after short season MG soybeans had a greater canopy cover in the fall in both 

years, and in early spring in one out of two years. Thus, cover crops planted earlier were 

able to achieve a full canopy earlier in the growing season, and would be more effective 

suppressing emergence of new weeds. However, the higher weed biomass observed in 

this study after short-season MG soybeans is not well explained by differences in cover 

crop canopy cover. Instead, our results suggests that weed biomass was affected to a 

larger extent by temperature conditions after soybean harvesting influencing early weed 

emergence, and that the increased cover crop canopy cover was not able to offset weed 

pressure from weeds that had already emerged. 

4.3. Cover crop-herbicide integrated management recommendations. 
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The fall herbicide treatment was effective in reducing the weed biomass by the 

time of cover crop termination the following spring, depending on environmental 

conditions and weed pressure each year. For instance, the winter annual weed pressure in 

2018 was relatively low and the fall herbicide application did not further reduce an 

already low weed biomass the following spring. Hence, this suggests that in fields in 

where there is a high pressure of winter annual weeds applying a fall herbicide will 

improve weed suppression with or without cover crops. Percentage of ground cover 

analysis for these plots also supports our previous conclusion because ground cover 

differences were only expressed in the field with high pressure of winter annual weeds 

and close to corn planting.   

5. CONCLUSION 
 

Our initial hypothesis stated that adapting a short-season soybean into crop 

rotations will allow to advance cover crop planting date increasing its biomass production 

and percentage of ground cover, resulting in better weed control. Our outcomes for 

2017/2018 and 2018/2019 showed that planting a cover crop earlier in the fall increased 

cover crop biomass production and percentage of ground cover. This increase was 

between 27 and 97 % when comparing cover crop plantings after MG 1 and 4.  However, 

cover crop planted after a MG 1 cultivar did not have an effect on weed suppression 

either in the fall nor in the spring. Nonetheless, cover crops were able to improve weed 

suppression in comparison with the no cover treatments and this suppression was higher 

when using a fall herbicide application and there was a high winter annual weed pressure 

in the field.  
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6. CHAPTER 2: TABLES AND FIGURES.  

Table 2. 1. Subplot herbicide treatments. 

     2017 - 2018 2018 - 2019 
Treatment  Description Trade name Active ingredient  Rate Application time 

    g ai or ae ha-1*    

1 
Fall burn-down + 
PRE and POST 
corn emergence 

Clarity  dicamba 650 ae 11/08/2019 11/05/2019 

Acuron 

Bicyclopyrone 21.9 ai 

05/09/2019 05/07/2019 
Mesotrione 87 ai 

S-Metolachlor  787 ai 
Atrazine 368 ai 

Roundup Powermax Glyphosate 720 ae 06/15/2018 06/13/2019 

2 PRE and POST 
corn emergence 

Acuron 

Bicyclopyrone 21.9 ai 

05/09/2019 05/07/2019 
Mesotrione 87 ai 

S-Metolachlor  787 ai 
Atrazine 368 ai 

Roundup Powermax Glyphosate 720 ae 06/15/2018 06/13/2019 

3 POST corn 
emergence Roundup Powermax Glyphosate 720 ae 06/15/2018 06/13/2019 

*  rates for dicamba and glyphosate are given in g a.e. (acid equivalent) ha-1 while rates for the remaining products are in g a.i. (active 
ingredient) ha-1 



54 
 

Table 2. 2. Probability values from the ANOVA of cover crop and weed biomass in the fall of 2017 and 2018, and spring of 2018 and 2019. In 
the fall, rotation type (RT) and its interactions were considered as a fixed factor while in the spring rotation type, cover crop termination,  
herbicide treatment and their interaction were considered as fixed factors.   

Effect Cover Crop Biomass† Weed Biomass 
 Fall 2017 Spring 2018 Fall 2018 Spring 2019 Fall 2017 Spring 2018 Fall 2018 Spring 2019 

Rotation type (RT) 0.0023 NS 0.0123 NS 0.0045 <0.0001 0.0225 <0.0001 
Termination - < 0.0001 - < 0.0001 - <0.0001 - 0.0002 
RT* Termination - NS - NS - NS - NS 
Herbicide - - - - - <0.0001 - NS 
RT*Herbicide  - - - - - 0.0008 - NS 
Herbicide * Termination - - - - - NS - NS 
RT*Herbicide*Termination - - - - - NS - NS 

† Cover crop biomass includes only data from rotations with winter cover crop. 
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Table 2. 3. ANOVA of the percentage of canopy cover in cover crop treatments during 
the 2017/19 and 2018/19 fall-spring period. Rotation type and herbicide treatment were 
considered as fixed effects, and date was included as a repeated measures covariable in 
the model. 

  2017/18 2018/19 
Effect DF p value DF p value 

Rotation type (RT) 3 <.0001 3 0.0059 
Herbicide 1 0.4328 1 0.4126 
RT*Herbicide 3 0.3900 3 0.2631 
RT*Date 42 <.0001 24 <.0001 
Herbicide*Date 14 0.8367 8 0.6084 
RT*Herbicide*Date 42 0.7085 24 0.9876 

 

Table 2. 4. ANOVA of the percentage of weed cover in herbicide treatments during the 
2017/19 and 2018/19 fall-spring period. Rotation type and herbicide treatment were 
considered as fixed effects, and date was included as a repeated measures covariable in 
the model. 

  2017/18 2018/19 
Effect DF p value DF p value 

Herbicide 1 0.0126 1 0.1956 
Herbicide*Date 28 <.0001 16 0.0016 
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Figure 2. 1. Timeline for experiment 2 management for two consecutive years. Time line shows an estimate of the time in when 
activities were performed. Both November/December and March/April consisted on weed and cover crop biomass samplings. 
May/June and September/October consisted of weed biomass sampling only.  

 

May June July Aug. Nov. Jan. Feb. June Aug. Sept. Oct.
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MG 2- C

MG 3- C

MG 4- C

Oat/Cereal rye

Oat/Cereal rye

Oat/Cereal rye

Cereal rye

Cereal rye

Cereal rye

Fallow

Maize

Maize

MG 1- C Maize

YEAR 1 YEAR 2

Early 

Dec.

Oat/Cereal rye Cereal rye

MayAprilSept. Oct. Mar.

Cover crop 
termination

Late

Preemergence
Postemergence

Sampling Sampling Sampling Sampling

Fall Broadleaf 
herbicide
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Figure 2. 2. Rye and Oat cover crop biomass by rotation type prior to oat winterkill (due 
to natural freezing temperatures) in 2017 (a) and in 2018 (b). Bars show standard error. 
Significant differences between a rotation type and within a growing season are denoted 
with different letters (significant at p<0.05).  

 

 

Figure 2. 3. Weed biomass in the fall for the different rotation treatments. In 2017 
samples were collected on 28 Nov (a), while in 2018 samples were collected on 8 Nov 
(b). Data from volunteer biomass is also provided in 2018.  
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Figure 2. 4. Cover crop biomass produced by termination treatment in 2017 (a) and 2018 
(b). Significant difference between cover crop biomass precede by termination time are 
denoted with letters (significant at p<0.05).  

 

Figure 2. 5. Weed biomass production in the spring by the time of early and late cover 
crop termination in 2017 (a) and 2018 (b). Significant differences within the same 
growing season are labeled with different letters (significant at p<0.05).  
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Figure 2. 6. Weed biomass at cover crop termination by herbicide treatment and/or 
rotation type in 2017 (a) and 2018 (b). In 2018, there was only a significant effect of 
rotation type, and results area averaged across herbicide treatments.  

 

Figure 2. 7.  Effect of the rotation treatment on percentage of cover crop ground cover 
during the 2017/18 and 2018/19 fall-spring period. Only treatments with a winter cover 
crop are included in this graph. Arrow represent the key date selected to evaluate the 
effect of MG and ns indicate when percentage of ground cover was not significant across 
treatments.  
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Figure 2. 8. Percent of weed ground cover from control plots without a cover crop (MG4 
- F) by herbicide treatment during the 2017/18 and 2018/19 fall/spring.   
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Chapter 3: Sensitivity analysis on the impact of cover crops on nitrogen and water 

availability in corn. 

ABSTRACT 
 

In the last years, the use of cover crops has raised interest into agricultural 

research because of the many benefits associated to this practice, such as reduced runoff 

and nitrogen losses through leaching. However, cover crops can reduce water and 

nitrogen availability for the next cash crop compared to a winter fallow depending on the 

environmental conditions and cover crop management. The objective of this study was to 

quantify cover crops impact on nitrogen and water dynamics under different cover crop 

management options in a soybean-cover crop or fallow-corn rotation and for 30-yr of 

weather data in Lexington, KY, using a crop simulation model. On a future step, after 

corn and cover crop calibration, we will also conduct a sensitivity analysis for the 

aforementioned responses across different soil properties, and changes in precipitation, to 

increase the applicability of our results to other locations. We performed crop rotation 

simulations using DSSAT v 4.7.5.0 software and the SEQUENCE option to simulate a 2-

yr soybean-cover crop or fallow – corn rotation. Treatments included soybean MG 

cultivars from 2 to 4 that allowed an earlier planting of cover crops, a fallow control 

treatment, and two cover crop termination times (26 April and 8 May). Simulations were 

conducted on a silty clay loam soil. Overall, results show a large variability across the 30-

yr period. Cover crops planted after different soybean MG cultivars had similar biomass 

and N uptake before termination, which was associated with N availability and not cover 

crop planting date. Cover crops terminated early, reduced soil-available water at corn 

planting by only 1 to 3 mm in comparison to fallow, while delaying cover crop 
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termination reduced soil available water at corn planting by 11 to 15 mm.  Cover crops 

reduced runoff on average by 1 to 7 mm. Corn transpiration was between 6 to 9 mm 

lower when corn followed cover crops. Planting cover crops reduced soil nitrogen 

content at corn plating by 21 to 30 kg ha-1 in comparison to fallow and delaying cover 

crop termination added an additional nitrogen reduction of 4 to 5 kg ha-1. As a result, 

cover crops reduced cumulative nitrogen uptake by 7 to 19.2 kg ha-1 compared to a fallow 

treatment, and when delaying cover crop termination this reduction was greater (8.2 to 11 

kg N ha-1). 

1. INTRODUCTION 

Winter cover crops are grown between two summer cash crops with the goal of 

producing ground cover during the winter months. In the last years, the use of cover 

crops has raised interest in agricultural research because of the many benefits associated 

to this practice. Some of these benefits include a reduction in soil erosion (Dabney, 1998; 

Langdale et al., 1991; Mutchler and McDowell, 1990), an increase in the natural 

abundance of beneficial insects (Letourneau et al., 2011; Sunderland and Samu, 2000; 

Tilman et al., 2002), and a greater herbicide resistant weed control (Sarrantonio and 

Gallandt, 2003; Wiggins et al., 2015, 2016).  

In the US Mid-South and Upper-Midwest region, small grain cover crops such as 

cereal rye and wheat are well adapted in rotation with grain cash crops because of winter 

hardiness, high aboveground biomass production, and winter weed suppression 

(Haramoto, 2019). However, early cover crop seeding dates are critical for a good cover 

crop establishment and biomass production in the fall (Bich et al., 2014; Hively and Cox, 

2001; Johnson et al., 1998; Sarrantonio and Gallandt, 2003). Greater cover crop biomass 
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production has been associated with increased weed control benefits (Haramoto, 2019; 

Sarrantonio and Gallandt, 2003; Teasdale and Mohler, 2000), and increased soil 

aggregation (Fageria et al., 2005; McVay et al., 1989). A recent simulation study in KY, 

OH, and NE, showed that adapting to short-season soybean maturities would advance 

harvest by 6.6 to 11 days per unit decrease in cultivar maturity when soybean was planted 

on May 15 (Sciarresi et al., under review). This study showed that it was possible to 

adapt to MG 0 to 3 cultivars depending on the location without yield penalty, and these 

would provide an average cover crop growing window of 34 to 51 days or 257 to 270 

growing degree days (GDD; base 4.4 ºC) after a soybean crop planted on May 15 

(Sciarresi et al, under review). One aspect not yet studied from this management 

adaptation is the impact on soil water and nitrogen dynamics, and the carry over effects 

on the following crop. 

Several studies have focused on cover crops impact on nitrogen and/or water 

dynamics (Kuo and Jellum, 2002; Feyereisen et al., 2006; Salado-Navarro and Sinclair, 

2009; Krueger et al., 2011; Gabriel et al., 2012; Ward et al., 2012; Salmerón et al., 2014). 

Potential benefits from cover crops include a reduction in nutrient loses (Jackson, 2000; 

Di and Cameron, 2002; Salazar et al., 2019), in particular N loses through leaching in 

maize cropping systems (McCracken et al., 1994; Salmerón et al., 2010), and an increase 

in soil water infiltration (Dapaah and Vyn, 1998; Fageria et al., 2005; Hargrove, 1986; 

McVay et al., 1989; Meisinger et al., 1991). Nitrogen contained in cover crop biomass, 

that would have been otherwise lost through leaching during winter, can be mineralized 

and be available for the next crop, improving the overall system’s N balance (Jackson, 

2000; Salmerón et al., 2014). However, there are also potential negative effects when 
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cover crops reduce nitrogen and water availability for the next crop. Previous studies in 

other regions have shown that non-legume cover crops can negatively influence corn 

yields due to nitrogen limitation (Miguez and Bollero, 2006; Salmerón et al., 2010), and 

reduce water availability for the next crop (Qi et al., 2011). This could limit yields of 

corn grown commonly in rotation after soybean in US Mid-South and Upper-Midwest 

region, when the winter cover crop growing window and biomass produced is increased. 

Another management factor that will influence cover crop biomass production 

and aboveground N content is the date of cover crop termination in the spring (Lawson et 

al., 2015; Liebl et al., 1992; Sainju and Singh, 2001) because a greater cover crop 

biomass accumulation will imply grater C:N ratio. Adapting soybean maturity to increase 

the cover crop growing cycle, or delaying termination dates could increase the ecosystem 

services provided by cover crops. However, it is critical to evaluate water and N 

dynamics under these management adaptations. Although several studies have explored 

the effect of these management adaptations on cover crop biomass production, these 

studies are limited to a number of years, locations, and/or soil types  (Lawson et al., 2015; 

Liebl et al., 1992; Sainju and Singh, 2001). Hence, there is still uncertainty on how these 

variables will influence water and nitrogen availability for the next crop.  

 Calibrated dynamic process-based crop models can be used to explore numerous 

scenarios and treatment combinations, and predict water and Nitrogen cycling to identify 

best management recommendations.  These tools have been successfully used to study 

crop rotations in Argentina (Salado-Navarro and Sinclair, 2009), United States 

(Feyereisen et al., 2006), Africa (Musinguzi et al., 2014; Soler et al., 2011), and Spain 

(Salmerón et al., 2014). The Decision Support System for Agrotechnology Transfer 
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(DSSAT) (Hoogenboom et al., 2015; Jones et al., 2003) is a software comprising many 

crop models with the ability to simulate crop rotations and carry-over effects on soil 

water and nitrogen. This software has been previously evaluated against field data to 

simulate water and nitrogen dynamics with different crop rotations (Kelly et al., 1997; 

Kovács et al., 1995; Porter et al., 2010; Salmerón et al., 2014). 

The objective of this study was to conduct a preliminary evaluation of the impact 

of different cover crop management adaptations (cover crops planted after soybean MG 2 

to 4 cultivars, and two cover crop termination times) on nitrogen and water dynamics 

using 30-yr of weather variability in Lexington, KY. On a subsequent step, the model 

will be parametrized with field data from different locations in KY to further identify 

management adaptations that optimize water and N cycling and availability for corn 

grown after cover crops. 

2. MATERIALS AND METHODS 

2.1. Simulation scenarios. 

Crop rotation simulations were performed with the DSSAT v 4.7.5.0 software and 

the SEQUENCE option to simulate crops in rotation and carry-over of water and soil 

nitrogen. A rotation of soybean – cover crop or fallow – corn (2-yr) with soybean planted 

on 1 May and corn planted on 10 May was used as the baseline to analyze the effect of 

different winter cover crop managements adaptations. Simulations were conducted for 

30-yr of weather data in Lexington, KY, with re-initialization of water and N at the start 

of each 2-yr rotation. The management adaptation factors that were evaluated are: (1) 

cover crops (or fallow) following soybean MG cultivars 2 to 4 allowing an earlier (MG 2) 
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or later (MG 4) cover crop planting time, and (2) cover crops terminated on 25 April or 

two weeks later. To account for year-to-year variability, simulations were carried out 

using historical 30-yr (1987-2017) weather data from. 

The soybean part of the rotation was simulated using CROPGRO-Soybean, the 

winter wheat cover crop was simulated using CROPSIM - CERES, and CERES-Maize 

was used to simulate corn. Reference evapotranspiration was calculated based on 

Priestley and Taylor (1972). The CENTURY soil organic matter module (Parton et al., 

1994) in DSSAT was used to simulate organic carbon and nitrogen decomposition. This 

module has been previously used to simulate organic carbon and nitrogen in long-term 

studies (Kelly et al., 1997; Smith et al., 1997), in low-input systems (Soler et al., 2011), 

and short term effects of cover crops on corn aboveground N (Salmerón et al., 2014). To 

allow cover crop planting as close as possible to soybean harvest maturity, cover crops 

were planted based on the latest predicted soybean harvest across the 30-yr period. 

2.2. Experimental data and model parametrization. 

Soybean crop growth coefficients for DSSAT-CROPGRO for MG 0 to 4 already 

calibrated under our conditions were used (Sciarresi et al., under review). Sciarresi et al. 

(under review) found that MG 2 to 4 cultivars had similar yields in Lexington, KY 

depending on the year and soil conditions, and would provide a range in harvest and 

cover crop sowing dates to test our hypothesis.  

A preliminary calibration of corn growth coefficients for DSSAT-CERES was 

conducted with data from an irrigated trials during 2017 and 2018 in Lexington, KY (Di 

Salvo et al., unpublished data). Plots were arranged in a split plot design with irrigation 
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management (irrigation vs. rainfed) as the split-plot factor with four replications. The 

corn hybrid P2089 was planted on May 3 in 2017 and May 9 in 2018 on a Bluegrass-

Maury silt loam (fine, mixed, active, mesic, Typic Paleudalfs) with a planting density of 

7.8 plants m-2. Plots were 9 m length and 4 row wide with a row spacing of 0.76 m. 

Irrigation was applied with a drip tape when cumulative water deficit reached 40 mm 

based on a daily water balance of precipitation and crop evapotranspiration demand 

calculated based on Allen et al., 1998. Both years plots were fertilized with ammonium 

nitrate at a rate of 320 kg of N ha-1 divided into three application of 106 kg N ha-1 each at 

planting, V6 and V14 (Ritchie and Hanway, 1989). Pests were chemically and/or 

manually controlled during the season when required.  

The CERES – Maize model requires calibration of six growth coefficients: 

thermal time from emergence to end of juvenile phase (P1), photoperiod sensitivity (P2), 

thermal time from flowering to physiological maturity (P5), maximum kernel number per 

plant (G2), kernel growth rate during linear phase and under optimal conditions (3), and 

phyllochron interval (PHINT).  Coefficient P2 was fixed to 0.300 days and the other 

coefficients were calibrated in consecutive steps to minimize the RMSE in the prediction 

of anthesis, harvest maturity, number of kernels per ear, kernel weight, and grain yield. 

Thereafter, the rainfed treatments will be used to evaluate the model under conditions of 

water stress after parametrization of soil properties. A second set of experiments will be 

used to calibrate the different organic C and N pools in CENTRUY and evaluate CERES-

Maize model performance predicting yield, and grain/aboveground N in corn grown after 

a cover crop and with different nitrogen fertilizer rates (Quinn et al., unpublished data). 

This study consisted of a three way factorial study with a main rotation factor including 
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cover and no cover crop treatment, two nitrogen application times and six nitrogen 

fertilizer rates for Lexington, KY in 2018 and Lexington, Glendale, and Princeton, KY in 

2019. At each site, in season data collection included cover crop biomass production, 

total carbon and nitrogen content, inorganic soil nitrogen content at the time of cover 

crop termination, corn developmental stages, total nitrogen content in corn ear leaf tissue 

at R1, total corn biomass, grain weight and nitrogen content, and corn stalk nitrate 

concentration at R6. End of season data collection will include grain test weight, yield 

and yield components.  

 For the purpose of this thesis chapter, simulations were run with a generic silty 

clay loam soil described in Table 3.1. After further model parametrization and evaluation 

for prediction of grain yield and aboveground N content with observed data, final 

simulation results will be generated for a research publication. 

2.3. Data analysis 

Model performance during calibration and evaluation will be assessed using the 

root mean square error between observed and simulated data (Equation 1). Model outputs 

that will be evaluated against observed data are date of anthesis and physiological 

maturity in corn, kernel number, individual kernel number, corn yield and aboveground 

N content, as well as cover crop biomass and aboveground nitrogen content.  

RMSE = [N−1Σi=1n (Pi − Oi)2]0.5      (1) 

In addition, the model efficiency (ME) will be computed as: 

ME = 1 −
� (𝑆𝑆𝑐𝑐−𝑂𝑂𝑐𝑐)2𝑁𝑁

𝑐𝑐=1

� (𝑂𝑂𝑐𝑐−𝑂𝑂𝑎𝑎𝑎𝑎)2𝑁𝑁
𝑐𝑐=1

       (2) 
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where Oc is the observed value for flowering and physiological maturity date, kernel 

number, individual kernel number and yield for a given hybrid, Sc is the simulated value, 

Oav is the mean of the environment, and N is the number of observations for each 

cultivar. The ME ranges from -ꝏ to 1, with 1 being the optimal value. ME values 

between 0 and 1 are general viewed as acceptable level of model performance while 

values <0 indicate that the observed value is a better predictor than the simulated.  

Simulation scenarios under different cover crop management adaptations will 

evaluate model outputs on total soil inorganic N (N-NO3 and N-NH4+) and crop soil 

available water at corn planting, corn total transpiration and N uptake, total N-NO3- 

leached, as well and net N mineralized during the corn growing season. Results will be 

analyzed calculating the average and standard error based on 30-yr simulations, and with 

cumulative probability graphs. 

3. RESULTS 

3.1.Cover crop biomass production and nitrogen uptake 

 The average harvest maturity date of soybean based on the 30-yr simulation was  

Sep 8 (MG 2), Sep 17 (MG 3), and Oct 8 (MG 4) with a range of +/- 10 days from year to 

year (data not shown). To simplify cover crop model settings, the latest soybean harvest 

date for each treatment was used to define a fixed cover crop planting date for each of the 

30-yr simulations. Thus, simulations were conducted with cover crops planted on 16 Sep, 

25 Sep, and 8 Oct after MG 2, 3, and 4 soybeans, respectively. 

There was large variability in predicted cover crop biomass and total nitrogen 

uptake across the 30 years indicated by the large standard errors (Figure 3.1).  On 
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average, cover crop biomass ranged from 3.6 Mg ha-1 after MG 2 soybeans to 4.2 Mg ha-1 

after MG 4 soybeans (Figure 3.1a). Cover crops terminated late accumulated 0.72 to 1 

Mg ha-1 more than when cover crops were terminated early.  On average, cover crop 

nitrogen uptake ranged from 56.5 kg N ha-1 after MG 2 soybeans to 50.3 kg N ha-1 after 

MG 4 soybeans (Figure 3.1b). Delaying termination increased cover crops N uptake by 

only 3.7 to 4.9 kg N ha-1 (Figure 3.1b).  

Overall, planting cover crops earlier after short-season MG cultivars had a minimal 

effect on cover crop biomass and N uptake. However, there was high year-to-year 

variability in cover crop biomass produced and N uptake across the 30-yr, that was larger 

for cover crop planted soybean MG 4. 

3.2. Water dynamics during the corn growing season 
 

Total crop available water at corn planting, cumulative runoff and total seasonal 

transpiration showed a large variability from year-to-year, represented by the standard 

error in Figure 3.2. When cover crops were terminated early, differences on crop soil 

available water at corn planting were negligible, only 1 to 3 mm higher after the cover 

crop than after a winter fallow. In contrast, delaying cover crop termination by 2 weeks 

reduced total crop available water by 15 mm (MG 2), 16 mm (MG 3) and 11 mm (MG 

4) on average across the 30-yr (Figure 3.2a).   

Similarly, the effect of the treatments on cumulative runoff during the corn 

growing season were small. Cumulative runoff was on average 7 and 4 mm lower when 

cover crops were planted after MG 2 and 3 soybeans, respectively, and 1 mm higher 

when cover crops followed soybean MG 4 relative to the fallow (Figure 3.2b).  Delaying 
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cover crop termination had a negligible effect on water runoff during the corn growing 

season (< 1mm) (Figure 3.2b).  

The final water availability for corn was evaluated by comparing total seasonal 

corn transpiration across treatments. Cover crops planted after a full season MG 4 

soybean reduced corn transpiration by 6 mm. When cover crops were planted earlier 

after MG 2 soybeans, corn transpiration was reduced by an additional 9 mm compared 

to cover crops planted after MG 4 soybeans. Delaying cover crop termination reduced 

corn transpiration further, on average by 6 to 7 mm (Figure 3.2c). Overall, cover crops 

had a relatively small but negative effect on water availability for corn. The cumulative 

probability graphs for corn transpiration indicate that when planting cover crops after 

MG 2 soybeans, corn transpiration would be reduced in 32 % of the years (Figure 3.4 a). 

When cover crops were planted after soybean MG 3 and 4 this probability increased to 

38 % and 40% respectively (Figure 3.4 b,c).  

3.3. Nitrogen dynamics during the corn growing season 
 

Not surprisingly, initial inorganic N content at maize planting was lower when 

cover crops were introduced in the crop rotation (Figure 3.3 a). The reduction in soil 

inorganic N was greater when cover crops were planted earlier. There were 30, 28, and 

21 kg ha-1 less soil inorganic N at corn planting after cover crops following MG 2, 3, and 

4 soybeans, respectively (Figure 3.3a). When cover crops termination was delayed, soil 

inorganic N was reduced by only 4 – 5 kg N ha-1 more on average on the day of corn 

planting. There was a large standard error in soil inorganic N for all treatments that was 

greatest after MG 4 soybeans, caused by high year-to-year variability (Figure 3.3a). 
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Cover crops reduced N leaching during the intercrop period between soybean and 

corn by 32%. N leaching during the corn growing season was very low in corn after the 

fallow treatment with only 4-6 kg N ha-1 on average. The residual effect of cover crops 

reduced further this amount by only 1-2 kg N ha-1 (Figure 3.3b). Delaying cover crop 

termination reduced N leaching but the effect was minimal under these conditions of 

limited N leaching (< 1 kg N ha-1) (Figure 3.3b). 

Cumulative net N mineralization during the corn growing season was also highly 

variable from year-to-year, indicated by the error bars (Figure 3.3c). Net N mineralization 

was greatest in rotations with MG 4 soybeans, and under fallow treatments. When cover 

crops termination was delayed, net N mineralization during the corn growing season was 

reduced by 4 - 5 kg N ha-1 (Figure 3.3c).  

There overall effect of the different treatments on corn N availability was evaluated 

by quantifying treatment effects on corn N uptake. Similar to other variables evaluated, 

corn N uptake showed a high standard error across the years simulated (Figure 3.3 d). On 

average, when comparing cover versus fallow treatments, cover crops reduced 

cumulative nitrogen uptake by 19.2 kg ha-1 (MG 2), 17.1 kg ha-1 (MG 3), and 7 kg ha-1 

(MG 4) compared to a fallow treatment. When cover crops were terminated late, corn N 

uptake was reduced to a greater extent, on average by 30 kg ha-1 (MG 2), 28.1 kg ha-1 

(MG 3) and 15.2 kg ha-1 (MG 4) (Figure 3.3 d).  Overall, delaying cover crop termination 

reduced corn N uptake by 8.2 and 11 kg N ha-1 (Figure 3.3 d). 

Results from the cumulative probability graphs indicate that corn N uptake was the 

lowest when following cover crops terminated late across all rotation treatments. When 

cover crop or fallow followed soybean MG 2 and 3, for a given nitrogen uptake value 
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(~300 Kg ha-1 or greater) probabilities were the highest for corn after fallow (84%), 

followed by corn after early cover crop termination (74%) and corn after late cover crop 

termination (63%) (Figure 3.4 a,b).  However, when cover crop or fallow followed 

soybean MG 4 the probabilities of corn having ~300 Kg ha-1 of nitrogen uptake or 

greater became similar across rotation treatments with 82% chances for corn followed 

fallow, and 77% chances when corn follow early or late termination. 

4. DISCUSSION 

 Our objectives were to quantify the impact of cover crops on nitrogen and water 

dynamics, and in particular on nitrogen and water availability for a corn grown after a 

soybean – cover crop/fallow rotation. Our preliminary results from 30-yr simulations 

showed a 0.62 Mg ha-1 decrease in cover crop biomass when planting cover crops after 

MG 2 soybeans compared to full-season MG 4 soybeans. This small treatment effect on 

cover crop biomass was unexpected but is consistent with the cover crop biomass 

analysis in Chapter 2, that showed no differences in spring biomass for cover crops 

planted after MG 1 to 4 soybeans. A delay in cover crop termination of 13 days increased 

biomass by only 0.86 Mg ha-1 on average based on the 30-yr simulations, compared to 

2.3 Mg ha-1 observed in Chapter 2. Interestingly, our simulations showed that cover crop 

N uptake was 6.2 kg N ha-1 higher on average after MG 2 soybeans compared to MG 4. 

These results and the overall low cover crop N uptake indicate that the low biomass 

production was partially associated to a very low N availability during the cover crop 

growing season. Results obtained under a soil with more residual inorganic N and/or 

higher organic matter may increase crop biomass and N uptake for cover crops planted 

earlier. This hypothesis is also supported by preliminary simulations that allowed carry-
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over of C, water and N for 30-yr and accumulation of soil organic matter over time, 

increasing N availability during the cover crop growing season (data not shown). Thus, 

model simulations after complete model calibration and parametrization of soil properties 

will be essential for providing robust predictions of cover crop biomass and N uptake for 

the treatments evaluated. Overall, there was a high year-to-year variability on both cover 

crop biomass and N uptake, that was greater than the effect of the treatments evaluated. 

However, simulation results showed that cover crops planted after MG 2 would reduce 

the 30-yr based standard error in biomass and N uptake by 44 and 12%, respectively 

compared to cover crops planted after MG 4 cultivars. Therefore, planting cover crops 

earlier after short-season MG cultivars may provide higher stability in cover crop 

biomass to ensure a minimal growth that enhanced ecosystem services (i.e. weed 

management, reduced soil erosion). 

Results showed that incorporating cover crops into soybean-corn rotations would 

reduce corn transpiration by just 12 mm on average. This reduction was due to a lower 

soil moisture content at corn planting, that was more accentuated when cover crops were 

terminated late. Similar studies have reported a lower water content in the soil profile 

when non-legume cover crop were terminated later as well (Liebl et al., 1992; Moschler 

et al., 1967; Munawar et al., 1990). Interestingly, the reduction in soil moisture after a 

cover crop was partially offset by increased infiltration and less runoff during the corn 

growing season as also showed by Kleinman et al. (2005) and Espejo-Pérez et al. (2013). 

Based on the low absolute effect of cover crops on corn transpiration, it is not likely that 

cover crops will limit corn water availability in Lexington, for a soil of similar physical 

properties. In fact, results from probability graphs only showed reductions in corn 
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seasonal transpiration  in less than 30% of the years, and these were always under 50 mm. 

In soils of limited water holding capacity or in locations with relatively less precipitation, 

our simulations indicate that an early cover crop termination would be an effective 

management adaptation to reduce water limitation for the next crop. Further analysis of 

the soil water dynamics after complete model parametrization is essential to better 

identify management factors that will minimize water runoff and not compromise 

available water for the next crop in our conditions. 

Our results indicate that the soil inorganic N at corn planting was significantly 

reduced after cover crops (31% less on average). This is consistent with other studies that 

evaluated the effect of cover crops on soil inorganic N in semi-arid environments with 

low winter precipitation and N leaching (Salmerón et al., 2014, 2011, 2010). Our 

simulations indicate that in our environment of high winter precipitation, soil inorganic N 

differences across treatments were still evident the following spring. However, it is 

critical to further evaluate these results after complete model parametrization. 

Previous studies have reported a reduction in nitrogen leaching with cover crops 

grown during winter, but residual effects of cover crop on N leaching during the next 

cash crop growing season are less frequently reported (Brandi-Dohrn et al., 1997; 

McCracken et al., 1994; Salmerón et al., 2010; Tonitto et al., 2006). Our simulations 

indicate a small reduction on N leaching in corn grown after cover crops compared to a 

fallow, that could be enhanced after model parametrization with a soil of increased 

organic matter. 

 Net N mineralization during the corn growing season included net N 

mineralization from soil organic N, and from any decaying previous crop residue and 
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cover crop biomass on the soil surface. Our results showed similar net N mineralization 

in fallow treatments and in corn after a cover crop terminated early. However, when 

delaying cover crop termination, there was a 17% reduction in net nitrogen 

mineralization as a consequence of a larger biomass accumulated by the crop and higher 

C:N ratio. Corn N uptake was 16% lower when corn followed cover crops implying that 

to maintain similar rates of nitrogen uptake across rotation treatments, a greater N 

fertilization rate would be required in corn following a cover crop in our conditions. 

Results from probability graphs showed that corn nitrogen uptake was similar for corn 

following either fallow or cover crops early terminated in 100% of the years. Hence, 

terminating cover crops early would be a management strategy for incorporating cover 

crops into crop rotations without nitrogen limitation. Simulations conducted after 

complete model parametrization may provide recommended cover crop termination dates 

that minimize risk of N limitation for our conditions, and for soils of different organic 

matter. 

Given the large standard error in the components of the nitrogen and water 

balance evaluated across the 30 years, it was evident that environmental and climatic 

effect explained a large part of the variability in the results obtained. It is likely that 

simulations after complete model parametrization and with increased inorganic soil N 

will enhance these year-to-year differences. Finally, given the high sensitivity of the 

model to soil parametrization, performing a sensitivity analysis for different soil 

properties outside of the observed conditions will allow to better explore the magnitude 

of environmental and climatic factors affecting cover crop biomass, nitrogen and water 
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availability and uptake to identify best management strategies that optimize cover crops 

ecosystem services and cash crop production. 

5. CONCLUSION 

Overall our results, although preliminary, show that there is a potential to 

incorporate cover crops into crop rotations without compromising cash crop production. 

The management practice that was able to allow cover crops to grow without reducing 

available water for the next cash crop was cover crops terminated earlier following any of 

the soybean MG. However, introducing non-legume cover crops into crop rotations had a 

negative impact on initial nitrogen content for corn growing season even though cover 

crops were able to reduce inorganic nitrogen losses through leaching. Despite this 

nitrogen limitation, cover crops that followed soybean MG 4 and were terminated earlier 

were the best management strategy to allow cover crop introduction while maintaining 

corn nitrogen uptake similar to corn following fallow period.  

Water and nitrogen dynamics had a large variability across the 30 years. Hence, 

further work should focus on exploring the factors that have the largest effect on nitrogen 

and water availability to help improve management recommendations that will minimize 

the effect of that variability across the 30 years. In particular, for this study, further steps 

will emphasize on the improvement of model calibration especially to accurately simulate 

nitrogen and water dynamics across the crop rotation as well as perform a sensitivity 

analysis accounting for different soil properties, and changes on precipitation, to rise the 

applicability of our results to other locations.  
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6. TABLES AND FIGURES. 
 

Table 3. 1.  Soil characteristics for crop simulations including textural and hydrological 
parameters. Soil hydrological parameters include the volumetric water content at 
permanent wilting point or soil lower limit (LL), the volumetric water content at field 
capacity or soil drainage upper limit (DUL), and at saturation (SAT), saturated hydraulic 
conductivity (Ks), and bulk density (BD). 

Soil type Depth Clay Silt Organic C Total N LL DUL SAT Ks BD     

Silty clay 
loam 

0 - 30 30.0 60.0 1.14 0.11 0.21 0.41 0.49 0.15 1.27     

30 - 90 30.0 60.0 0.97 0.1 0.20 0.40 0.48 0.15 1.29     

90 - 150 30.0 60.0 0.45 0.04 0.19 0.37 0.46 0.15 1.35     

† Soil parameters within each profiles were averaged across different horizons 
to present data in a summarized way.  
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Figure 3. 1. Simulated cover crop aboveground biomass (a) and total nitrogen uptake (b) 
by soybean MG and cover crop termination time in the spring. Values are averages across 
30-yrs. Error bars represent standard error.  
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Figure 3. 2. Simulated total crop available water (0 to x cm soil profile) at corn planting 
(a), and cumulative runoff (b), and total seasonal crop transpiration (c) during the corn 
growing season by rotation and cover crop termination treatment. Values are averages 
across 30-yrs. Error bars show standard error. 
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Figure 3. 3. Simulated total soil inorganic nitrogen (NO3--N + and NH4+-N) at corn 
planting (a), and cumulative NO3--N leached (b), cumulative net N mineralization (c), 
and cumulative  nitrogen uptake (d) during the corn growing season by rotation type and 
cover crop termination time. Values are averages across 30-yrs. Error bars show standard 
error. 
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Figure 3. 4. Cumulative probability of simulated corn seasonal transpiration (a,b,c) and 
simulated nitrogen uptake (d,e,f) for corn planted on Sep 16 after fallow or cover crops 
following MG 2 soybeans, (a, d) planted on Sep 25 following MG 3 soybeans (b, e), and 
planted on Oct 8 following MG 4 soybeans. 
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CONCLUSIONS 
 

In chapter 1, the DSSAT-CROPGRO model was able to accurately predict date of 
soybean harvest maturity and yield for soybean MG 0 to 4 cultivars using model crop 
growth coefficients derived from rMG. Our multi-factor sensitivity analysis showed that 
under both rainfed and irrigated conditions, MG selection explained a low percentage of 
yield variability. Soil type and precipitation patters explained most of the yield variability 
under rainfed conditions, and planting date in irrigated conditions. MG 0 to 3 cultivars 
were able to advance soybean harvest date by 6.6 to 11 days when soybeans were planted 
in May and between 1 to 7.3 days when soybeans were planted in July, without yield 
penalty. Winter-killed cover crops planted after soybean MG 0 to 3 were able to 
accumulate 186 to 670 GDD when soybean was planted on May 15 and 45 to 167 GDD 
while winter-hardy cover crop would increase the fall growing window to 432 to 819 
GDD following soybean planted in May, and to 238 to 353 GDD after soybean planted in 
July. 

In Chapter 2, planting cover crops resulted in an efficient management strategy to 
reduce weed biomass in the fall an in the spring. Planting cover crops earlier in the fall 
resulted in a greater biomass accumulation and percentage of ground cover early in the 
fall but did not have an effect at termination time. Planting cover crops earlier, did not 
improved weed suppression in neither the fall nor the spring. A fall herbicide application 
improved weed control when there was a high pressure of winter annual weeds. Delaying 
cover crop termination increased cover crop biomass production but did not reduce weed 
biomass in the spring. 

In Chapter 3, preliminary results from our simulations showed that it is possible to 
introduce cover crops into crop rotations without reducing water availability for the next 
cash crop. However, cover crop management strategies were not able to incorporate 
cover crops without reducing nitrogen availability. Planting cover crops after soybean 
MG 4 with an early termination resulted in 7 kg ha-1 less of nitrogen uptake with no 
reduction in soil available water. Simulations over 30 years showed a large variability in 
the results. Therefore, quantifying the factors that have the largest effect on nitrogen and 
water availability will certainly improve the understanding of the system to choose the 
best management recommendations.   
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