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A Domain Specific Language for Digital Forensics and Incident Response Analysis

by Christopher STELLY

One of the longstanding conceptual problems in digital forensics is the dichotomy between
the need for verifiable and reproducible forensic investigations, and the lack of practical mech-
anisms to accomplish them. With nearly four decades of professional digital forensic practice,
investigator notes are still the primary source of reproducibility information, and much of it is
tied to the functions of specific, often proprietary, tools.

The lack of a formal means of specification for digital forensic operations results in three
major problems that go to the core of digital forensic science and its practical application.
Specifically, there is a critical lack of : a) standardized and automated means to scientifically
verify accuracy of digital forensic tools; b) automated methods to reliably reproduce forensic
computations (their results); and c) common framework for inter-operability among disparate
forensic tools. In addition, there is no standardized means for communicating software re-
quirements between users (investigators) and researchers and developers, resulting in a mis-
match in expectations, especially with respect to performance. Combined with the exponential
growth in data volume and the complexity of applications and systems to be investigated, all
of these concerns result in major case backlogs and inherently reduce the reliability of the dig-
ital forensic analyses.

This work proposes a new approach to the formal and usable specification of forensic com-
putations, such that the above concerns can be addressed on a sound scientific basis via the
introduction of a new domain specific language (DSL) called Nugget. DSLs are specialized lan-
guages that aim to address the concerns of particular domains by providing practical abstrac-
tions that allow users to directly provide an intuitive, but formal, description of their problem
statements. Successful DSLs, such as SQL in relational databases, can transform an application
domain by providing a standardized way for users to communicate what they need without
specifying how the computation should be performed.

This is the first effort to build a DSL, and a prototype support infrastructure for (digital)
forensic computations with the following research goals: 1) provide an intuitive formal spec-
ification language that covers core types of forensic computations and common data types;
2) provide a mechanism to easily extend the language that can incorporate arbitrary compu-
tations; 3) provide a prototype execution environment that allows the fully automatic (and
optimized) execution of the specified computation; 4) provide a complete, formal, and au-
ditable log of computations that can be used to independently reproduce the results of an
investigation; 5) demonstrate scalable, cloud-ready processing that can match the growth in
data volumes and complexity with necessary hardware resources.
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Chapter 1

Introduction

Digital forensic science, often referred to as digital forensics, is the use of scientific methods to
process digital artifacts in order to provide evidence in support of legal proceedings. Funda-
mental to the credibility of this mission is the requirement of reproducibility, which has been
handled (primarily) in an ad-hoc manner. Independent reproducibility of experimental results
is a central requirement for any valid scientific work – it should be possible for anyone (with
suitable qualifications and experimental equipment) to reproduce published scientific results
based on the description provided by the authors. In a forensic context, reproducibility is the
central to the justification for using scientifically-derived evidence in any legal proceedings.

Digital forensics (DF) has a particularly thorny version of the problem in that the fast pace
of information technology creates an enormous, and fast growing, amount of data, which
is processed in an ever-increasing number of ways by applications. As a consequence, new
forensic tools need to be developed, updated and integrated at the cost of ever increasing com-
plexity, making the goal of (manually) validating the reproducibility of the results ever more
infeasible. The root issue is that there has been no standard specification for DF computa-
tions that is both practical (it can express actual forensic tasks) and formal (it can be mapped
to running code). This causes many problems, but the most important consequence is that
practical verification of digital forensic can only performed on relatively few (basic) types of
computations.

Our research addresses these issues with the design and implementation of a domain spe-
cific language (DSL) built specifically for DF. Our language establishes a layer of abstract, yet
formal, communication between investigators, tool developers, and the legal system. Our so-
lution is at the core layer, providing a robust foundation for solutions to problems across the
entire domain of digital forensics — from educational materials to tool verification. In short, we
aim to do for digital forensics what SQL did for the relational database.

First, though, we must examine what digital forensics is, where it originated, and how we
have arrived at its current state. We then detail issues facing the domain. Finally, we dis-
cuss the background information necessary to understand both related work and our solution,
which are detailed in Chapters 2 and 3, respectively.

1.1 Definitions, Usage, and Models

There are two commonly used definitions of digital forensics. The first Digital Forensics Re-
search Workshop (DFRWS), organized in 2001, provided one of the most frequently cited defi-
nitions of digital forensic science in literature:
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Digital forensics is the use of scientifically derived and proven methods toward
the preservation, collection, validation, identification, analysis, interpretation, doc-
umentation and presentation of digital evidence derived from digital sources for
the purpose of facilitation or furthering the reconstruction of events found to be
criminal, or helping to anticipate unauthorized actions shown to be disruptive to
planned operations. [28]

‘ This definition emphasizes event reconstruction to identify and react to threats in a secu-
rity incident. By contrast, the definition offered by the National Institute for Standards and
Technology (NIST) is:

digital forensics is considered the application of science to the identification, collec-
tion, examination, and analysis of data while preserving the integrity of the infor-
mation and maintaining a strict chain of custody for the data. Data refers to distinct
pieces of digital information that have been formatted in a specific way. [47]

This definition emphasizes a legal perspective, which requires the flexibility often neces-
sary during legal proceedings.

These definitions are generally useful, but do not provide a technical starting point for our
research. For this, we employ a version of the working definition offered by Roussev [23],
which seeks to connect :

Digital forensics is the process of identifying and reconstructing the relevant se-
quence of events that have led to the currently observable state of a target IT system
or (digital) artifacts.

This definition contains many notable aspects. First, if we were to remove the references
to both “digital” and “IT systems” from this definition, we would have a definition readily
recognizable as the approach for traditional law enforcement forensic analysis. Second, we
have references to tools, methods, and artifacts, which merit individual discussions necessary
to understand this research.

1.1.1 Methods, artifacts, tools, and targets

Targets. Traditional targets of DF include consumer or industrial products, personal com-
puters and laptops, as well as corporate servers. Non-traditional targets would include digital
platforms such as smartphones and internet-of-things-enabled devices; however, as societal
adoption drives these platforms into the mainstream, we can expect them to become increas-
ingly prevalent targets of digital investigations. During such investigations, the investigator
must identify, collect, and analyze specific pieces of data (or artifacts) from targets.

Artifacts. Most digital forensic artifacts fall within one of three broad categories, based on
their acquisition. The categories are file system, network, and memory.

File system artifacts are generally the most common target of investigations. At a technical
level, this simply implies that the artifact resides on a system disk (such as a hard drive, solid-
state drive, or USB thumb drive). An investigator might be interested in numerous types
of files, such as illegal pictures, incriminating emails saved to disk, or a piece of executable
malware – the list is interminable. However, there are also other aspects to file system artifacts.
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FIGURE 1.1: Generic Forensic Methodology

In particular, their metadata (such as file creation time or file hash) is of vital importance to the
investigator.

Network artifacts are more complicated to collect and analyze. While it is common for
corporations and governments to require full network logging (that is, saving a copy of all
network traffic for potential analysis), this logging is not necessary for the average computer
user. Network artifacts are thus less accessible simply because they may not be available, at
least depending on the investigation. In cases where they are available, investigators face two
further difficulties: first, they must reconstruct network artifacts from the original network
logs (including filtering suspect traffic from legitimate traffic), and second, network traffic is
increasingly becoming encrypted, thereby preventing any investigation into the content of the
traffic (although the analysis of metadata is a potential option).

Memory artifacts are generally the most difficult for the investigator to collect, but are also
(usually) the easiest to analyze. These artifacts exist in RAM, or volatile (temporary) storage,
which is permanently lost after a computer shuts down or reboots. However, when investi-
gators have the “memory dump” of a target system available, they are granted a direct view
of the state of the system. Some examples of what can be extracted include a list of running
processes (with in-memory artifacts), evidence of malicious process injections, and passwords.
Analysis of retrieved memory artifacts is generally less difficult than analysis on other types
of artifacts because they are usually unencrypted, giving the analyst a direct “snapshot view”
of the IT system at the point in time of the memory capture.

Methods. While numerous separate digital forensic methodologies exist, they broadly fol-
low the same steps to obtain artifacts from their forensic targets. As illustrated in Figure 1.1,
investigators must first identify and retrieve their target, obtain the target’s data, safeguard
(or duplicate) the data, and perform filtering; only then can they begin an analysis with their
preferred tools and procedures [82, 65, 73].

Target identification and retrieval are largely dependent on the investigation. During legal
proceedings, law enforcement analysts are generally restricted to retrieving targets identified
in a warrant, and can be further restricted by privacy restrictions for privileged information
(such as doctor-patient confidentiality). In corporate settings, such as during an internal audit,
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investigators generally have authority to execute investigations on any corporate-owned de-
vice. Once a target is within the scope of an investigation, analysts can obtain the data storage
device.

Obtaining data from the target is fairly simple in most cases: physical acquisition of the
target hard drive, USB stick, or memory capture is the norm. Numerous types of physical
devices allow for the connection of acquired devices to forensic workstations. In more com-
plicated cases, the investigator may have to counter anti-forensic precautions taken by a mali-
cious actor. That is, advanced criminals may have built-in automatic protections from forensic
investigations, and the investigator must take these into account during this phase.

Duplication of data is a vital step in the forensics process. The primary goal is to preserve
target data for consequential legal proceedings. This usually involves a purpose-built device,
which can copy data to a read-only medium from which investigators will conduct their in-
vestigation.

Filtering data, akin to triage[44, 79], is an important step for efficiency. It usually consists
of identifying potentially relevant artifacts while simultaneously ignoring known innocent ar-
tifacts. For example, in a case of insider trading, investigators would be interested in artifacts
related to websites visited, emails sent, etc., while simultaneously ignoring one’s music library.
This type of approach is necessary because of the large volume of data present during investi-
gations, as tools which investigators utilize are generally more efficient at smaller scales.

Tools and analysis. Once the data is safely acquired, the investigator can begin his analysis.
Analysts utilize a variety of digital tools, which are necessary because of both sophisticated
underlying technologies and the sheer scope involved in a DF investigation.

Tools is a generic term encompassing everything from simple programs written by individ-
uals to large-scale, vendor-supplied products. These tools are generally responsible for per-
forming operations on data (artifacts); more specifically, they are responsible for everything
from finding artifacts (filtering) to reporting on what those artifacts contain. As an example,
the most popular free DF toolkit is “The Sleuth Kit”1, which allows investigators to, among
other things, search for, filter, and extract files from hard drives. On the vendor-supplied front,
“EnCase”2 is the de facto standard used across both law enforcement and corporate environ-
ments. A plethora of other tools fulfills smaller purposes, such as establishing a timeline of
events or simply cataloging data for the investigator.

Now that we have established a context of what the term “digital forensics” encompasses,
we turn our attention to who uses these tools and methods.

1.1.2 Digital forensics usage

The traditional end-user of DF is law enforcement. However, both corporations and researchers
are heavy practitioners of DF tools and practices.

1https://www.sleuthkit.org/
2https://www.guidancesoftware.com/
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Law Enforcement. From international courts to local courts, all levels of law enforcement are
becoming familiar with DF. As computerized technology increasingly moves into the main-
stream, law enforcement’s role in DF will continue to grow. Indeed, if recent F.B.I. case back-
logs are any indication of broader trends [100], then law enforcement everywhere will be forced
to dedicate significant resources to DF.

Typical law enforcement analysts are tasked with proving a prosecutor’s charge. This could
involve disproving an alibi or finding evidence of child exploitation on a hard drive. Depend-
ing on the specific task, they will utilize established methodologies and tool sets while simul-
taneously noting their conclusions for legal analysis. Their notes are often the main source of
evidence for judicial proceedings.

Corporations. Corporations generally have access to their own devices. If a corporation sus-
pects an employee of malicious behavior, it may initiate an investigation into the employee’s
computer. Corporate investigations do not require a warrant; however, they often require the
approval of a human resources department. Once approved, the analyst working the investi-
gation will utilize the same previously outlined tools, techniques, and methodologies.

On the other hand, DF techniques are employed when malware (such as viruses or trojans)
are suspected on a corporate network. Analysts work to quickly identify the source of infection
and study its effects in order to deploy appropriate countermeasures. Similar tools, techniques,
and methodologies are employed.

Researchers. Finally, DF is an extensive research topic. Not only are researchers contributors
of open-source digital forensic tools, but they can also provide beneficial services. A common
case is data recovery – that is, retrieval and recovery of accidentally deleted data.

Next, we discuss how investigators, analysts, and researchers have brought the field of DF
to its current state.

1.2 Brief History of Digital Forensics

The first official steps towards the professionalization of digital forensic investigations in the
US date back to the 1980s, and stem from the passage of the first legislative acts on computer
crime (the Comprehensive Crime Control Act) [15, 1], and the establishment of F.B.I.’s Magnetic
Media Program in 1984 [30]. Importantly, the impetus to examine digital evidence came from
law enforcement concerns, and was initiated by investigators with technical knowledge, rather
than software engineers, or computer scientists.

During the 1990s and early 2000s, DF matured into a more professional realm. Until this
point, many tools were produced by hobbyist practitioners; however, researchers began to
release robust tools, many of which are still in use today. Vendors entered the market with
full-featured solutions for sale. DF also became the subject of academic research across the
world, with several institutions publishing works on the subject. The mid-2000s saw the es-
tablishment of various government treaties on cyber-crime laws, as offered by the Convention
on Cybercrime in 2004.

Since then, the field of DF has steadily advanced. From policy and legal precedents to
research and new tools, the field is evolving rapidly. As we detail later in this chapter, this
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evolution is occurring too rapidly. Briefly, little science has been injected into the DF process.
That is, during the organic growth of the field since the 1980s until today, there has been no
significant standardization or unification of the various tools and procedures. The end result
is an unstable state: investigators have hundreds of tools to choose from, dozens of method-
ologies they can follow, and an ever-changing technological landscape. Before detailing these
arguments, however, we discuss a few notable real-life investigations and how DF played an
important role.

1.2.1 Examples and notable cases

BTK, 1991. One infamous case of early DF involved a serial murderer known as BTK. Be-
tween 1974 and 1991, BTK, who was later identified as Dennis Rader, killed 10 people. How-
ever, he was not immediately caught (or even identified). By 2004, it was considered a cold
case when Rader began taunting law enforcement with various forms of communication to
police departments and news stations. In early 2005, he issued his first digital communique:
a Microsoft Word document stored on a 1.44-MB floppy disk that he physically mailed to a
news affiliate. While the content of the note did not identify Rader, law enforcement, using
the various techniques and procedures described above, was able to retrieve digital metadata
from the document (known colloquially as an artifact). The metadata included a reference to
his church and was directly responsible for Rader’s subsequent capture and arrest. He is now
serving multiple life sentences.

While the previous example has showcased how DF plays an important role in helping
law-enforcement investigate traditional “non-cyber” crimes, it clearly plays a critical role of
investigations into “cyber-crimes”. As given by Merriam-Webster:

Cybercrime is criminal activity (such as fraud, theft, or distribution of child
pornography) committed using a computer especially to illegally access, transmit,
or manipulate data[59]

In other words, crimes that are executed primarily with the use of digital assets, such as
computers and mobile devices.

James M. Cameron, 2009. An investigation into James M. Cameron exemplifies a prototypi-
cal DF case. In early 2009, Cameron (then an assistant attorney general for the state of Maine),
was indicted on 16 charges of trafficking child pornography for possessing illicit imagery
hosted on his Yahoo photo album. Interestingly, the investigation began when Yahoo con-
tacted authorities — not the other way around (indeed, Cameron’s rejected defense hinged on
this fact). Investigators from the Main State Police Computer Crimes Unit retrieved four com-
puters from his residence, and using the techniques and methods discussed above were able to
retrieve incriminating chat transcripts which ultimately identified Cameron as the perpetrator.

Morris Worm, 1988. In November 1988, a graduate researcher named Robert Morris released
a piece of malware which became known as the Morris Worm. It exploited weakness in vari-
ous programs, such as finger, sendmail, and rsh, eventually causing a denial of service condition
to infected machines [26]. Although not intentionally malicious, Morris was eventually found
guilty after the FBI located him and analyzed his computer for evidence [27]. Morris was the
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first to be found guilty of the Computer Fraud and Abuse Act of 1986 [1]; later analysis from the
Government Accountability Office’s estimated damages of between $100, 000 and $10, 000, 000
[93]. The important note is that the F.B.I. was able to use (relatively) nascent DF processes to
prove guilt. 3

Now that we have a firm understanding of what digital forensics is, an idea of how we got
here, and a few examples of its usage, we can detail broad problems facing the field.

1.3 The Problems within Digital Forensics

With the advancement and widespread adoption of digital technology, the need for tools and
processes to assist investigators in investigations became a primary concern of law enforce-
ment and researchers alike. Many tools of varying design were thus designed and built. Tools
were often purpose-built for specific problems, such as extraction of file metadata from a Win-
dows file system.

However, it is vitally important to emphasize that these tools were built to answer specific,
contemporary needs. Compared to today, tools were developed when hard drives were orders
of magnitude smaller, data transfer rates were orders of magnitude slower, and processors
were orders of magnitude slower. For comparison, supercomputers in the 1980s executed
less floating operations per second (FLOPS - a common performance metric) than modern
smartphones. To complicate matters, changes to underlying technology (such as file system
architecture) occur at a relatively rapid pace. In short, tools built by researchers tended to
solve a specific problem, for a specific technology, at a specific point in time; at no point did
tool builders comprehensively address the “big picture”.

The situation can be succinctly summarized as follows: the field of digital forensics has yet
to produce a holistic approach towards a practical and computationally formal description of forensic
operations.

The lack of such a scientific description directly contributes to a myriad of issues across the
field of DF. First, the results of DF investigations are difficult to reproduce and/or verify, which
is a necessary tenet in any scientific endeavor, and especially pertinent when considering the
importance of legal proceedings. Second, investigators are forced to use individual tools (and
in many cases, they must have significant programming experience to use those tools effec-
tively); conversely, tool creators often work with limited design requirements. Third, propri-
etary tools are difficult to verify or benchmark without an accepted standard against which to
compare them. Fourth, students currently learn about DF with the use of tools, as opposed to
learning the computation (conversely, knowledgeable experts are forced to learn specific tool
syntax to execute a desired forensic computation). Fifth, no standard means exist for security
tools to interchange data – they are (for the most part) incompatible with one another. Finally,
current practices do not scale at a rate commensurate with the amount of storage involved in
digital investigations.

We discuss each of these points and then describe our approach to solving them. We have
two complementary approaches: developing a domain-specific language (DSL) for DF and
developing a scalable runtime framework for it to execute queries against. Our research finds

3As a sidenote, the Morris Worm has been popularized in several cultural adaptations [86, 54] and has been
credited with creating some of the first demands for cybersecurity response teams [27].
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that inserting a layer of abstraction between tools and investigators, where our abstraction is a
DSL with scalable runtimes, solves these (and other) systemic issues facing the field of DF.

1.3.1 Replication and Verification

Without a means to describe a DF computation (or series of computations), there is no standard
way for an investigator to capture the specific steps he took in an investigation. As such,
investigator notes are a primary means of cataloging an investigation and are a primary source
in law enforcement or judicial proceedings. Having to follow investigator notes is a far cry
from being reproducible and is ultimately unscientific (as the ability to reproduce a process,
methodology, or study is a key tenet of any scientific endeavor).

During courtroom proceedings, the investigator’s work must hold against counter-arguments.
This verification of the investigator’s work is highly subjective when he or she only has notes to
reference. Ideally, this would be an objective measurement of his or her steps in the investiga-
tive process, which is possible with the adoption of a standardized description of the forensic
computation. This allows independent parties to verify that a given forensic computation
matches the expected output.

Many attempts have been made to formally describe the DF process, ranging from the
abstract to the concrete. We briefly consider each in Chapter 2, but ultimately find that none
provide an abstraction usable to the investigator while simultaneously providing unambiguous
computational descriptions usable as language constructs.

As a direct example, consider the difference in the following two ways to describe matching
files to known hashes (a common forensic task). Scenario A represents investigator notes,
while scenario B represents usage of a standard computational description:

1. Scenario A) First, launch the Sleuth Kit program and use its file navigation graphical user
interface (GUI) to search for all PDFs from the forensic target named “target.dd”, which
is a Windows-based image with a sector size of 512 bytes and an offset of 63 bytes. Then,
calculate the hashes for the selected PDFs using the SHA1 algorithm by clicking on the
button in the upper middle of the screen. Then, for each file hash, compare to the list of
known hashes in the file “hashes.txt”.

2. Scenario B)

pdfs = select *.pdf from "file:target.dd" as ntfs
[63 ,512]

hashes = pdfs | hash sha1
known = hashes | join "file:hashes.txt"

Both scenarios represent a common digital forensic process - hashing files and comparing the
result to known hashes. However, scenario A is a “human-readable” description, such as
found in investigator notes, while scenario B is both a computational description and a human-
readable description, especially for forensic analysts. As opposed to the former, which could
be written in a myriad of word substitutions and rearrangements, the latter is precise, repeatable,
and unambiguous. These traits embody the core tenets behind domain specific languages,
which we propose as a solution to aforementioned issues.
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Domain Specific Languages

As given by Fowler [29], a domain-specific language is a computer programming language of
limited expressiveness focused on a particular domain. The following are the critical components of
this definition:

1. Formality. A DSL is a formal language, with established grammar and semantics, that is
translated into executable code.

2. Fluency. An ideal DSL allows its users–practitioners within the domain–to express the
computation in a manner that is “fluent”; i.e., it feels natural and appropriate to a human
expert.

3. Limited expressiveness. A DSL is not designed to replace a general-purpose programming
language; its purpose is to simplify development with respect to its domain.

4. Ease of use. A DSL is focused entirely on its target domain and makes specifying computa-
tions in the domain substantially easier than a corresponding solution in a general-purpose
language. That is, the DSL trades generality for simplicity, which makes it valuable to
the user.

In summary, a DSL grants domain experts the constructs necessary to describe a problem
or solution succinctly and efficiently, and it abstracts away all (or most) references to the actual
implementation. End users can accomplish significant, complex tasks with a small number of
keywords and phrases. This common vocabulary makes the language feel more natural to end
users, resulting in a lower learning curve [37].

Examples of popular and robust DSLs are plentiful: SQL is the lingua franca of the database
world (even after a decade of the “noSQL” movement); the runaway success of the web is, in
part, due to HTML and CSS – two DSLs whose users do not even perceive writing in those
languages as coding. Unix/Linux shell scripts have been a mainstay of system and network
administration, and have been in widespread use by forensic analysts since the very beginning.

Over the last two decades, we have seen an accelerated trend towards the development
of programming languages, and domain-specific ones, in particular. This is, in part, driven
by the needs for higher levels of automation as seen in large-scale (cloud) environments. Ad-
ditionally, DSLs are driven by the need of state and state transition formalization of complex
systems. For example, in the area of automated configuration management, we have seen the
rapid adoption of Puppet, Ansible, Chef, and Salt, along with container or virtual machine (VM)
configuration languages by Docker and Vagrant.

1.3.2 Tools

A large portion of the investigative process involves the use of digital tools. These tools range
from free and open-source scripts to robust vendor-supplied solutions. Investigators generally
use several tools throughout the course of an investigation. A large tool chest allows an analyst
to use specialized tools for specific tasks; however, this approach has drawbacks.

Learning tools. First, learning individual tools imposes a significant learning penalty on the
operator. Each tool has its nuances and idiosyncrasies, which operators must learn, if not
master, for effective use. Furthermore, tools often change as bugs are fixed, features are added,
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or legacy support is removed. This volatile ’tool environment’ is difficult to manage, especially
as analysts tend to employ a number of tools.

Specialized tools. Second, utilization of most open-source tools requires a strong program-
ming background. Open-source, often unsupported tools are commonly built to suit a highly
specific task and are driven only by community involvement. Other tools never considered
volume – that is, they may work well with small targets, but in the face of high-volume input,
they will perform poorly. With ever-increasing workloads, this forces the analyst to choose
some combination of the following: 1) buy more hardware, 2) write batching code, 3) modify
the tool, and 4) find a new tool.

Specifying tool functions. Third, a disparity exists between the investigators who use the
tools and the programmers who provide them. Even supposing that a feedback channel exists
for requirements between analysts and developers, there is no language whereby investigators
can express the exact computation they need to have resolved. This ambiguity leads to an
imperfect description of needs and results in an imperfect tool. We submit this is driving cause
for the findings by Hibshi et al., who discovered significant usability issues of DF tools [43].

Tool interoperability. Digital tools are not currently interoperable. Since they are often spe-
cialized and almost always developed independently, they are unable to share data [10]. For
a comprehensive forensic solution, any integration between tools is therefore expensive. Al-
though efforts are underway to unify data representation, this would only work on tools that
are newly developed or (expensively) retrofitted for conformity.

1.3.3 Tool veracity

While regulated and accepted standards exist that govern many common forensic computa-
tions (hashing, for example), there is no standard means by which an implementation of the tool
executing the computation can be verified. That is, there is no way of determining whether
investigators, lawyers, or analysts can trust their tools. On one hand, in cases where source
code is available, code review is a viable — albeit costly — option. On the other hand, in the
case of vendor-supplied or for-profit tools (“black box”), source code review is not possible.
Instead, a dynamic quantitative analysis can yield a high degree of confidence. However, no
standard or accepted method currently exists for testing products against known inputs with
standardized outputs. Moreover, tools are constantly changing to keep up with improvements
to underlying technologies [87]. As argued by Carrier (author of the Slueth Kit), forensic tool-
ing should be held to the highest standard possible [6] because of the serious implications of
forensic investigations (e.g., firing, criminal convictions).

Tool veracity is an acknowledged problem across the industry with little to no solution in
sight. The barrier to veracity testing is the lack of a means to execute testing. However, it is
worth noting that tool studies are being explored by institutions such as NIST. Their Computer
Forensics Tool Testing Program (CFTT) studies individual tools in a manual "feature test" pro-
cess [62]. Testers generate a report based off the tool’s performance against a publicly specified
test target, and subsequently posts results to the public [63]. This approach is flawed for at least
two reasons. First, the testing process begins with manual review of a tool’s documentation,
from which all test cases are determined. This is a time-consuming process prone to human
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error, especially given the rapid rate of change of underlying technologies which can render a
tool’s review invalid [87]. Second, it is a qualitative process. That is, test cases are determined
by humans; test cases are executed by humans; and results are analyzed by a committee. A
better approach would be an automated, quantitative process.

1.3.4 Educational materials

The lack of educational resources in DF is a well studied issue [11]. We submit that a root cause
is the lack of a description for the forensic computation. The result is that instructors have no
standard way of teaching individual steps within a forensic investigation. For instance, to teach
students how to retrieve metadata from a digital image, one instructor might talk about how to
use the “exif” tool on the command line. Another might show students how to use “The Sleuth
Kit”. Another could even use operating-system builtin functions. Students ultimately learn
how to use individual tools, rather than focusing on the core concept of retrieving metadata.

1.3.5 Scaling

Due to the rapidly decreasing cost of storage, investigators face an ever-increasing amount of
data during investigations. The amount of data directly contributes to the overall length of an
investigation, and because investigations have real-world deadlines, the overall throughput
per analyst is expected to increase. This expectation is flawed for a few reasons.

First, older tools (which have become industry standard) were never intended to meet the
demands of today’s storage volumes. They were designed and implemented within a different,
specific context – relatively small datasets and forensic targets within a specific sub-domain
(such as memory forensics). Furthermore, they were never designed to scale using distributed
computing. Experience demonstrates that retrofitting such a fundamental property is difficult,
for example the short-lived effort to extend The Sleuth Kit with Hadoop’s big data processing
capabilities.

Second, the growth of datasets has largely been unrealized because of the limited through-
put of traditional “spinning” hard disks (the default choice for most desktops). However,
advancements in SSD storage – fast-falling costs, advancing capacity, and bandwidth growth
– are quickly reshaping the storage technology environment. SSDs, for example, can currently
be expected to reach a transfer rate of at least 400 MB/s. They are also not the final evolution
– non-volatile memory express (NVMe) drives are becoming increasingly popular and afford-
able, and perform above 1 GB/s.

Third, the number of devices involved in cases is growing at an alarming rate. For example,
most people now have advanced smartphones (which are capable of committing illegal activ-
ities); “smart” watches, which could contain digital evidence, are now commonplace; vehicles
are networked and are full computer suites in their own right; and USB sticks are inexpensive.
As technology becomes affordable and miniaturized, it will become pervasive. As this occurs,
investigations will target more devices.

Finally, network advances have made a network-based acquisition of forensic data a strong
possibility. 10Gb Ethernet, now commonplace in corporate environments, can be expected to
be replaced by 100Gb Infini-Band in coming years. Looking ahead, IEEE has approved specifi-
cations for even faster Ethernet connections - currently supporting up to 400Gbps with plans
for 1Tbps. Thus, we can envision tooling to eventually deliver forensic targets over a network,
as given by Roussev [78].
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Investigators ultimately face not only a volume but a throughput problem: they are fac-
ing more data and obtaining it faster than ever before. Their current generation of forensic
tools cannot handle the throughput of this data, and their tools are not designed to scale up
– they cannot easily "throw hardware at the problem." As a result, investigators require ad-
ditional time to complete their average case, thus delaying investigations and adding to an
ever-increasing backlog.

1.4 Brief description of research

We address these issues with the development of a practical digital forensics DSL, named
Nugget. The language provides constructs for usability, reproducibility, verification, and tool
interoperability. It gives educators tool-agnostic materials to teach DF methodologies and law-
enforcement the means to specify computational needs to tool developers. In short, it will do
for DF what SQL did for database technologies.

In order to test Nugget, we develop a runtime named SCARF. SCARF is a scalable container-
based tool-agnostic architecture allowing us to tie arbitrary DF tools into a single processing
“fabric”. This architecture is deployable across cloud-based or distributed platforms and al-
lows us to add arbitrary amounts of hardware to combat the problem of rapid growth of data
volume in digital investigations.

1.5 Contribution Claims

We contribute to the science of digital forensics in the following ways:

1. Provide digital forensic investigators the means to specify a digital forensics computation
that is both practical and formal;

2. Provide digital forensic investigators a means for reproducing digital forensic investiga-
tions;

3. Provide an abstract layer of communication suitable for use between forensic analysts,
law enforcement, and tool developers;

4. Perform a mechanism by which digital forensic tools can be benchmarked;

5. Provide external entities (e.g., NIST) a means to validate digital forensics tools;

6. Provide educators a tool-agnostic medium to teach digital forensics processes;

7. Provide a framework enabling interoperability between digital forensic tools;

8. Create a flexible, scalable, and container-based runtime to demonstrate effective usage of
Nugget queries.

Remaining organization

Our research is organized into five chapters, an appendix, and a bibliography. Chapter 2
presents a review of the literature regarding the current state of DF, with an emphasis on pro-
posed languages, scalable solutions, and model abstractions. Thereafter, Chapter 3 covers the
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research design and methodology. The results and analysis are presented in Chapter 4, and fi-
nally, Chapter 5 contains the summary, conclusions, and recommendations resulting from the
research.
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Chapter 2

Literature Review

2.1 Background

Our ultimate goal is to bring science into digital forensics by developing a practical domain
specific language. We simultaneously need to develop a scalable high-performance runtime
platform to combat contemporary technological storage and processing capabilities. Before
developing either solution, we conducted a literature review to ascertain whether these prob-
lems have been previously addressed, either fully or partially.

We approached our literature review in two broad phases. First, we assessed other ap-
proaches for modeling DF computations or investigations. We found that a few tentative so-
lutions exist for extremely narrow “languages”; however, no solution has taken a holistic ap-
proach — most solutions are focused on solving particular problems within the domain, and
none promise practical science. Second, we focused on investigating how others are solving (or
attempting to solve) the problem of scaling to current volume. We found that a few tentative
solutions exist for combating the amount of data that digital investigators are encountering;
however, these solutions are ultimately insufficient.

2.2 Modeling a Standardized Approach

2.2.1 Background

Adoption of a standardized approach is key to the future of DF. Without such a movement,
Garfinkel has argued [30] that tools will become increasingly obsolete, data volumes will be-
come insurmountable, and results will be ultimately unreliable — especially in courts of law.
He continues:

Digital Forensics is facing a crisis. Hard-won capabilities are in jeopardy of being
diminished or even lost as the result of advances and fundamental changes in the
computer industry.

Garfinkel is not the only one to draw such a conclusion. In 2006 a DFRWS working group
Common Digital Evidence Storage Format was established to address the recognized need for
standard evidence formatting [40]. And, for example, Guo et al. directly challenge the current
lack of "a validation paradigm" in DF, especially given the need for accurate, reliable, and
verifiable results [41]. We discuss both of these works in more detail below.

After performing a thorough literature review, we have divided related works into three
broad categories: high level models, low level/mathematical models, and DF languages.
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2.2.2 Low-Level and Mathematical Models

In this section, we briefly discuss models that are too low-level. These models are useful in
special cases, such as providing theoretical solutions, but they are not practical for end users.

Carrier’s history testing model

In [9], Carrier et al. describe two general models: primitive computer history and complex com-
puter history.

Primitive compute history has its roots from finite state machines (FSM). Carrier explores
extrapolating FSMs into a representation of every possible state of the computer based on low-
level input events. Every unit of storage is treated as a state, such as registry, memory, and hard
disk locations. Transitions between state changes are a historical accounting of the computer
behavior. He notes that while possible to represent a theoretical computer in such a mapping,
it is non-trivial or impossible to represent practical computer history in such a manner.

Complex computer history, on the other hand, is a similar model but built to represent com-
plex events - those which cause lower level primitive events to occur. For example, saving a file
is a single event to the user, but causes hundreds (or thousands) of primitive level events to oc-
cur. These events are grouped together as complex events according to pre-defined groupings,
which in turn provide a more reasonable representation of a computer’s history.

Carrier goes on to describe possible uses for such a low-level model, such as representing
various classes of analysis techniques. However, usage of finite state machines to represent
computer history is clearly too low-level for any practical use across DF.

Gladyshev’s finite state machine

Similar to Carrier, Gladyshev et al. also investigate approaching digital forensics with a finite
state machine model [38]. However, this research is different in at least two ways: it is more in-
depth, and it focuses on discrete event reconstruction using hypotheses - such as, “Did Alice use
the printer?”. The authors explain an algorithm to automatically explore event reconstruction.

However, FSM-based event reconstruction is computationally expensive, and it is unreal-
istic for complex events because of the sheer number of state transitions. The authors have
acknowledged that further research is required to benefit the everyday investigator. For these
reasons, in addition to the FSM-related shortcomings discussed with Carrier’s history model,
this approach does not solve the issues we have presented.

Garfinkel’s differential analysis

Garfinkel et al. explore differential forensic analysis [34]. General differential analysis compares
two different objects and reports on the differences between them; for example, two text files
can be compared to find all differences. Garfinkel has described a similar model specifically
for DF.

Garfinkel has argued that (non-digital) differential analysis is already commonly practiced
across several domains, such as reverse engineering and network engineering. He has pointed
out that a general model consisting of three items constitutes a valid differential analysis: a
baseline image, a final image, and a differencing strategy. He has taken these ideas and imple-
mented them into a differential model specifically for DF.
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Briefly, the model operates by first defining metadata for various features of a filetype and
then determining the steps required to transform between two states containing those features.
Features include a byte sequence, location, name, and timestamps. With these, the authors
wrote tools ranging from a disk image difference finder to a pcap difference finder. In addi-
tion to simple tools, this type of analysis provides the basis for various high-level use cases:
malware discovery, insider threat identification, and pattern-of-life definition.

This model provides a high-level description of what to do when conducting a differen-
tial analysis. The authors have demonstrated that their work could be useful as a basis for
further development of differential tools, and they have included definitions for developing
metadata tags to facilitate differential processing. However, this model falls short of providing
the analyst with a practical means of specifying a forensic computation.

2.2.3 High Level Models

Researchers have also proposed high-level models. These consist of guidelines, best practices,
and other models that cannot resolve to a specific computation.

Cognitive task model

As opposed to models that are too low-level, mathematical, or impractical, Roussev has pro-
posed [77, Ch. 3] that adoption of a cognitive task model describing the work of the intelligence
analysts [71] could be directly adopted to describe the cognitive tasks performed by forensic
analysts. Although there are clear benefits to considering the problem from a cognitive per-
spective (especially for usability), the resulting description is not formal and does not address
the concerns of integrity and reproducibility.

Best Practices

At a somewhat lower level of abstraction, we find a bevy of procedural models that deal with
specific scenarios, such as disk acquisition, Android forensics, and social media analysis. Those
models are, in effect, efforts to establish best practice guides for practitioners. For example, the
Scientific Working Group on Digital Evidence offers numerous best practice models for cer-
tain situations: examining magnetic card readers, cell site analysis, and image authentication,
among others [83].

Looking specifically at image authentication best practices, the authors have described the
methodology that should be employed when reviewing a digital photograph for evidence.
These (paraphrased and non-inclusive) steps 1 include:

1. Preserving the original image,

2. Extraction of metadata (camera model, camera settings, GPS, etc),

3. Analysis of file packing method (hex-level headers, EXIF, etc),

4. Examination of noise within the image,

5. Examination the image contents (scaling of objects, evidence of staging, etc)

1The full set of suggested steps respective to Image Authentication methodology is included in Appendix A.3
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However, best practices such as these fall short of being formal, generic, and reliably repro-
ducible.

2.3 Digital Forensics Languages

The idea of creating a DSL for DF has been tangentially explored by prior researchers. Their
research has addressed symptoms, but not the root cause, of problems across the field. The
ultimate root problem is the lack of any practical and standardized description of the forensic
computation. We review their work below but ultimately find they are unsuitable for general
purpose usage or are not computationally specific.

2.3.1 DERRIC - A (narrow) data language for Digital Forensics

Perhaps the most explicit attempt at creating a DSL for DF is the DERRIC project at the Nether-
lands Forensic Institute [5].

DERRIC introduces a language to declaratively specify data structures, allowing for data
processing to occur upon multiple variants of data types. One problem the researchers aim
to solve is the inability for investigators to deal with multiple encodings of a single datatype.
Furthermore, they aim to use DERRIC to handle reverse engineering of multiple valid file
format configurations and encodings.

Specifically, the DERRIC language is (mostly) human-readable and uses keywords relevant
to data description. For example, we have included a DERRIC file description for JPEG files in
the appendix A.4.

With this type of general description, tools can be cognizant of specific fields within various
formats (or versions) of file types (ex: version, endianess, etc). Tools and investigators can
use these specific fields to describe, analyze, and act on abstractions of data, which in turn,
decouples tools from specific formats.

While this is a limited domain-specific language (specifically, it is a data definition lan-
guage), it does not address the concerns we have identified in chapter 1. It is written in a
human-readable, but unwieldy, format. In short, DERRIC is too verbose, is not natural, and
does not grant end-user analysts the power to specify the specific computation they wish to
execute; rather, it allows for (expert) programmers to specify fields that can augment the pro-
cessing of files by tools.

2.3.2 DEX - Digital evidence exchange

Levine et al. have introduced a library to logically describe different file formats [49]. Their
main purpose is to introduce an open format for digital evidence provenance, both for de-
scription and comparison of prices of evidence. Furthermore, their approach allows for tool
interoperability and result reproducibility. While the library falls short of a formal DSL, some
goals are similar.

The library – Digital evidence exchange (DEX) – consists of an XML based file description
for individual filetypes. Similar to DERRIC 2.3.1, this approach allows end-users to computa-
tionally describe byte-level file formats with the goal of allowing tools to operate on them (a
data description language). However, DEX allows for an essential feature - tool interoperability -
and allows for building toolchains. Furthermore, DEX allows for reproducibility and evidence
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provenance. On the surface, this approach is promising and indeed, meets several necessary
demands. However, DEX falls short of providing a full solution.

One shortcoming is the difficulty of use – DEX file descriptions require a rather complicated
XML structure (see Appendix A.2 for a sample code listing). Further, it is released as a Java
library, and its integration with non-Java based tools is unclear. Finally, for tool interoperability
to occur, individual tool maintainers would need to agree on and retrofit their tools towards a
standard output format. Nevertheless, certain ideas within this research are useful to extract
and utilize, such as enabling tool interoperability.

2.3.3 Formalization of Computer I/O - Hadley Model

In this work [36], Gerber et al. have described a model that encapsulates input and output
operations between peripheral devices specifically for a forensic investigator. They have mod-
eled their work after the seven-layer OSI model [66] and have proposed rules pertaining to
data exchange between computing layers – where layers are components such as USB disks,
HDD platters or heads, and system buses. They have proposed a functional language to de-
scribe translations between data formats at differing levels of abstraction. The ultimate goal of
this model is to log verifiable transactions that occur at the input/output layer.

However, this approach is unrealistic – the authors have not explained how to handle the
volume of inputs and outputs that would undoubtedly consume the system. For example, the
act of saving a large file to disk could incur thousands of individual writes of sectors to a hard
disk. Furthermore, this model does not address networking I/O operations. However, the
research does touch on a point with which we agree – there is a need for a language to describe
the forensic computation.

2.3.4 XIRAF - XML indexing and querying for DF

In this research, Alink et al. of the Netherlands Forensic Institute NFI, the authors have discussed
an XML approach to managing and querying forensic data gleaned from digital evidence,
called the XML information retrieval approach to digital forensics (XIRAF) [2]. This research
involves three main elements: “a clean separation between feature extraction and analysis, a
single,XML-based output format for forensic analysis tools, the user of XML database technol-
ogy for studying and querying the XML output of analysis tools”. We discuss each of these
elements below.

Separation of extraction from analysis is a key idea. As the authors have pointed out, allow-
ing extraction tools to exist interdependent of analysis tools largely enables the automation of
feature extraction.

On the other hand, building an infrastructure revolving around an XML specification has
some (surmountable) issues: First, XML is extremely verbose and unwieldy. The format is
prone to hard-to-find typographical errors. Further, while XML can be as efficient as, for in-
stance, JSON, less verbose format parsing will naturally reduce overhead.

Finally, querying an XML-based database requires knowledge of a difficult-to-use pro-
gramming language - XQuery 2. The authors have acknowledged its difficulty and have de-
veloped a separate GUI interface to hide the complication from the end user. We believe that
the query language should be well within the grasp of a non-technical investigator.

2XQuery-https://www.w3.org/TR/xquery-31
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Discussion of XIRAF would not be complete without discussing its scalability [101]. Not
only is the dataset one that can be queried, but it was also designed to provide DF “as a ser-
vice.” Before replacement by Hansken (discussed in section 2.4.6), XIRAF was the NFI’s primary
repository for digital forensic investigations and provided a platform for petabytes worth of
target data[102].

Despite shortcomings, such as closed source and opaque querying constructs, XIRAF is a
promising start into the idea of a general data store and querying architecture for DF.

2.3.5 DFXML

Garfinkel has also researched and proposed an XML-based digital forensic file description
language called DFXML [31].

As opposed to XIRAF, DFXML specifically aims to enable tool interoperability and not
focus on result storage. Garfinkel argues that contemporary forensic tools are monolithic –
designed to ingest a limited set of specific file formats and produce a limited set of output
types (such as reports). The opposite paradigm (a Unix tool style) of small tools performing
specific tasks that can be chained together to accomplish great tasks is what DF requires.

DFXML works by having experts review filetype formats and generate an XML-based de-
scription of the file. Features of this file vary between filetypes but commonly include byte
runs of file data, hash information, and relevant timestamps. Moreover, the authors have pro-
vided an application programming interface (API) that ingests this "formatting" file as well as
the target forensic data. This API is capable of being combined with further forensic tooling.

However, DFXML does not satisfy all of our concerns (nor does it intend to). Foremost,
there is no easy or natural way to express the forensic computation. Second, while the research
promises tool interoperability, it is not clear how non-Python tools would interact with the
Python-based API. Finally, an XML-based file representation is not ideal.

In conclusion, DFXML is solely a data interchange format for a data forensics API. While
iIt is not a full domain-specific language DSL, but it does encapsulate some research we can
utilize. For example, interior file formatting regarding the best representation of time and GPS
coordinates, among other things, has been researched. Furthermore, using small individual
tools collectively is a key idea we keep in mind and consider during our research.

2.3.6 Digital Forensics Ontologies

A brief discussion regarding development of digital forensic ontologies is warranted. There are
a few efforts currently underway to categorically define the vocabulary to be used in digital
forensics (DIALOG [45], CybOX [12], and UCO [13]). In each instance, researchers define the
relation between various forensic objects and offer a standard vocabulary for each.

These researchers have identified the same problem that we (and others) are looking to
eliminate: there is currently no formal way in which to share forensic data. Current practices
are informal and imprecise. However, unlike other researchers, we aim to address this with a
DSL, which would necessarily incorporate common syntax and semantics.

2.3.7 SEPSES - logging with common vocabulary

Recent work has pointed out that the growing number of log sources, when combined with the
volume of logs encountered in enterprise-sized environments, creates a complicated situation
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for security analysts [25]. The authors have argued that despite the advancement of some
logging tools, the analyst is ultimately responsible for creating confusing regular expressions to
pick out desired items of data from log streams (which are often verbose, redundant, or poorly
structured). They have also provided a semantic model used within a deployable platform
("SEPSES") which relies on using their proposed vocabulary (an evolution of MITRE’s CEE[60])
to query logged events from a central (or ’linked’) datastore.

On the one hand, SEPSES addresses a specific subset of what other ontologies aim to do: it
provides analysts with a common vocabulary to query logs. On the other hand, we point out
that it does not promise consumption of data from any source - such as directly querying NTFS
images, memory dumps, or network captures.

2.3.8 Roussev - a DSL for Digital Forensics

In 2015, Roussev first proposed the idea for a domain-specific language for digital forensics
[76], citing several reasons for its necessity. First, from a legal standpoint, third-party veri-
fication of the investigation is necessary, and current methods are impractical, especially in
the face of volume growth. Second, scientifically, the lack of a common language describing
forensic processing hinders research efforts. Third, educationally, the lack of a language means
that students are often trained on specific tools and products with GUIs – rather than learn-
ing the process. Finally, from a professional point of view, vendors often provide features that
users do not ask for because they have no means to express their needs. In short, Roussev has
demonstrated that a DSL built for the DF community has far-reaching benefits.

We build on the ideas initially sketched in this paper, and we further discuss their evolution
in Chapter 3.

2.3.9 Summary of proposed models and languages

In summary, we chart related research in Figure 2.1. Clearly, Nugget is the only solution that
provides both a practical and computationally specific foundation for the future of digital foren-
sics.

2.4 Scaling Digital Forensics

As discussed in Chapter 1, the exponential growth in data volume in investigations is a serious
problem. Indeed, it has been recognized as a future concern for at least a decade. However,
as the volume of data is now overwhelming commodity hardware, it has risen to a pressing
present concern. Several researchers have identified this issue, some of whom offer tentative
solutions, and we summarize their work here.

2.4.1 Initial discussions

At least as early as 2004, Roussev et al. discussed the need for a distributed digital forensics
solution in Breaking the Performance Wall: The Case for Distributed Digital Forensics [80]. In this
research, Roussev et al. have pointed out at least three main reasons for building distributed
forensics tools:

1. Growth of High-Capacity Storage Devices
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FIGURE 2.1: Comparison of conceptual models in digital forensics

2. Growth of I/O speed vs. capacity

3. Increased sophistication of digital forensics analysis

This research, however, has aged – after 15 years, no significant implementation has been
realized. Fifteen years is 13 full cycles of Kryder’s Law 3; When the paper was originally written,
a commodity laptop had a 40-GB hard drive 4. Today’s commodity laptop has a 1TB solid state
drive 5.

Despite hardware advancements, widespread deployment of a distributed system has been
hindered. Possible causes include deployment difficulty, (seemingly) high-performance work-
stations, and stagnant IO improvements. As storage capacities continue to grow, even high-
performance workstations will become unsuitable for forensic investigations [79]. Further, IO
improvements will remove a bottleneck, and force the realization that the current generation
of non-distributed tasks are too slow to keep up with a significant volume of data. Finally, we
discuss a solution in chapters 3 and 4 which reduces the difficulty of integrating scalability to
standard digital forensic tools, paving the way for widespread adoption.

A growing need. To quantitatively illustrate the recognized need for scalable forensics, we
turn to the U.S. Department of Justice and reports of outstanding service requests. In 2014,
an audit report [99] indicated that across the FBI’s 16 Regional Computer Forensic Laboratory
(RCFL) units, there were 1,566 open requests as of August 2014. Of these, almost 60% were
over 90 days outstanding: 381 (24.3%) were between 91 and 180 days old, 290 (18.5%) were
between 6 and 12 months old, and 262 (16.7%) were over a year old. A more recent audit of

3"Inside of a decade and a half, hard disks had increased their capacity 1,000-fold, a rate that Intel founder
Gordon Moore himself has called "flabbergasting." Kryder’s Law" [48]

4data retrieved from https://support.apple.com/kb/SP81
5data retrieved from https://www.apple.com/macbook-pro/specs/
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the New Jersey RCFL has suggested that in 2016, 194 service requests were not closed within
60 days, including 39 that were more than a year old.

Consequences of backlogs. Shaw et al. [85] have pointed out the possible consequences of
delayed digital investigations: suspects can commit suicide, be denied access to family mem-
bers (for example, after allegations of abuse), or face reduced sentencing because of the length
of time spent waiting for the investigation to conclude. There are less serious considerations
as well: during investigations where computers are seized, family members have no access to
the data on the computer – such as family pictures and financial data. In cases where serious
contraband is found, the computer may never be returned as remnant artifacts could be inad-
vertently returned to a family. While these concerns will always exist, investigators are facing
more cases which each contain more data, exacerbating these issues.

2.4.2 Hadoop and Sleuthkit integration

One proposed solution centered upon utilization of Hadoop- a collection of open source util-
ities commonly used in ’big data’ processing. Overall, Hadoop is widely adopted and highly
regarded for its MapReduce capabilities. In 2012, Stewart attempted to fit digital forensics on
top of a Hadoop model [91]. Unfortunately, he published no throughput numbers and, fur-
thermore, the project appears abandoned. However, older research [81] indicates that the high
latency introduced by disk access during the two-phase map-reduce processing would make
a solution built on Hadoop unsuitable for forensics at scale.

2.4.3 Pig, Hadoop, and Sawzall

Apache Pig [96] is a dataflow language designed to describe the incremental steps in the pro-
cessing of large data sets. Its primary users are data researchers and programmers, so it is
designed to support interactive exploration of "big data." The actual computation is translated
into (Java) MapReduce jobs that are execute on a Hadoop [95] cluster. The inspiration for pig
comes from Sawzall–a similar language [70] developed at Google to serve as an abstraction
layer over the company’s MapReduce infrastructure. While these projects are not specific to DF,
they are directly relatable as they are built specifically for large-scale data processing.

2.4.4 Distributed Environment for Large-scale Investigations DELV- Distributed
Forensics

Richard and Roussev have proposed a distributed framework, Distributed Environment for
Large-scale Investigations (DELV), built specifically to address concerns in digital forensics
[74]. Specifically, they describe an experimental architecture consisting of a "coordinator" and
"slaves"; the former distributes individual work items to the latter based on desired operations
specified by an analyst. Results are then saved in a collective data store. This architecture
emphasizes significant amounts of RAM, as analysis and reporting executes on cached data.
Other features of this style architecture includes support for multi-user tools, support for an
interactive user-interface during processing, and support for hardware expansion.

Conversely, Ayers [3] has described a system to minimize reliance on RAM. This directly
competing evolution has many of the same earmarks – such as distributed workers, a coordina-
tor, and cluster deployment – but argues that an investigation cannot assume large amounts of
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available memory (because of the size of the investigation) to store processing data; therefore,
"the observed improvement of 18–89 times [of FTK in DELV] is unlikely to be realized in the
general case where local or centralized disks would be required for evidence storage." How-
ever, the authors have overlooked the eventual freeing of resources and the ability to store
evidence in SSDs or other fast media, which, even with redundancy (RAID), could keep up
with total DELV throughput. In short, it is safe to use large amounts of memory for distributed
forensics.

2.4.5 GRR - Distributed Incident Response

The Google Rapid Response Framework (GRR) was first introduced in 2011 by Cohen et al.
[20] and has been studied in depth by others [14]. It is an open source, agent-based forensics
tool aimed at providing live system data across multiple platforms. GRR’s architecture consists
of a one-to-many relationship between a server and client computers running agents. When an
investigator wishes to execute a forensic task, he initiates a flow, which can be distributed to
many workers. This framework provides many valuable features but is not readily interoper-
able with other security tools. We discuss this problem, as well as provide an in-depth look at
GRR, in Section 4.

2.4.6 Hansken project

We end our discussion on scalable DF with somewhat unique and relatively recent scaling
research – the Hansken project Netherlands Forensic Institute [101] [102]. Hansken, an evolution
of a prior distributed system, is advertised as "Digital Forensics as a Service". A large focus
of its development centers on the investigative process. That is, how digital analysts interact
with detectives. For example, the authors discuss how to process raw data to answer unique,
novel, or ambiguous questions from case detectives, not digital analysts (ex: "search for the
name Pete", "get all information related to drugs", etc).

By focusing on the investigative process rather than blindly seeking throughput of data
through tools, Hansken can significantly speed up investigations. Investigators can, for exam-
ple, use a web portal to view digital material instantaneously. Overall, the publication cites
that its system facilitated hundreds of criminal investigations supporting over 1,000 detectives
over the course of 3 years.

“Next-generation” digital investigation systems should, likewise, keep the entire inves-
tigative process in mind during research and development. This holistic approach requires a
collective, scientific model.

2.5 Summary

We conducted an in-depth review of the field of DF methodologies and models, including the
need for and implementation of scalable and custom language solutions. We can state with
confidence that although tangential attempts have been made to cure symptoms with models
and related implementations, no suitable DSL exists for DF. Furthermore, the benefits of this
approach are far-reaching.

In Chapter 3, we thoroughly discuss the implications of such a language, as well as the
potential impact of an integrated distributed architecture.
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Chapter 3

Proposed Methodology

3.1 Introduction

As previously stated, the purpose of this research is to establish a scientific mechanism that
addresses the current problems of reproducibility, verifiability, interoperability, and scalability
of tools and processes across the field of DF. This mechanism should be a layer in the forensic
architecture — it is an intermediary between the forensic query and the forensic tool. For further
context, our research claims are listed again below:

1. Provide digital forensic investigators the means to specify a digital forensics computation
that is both practical and formal;

2. Provide digital forensic investigators a means for reproducing digital forensic investiga-
tions;

3. Provide an abstract layer of communication suitable for use between forensic analysts,
law enforcement, and tool developers;

4. Perform a mechanism by which digital forensic tools can be benchmarked;

5. Provide external entities (e.g., NIST) a means to validate digital forensics tools;

6. Provide educators a tool-agnostic medium to teach digital forensics processes;

7. Provide a framework enabling interoperability between digital forensic tools;

8. Create a flexible, scalable, and container-based runtime to demonstrate effective usage of
Nugget queries.

In this chapter, we outline our research methodologies. Briefly, we propose creating a DSL
for DF. We integrate this language with a distributed computing architecture, intending to
nullify present and future issues related to data volume growth and data acquisition speed.
Finally, we integrate our solution into several contemporary security tools and provide a mech-
anism for simplifying their integration.

We organize the remainder of this chapter as follows. First, we present the background of
DSLs, including our requirements for a forensics-specific DSL. Then, we discuss the forensics-
specific distributed computing architecture, whose ultimate goal is to be able to “throw more
hardware” at the processing. Next, we discuss the metrics we must capture for solution vali-
dation, and we close the chapter with a conclusion and set the stage for 4, Results.
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3.2 Develop a language

3.2.1 What is a DSL?

A Domain Specific Language (DSL) is a computer programming language of limited expressiveness
focused on a particular domain [29]. The following are the critical components of this definition:

1. Formality. A DSL is a formal language, with established grammar and semantics, that
translates into executable code.

2. Fluency. A good DSL allows its users–practitioners within the domain–to express the
computation in a manner that is “fluent”; i.e., it feels natural and appropriate to a human
expert.

3. Limited expressiveness. A DSL is not designed to replace a general-purpose programming
language; its purpose is to simplify development with respect to its domain.

4. Ease of use. A DSL is focused entirely on its target domain and makes specifying computa-
tions in the domain substantially easier than a corresponding solution in a general-purpose
language. That is, the DSL trades generality for simplicity, which makes it valuable to
the user.

In summary, a DSL provides domain experts with the constructs necessary to describe a prob-
lem or solution succinctly and efficiently, and it abstracts away all (or most) references to the
actual implementation. End users can accomplish significant, complex tasks with a small num-
ber of keywords and phrases. This common vocabulary makes the language feel more natural
to end users, resulting in a lower learning curve [37].

Think SQL Before the release of Structured Query Language (SQL), the access of informa-
tion held within databases was irregular and unconventional. In 1970, Codd of IBM research
defined the relational data model and went on to lay the foundation for the SQL with low level
relational calculus constructs ([19], [18]). "SEQUEL" came about in 1974 [17] and it evolved into
the pervasive data-access language used across the world today.

Analysis of SQL has modeled the design constraints necessary for a successful DSL. Cham-
berlin, SQL’s original creator, states the following [16]:

"The principal goals that influenced the design of SQL were as follows:

1. SQL is a high-level, non-procedural language intended for processing by an
optimizing compiler. It is designed to be equivalent in expressive power to
the relational query languages originally proposed by Codd.

2. SQL is intended to be accessible to users without formal training in mathe-
matics or computer programming. It’s design is to consume keyboard-based
input. Therefore it is framed in familiar English keywords and avoids special-
ized mathematical concepts or symbols.

3. SQL attempts to unify data query and update with database administration
tasks such as creating and modifying tables and views, controlling access to
data, and defining constraints to protect database integrity. In pre-relational
database systems, these tasks were usually performed by specialized database
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administrators and required shutting down and re-configuring the database.
By building administrative functions into the query language, SQL helps to
eliminate the database administrator as a choke point in application develop-
ment.

4. SQL is designed for use in both decision support and online transaction pro-
cessing environments. The former environment requires the processing of
complex queries, usually executed infrequently but accessing large amounts
of data. The latter environment requires high-performance execution of pa-
rameterized transactions, repeated frequently but accessing (and often updat-
ing) small amounts of data. Both end-user interfaces and application pro-
gramming interfaces are necessary to support this spectrum of usage."

Clearly, SQL exemplifies the key tenets of DSL design.

SQL is insufficient for DF. One ostensible solution is to bend the current tech-
nologies to the needs of the digital forensics community. Unfortunately, this will
not work for the following reasons:

1. Data Retrieval Forensic investigations begin with the critical data retrieval
and recovery phase. This includes processes such as parsing an NTFS disk
image. There is no clear way to implement such a process within the design
constraints of SQL.

2. Standardized data model To use SQL effectively as a forensics language, we
would need to define a specific, standard data model — essentially, a set of
tables — to represent all cases. Considering the significant effort and minimal
success of less ambitious standardization efforts (and clear disincentives for
vendors), we see no realistic way in which this would work. Furthermore,
advanced SQL queries (involving multiple table joins) are advanced queries
and thereby defeat the primary purpose of a forensic language.

3. Graph Relationships Querying relationships and dependencies between arti-
facts will be a primary use case of this language. This leads to non-intuitive,
multi-table queries, and it results in poor performance at scale. “Big data”
companies, such as Google, Facebook, and Twitter, maintain performance by
matching collection types to different types of data stores. A similar approach
for DF would require abstracting away internal representations of data — the
exact opposite of what a SQL-centric solution would do.

Internal vs. external

Domain-specific languages fit within one of two broad categories: internal or exter-
nal.

Internal languages are an extension of their host language; that is, they add con-
structs to an existing general-purpose language and are supported by the host lan-
guage toolset. In particular, all input is parsed with the host language’s constructs
and results in the generation of code in the host languages. One popular example
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of an internal language is Rails, a web development DSL whose host language is
Ruby.

Internal language advantages include the ability for end-users to call upon the full
power of the host language. Modern languages, such as Scala [64], have advanced
built-in support for developing internal DSL. The major disadvantages are that a)
valid syntax for the DSL must conform to the syntax and semantics of its host lan-
guage, and b) integration with tools written in other languages is not readily avail-
able.

External languages, on the other hand, are completely independent insofar as lex-
ical analysis, parsing, compilation, and code generation are concerned. The ad-
vantage here is that developers are free to create (and extend) their syntax and
semantics; however, the disadvantage is the loss of direct access (from the DSL) to
the host language’s features.

Overall, internal DSLs, which are faster to develop, are appropriate where the scope
is expected to be limited, and tight integration with the host language is a require-
ment. In contrast, external DSLs are needed for more general solutions, such as for
host-language independence.

One illustration of the trade-off is the development of Puppet, which initially had a
Ruby DSL, and was later abandoned in favor of an external solution [72].

For a DF DSL. For our purpose, an external DSL is preferable to an internal one.
Our target user is someone who understands the process, but not necessarily all
background technology (for example, law enforcement officers who have never
been exposed to programming). Therefore we must make every effort to introduce
the DSL as natural expressions, and for natural syntax and semantics, the language
must be free of host language constraints.

3.2.2 Developing a DSL now

Viewed in a narrow light, the development of a DSL is costly. It requires significant
knowledge of both programming techniques and the particular domain in ques-
tion. Furthermore, when a DSL reaches a large user base, there should be an expec-
tation for upkeep costs as developers fix bugs, training materials are produced, and
new features are introduced [58]. Finally, performance could be a concern as it is an-
other layer of computing. In this section, we briefly justify the need for developing
a comprehensive DSL for DF.

Bridge the semantic gap. A well-designed and efficiently implemented DSL can
dramatically expand the number of users who can autonomously solve problems
within their domain of expertise, especially problems that previously presented
significant technical hurdles. This major usability gain is possible because DSLs
are concise [37], which reduces the semantic distance between the program and the
problem. In other words, the language allows users to employ abstractions using
natural terms and phrases.
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The reduction of the semantic gap is a pressing concern in DF as investigators work
with increasingly complex targets and cannot be expected to understand in depth
the technical implementation of the tools utilized. While they still need to under-
stand the methods conceptually and be familiar with the reliability and error char-
acteristics of the methodology, it is highly unrealistic to expect the average forensic
analyst to be an expert researcher and code developer.

Improve reliability and reproducibility. As already discussed, two broad cate-
gories of (digital) forensic tools have evolved: first, (mostly proprietary) integrated
forensic environments that provide a point-and-click interface and second, a large
collection of (mostly open-source) specialized tools that address specific problems.
Each category presents different problems: integrated tools provide few, if any,
means to log and verify individual steps in complex scenarios, thereby making it
impractical to test and validate them; specialized tools provide better visibility but
require custom integration, which is costly from an operational perspective and
leads to the development of bespoke environments that are difficult to test in a
standardized, automated manner.

A widely supported DSL would allow for a unified means to specify, log, and sys-
tematically test both individual forensic functions and integrated implementations.
It also helps to address the traditional tension between proprietary implementa-
tions and the needs both to test and to independently establish the validity of tools
via third-party testing. In this scenario, a vendor only needs to support a standard
means of specifying the query; a simple, standard format of returning the results;
and a standardized log format. A community standards body, such as the National
Institute for Science and Technology (NIST), could perform an independent test,
which would go a long way towards alleviating reliability concerns.

Utilize mature DSL development tools. The current time and conditions are ideal
for developing a new DSL; after four decades of evolution, language development
tools are mature and reliable, and modern integrated development environments
(IDEs) provide real-time help and feedback to users (based on the formal language
specification). The latter considerably reduces the length and steepness of the learn-
ing curve.

3.2.3 Necessary attributes of a Forensic DSL

After consideration of the related work and literature review, we consider the fol-
lowing to be key and necessary criteria for an effective and adoptable DF DSL:

1. Formal - As with any DSL, statements must resolve into explicit computations.

2. Natural - Again, as with any DSL, statements must be natural to the subject
matter expert who is expected to use the DSL.

3. Declarative syntax - Declarative languages, as opposed to procedural ones, al-
low the user to specify what needs to be done, as opposed to how to do it. This
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allows the analyst to emphasize the forensic processes while abstracting away
technical details of execution.

4. Delayed execution - Until results are required for additional computation or
presentation, or until the analyst specifies immediate execution, the runtime
should not execute computations. This allows analysts to build and fix com-
plicated queries prior to (possibly) lengthy execution times.

5. Tool agnostic - Tools should not be baked into the DSL code; rather, they should
be ’plug and play,’ whereby tools of similar function can be substituted for
one another. This allows for a clean division of code while simultaneously
providing confidence in the results of competing tools if their results match.

6. Extensible - Given the nature of the DF community, wherein hundreds of in-
dividual tools exist, the language must be easily extensible. That is, the DF
community must be able to integrate their favorite tools into the language. We
envision a build script which seamlessly integrates new functionality into the
language, in addition to a public-driven repository encapsulating additional
functionality in the form of optional plugins.

7. Support big data/AI - We can expect a growing fraction of the evidence to be
sourced from online services rather than physical devices [77, Ch. 6]. As most
tools are tied to the filesystem API [78], a DSL can provide a seamless transi-
tion to the new network-based acquisition processes. Volume growth will also
necessitate the utilization of machine learning or AI methods to raise the level
of abstraction of the analysis. For example, we can expect the use of computer
vision systems to index and analyze the content of photo and video artifacts.
A DSL can seamlessly integrate such advances by incrementally expanding
the language.

8. Streamline education - Just as SQL allows relational database-related education
and training courses to provide meaningful skills without understanding the
database engine implementation, we expect a language such as this one to pro-
vide the medium for training competent investigators without overwhelming
them with technical details. Over time, we would expect that basic inves-
tigative functions that are entirely sufficient for educational purposes to be
available in an open-source format, whereas more advanced processing would
likely require more specialized training.

In other words, Nugget seeks to do for forensic computing what SQL did for rela-
tional databases: establish a standard query interface that is complete and intuitive
enough for domain experts to understand readily, while also providing a formal
specification of the computation that needs to be carried out. Structured Query
Language allowed for numerous competing implementations to co-exist, thereby
allowing for fast development, optimized execution, and autonomous GUI devel-
opment.
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3.2.4 Describing a language

The formal description of programming languages has been a focused topic of com-
puter science since at least the late 1950s. In 1959, John Backus first proposed the
syntax describing a programming language called IAL (now known as ALGOL58)
[4]. The metalanguage 1 he used to describe IAL eventually became known as
Bakus-Naur Form, or BNF. Over time, helpful operators were added, resulting in
Extended BNF, or EBNF.

EBNF. EBNF is the standard means of describing the grammar of formal lan-
guages [103, 84]. The essential concepts are those of terminal symbols, such as the
literal numerals “1”, “2”, and “3”, and non-terminal production rules, or sequences.
Production rules, often nested or chained together, govern the valid sequences of
terminal symbols and thus the legal syntax of a language.

EBNF example. As an example, consider Listing 3.2.4. This EBNF description of
a language represents a parser for a simple calculator, supporting just addition and
subtraction. The "root" rule is an Operation, which consists of a number, followed
by at least one combination of Symbols and Numbers (as with regex, one or more
is denoted by the ’+’). A Symbol is then defined as the addition or subtraction
(denoted by the literal ’+’, an ’or’ ’|’, and a subtraction literal ’-’). A Number is
defined as one or more numerical digits, optionally followed by a decimal point
and another set of one or more numerical digits.

1 Operation: Number (Symbol Number)+;
2 Symbol: "+" | "-";
3 Number: (’0’..’9’)+ (’.’ (’0’..’9’)+)?;

Thus, valid inputs would include: 3 + 2 and 8.5-12.99, but the parser would fail on
input such as .4 + 3, and 8 * 4.

Clearly, EBNF is a powerful description language and can describe complex lan-
guages with a rather uncomplicated set of rules.

Regular expressions are insufficient. One ostensible solution for describing a
language is to utilize regular expression matching. While standard programming
techniques rely on regular expressions for a variety of tasks, they are particularly
ill-suited for any robust application, such as parsing DSL input. The most obvi-
ous reason is the lack of recursion support — any recursive levels would need to
be manually added to the full expression. More importantly, however, is that a
regular-expression based solution is not scalable. Any grammar with more than a
few keywords would quickly become too fragile and impossible to maintain.

1metalanguage — a specialized form of language or set of symbols used when discussing or describing the
structure of a language
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3.3 Develop a Distributed Architecture

As evident from the literature review, there is no shortage of attempts to create
a distributed architecture specifically for DF. Solutions exist that attempt to bend
standard big-data solutions (Hadoop) on top of DF [91]; however, as discussed,
they are ineffective because of disk latency [81]. Additional solutions also exist that
require difficult setup, such as the Hansken Project [101], and others lack interoper-
ability with today’s tools, are closed source, or are vendor products.

We envision an open-source system that utilizes lightweight containers to handle
individual tooling and task coordination, as is becoming common with cloud-based
architectures.

3.3.1 Containers

Containers are virtualized environments that encapsulate the necessary capability
to execute defined groups of processes. Given their lightweight nature and ease of
deployment, they are quickly becoming the preferred method for building large-
scale data processing systems. Despite their recent gain in popularity, they are not
a new concept.

Origins. The original idea of encapsulation of runtimes can be traced to the chroot
command, introduced in 4.2BSD [46]2. FreeBSD4.0 then developed it into the jail
command, which provides more elaborate containment mechanisms. “Jails are typ-
ically set up using one of two philosophies: either to constrain a specific application
(possibly running with privilege), or to create a virtual system image running a va-
riety of daemons and services” [46], and they remain the two basic usage scenarios
to this day.

Linux quickly followed suit. Menage [56] introduced the term “generic process
containers”, the full vision of which took several years to implement. The initial
steps of the implementation became known as control groups (cgroups) as part of
Linux 2.6.24 [22]. The last major components needed were user namespaces, which
allow per-process namespaces; they provide basic means to limit the visibility (and
access) to resources, such as mountpoints, PID numbers, and network stack state.
User namespaces became part of Linux 3.8 [52] (2013) and, combined with user-
land tooling developed by the LXC [53] project, provided the first out-of-the-box
container deployment and management facilities.

As a direct result of the kernel mechanisms implemented to support LXC, multiple
userspace tools have been developed and are quickly becoming popular. Of these,

2As an aside, Clifford Stoll was using 4.2BSD when he performed what is widely considered one of the first
digital forensics investigations [92]
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Docker 3 [57] is the most popular; however, several other projects – Google’s Kuber-
netes 4 [7], rkt 5 [75], and LXD 6 [55] – also have strong industry backing. This has
lead to a quick maturation of the technology and an active effort, the Open Container
Initiative 7, to standardize both the image format and the runtime interface.These
standards guarantee interoperability and set up a best-of-breed competition among
the tools.

In summary, the idea of encapsulated runtimes is not a new concept. However,
recent maturation of the concept has caused a rapid rise in their adoption as con-
tainers. Container instances encapsulate units of schedulable work, complete with
all necessary resources – code, data, and configuration – to accomplish a specified
task. In short, they offer the ideal solution for deploying disjoint, disparate digital
forensic tools.

The remaining task, then, is to coordinate the multitude of containers we plan to
deploy.

Container orchestration Recall the intention to deploy these containers across
several servers. In order to coordinate disparate tools (containers) on distributed
hardware, we turn to container orchestration. Before exploring orchestration, how-
ever, discussion on coordination is warranted – the question of what needs to be
coordinated.

Deploying a distributed architecture incurs several challenges concerning coordi-
nation between nodes. Here, we summarize the most relevant:

1. Service discovery - When functions are deployed to separate machines in a com-
plicated distributed architecture, a new worker node has no natural way of
finding the networked assets it needs.

2. Load balancing - In a distributed architecture, individual nodes can quickly
(and unexpectedly) become overloaded.

3. Secrets and configuration - When new nodes have no a priori knowledge of the
running environment, sharing (encryption) secrets or other sensitive configu-
rations becomes challenging.

4. Health checks and restarting - In a distributed architecture, nodes are constantly
failing/timing out; a plan is necessary to handle restarting (or diagnosing)
troubled nodes.

5. Worker updates - With the large uptime expected in production-level archi-
tectures, taking nodes offline for updates or maintenance must be a last re-
sort and, some mechanism should be in place to quickly and seamlessly roll
changes into production.

3docker.com
4kubernetes.io
5coreos.com/rkt
6linuxcontainers.org/lxd
7opencontainers.org

3232

https://www.docker.com/
https://kubernetes.io
https://coreos.com/rkt
https://linuxcontainers.org/lxd/
https://www.opencontainers.org


Competing products, such as Docker and Kubernetes, handle these challenges in
similar ways: deployment of host-level background services. The host-level service
(the orchestration) is responsible for some initial networking and service discovery,
worker configuration, and restarting containers that have died. Load balancing
is a relatively easy challenge to handle in its most basic form – the host service
utilizes a round-robin or least-recent lookup over DNS; however, more effective
(and complicated) schemes exist. Overall, coordination problems are difficult but
surmountable.

3.4 Extend the Language to Integrate Multiple Third-party
Tools

The "core," or delivered, functionality of the solution should be capable of exe-
cuting standard forensic tools, such as The Sleuth Kit or Volatility. However, as
mentioned, a primary design consideration of the solution should be third-party
tool interoperability. We thus integrate and perform forensic operations utilizing
disjoint DF tools whose individual design parameters are ostensibly incompatible
with one another.

3.4.1 Application Programming Interfaces (APIs) and Interoperability

Most professional or production-level tools include an Application Program In-
terface (API), which allows external users (or programs) to request data or issue
commands to the tool systematically. In general, APIs are prevalent across tools;
however, they are all distinct.

The primary concern with distinct and uncoordinated APIs is their lack of com-
patibility. That is, just because two tools expose data query interfaces does not
imply that the tools can be used together. In fact, nearly the only common factor
between different tools’ APIs is the use of a variation of an HTTP request mech-
anism. Indeed, the details of the HTTP implementation vary widely. As a result
of the variations, multi-tool interoperability is impossible without establishing a
translation mechanism.

As stated in Chapter 1, interoperability — the ability for tools to seamlessly work
together — is a key feature that is currently missing in DF and indeed, across the
greater security community. A common language would solve this issue by al-
lowing users to define a common translation mechanism between tool APIs. The
common translator, or “driver,” could be published to the broader open-source DF
community, allowing for an entire ecosystem to be built, which would ultimately
result in a universal framework for security-related tools.

Proving it out. To prove the usefulness of tool interoperability, our solution should
build API drivers for multiple tools. The solution should specifically demonstrate
its capabilities in a scenario where the product of one tool is digested as data as
consumption for another tool.
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FIGURE 3.1: Integrated Architecture
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3.5 Putting it all together

Now that we have an understanding of the various components of Nugget we can
examine its integrated architecture, depicted in Figure 3.1.

This high level abstraction shows how the different parts of our research fit to-
gether. On the left side, Nugget queries are parsed. Their execution occurs in the
Nugget runtime, which handles data ingestion as well as farming out tasks to an
arbitrarily scalable number of workers, denoted by the worker pool. Results are
fed back to the runtime, where it stores information into a scalable database.

A key feature of this architecture is its "plug and play" aspect. As long as the data
interfaces conform to Nugget runtime’s API, each component can be replaced with
relative ease. It’s also worth noting that thanks to the container-based design, ad-
ditional types of DF tools can be easily added to the worker pool without the need
for any substantial or architectural change.

More descriptive architectures for both Nugget and SCARF are included in Chapter
4.

3.6 Data Collection and Verification

All analyses shall be executed using the widely-adopted, standardized forensics
corpora M57 [32]. If necessary, follow-on analysis can be executed with other
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datasets, with a preference towards publicly accessible and popular forensic tar-
gets such as those given in [39].

About the forensic corpora. A brief explanation of the target datasets is war-
ranted. The standard datasets – corpora – were developed in 2009 and, based on
the high number of citations, have been heavily utilized for forensic research. Al-
though they are somewhat older, they provide a well-established standard for new
research to address their tools to. The corpora consist of several types of data, in-
cluding network captures, memory (RAM) dumps, and HDD images. The data is
organized into several different scenarios, such as the M57-Patents scenario, which
simulates a law enforcement capture of various computing devices belonging to a
small business suspected of illicit activities. In short, the corpora provide a peer-
reviewed and highly sited dataset on which to test our research.

3.6.1 Use Cases

To demonstrate the capabilities of this system, we developed several use cases to
offer a realistic context and provide a backdrop to support quantitative analysis.
These use cases represent common evaluations of targeted forensic data.

Use case 1 - HDD evaluation for contraband hashes Arguably the most common
forensic procedure involves extracting files from a volume and comparing their
hashes to a list of known “contraband” hashes. For example, a suspected child
abuser’s computer will have its image files extracted, hashed, and compared to a
list of hashes which are known to represent images depicting child pornography.

For our purposes, we will utilize a standard forensics scenario to simulate this case
– the M57-Patents scenario[32]. This scenario represents law enforcement’s inves-
tigation into a fictional small business after allegations its employees are storing
illegal images on their work computers 8.

For this use case, the developed research will action the following:

1. Load the dataset into a standardized form,

2. Query this dataset,

3. Filter the results for image files,

4. Hash the image files,

5. Load a list of given hashes for ’illicit’ images,

6. Compare and report the list of hashes from the dataset to the given ones

Use Case 2 - memory forensics for suspicious processes. To demonstrate the ca-
pabilities of incident response, the research must support memory forensics. Again,

8For the exercise, authors of this scenario have used pictures of cats to represent illicit imagery.
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the M57-Patents scenario is ideal to demonstrate this capability. The goal of the in-
vestigator is to find evidence of an active keylogger on a target image.

To this end, the developed research will carry out the following:

1. Load the RAM into a form that can be queried;

2. Query this dataset for running processes;

3. Provide a filter mechanism for the analyst;

4. Report on the filtered processes to the analyst.

Use case 3 - network forensics for suspicious traffic Another major aspect of the
investigation is the analysis of network traffic. The developed system will be able
to integrate network analysis tools. To test this, the M57-Patents scenario again
provides a suitable target. In this case, the investigator must determine whether
any users of the network were attempting to exfiltrate proprietary company infor-
mation to outside entities.

To demonstrate the capability to handle network analysis, the developed tool should
perform the following

1. Load the network data into an internal format,

2. Provide a runtime filter mechanism for the analyst (dynamic, not static filters),

3. Report on the filtered network traffic to the analyst

3.7 Conclusion

In summary, we discussed potential methods to address the outlined problems pre-
sented in our introductory chapter and verified in our literature review in Chapter
2.

We theorized on design solutions for a scalable and tool-independent distributed
computing solution to handle arbitrarily large forensic datasets. This includes the
use of containers to easily integrate both existing and future toolsets.

We outlined high-level design requirements for a DF language. This language
should be clear and natural to the forensic analyst, and individual statements should
resolve to a specific computation. Furthermore, the runtime must be able to sup-
port compound statements that combine the results from one computation and feed
them into another. An additional key feature should be background tasking and
delayed execution – the analyst should not have to sit idle while computations are
executing.

Finally, we discussed verification methods for large datasets and emphasize pub-
lishing results for executing third-party tools against them using a container-based
solution.

In the next chapter, we discuss the development of these solutions.
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Chapter 4

Results

In this chapter, we discuss the design and implementation of two systems built
to address the concerns raised in Chapters 1 and 2, and whose requirements we
outlined in Chapter 3. The goal is to build a human-readable language that is si-
multaneously capable of describing specific forensic computations. This requires a
scalable, container-based distributed forensics framework as its runtime, which we
detail after describing our language, named Nugget.

4.1 Nugget - A Digital Forensics Language

In Chapter 2, we presented a number of attempted solutions concerning verifiable
or repeatable forensic tasks. Our language — named Nugget — aims to be the
midpoint between best practices and purely mathematical models. Next, we define
a formal model that works at the same level of abstraction as the analyst (similar
to best practices), but that leads to an unambiguous computational description. A
layout of competing conceptual models is illustrated in Figure 4.1.

More specifically, our proposed features demand the following:

1. They must contain formality;

2. They must utilize declarative syntax;

3. They must be natural to the user;

4. They must have delayed execution;

5. They must be tool agnostic;

6. They must be extensible;

7. They must support big data/AI;

8. They must support tool validation;

9. They must streamline DF education.

In this section, we discuss the implementation of these features and the reasons for
certain design choices, and we thoroughly explain the user experience. However,
first consider the following set of Nugget queries, which provide context for the
upcoming discussions (Listing 4.1):
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FIGURE 4.1: Comparison of conceptual models in digital forensics

1 files = file:target.raw | extract as ntfs [63 ,512]
2 big_files = files | filter size > 1M
3 hashes = big_files.content | sha1, md5
4 big_files = big_files | drop ctime | add hashes
5 print big_files

LISTING 4.1: NTFS file extraction, filtering (by size), and hashing

Even at first sight, most forensic professionals would readily recognize the above
query as an instance of known-file filtering; in this case, it is applied to all pdf files
extracted from the target.dd source, and created after Jan 1, 2017. The key points
here are as follows:

1. the domain expert did not need to learn a general-purpose programming lan-
guage in order to understand the intent of the query (and he or she could
quickly learn to write similar queries);

2. this is a formal specification that can readily be translated into executable
code;

3. the query only specifies what needs to be done and not how it should be per-
formed; numerous possible implementations exist, including ones that em-
ploy the resource of a compute cluster or a (private) cloud service;

4. the query itself unambiguously documents the forensic process and allows for
automated testing, verification, and reproduction of the results.

In other words, Nugget seeks to do for forensic computing what SQL did for rela-
tional databases: establish a standard query interface that is complete and intuitive
enough for domain experts to understand readily, while also providing a formal
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FIGURE 4.2: Layered forensic runtime architecture
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specification of the computation that needs to be carried out. SQL allowed for
numerous competing implementations to co-exist, which allowed for fast develop-
ment, optimized execution, and autonomous GUI development.

Next, we turn to an in-depth description of Nugget’s implementation.

4.1.1 Architecture - where Nugget fits

Nugget sits as an abstraction layer between the user (which could include program-
matic users such as other programs and scripts) and the tool implementation. To
handle tools, we need a resource manager such as SCARF. The DSL presents a
unified means to execute forensic computations (using the available set of tools),
organize them in processing pipelines, and store/return the results as needed. See
Figure 4.2

The language runtime maps the abstract representations of an operation, such as
the hashing of a file, to an actual command invoked on the selected target. This is
driven by user specifications, and allows the incremental extension of Nugget with
new capabilities; in fact, the entire current language implementation is specification
driven. The resource manager is tasked with scheduling the computations on the
available resources, ensuring their successful execution, logging all operations per-
formed, combining the results (if executed on a cluster) and returning the results of
the computation.

This architecture disentangles the concerns of a) specifying the computation, b)
mapping it to the available tools, and c) scheduling it on the available hardware re-
sources. This layered approach is conceptually different from the two options cur-
rently available to analysts: 1) a bundled (black) box of tools with a point-and-click
interface (primarily, commercial vendors), or 2) a bag of tools and components from
which the analyst must craft (i.e., code) together the desired solution (open source
tools). None of these offers a solution that adequately addresses user needs and
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cost concerns, and none support standardized independent testing and provable
reproducibility.

One of the principal problems in DF is the lack of a means of clarity for users
(forensic analysts and lab managers) to communicate functional and performance
requirements to vendors. The main objectives of Nugget are a) to solve this prob-
lem by allowing analysts to specify queries they can reason about directly and b)
to demand responsive solutions; it allows users to compare alternatives directly,
and it creates best-of-breed competition among vendors. Conversely, a formal in-
terface allows developers to have specific targets and to understand the needs of
their customers better.

4.1.2 Implementation Details

In this section, we provide the reader with technical details of the implementation
of Nugget. We include several relevant code snippets and examples; however, refer
to the appendix for longer code snippets. The entire codebase is hosted on the
author’s public code repository 1. Finally, we utilize our section on use cases (4.1.5)
as an opportunity to explain further technical details.

Implementation language choice

Our implementation of Nugget is written in Go version 1.9 [97]2 – Google’s static,
strongly typed, structural programming language. Other implementation languages
were considered, such as Java and Scala; however, Go was selected for three main
reasons. First, Go is beginner-friendly and easy to use. While not a primary con-
cern, easy extensibility is a desired trait of Nugget, and a popular, forgiving, and
well-documented language lowers the learning curve. Second, Go is currently one
of the most popular programming languages (with rapidly gaining popularity)[98],
and as a direct corollary has gained widespread support by third-party tools – such
as ANother Tool for Language Recognition (ANTLR) (discussed in more detail be-
low). Finally, Go’s ability to generate binaries for numerous operating systems and
architectures (e.g., Windows, Unix, ARM, and i386) is a desirable quality, especially
when considering the future support for digital forensic triage on live, running sys-
tems.

Nugget concepts

The basic data unit of Nugget are collections of objects in the style of JSON; each
object consists of a series of key-value pairs. Values are of several familiar primitive
types, such as 8-, 16-, 32-, and 64-bit integers, strings, and dates, as well as several
specialized data types, such as binary, hexadecimal, or base64 strings and standard
kilo, mega, giga... notation for data units.

1https://github.com/cdstelly/nugget
2https://golang.org
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Except for output statements, each line in the code is a variable assignment. The
right-hand side starts with a data source, which is either a named external source
(such as a disk image) or a variable name (a reference to an existing collection).
The pipe symbol, “|”, serves to connect the multiple operations in a single flow
statement concisely.

There are four types of operators that are used to describe the computation: extrac-
tors, filters, transformers, and serializers. We use the example code in Listing 4.1 to
concisely explain their intended use.

Extractors. The main function of extractors is to shield the rest of the system from
the particulars of the data format and method of ingest of the source. Extractors
are operations that take a data source, such as a disk or RAM image, as input and
produce collections of data items, such as files, processes, and packets, as output.
In other words, extractors parse raw data input and produce entities with known
(to the system) logical structure. In this terminology, data carvers are considered
extractors, and so are operations that obtain the data via an API to a live system
(such as a running kernel or a cloud service). Reading from a supported forensic
container also falls under the category of extraction.

In our example, we used an NTFS extractor (from The Sleuth Kit), which parses a
raw disk partition and extracts the file system metadata. In the specific case, we
supplied two additional parameters, 63 and 512, which provide the starting block
and block size, respectively. Each object is created with a set of known attributes,
such as name, size, and creation time (ctime). One special attribute, content, refer-
ences the data content of the file. To avoid unnecessary I/O operations, the content
is retrieved only when explicitly required.

Filters. Filters are data reduction/expansion operations that manipulate the result
set by means of removing (filtering out) objects, and adding/dropping of object at-
tributes. Line 2 of the example query filters out all files 1MB in size and smaller (the
condition specifies which objects should be kept in the result; the keyword “filter”
is optional). Line 6 instructs the runtime to remove the ctime attribute (mostly for
illustrative purposes) and to add two more attributes, sha1 and md5 containing the
eponymous hashes of the content.

Transformers. Transformers are functions that produce output, such as a hash value,
for each object in the input collection. On line 3, two values (a tuple) is produced
based on the content of each file in the input set.

Serializers. Serializers are functions that produce an external representation for a
collection; for example, print yields a textual representation suitable for shell envi-
ronments. Furthermore, different versions of save can produce json or xml output
suitable for storage. Subsequent work will integrate specialized evidence contain-
ers such as Advanced Forensics File framework (AFF) [33, 21].
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FIGURE 4.3: A railroad diagram of assignment clauses

Optimization.

Nugget delays execution until resolution of variables is required, exhibiting lazy
evaluation. This allows our analysts to lay out their logical sequence of steps with-
out concern for the optimality of execution time. Later iterations of the implemen-
tation will feature query optimizations, similar to those supported by SQL engines.

Grammar.

The standard means of describing the grammar of formal languages is the Extended
Backus-Naur Form (EBNF) [103, 84], as detailed in Chapter 3.

Nugget employs a context-free grammar described with ANTLR’s version of the
EBNF notation. Each of the statements in our sample code is an assignment state-
ment, which looks as follows in EBNF:

1 assign: (ID ’=’ STRING (’|’ nugget_action)* |
2 ID ’=’ ID (’|’ nugget_action)* );
3
4 ID : [a-zA-Z]+;
5
6 nugget_action:
7 ’filter ’ filter_term (’,’ filter_term)*;
8 ’extract ’ asType |
9 ’sort ’ byField |

10 ’sha1 ’ |
11 ...

The assign rule states that an assignment can occur to an ID from either a literal
string (used for references to local files) or another ID, followed by an action. In
practical terms, IDs are limited to valid variable names. Nugget_action is an optional
and repeatable construct following a required |.

Similarly, the nugget_action rule defines the syntax for various actions (where an
action can be a transformer, a filter, or an extractor). Together, these quickly allow
for complex queries to be described. Figure 4.3 provides a schematic of the above
rules.

It is impractical to attempt to explain every Nugget clause exhaustively; however,
it is essential to note that we define valid actions within the grammar itself. That is,
if we attempt to provide input to Nugget with an undefined action, then a syntax
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error will occur at the parser level. This is a stricter scheme that allows for early error
detection; the alternative is to allow any valid string and leave all syntax checking
handling to the consuming application.

This design decision was made deliberately – embedding valid actions within the
grammar itself makes extending the language more complicated, which runs con-
trary to a core design goal of Nugget. However, the benefit of this approach – error
handling at the parsing level, and syntax checking prior to execution time – are
more valuable from a usability perspective. Furthermore, syntax checking can be
extended to support code completion, a critical feature which has become common
in development environments.

To retain relative ease of extensibility, we provide users with an automated build
tool that allows them to rebuild the language based on simple function specifica-
tions, as illustrated later in our discussion.

Generating language constructs with ANTLR

Nugget relies on ANTLR for lexical analysis, parsing, and building an abstract syn-
tax tree (AST), which is “walked” to execute indicated operations. ANTLR (AN-
other Tool for Language Recognition) [67, 68] is an open-source parser generator. It
takes an input grammar and, during a build step, produces the appropriate lexical
and parser functions necessary to consume legal inputs. It also provides feedback
to the user when erroneous input is encountered. This tool is capable of generat-
ing these functions in the following output languages: C++, C#, Go, Java, Python,
JavaScript, and Swift.

The AST. As with other programming models, the result of the lexing operation
is an AST, which is a useful structure that allows compilers to walk across the tree.
As the tree is walked (from left to right), it recursively descends into children nodes,
executing corresponding functions within the application source code. For exam-
ple, a partial AST representing our sample Nugget code in Listing 4.2 is shown in
Figure 4.4.

1 recentpdfs = "file:target.dd" | extract as ntfs [63 ,512] |
filter ctime > "01/01/2017"

2
3 known = recent_pdfs.content | sha1 | join "file:known.sha1"

LISTING 4.2: Example Nugget query

Nugget grammar

There are at least two aspects to Nugget’s grammar that should be noted. First, that
execution statements, such as extractions, transformers, or serializers are parsed as
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FIGURE 4.4: Sample AST generated by Nugget (partial)

a root group called an “action”. While this leads to rather long groupings of termi-
nals, it simplifies the execution code on the implementation side of the parser. This
is partially how the AST is walked in ANTLR generated constructs, and partially
due to Golang’s lack of generics.

Second, we have included stand-in wildcards denoted by three percent signs (e.g.,
“%%%”). This gives our grammar building helpers a location to insert grammatical
constructs when end-users are extending Nugget.

For Nugget’s full grammar and syntax, refer to its EBNF grammar listed in Ap-
pendix A.1.

4.1.3 Runtime

As stated earlier, one of the primary design goals of Nugget is to provide a common
interface for interaction with a variety of forensic tools. The runtime integration of
forensic tools is based on SCARF, which employs a combination of RPCs and Linux
containers via Docker.

Containers and Docker. Containers provide encapsulation of a process’s runtime
by granting access to the set of resources – CPU cores, RAM allocation, file systems,
and networking – needed to perform a computational task. All containers share a
standard OS kernel; however, by default, they are isolated from one another; it is
also possible to set up sharing of resources where needed (e.g., software installa-
tions). Containers generally have a much smaller resource footprint than full-stack
VMs, and the overhead to start up or shut down a container is comparable to that
of a regular process.

For our proof-of-concept integration, we have built three separate tool-specific con-
tainers: a Sleuth Kit container for hard disk forensics, a tshark container for network
forensics, and a Volatility container for memory forensics. We should emphasize
that it is straightforward to both containerize existing tools and to integrate them
into Nugget. The specific containers we used here can thus be replaced by similar
tools; alternatively, multiple versions of the computation could be run in parallel
(e.g., a Volatility [51] [50] container and a Rekall [94] container) to increase confi-
dence in the results.
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FIGURE 4.5: Example RPC Protocol
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Utilizing containerized tools with RPC. Nugget interacts with these service con-
tainers via RPCs. Upon receipt of an RPC connection, a container executes its par-
ticular set of forensic tools on the given data input. In the current implementation,
this means that Nugget uploads the data to a Docker container via an RPC func-
tion; the container caches the data locally, and subsequent RPCs issued by Nugget
operate on the cache.

A sample protocol diagram is portrayed in Figure 4.5, and represents initial forensic
steps when investigating an NTFS image – namely, retrieving a listing of all files
using TSK’s fls tool. Nugget parses the response, storing resulting data structures in
memory.

Utilization of container-based RPC has at least two significant advantages. First, it
is readily extensible: new commands can be integrated into containers by defining a
function that conforms to a single standard and adding a reference to it in Nugget’s
source code. Second, it allows for scaling of the forensic operation. As shown in the
section detailing SCARF, networked containers can be configured to distribute ex-
pensive forensic tasks, yielding a near-linear increase in throughput-per-container
for many typical forensic tasks.

4.1.4 Extending Nugget

Nugget provides a mechanism that allows for it to be extended itself, thereby pro-
viding a way for developers to easily add extractors, filters, transformers, and seri-
alizers into the base language.

The process for extending Nugget with new functionality is as follows: 1) identify
the type(s) of data that the function will consume and produce, 2) incorporate the
new functionality into a container (using a provided template), and 3) run a pro-
vided build tool “build-nugget.” This build-nugget tool generates and inserts into
the defined Nugget grammar appropriate terminal nodes corresponding to the in-
tended functionality. Furthermore, it generates template code for accessing the
Docker container via an RPC, allowing even novice developers to extend function-
ality.
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The build tool, executed at the user’s discretion, will look in a subdirectory and
parse all json files – one for each transform. A sample is provided in Listing 4.3,
which illustrates how sha1 is added to the grammar.

1 { "name": "sha1",
2 "consumes": ["bytes"],
3 "produces": "strings",
4 "RPCPort": 2000 }

LISTING 4.3: Extending Nugget- sha1.json

4.1.5 Results

As discussed in our Methods chapter, we executed several test use cases to ascertain
the viability of Nugget. We discuss the results below.

Use case 1 - HDD evaluation for contraband hashes

Analysis of hard drive partitions is performed via integration with TSK [8]. To
understand this process, consider the sample Nugget code in Listing 4.4. The goal
is to read a local file (disk image), extract it as an NTFS image, filter files, perform
some hashing, and compare it to a list of known (bad) hashes.

Our first line of code establishes a new variable, namely, files, which references a
local file named jo-1124.raw. We must then instruct Nugget on how to consume this
file – that is, we explicitly state that this is an NTFS partition starting at byte offset
63 with a sector size of 512 bytes. The results of this extraction are the metadata for
all files within the partition, and they are obtained with tools from TSK – specifi-
cally, the RPC command instructs the container to run fls on the uploaded image
file and return the resulting bodyfile, which Nugget then parses.

As previously explained, this will occur via RPC to a TSK container (Figure 4.5). In
this case, the RPC is configured when Nugget parses the syntax "extract as ntype",
where ntype can be one of a variety of supported types. Further parameters for the
RPC are established using other elements of the AST - namely, the byte offset and
sector size parameters.

The next line of code requires no external tool call, but instead establishes a local
set of filters that will be applied to any previous actions (recall that Nugget utilizes
lazy evaluation). In this case, our filter will iterate through the results of the files
variable and yield those files whose name ends with the jpg extension.

Next, the jpghashes variable will iterate through the results of the jpgs variable, and
establish the configuration of an RPC to a SHA1 container due to the sha1 statement.

This is a good opportunity to show how the sha1 statement is integrated into the
language using the provided build tool, build-nugget. Specifically, when build-nugget
runs, it first reads a sha1.json specification file and inserts the specified keyword
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sha1 into the ANTLR grammar. Next, it generates a sha1.go file containing a sha1
action type, which conforms to an interface definition; that is, several specific func-
tions are exposed.

All transforms within Nugget are coded to an interface. Programming to an interface
allows Nugget code to call generic base functions. For example, one of the exposed
functions is GetResults, which executes an RPC against the designated Docker con-
tainer. Because all transformers must expose a GetResults method, Nugget can re-
liably call it on any transform – md5, sha1, TSKGetFile, etc. Notably, this is all
generated for the user based on a few simple lines of JSON. The only task remain-
ing (to the user) is to build a function-specific container which has a forensic tool
installed. Once the container is built, the user runs generated code to expose an
RPC method, specifying how to run the forensic tool on the data provided via RPC
methods.

The penultimate line of code establishes a join operation, whereby a newline de-
limited file is compared to the results of the jpghashes variable. Our final line
presents results to the user with a print operation 4.5. It relies upon the results
of matched, which in turn relies upon the results of jpghashes, etc., causing all de-
pendencies to resolve.

1 files = "file:jo -1124. raw" |
2 extract as ntfs [63 ,512]
3 jpgs = files | filter name ==".* JPG"
4 jpghashes = jpgs.content | sha1
5 matched = jpghashes | join file:kitty.sha1
6 print matched

LISTING 4.4: Join operation to find known files

LISTING 4.5: Nugget NTFS Analysis Results

.../Jo/.../ hr_patent19.JPG 3a42793 ...

.../Jo/.../ hr_patent20.JPG 34ad6b8 ...

.../Jo/.../ hr_patent21.JPG 17329c9...

.../Jo/.../ hr_patent22.JPG 426 fe7d ...

... [80 further results omitted] ...

Use case 2 - memory forensics for suspicious processes

In our implementation, memory analysis is performed by Volatility [51]. To ex-
amine this more closely, we obtain the list of running processes by issuing a pslist
command - a common initial step when inspecting memory.

In the first line of listing 4.6, we establish an extraction operation on a memory
dump. When the AST walk encounters such a node, an internal representation of
the extraction is configured and cached until its evaluation is necessary.
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On line 3 of the input, we indicate that the results of the extraction (memory) should
be given to a pslist operation. Internally, this consists of creating an object to store
information about the operation. In this case, it needs to track that its input will be
the memory variable. As this object represents a transform and is implemented as
an interface, the object exposes a GetResults function. This function is of particular
importance to the lazy evaluation process as subsequent evaluations will rely on
calling it.

When the final line of code is executed, the variable procs is retrieved. Because
the variable has yet to be evaluated (an attribute tracked on every transform and
extraction), procs’ GetResults function is evaluated. In turn, the variable memory is
evaluated, and the GetResults process repeats.

Memory’s GetResults function, having previously been configured as an extraction
operation for memory, is finally executed. In the case of memory extractions, this
involves uploading the specified file to a Docker container with Volatility installed
via RPC. This function returns a simple acknowledgment to its caller - in this case,
from the evaluation of procs. As a pslist operation, it is configured to make an RPC to
the same container. Specifically, the executed command runs a Volatility operation
to return the list of running processes. This list of processes is then consumed by
Nugget into an internal representation, allowing for the print command to access
the subfields name and pid.

1 memory = "file:pat -1203. ram" | extract as memory
2 procs = memory | pslist
3 print procs.name procs.pid

LISTING 4.6: Nugget Memory Analysis

LISTING 4.7: Nugget Memory Analysis Results

System 4
smss.exe 828
csrss.exe 924
winlogon.exe 948
services.exe 992
lsass.exe 1004
svchost.exe 1168
ToolKeylogger.exe 2360
... [24 further results omitted] ...

Use case 3 - network forensics for suspicious traffic

Another critical component of forensic work is investigating network traffic sent
and received by a suspect network. Here, network analysis is accomplished with
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the use of tshark. We will look at an example searching for suspicious HTTP GET
request, referencing the Nugget code in listing 4.8.

The ANLTR-generated parser builds an AST for the input, allowing Nugget to walk
the tree’s nodes and execute corresponding functions along the way. For example,
the ’filter’ phrase in lines 2-3 cause a function named ’EnterFilter’ to be called when
it is encountered during the walk. Within the function, there are exposed methods
to access terminal nodes, such as the string ’tcp and dst port 80 and http’, allowing
Nugget to parse the input and setup an internal representation of the indicated filter.
In this case, the filter is using the Berkeley Packet Filter syntax. It is applied to its
preceding operation (an extraction), when the results of the preceding operation
are required. The result will be a collection with all packets which match the filter
and stored in the variable http.

Functions exist for every type of node possible in the AST. Lines 4 and 7 are repre-
sented in the grammar as a SingletonOperation as it is the name of the EBNF produc-
tion which matches the input. As such, the resulting function call is EnterSingleton-
Operation, with access methods for the term ’http’ and ’gets’. Within this function,
Nugget first obtains the evaluation of the indicated variable and prints results using
the type’s specific print routine.

1 packets = "file:nov-19.pcap" | extract as pcap
2 http = packets | filter
3 packetfilter=="tcp and dst port 80 and http"
4 print http
5 gets = http | filter
6 packetfilter=="http.request.method==’GET’"
7 print gets

LISTING 4.8: Nugget and HTTP

LISTING 4.9: GET Requests

patft.uspto.gov /netacgi /... time+machine
patft.uspto.gov /netacgi /... immortality
www.google.com /search?q=steganography ...
... [5560 further results omitted] ...

4.2 SCAlabale Realtime Forensics - SCARF

We begin our results chapter with a review of our distributed computing solution
for DF – named SCAlable Realtime Forensics (SCARF). After discussing architec-
ture decisions, we explore backend software used to support the architecture. We
present performance metrics of the system, including against forensic targets of
various sizes and utilizing separate tools. We conclude our SCARF discussion with
an explanation of the (lack of) a user experience.
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FIGURE 4.6: Architectural sketch of SCARF (simplified).

4.2.1 Architecture

Figure 4.6 provides an overview of the functional components and main data flows
of SCARF. The data broker extracts the raw data from the forensic target and pre-
pares it for streaming to the cluster nodes. The broker serves as an abstraction
layer that decouples the processing of the data from its source format, such as a
filesystem, RAM snapshot, or network capture. At present, we support two types
of data access: bulk streamer and file streamer.

The bulk streamer provides sequential block-level access to an entire volume without
attempting logical artifact reconstruction. It is suitable for tools such as bulk_extractor
that function at the same level of abstraction and look for relatively small pieces of
data.

The file streamer reconstructs files from block storage and transmits them as units
of input data. It works by reading the file system data structures during initial-
ization and reconstituting the files on the fly. We utilize a version of the LOTA
approach described in [79] to optimize access times.

Task manager

The next major component is the task manager, which keeps persistent logs of task
definitions and task completions. The definitions are generated by the data broker
and depend on the set of available functions and the stream of data extracted from
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the target. As the simplest example, for every file identified on the target (by pars-
ing the filesystem metadata), the broker will generate a SHA1 task, which is added
to the task definition log; we refer to it as the task queue.

The task manager uses Apache Kafka 3 to maintain its persistent logs and notify reg-
istered data client nodes of available tasks. Conversely, completed tasks are com-
mitted to the completed log. Although not a central point of this paper, we should
emphasize that maintaining reliable logs of completed processing is critical to en-
suring the integrity of the computation. At scale, errors in complex distributed
systems occur with some regularity; experience demonstrates that it is infeasible to
eliminate all possible source of failures. For example, in our case, out of the millions
of spawned container instances, some will fail to execute.

The practical way in which to handle sporadic failures is to restart the computation;
if the failure continues to occur, then it is systematic and needs to be debugged. We
should note that failure can take the form of a task taking too long to execute, in
which case it is better to terminate and restart it. Google’s experience with map-
reduce processing [24] suggests that a small fraction of the tasks tends to delay
the overall completion of the processing. The solution to this is to run multiple
instances of the same task and only take the result from the first one to finish.

The main point is that keeping reliable and detailed logs of the processing is neces-
sary for both integrity and performance considerations.

Data clients

A data client is a container instance that receives a chunk of the forensic target and
organizes the execution of tasks on the given portion. In order to optimize the
workload, the chunks are distributed across all available data clients.

Upon creation, data clients generate a unique identifier and register to both the data
broker and the task manager. As the data broker streams data from a forensic target
to data clients, it simultaneously polls the task manager for outstanding tasks.

Tasks are added to the task manager with the unique identifier of the data client,
and they can optionally be accompanied by file identifiers (in the case of a file
streamer). Upon receipt, the data client becomes responsible for the execution of a
given task. Furthermore, a future option can be added so that subsequently received
files will also have that task executed on it. This feature allows tasks to return results
even as data is streamed from the original source.

Task execution is not handled by the data client; it is farmed out to a dynamic pool
of specialized containers, called workers. The rationale here is that storing data
in memory and executing forensic tasks on the data are fundamentally different
tasks. Moreover, separating worker containers from data clients allows for easy
development and deployment of new types of workers.

3kafka.apache.org
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Workers

A worker is a container instance that performs a specific task on the given piece of
input data. Importantly, workers have no concept of files – they provide a remote
procedure call (RPC) interface, through which they consume incoming data and
produce a result in the form of a JSON string. Although the interface would benefit
from the imposition of some additional structure on the I/O stream formats, this
generic approach is quite flexible and allows easy creation of new types of workers.

The containerization of workers offers the ability to scale any task quickly. Con-
tainerization can be extended to easily prioritize tasks. That is, we can develop
methods to scale containers based on server availability or task importance au-
tomatically. Within Docker, prioritization is easily implemented with the docker
service scale command. (We would expect more complex algorithms to coordinate
scaling as part of the underlying orchestration service eventually.)

As an illustration, the following will increase the number of containers running an
ExifTool worker:

docker s e r v i c e s c a l e e x i f t o o l s =48

By consistently applying the above RPC approach, it is possible to automatically
scale out any container, regardless of the specific computation performed.

Data clients are not aware of the number of, or network paths to, workers. Instead,
network resolution (and rudimentary load balancing) is mediated by an internal
DNS service. A lookup for an “exiftools” container will thus return a virtual IP to
the least recently used container.

For our initial design, we have implemented a variety of workers representing com-
mon forensic tasks, each of which has different computational demands:

• SHA1: performing crypto hashing of data;

• grep: live regular expression search;

• Tika: text extraction with Apache Tika;

• open_nsfw: image classification using a trained Caffe deep neural network pro-
vided by Yahoo!4;

• bulk_extractor: feature extraction using regular expressions and verification;
[35]

• ExifTool: metadata extraction from a files.

Results repository: ElasticSearch (ES)

As tasks complete, results are returned to the data client. After a batch of results is
returned, or a predefined threshold is reached, the results are bundled and sent to
a cluster of ElasticSearch (ES) nodes.

4https://github.com/yahoo/open_nsfw
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The ES cluster nodes are deployed on the same hardware as the workers and pro-
vide a searchable database of the results from the tasks. It is integrated via its
RESTful interface for storage, querying, and retrieval of data, and can dynamically
scale to meet the incoming stream of results.

The ES modules are split between gateway, data, and master nodes. Apache Tika is
also deployed within ES to enable the indexing of non-plaintext MIME types, such
as PDF documents.

4.2.2 Architecture supporting software

In this section, we briefly discuss why we chose specific software over others. Some
choices were made ahead of implementation time; however, other “best-fit” suites
were discovered only after trial and error.

Docker vs. others. As mentioned in Chapter 3, Docker has many competitors.
Desirable traits include ease of installation on a cluster, ease of use, networking
support, and orchestration support; we also desired a widely adopted technology
that could make other researchers comfortable extending this solution. With these
in mind, we initially selected Google’s Kubernetes Kubernetes5 [7] container solu-
tion; however, we eventually discovered serious setbacks, which forced us to move
to another solution.

The most severe issue we encountered was the installation of Kubernetes on our
cluster at the Greater New Orleans Center for Information Assurance (GNOCIA).
The yum-based package manager on the cluster is handled by a software suite,
namely, Bright Computing’s Cluster Manager (CM)6. However, the extra layer of go-
ing through CM induced numerous compile, build, and runtime errors. Despite
eventual installation across our cluster’s nodes (via bypassing CM), the result was
ultimately unstable.

Given the instability of our Kubernetes installation, we moved to a Docker-based
solution. Nevertheless, Kubernetes is certainly worth future investigation as a long-
term solution as it meets and exceeds our other requirements (indeed, it seems to
be preferred over Docker in professional production deployments).

ElasticSearch vs. others. ElasticSearch7 is a particularly dominant datastore. Its
main competitor is Apache Solr8. Both solutions utilize Apache Lucene on the back
end, but optimizations and indexing or querying are different. First, Solr primarily
concerns itself with text-oriented query optimization, while ES provides better op-
timization of analytical queries. Second, both are technically open-source; however,
a company behind ES ultimately has the ability to deny community contributions.
Third, ElasticSearch configuration and querying are entirely centered on a JSON

5kubernetes.io
6http://www.brightcomputing.com/
7https://www.elastic.co/
8https://lucene.apache.org/solr/
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REST API, which is more intuitive than Solr (although it is worth noting that Solr
offers a less comprehensive REST API). Finally, both systems distribute easily, al-
though ES is deployable on multiple cloud environments, while Solr is oriented
towards SolrCloud.

In conclusion, while Solr and ES are similar, the latter is ultimately the more appro-
priate solution for ease of use.

Kafka vs. others Kafka was a particularly comfortable choice for our messaging
queue system. Its primary features are performance, reliability, open source, and
scalability. One (potential) downside is its reliance on yet another software suite
– ZooKeeper – which handles cluster health. RabbitMQ was another alternative
that we explored; however, the demonstrated throughput was insufficient for our
needs.

4.2.3 Extending SCARF

Recall the design requirement for easily extending SCARF; indeed, that is the mo-
tivation behind the utilization of containers.

Containers, here treated as individual and distinct computational units, provide an
ideal platform for extensibility – they can be scaled (launched and retired) accord-
ing to available resources or priority. Most importantly, no modification is required
for an existing tool in order to accomplish scalability. Furthermore, any forensic
tool can be deployed within a container and thus to SCARF – as discussed previ-
ously, these workers simply take in data, perform an operation, and return a JSON
string.

For most single-purpose tools, the process of incorporation into SCARF’s process-
ing fabric consists of three basic steps: 1) add a network layer for communication; 2)
containerize the tool for scaling, and 3) invoking the tool. These steps are explained
below.

[1] Build an RPC wrapper

First, we applied a small amount of wrapper code around the tool, with the goals of
exposing a network path for the acquisition of forensic target data and providing
a response mechanism. The wrapper provides the means to execute the existing
tool on the provided input data and to return the results to SCARF. This can be ac-
complished in a variety of ways; we chose to employ Golang’s built-in RPC library.
Using an RPC allows for the results of a forensic operation to be returned while
simultaneously providing a mechanism to acquire the forensic target.

Once an RPC function is invoked from SCARF, the given input is translated into a
form that the tool can operate on, and the necessary command-line parameters are
generated to launch the tool. In the developed examples, this involved changing
two lines of code as all RPC, logging, and error checking code can be templated and
abstracted away.
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The overwhelming majority of the code in Listing 4.11 is quite generic and is useful
as a template for the wrapping of similar tools. The two key variables are toolPath
and opts, both of which will be dependent on the forensic tool in question.

[2] Containerize the tool

Second, the tool and wrapper must be implemented into a container image, a pro-
cess we refer to as containerization. This requires the development of a container
description file; in the case of Docker, it is called Dockerfile and provides a simple
script for building the image. The starting point is a known system image, such
as a clean operating system installation. The series of steps includes operations
such as the installation of prerequisite software and setting the environment vari-
ables. The wrapper binary is also installed and set to auto-execute upon container
creation. Listing 4.10 (wrapped to fit the column) illustrates a Dockerfile to build a
bulk_extractor image.

The majority of commands to build the tool should be familiar to open source de-
velopers. The installation of pre-compiled binaries would be easier; however, in
cases where building from source is desired, pre-existing build sequences can be
added to a Dockerfile with minimal effort.

1 FROM ubuntu:trusty
2 MAINTAINER joe <joe@example.com>
3
4 RUN apt−get update
5 RUN apt−get install −y curl make g++ gcc \
6 netcat dnsutils vim flex \
7 libewf−dev libssl−dev wget
8
9 RUN wget http://digitalcorpora.org/downloads/bulk_ex

10 tractor/bulk_extractor−1.5.5.tar.gz
11 RUN tar xvzf bulk_extractor−1.5.5.tar.gz
12 RUN cd bulk_extractor−1.5.5/ &&
13 ./configure && make &&
14 sudo make install
15
16 ADD bin/rpcserver /
17 ADD banner.txt /
18
19 RUN mkdir −p /tmp/bulk_in/
20 RUN mkdir −p /tmp/bulk_out/
21
22 CMD [‘‘/rpcserver’’]

LISTING 4.10: Dockerfile for bulk_extractor
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[3] Invoke the tool

Once the tool is containerized and exported as a network service, it is ready to be
incorporated into the processing fabric. This is accomplished by adding a few lines
of code within the consumer. The code to invoke ExifTool is shown on Listing 4.11:

1 func (t *RPC) Execute(args *Args, reply *string) error {
2 toolPath := "/usr/bin/exiftool"
3
4 // Setup the shell command to launch ExifTool
5 // − indicates data will be read from STDIN
6 opts := []string{"−’’}
7
8 cmd := exec.Command(toolPath, opts)
9 cmd.Stdin = bytes.NewReader(args.Data)

10 var out bytes.Buffer
11 cmd.Stdout = &out
12
13 err := cmd.Run()
14 fmt.Println(out.String())
15 *reply = out.String()
16 return err
17 }

LISTING 4.11: ExifTool RPC wrapper code

4.2.4 Performance and metrics

The effectiveness of the proposed framework relies on the ability to scale opera-
tions. To demonstrate scalability, we selected several tools to benchmark every-
day forensic operations under a variety of conditions. Although a side effect of
these examples is a processing rate that can (in some cases) keep up with SATA
speeds, the critical factor is the relationship between throughput and the number
of deployed containers. We demonstrate that an increased number of containers in-
creases throughput. Therefore, additional hardware could be deployed, resulting
in more containers, which leads to higher throughput.

4.2.5 Processing rates

The base configuration of our evaluation setup consisted of a cluster of four rack-
mounted server machines connected to a commodity 10-GbE switch. Each box had
256 GB RAM and 24 2.6 GHz dual-threaded cores for a total of 96 physical cores and
192 logical ones. All nodes had a SATA-attached 1-TB SSD (Samsung 850 Pro), al-
though this is largely irrelevant as all data for processing was handled in RAM. The
observed throughput for bulk transfer over TCP connection was approximately 1
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TABLE 4.1: SHA1 file hashing throughput (MB/s) vs. number of containers

Containers 4 12 24 48 96 192
MB/s 345 857 985 985 948 992

GB/s. At 5 years, the CPUs are three generations old and near the end of their life-
cycle. The upside is that the results can be considered more representative as the
hardware would be easily affordable for any lab.

The reference test data is a full 200GB NTFS image, which was created by using a
random selection of files from the GovDocs corpus [32].

For benchmarking purposes and ease of analysis, we limit each container to a sin-
gle CPU core. Further, we consider the processing functions one at a time in order
to understand their intrinsic performance characteristics. The times shown are in-
clusive of all overhead, including network communications among the active con-
tainers.

Crypto hashing

Cryptographic hashing is a common forensic function. For this processing scenario,
we selected the SHA-1 hashing algorithm. We developed a container that provides
an RPC over TCP using the methods outlined in the previous section. The container
returns the hash of the given data.

As the results in Table 4.1 indicate, as few as 12 containers practically saturate the
available network bandwidth of 1GB/s.

Metadata extraction

The ExifTool [42] is commonly deployed and used to extract metadata from file con-
tent; it supports a large number of file formats and attributes. Listing 4.11 depicts
the RPC wrapper code that – along with the ExifTool v10.10 executable is placed in
a container image.

Considering the endpoints of the experimental space (Table 4.2 – 4 and 192 con-
tainers, respectively – we observe near-linear speedup from 5 to 192 MB/s. This is
in line with expectations as the metadata extraction does not depend on I/O, and
the workload is inherently data-parallel. Considering the whole range of param-
eters, we can see that the average throughput per container follows a bell curve
distribution with an optimum return at around 32 containers.

Image Classification

Yahoo! recently released an open source image classifier, OpenNSFW (github.com/yahoo/open_nsfw).
This is a deep neural network, built on top of Caffe (caffe.berkeleyvision.org), which
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TABLE 4.2: ExifTool metadata extraction throughput vs. number of containers

Containers 4 8 32 64 96 192
MB/s 5.2 17 99 151 170 192
MB/s per cont. 1.3 2.1 3.1 2.4 1.8 1.0

TABLE 4.3: OpenNSFW classification throughput vs. number of containers

Containers 4 8 12 32 64 96 192
MB/s 0.4 1.4 2.5 3.8 7.2 10.9 21.3
Files/s 0.8 2.2 3.9 7.1 13.4 20.3 38.5

comes pre-trained to detect pornographic images. For every image that is pro-
cessed, the system yields a value representing confidence in an image’s resem-
blance to pornography.

This is a compelling case as it allows us to assess the cost of providing smarter tools
for automated processing that provide results closer in abstraction level to that of
the analyst. As Table 4.3 shows, these are expensive operations, and despite the
linear scaling concerning the number of files classified, the absolute numbers are
much lower than with other tools.

At the same time, compared to the current alternative of a human manually ex-
amining (thumbnails of) the images, even this unoptimized solution can classify
138,600 per hour or 3.33 million over 24 hours. By employing more modern CPUs,
as well as GPUs, the system can be scaled up to the degree required to handle lab
workloads.

Unlike previous examples, OpenNSFW is already provided as a docker container.
We only needed to write a small wrapper function to encapsulate the embedded
program as an RPC. As more developers adopt container solutions, such as Docker,
integration with SCARF will become even easier.

Indexing Common Filetypes

Extraction of plaintext data from encoded documents is a basic step in forensic
analysis. One of the more popular solutions is the Apache Tika (tika.apache.org)
open-source project. It is specifically designed for this purpose and is often used in
conjunction with an indexing engine such as Solr, or ElasticSearch.

From Table 4.4, , it is apparent that this workload is much more demanding and
only scales sub-linearly. Particularly notable is the drop in processing rate per con-
tainer between 96 and 192. Recall that there are only 96 physical cores, and it ap-
pears that, for this workload, the addition of hardware supported threads does not
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TABLE 4.4: Tika text extraction vs. number of containers

Containers 4 12 24 48 96 192
MB/s 0.5 1.1 2.4 3.5 5.8 6.7
MB/s per cont. .13 .09 .10 .07 .06 .03

TABLE 4.5: Bulk extractor throughput vs. number of containers

Containers 4 12 24 48 64 128
MB/s 3.5 17.9 22.7 54.8 59.4 151.5
MB/s per cont. 0.9 1.5 0.9 1.1 0.9 1.2

materially improve performance. This suggests that the workload is very effec-
tive at utilizing all the CPU’s functional units; hence, the addition of threads only
marginally improves on the amount of work being performed.

Bulk extractor

Bulk extractor [35] is a forensic tool used to analyze raw data streams. Using pre-
compiled scanners based on GNU flex, it is a useful tool for extracting specific pieces
of information, such as emails, URLs, IP addresses, and credit card numbers, from
a data stream.

The process of wrapping and containerizing the tool was described earlier. What is
interesting in this case is that bulk_extractor supports multi-threaded execution by
default. Therefore, we approached this scenarios in a slightly different manner by
exploring the optimal number of CPUs that a bulk_extractor container should have.

Interestingly, the best performance was achieved by limiting the tool to a single
thread and a single CPU, using the saved resources to spawn additional containers.
In other words, 48 one-core bulk_extractor instances work faster than one 48-core
one. For this test case, we provided each container instance with 500MB of file data
from the GovDocs corpus. [32].

Table 4.5 shows that the throughput per container remains relatively stable, and
exhibits linear scalability. This is not a surprise as the workload is CPU-bound and
data-parallel in nature.

Indexing filesystem metadata

Scalable Realtime Forensics utilizes ES for target metadata storage as well as stor-
age of the results produced by tasks. For this benchmark, we extracted and parsed
the NTFS metadata information of a 200-GB image containing approximately 620,000
files. Each NTFS-parsed record yields a JSON object of approximately 500 bytes.
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TABLE 4.6: ElasticSearch throughput in standalone and cluster configurations

Containers 1 7
Records/s 1,299 14,236

Since ES is designed to run as a distributed service, it is crucial to consider dif-
ferent architectures as small changes could have substantial performance conse-
quences. In this benchmark, we tested two architectures: a) single ES data node
and b) production-style distribution containing seven nodes of various roles.

Table 4.6 illustrates that, indeed, moving from a standalone deployment to a small
cluster yields super-linear improvement as synergies among the modules and fewer
performance bottlenecks improve the effectiveness of the system. We did not test
more extensive configurations (we would need more records); however, we expect
larger configurations to scale-out well although the per-container performance may
drop slowly as with most of the other services tested.

4.2.6 Metrics Summary

Inspection of a simple graphical plot, depicted in Figure 4.7, suggests that addi-
tional containers improve overall throughput. We see that both ExifTool and Bulk
Extractor scale well, and while the deep neural-network-powered OpenNSFW in-
dicates a lower rate of throughput per container, the throughput does increase. In
contrast, Apache Tika throughput grows at a slower rate, suggesting a less scalable
computation. The primary takeaway is that, with the SCARF architecture, we can
add as many containers as the underlying hardware allows (the primary constraint
is the number of CPUs). In other words, we can easily apply increasing amounts
of hardware to combat the ever-increasing amount of volume present in a forensic
investigation.

4.2.7 User experience

At this early stage, the user interface is fairly simple and consists of an interface
with the ability to filter and drill down to the individual record. However, this
is not sufficient for a production tool; we believe that there is substantial room
for improvement in the user interface of forensic environments, and this subject
deserves its own research effort and evaluation.

However, we do believe that integration of SCARF into our DSL will provide a
seamless transition into a future-friendly interface for the end user – all analysts
have to do is specify what needs to be done, and they do so using natural language.
We now turn our attention to our proposed language, Nugget.

6060



0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

Number of Containers

Th
ro

ug
hp

ut
(M

B/
s)

Scalability of Forensic Tools using Containers on Commodity Hardware

ExifTool
OpenNSFW

Bulk Extractor
Tika

FIGURE 4.7: Scalability of Forensic Tools using Containers

4.3 Integration of Multiple Tools

As discussed in Chapter 3, the level of standardization and interoperability among
cybersecurity products from different vendors, including open-source ones, is fairly
low. Although understandable from a business perspective, this deficiency makes
it difficult (and expensive) for customers to put together custom solutions and to
have visibility across their entire IT infrastructure. It also hampers the adoption
of custom data analytics and AI solutions and slows down the exchange of threat
detection and mitigation solutions.

One promise of Nugget is to provide a common interface to the myriad of existing
cybersecurity and DF tools. As a direct result, Nugget queries can operate across
multiple tools, providing input to one tool from the results of another.

Here, we study the use of Nugget with two security tools. Specifically, we integrate
Google’s GRR incident response framework, and Splunk, the de facto standard for
log aggregation. We demonstrate the utility of this type standardization to both
tool developers and end-users analysts or IT administrators and discuss potential
implications of having such a DSL becoming widely adopted across the entire do-
main of cybersecurity.
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4.3.1 The Google rapid response (GRR) framework — distributed inci-
dent response

As discussed in Chapter 2, GRR is a framework specifically aimed at incident re-
sponse [20]. It is an open-source, agent-based forensics tool aimed at providing live
system data across multiple platforms. Furthermore, GRR’s architecture consists
of a one-to-many relationship between a server and the client computers running
agents. When investigators wish to execute a forensic task, they initiate a flow. We
offer brief descriptions of a server, a client agent, and flows below, with reference
to Figure 4.8.

Server. The GRR server is primarily a Python and HTML based front-end, with
SQL for backend database storage. It establishes a TCP listener for network com-
munication with clients and workers and utilizes AES256 encryption for data tran-
sit.

The server also establishes multiple message queues that encompass various func-
tions, such as worker coordination, CA enrollment, and interactive workers. The
purpose of the message queuing functions is to support scalable forensic operations
across enterprise-sized environments.

Client agents. These are initially distributed with enterprise software manage-
ment mechanisms and are available for major platforms (OSX, Windows, and var-
ious types of Linux). Agents are responsible for executing flows on clients and
responding to the server with results of flow execution. In addition, clients period-
ically transmit computer metadata (e.g., unique identifier, machine hostname, and
machine metrics) to the server.

One notable feature of GRR clients is the builtin performance safeguards. Config-
urable mechanisms prevent the agent from adversely affecting enterprise opera-
tions, including CPU and memory limitations. Other notable mechanisms include
transaction logging, heartbeat monitoring, and signed and encrypted network traf-
fic.

Flows A flow is a unit of “forensic work” within GRR. It is responsible for execut-
ing one or more forensic operations on a client machine. This includes everything
from file retrieval to running memory analysis with Rekall 9. Flows are initiated by
investigators and can be targeted at single or multiple clients simultaneously.

Flows are terminated after submitting results to the server. Results are serialized
and stored as advanced forensics framework (AFF) objects [21].

Use case - file retrieval

One of the more common types of use cases for GRR involves a simple file hunt [61].
That is, the investigator simply wants to find a specific file on target workstations.

9https://github.com/google/rekall
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FIGURE 4.8: GRR Framework

To accomplish this in GRR, the investigator executes a series of point-and-click ac-
tions on the server’s main GUI. These steps include initiating a new “find file” flow,
providing runtime parameters (such as filenames to look for and hashes), selecting
reporting type, and finally selecting which workstations flows should to execute
the flow against.

Behind the scenes, GRR stores the request in the database and readies its execution
by putting it on a processing queue. When the client checks in with the server, it
will pull the new task and append it to its own execution queue. In this particular
example, the client attempts to find the file, and if it exists, it will immediately
return its hash value. The server checks against a local store to determine whether
the file has previously been downloaded (by any client), and if not, it requests the
file’s binary data content. In addition, other checks are performed, such as a post-
download hash comparison, to detect whether the file was changed during the flow
execution.

4.3.2 Splunk

Splunk is the de facto standard for enterprise log monitoring. It natively supports
several logging technologies, and with numerous third-party extensions (available
through an integrated “app store”), it can catalog almost any type of log. We briefly
discuss Splunk’s architecture and a potential use case of utilizing Nugget to derive
results from Splunk’s API.

We briefly discuss Splunk’s architecture and a potential use case of using Nugget
to derive results from Splunk’s API.

Splunk architecture

Various architectures are supported within Splunk, but primarily consist of a for-
warder, an indexer, and a search head.
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Forwarder. Forwarders are reasonably simple — they are configured to send spec-
ified logs to the indexer. These logs are usually structured in a known format from
applications (e.g., Apache).

Indexer. The majority of log processing occurs at the indexer. It is responsible for
indexing, time-stamping, and processing data sent from forwarders. Moreover, in-
dexers support replication, data modification, and other desirable data operations.

Search head. The search head is the primary interface for the security analyst.
It provides a GUI to initiate scans, it and provides mechanisms for scaling the
searches in large-scale environments.

Use case - find hosts which visited a malicious domain

One traditional use case of Splunk is to filter logs based on the behavior of an end-
point’s network traffic. In this example, investigators have learned that a compro-
mised corporate endpoint has visited a malicious website. The investigators then
turn to Splunk to determine which (if any) other endpoints have visited that same
website.

This will traditionally be solved by having the investigator issue a Splunk query
(using the Splunk-provided GUI). One potential query to retrieve this information
could be (where field names are dependent on specific implementation): index=’proxy-
weblogs’ | url startswith="www.evildomain.com" | table requestor. The results of this
query are a table entries where the field ’requestor’ (those endpoint requesting the
domain in question) is given.

4.3.3 Integration using Nugget

One of the primary design goals of Nugget is ease of extensibility. In this use case,
we extend Nugget to be compatible with both GRR and Splunk, allowing investiga-
tors to utilize the features of both security platforms together. This is accomplished
via use of their individual APIs; however, it could also be integrated at a lower
level if necessary (as we demonstrate with GRR).

GRR Integration

To illustrate the usefulness of Nugget, we began GRR integration with a inside-out
approach: first, we added Nugget as an individual flow. Second, we integrated
Nugget into the GRR GUI. Our final (and most realistic) use case integrated with
GRR at the published API level, utilizing known constructs. This was an intentional
repetition of work to showcase how any code architecture could support Nugget.
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Adding Nugget to GRR. The most straightforward integration with GRR is to
implement Nugget as a flow. It is the natural GRR approach to add a ’new’ foren-
sic tool (for example, it would be the natural approach for adding a tool such as
’scalpel’). While Nugget offers much more capability than just another forensic
tool, this particular use case is interesting because it allows remote execution of
Nugget queries directly on endpoints. Ultimately however, this use case showcases
the extensibility of GRR, and not necessarily that of Nugget (and thus we limit our
discussions).

Adding Nugget as a query within GRR GUI A more natural usage of Nugget
within GRR is to use it as a ’driver’ for all other forensic tasks. That is, we extended
GRR to have a query entry field available on the main GUI landing page, allow-
ing for the analyst to execute nugget queries across all registered clients. While
this approach is a natural extension of both Nugget and GRR, it ultimately is not a
canonical use of Nugget (and thus we limit our discussions).

Adding a GRR extension to Nugget The canonical extension of Nugget is to add
extractors (see 4.1.2) to handle new data sources. In this case, we developed a GRR
extractor specifically built for GRR’s REST API. Through the API, we can search
clients, start flows, and generate reports, among other things.

To develop an extractor in Nugget, we created a JSON-based interface description
and utilized Nugget’s included extension script. The script adds specified keywords
(in this case, ’GRR’) to its grammar, and then automatically regenerates its ANTLR-
based parser. It next stubs out functions within the core Nugget codebase, along
with typing information specified in the JSON description file. After the generation
step, we code the compatibility layer to interact with GRR.

To interact with GRR, we utilized its provided HTTP-based API. Numerous li-
braries exist for Go (Nugget ’s host language), which support such an API; therefore,
building network communications with GRR is relatively easy. Here, we provide a
brief description on adding ’File-Finder’ capability into Nugget.

As discussed, the first step to extending Nugget is to add grammatical language
constructs using the automated build tool. This is accomplished by constructing a
JSON file from a template (see listing 4.12).

1 {
2 "name": "file -finder",
3 "codepath ": "grr -filefinder.go",
4 "operatesOn ": [" strings"],
5 "produces ": [" strings","bytes "]
6 }

LISTING 4.12: Extending Nugget to support File Finder (GRR)
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The build tool takes this file and generates a stubbed file containing the functions
needed to fit within the language architecture. This consists of two parts: consum-
ing an input and producing an output. For this example, the consumer is built to
query a URL (the GRR server API), while the producer serializes the GRR response
into an internal representation.

Once these functions are written (along with associated typing requirements), the
functionality will be fully implemented within the Nugget runtime and can be used
in conjunction with other (supported) forensic tools.

Adding a Splunk integration to Nugget

Splunk is integrated in much the same way as GRR- through an HTTP API. We
create an interface description (similar to GRR’s), and implement the generated
stub methods by creating REST calls for specified user inputs.

In an near-identical manner to the GRR extension, Splunk is extended with the
build-script listed in Listing 4.13.

1 {
2 "name": "splunk -registry",
3 "codepath ": "splunk -registry.go",
4 "operatesOn ": [" strings"],
5 "produces ": [" strings","bytes "]
6 }

LISTING 4.13: Extending Nugget to support Splunk Registry

4.3.4 Experimental results: integrating Splunk and GRR

To showcase the power of integration, we utilize both GRR and Splunk in a sin-
gle set of Nugget queries to conduct a realistic investigation of malware. However,
before diving into the specific queries, we review the architecture of the tools’ inte-
gration in Figure 4.9.

There are a few notable aspects of this architecture. First, the end user interacts only
with the Nugget command line – no interaction with either Splunk or GRR (beyond
the normal setup and deployment requirements for each product) is required. This
interaction could be in the form of, inter alia, repeated tasks, automated executions,
and AI or data analytic entry points; however, for our case, we focused on a sin-
gle investigator. The second notable aspect of this architecture is the way in which
Nugget can interact with both GRR and Splunk platforms. Finally, it is worth men-
tioning that in this scenario, Splunk is installed on servers, while GRR is installed on
all endpoints. (Note: this is a simplistic view, and various components of Nugget,
such as the backend database and resource manager, are left out for clarity).
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Use case - indicator of compromise In this scenario, we simulated a sophisti-
cated attacker gaining access to a server “victim” and installing a simple persis-
tence module using the Microsoft registry. Once analysts notice questionable server
behavior, they begin traditional incident response activities, which include search-
ing the registry for undesirable “Run” and “RunOnce” entries. Using Splunk with a
“registry module,” they find a suspicious entry that loads binary data from the reg-
istry key “HKLM:Software/Microsoft/Windows/CurrentVersion/RunOnce” (the
default behavior of a popular hacking toolkit, PowerShell Empire 10). In an en-
terprise, the analysts would want to determine whether this indicator occurs any-
where else within their purview, and they would thus conduct an investigation
using GRR. In our scenario, we utilized Splunk to extract indicators from a compro-
mised server and GRR to search for those indicators across hundreds or thousands
of computers.

Using the tools’ respective GUIs could be cumbersome, and in this case (as with
most) would involve manually handling with data extraction, data serialization,
and data input into the specific tools (not to mention, learning each tool’s individ-
ual GUI and respective nuances).

With Nugget, he could simply issue the natural query shown presented in Listing
(4.14):

1 splunkextractor = net :192.168.100.27:8097 | extract as
splunk

2 bad_regkeys = splunkextractor | filter index=" c2index;
source =" WinRegistry", key_path ="HKLM \[..]\ debug"

3 badregpath = bad_regkeys.key_path
4
5 grrextractor = url :192.168.100.12:8000 | extract as grr
6 active_grrclients = grrextractor | filter clients.

checkintime > -10d
7 clientswithregistryIOC = active_grrclients | filter

registrypath=badregistrypath
8
9 print clientswithregistryIOC.hostname ,

clientswithregistryIOC.IP

LISTING 4.14: Integrating GRR and Splunk via Nugget

LISTING 4.15: Expiremental Results of Splunk and GRR Integration

[’winlab01 , 192.168.2.51 ’ , ’ winlab04 , 192.168.2.54 ’]

10https://www.powershellempire.com
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While a primary design goal of Nugget is to be natural and understandable to the
domain user (human investigator), we discuss the code to fully illustrate the power
of Nugget.

On line 1, we utilize the Splunk extractors created (as described in section 4.1.2).
Line 2 utilizes the a priori knowledge of a compromise in order to extract the specific
indicators of the event according to the known filter; however, because Nugget has
lazy execution, no computations are executed until this point, where the user will
be shown the execution results.

On the nexst line (line 3), we extract and store the indicator of compromise (IOC)
artifact for future use with GRR.

Line 5 establishes an extractor to utilize GRR data. Line 6 creates a variable con-
taining a (future) list of all clients available to GRR. Line 7 filters that list to those
clients which match the indicators directly obtained from Splunk! This is specifically
where our integration efforts are realized.

Listing 4.15 showcases the results of the query execution (line 9), revealing the host-
names registered to GRR which match the indicators provided by splunk.

To summarize this (realistic) example use case, the investigator launched an inci-
dent response campaign (with GRR), based on input from a logging tool (Splunk).
Importantly, our research allows the investigator to accomplish this using a sin-
gle interface with a single language. This distinct difference from current techniques
has significant implications, which we discussed in our introduction chapter and
further analyze in our conclusions.

4.4 Conclusion

Final Integration. The life of a Nugget query within an integrated processing run-
time is depicted in Figure 4.10. For this example, we showcase a container based
runtime, such as with SCARF.

A Nugget query can be created on the command line or with a series of saved com-
mands, known as scripts (saved within a .nug file). Alternatively, the query could
be created with a user-based GUI, which is a subject for future development.

The query then enters the parsing engine. The parsing engine sets the stage for
query execution by taking care of input validation and memory allocations, and
provides instant feedback to the user in the case of an erroneous statement. The
engine also constructs filters based on user input — importantly, filtering occurs
prior to data loads, allowing for end-users to prioritize work in large datasets.

When statement evaluation is required (recall, Nugget is a delayed evaluation lan-
guage), the engine will issue a data-load command to the data broker. The data-
load only occurs the first time the data-load is needed for the specified target (mul-
tiple subsequent data-load commands are ignored). For optimal performance the
target data should be local to the data broker; however, network-based acquisition
is also possible. The data broker, in turn, distributes the target dataset to all avail-
able consumers.
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FIGURE 4.10: Nugget query flow in a container-based architecture

In our research, we built loaders (or, ’consumers’) to handle the following:

• ntfs

• ext3/ext4

• pcap

• RAM

• grr

• splunk

The task scheduler will receive all subsequent commands, such as ’execute md5’,
and route them to the appropriate consumers based on how the data was initially
distributed.

For clarity, this diagram separates the data broker from task scheduling; in our
technical implementation, they coexist. However, the point is that all tasks that
distribute to a cluster are tracked (in a message queue), and remain until a success-
ful completion acknowledgement is received.

Once the data is distributed, the user can begin executing analysis against any type
of supported worker. In our research, we built workers for the following:

• md5
• sha1
• sha256
• pslist
• grep

• tika

• bulk_extractor

• open-nsfw

• exiftool

Finally, results from workers are fed into a results cluster. Subsequent queries re-
lying on results from prior computations are either retrieved from the parsing en-
gine’s cache (if small enough), or are retrieved from the storage repository. A key
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idea to this feature is allowing 3rd party users (or applications) access to the re-
sults repository, which can potentially eliminate the need for re-execution of Nugget
queries across a large runtime.

Closing thoughts. In this chapter, we discussed the implementation details of
our final solution. We then covered detailed results from use cases generated and
outlined in our methods chapter. We showcased a scalable, distributed solution
that easily incorporates any digital forensic tool. Furthermore, we demonstrated
that the Nugget DSL is indeed viable and that extending and incorporating third-
party tools is easy.

In the next chapter, we detail these points, finalize our thoughts, and consider steps
for future research.
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Chapter 5

Conclusions

This research aimed to identify and implement a robust framework to address myr-
iad issues across the domain of DF, particularly a lack of standardization amongst
researchers and law enforcement analysts. The solution presented in this thesis
demonstrates that the proposed Nugget language offers a robust foundation upon
which researchers, analysts, and law-enforcement can build future tools and inves-
tigations.

The rest of this chapter briefly summarizes these issues, our solution, and contri-
butions. It then discusses future research and recommendations.

5.1 Recapitulation of Issues

To finalize the discussion of issues facing DF, we briefly consider its history. In the
early 1980s, relatively few types of computing platforms existed, and relatively few
people were using them. The first digital forensic tools were organically developed
to answer questions that contemporary investigators faced. However, as technol-
ogy and its usage grew exponentially, little to no standardization of tools existed to
assist investigators in studies of cyber criminals.

If we fast-forward to today, where billions of users are utilizing thousands of dif-
ferent computing technologies, a survey of DF tools suggests that not much has
fundamentally changed. Various forensic tools address specific investigator ques-
tions, and although some toolkits exist that address a large subset of needs, no
comprehensive standardization has been adopted.

The lack of such adoption has had several consequences for DF and the greater
cyber-security community. Foremost, analysts do not have a way in which to ex-
plain their investigative actions in a clear, repeatable, concisely and computation-
ally specific format; this has clear implications in a court of law: if a subject matter
expert cannot readily verify an analyst’s research, then the resulting evidence loses
veracity.

Without a descriptive language, educators have no choice but to provide educa-
tional material that revolves around tools rather than teaching a universally appli-
cable, vendor agnostic forensic computation.
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Another consequence is little to no tool interoperability across the domain of cyber-
security tools. As discussed, hundreds of popular tools exist, each fulfilling a spe-
cific function. Indeed, analysts utilize whole sets of tools during the course of an
investigation. However, without interoperability, analysts are forced to transfer
data between them manually. This is time-intensive and error-prone, and it is un-
sustainable when considering the scale of modern DF investigations.

A similar consequence is that tools are not readily compatible with modern high-
performance processing frameworks. They cannot be “woven into the compu-
tational fabric” of big-data systems such as Hadoop, Spark, and NoSQL. Simi-
larly, machine learning and AI cannot be readily applied to the datasets of foren-
sic investigations (datasets that would be ideal candidates for automated, high-
level processing). As the average digital forensic investigation faces ever-increasing
amounts of data, these high-performance processing engines are becoming increas-
ingly vital.

Tool development has suffered from a lack of standardization. Investigators, or
end users, and tool developers have no means of specifying what they need to con-
duct investigations. As a result, vendors often provide unnecessary, incomplete, or
inexact features.

Finally, there is a lack of tool verification for forensic operations. That is, the follow-
ing question remains: how can analysts trust that a task, such as finding files, has
completed fully, with no false positives or false negatives? In the case of black-box
tools, investigators, who themselves have no established oversight for verification,
are forced to trust black-box solutions. In the case of open-source tools, analysts
are commonly unqualified to conduct robust code reviews. The lack of tool verifi-
cation is a particularly important concern because of the rapid growth, mutation,
and adoption of underlying computing technologies (e.g., the following question
could be asked: if an operating system is updated, is the forensic tool still trustwor-
thy?).

In short, DF has foundational issues that cause myriad problems downstream. In
our research, we provide a solution at the foundation layer, thereby immediately
solving these problems.

5.2 Summary of Research

Our preliminary research into related work revealed several proposed solutions to
issues described in Chapter 1. These propositions range from highly specific math-
ematical models to overly abstract ones, and none of them addresses each issue
we identified. Indeed, it is important to note that most related research focuses
on singular “downstream” problems. In other words, while other subject matter
experts have witnessed the symptoms, few have identified the disease, and none
have offered practical solutions.
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We divided the research into two broad phases. First, we developed a DF runtime
"engine." Second, we built a DSL for DF that can describe forensic computations un-
ambiguously and run them with the engine developed in the first step. We discuss
the latter first.

5.2.1 The language

Requirements. While the SCARF engine provided the execution runtime, the pri-
mary contribution of our research is the DSL we designed and implemented. Domain-
specific languages are programming languages of limited expressiveness, built for
a specific purpose and for the benefit of a specific group of users. Our DSL, named
Nugget, provides investigators and analysts with the syntax and semantics re-
quired to express discrete digital forensic operations. During Nugget ’s design
phase, we identified several core requirements:

• Formal — As with any programming language, statements must resolve into
explicit computations.

• Natural — Statements must be natural to the subject matter expert who is
expected to use the DSL.

• Delayed execution — Execution of forensic computation should not occur un-
til results are either required for additional computation or presented to the
user.

• Tool agnostic — Syntax should be “open,” allowing for any tool to be added
to the language.

• Extensible — The DF community must be able to integrate their own tools into
the language.

A selective discussion about our identified requirements is warranted. First, the
language must be natural to the end user. In our case, the primary end user is law
enforcement, who will likely have little to no computer science or programming
background. We also wish to consider students of DF, academic researchers, and
non-human interfaces (e.g., to support future APIs for third-party tool verification).

A desirable aspect of query languages is delayed (or deferred) execution. By de-
laying the execution, investigators can build complex queries involving numerous
dependent variables, without having to wait for individual statement execution
until computationally necessary. This is beneficial from a usability point of view as
well as for performance reasons, as the language can avoid execution of unneces-
sary computations.

Given the sheer volume of tools built for DF, the language must be tool-agnostic.
That is, syntax and semantics cannot be tailored to any existing tool. Indeed, in
the DF community, many researchers and analysts have favorite tools or method-
ologies for solving specific tasks (usually because of requirements, although pref-
erence is also a driver of tool usage). Since Nugget is built as an open framework,
no specific tool or process should be baked into the core processing fabric; instead,
each tool integration should be treated as an extension of the core language. This
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FIGURE 5.1: Summary of DSL development process

also allows for "drag and drop" replacement of "competing" tools, for example if a
user has a requirement for one tool over another.

A desirable aspect of any framework is its ease of extensibility. In this case, users
(such as non-technical law enforcement analysts) must have the ability to incorpo-
rate their favorite (or required) tools into the Nugget processing framework. While
we provided a few tool integrations, they represent a relatively small subset of the
hundreds of existing digital forensic tools.

Implementation details - Nugget Nugget was systematically implemented to meet
our established requirement criteria, summarized above. Here, we briefly outline
the implementation process, including reflections on design choices, with a refer-
ence at Figure 5.1.

In our preliminary research, we sketched out desirable syntax and semantics of
the language. We essentially asked, "What are the common actions or tasks in a
digital forensic investigation?". From prior experience in the realm of DF, we were
able to a) select verbiage to match the natural phrases involved and b) reference a
common task in Listing 5.1. Expressions such as “extracting” from a target hard
drive, “filtering,” and “printing” are all-natural to our target users. In comparison,
sub-fields, such as “content,” can be more opaque; however, future iterations of
Nugget will have development environment constructs to assist end users.

1 files = file:target.raw | extract as ntfs [63 ,512]
2 pdf_files = files | filter filename == "*pdf"
3 hashes = pdf_files.content | sha1, md5
4 print hashes

LISTING 5.1: PDF file extraction, filtering (by size), and hashing

With an idea of preliminary syntax constraints, our next consideration of DSL de-
velopment was an internal vs. external language. Internal languages are extensions
of general-purpose programming languages, such as Scala (which incidentally has
dedicated DSL constructs). While these languages are extremely powerful because
they inherit host-language constructs, the DSL is chained to host language seman-
tics. In other words, users who wish to extend or improve the DSL must learn the
host language.
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For Nugget, we recognized a need for simple syntax and semantics to ease the learn-
ing curve for potentially non-technical end-users. This naturally led us to select an
external DSL approach. In an external DSL, we have the freedom to develop the
symbols, syntax, and semantics used in the language, at the cost of losing host-
language constructs. As a simplistic example, this means users cannot perform
common programming computations (such as string manipulation) in Nugget with-
out directly adding that feature to the DSL. However, we believe that because our
target users are likely to have no programming background, the need to have natu-
ral, simplistic and expressive syntax trumps baked-in integration of host language
functionality.

The next critical decision was choosing the host implementation language. After
a brief trial-and-error phase using Scala, we opted for Google’s Golang as the im-
plementation language for Nugget. Golang is an ideal choice because of the inter-
section of three desirable traits: widely available support, relative ease of use, and
high performance. In addition, it is growing in popularity in international rank-
ings, and we expect that non-technical Nugget users will be able to find help. At the
technical level, however, Golang has a significant shortcoming in the lack of sup-
port for generics. With Nugget, this was addressed with extensive use of “empty”
interfaces. Future implementations of Golang will add support for generics, allow-
ing for some simplification of Nugget’s codebase [69].

The next decision to make was how to parse user input. While we initially decided
to create a parser by hand, we quickly realized that the utilization of a parser gen-
erator provides robust capability at little cost. We subsequently decided to utilize
the open-source, widely used ANTLR parser generator for Nugget. As with other
generators, it requires DSL developers to create a language description in BNF for-
mat and will generate host-language constructs that parse user input. Additional
features of ANTLR include error-handling, logging, and support for several output
languages. Finally, it is beneficial to use a generator when the language is quickly
evolving. However, utilization of a third-party tool incurs a cost – any future ad-
ditions or extensions to the language will require modifications to the language
description and regeneration of the parser. To minimize the impact, we provide a
build script that handles all ANTLR interactions, hiding their complexities from the
non-technical end user.

By this point, we knew to use EBNF formatting to define Nugget syntax and seman-
tics. Thus, we were able to formally define the Nugget language.

At this stage, we began implementing the language; that is, we had to program the
actual Nugget behavior. Several aspects of this process are notable.

First, the programming goal was to establish the core framework required to exe-
cute the input syntax given in 5.1. Having the framework, we then had to decide on
a set of initial tools to integrate and that could showcase the power of Nugget while
also providing a robust set of core functionality. For this, we considered three com-
mon use domains within DF: network forensics, hard drive forensics, and memory
forensics. For each, we selected a prominent open-source project to integrate, re-
sulting in libpcap, The Sleuth Kit, and Volatility. This core functionality allowed us
to showcase a token investigation into the M57 dataset, as described in detail in
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Chapter 4 as well as in our publication with DFRWS [89]. Finally, robust logging
capabilities were developed that allow for postmortem analysis of the investigation
itself, should the need arise.

Throughout the implementation process, we continuously conducted testing. Test-
ing feedback allowed us to discover shortcomings and implement syntax improve-
ments throughout development.

Extending and Showcasing Nugget. Once the Nugget framework was established
with several DF tools, we showcased how it can be used to address a significant
shortcoming in the cyber-security community, namely, tool interoperability, which
is the ability to feed results from one tool directly into another tool. As detailed in
a paper published with a 2019 ARES conference [90], we demonstrated how two
popular security tools can seamlessly integrate with Nugget. Specifically, we built
a token incident-response case where analysts feed indicators of compromise from
Splunk into Google’s agent-based IR tool, GRR, with the goal of generating a listing
of all infected devices. If this was a real investigation, analysts would manually
need to utilize both tools (likely with cumbersome GUIs) and manually copy and
paste data from one tool to another. This leaves no audit trail, is prone to user
errors, and is time-consuming. Instead, the simple Nugget query is given in Listing
(5.2):

1 splunkextractor = net :192.168.100.27:8097 | extract as
splunk

2 bad_regkeys = splunkextractor |
3 filter index=" c2index; source =" WinRegistry",
4 key_path ="HKLM \[..]\ debug"
5 badregpath = bad_regkeys.key_path
6
7 grrextractor = url :192.168.100.12:8000 | extract as grr
8 active_grrclients = grrextractor |
9 filter clients.checkintime > -10d

10 clientswithregistryIOC = active_grrclients |
11 filter registrypath=badregistrypath
12
13 print clientswithregistryIOC.hostname

LISTING 5.2: Integrating GRR and Splunk via Nugget

LISTING 5.3: Expiremental Results of Integration

[’winlab01 ’,’winlab04 ’]

The integration specifically occurs on lines 11 and 12, where a GRR filter is gener-
ated using registry information from Splunk.
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Lessons learned Reflecting on our development process, we could have made
several improvements. Most importantly: as we tested the development versions
of the language, we continuously modified the core Nugget syntax. This led to con-
fusion throughout the development process, resulting in a loss of time. For future
DSL developments, we recommend thoroughly defining the DSL syntax prior to
writing the first line of code.

Second, we lost time when integrating Nugget with SCARF. Instead of integration
with the first development versions of Nugget, we fully developed Nugget with
"stand-in" runtimes. While replacing the backend runtime with SCARF was ulti-
mately successful, it was time-consuming.

Finally, we recommend building a custom input parser and interpreter from scratch.
While we had success using ANTLR, it is ultimately reliance on a third-party li-
brary. Reliance on any external libraries is not ideal, and in this case, it is only
sporadically updated. In addition, that reliance complicates language extensibility,
especially for non-technical users.

5.2.2 The scalable runtime engine

Requirements. Our engine had several requirements:

• Scalable — the solution must be able to handle arbitrarily large datasets (such
as those faced in future enterprise-sized investigations) with the simple addi-
tion of computing power.

• Input agnostic — the solution must be able to ingest data from arbitrary sources,
such as traditional hard disks, SSDs, and 100 Gigabit networks.

• Extensible — the solution must be able to easily incorporate additional func-
tionality.

• Distributed Pooling - the solution must pool available resources and distribute
tasks accordingly.

• Logging — the solution must provide robust logging mechanisms to detect
and recover from task failures inherent in scalable solutions.

Implementation details — SCARF Our solution, as outlined in Chapter 4, is
SCARF, and it is comprised of four major parts. First, a data broker is responsible
for ingesting data into an internal format. Second, a task manager takes input, which
consists of forensic tasks (such as “hash all files for a given input source”), from an
end user and coordinates execution against a pool of workers. Third, a worker pool
executes jobs as they are received, feeding results back to the task manager. Fourth,
the task manager feeds results into the results repository. This simplified explanation
is illustrated in 5.2.

While we limit an in-depth discussion of SCARF and refer readers back to our de-
tails in Chapter 4, there are a couple of notable aspects of its implementation worth
revisiting. First, the basic unit of computation is a worker, and workers are grouped
into a pool. Each worker is an individual container, which is built as a small runtime

7878



Data
Data Broker Task Manager

Worker Pool

Results 
Repository

FIGURE 5.2: Abbreviated diagram of SCARF.

specifically for a single type of forensic task. For example, our initial implemen-
tation supported the following types of containers: SHA1, grep, Apache Tika, Yahoo
open_nsfw, bulk_extractor, and ExifTool. The workers are unaware of the greater ’com-
puting fabric’ they are a part of, which simplifies the scaling process.

The scaling process is the second notable aspect of this architecture. It is handled by
an orchestration suite, allowing the user granular control over the number of each
type of individual worker deployed. For instance, if investigators identify a high-
priority forensic task, they can easily increase the number of grep containers at the
expense of reducing the number of SHA1 containers deployed. In our implemen-
tations, we utilized Docker for both containers and their orchestration; however, it
could easily be replaced by Kubernetes, rkt, or others.

The final discussion point on implementation is how we handle the storage of
results. As previously stated, analysts are faced with exponentially increasing
amounts of data, and compiled results from forensic operations are consequently
ever-increasing. To solve this challenge, we implemented a scalable datastore for
our results repository, allowing for results to be retrieved in near real-time. We
specifically utilized ElasticSearch (ES). This type of scalable architecture allows in-
vestigators to add additional hardware as computational demands, such as capac-
ity or processing speed, grow over time.

While we provide a summary the details regarding the engine here, further infor-
mation can be found in Chapter 4, as well as our publication with DFRWS [88].

5.3 Summary of Contributions

In summary, this research has yielded eight distinct contributions to the field of
digital forensics, cyber-security, and information assurance.

1. Provide digital forensic investigators the means to specify a digital forensics
computation that is both practical and formal;

2. Provide digital forensic investigators a means for reproducing digital forensic
investigations;

3. Provide an abstract layer of communication suitable for use between forensic
analysts, law enforcement, and tool developers;

7979



4. Perform a mechanism by which digital forensic tools can be benchmarked;

5. Provide external entities (e.g., NIST) a means to validate digital forensics tools;

6. Provide educators a tool-agnostic medium to teach digital forensics processes;

7. Provide a framework enabling interoperability between digital forensic tools;

8. Create a flexible, scalable, and container-based runtime to demonstrate effec-
tive usage of Nugget queries.

5.4 Looking Ahead

Looking ahead, we stress the potential impact of our research and identify improve-
ments that will increase our overall impact.

5.4.1 Research impacts

As a result of this research, we expect and hope for several community-wide im-
pacts.

First, we expect governing agencies, such as the National Institute for Science and
Technology (NIST), to adapt our approach in the verification of forensic tools used
in legal proceedings. Logistically, the only new requirement by tool vendors would
be the integration of an API allowing for Nugget query execution (as demonstrated
with both grr and splunk). Then, NIST could run quality assurance checks using the
vendor’s tools against a known baseline.

Second, we hope for the widespread adoption of Nugget throughout the analyst
community. If a community grows around the tool, it will standardize all forensic
operations – similarly to what SQL did for the database community before its in-
vention. In addition, add-ons and expansions to Nugget could be shared amongst
the community, thereby removing the potential overhead of specific tool integra-
tion.

Third, we expect Nugget to improve court proceedings involving DF. As there is
no current method to reproduce a digital forensic investigation, there is no scien-
tific method exists to verify a law enforcement analyst’s conclusion. Similarly, the
government verification of tools naturally lends itself to simplification of legal pro-
ceedings.

5.4.2 Future improvements

We have identified several future improvements for our research that will drasti-
cally increase chances of widespread adoption.

The first item on our short-list is a full-featured integrated development environ-
ment (IDE) for Nugget. This drastically decreases its learning curve and would be
an ideal platform for future GUI research.
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Second, additional Nugget extensions, such as support for mobile filesystem extrac-
tors (iOS and Android) or AI-based transforms (such as TensorFlow hooks) should
be created.

Finally, we wish to implement a custom Nugget syntax parser for user input. While
our ANTLR-based solution is robust and reasonably extensible, reliance on a third-
party for a critical component is far from ideal ideal.

5.5 Final Thoughts

In closing, our framework provides a comprehensive foundation for DF that in
turn provides a solution to a wide range of issues in the DF and cyber-security
communities. First, SCARF offers a framework to integrate arbitrary tools across a
distributed processing fabric. Second, Nugget provides a computationally specific,
yet human-readable language to describe and execute forensic operations.

Together, these frameworks provide a scalable platform for analysts to execute sci-
entifically sound digital investigations.

We sincerely hope all types of analysts and researchers, from law-enforcement to
academia, will adopt our digital forensics language.
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Appendix A

Code Listings

A.1 Nugget Grammar

1 grammar Nugget;
2
3 @header {
4 // import "../ NTypes"
5 }
6
7 prog: ( define_assign |
8 operation_on_singleton |
9 singleton_var )*

10 EOF
11 ;
12
13 define_assign: define |
14 define_tuple |
15 assign
16 ;
17
18 define: ID nugget_type LISTOP? ;
19
20 define_tuple: ID ’tuple[’ (’,’? nugget_type)+ ’]’ LISTOP ?;
21
22
23 assign: ID ’=’ STRING (’|’ nugget_action)* |
24 ID ’=’ ID (’|’ nugget_action)*
25 ;
26
27 operation_on_singleton: singleton_op ID (’,’ ID)*

output_as ?;
28
29 output_as: ’as’ output_type;
30 output_type: ’json ’;
31
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32 singleton_op: (’type ’ | ’print ’ | ’size ’ | ’typex ’ | ’
printx ’ | ’raw ’) ;

33
34 singleton_var: ID;
35
36 nugget_type:
37 ’string ’ |
38 ’sha1 ’ |
39 ’md5 ’ |
40 ’ntfs ’ |
41 ’file ’ |
42 ’packet ’ |
43 ’pcap ’ |
44 ’exifinfo ’ |
45 ’datetime ’ |
46 ’memory ’ |
47 ’http ’ |
48 ’listof -md5 ’ |
49 ’listof -sha1 ’|
50 ’listof -sha256 ’
51 ;
52
53
54 nugget_action: action_word ;
55
56 action_word:
57 filter |
58 ’extract ’ asType |
59 ’sort ’ byField |
60 ’sha1 ’ |
61 ’md5 ’ |
62 ’sha256 ’ |
63 ’getGetRequests ’ |
64 ’diskinfo ’ |
65 ’union ’ ID |
66 ’pslist ’ |
67 ’%%%’
68 ;
69
70 asType: ’as’ nugget_type (byteOffsetSize)?;
71 byField:’by’ ID;
72
73 byteOffsetSize : ’[’INT ’,’ INT ’]’;
74
75 filter : ’filter ’ filter_term (’,’ filter_term)*;
76 filter_term: ID COMPOP STRING;
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77
78 COMPOP: (’>’ | ’<’ | ’>=’ | ’<=’ | ’==’);
79 LISTOP: ’[]’;
80
81 INT : [0 -9]+;
82 ID : [a-zA-Z]+ (’.’ [a-zA-Z]+)?;
83 STRING: ’"’ (’""’|~’"’)* ’"’;
84
85 WS : [ \t\r\n]+ -> skip;
86 NL : ’\r’? ’\n’;
87
88 LINE_COMMENT: ’//’ ~[\r\n]* -> skip;

A.2 Sample Code - DEX

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <!DOCTYPE DEX_root >
3 <DEXroot version ="0.0" >
4 <CreationDate >2009 -03 -16 22:26:25 </ CreationDate >
5 <DiskImage MD5Sum ="6 aa7dd7aa21061cca79e1d85cc1a8450">
6 <Filename >disk -image </Filename >
7 </DiskImage >
8 <PartitionTable
9 ParentPtr ="/ DEXroot/DiskImage[@MD5Sum =6

aa7dd7aa21061cca79e1d85cc1
10 a8450]">
11 <SectorSize >512</ SectorSize >
12 <Offset >0</Offset >
13 <Version >Darwin 9.6.0 Darwin Kernel Version 9.6.0: Mon

Nov 24
14 17:37:00 PST 2008; root:xnu -1228.9.59~1/ RELEASE_I386
15 i386 </Version >
16 <CommandLine >fdisk -d disk -image </ CommandLine >
17 <Volume >
18 <StartSector >63</ StartSector >
19 <EndSector >32129 </ EndSector >
20 <Description />
21 <Type >7</Type >
22 </Volume >
23 </PartitionTable >
24 <MasterFileTable
25 ParentPtr ="/ DEXroot/PartitionTable/Volume[StartSector

=63]">
26 <Version >The Sleuth Kit ver 3.0.1 </ Version >
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27 <CommandLine >istat -o 63 disk -image 27</ CommandLine >
28 <entryAddress address ="27"
29 MD5sum =" f7c3c7307accce6ef2797d7beb9ecd7e">
30 <MFTEntryHeader >
31 <Entry >27</Entry >
32 <Sequence >1</Sequence >
33 <LogFileSequenceNumber >0</ LogFileSequenceNumber >
34 <Links >1</Links >
35 </MFTEntryHeader >
36 <STANDARD_INFORMATIONAttribute >
37 <Flags />
38 <OwnerID >0</OwnerID >
39 <Created >Wed Mar 11 09:38:28 2009</ Created >
40 <FileModified >Wed Mar 11 09:38:28 2009</ FileModified >
41 <MFTModified >Wed Mar 11 09:38:28 2009</ MFTModified >
42 <Accessed >Wed Mar 11 09:38:28 2009</ Accessed >
43 </STANDARD_INFORMATIONAttribute >
44 <FILE_NAMEAttribute >
45 <Flags />
46 <Name >finn.jpg </Name >
47 <ParentMFTEntry >5</ ParentMFTEntry >
48 <Sequence >5</Sequence >
49 <AllocatedSize >0</ AllocatedSize >
50 <ActualSize >0</ActualSize >
51 <Created >Wed Mar 11 09:38:28 2009</ Created >
52 <FileModified >Wed Mar 11 09:38:28 2009</

FileModified >
53 <MFTModified >Wed Mar 11 09:38:28 2009</ MFTModified

>
54 <Accessed >Wed Mar 11 09:38:28 2009</ Accessed >
55 </FILE_NAMEAttribute >
56 <Att >
57 <STANDARD_INFORMATION Resident =" Resident" />
58 <FILE_NAME Resident =" Resident" />
59 <SECURITY_DESCRIPTOR Resident =" Resident" />
60 <DATA Resident ="Non -Resident ">2517 2518 2519 2520

2521 [ ... ]</DATA >
61 </Att >
62 </entryAddress >
63 </MasterFileTable >
64 <File
65 ParentPtr ="/ DEXroot/MasterFileTable/entryAddress[@address

=27]"
66 MD5Sum ="7 a35e1fb89cd05b8465d97f6b402404c">
67 <Version >The Sleuth Kit ver 3.0.1 </ Version >
68 <CommandLine >icat -o 63 disk -image 27</ CommandLine >
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69 <Filename >finn.jpg </Filename >
70 </File >
71 <Exif
72 ParentPtr ="/ DEXroot/File[@MD5Sum =7

a35e1fb89cd05b8465d97f6b402404
73 c
74 ]">
75 <Version >Jhead version: 2.87 Compiled: Mar 11
76 2009</ Version >
77 <CommandLine >jhead finn.jpg </ CommandLine >
78 <CameraMake >Canon </CameraMake >
79 <CameraModel >Canon PowerShot A720 IS </ CameraModel >
80 <DateTime >2008:10:19 09:38:59 </ DateTime >
81 </Exif >
82 </DEXroot >

A.3 SWGDE Best Practices for Image Authentication

7 . 1 The o r i g i n a l imagery s h a l l be preserved . Any process ing should be
applied only to a working copy of the imagery

7 . 2 Assess the image s t r u c t u r e to determine whether f a c t o r s are present
t h a t can answer the examination request .

Image s t r u c t u r e examinations may include , but are not l i m i t e d to :
7 . 2 . 1 An examination of the f i l e format of the imagery
7 . 2 . 2 An examination of the metadata of the imagery

Metadata may be use fu l in i d e n t i f y i n g the source and process ing
h i s t o r y of the f i l e , but can be l imited , absent , or a l t e r e d .

Metadata may include :
Camera make/model/ s e r i a l number
Date/time of c r e a t i o n or a l t e r a t i o n
Camera s e t t i n g s
Resolut ion and image s i z e
Global P o s i t i o n i n g System (GPS) coordinates/ e l e v a t i o n
Process ing/image h i s t o r y
Or ig ina l f i l e name
Lens or f l a s h information
Frame r a t e
Thumbnail information

7 . 2 . 3 An examination of the imagery f i l e packaging ( c on ta in er
a n a l y s i s ) . This a n a l y s i s may include but i s not l i m i t e d to :

Hex l e v e l header , footer , or other information about the f i l e
Exchangeable image f i l e format ( EXIF ) information

7 . 3 Image Content
7 . 3 . 1 A r t i f a c t f e a t u r e s

Chromatic a b e r r a t i o n s
Breaks in compression blocking or p a t t e r n s

7 . 3 . 2 Phys ica l aspe c t s of the scene
Lighting , c o n t r a s t
S c a l e
Composition
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Physics
Temporal or geographic i n c o n s i s t e n c i e s

7 . 3 . 3 Human c h a r a c t e r i s t i c s
Hair d e t a i l
Scars , bruises , or blemishes
Creases
Vein p a t t e r n s
Skin c o n t a c t
Movement

7 . 3 . 4 Evidence of s tag ing
7 . 3 . 5 Photographic condi t ions

Focus
Depth of f i e l d
Sharpness/blur
P e r s p e c t i v e
Grain s t r u c t u r e
Noise
Lens d i s t o r t i o n

A.4 Sample Code - DERRIC

1 format JPG
2
3 unit byte
4 size 1
5 sign false
6 type integer
7 endian big
8 strings ascii
9

10 sequence SOI APP0JFIF APP0JFXX? not(SOI ,
11 APP0JFIF , APP0JFXX , EOI)* EOI
12
13 structures
14 SOI { marker: 0xFF , 0xD8; }
15
16 APP0JFIF {
17 marker: 0xFF , 0xE0;
18 length: lengthOf(rgb) + (offset(rgb) -
19 offset(identifier)) size 2;
20 identifier: "JFIF", 0;
21 version: expected 1, 2;
22 units: 0 | 1 | 2;
23 xdensity: size 2;
24 ydensity: size 2;
25 xthumbnail: size 1;
26 ythumbnail: size 1;
27 rgb: size xthumbnail * ythumbnail * 3;
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28 }
29
30 DHT {
31 marker: 0xFF , 0xC4;
32 length: size 2;
33 data: size length - lengthOf(marker);
34 }
35
36 SOS = DHT {
37 marker: 0xFF , 0xDA;
38 compressedData: unknown
39 terminatedBefore 0xFF , !0x00;
40 }
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