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An analytic expression for the scalar quasinormal modes of generic, spinning Kerr-AdSs black holes
was previously proposed by the authors [J. High Energy Phys. 08 (2017) 094], in terms of transcendental
equations involving the Painlevé VI (PVI) 7 function. In this work, we carry out a numerical investigation
of the modes for generic rotation parameters, comparing implementations of expansions for the PVI ¢
function in terms of both conformal blocks (Nekrasov functions) and Fredholm determinants. We compare
the results with standard numerical methods for the subcase of Schwarzschild black holes. We then
derive asymptotic formulas for the angular eigenvalues and the quasinormal modes in the small black
hole limit for generic scalar mass and discuss, both numerically and analytically, the appearance of

superradiant modes.

DOI: 10.1103/PhysRevD.99.105006

I. INTRODUCTION

The quasinormal fluctuations of black holes play an
important role in general relativity. Improving the precision
of the quantitative knowledge of the decay rates is required
to advance our understanding of gravitation, from the
interpretation of gravitational wave data to the study
of the linear stability of a given solution to Einstein
equations.

A completely different motivation to analyze quasinor-
mal oscillation of black holes arises from the gauge-gravity
correspondence. In the context of Maldacena’s conjecture,
black hole solutions in asymptotic anti—de Sitter (AdS)
spacetimes describe thermal states of the corresponding
conformal field theory (CFT) with the Hawking temper-
ature, and the perturbed black holes describe the near-
equilibrium states. Namely, the perturbation—parametrized
by a scalar field in our case of study—induces a small
deviation from the equilibrium, so that the (scalar) quasi-
normal mode spectrum of the black hole is dual to poles in
the retarded Green’s function on the conformal side. Thus,
one can compute the relaxation times in the dual theory by
equating them to the imaginary part of the eigenfrequencies
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[1]. There have been many studies of quasinormal modes of
various types of perturbations on several background
solutions in AdS spacetime, and we refer to Ref. [2] for
further discussions.

We turn our attention to a specific background, the
Kerr-AdSs black hole [3]. The motivation to put on a firmer
basis the linear perturbation problem of the Kerr-AdSs
system is threefold. First, the calculation of scattering
coefficients and quasinormal modes depends on the con-
nection relations of different solutions to Fuchsian ordinary
differential equations—the so-called connection problem,
for which we present the exact solution in terms of
transcendental equations. Second, by the AdS/CFT duality,
perturbations of the Kerr-AdSs black hole serve as a tool to
study the associated CFT thermal state [4,5] with a suffi-
ciently general set of Lorentz charges (mass and angular
momenta). Small Schwarzschild-AdSs black holes, with a
horizon radius smaller than the AdS scale, are known to be
thermodynamically unstable; it would be thus interesting to
have some grasp on the generic rotating case. Finally,
numerical and analytic studies hint at the existence
of unstable (superradiant) massless scalar modes [6-8],
which should also be well described by the isomonodromy
method.

The Painlevé VI (PVI) 7 function was introduced in this
context by Refs. [9,10]—see also Ref. [11]—as an approach
to study rotating black holes in four dimensions and a positive
cosmological constant. The method has deep ties to inte-
grable systems and the Riemann-Hilbert problem in complex
analysis, relating scattering coefficients to monodromies of a
flat holomorphic connection of a certain matricial differential

Published by the American Physical Society
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system associated to the Heun equation—the isomonodromic
deformations. For the Heun equation related to the Kerr—de
Sitter and Kerr—anti—de Sitter black holes, the solution for the
scattering problem has been given in terms of transcendental
equations involving the PVI 7 function.

In turn, the PVI 7 function has been interpreted as a chiral
¢ = 1 conformal block of Virasoro primaries, through the
Alday-Gaiotto-Tachikawa conjecture [12]. In the latter
work, the authors have given asymptotic expansions for
the PVI t function in terms of Nekrasov functions,
expanding early work by Jimbo et al. [13]. More recently,
the authors of Refs. [14,15] have reformulated the PVI ¢
function in terms of the determinant of a certain class of
Fredholm operators. We will see that this formulation has
computational advantages over the Nekrasov sum expan-
sion and will allow us to numerically solve the transcen-
dental equations posed by the quasinormal modes with high
accuracy.

The paper is organized as follows. In Sec. II, we review
the five-dimensional Kerr-AdS metric and write the linear
scalar perturbation equation of motion in terms of the radial
and the angular Heun differential equation. In Sec. II B, we
review the isomonodromy method. First, the solutions of
each Heun equation are linked to a differential matricial
differential equation, which in turn can be seen as a flat
holomorphic connection. Then, we identify gauge trans-
formations of each connection as a Hamiltonian system
which is directly linked to the Painlevé VI 7 function.
Finally, we recast the conditions to obtain our original
differential equations and their quantization conditions in
terms of the PVI 7 function.

|

In Sec. III, we give approximate expressions for the
monodromy parameters in terms of the isomonodromy time
to. Applying these results to the angular equation, we
obtain an approximate expression for the separation con-
stant for slow rotation or near equally rotating black holes.
We then set out to calculate numerically the quasinormal
modes for the Schwarzschild-AdSs and compare with the
established Frobenius methods and quadratic eigenvalue
problem (QEP).

In Sec. IV, we turn to the general-rotation Kerr-AdSs
black holes. We study numerically the quasinormal modes
for increasing outer horizon radii, again comparing with
the Frobenius method. We then use the analytical results
for the monodromy parameters for the radial equation
to give an asymptotic formula for the quasinormal modes in
the subcase where the field does not carry any azimuthal
angular momenta m; = m, = 0 (and therefore the angular
eigenvalue quantum number ¢ even). We close by discus-
sing the existence of superradiant modes for # odd.

We conclude in Sec. V. In Appendix A, we describe the
Nekrasov expansion and the Fredholm determinant formu-
lation of the PVI 7 function, reviewing work done in
Ref. [14]. In Appendix B, we give an explicit parametriza-
tion of the monodromy matrices given the monodromy
parameters.

II. SCALAR FIELDS IN KERR-AdS;

Let us review the five-dimensional Kerr-AdSs black hole
metric as presented in Ref. [3]:

A 20 20 2 Apsin’0
dszz__zr<d_(11151n2d¢_a120082d ) 9512n (aldt—(r1+a)d¢>
P -4 2 P
1+ a)(r?* + a?)sin’0 ay(r* +ad)cos’d . \?  Aycos’d (r* + a3)
dt— di dt——d
r’p? <a1a2 1-a? 1-a} v) + 2 = 1-a3 v
P s P
+—dr* +-—db-, (1)
Ar A9
where
1 1
A, = ﬁ(rz +at)(r*+a3)(1+r*)-2M = = (rr=rd)(rP = r2)(r* =r2),
Ay =1 —alcos’0 — alsin®0,  p? = r* + aicos’0 + a3sin®6, (2)

with M, a;, and a, real parameters, related to the Arnowitt-
Deser-Misner mass and angular momenta by [16—18]

M— M(2:1+2:2 E‘l‘E‘Z) j 71'M(11 j 7Z'M(12
- =272 ¢~ 0 YV T g =20

45155 288, 28,55
Ei=1-a}, E,=1-d3. (3)

When M > 0, a?, a3 < 1, all these quantities are physically
acceptable, and we have that r_ and r, the real roots of A,
correspond to the inner and outer horizons, respectively, of
the black hole [16], whereas r is purely imaginary:

—rr=1+al+a+r:+ri. (4)

For the purposes of this article, we will see the radial
variable, or rather 72, as a generic complex number. It will

105006-2
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be interesting for us to treat all three roots of A,., ri, rZ, and

r3, as Killing horizons. Actually, in the complexified

version of the metric (1), in all three hypersurfaces defined

by r = ry, r_, r, we have that each of the Killing fields
0 0 0
fk:E-f'Ql(rk)a(p‘*‘Qz("k)aw k=0,—.+, (5

becomes null. The temperature and angular velocities for
each horizon are given, respectively, by

o _al=a) o _a(-d)
k1 — r%_'_a% P k2 ri_l_a% ’
NG AR
Can(R+ad) (B +ad) 2a(+ad)(rF+ad)
(6)

Within the physically sensible range of parameters, 7', is
positive, 7_ is negative, and T is purely imaginary.

A. Kerr-anti-de Sitter scalar wave equation

The Klein-Gordon equation for a scalar of mass y in
the background (1) is separable by the factorization
® =TII(r)®(9)e~@+imd+imy Ty wit,  is the frequency
of the mode, and m;, m, € Z are the azimuthal components
of the mode’s angular momentum. The angular equation is
given by [7]

! i (sin 0 cos 0Ay d®(9)>

sin @ cos 8 df do
—lw?+ (1- a%)m% (1- a%)m%
sin%6 cos26
1 —a?)(1 - ad?
— —( li(e 2) (Cl) + mpa, + m2a2)2

+ u?(atcos’0 + a%sin@)} 0(0) =-C,0(), (7)

where C; is the separation constant and j an integer index
which will be defined later. By two consecutive trans-
formations y=sin?6 and u=y/(y—xo), with yo=(1-a?)/
(a3—a?)," we can take the four singular points of Eq. (7) to
be located at

)
as—a

u=0, wu=1, u=uy= 22 L u=oo, (8)
a;—1

and the indicial exponents2 are

'The second change of variables is justified in terms of the
asymptotic expansion for the 7 function close to 0.

The asymptotic behavior of the function near the singular
points ©(u) =~ (1 — u;)*% or O(u) ~ u~* for the point at infinity.

1
ﬁzizh ﬁ:E@i Lmﬂ,
m 1
Ay = ﬂ:—zz’ Ao = ii(w +aym; + aymy). ©)

The exponents have a sign symmetry, except for af,

which corresponds A/2 and (4 — A)/2, where A is the
conformal dimension of the CFT primary field associated
to the AdSs scalar. We define the single monodromy
parameters ¢; through af =1(a; +¢;). Writing them

explicitly,
o = My, 1 =2-A4A, Suy — Mo,
Co =C=w+aym; + am,. (10)

We note an obvious sign symmetry ¢; = —¢;, so we will
take the positive sign as standard.

Coming back to Eq. (7), by introducing the following
transformation:

O(u) = u’”‘/z(u - 1)A/2(u - uo)mZ/zS(u), (11)

we bring the angular equation to the canonical Heun
form

d’s 1 4+ m, L+w4+ﬂ 1+m2
_2+
du u u—1 u—uo du

* <u(il€21) -

with ¢, ¢,, and the accessory parameter Q, given,
respectively, by

up(up — 1)Qy -
)>S_0 (12)

u(u—1)(u — uy

1
E(ml +m2+A+€),

(13)

1
qi zi(ml—i—mz—i-A—g), qr=

w*+aiu?—C;

a%—l
—up[(my+A—=1)>—m3—1]
—(ug—1)[(m; +my+1)2=2—1]. (14)

4“0(”0— l)Qo =-

We note that Eq. (12) has the same AdS spheroidal
harmonic form as the problem in four dimensions, the
eigenvalues reducing to those ones when m; = m,,
£ —7¢/2, a, =0, and a, = ia [11]. Also, according to
Eq. (7) we have that u, in Eq. (12) is close to zero for
a, ~ a,, the equal rotation limit.

105006-3
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The radial equation is given by

1 d <rArdH(r)

1
) - {Cj—k,uzrz—krz(alazw—az(l —at)ym;—a,(1-a3)m,)?

MI(r)dr dr
N (r? + a%)j(rz +a3)? <w— m]a2](1 —za%) _mzag(l —2a§)> o 0 (15)
r"A, r-+aj r-+a;
[
which again has four regular singular points, located at the C;+ u*r: — w?
roots of 72A,(r?) and infinity. The indicial exponents 7 4z0(z0 = 1)Ko = = P

are defined analogously to the angular case. Schematically,
they are given by

1 1
ﬂk:j:EeIm k:+1_a0 and ﬂOO:E(Z:l:gOO)’ (16)

where 6;, k= +,—,0,00 are the single monodromy
parameters, given in terms of the physical parameters of
the problem by

0= (2Tmim b oy 5 A (17
2 Tk

where k = 0, +, —. To bring this equation to the canonical
Heun form which we can use, we perform the change of
variables:

Z:;:ZZ, H(Z>:Z_e‘/z(z—zo)_9+/2(z—I)A/ZR(Z),
0
(18)
where
2 2
g —r
= . 19
<0 r=rg (19)

The equation for R(z) is

R [1-6_ —-1+A 1-6,]dR
dz Z z—1 7—20] dz
20(z0 — 1)Ky

- (z(’;lﬁ) - >)R(Z> =0, (20)

2(z=1D(z -2

where

1 1
K]:§(€_+€+—A—60), K2:§(€_+€+—A+90)7

(21)

*Note that, with this choice of variables, we have that at
infinity the radial solution will behave as TI(z) ~ z=%/2,

— (20 = D[(O-+ 6, = 1) =65 - 1]
— 7220, - 1)(1=A)+ (2-A4)*-2].
(22)

Both Egs. (12) and (20) can be solved by usual Frobenius
methods in terms of the Heun series near each of the
singular points. We are, however, interested in solutions for
Eq. (12) which satisfy

1+ O(u), u—0,
S(u):{ 1+0u-1), u-1, )

which will set a quantization condition for the separation
constant C;. For the radial equation with u> >0, the
conditions that I'(z) corresponds to a purely ingoing wave
at the outer horizon z = z; and normalizable at the boundary

z =1 read as follows":

Z = 20,

R(z)—{ 1+ 0(z—-2zp), (24)

S l1+0GE-1), -1,

where R(z) is a regular function at the boundaries. This
condition will enforce the quantization of the (not neces-
sarily real) frequencies @, which will correspond to the
(quasi)normal modes.

B. Radial and angular 7 functions

The functions described in this section will be the main
ingredient to compute the separation constant C; and the
quasinormal modes, which will be the focus of the next
section. A more extensive discussion of the strategy can be
found in Ref. [19]. Let us begin by rewriting the Heun
equation in the standard form as a first-order differential
equation. Consider the system given by

“The computation of the accessory parameters and the boun-
dary conditions of the radial equation are slightly different with
respect to those shown in Ref. [19]. We have chosen a more
suitable Mobius transformation for the asymptotic expansion of
the PVI 7 function in the limit z, — 0.

105006-4
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1o y(z) y(z)
= A(z)®, D(z) = <w<1>(Z) w®(2) > ’
A(Z):%+Z€[+1A—11’ (25)

where ®(z) is a matrix of fundamental solutions and the
coefficients A;, i = 0,¢, 1, are 2 x 2 matrices that do not
depend on z. Using Eqgs. (25), we can derive a second-order
ordinary differential equation (ODE) for one of the two
linearly independent solutions y(!?)(z) given by

" = (TrA + (log A1p)")y’
+ (detA — A}, + A (logAp) )y =0,  (26)

which, by the partial fraction expansion of A(z), will have
singular points at z =0, ¢, 1, co and at the zeros and poles
of Aj(z). Let us investigate the latter. By a change of basis
of solutions, we can assume that the matrix A(z) becomes
diagonal at infinity and, thus,

K 0
Ap=—(Ag+ A +4,), A,= ( 0* ) (27)
K_

This leads to the assumption that A, vanishes like O(z7?)
as z — oo0. By the partial fraction form of A(z), we then
have

k(z—2)

eV e}

kieC, (28

where k and 4 do not depend on z but can be expressed
explicitly in terms of the entries of A;, as can be seen in
Ref. [20]. For our purposes, it suffices to check that z = 1is
a zero of Aj,(z) and necessarily of the order of 1.
Therefore, z =4 is an extra singular point of Eq. (26),
which does not correspond to the poles of A(z). A direct
calculation shows that this singular point has indicial
exponents 0 and 2, with no logarithmic tails, and hence
corresponds to an apparent singularity, with trivial mono-
dromy. The resulting equation for (26) is, in general, not
quite the Heun equation but has five singularities:

1-6, 1-6, 1-06, 1
7 _ /
y+< — Z_/1>y

<K+(K_+1)_ t(r—1)K AA=1)u > _0
2(z=1)  z(z=1)(z=1) z(z=1)(z=4) ’

(29)

where 0; = TrA; and we set by gauge transformation
detA; = Ofori = 0,¢, 1. The accessory parameters are y =
A;1(z = 1) and K, which is defined below. We will refer to
this equation as the deformed Heun equation.

The absence of logarithmic behavior at z = A results in
the following algebraic relation between K, u, and A:

K(ﬂ,ﬂ,t):w{ z_(@Jr 0, +e,—1>ﬂ

t(t—1) A A-1 A-t
ki (1+x)
AA=1) ] (30)

Now, since we are interested in properties of the solutions of
Eq. (26), and therefore of Eq. (25), which depend solely on
the monodromy data—phases and change of bases picked as
one continues the solutions around the singular points—we
are free to change the parameters of the equations as long as
they do not change the monodromy data. The isomonodr-
omy deformations parametrized by a change of 7 view A(z)
as the “z component” of a flat holomorphic connection A.
The “t component” can be guessed immediately:

A =AQ). A =- (31)
-1

and the flatness condition gives us the Schlesinger
equations:

oAy 1 oA, 1

e ;[AO’AJ’ e m[AhAt]a

0A, 1 1

E— ;[AO’At] +:[A],At] (32)

When integrated, these equations will define a family of flat
holomorphic connections A(z, t) with the same monodromy
data, parametrized by a possibly complex parameter ¢. The
set of corresponding A(z,¢) will be called the isomono-
dromic family. It has been known since the pioneering work
of the Kyoto school in the 1980s—see Ref. [21] for a
mathematical review and Ref. [10] for the specific case we
consider here—that the flow defined by these equations is
Hamiltonian, conveniently defined by the 7 function

- 1 1
%log T(t, {9, 3}) = ;Tr(AOA,) + ﬁTr(AlA,) (33)

In terms of y, 4, the Schlesinger flow can be cast as

di 0K

du 0K
dt  ou’

=——, 34
dt 04 (34)
and the ensuing second-order differential equation for A is
known as the PVI transcendent. The relation between the =
function and the Hamiltonian can be obtained by direct
algebra:

105006-5



JULIAN BARRAGAN AMADO et al.

PHYS. REV. D 99, 105006 (2019)

d -
Slogr(1:{0.5})
0,0, 0,0, AA=1)  A—t

—1 (- ="

=K(u,A,1)+ + (35)

Expansions for the PVI 7 function near t = 0, 1, and oo
were given in Refs. [12,22] and Appendix A. For ¢
sufficiently close to zero, we have

(1) = Cal”~0%—00) (1 — )10
o <1+ <%+(93—9?—62)(930—9f—02)>t

2 802
G- 0-0) = =0)) ..,
166%(1+0)?
02—(0,+0)))(6%—(6,+0)*) _, .
(0= +162225_6)2< 1+0)) i +>

(36)

The parameters in these expansions are related to the
monodromy data {6,5} = {6,,0,,0,,04;0(,01,}, where
0; = TrA; are as above and o;; are the composite mono-
dromy parameters

2 cos 77.'01'." = TrM,-Mj, (37)

where M; (M) is the matrix that implements the analytic
continuation around the singular point z; (z;). Given the
monodromy data, the ¢ parameter is related to oy, by
the addition of an even integer oy, = ¢ 4+ 2p so that the
coefficients above will give the largest term in the series. We
will defer the procedure to calculate p until Sec. IV. The
parameter x is given in terms of the monodromy data
by Eq. (A12).

The usefulness of the PVI 7 function for the solution of
the scattering and quasinormal modes for the scalar AdS
perturbations is based on the relation between the scattering
coefficients and the monodromy data [9,11]. For the
quasinormal modes, the relationship was shown in
Ref. [19]. Succinctly, it states that conditions like
Egs. (23) and (24) require the relative connection matrix
between the Frobenius solutions constructed at the singular
points to be upper or lower triangular. In turn, this means
that, in the basis where one monodromy matrix is diagonal,
the other will be upper or lower triangular. A direct
calculation shows that

cos 7o;; = cos (60; + 6;). (38)

As derived in Ref. [19], the converse is also true: If the
composite monodromy is given by Eq. (38), then the
monodromy matrices M; and M; are both either lower
or upper triangular. We note that this formulation views the

problem of finding eigenvalues for the angular equation
similar in spirit to finding the quasinormal frequencies for
the radial equation.

For the problem under consideration, the expressions
for the composite monodromies condition (38) in terms
of the quantities in each ODE (12) and (20) are,
respectively,

GOuO(mhmZ’g’AﬂuO?Cj):ml+m2+2j’ jeZ’ (39)
012, (01 8,20.0,,.C;) =0, +A+2n-2, neZ. (40)

These conditions on the 7z function for the radial and
angular system can be obtained by first placing conditions
on the matricial system (25) such that the equation
for the first line of ®(z) (26) recovers the differential
equation we are considering—Eq. (12) for the angular case
and Eq. (20) for the radial case. We need, from the generic
form of the equation satisfied by the first line (29), that the
canonical variables A(fy) = f, u(ty), and K(f,) are to be
chosen so that Eq. (30) has a well-defined limit as
A(ty) = to. These conditions, expressed in terms of the 7
function (33), are

0, —1)0,  (6,—1)6

d = 0
—1 ;{60,061 = K,
4708 7(1:10.5} ),:,O ig=1) 2y N
d d -
— |1t —1)=1 1;{0,6}"
=0 e B30 |
0, —1
= (0~ 00— 0= 0, -2), (41)

where K|, is the accessory parameter of the corresponding
Heun equation (radial or angular) and the parameters of the
7 function are given by

6,6} = {600,0, - 1,0,,00 + 1;00,— 1,01, — 1}.  (42)

These conditions can be understood as an initial value
problem of the dynamical system defined by Eq. (34).
Given the expansion of the 7 function (36), these conditions
provide an analytic solution to the system and can be
inverted to find the composite monodromy parameters o,
and o1,. We plan to apply these conditions to both the radial
equation (20) and the angular equation (12) and view
Eq. (41) as the set of (exact) transcendental equations
which can be solved numerically.

The solution for the quasinormal modes means finding
for w, given the rest of the parameters of the differential
equations (20) and (12), by solving the set of four
transcendental equations, the pair in the conditions on
the z functions (41) for each condition in the angular and
radial equations (39) and (40). The parameters for each pair
are given explicitly by
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It should be noted that the conditions (41) give an
analytic solution for the quasinormal frequencies. The set
of transcendental (and implicit) equations is probably the
best that can be done: Save for a few special cases—see
Ref. [22]—the solution for the dynamical system (34)
cannot be given in terms of elementary functions. On the
other hand, the true usefulness of the result (41) relies on
the control we have over the calculation of the PVI 7
function.

In previous work [19], we considered the interpretation
of the expansion (36) in terms of conformal blocks,
which in turn allow us to interpret the z function as the
generating function for the accessory parameters of
classical solutions of the Liouville differential equation—
an important problem in the constructive theory of
conformal maps [23]. On the other hand, expressions
like the first equation in (41) could be interpreted in the
gauge-gravity correspondence as an equilibrium condition
on the angular and radial “systems,” if one could interpret
the radial (20) and angular (12) equations as Ward
identities for different sectors in the purported boundary
CFT—see Ref. [24] for comments on that direction in the
simpler case of Bafiados-Teitelboim-Zanelli black holes.
The second condition in Eq. (41) is related to an
associated 7 function, with shifted monodromy arguments

7(1:40.5}) = 7(£: {00 0., 01, 0 }. {001 01,})  (43)

via the so-called “Toda equation”—see Proposition 4.2 in
Ref. [25], or Ref. [23], for a sketch of proof. With help
from the Toda equation, the second condition in Eq. (41)
can be more succinctly phrased as

(15:{6.5}) = 0, (44)

for which we will give an interpretation in terms of the
Fredholm determinant in Appendix A. In would be
interesting to further that line and explore the holographic
aspects of the structure outlined by the analytic solution,
but we will leave that for future work.

The expression for the z function in terms of con-
formal blocks (36), called the Nekrasov expansion, is
suitable for the small black hole limit which we will treat
algebraically in this article. From the numerical analysis
perspective, however, it suffers from the combinatorial
nature of its coefficients—see Appendix A, which takes
exponential computational time O(e*) to achieve O(V)
precision. Because of this, we have used for the

numerical analysis an alternative formulation of the
PVI 7 function through Fredholm determinants, intro-
duced in Refs. [14,15], also outlined in Appendix A. This
formulation achieves O(t") precision for the 7 function
in polynomial time O(N%).

IIL. PAINLEVE VI  FUNCTION FOR
KERR-AdS; BLACK HOLE

For u, or z, sufficiently close to a critical value of the
PVI  function (¢ = 0, 1, o), both the Nekrasov expansion
and the Fredholm determinant will converge fast. It makes
sense then to begin exploring solutions with this property. If
ug is close to 0, this corresponds to the almost equally
rotating a; =~ a, or to the slowly rotating a;, a, ~ 0 cases.
For z; close to 0, we are considering the near-extremal limit
ry ~r_or small r,,r_~0 black holes.

The procedure of solving Eq. (41) can be summarized by
first using the second equation to find the parameter s in the
Nekrasov expansion (A2) and then substituting this back in
the first equation in order to find the monodromy parameter
o—see Refs. [26,27]. In our application, there are some
remarks on the procedure. The first observation is that the =
function is quasiperiodic with respect to shifts of oy, by
even integers oy, — ¢, + 2p:

o(:{6}. {00, +2p.01,}) = sP2(1:{6}. {60101, }). PEZ.
(45)

This means that, upon inverting Egs. (39) and (40), we will
obtain, rather than the o( associated to the system, a
parameter, which we will call o, related to 6, by the shift
oo, = 0 + 2p. Let us digress over the consequences of this
periodicity by analyzing the structure of the expansion
(A2). Schematically,

(>—62—02

1
o(ty) = 13 'STP(o 4 2mitg)sm e, (46)

mezZ

where P(6 + 2m; t,)) is analytic in #,, and to find the zero of
7(to) as per Eq. (44) is useful to define X = s¢J, making the
expansion analytic in 7, and meromorphic in X. We can
now solve Eq. (44) and thus define X (o, #;) in terms of ¢ as
a series in #(. Let us classify these solutions by their leading
term:

2p+1
X, (o:t9) = 5,15 = 17"

(xo + X1tg + X283 +-++).  (47)
Depending on the sign of Reo, the leading term will depend
on #, or f;'. We will suppose Res > 0 for the discussion.
The “fundamental” solution X, is written as [see Eq. (A12)]
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2(1406)T(14+3(0,4+0y—0))L(1+1(0,—0y—0)) T(1+1(0, + 0, —0))T(1+

(61 -0 —0))

=

Y(o;t9)  (48)

Xolosty) =
o03to) I2(1-06)T(1+1(0,400+0))L(1+1(0,-0)+06))T(1+1(0, 4+ 04 +0))T(14+1(0, -0, +0))
|
with higher order in f, can be obtained from a fundamental
solution of leading order f, with shifted o:
oy [0, +0)*-65)((6: +0)* - 63,)
Y(os10) = [ 1602 (c— 172 fo X, (03 10) = 27 Xo(0 = 2ps 1y). (52)
w(1=(o- 1)(9%—9,2)(9%—930) +0%(c-2)* ; This allows us to construct a class of solutions for the
20%(6-2)? 0 conditions (41) which are generic enough for our purposes.
From X ,(o; 1)) or Y(o; ty) we can define the parameter
+ O(t%)) (49)  entering the expansion (36):

Solutions with Res < 0 can be obtained by sending ¢ to —¢
and inverting the term in square brackets in the expression
for Y. Solutions with a higher value for p will also be
of interest. These will have the leading term of the order
of t(z)” ™ and can be obtained from the quasiperiodicity
property (45), which translates to a shifting property for X ,.

From the generic structure (46) above, we have

D _Plo+2mug)X iy =X 715" Y {5+ 2mitg) X7

mez mez
(50)

where
s=0-2p, X=Xl (51)
By this property, assuming Res > 0, we have that a

solution X ,(o:1y) for Eq. (44) with a leading term of
|

x({6.5)7) = -

166%(6 — 1)?

k(to; {0,5}) = Y(0310)15° (53)
and the family of parameters s ,:
s, = X, (0:10)157 = Xo(o = 2p3 1)1, (54)

with X, given in terms of Y as above. The knowledge of
both parameters s, and o is sufficient to determine the
monodromy data by Eq. (AS).

We can now proceed to compute the accessory parameter
K in terms of the monodromy parameter ¢ by substituting
x found through Eq. (53) back to the first equation in
Eq. (41). We note that this equation has for argument the

shifted monodromy parameters {5 6}~ defined by
Eq. (42). This shift leaves the s parameter invariant
5({6.5}7) = s({0.3}), but, because of the string of
gamma functions in Eq. (A12), the x parameter entering
the asymptotic formula (36) will change as

({6.5}). (55)

(0, + 02 =) (0 -0+ 1)> = (0, + 1)?)

Using the fundamental solution for Y(o, ) (49) and (53), we find the first terms of the expansion of the accessory

parameter

4tgKyg = (6= 1) = (0, + 0y — 1) +2(6, — 1)(0, — 1)ty +

+2(0,-1)(0, - )3 +

(65— 07)°(67 - 0%.)° < 1

64 o

(6=1)2=1-603+60})((c—1)2-1-06% +03%)

3

t
26(c—2) 0

1.
(0-2)
(603 = 02)(6} = 62) +8)° = 2(63 + 67)(6} — 02.)° = 2(63 — 02)°(6} + %) — 64

326(c —2) 0
L (60 = 1)* =) (60 + 1)* = 01)((6, = 1)* = 02)((6: + 1) = 0&)
32(c+1)(6 —3) 0
1 1
-3 (5+ 1403 — 186% — 1807 + 1462,)13 + 3—25(0 -2)i3 4+ 0(R) (56)
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for Rec > 0. The corresponding expression for Res < 0
can be obtained by sending ¢ — —o. The higher-order
corrections can be consistently computed from the series
derived in Ref. [27]. Note that, since any solution for X in
the series (52) will yield the same value for s in Eq. (A2),
and hence the same value for K|, the difference between
o and oy, is tied to which terms of the expansion are
dominant and depends on the particular value for s and #,.
The generic structure of the conformal block expansion, of
which K|, is the semiclassical limit, was discussed at some
length in the classical CFT literature [28,29]. The relevant
facts for our following discussion, given the generic
expansion

4t0K0:k0+k1t0+k2[%+"'+k,1t6l+"‘, (57)

are as follows: k,, is a rational function of the monodromy
parameters, the numerator is a polynomial in the “external”
parameters 8; and o, and the denominator is a polynomial
of ¢ alone. Secondly, k, is invariant under the reflection
6 <> 2 — 0. Thirdly, k,, has simple poles at 6=3,4,...,n+
1 and 6 =-1,-2,...,—n+1 and poles of the order of 2n —
1 at 6 = 0, 2 and is analytic at ¢ = 1. Fourthly, the leading
order term of k, near 6 ~2 is (for n > 1)

k = —4( +..., C =
n n—1 16"( 2)2n—1 s n 1 s

(58)
|

where C, is the nth Catalan number. A similar structure
exists for the fundamental solution X, (o;17y) or, rather,
Y(o;19):

Y(o310) = yito +xat5 + -+ (59)
with leading order for each y, given by (for n > 3)

(0, +0)* = 65)((61 + 0)* — 0%)

=-C,_
K =2 1602(1 — 0)?
2 _ 2 \n-1(g2 _ p2\n-1
% (61 900) (90 gt) + . (60)
4_;1—162(11—1)<(7 _ 2)2(;1—1)
where the implicit terms are of the order of

O((6 —2)72*3) or higher.

A. The angular eigenvalues

The separation constant can be calculated from the 7
function expansion by imposing the quantization condition
(39). For equal rotation parameters a; = a,, the Heun
equation reduces to a hypergeometric, and an analytic
expression in terms of finite combinations of elementary
functions can be obtained [7]. We can recover the result
with the PVI 7 function by taking the limit uy — 0. The
leading term of Eq. (56) gives the exact result

Ci=(1- ad)[(my + my +2j)(my + my +2j = 2) = 2wa,(m; + my) — aj(m, + my)?| + alw® + a}A(A - 4), (61)

which recovers the literature if we set the integer labeling the angular mode as

¢ =—(my +my+2j). (62)

We note that (some of) the SO(4) selection rules are encoded in the requirement that j is an integer [30].

For generic angular parameters, the monodromy data of the angular equation (12) is composed of the single monodromy
parameters (10) {¢p.6,,.61.6o} and the composite monodromy parameters {gy,,.S1,,}- Using the formula (56), the
separation constant (61) can be written up to third order in u, (remember that ¢ = @ + a;m; + a,m,):

2 2
Co=ar+o(£+2)-2-0T%

(@3 =) [((€+2)+mi—m?)(£(£+2)+(A=2)*—

(E(6+2) =2 — A(A—d)) LT~ ) (mi = m)

(£(¢+2) =6+ (A-2)%)

)

20(£+2)

1-a3 20(¢+2)

_gf(mz) +3]—2(5+ 14(mi +¢%) = 18(m) +(A~2)%)

((my 12 =m3)(1=my)* =m3)(A—=1)*=¢*)((A=3)* =)

32(6—-1)(£+3)

+

((m—m3)(A=2)?—¢?)+8)?—64—2(mi + m3) ((A-2)*—¢*)?

32£(¢+2)

2(mi-m3)*((A=2)2+¢%) (mi-m3)*((A=2)*—¢%)?

32£(£42) 64

()| ro((=2)) (63)
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TABLE 1. The massless scalar field s-wave # = 0 and fundamental » = 0 quasinormal mode @, in a Schwarzschild-AdSs
background for some values of r, . The results were obtained using the Fredholm determinant expansion for the 7 function with N = 16.
ry 20 @00

0.005 2.49988 x 107> 3.9998498731325748 — 1.5044808171834238 x 1076j
0.01 9.99800 x 107> 3.9993983005189682 — 1.2123793015872442 x 1073}
0.05 2.48756 x 1073 3.9844293869590734 — 1.7525974895168137 x 1073}
0.1 9.80392 x 1073 3.9355764849860639 — 1.7970664179740506 x 1072i
0.2 3.70370 x 1072 3.7906778316981978 — 0.1667439940917780i
0.4 0.121212 3.7173879743704008 — 0.7462495474087164i
0.6 0.209302 3.8914015767067012 — 1.3656095289384492i
TABLEII. The same quasinormal mode frequency wg computed using numerical matching from Frobenius solutions (with 15 terms)

and the quadratic eigenvalue problem (with 120-point lattice).

ry Frobenius QEP

0.005 3.9998498731325743 — 1.5044808171845522 x 10~6i 3.9998483860043481 — 2.8895543908757586 x 107%i
0.01 3.9993983005189876 — 1.2123793015712405 x 107%i 3.9993981402971502 — 2.3439366987252536 x 107%i
0.05 3.9844293869590911 — 1.7525974895155961 x 1073i 3.9844293921364538 — 1.7526437924554161 x 1073
0.1 3.9355764849860673 — 1.7970664179739766 x 1072 3.9355763694852816 — 1.7970671629389028 x 1072
0.2 3.7906778316982394 — 0.1667439940917505i 3.7906771832980760 — 0.1667441392742093i
0.4 3.7173879743704317 — 0.7462495474087220i 3.7173988607936563 — 0.7462476412816416i
0.6 3.8914015767126869 — 1.3656095289361863i 3.8913340701538795 — 1.3656086881322822i

This expression reduces to the ones found in Ref. [7] when
a; ~ a,. It also agrees with the expression in Ref. [31] for
A =4, at least to the order given.

With an expression for the separation constant, we can
address the computation of the quasinormal modes using
the two initial conditions for the radial PVI 7z function at
to = zo. We will next explore this and compare with
numerical results obtained from well-established methods
in numerical relativity.

B. The quasinormal modes for Schwarzschild

In the limit a; — 0, one recovers the Schwarzschild-AdS
metric, and accordingly the radial differential equation
coming from the Klein-Gordon equation for massless scalar
fields (15) can be reduced to the standard form of the Heun
equation. The exponents 0, are given by

g_ia) 0 —0. 6_10)\/1—}—&

YT onT T

= O,=2—-A
02T . % '

(64)

where 22T = 22T, = (1 + 2r%)/r, is the temperature of
the black hole, given by Eq. (6) by setting a; = a, =
r_ = 0. The mass of the black hole is given by M =
1r2(1+r3). We note that the system of coordinates is
different from Ref. [32], and the singular point at r = r, is
mapped by Eq. (18) to zo = r2 /(1 + 2r%).

Likewise, the angular equation (7) reduces to a standard
hypergeometric form. The angular eigenvalues can be seen
to be the usual SO(4) Casimir: C, = £(Z + 2). In terms of
o, A, and r, the accessory parameter K, in Eq. (22) is

w? 14277 f(f+2)+A(A—2)
41+r3) 1+ 4r% 4
iﬁl + ri(2 —A)
2r, 1—|—ri '

Ky=—
(65)

This, along with the quantization condition for the radial
monodromies (40), provides through Eq. (41) an implicit
solution for the quasinormal modes w, along with the
composite monodromy oy, as we will tackle in Sec. IV B.

In order to test the method, we present in Tables I and 11
the numerical solution w, , for the first quasinormal mode
n=0,7 =0 s-wave case and compare with known meth-
ods, the pseudospectral method with a Chebyshev-Gauss-
Lobatto grid to solve the associated QEP and the usual
numerical matching method based on the Frobenius
expansion of the solution near the horizon and spatial
inﬁnity.5 The Frobenius method implements the smooth-
ness on the first derivative at the matching point of the two
series solutions constructed with 15 terms, at the horizon
and the boundary [33]. On the other hand, the pseudo-
spectral method relies on a grid with 120 points between
0 and 1. For a more comprehensive reading, we recommend
Refs. [34,35]. The results for g are reported in Tables I
and IL.

The Schwarzschild-AdS case has been considered before
[1,8,32,36,37] and should be thought of as a test of the new

31t should be noted that the Frobenius method is, in spirit,
similar to the old combinatorial approach for the PVI 7 function
given by Jimbo [13].
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TABLE III. Fundamental modes for Kerr-AdSs, £ = m; = m, =0, a; = 0.002, a, = 0.00199, and the mass of the scalar field is
7.96 x 1078,

ry ) 7 function Frobenius

0.00200  4.0x 1078 3.9999043938966996 — 3.9179009496192059 x 10~7i  3.9999043938967028 — 3.9179009496196828 x 10~7i
0.02185  0.000476717  3.9970574292783057 — 1.3247529381539807 x 107*i  3.9970574292783089 — 1.3247529381539848 x 107#i
0.06154  0.003758101  3.9760894388470440 — 3.4698629309308322 x 1073i  3.9760894388470473 — 3.4698629309308430 x 1073
0.10123  0.010040760  3.9339314599984108 — 1.8761575868127569 x 1072i  3.9339314599984140 — 1.8761575868127629 x 1072
0.14092  0.019098605  3.8762906043241960 — 5.7537333581688194 x 1072  3.8762906043241993 — 5.7537333581688376 x 1072i
0.18061  0.030620669  3.8166724096683002 — 1.2480348073108545 x 10~!i  3.8166724096683035 — 1.2480348073108582 x 107!
0.22030  0.044236431  3.7668353453284391 — 2.1574723769724682 x 1071  3.7668353453284420 — 2.1574723769724741 x 107"
0.29968  0.076131349  3.7116288122171590 — 4.3786490332401062 x 1071  3.7116288122171622 — 4.3786490332401161 x 107"
0.37906  0.111610120  3.7104224042819611 — 6.8107859662243775 x 1071~ 3.7104224042819692 — 6.8107859662244147 x 107"
0.49813  0.165833126 3.7816024214536172 — 1.0519267755676109i 3.7816024214748239 — 1.0519267755684242i
0.61720  0.216209245 3.9134030353146323 — 1.4181181443831172i 3.9134030400737264 — 1.4181181441373386i
0.73627  0.260096962 4.0879586460765776 — 1.7776344225896197i 4.0879588168442726 — 1.7776344550831753i

method. Even without an optimized code,® the Fredholm
determinant evaluation of the PVI 7z function provides a
faster way of computing the normal modes than both the
numerical matching and the QEP method. Convergence is
significantly faster when compared to the other methods for
small z5~ 107 and can provide at least 14 significant
digits for the fundamental frequencies.

IV. MONODROMY PARAMETERS
FOR KERR-AdS

The fast convergence and high accuracy of the 7 function
calculation is suitable for the study of small black holes.
Turning our attention to Kerr-AdSs, we consider spinning
black holes of different angular momenta and radii. In view
of holographic applications, we make use of an extra
parameter given by the mass of the scalar field scattered
by the black hole. Numerical results are presented in
Table 11

One can use the initial condition for the first derivative
and Eq. (44) to determine an asymptotic formula for the
composite monodromy parameters ¢ and s as functions of
the frequency. In the spirit of establishing the occurrence of
instabilities, it is worth looking at the small black hole limit.
To better parametrize this limit, let us define

2 2

— 2
al - €1r+’

a; = 62}’%” (66)

with the understanding that 7% is a small number. The three
parameters 2, €, and ¢, are sufficient to express the other
roots of A, as follows:

®Using PyTHON’s standard libraries for arbitrary precision
floats. The PYTHON code for both the Nekrasov expansion and
the Fredholm determinant can be provided upon request.

In the table values, we have neglected some precision in the
results for the sake of clarity, but we can provide more accurate
values upon request.

2 :1—0—(1—0—614—62)& I+ dererri _q
- 2 (1+ (146 +€)rh)?
(67)
2_1"’(1"’61 +€2)I"+
_ro
2
x [ 4/1+ derear’ +1]. (68)
(I+ (1 +e +e)ri)?
Since we want r2 < 2, the ¢; will satisfy
€16 ST+ 246 +e)ri =1, (69)

and we remind the reader that €, , are also constrained by
the extremality condition a; < 1 the space of allowed ¢ , is
illustrated in Fig. 1.

We will focus on the case m; = m, = 0 (and therefore 7
even) in order to keep the expressions reasonably short. It
will be convenient to leave z, implicit at times:

14+ B+e )i =V (1 (16 +e)ri) +4eer
1+ B+e 46)r2 +/(1+(1+e +e)r2) 2 +4ejerr?
(70)

which asymptotes as zy = (1 —¢€;e,)r2 + O(r). The
expansions of the single monodromy parameters are, up
to terms of the order of O(r3),

w=o(1-30+e)t+ert ). o

_ iw(l +e)(d +€2)r

0
* 1 — €16

- (72)

105006-11

9



JULIAN BARRAGAN AMADO et al.

PHYS. REV. D 99, 105006 (2019)

o te)(l+e)

9 —
1—6162

Veery +---. (73)

The single monodromy parameters can be seen to have the
structure

0_=—ip_ry, 0, =ip,ry, (74)
where ¢, are real and positive for real and positive . We
also observe that 6 is parametrically close to the frequency
o, and the correction is negative for positive r,.

We now proceed to solve for the composite monodromy
parameter 6, = o, (¢) using the series expansion (56). For
even £ > 2, the first correction is

or=C+2—vr3

(I+e)(1+e)
4+ 1)
—A(A=4)r2 +0(%),

=C+2- (Baw? +3£(¢ +2)

£>2, (75)

and, due to the pole structure of Eq. (57), a naive series
inversion will yield the expansion for ¢ up to the order of
r2¢. The case £ = 0 is then special and will be dealt with
shortly. One can see from Eq. (54) that, for p = 0, the
monodromy parameter s will behave asymptotically as z;,°,
diverging for small zy. Changing the value of p will change
this behavior. Changing the value of p means shifting the
argument o that enters the definition of X (o, ) in Eq. (52)
and therefore of Y(o, 1) in Eq. (48). Let us call Y, the
expression in Eq. (49) for generic p and 6 ~2 + ¢. The
expression for p = 0 is given by

Yo0=Y(0s520)
W — (A — £ —4)

= — 1—
(I =eae) g2
2i
X<1+f—_'_2¢+r+)ri+, KZQ, (76)

We point out that this value is actually independent of p,
except when 2p = 7, as we will see below. We anticipate,
from Eq. (53), that Y, , for 2p < # will yield a larger value
for s, for smaller r,. We also remark that s, will have a
nonanalytic expansion in 7, due to the term z,”’. Finally,
from the expansion we conclude that Y, , has an imaginary
part of subleading order.

A.?=0

The “s-wave” case £ = 0 is singular, since the leading
behavior of o — 2 is of the order of r2+. The expansion (57)
does not converge, in general, due to the denominator
structure of the coefficients «,,. For the small r, black hole
application, however, we are really dealing with a scaling
limit where

0_=p_\/2.

have finite limits for ¢, and v as zy — 0. Because of the
poles of increasing order in ¢ in Eq. (57), in the £ = 0 case
one has to resum the whole series in order to compute v.

Thankfully, the task is amenable due to the fact that, in
the scaling limit, the term of the order of z; in each of the
factors k,#; in the expansion (57) comes from the leading
order pole (58):

0, =@, \/zo, and 6=2-vzy (77)

(2 = %) (63 = 63 )"
16n02n—1

k,zp = —4C,_, 20 +0(z).  (78)

The series can be resummed using the generating function
for the Catalan numbers

S 1-V1—4
1+_x_%2x2%_5x3+”..::ZE:(%x”::————EE———E, (79)
n=0

and the result for v readily written

<0
Zo—l

470Ko(£=0)+ (0, +60_—1)24+2(0,—1)(6,.—1)

1 @ —*) (07— 6%
:1+5(9§—9§°)ZO—21)Z0\/1+(+ 4)0(21 )

+0(z3). (80)

A similar procedure allows us to compute the parameter

Y(v) =Y (2 — vz¢;29) up to the order of zg/z:

2 2
V) =—z0(1 +o. vz T2

5 <1+¢1+<¢1—¢%><e%—930>> 1)

49?2

For the application to the £ = 0 case of the scalar field,
we will use the notation (74) and again use 6y = 2 — yyr2.
In terms of the black hole parameters, v, has a surprisingly
simple form:

vy =

Bl

and

(14 €)(1 +€2)1/ (302 = A(A = 4))? — 402(0? - (A - 2)%) + O(3), (82)
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) o*—(A—-4)?
Yoo=Y(00:20) = (1 —erex)ri (1 +ip 1) ( )

3w’ —A(A—4)

64

2
* V(Bw? —A(A—4))? —4a*(@* - (A - 2)2)> *

(83)

Finally, let us define the shifted Y, , for 2p = £. Since the shifted argument ¢ —2p is close to 2, we need the same

scaling limit as above in Eq. (81). The result is

. W
Yor=Y(op—tiz0) =—(1—€1e)ri (1+ip ry) 64

where v, is taken from Eq. (75).
To sum up, we exhibit the overall structure for small r :

af:f—l—Z—yt»ri—l—---, (85)
Yor= —(I —€16)9,(1 + i¢+r+)ri +--, (86)

where v, and 9, have nonzero limits as r, — 0, have
corrections of the order of ri, and, most importantly, are
positive for  real and greater than A — 4.

B. The quasinormal modes

Implementation of the quantization condition (40) can be
done with the formula (B7). This yields a transcendental
equation for @ whose solutions will give all complex
frequencies for the radial quantization condition. These
|

2—(A—4)2

160 (n +£/2 + DI(A =2+ n+ £/2) 2

1+\/1+(4(f+1)2w2(w2—(A—2)2) L

30 +3£(¢+2)— A(A—4))?

(84)

I
include negative real-part frequencies, as well as non-
normalizable modes. Since we are interested in positive

real-part frequencies, we will consider a small correction to
the vacuum AdSs result [38,39]

W, =A+2n+70+ nn’fri, (87)

under the hypothesis that 7, » has a finite limit as r, — 0.
One notes by Eq. (71) that 8, and @ are perturbatively
close, so 7, , can be calculated perturbatively from the
expansion of d,. We will assume that A is not an integer.

The parametrization (87) allows us to expand Eq. (54) as
a function of r,. The procedure is straightforward: We use
Y, from Eq. (85), as it gives the right asymptotic behavior,
to compute X using Eq. (48) and then the s parameter (54).
To second order in r, we have

T T T N+ £/2+ 3)0(A + 1+ £)2)

(1-€1e2)*(47 — ¢2)

Vel —2-+2u,1%
<1 — i r, + 2i7§j _f¢§>Yf,fr+2+2 L (88)
+ .

and the leading behavior for the parameter s, , given Y, , in Eq. (85) is

2iv, o1y

Spne = Zn,f <1 +

(I+e)(+e)(A+2n+7)

2v,,fri
CIEINE (89)

where we defined v, , as the correction for ¢ as in Eq. (85) calculated at the vacuum frequency v (w = A +2n+¢).

Finally,

_160(n+£/2+ )I(A =2+ n+7/2)

2
Unflg"f

e T(n+¢/2+3)0(A+n+¢/2)

(14 €)2(1+e) (A +2n+ )% (90)

again, with 9, , = 9(w = A + 2n + £). We also note that X, , is real and positive under the same conditions as Eq. (85).
Moreover, the choice of p implicitin Y, , guarantees that s, , has a finite limit as », — 0, although its dependence on r is

nonanalytic.

Equation (B7) can now be used, setting cos zo|, = cosz(6; + 0,) for the radial parameters, to find a perturbative
equation for 7, ,. We expand each of the terms in Eq. (B7) using Eq. (74) as well as

Oy = wy — pr,

wy=A4+2n+7,

and 6=2+¢—v,r. (91)

105006-13



JULIAN BARRAGAN AMADO et al.

PHYS. REV. D 99, 105006 (2019)

Now, the following two relations hold:

sin’zo cos (0, + 6,) — cos 78, cos 78y, — cos 78, cos 78, + cos o (cos 76, cos 76, + cos 78, cos 76,

3 2i1/§r+

= = sin(zA) (¢} ~ ¢2) (ﬂ T

3

—%(cosn&m —cosn(8; +06))(cosnbhy —cosx(0, +0)) :%sin(ﬂA)(qIﬁ%r —¢?%) <ﬁi1/> <1 £ (

+ 61)(1 + 62)600

(92)

>r1+...’

2iUfl"+ 4
= i+
2 1+€1)(1+€2)600> +

(93)

We can now proceed to calculate the first correction to the eigenfrequencies (87). By using the approximations (92) and
(93) above, we find the correction to 6, for each of the modes n, -

T+ 1 2

/Bn.f = +4i

Ve

h
ne r. +O(r2 logry).

1%
nit zn,f -1

Finally, after some laborious calculations, we find

1+e)(l+e)(A+2n+7) (S, — 1)

(94)

1+e)(1+ Z, '
ty =T VUHE) Zoe _3n on i o) L op s o4 1)1 4e)(1+e)(A+2n+ ) (2A+ 20+ £ -2)r,
2 2(6+1) 4
+O(rilogry), €22, (95)
with
Z2,=0BA+2n+)+34(6+2) - AA=4)> +4(Z+ 1)*(A+2n+£)*2n+ £+ 1)2A+2n+£-2).  (96)

For ¢ = 0, the form of the correction is slightly different. Repeating the calculation, we see that 7, ,—( has the simpler form

_ (+e)(d+e)
n0 — 4
+O(rilogr,).

We note that both the real and imaginary parts of the
corrections 7, » are negative, the real part of the order of
r4 as expected, and the imaginary part of the order of 3. We
stress that we are taking m; = m, = 0 an illustration of the
fundamental mode @, as a function of r, is depicted in Fig. 2.

In the midst of the calculation, we see that the imaginary
part of 7, o has the same sign as the imaginary part of 6,
which in turn is essentially the entropy intake of the black
hole as it absorbs a quantum of frequency w and angular

momenta m; and m,:

i L w—mQy ) —mQ,,
T,

. (98)

giving the same sort of window for unstable mode
parameters m; and m, as in superradiance, so a closer
look at higher values for m, ; is perhaps in order for future
work. A full consideration of linear perturbations of the
five-dimensional Kerr-AdS black hole, involving higher
spin [40,41], can be done within the same theoretical
framework presented here and will be left for the future.

BA4+2n-12=(A=22+1)—in+ 1)(14+¢e)(l +e&)(A+2n)(A+n—1)r,

97)

|
We close by observing that the expressions (95) and (97)
above seem to represent a distinct limit than the results in
Ref. [7]—which are, however, restricted to A = 4—and
therefore not allowing for a direct comparison.

C. Some words about the Z odd case

Let us illustrate the parameters for the subcase m; = ¢,
my = 0. The single monodromy parameters admit the
expansion

3
90=a)+\/e_lfr+—§(l+€1)(1—|—€2)a)ri+~--, (99)
Ve (1+ 1 1
9+:—lf 61( €2)+lw( +€1)( +€2)r++“.’ (100)
1—6162 1—6162
NVa(lte) . (1+e)(l+e)
0 =it —
_=1 I—¢6, o —e6, VEIEF L+,
(101)
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FIG. 1. The space of parameters defined by e;e, < 1 corre-

sponds to the gray area. The dashed lines represent the extremal
black holes where r, = r_, for r, = 0.002, 0.2, 0.25, 0.333, 0.5,
1 with increasing dash density. The curve r, = 1, the one closest
to the right upper corner, is drawn for comparison.

with all of them finite and nonzero as r, — 0. As usual, 6.,
are purely imaginary, whereas 6, is real for real w. These
properties hold for any value of m; and m,.

For # > 1 and odd, the composite monodromy param-
eters are found much in the same way as the case £ > 2
considered above, by inverting Eq. (56). In the following,
we set wyg = A + 2n + £ as the limit of the frequency as
r, — 0. We have for the composite monodromy parameter

o, =2+¢—vrt +0O(rt), (102)
with v,, defined as in Eq. (89), now for # > 1:
ve=(1+e)(1+e)
2 2)-A(A-4
(I AB=d) s (g3

A +1) ’

For # = 1, finding v, from condition (41) requires going
to higher order in z,, due to the pole at ¢ =3 in the
expansion (56):

b — (1 +€1)(1 +€2)
b 32

1
(B +9— A(A —4)) 2—1—3\/34—8

2A% — 16A% + (50 — 3w}) A% + 12(w} — 6)A — 3603
(3w} +9— A(A —4))?

(104)

For the following discussion, we take from this calculation that the v,’s are real and greater than 1 for A > 1, which we
will assume to hold for any m; and m,. Apart from these properties, the particular form for v, will be left implicit. Given v,,
we can use the same procedure as in the even £ case to compute the s parameter. Again, in order to have a finite r, — 0
limit, we take p = (¢ + 1)/2. After some calculations, we have

Spe =1+ 2urk logr, + B, sveri + O(rd (logr,)?)

with

2

(105)

2 2

146, +6_ 146, —6_ 342n+7 3-2A-2n—-¢
En,f_2y+1og(1—ele2)+lp(i)+W<L>+\P<i)+\y<—”>, (106)

where ¥(z) is the digamma function and y = —¥(1) the
Euler-Mascheroni constant. In the definition above, we
have already set 0y = A + 2n + ¢ — 3, ,r%, but as we can
see from Eq. (105), now we need s,, » to second order in the
expansion parameter r,. We again assume that A is, in
general, not an integer, since this is irrelevant for the
determination of the imaginary part of the frequency.
However, having A integer will change the behavior of
the real part of the correction to the eigenfrequency with
respect to 7.

We note that s,, is nonanalytic, and therefore the
expansion for f,, will include terms like logr,. We
expand Eq. (B7) with 6, =2—-A + 6, (up to an even
integer) to fourth order and find as a first approximation to
the correction to the frequency

My = "'+I/n,f< (107)

v,,+1 r?
n,f + En’f> + + N
Vyye—1 logr,
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where the terms left out are real, stemming from the relation
between 6, and w.

From Eq. (107), any possible imaginary part for the
eigenfrequency will then come from the imaginary part of
E,.¢- The latter can be calculated by using the reflection
property of the digamma function

ImE, , = —% (m%(ﬂ +6.) +tang(9+ —9_)> . (108)

or, in terms of m; and m,,

ImE, , = 7 tanh <£@(ml — m2)>

2 21"’\/6]62

T T /€] + /€

—tanh [ -— = . (10
—|—2 an (2 - e (m]+m2)> (109)

We then see that the imaginary part of E, , can have any
sign, a strong indication that the £ odd modes are unstable.
Numerical support for this is included in Fig. 3, in which
we use an arbitrary-precision PYTHON code (capped at 50
decimal places) to show a slightly positive imaginary part
for the resonant frequency at r < 0.02. We point out that,
indeed, instabilities in asymptotically anti—de Sitter spaces
are expected from general grounds [42], and odd 7
instabilities for the massless case (A =4) were found
in Ref. [7].

V. DISCUSSION

In this paper, we used the isomonodromy method to
derive asymptotic expressions for the separation constant
for the angular equation (angular eigenvalue) in (63) as well
as the frequencies for the scalar quasinormal modes in a
five-dimensional Kerr-AdS background in the limit of
small black holes; see, in particular, Egs. (95) and (97).
The numerical analysis carried out for the Schwarzschild-
AdS and Kerr-AdS cases showed that the 7z function
approach has advantages when compared to standard
methods, in terms of faster processing times. For £ even,
the correction to the vacuum AdS frequencies is negative
with a negative imaginary part for A > 1, the scalar
unitarity bound, showing no instability in the range studied.
For ¢ odd, there are strong indications for instability due to
the general structure of the corrections in Eq. (109). In
particular, for # =1, the numerical results shown in
Fig. 3 exhibit an unstable mode for r, < 0.02 and nearly
equal rotational parameters. We plan to address the phase
space of instabilities and holographic consequences in
future work.

The method in this paper relies on the construction of the ¢
function of the PVI transcendent proposed in the literature
following the Alday-Gaiotto-Tachikawa conjecture. The
conditions in Eq. (41) translate the accessory parameters in
the ODEs governing the propagation of the field—themselves

depending on the physical parameters—into monodromy
parameters, and the quantization condition (39) allows us to
derive the angular separation constant (63). In turn, the
quantization condition for the radial equation (40), through
series solutions for the composite monodromy parameters s
and o, allows us to solve for the eigenfrequencies ,, », evenin
the generic complex case.

The interpretation of the ODEs involved as the level-2
null vector condition of the semiclassical Liouville field
theory allows us to conclude that all descendants are
relevant for the calculation of the monodromy parameters,
even though, for angular momentum parameter £ > 2, one
can consider just the conformal primary (first channel) for
the parameter o).

The scaling limit resulting from this analysis gives the
monodromy parameter ¢ in Eq. (75). For the parameter o4,
the requisite of a smooth r, — 0 limit forces us to consider
the asymptotics of the whole series (56), thus involving all
descendants. This means that a naive matching of the
solution obtained from the near horizon approximation to
the asymptotic solution near infinity is not a suitable tool
for dealing with small black holes. For the composite
monodromy parameter o;, more suitably parametrized
by s in Eq. (B7), the requirement of a finite r, — O limit
allows us to select the solutions (89) for £ even and (105)
for £ odd. Although finite in the small black hole limit,
the s parameter has a nonanalytic expansion in terms
of r!(logr,)".

For the s-wave £ = 0 calculations, we had to consider a
scaling limit in Eq. (56) where the Liouville momenta
associated to §, and 0_ go to zero as r , at the same time as
Zo and o — 2 scales as r%r. The formulas (80) and (81) are
reminiscent of the light-light-heavy-heavy limit of Witten
diagrams for conformal blocks [43]. It would be interesting
to understand the CFT meaning of this limit.

The Toda equation, which allows us to interpret the
second condition (41) on the Painlevé 7 function, also
merits further study. As for the first condition, we note that
it provides the accessory parameters for both the angular
and radial equations—Q, in Eq. (12) and K, in Eq. (20),
respectively—as the derivative of the logarithm of the 7
function for each system. On the other hand, these
accessory parameters are both related to the separation
constant of the Klein-Gordon equation, as can be verified
through Egs. (14) and (22). Including these terms in the
definition of a 7 function for the angular and radial systems,
we can represent the fact that the separation constant is the
same for Eqgs. (12) and (20) as the condition

d
== 10g Tradial » ( 1 10)

IOg 7'-angular dz
0

dl/to

which in turn can be interpreted as a thermodynamical
equilibrium condition. Given the usual interpretation of the
7 function as the generating functional of a quantum theory,
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the elucidation of this structure can shed light on the
spacetime approach to conformal blocks. The present work
gives, in our opinion, convincing evidence that the
PVI 7 function is the best tool—both numerically and
analytically—to study connection problems for Fuchsian
equations, in particular, scattering and resonance problems
for a wide class of black holes.
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APPENDIX A: NEKRASOV EXPANSION AND
FREDHOLM DETERMINANT FOR PAINLEVE VI

In what follows, we will assume the “sufficient general-
ity condition”
00,%2, 60,i90i0,¢2, 60,i61i9w¢z. (Al)
The Nekrasov expansion of the PVI z function is given as
a double expansion [22,23]

( ) ZNG 00r+2nN§;,+2n.€0snt%((00'+2n)2_93_912)(1 - t)%glet Z B/l,;t (97501+2n)t‘/1‘+w’ (A2)
nez AUEY
where
Gl +1(0; +¢0,+0)G(1 +L(0; +¢(0,—0
Neze. _He—:t ( 2( 3 €< 2 1))) ( 2( 3 5( 2 1))) (A3)

G(1-0,

)G(1 4 0,)G(1 - 65)
with G(z) the Barnes functlon defined by the solution of the functional equation G(z + 1) =

I'(z)G(z), with G(1) = 1 and

I'(z) the Euler gamma. ¥ The other parameters in Eq. (A2) are the coefficients of the ¢ = 1 Virasoro conformal block

—03)((61 + 0+ 2(i — j))* — 6%)

Bﬁyﬂ(é, o) =

(ij)er

) = H (0,40 +2(i—j))?

(0, —c+2(i—)))*

1605 (i, j)(A; =i +p; = j+ 1 +0)?

—00)((0, — 0 +2(i— j))* — 0%)

XH

l}E}l

where Y denotes the space of Young diagrams and A and u
are two of its elements, with the number of boxes || and
|u|. For each box situated at (i, j) in 4, 4; are the number of
boxes at row i of 4, /1’ the number of boxes at column j of
A h(i, j) = 4 + 4 —i—j—l—l is the hook length of the
box at (i, j). Flnally, the parameter s is given in terms of
monodromy data by

_ (Wi, =2p 1= PorPo1) — (Wor —2Po1 = PosP1.) €xp(io, )
(2cosz(0,—00;) — o) (2c0s7(0) —00;) = Poo)

s

(A5)
where
p; = 2cos nb;, pij = 2cos mo;j,
Wor = PPt + P1Pcos Wir = P1Pt + PoPoos
Wor = PoP1 + PiPoo (A6)

¥Since 7 is defined up to a multiplicative constant, this
functional relation is the only property of the Barnes function
necessary for obtaining the expansion.

16h5 (i, j)(W; =i+ 24 —j+1—-0)

: (A4)

The Fredholm determinant representation for the PVI =
function uses the usual Riemann-Hilbert problem formu-
lation in terms of Plemelj (projection) operators and jump
matrices. The idea is to introduce projection operators which
act on the space of (a pair of) functions on the complex plane
to give analytic functions with prescribed monodromy
(Cauchy-Riemann operators). Details can be found in
Ref. [14]. One should point out that the two expansions
agree as functions of ¢ up to a multiplicative constant:
(1) = const - £ ~%~0) (1 — 1)=20 det(1 — AD), (A7)
where the Plemelj operators A and D act on the space of pairs
of square-integrable functions defined on C, a circle on the
complex plane with radius R < 1:

(49)0)= § 35l gl).
Do) = f 3060, o= (1)
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with kernels given, for |7| < R, explicitly by

v -l )1
A(z.7) = (01,000, 0,2) ¥ (61,00, 03 7') ’

z—7
(6,,600.~0;1/2)¥"' (6,.60,—031/7)

-7

D(z.7) = ®(1)?

x ©71(1). (A9)
The parametrix ¥(z) and the “gluing” matrix ®(z) are
respectively,

J

¢(a1902’a3;z) X(al’aZ’af’&;Z)
Y(ay,ay,a3;2) = ,
x(a,a,—as;z) @lay, o, —a3,2)

o2
(D([) = ( 0 t0/2K1/2> s (A]O)

with ¢ and y given in terms of Gauss’ hypergeometric
function:

1 1
Play, ay,a332) =, F) (E (a1 +a + 053)5((11 —a+ 053)§053;Z),
a5 — (o) + a3)? 1 1
xa o, a332) = ﬁzzﬂ (1 +§((11 +ay+a3), 1 +2((11 —a+o3);2+ a3z ) (A1)
Finally, « is a known function of the monodromy parameters:
2(1—0)T(1+35 (6, + 60 +0))L(1 +5(0, =0+ 7)) T(1 +5(6) + 0 +0))T(1 +3(0) — 0, +0))
o= st R = ] 1 (A12)
(1 +0) (1 +5(0,4+ 6y —0))I'(14+5(0,—6y—0)) [(1 +5(0) + 0, —0))I'(145(0, — 0y —0))

Meaningful limits for integer ¢ violating Eq. (A1) can be
obtained by canceling the factors in the denominator of s
with poles of the Barnes function from the structure
constants NG 17",

For the numerlcal implementation, we write the matrix
elements of A and D in the Fourier basis z", truncated up to
the order of N. Again, the structure of the matrix elements
A, and D,,, can be found in Ref. [14]. This truncation
gives 7 up to terms O(7V) and, unlike the Nekrasov
expansion, can be computed in polynomial time. The
formulation does, in principle, allow for the calculation
for arbitrary values of 7, by evaluating the integrals in

|

Eq. (A8) as Riemann sums using quadratures [44], so there
are good perspectives for using the method outlined here
for more generic configurations.

APPENDIX B: EXPLICIT MONODROMY
CALCULATIONS

Given oy, and s satisfying Eq. (A1), we can construct an
explicit representation for the monodromy matrices—up to
conjugation—as follows.

The monodromy matrices are

w i cos 7, — cos nlye' ™ 2s;sin% (oo, + 0y — 0,) sin% (6o, — 0y — 0,) (B1)
" sinaoy, —2s7! sinZ (6q, + 6y + 6,) sin§ (6o, — 6y + 6,) — cos 6, + cos e "o '
u i cos 76, — cos d,e' ™o —2s;e"0 sin% (6, + 0y — 0,) sin% (65, — 0y — 0,)
" sinzoy, \ 257 1e im0 sin2 5 (00 + 6y +6,)sing (6p,— 0y +6,) —cos ) + cos nf,e~ "o ’
(B2)
Y i —c08 7l + cos e 7o 25,0 sinZ (6g, 4 6; + 04 ) sinZ (oo, + 0, —0,)
' sinmoy, —2s, e~ sinZ (6, — 0} + 0, sin§ (65, — 0 —0,) o8 16, — COS 1l e ’

(B3)
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i —cos 0, + cos 76, e~ —2s,sin% (6, + 0; + 0,) sin% (og, + 0 — 0,)

My =— .
sinzog, \ 25, sinZ (6o, — 0 + O,) sinZ (6, — 0 — O) cos ), — cos e "o

(B4)

The matrices satisfy

einao, 0 e*l’ﬂdg, 0
0 e~ oo 0 e oo
The parameters s; and s, are related to the parameter s defined in Eq. (AS) through
Si
=1L, B6
=1 (B6)

A direct calculation shows that
sin?zr6, cos 7o, = cos w8, cos n0y, + cos 7, cos 78, — cos w6y, (cos #h cos 78, + cos 6, cos 70,
- % (cos 0y, — cos (0 — op;))(cos 7Oy — cos (0, — 6¢,))s
- % (cos 0y, — cos (0 + 6,))(cos 78y — cos z(0, + 6,))s™ . (B7)

We close by noting that, for the special case of interest where 6, = 6, + 0, + 2n, n € Z, the expressions above are still
valid.
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