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An analytic expression for the scalar quasinormal modes of generic, spinning Kerr-AdS5 black holes
was previously proposed by the authors [J. High Energy Phys. 08 (2017) 094], in terms of transcendental
equations involving the Painlevé VI (PVI) τ function. In this work, we carry out a numerical investigation
of the modes for generic rotation parameters, comparing implementations of expansions for the PVI τ
function in terms of both conformal blocks (Nekrasov functions) and Fredholm determinants. We compare
the results with standard numerical methods for the subcase of Schwarzschild black holes. We then
derive asymptotic formulas for the angular eigenvalues and the quasinormal modes in the small black
hole limit for generic scalar mass and discuss, both numerically and analytically, the appearance of
superradiant modes.

DOI: 10.1103/PhysRevD.99.105006

I. INTRODUCTION

The quasinormal fluctuations of black holes play an
important role in general relativity. Improving the precision
of the quantitative knowledge of the decay rates is required
to advance our understanding of gravitation, from the
interpretation of gravitational wave data to the study
of the linear stability of a given solution to Einstein
equations.
A completely different motivation to analyze quasinor-

mal oscillation of black holes arises from the gauge-gravity
correspondence. In the context of Maldacena’s conjecture,
black hole solutions in asymptotic anti–de Sitter (AdS)
spacetimes describe thermal states of the corresponding
conformal field theory (CFT) with the Hawking temper-
ature, and the perturbed black holes describe the near-
equilibrium states. Namely, the perturbation—parametrized
by a scalar field in our case of study—induces a small
deviation from the equilibrium, so that the (scalar) quasi-
normal mode spectrum of the black hole is dual to poles in
the retarded Green’s function on the conformal side. Thus,
one can compute the relaxation times in the dual theory by
equating them to the imaginary part of the eigenfrequencies

[1]. There have been many studies of quasinormal modes of
various types of perturbations on several background
solutions in AdS spacetime, and we refer to Ref. [2] for
further discussions.
We turn our attention to a specific background, the

Kerr-AdS5 black hole [3]. The motivation to put on a firmer
basis the linear perturbation problem of the Kerr-AdS5
system is threefold. First, the calculation of scattering
coefficients and quasinormal modes depends on the con-
nection relations of different solutions to Fuchsian ordinary
differential equations—the so-called connection problem,
for which we present the exact solution in terms of
transcendental equations. Second, by the AdS=CFT duality,
perturbations of the Kerr-AdS5 black hole serve as a tool to
study the associated CFT thermal state [4,5] with a suffi-
ciently general set of Lorentz charges (mass and angular
momenta). Small Schwarzschild-AdS5 black holes, with a
horizon radius smaller than the AdS scale, are known to be
thermodynamically unstable; it would be thus interesting to
have some grasp on the generic rotating case. Finally,
numerical and analytic studies hint at the existence
of unstable (superradiant) massless scalar modes [6–8],
which should also be well described by the isomonodromy
method.
The Painlevé VI (PVI) τ function was introduced in this

context by Refs. [9,10]—see also Ref. [11]—as an approach
to study rotating black holes in four dimensions and a positive
cosmological constant. The method has deep ties to inte-
grable systems and the Riemann-Hilbert problem in complex
analysis, relating scattering coefficients to monodromies of a
flat holomorphic connection of a certain matricial differential
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system associated to theHeun equation—the isomonodromic
deformations. For the Heun equation related to the Kerr–de
Sitter and Kerr–anti–de Sitter black holes, the solution for the
scattering problem has been given in terms of transcendental
equations involving the PVI τ function.
In turn, the PVI τ function has been interpreted as a chiral

c ¼ 1 conformal block of Virasoro primaries, through the
Alday-Gaiotto-Tachikawa conjecture [12]. In the latter
work, the authors have given asymptotic expansions for
the PVI τ function in terms of Nekrasov functions,
expanding early work by Jimbo et al. [13]. More recently,
the authors of Refs. [14,15] have reformulated the PVI τ
function in terms of the determinant of a certain class of
Fredholm operators. We will see that this formulation has
computational advantages over the Nekrasov sum expan-
sion and will allow us to numerically solve the transcen-
dental equations posed by the quasinormal modes with high
accuracy.
The paper is organized as follows. In Sec. II, we review

the five-dimensional Kerr-AdS metric and write the linear
scalar perturbation equation of motion in terms of the radial
and the angular Heun differential equation. In Sec. II B, we
review the isomonodromy method. First, the solutions of
each Heun equation are linked to a differential matricial
differential equation, which in turn can be seen as a flat
holomorphic connection. Then, we identify gauge trans-
formations of each connection as a Hamiltonian system
which is directly linked to the Painlevé VI τ function.
Finally, we recast the conditions to obtain our original
differential equations and their quantization conditions in
terms of the PVI τ function.

In Sec. III, we give approximate expressions for the
monodromy parameters in terms of the isomonodromy time
t0. Applying these results to the angular equation, we
obtain an approximate expression for the separation con-
stant for slow rotation or near equally rotating black holes.
We then set out to calculate numerically the quasinormal
modes for the Schwarzschild-AdS5 and compare with the
established Frobenius methods and quadratic eigenvalue
problem (QEP).
In Sec. IV, we turn to the general-rotation Kerr-AdS5

black holes. We study numerically the quasinormal modes
for increasing outer horizon radii, again comparing with
the Frobenius method. We then use the analytical results
for the monodromy parameters for the radial equation
to give an asymptotic formula for the quasinormal modes in
the subcase where the field does not carry any azimuthal
angular momenta m1 ¼ m2 ¼ 0 (and therefore the angular
eigenvalue quantum number l even). We close by discus-
sing the existence of superradiant modes for l odd.
We conclude in Sec. V. In Appendix A, we describe the

Nekrasov expansion and the Fredholm determinant formu-
lation of the PVI τ function, reviewing work done in
Ref. [14]. In Appendix B, we give an explicit parametriza-
tion of the monodromy matrices given the monodromy
parameters.

II. SCALAR FIELDS IN KERR-AdS5

Let us review the five-dimensional Kerr-AdS5 black hole
metric as presented in Ref. [3]:

ds2 ¼ −
Δr

ρ2

�
dt −

a1sin2θ
1 − a21

dϕ −
a2cos2θ
1 − a22

dψ

�
2

þ Δθsin2θ
ρ2

�
a1dt −

ðr2 þ a21Þ
1 − a21

dϕ

�
2

þ 1þ r2

r2ρ2

�
a1a2dt −

a2ðr2 þ a21Þsin2θ
1 − a21

dϕ −
a1ðr2 þ a22Þcos2θ

1 − a22
dψ

�
2

þ Δθcos2θ
ρ2

�
a2dt −

ðr2 þ a22Þ
1 − a22

dψ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2; ð1Þ

where

Δr ¼
1

r2
ðr2 þ a21Þðr2 þ a22Þð1þ r2Þ − 2M ¼ 1

r2
ðr2 − r20Þðr2 − r2−Þðr2 − r2þÞ;

Δθ ¼ 1 − a21cos
2θ − a22sin

2θ; ρ2 ¼ r2 þ a21cos
2θ þ a22sin

2θ; ð2Þ

withM, a1, and a2 real parameters, related to the Arnowitt-
Deser-Misner mass and angular momenta by [16–18]

M¼πMð2Ξ1þ2Ξ2−Ξ1Ξ2Þ
4Ξ2

1Ξ2
2

; J ϕ¼
πMa1
2Ξ2

1Ξ2

; J ψ ¼
πMa2
2Ξ1Ξ2

2

;

Ξ1¼1−a21; Ξ2¼1−a22: ð3Þ

WhenM > 0, a21; a
2
2 < 1, all these quantities are physically

acceptable, and we have that r− and rþ, the real roots ofΔr,
correspond to the inner and outer horizons, respectively, of
the black hole [16], whereas r0 is purely imaginary:

−r20 ¼ 1þ a21 þ a22 þ r2− þ r2þ: ð4Þ
For the purposes of this article, we will see the radial

variable, or rather r2, as a generic complex number. It will

JULIÁN BARRAGÁN AMADO et al. PHYS. REV. D 99, 105006 (2019)

105006-2



be interesting for us to treat all three roots ofΔr, r2þ, r2−, and
r20, as Killing horizons. Actually, in the complexified
version of the metric (1), in all three hypersurfaces defined
by r ¼ r0; r−; rþ we have that each of the Killing fields

ξk ¼
∂
∂tþΩ1ðrkÞ

∂
∂ϕþΩ2ðrkÞ

∂
∂ψ ; k¼ 0;−;þ; ð5Þ

becomes null. The temperature and angular velocities for
each horizon are given, respectively, by

Ωk;1¼
a1ð1−a21Þ
r2kþa21

; Ωk;2¼
a2ð1−a22Þ
r2kþa22

;

Tk¼
r2kΔ0

rðrkÞ
4πðr2kþa21Þðr2kþa22Þ

¼ rk
2π

ðr2k−r2i Þðr2k−r2jÞ
ðr2kþa21Þðr2kþa22Þ

; i;j≠k:

ð6Þ

Within the physically sensible range of parameters, Tþ is
positive, T− is negative, and T0 is purely imaginary.

A. Kerr–anti–de Sitter scalar wave equation

The Klein-Gordon equation for a scalar of mass μ in
the background (1) is separable by the factorization
Φ ¼ ΠðrÞΘðθÞe−iωtþim1ϕþim2ψ . To wit, ω is the frequency
of the mode, andm1,m2 ∈ Z are the azimuthal components
of the mode’s angular momentum. The angular equation is
given by [7]

1

sin θ cos θ
d
dθ

�
sin θ cos θΔθ

dΘðθÞ
dθ

�

−
�
ω2 þ ð1 − a21Þm2

1

sin2θ
þ ð1 − a22Þm2

2

cos2θ

−
ð1 − a21Þð1 − a22Þ

Δθ
ðωþm1a1 þm2a2Þ2

þ μ2ða21cos2θ þ a22sin
2θÞ
�
ΘðθÞ ¼ −CjΘðθÞ; ð7Þ

where Cj is the separation constant and j an integer index
which will be defined later. By two consecutive trans-
formations χ¼sin2θ and u¼χ=ðχ−χ0Þ, with χ0¼ð1−a21Þ=
ða22−a21Þ,1 we can take the four singular points of Eq. (7) to
be located at

u¼ 0; u¼ 1; u¼ u0¼
a22−a21
a22−1

; u¼∞; ð8Þ

and the indicial exponents2 are

α�0 ¼ �m1

2
; α�1 ¼ 1

2

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ2

q �
;

α�u0 ¼ �m2

2
; α�∞ ¼ � 1

2
ðωþ a1m1 þ a2m2Þ: ð9Þ

The exponents have a sign symmetry, except for α�1 ,
which corresponds Δ=2 and ð4 − ΔÞ=2, where Δ is the
conformal dimension of the CFT primary field associated
to the AdS5 scalar. We define the single monodromy
parameters ςi through α�i ¼ 1

2
ðαi � ςiÞ. Writing them

explicitly,

ς0 ¼ m1; ς1 ¼ 2 − Δ; ςu0 ¼ m2;

ς∞ ≡ ς ¼ ωþ a1m1 þ a2m2: ð10Þ

We note an obvious sign symmetry ςi → −ςi, so we will
take the positive sign as standard.
Coming back to Eq. (7), by introducing the following

transformation:

ΘðuÞ ¼ um1=2ðu − 1ÞΔ=2ðu − u0Þm2=2SðuÞ; ð11Þ

we bring the angular equation to the canonical Heun
form

d2S
du2

þ
�
1þm1

u
þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ2

p
u − 1

þ 1þm2

u − u0

�
dS
du

þ
�

q1q2
uðu − 1Þ −

u0ðu0 − 1ÞQ0

uðu − 1Þðu − u0Þ
�
S ¼ 0 ð12Þ

with q1, q2, and the accessory parameter Q0 given,
respectively, by

q1¼
1

2
ðm1þm2þΔ−ςÞ; q2 ¼

1

2
ðm1þm2þΔþςÞ;

ð13Þ

4u0ðu0−1ÞQ0¼−
ω2þa21μ

2−Cj

a22−1

−u0½ðm2þΔ−1Þ2−m2
2−1�

− ðu0−1Þ½ðm1þm2þ1Þ2−ς2−1�: ð14Þ

We note that Eq. (12) has the same AdS spheroidal
harmonic form as the problem in four dimensions, the
eigenvalues reducing to those ones when m1 ¼ m2,
l → l=2, a1 ¼ 0, and a2 ¼ iα [11]. Also, according to
Eq. (7) we have that u0 in Eq. (12) is close to zero for
a2 ≃ a1, the equal rotation limit.

1The second change of variables is justified in terms of the
asymptotic expansion for the τ function close to 0.

2The asymptotic behavior of the function near the singular
points ΘðuÞ ≃ ðu − uiÞα�i or ΘðuÞ ≃ u−α

�
∞ for the point at infinity.
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The radial equation is given by

1

rΠðrÞ
d
dr

�
rΔr

dΠðrÞ
dr

�
−
�
Cjþμ2r2þ 1

r2
ða1a2ω−a2ð1−a21Þm1−a1ð1−a22Þm2Þ2

�

þðr2þa21Þ2ðr2þa22Þ2
r4Δr

�
ω−

m1a1ð1−a21Þ
r2þa21

−
m2a2ð1−a22Þ

r2þa22

�
2

¼ 0; ð15Þ

which again has four regular singular points, located at the
roots of r2Δrðr2Þ and infinity. The indicial exponents β�i
are defined analogously to the angular case. Schematically,
they are given by

βk ¼�1

2
θk; k¼þ;−;0 and β∞ ¼ 1

2
ð2�θ∞Þ; ð16Þ

where θk, k ¼ þ;−; 0;∞ are the single monodromy
parameters, given in terms of the physical parameters of
the problem by

θk ¼
i
2π

�
ω−m1Ωk;1−m2Ωk;2

Tk

�
; θ∞¼ 2−Δ; ð17Þ

where k ¼ 0;þ;−. To bring this equation to the canonical
Heun form which we can use, we perform the change of
variables3:

z¼ r2− r2−
r2− r20

; ΠðzÞ¼ z−θ−=2ðz− z0Þ−θþ=2ðz−1ÞΔ=2RðzÞ;

ð18Þ

where

z0 ¼
r2þ − r2−
r2þ − r20

: ð19Þ

The equation for RðzÞ is

d2R
dz2

þ
�
1 − θ−

z
þ −1þ Δ

z − 1
þ 1 − θþ

z − z0

�
dR
dz

þ
�

κ1κ2
zðz − 1Þ −

z0ðz0 − 1ÞK0

zðz − 1Þðz − z0Þ
�
RðzÞ ¼ 0; ð20Þ

where

κ1 ¼
1

2
ðθ−þθþ−Δ−θ0Þ; κ2¼

1

2
ðθ−þθþ−Δþθ0Þ;

ð21Þ

4z0ðz0 − 1ÞK0 ¼ −
Cj þ μ2r2− − ω2

r2þ − r20
− ðz0 − 1Þ½ðθ− þ θþ − 1Þ2 − θ20 − 1�
− z0½2ðθþ − 1Þð1 − ΔÞ þ ð2 − ΔÞ2 − 2�:

ð22Þ

Both Eqs. (12) and (20) can be solved by usual Frobenius
methods in terms of the Heun series near each of the
singular points. We are, however, interested in solutions for
Eq. (12) which satisfy

SðuÞ ¼
	

1þOðuÞ; u → 0;

1þOðu − 1Þ; u → 1;
ð23Þ

which will set a quantization condition for the separation
constant Cj. For the radial equation with μ2 > 0, the
conditions that ΠðzÞ corresponds to a purely ingoing wave
at the outer horizon z ¼ z0 and normalizable at the boundary
z ¼ 1 read as follows4:

RðzÞ ¼
	

1þOðz − z0Þ; z → z0;

1þOðz − 1Þ; z → 1;
ð24Þ

where RðzÞ is a regular function at the boundaries. This
condition will enforce the quantization of the (not neces-
sarily real) frequencies ω, which will correspond to the
(quasi)normal modes.

B. Radial and angular τ functions

The functions described in this section will be the main
ingredient to compute the separation constant Cj and the
quasinormal modes, which will be the focus of the next
section. A more extensive discussion of the strategy can be
found in Ref. [19]. Let us begin by rewriting the Heun
equation in the standard form as a first-order differential
equation. Consider the system given by

3Note that, with this choice of variables, we have that at
infinity the radial solution will behave as ΠðzÞ ∼ z�θ0=2.

4The computation of the accessory parameters and the boun-
dary conditions of the radial equation are slightly different with
respect to those shown in Ref. [19]. We have chosen a more
suitable Möbius transformation for the asymptotic expansion of
the PVI τ function in the limit z0 → 0.
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dΦ
dz

¼ AðzÞΦ; ΦðzÞ ¼
�
yð1ÞðzÞ yð2ÞðzÞ
wð1ÞðzÞ wð2ÞðzÞ

�
;

AðzÞ ¼ A0

z
þ At

z − t
þ A1

z − 1
; ð25Þ

where ΦðzÞ is a matrix of fundamental solutions and the
coefficients Ai, i ¼ 0; t; 1, are 2 × 2 matrices that do not
depend on z. Using Eqs. (25), we can derive a second-order
ordinary differential equation (ODE) for one of the two
linearly independent solutions yð1;2ÞðzÞ given by

y00 − ðTrAþ ðlogA12Þ0Þy0
þ ðdetA − A0

11 þ A11ðlogA12Þ0Þy ¼ 0; ð26Þ

which, by the partial fraction expansion of AðzÞ, will have
singular points at z ¼ 0; t; 1;∞ and at the zeros and poles
of A12ðzÞ. Let us investigate the latter. By a change of basis
of solutions, we can assume that the matrix AðzÞ becomes
diagonal at infinity and, thus,

A∞ ¼ −ðA0 þ A1 þ AtÞ; A∞ ¼
�
κþ 0

0 κ−

�
: ð27Þ

This leads to the assumption that A12 vanishes like Oðz−2Þ
as z → ∞. By the partial fraction form of AðzÞ, we then
have

A12ðzÞ ¼
kðz − λÞ

zðz − 1Þðz − tÞ ; k; λ ∈ C; ð28Þ

where k and λ do not depend on z but can be expressed
explicitly in terms of the entries of Ai, as can be seen in
Ref. [20]. For our purposes, it suffices to check that z ¼ λ is
a zero of A12ðzÞ and necessarily of the order of 1.
Therefore, z ¼ λ is an extra singular point of Eq. (26),
which does not correspond to the poles of AðzÞ. A direct
calculation shows that this singular point has indicial
exponents 0 and 2, with no logarithmic tails, and hence
corresponds to an apparent singularity, with trivial mono-
dromy. The resulting equation for (26) is, in general, not
quite the Heun equation but has five singularities:

y00 þ
�
1−θ0
z

þ1−θt
z− t

þ1−θ1
z−1

−
1

z−λ

�
y0

þ
�
κþðκ−þ1Þ
zðz−1Þ −

tðt−1ÞK
zðz− tÞðz−1Þþ

λðλ−1Þμ
zðz−1Þðz−λÞ

�
y¼ 0;

ð29Þ

where θi ¼ TrAi and we set by gauge transformation
detAi ¼ 0 for i ¼ 0; t; 1. The accessory parameters are μ ¼
A11ðz ¼ λÞ and K, which is defined below. We will refer to
this equation as the deformed Heun equation.

The absence of logarithmic behavior at z ¼ λ results in
the following algebraic relation between K, μ, and λ:

Kðμ; λ; tÞ ¼ λðλ − 1Þðλ − tÞ
tðt − 1Þ

�
μ2 −

�
θ0
λ
þ θ1
λ − 1

þ θt − 1

λ − t

�
μ

þ κþð1þ κ−Þ
λðλ − 1Þ

�
: ð30Þ

Now, sincewe are interested in properties of the solutions of
Eq. (26), and therefore of Eq. (25), which depend solely on
themonodromy data—phases and change of bases picked as
one continues the solutions around the singular points—we
are free to change the parameters of the equations as long as
they do not change the monodromy data. The isomonodr-
omy deformations parametrized by a change of t view AðzÞ
as the “z component” of a flat holomorphic connection A.
The “t component” can be guessed immediately:

Az ¼ AðzÞ; At ¼ −
At

z − t
; ð31Þ

and the flatness condition gives us the Schlesinger
equations:

∂A0

∂t ¼ −
1

t
½A0; At�;

∂A1

∂t ¼ −
1

t − 1
½A1; At�;

∂At

∂t ¼ 1

t
½A0; At� þ

1

t − 1
½A1; At�: ð32Þ

When integrated, these equations will define a family of flat
holomorphic connectionsAðz; tÞwith the samemonodromy
data, parametrized by a possibly complex parameter t. The
set of corresponding Aðz; tÞ will be called the isomono-
dromic family. It has been known since the pioneering work
of the Kyoto school in the 1980s—see Ref. [21] for a
mathematical review and Ref. [10] for the specific case we
consider here—that the flow defined by these equations is
Hamiltonian, conveniently defined by the τ function

d
dt

log τðt; fθ⃗; σ⃗gÞ ¼ 1

t
TrðA0AtÞ þ

1

t − 1
TrðA1AtÞ: ð33Þ

In terms of μ, λ, the Schlesinger flow can be cast as

dλ
dt

¼ ∂K
∂μ ;

dμ
dt

¼ −
∂K
∂λ ; ð34Þ

and the ensuing second-order differential equation for λ is
known as the PVI transcendent. The relation between the τ
function and the Hamiltonian can be obtained by direct
algebra:
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d
dt
logτðt;fθ⃗; σ⃗gÞ

¼Kðμ;λ; tÞþθ0θt
t

þ θ1θt
t−1

−
λðλ−1Þ
tðt−1Þ μ−

λ− t
tðt−1Þκþ: ð35Þ

Expansions for the PVI τ function near t ¼ 0, 1, and ∞
were given in Refs. [12,22] and Appendix A. For t
sufficiently close to zero, we have

τðtÞ¼Ct
1
4
ðσ2−θ2

0
−θ2t Þð1− tÞ12θ1θt

×
�
1þ
�
θ1θt
2

þðθ20−θ2t −σ2Þðθ2∞−θ21−σ2Þ
8σ2

�
t

−
ðθ20− ðθt−σÞ2Þðθ2∞− ðθ1−σÞ2Þ

16σ2ð1þσÞ2 κt1þσ

−
ðθ20− ðθtþσÞ2Þðθ2∞− ðθ1þσÞ2Þ

16σ2ð1−σÞ2 κ−1t1−σþ���
�
:

ð36Þ

The parameters in these expansions are related to the
monodromy data fθ⃗; σ⃗g ¼ fθ0; θt; θ1; θ∞; σ0t; σ1tg, where
θi ¼ TrAi are as above and σij are the composite mono-
dromy parameters

2 cos πσij ¼ TrMiMj; ð37Þ

where Mi (Mj) is the matrix that implements the analytic
continuation around the singular point zi (zj). Given the
monodromy data, the σ parameter is related to σ0t by
the addition of an even integer σ0t ¼ σ þ 2p so that the
coefficients abovewill give the largest term in the series.We
will defer the procedure to calculate p until Sec. IV. The
parameter κ is given in terms of the monodromy data
by Eq. (A12).
The usefulness of the PVI τ function for the solution of

the scattering and quasinormal modes for the scalar AdS
perturbations is based on the relation between the scattering
coefficients and the monodromy data [9,11]. For the
quasinormal modes, the relationship was shown in
Ref. [19]. Succinctly, it states that conditions like
Eqs. (23) and (24) require the relative connection matrix
between the Frobenius solutions constructed at the singular
points to be upper or lower triangular. In turn, this means
that, in the basis where one monodromy matrix is diagonal,
the other will be upper or lower triangular. A direct
calculation shows that

cos πσij ¼ cos πðθi þ θjÞ: ð38Þ

As derived in Ref. [19], the converse is also true: If the
composite monodromy is given by Eq. (38), then the
monodromy matrices Mi and Mj are both either lower
or upper triangular. We note that this formulation views the

problem of finding eigenvalues for the angular equation
similar in spirit to finding the quasinormal frequencies for
the radial equation.
For the problem under consideration, the expressions

for the composite monodromies condition (38) in terms
of the quantities in each ODE (12) and (20) are,
respectively,

σ0u0ðm1;m2;ς;Δ;u0;CjÞ¼m1þm2þ2j; j∈Z; ð39Þ

σ1z0ðθk;Δ;z0;ωn;CjÞ¼ θþþΔþ2n−2; n∈Z: ð40Þ

These conditions on the τ function for the radial and
angular system can be obtained by first placing conditions
on the matricial system (25) such that the equation
for the first line of ΦðzÞ (26) recovers the differential
equation we are considering—Eq. (12) for the angular case
and Eq. (20) for the radial case. We need, from the generic
form of the equation satisfied by the first line (29), that the
canonical variables λðt0Þ ¼ t0, μðt0Þ, and Kðt0Þ are to be
chosen so that Eq. (30) has a well-defined limit as
λðt0Þ → t0. These conditions, expressed in terms of the τ
function (33), are

d
dt

log τðt; fθ⃗; σ⃗g−Þ





t¼t0

¼ ðθt − 1Þθ1
2ðt0 − 1Þ þ ðθt − 1Þθ0

2t0
þ K0;

d
dt

�
tðt − 1Þ d

dt
log τðt; fθ⃗; σ⃗g−Þ

�




t¼t0

¼ θt − 1

2
ðθt − θ∞ − θ0 − θ1 − 2Þ; ð41Þ

where K0 is the accessory parameter of the corresponding
Heun equation (radial or angular) and the parameters of the
τ function are given by

fθ⃗; σ⃗g− ¼ fθ0; θt − 1; θ1; θ∞ þ 1; σ0t − 1; σ1t − 1g: ð42Þ

These conditions can be understood as an initial value
problem of the dynamical system defined by Eq. (34).
Given the expansion of the τ function (36), these conditions
provide an analytic solution to the system and can be
inverted to find the composite monodromy parameters σ0t
and σ1t. We plan to apply these conditions to both the radial
equation (20) and the angular equation (12) and view
Eq. (41) as the set of (exact) transcendental equations
which can be solved numerically.
The solution for the quasinormal modes means finding

for ω, given the rest of the parameters of the differential
equations (20) and (12), by solving the set of four
transcendental equations, the pair in the conditions on
the τ functions (41) for each condition in the angular and
radial equations (39) and (40). The parameters for each pair
are given explicitly by
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t0 θ0 θt θ1 θ∞

τRadðtÞ z0 θ− θþ 2 − Δ θ0
τAngðtÞ u0 −m1 −m2 2 − Δ ς

It should be noted that the conditions (41) give an
analytic solution for the quasinormal frequencies. The set
of transcendental (and implicit) equations is probably the
best that can be done: Save for a few special cases—see
Ref. [22]—the solution for the dynamical system (34)
cannot be given in terms of elementary functions. On the
other hand, the true usefulness of the result (41) relies on
the control we have over the calculation of the PVI τ
function.
In previous work [19], we considered the interpretation

of the expansion (36) in terms of conformal blocks,
which in turn allow us to interpret the τ function as the
generating function for the accessory parameters of
classical solutions of the Liouville differential equation—
an important problem in the constructive theory of
conformal maps [23]. On the other hand, expressions
like the first equation in (41) could be interpreted in the
gauge-gravity correspondence as an equilibrium condition
on the angular and radial “systems,” if one could interpret
the radial (20) and angular (12) equations as Ward
identities for different sectors in the purported boundary
CFT—see Ref. [24] for comments on that direction in the
simpler case of Bañados-Teitelboim-Zanelli black holes.
The second condition in Eq. (41) is related to an
associated τ function, with shifted monodromy arguments

τðt; fθ⃗; σ⃗gÞ≡ τðt; fθ0; θt; θ1; θ∞g; fσ0t; σ1tgÞ ð43Þ

via the so-called “Toda equation”—see Proposition 4.2 in
Ref. [25], or Ref. [23], for a sketch of proof. With help
from the Toda equation, the second condition in Eq. (41)
can be more succinctly phrased as

τðt0; fθ⃗; σ⃗gÞ ¼ 0; ð44Þ

for which we will give an interpretation in terms of the
Fredholm determinant in Appendix A. In would be
interesting to further that line and explore the holographic
aspects of the structure outlined by the analytic solution,
but we will leave that for future work.
The expression for the τ function in terms of con-

formal blocks (36), called the Nekrasov expansion, is
suitable for the small black hole limit which we will treat
algebraically in this article. From the numerical analysis
perspective, however, it suffers from the combinatorial
nature of its coefficients—see Appendix A, which takes
exponential computational time OðeαNÞ to achieve OðtNÞ
precision. Because of this, we have used for the

numerical analysis an alternative formulation of the
PVI τ function through Fredholm determinants, intro-
duced in Refs. [14,15], also outlined in Appendix A. This
formulation achieves OðtNÞ precision for the τ function
in polynomial time OðNαÞ.

III. PAINLEVÉ VI τ FUNCTION FOR
KERR-AdS5 BLACK HOLE

For u0 or z0 sufficiently close to a critical value of the
PVI τ function (t ¼ 0; 1;∞), both the Nekrasov expansion
and the Fredholm determinant will converge fast. It makes
sense then to begin exploring solutions with this property. If
u0 is close to 0, this corresponds to the almost equally
rotating a1 ≃ a2 or to the slowly rotating a1, a2 ≃ 0 cases.
For z0 close to 0, we are considering the near-extremal limit
rþ ≃ r− or small rþ; r− ≃ 0 black holes.
The procedure of solving Eq. (41) can be summarized by

first using the second equation to find the parameter s in the
Nekrasov expansion (A2) and then substituting this back in
the first equation in order to find the monodromy parameter
σ—see Refs. [26,27]. In our application, there are some
remarks on the procedure. The first observation is that the τ
function is quasiperiodic with respect to shifts of σ0t by
even integers σ0t → σ0t þ 2p:

τðt;fθ⃗g;fσ0tþ2p;σ1tgÞ¼ s−pτðt;fθ⃗g;fσ0t;σ1tgÞ; p∈Z:

ð45Þ

This means that, upon inverting Eqs. (39) and (40), we will
obtain, rather than the σ0t associated to the system, a
parameter, which we will call σ, related to σ0t by the shift
σ0t ¼ σ þ 2p. Let us digress over the consequences of this
periodicity by analyzing the structure of the expansion
(A2). Schematically,

τðt0Þ ¼ t
1
4
ðσ2−θ2

0
−θ2t Þ

0

X
m∈Z

Pðσ þ 2m; t0Þsmtm2þmσ
0 ; ð46Þ

where Pðσ þ 2m; t0Þ is analytic in t0, and to find the zero of
τðt0Þ as per Eq. (44) is useful to define X ¼ stσ0, making the
expansion analytic in t0 and meromorphic in X. We can
now solve Eq. (44) and thus define Xðσ; t0Þ in terms of σ as
a series in t0. Let us classify these solutions by their leading
term:

Xpðσ; t0Þ≡ sptσ0 ¼ t2pþ1
0 ðx0 þ x1t0 þ x2t20 þ � � �Þ: ð47Þ

Depending on the sign of Reσ, the leading term will depend
on t0 or t−10 . We will suppose Reσ > 0 for the discussion.
The “fundamental” solution X0 is written as [see Eq. (A12)]
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X0ðσ;t0Þ¼
Γ2ð1þσÞ
Γ2ð1−σÞ

Γð1þ 1
2
ðθtþθ0−σÞÞΓð1þ 1

2
ðθt−θ0−σÞÞ

Γð1þ 1
2
ðθtþθ0þσÞÞΓð1þ 1

2
ðθt−θ0þσÞÞ

Γð1þ 1
2
ðθ1þθ∞−σÞÞΓð1þ 1

2
ðθ1−θ∞−σÞÞ

Γð1þ 1
2
ðθ1þθ∞þσÞÞΓð1þ 1

2
ðθ1−θ∞þσÞÞYðσ;t0Þ ð48Þ

with

Yðσ; t0Þ¼
�ððθtþσÞ2−θ20Þððθ1þσÞ2−θ2∞Þ

16σ2ðσ−1Þ2 t0

�

×

�
1− ðσ−1Þðθ

2
0−θ2t Þðθ21−θ2∞Þþσ2ðσ−2Þ2

2σ2ðσ−2Þ2 t0

þOðt20Þ
�
: ð49Þ

Solutions with Reσ < 0 can be obtained by sending σ to −σ
and inverting the term in square brackets in the expression
for Y. Solutions with a higher value for p will also be
of interest. These will have the leading term of the order
of t2pþ1

0 and can be obtained from the quasiperiodicity
property (45), which translates to a shifting property for Xp.
From the generic structure (46) above, we have

X
m∈Z

Pðσþ2m; t0ÞXmtm
2

0 ¼ X̃−pt−p
2

0

X
m∈Z

Pðσ̃þ2m; t0ÞX̃mtm
2

0 ;

ð50Þ

where

σ̃ ¼ σ − 2p; X ¼ X̃t2p0 : ð51Þ

By this property, assuming Reσ > 0, we have that a
solution Xpðσ; t0Þ for Eq. (44) with a leading term of

higher order in t0 can be obtained from a fundamental
solution of leading order t0 with shifted σ:

Xpðσ; t0Þ ¼ t2p0 X0ðσ − 2p; t0Þ: ð52Þ
This allows us to construct a class of solutions for the
conditions (41) which are generic enough for our purposes.
From Xpðσ; t0Þ or Yðσ; t0Þ we can define the parameter κ
entering the expansion (36):

κðt0; fθ⃗; σ⃗gÞ ¼ Yðσ; t0Þt−σ0 ð53Þ

and the family of parameters sp:

sp ¼ Xpðσ; t0Þt−σ0 ¼ X0ðσ − 2p; t0Þt−σþ2p
0 ; ð54Þ

with X0 given in terms of Y as above. The knowledge of
both parameters sp and σ is sufficient to determine the
monodromy data by Eq. (A5).
We can now proceed to compute the accessory parameter

K0 in terms of the monodromy parameter σ by substituting
κ found through Eq. (53) back to the first equation in
Eq. (41). We note that this equation has for argument the
shifted monodromy parameters fθ⃗; σ⃗g− defined by
Eq. (42). This shift leaves the s parameter invariant
sðfθ⃗; σ⃗g−Þ ¼ sðfθ⃗; σ⃗gÞ, but, because of the string of
gamma functions in Eq. (A12), the κ parameter entering
the asymptotic formula (36) will change as

κðfθ⃗; σ⃗g−Þ ¼ −
16σ2ðσ − 1Þ2

ððθt þ σÞ2 − θ20Þððθ∞ − σ þ 1Þ2 − ðθ1 þ 1Þ2Þ κðfθ⃗; σ⃗gÞ: ð55Þ

Using the fundamental solution for Yðσ; t0Þ (49) and (53), we find the first terms of the expansion of the accessory
parameter

4t0K0 ¼ ðσ − 1Þ2 − ðθt þ θ0 − 1Þ2 þ 2ðθ1 − 1Þðθt − 1Þt0 þ
ððσ − 1Þ2 − 1 − θ20 þ θ2t Þððσ − 1Þ2 − 1 − θ2∞ þ θ21Þ

2σðσ − 2Þ t0

þ 2ðθ1 − 1Þðθt − 1Þt20 þ
ðθ20 − θ2t Þ2ðθ21 − θ2∞Þ2

64

�
1

σ3
−

1

ðσ − 2Þ3
�
t20

−
ððθ20 − θ2t Þðθ21 − θ2∞Þ þ 8Þ2 − 2ðθ20 þ θ2t Þðθ21 − θ2∞Þ2 − 2ðθ20 − θ2t Þ2ðθ21 þ θ2∞Þ − 64

32σðσ − 2Þ t20

þ ððθ0 − 1Þ2 − θ2t Þððθ0 þ 1Þ2 − θ2t Þððθ1 − 1Þ2 − θ2∞Þððθ1 þ 1Þ2 − θ2∞Þ
32ðσ þ 1Þðσ − 3Þ t20

−
1

32
ð5þ 14θ20 − 18θ2t − 18θ21 þ 14θ2∞Þt20 þ

13

32
σðσ − 2Þt20 þOðt30Þ ð56Þ
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for Reσ > 0. The corresponding expression for Reσ < 0
can be obtained by sending σ → −σ. The higher-order
corrections can be consistently computed from the series
derived in Ref. [27]. Note that, since any solution for X in
the series (52) will yield the same value for s in Eq. (A2),
and hence the same value for K0, the difference between
σ and σ0t is tied to which terms of the expansion are
dominant and depends on the particular value for s and t0.
The generic structure of the conformal block expansion, of
which K0 is the semiclassical limit, was discussed at some
length in the classical CFT literature [28,29]. The relevant
facts for our following discussion, given the generic
expansion

4t0K0 ¼ k0 þ k1t0 þ k2t20 þ � � � þ kntn0 þ � � � ; ð57Þ

are as follows: kn is a rational function of the monodromy
parameters, the numerator is a polynomial in the “external”
parameters θi and σ, and the denominator is a polynomial
of σ alone. Secondly, kn is invariant under the reflection
σ ↔ 2 − σ. Thirdly, kn has simple poles at σ¼ 3;4;…;nþ
1 and σ¼−1;−2;…;−nþ1 and poles of the order of 2n −
1 at σ ¼ 0, 2 and is analytic at σ ¼ 1. Fourthly, the leading
order term of kn near σ ≃ 2 is (for n ≥ 1)

kn¼−4Cn−1
ðθ20−θ2t Þnðθ21−θ2∞Þn

16nðσ−2Þ2n−1 þ���; Cn¼
1

nþ1

�
2n

n

�
;

ð58Þ

where Cn is the nth Catalan number. A similar structure
exists for the fundamental solution X0ðσ; t0Þ or, rather,
Yðσ; t0Þ:

Yðσ; t0Þ ¼ χ1t0 þ χ2t20 þ � � � ð59Þ

with leading order for each χn given by (for n ≥ 3)

χn ¼ −Cn−2
ððθt þ σÞ2 − θ20Þððθ1 þ σÞ2 − θ2∞Þ

16σ2ð1 − σÞ2

×
ðθ21 − θ2∞Þn−1ðθ20 − θ2t Þn−1
4n−1σ2ðn−1Þðσ − 2Þ2ðn−1Þ þ � � � ; ð60Þ

where the implicit terms are of the order of
Oððσ − 2Þ−2nþ3Þ or higher.

A. The angular eigenvalues

The separation constant can be calculated from the τ
function expansion by imposing the quantization condition
(39). For equal rotation parameters a1 ¼ a2, the Heun
equation reduces to a hypergeometric, and an analytic
expression in terms of finite combinations of elementary
functions can be obtained [7]. We can recover the result
with the PVI τ function by taking the limit u0 → 0. The
leading term of Eq. (56) gives the exact result

Cj ¼ ð1 − a21Þ½ðm1 þm2 þ 2jÞðm1 þm2 þ 2j − 2Þ − 2ωa1ðm1 þm2Þ − a21ðm1 þm2Þ2� þ a21ω
2 þ a21ΔðΔ − 4Þ; ð61Þ

which recovers the literature if we set the integer labeling the angular mode as

l ¼ −ðm1 þm2 þ 2jÞ: ð62Þ

We note that (some of) the SO(4) selection rules are encoded in the requirement that j is an integer [30].
For generic angular parameters, the monodromy data of the angular equation (12) is composed of the single monodromy

parameters (10) fς0; ςu0 ; ς1; ς∞g and the composite monodromy parameters fς0u0 ; ς1u0g. Using the formula (56), the
separation constant (61) can be written up to third order in u0 (remember that ς ¼ ωþ a1m1 þ a2m2):

Cl¼ω2þlðlþ2Þ−ς2−
a21þa22

2
ðlðlþ2Þ−ς2−ΔðΔ−4ÞÞ−ða21−a22Þðm2

1−m2
2Þ

2lðlþ2Þ ðlðlþ2Þ−ς2þðΔ−2Þ2Þ

−
ða21−a22Þ2
1−a22

�ðlðlþ2Þþm2
2−m2

1Þðlðlþ2ÞþðΔ−2Þ2−ς2Þ
2lðlþ2Þ −

13

32
lðlþ2Þþ 1

32
ð5þ14ðm2

1þς2Þ−18ðm2
2þðΔ−2Þ2ÞÞ

−
ððm1þ1Þ2−m2

2Þðð1−m1Þ2−m2
2ÞððΔ−1Þ2−ς2ÞððΔ−3Þ2−ς2Þ

32ðl−1Þðlþ3Þ

þððm2
1−m2

2ÞððΔ−2Þ2−ς2Þþ8Þ2−64−2ðm2
1þm2

2ÞððΔ−2Þ2−ς2Þ2
32lðlþ2Þ

−
2ðm2

1−m2
2Þ2ððΔ−2Þ2þς2Þ

32lðlþ2Þ −
ðm2

1−m2
2Þ2ððΔ−2Þ2−ς2Þ2

64

�
1

ðlþ2Þ3−
1

l3

��
þO

��
a21−a22
1−a22

�
3
�
: ð63Þ
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This expression reduces to the ones found in Ref. [7] when
a1 ≃ a2. It also agrees with the expression in Ref. [31] for
Δ ¼ 4, at least to the order given.
With an expression for the separation constant, we can

address the computation of the quasinormal modes using
the two initial conditions for the radial PVI τ function at
t0 ¼ z0. We will next explore this and compare with
numerical results obtained from well-established methods
in numerical relativity.

B. The quasinormal modes for Schwarzschild

In the limit ai → 0, one recovers the Schwarzschild-AdS
metric, and accordingly the radial differential equation
coming from the Klein-Gordon equation for massless scalar
fields (15) can be reduced to the standard form of the Heun
equation. The exponents θk are given by

θþ¼
i
2π

ω

T
; θ−¼0; θ0¼

1

2π

ω

T

ffiffiffiffiffiffiffiffiffiffiffiffi
1þr2þ

p
rþ

; θ∞¼2−Δ;

ð64Þ
where 2πT ¼ 2πTþ ¼ ð1þ 2r2þÞ=rþ is the temperature of
the black hole, given by Eq. (6) by setting a1 ¼ a2 ¼
r− ¼ 0. The mass of the black hole is given by M ¼
1
2
r2þð1þ r2þÞ. We note that the system of coordinates is

different from Ref. [32], and the singular point at r ¼ rþ is
mapped by Eq. (18) to z0 ¼ r2þ=ð1þ 2r2þÞ.
Likewise, the angular equation (7) reduces to a standard

hypergeometric form. The angular eigenvalues can be seen
to be the usual SO(4) Casimir: Cl ¼ lðlþ 2Þ. In terms of
ω, Δ, and rþ, the accessory parameter K0 in Eq. (22) is

K0 ¼ −
ω2

4ð1þ r2þÞ
þ 1þ 2r2þ

1þ r2þ

�
lðlþ 2Þ

4r2þ
þ ΔðΔ − 2Þ

4

�

þ iω
2rþ

1þ r2þð2 − ΔÞ
1þ r2þ

: ð65Þ

This, along with the quantization condition for the radial
monodromies (40), provides through Eq. (41) an implicit
solution for the quasinormal modes ωn along with the
composite monodromy σ0t, as we will tackle in Sec. IV B.
In order to test the method, we present in Tables I and II

the numerical solution ωn;l for the first quasinormal mode
n ¼ 0;l ¼ 0 s-wave case and compare with known meth-
ods, the pseudospectral method with a Chebyshev-Gauss-
Lobatto grid to solve the associated QEP and the usual
numerical matching method based on the Frobenius
expansion of the solution near the horizon and spatial
infinity.5 The Frobenius method implements the smooth-
ness on the first derivative at the matching point of the two
series solutions constructed with 15 terms, at the horizon
and the boundary [33]. On the other hand, the pseudo-
spectral method relies on a grid with 120 points between
0 and 1. For a more comprehensive reading, we recommend
Refs. [34,35]. The results for ω0;0 are reported in Tables I
and II.
The Schwarzschild-AdS case has been considered before

[1,8,32,36,37] and should be thought of as a test of the new

TABLE I. The massless scalar field s-wave l ¼ 0 and fundamental n ¼ 0 quasinormal mode ω0;0 in a Schwarzschild-AdS5
background for some values of rþ. The results were obtained using the Fredholm determinant expansion for the τ function with N ¼ 16.

rþ z0 ω0;0

0.005 2.49988 × 10−5 3.9998498731325748 − 1.5044808171834238 × 10−6i
0.01 9.99800 × 10−5 3.9993983005189682 − 1.2123793015872442 × 10−5i
0.05 2.48756 × 10−3 3.9844293869590734 − 1.7525974895168137 × 10−3i
0.1 9.80392 × 10−3 3.9355764849860639 − 1.7970664179740506 × 10−2i
0.2 3.70370 × 10−2 3.7906778316981978 − 0.1667439940917780i
0.4 0.121212 3.7173879743704008 − 0.7462495474087164i
0.6 0.209302 3.8914015767067012 − 1.3656095289384492i

TABLE II. The same quasinormal mode frequency ω0;0 computed using numerical matching from Frobenius solutions (with 15 terms)
and the quadratic eigenvalue problem (with 120-point lattice).

rþ Frobenius QEP

0.005 3.9998498731325743 − 1.5044808171845522 × 10−6i 3.9998483860043481 − 2.8895543908757586 × 10−5i
0.01 3.9993983005189876 − 1.2123793015712405 × 10−5i 3.9993981402971502 − 2.3439366987252536 × 10−5i
0.05 3.9844293869590911 − 1.7525974895155961 × 10−3i 3.9844293921364538 − 1.7526437924554161 × 10−3i
0.1 3.9355764849860673 − 1.7970664179739766 × 10−2i 3.9355763694852816 − 1.7970671629389028 × 10−2i
0.2 3.7906778316982394 − 0.1667439940917505i 3.7906771832980760 − 0.1667441392742093i
0.4 3.7173879743704317 − 0.7462495474087220i 3.7173988607936563 − 0.7462476412816416i
0.6 3.8914015767126869 − 1.3656095289361863i 3.8913340701538795 − 1.3656086881322822i

5It should be noted that the Frobenius method is, in spirit,
similar to the old combinatorial approach for the PVI τ function
given by Jimbo [13].
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method. Even without an optimized code,6 the Fredholm
determinant evaluation of the PVI τ function provides a
faster way of computing the normal modes than both the
numerical matching and the QEP method. Convergence is
significantly faster when compared to the other methods for
small z0 ∼ 10−5 and can provide at least 14 significant
digits for the fundamental frequencies.

IV. MONODROMY PARAMETERS
FOR KERR-AdS

The fast convergence and high accuracy of the τ function
calculation is suitable for the study of small black holes.
Turning our attention to Kerr-AdS5, we consider spinning
black holes of different angular momenta and radii. In view
of holographic applications, we make use of an extra
parameter given by the mass of the scalar field scattered
by the black hole. Numerical results are presented in
Table III.7

One can use the initial condition for the first derivative
and Eq. (44) to determine an asymptotic formula for the
composite monodromy parameters σ and s as functions of
the frequency. In the spirit of establishing the occurrence of
instabilities, it is worth looking at the small black hole limit.
To better parametrize this limit, let us define

a21 ¼ ϵ1r2þ; a22 ¼ ϵ2r2þ; ð66Þ

with the understanding that r2þ is a small number. The three
parameters r2þ, ϵ1, and ϵ2 are sufficient to express the other
roots of Δr as follows:

r2−¼
1þð1þϵ1þϵ2Þr2þ

2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ1ϵ2r2þ

ð1þð1þϵ1þϵ2Þr2þÞ2

s
−1

1
A;

ð67Þ

−r20 ¼
1þ ð1þ ϵ1 þ ϵ2Þr2þ

2

×

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ1ϵ2r2þ

ð1þ ð1þ ϵ1 þ ϵ2Þr2þÞ2

s
þ 1

1
A: ð68Þ

Since we want r2− ≤ r2þ, the ϵi will satisfy

ϵ1ϵ2 ≤ 1þ ð2þ ϵ1 þ ϵ2Þr2þ ≃ 1; ð69Þ
and we remind the reader that ϵ1;2 are also constrained by
the extremality condition ai < 1 the space of allowed ε1;2 is
illustrated in Fig. 1.
We will focus on the case m1 ¼ m2 ¼ 0 (and therefore l

even) in order to keep the expressions reasonably short. It
will be convenient to leave z0 implicit at times:

z0¼
r2þ−r2−
r2þ−r20

¼ 1þð3þϵ1þϵ2Þr2þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þð1þϵ1þϵ2Þr2þÞ2þ4ϵ1ϵ2r2þ

p
1þð3þϵ1þϵ2Þr2þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þð1þϵ1þϵ2Þr2þÞ2þ4ϵ1ϵ2r2þ

p ;

ð70Þ
which asymptotes as z0 ¼ ð1 − ϵ1ϵ2Þr2þ þOðr4þÞ. The
expansions of the single monodromy parameters are, up
to terms of the order of Oðr3þÞ,

θ0 ¼ ω

�
1 −

3

2
ð1þ ϵ1Þð1þ ϵ2Þr2þ þ � � �

�
; ð71Þ

θþ ¼ iω
ð1þ ϵ1Þð1þ ϵ2Þ

1 − ϵ1ϵ2
rþ þ � � � ; ð72Þ

TABLE III. Fundamental modes for Kerr-AdS5, l ¼ m1 ¼ m2 ¼ 0, a1 ¼ 0.002, a2 ¼ 0.00199, and the mass of the scalar field is
7.96 × 10−8.

rþ z0 τ function Frobenius

0.00200 4.0 × 10−8 3.9999043938966996 − 3.9179009496192059 × 10−7i 3.9999043938967028 − 3.9179009496196828 × 10−7i
0.02185 0.000476717 3.9970574292783057 − 1.3247529381539807 × 10−4i 3.9970574292783089 − 1.3247529381539848 × 10−4i
0.06154 0.003758101 3.9760894388470440 − 3.4698629309308322 × 10−3i 3.9760894388470473 − 3.4698629309308430 × 10−3i
0.10123 0.010040760 3.9339314599984108 − 1.8761575868127569 × 10−2i 3.9339314599984140 − 1.8761575868127629 × 10−2i
0.14092 0.019098605 3.8762906043241960 − 5.7537333581688194 × 10−2i 3.8762906043241993 − 5.7537333581688376 × 10−2i
0.18061 0.030620669 3.8166724096683002 − 1.2480348073108545 × 10−1i 3.8166724096683035 − 1.2480348073108582 × 10−1i
0.22030 0.044236431 3.7668353453284391 − 2.1574723769724682 × 10−1i 3.7668353453284420 − 2.1574723769724741 × 10−1i
0.29968 0.076131349 3.7116288122171590 − 4.3786490332401062 × 10−1i 3.7116288122171622 − 4.3786490332401161 × 10−1i
0.37906 0.111610120 3.7104224042819611 − 6.8107859662243775 × 10−1i 3.7104224042819692 − 6.8107859662244147 × 10−1i
0.49813 0.165833126 3.7816024214536172 − 1.0519267755676109i 3.7816024214748239 − 1.0519267755684242i
0.61720 0.216209245 3.9134030353146323 − 1.4181181443831172i 3.9134030400737264 − 1.4181181441373386i
0.73627 0.260096962 4.0879586460765776 − 1.7776344225896197i 4.0879588168442726 − 1.7776344550831753i

6Using PYTHON’s standard libraries for arbitrary precision
floats. The PYTHON code for both the Nekrasov expansion and
the Fredholm determinant can be provided upon request.

7In the table values, we have neglected some precision in the
results for the sake of clarity, but we can provide more accurate
values upon request.
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θ− ¼ −iω
ð1þ ϵ1Þð1þ ϵ2Þ

1 − ϵ1ϵ2

ffiffiffiffiffiffiffiffiffi
ϵ1ϵ2

p
rþ þ � � � : ð73Þ

The single monodromy parameters can be seen to have the
structure

θ− ¼ −iϕ−rþ; θþ ¼ iϕþrþ; ð74Þ

where ϕ� are real and positive for real and positive ω. We
also observe that θ0 is parametrically close to the frequency
ω, and the correction is negative for positive rþ.
We now proceed to solve for the composite monodromy

parameter σl ≡ σ0z0ðlÞ using the series expansion (56). For
even l ≥ 2, the first correction is

σl ≡ lþ 2 − νlr2þ

¼ lþ 2 −
ð1þ ϵ1Þð1þ ϵ2Þ

4ðlþ 1Þ ð3ω2 þ 3lðlþ 2Þ

− ΔðΔ − 4ÞÞr2þ þOðr4þÞ; l ≥ 2; ð75Þ

and, due to the pole structure of Eq. (57), a naive series
inversion will yield the expansion for σ up to the order of
r2lþ . The case l ¼ 0 is then special and will be dealt with
shortly. One can see from Eq. (54) that, for p ¼ 0, the
monodromy parameter s will behave asymptotically as z−σ0 ,
diverging for small z0. Changing the value of p will change
this behavior. Changing the value of p means shifting the
argument σ that enters the definition of X0ðσ; t0Þ in Eq. (52)
and therefore of Yðσ; t0Þ in Eq. (48). Let us call Yl;2p the
expression in Eq. (49) for generic p and σ ≃ 2þ l. The
expression for p ¼ 0 is given by

Yl;0 ≡ Yðσl; z0Þ

¼ −ð1 − ϵ1ϵ2Þ
ω2 − ðΔ − l − 4Þ2

16ðlþ 1Þ2

×

�
1þ 2i

lþ 2
ϕþrþ

�
r2þ þ � � � ; l ≥ 2: ð76Þ

We point out that this value is actually independent of p,
except when 2p ¼ l, as we will see below. We anticipate,
from Eq. (53), that Yl;p for 2p < l will yield a larger value
for sl for smaller rþ. We also remark that sl will have a
nonanalytic expansion in rþ, due to the term z−σl0 . Finally,
from the expansion we conclude that Yl;p has an imaginary
part of subleading order.

A. l= 0

The “s-wave” case l ¼ 0 is singular, since the leading
behavior of σ − 2 is of the order of r2þ. The expansion (57)
does not converge, in general, due to the denominator
structure of the coefficients κn. For the small rþ black hole
application, however, we are really dealing with a scaling
limit where

θ−¼φ−
ffiffiffiffiffi
z0

p
; θþ ¼φþ

ffiffiffiffiffi
z0

p
; and σ¼ 2−υz0 ð77Þ

have finite limits for φ� and υ as z0 → 0. Because of the
poles of increasing order in σ in Eq. (57), in the l ¼ 0 case
one has to resum the whole series in order to compute υ.
Thankfully, the task is amenable due to the fact that, in

the scaling limit, the term of the order of z0 in each of the
factors kntn0 in the expansion (57) comes from the leading
order pole (58):

knzn0 ¼ −4Cn−1
ðφ2

− − φ2þÞnðθ21 − θ2∞Þn
16nυ2n−1

z0 þOðz20Þ: ð78Þ

The series can be resummed using the generating function
for the Catalan numbers

1þxþ2x2þ5x3þ�� � ¼
X∞
n¼0

Cnxn ¼
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4x

p

2x
; ð79Þ

and the result for υ readily written

4z0K0ðl¼ 0Þþðθþþθ− −1Þ2þ2ðθ1−1Þðθþ−1Þ z0
z0−1

¼ 1þ1

2
ðθ21−θ2∞Þz0−2υz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðφ2þ−φ2

−Þðθ21−θ2∞Þ
4υ2

r
þOðz20Þ: ð80Þ

A similar procedure allows us to compute the parameter
YðυÞ≡ Yð2 − υz0; z0Þ up to the order of z3=20 :

YðυÞ¼−z0ð1þφþ
ffiffiffiffiffi
z0

p Þθ
2
∞− ðθ1þ2Þ2

64

×

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðφ2þ−φ2

−Þðθ21−θ2∞Þ
4υ2

r !
2

þ�� � : ð81Þ

For the application to the l ¼ 0 case of the scalar field,
we will use the notation (74) and again use σ0 ¼ 2 − ν0r2þ.
In terms of the black hole parameters, ν0 has a surprisingly
simple form:

ν0 ¼
1

4
ð1þ ϵ1Þð1þ ϵ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ω2 − ΔðΔ − 4ÞÞ2 − 4ω2ðω2 − ðΔ − 2Þ2Þ

q
þOðr2þÞ; ð82Þ

and
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Y0;0≡Yðσ0;z0Þ¼−ð1− ϵ1ϵ2Þr2þð1þ iϕþrþÞ
ω2− ðΔ−4Þ2

64

�
1þ 3ω2−ΔðΔ−4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3ω2−ΔðΔ−4ÞÞ2−4ω2ðω2− ðΔ−2Þ2Þ
p �

2

þ�� � :

ð83Þ

Finally, let us define the shifted Yl;l for 2p ¼ l. Since the shifted argument σ − 2p is close to 2, we need the same
scaling limit as above in Eq. (81). The result is

Yl;l≡Yðσl−l;z0Þ¼−ð1−ϵ1ϵ2Þr2þð1þ iϕþrþÞ
ω2− ðΔ−4Þ2

64

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðlþ1Þ2ω2ðω2− ðΔ−2Þ2Þ

ð3ω2þ3lðlþ2Þ−ΔðΔ−4ÞÞ2

s 1
A2

þ��� ;

ð84Þ

where νl is taken from Eq. (75).
To sum up, we exhibit the overall structure for small rþ:

σl ¼ lþ 2 − νlr2þ þ � � � ; ð85Þ

Yl;l ¼ −ð1 − ϵ1ϵ2Þϑlð1þ iϕþrþÞr2þ þ � � � ; ð86Þ

where νl and ϑl have nonzero limits as rþ → 0, have
corrections of the order of r2þ, and, most importantly, are
positive for ω real and greater than Δ − 4.

B. The quasinormal modes

Implementation of the quantization condition (40) can be
done with the formula (B7). This yields a transcendental
equation for ω whose solutions will give all complex
frequencies for the radial quantization condition. These

include negative real-part frequencies, as well as non-
normalizable modes. Since we are interested in positive
real-part frequencies, we will consider a small correction to
the vacuum AdS5 result [38,39]

ωn;l ¼ Δþ 2nþ lþ ηn;lr2þ; ð87Þ

under the hypothesis that ηn;l has a finite limit as rþ → 0.
One notes by Eq. (71) that θ0 and ω are perturbatively
close, so ηn;l can be calculated perturbatively from the
expansion of θ0. We will assume that Δ is not an integer.
The parametrization (87) allows us to expand Eq. (54) as

a function of rþ. The procedure is straightforward: We use
Yl;0 from Eq. (85), as it gives the right asymptotic behavior,
to compute X0 using Eq. (48) and then the s parameter (54).
To second order in rþ, we have

sn;l ¼ −
16Γðnþ l=2þ 1ÞΓðΔ − 2þ nþ l=2Þ

Γðnþ l=2þ 3ÞΓðΔþ nþ l=2Þ
ν2l

ð1 − ϵ1ϵ2Þ2ðϕ2þ − ϕ2
−Þ
�
1 − iϕþrþ þ 2i

ϕþνlrþ
ϕ2þ − ϕ2

−

�
Yl;lr

−2þ2νlr2þþ ; ð88Þ

and the leading behavior for the parameter sn;l given Yl;l in Eq. (85) is

sn;l ¼ Σn;l

�
1þ 2iνn;lrþ

ð1þ ϵ1Þð1þ ϵ2ÞðΔþ 2nþ lÞ
�
r
2νn;lr2þþ þ � � � ; ð89Þ

where we defined νn;l as the correction for σ as in Eq. (85) calculated at the vacuum frequency νlðω ¼ Δþ 2nþ lÞ.
Finally,

Σn;l ¼ 16Γðnþ l=2þ 1ÞΓðΔ − 2þ nþ l=2Þ
Γðnþ l=2þ 3ÞΓðΔþ nþ l=2Þ

ν2n;lϑn;l
ð1þ ϵ1Þ2ð1þ ϵ2Þ2ðΔþ 2nþ lÞ2 ; ð90Þ

again, with ϑn;l ¼ ϑðω ¼ Δþ 2nþ lÞ. We also note that Σn;l is real and positive under the same conditions as Eq. (85).
Moreover, the choice of p implicit in Yl;l guarantees that sn;l has a finite limit as rþ → 0, although its dependence on rþ is
nonanalytic.
Equation (B7) can now be used, setting cos πσ1t ¼ cos πðθ1 þ θtÞ for the radial parameters, to find a perturbative

equation for ηn;l. We expand each of the terms in Eq. (B7) using Eq. (74) as well as

θ0 ¼ ω0 − βr2þ; ω0 ¼ Δþ 2nþ l; and σ ¼ 2þ l − νlr2þ: ð91Þ
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Now, the following two relations hold:

sin2πσ cos πðθ1 þ θtÞ − cos πθ0 cos πθ∞ − cos πθt cos πθ1 þ cos πσðcos πθ0 cos πθ1 þ cos πθt cos πθ∞Þ

¼ π3

2
sinðπΔÞðϕ2þ − ϕ2

−Þ
�
β þ 2iν2lrþ

ð1þ ϵ1Þð1þ ϵ2Þω0

�
r4þ þ � � � ; ð92Þ

−
1

2
ðcosπθ∞− cosπðθ1�σÞÞðcosπθ0−cosπðθt�σÞÞ¼ π3

2
sinðπΔÞðϕ2þ−ϕ2

−Þ
�
β�ν

2

��
1� 2iνlrþ

ð1þ ϵ1Þð1þ ϵ2Þω0

�
r4þþ�� � :

ð93Þ

We can now proceed to calculate the first correction to the eigenfrequencies (87). By using the approximations (92) and
(93) above, we find the correction to θ0 for each of the modes n;l:

βn;l ¼ νn;l
Σn;l þ 1

Σn;l − 1
þ 4i

ν2n;l
ð1þ ϵ1Þð1þ ϵ2ÞðΔþ 2nþ lÞ

Σn;l

ðΣn;l − 1Þ2 rþ þOðr2þ log rþÞ: ð94Þ

Finally, after some laborious calculations, we find

ηn;l ¼ −
ð1þ ϵ1Þð1þ ϵ2Þ

2

�
Zn;l

2ðlþ 1Þ− 3ðΔþ 2nþ lÞ
�
−
i
4
ð2nþ lþ 1Þð1þ ϵ1Þð1þ ϵ2ÞðΔþ 2nþ lÞð2Δþ 2nþ l− 2Þrþ

þOðr2þ log rþÞ; l ≥ 2; ð95Þ

with

Z2
n;l ¼ ð3ðΔþ 2nþ lÞ2 þ 3lðlþ 2Þ − ΔðΔ − 4ÞÞ2 þ 4ðlþ 1Þ2ðΔþ 2nþ lÞ2ð2nþ lþ 1Þð2Δþ 2nþ l − 2Þ: ð96Þ

For l ¼ 0, the form of the correction is slightly different. Repeating the calculation, we see that ηn;l¼0 has the simpler form

ηn;0 ¼ −
ð1þ ϵ1Þð1þ ϵ2Þ

4
ð3ðΔþ 2n − 1Þ2 − ðΔ − 2Þ2 þ 1Þ − iðnþ 1Þð1þ ϵ1Þð1þ ϵ2ÞðΔþ 2nÞðΔþ n − 1Þrþ

þOðr2þ log rþÞ: ð97Þ

We note that both the real and imaginary parts of the
corrections ηn;l are negative, the real part of the order of
r2þ as expected, and the imaginary part of the order of r3þ. We
stress that we are taking m1 ¼ m2 ¼ 0 an illustration of the
fundamentalmodeω0 as a function of rþ is depicted in Fig. 2.
In the midst of the calculation, we see that the imaginary

part of ηn;0 has the same sign as the imaginary part of θþ,
which in turn is essentially the entropy intake of the black
hole as it absorbs a quantum of frequency ω and angular
momenta m1 and m2:

θþ ¼ i
2π

δS ¼ i
2π

ω −m1Ωþ;1 −m2Ωþ;2

Tþ
; ð98Þ

giving the same sort of window for unstable mode
parameters m1 and m2 as in superradiance, so a closer
look at higher values for m1;2 is perhaps in order for future
work. A full consideration of linear perturbations of the
five-dimensional Kerr-AdS black hole, involving higher
spin [40,41], can be done within the same theoretical
framework presented here and will be left for the future.

We close by observing that the expressions (95) and (97)
above seem to represent a distinct limit than the results in
Ref. [7]—which are, however, restricted to Δ ¼ 4—and
therefore not allowing for a direct comparison.

C. Some words about the l odd case

Let us illustrate the parameters for the subcase m1 ¼ l,
m2 ¼ 0. The single monodromy parameters admit the
expansion

θ0¼ωþ ffiffiffiffiffi
ϵ1

p
lrþ−

3

2
ð1þ ϵ1Þð1þ ϵ2Þωr2þþ�� � ; ð99Þ

θþ¼−il
ffiffiffiffiffi
ϵ1

p ð1þϵ2Þ
1−ϵ1ϵ2

þiω
ð1þϵ1Þð1þϵ2Þ

1−ϵ1ϵ2
rþþ���; ð100Þ

θ−¼ il
ffiffiffiffiffi
ϵ2

p ð1þ ϵ1Þ
1− ϵ1ϵ2

− iω
ð1þ ϵ1Þð1þ ϵ2Þ

1− ϵ1ϵ2

ffiffiffiffiffiffiffiffiffi
ϵ1ϵ2

p
rþþ�� � ;

ð101Þ
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with all of them finite and nonzero as rþ → 0. As usual, θ�
are purely imaginary, whereas θ0 is real for real ω. These
properties hold for any value of m1 and m2.
For l ≥ 1 and odd, the composite monodromy param-

eters are found much in the same way as the case l ≥ 2
considered above, by inverting Eq. (56). In the following,
we set ω0 ¼ Δþ 2nþ l as the limit of the frequency as
rþ → 0. We have for the composite monodromy parameter

σl ¼ 2þ l − νlr2þ þOðr4þÞ; ð102Þ

with νl, defined as in Eq. (89), now for l > 1:

νl ¼ ð1þ ϵ1Þð1þ ϵ2Þ

×
3ω2

0 þ 3lðlþ 2Þ − ΔðΔ − 4Þ
4ðlþ 1Þ ; l ≥ 3: ð103Þ

For l ¼ 1, finding ν1 from condition (41) requires going
to higher order in z0, due to the pole at σ ¼ 3 in the
expansion (56):

ν1 ¼
ð1þ ϵ1Þð1þ ϵ2Þ

32
ð3ω2

0 þ 9 − ΔðΔ − 4ÞÞ

0
B@2þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34 − 8

2Δ4 − 16Δ3 þ ð50 − 3ω2
0ÞΔ2 þ 12ðω2

0 − 6ÞΔ − 36ω2
0

ð3ω2
0 þ 9 − ΔðΔ − 4ÞÞ2

s 1
CA:

ð104Þ

For the following discussion, we take from this calculation that the νl’s are real and greater than 1 for Δ > 1, which we
will assume to hold for anym1 andm2. Apart from these properties, the particular form for νl will be left implicit. Given νl,
we can use the same procedure as in the even l case to compute the s parameter. Again, in order to have a finite rþ → 0
limit, we take p ¼ ðlþ 1Þ=2. After some calculations, we have

sn;l ¼ 1þ 2νlr2þ log rþ þ Ξn;lνlr2þ þOðr4þðlog rþÞ2Þ ð105Þ

with

Ξn;l ¼ 2γþ logð1− ϵ1ϵ2ÞþΨ
�
1þθþþθ−

2

�
þΨ

�
1þθþ−θ−

2

�
þΨ

�
3þ2nþl

2

�
þΨ

�
3−2Δ−2n−l

2

�
; ð106Þ

where ΨðzÞ is the digamma function and γ ¼ −Ψð1Þ the
Euler-Mascheroni constant. In the definition above, we
have already set θ0 ¼ Δþ 2nþ l − βn;lr2þ, but as we can
see from Eq. (105), now we need sn;l to second order in the
expansion parameter rþ. We again assume that Δ is, in
general, not an integer, since this is irrelevant for the
determination of the imaginary part of the frequency.
However, having Δ integer will change the behavior of
the real part of the correction to the eigenfrequency with
respect to rþ.

We note that sn;l is nonanalytic, and therefore the
expansion for βn;l will include terms like log rþ. We
expand Eq. (B7) with σ1t ¼ 2 − Δþ θþ (up to an even
integer) to fourth order and find as a first approximation to
the correction to the frequency

ηn;l ¼ � � � þ νn;l

�
νn;l þ 1

νn;l − 1
þ Ξn;l

�
r2þ

log rþ
þ � � � ; ð107Þ

FIG. 1. The space of parameters defined by ϵ1ϵ2 < 1 corre-
sponds to the gray area. The dashed lines represent the extremal
black holes where rþ ¼ r−, for rþ ¼ 0.002, 0.2, 0.25, 0.333, 0.5,
1 with increasing dash density. The curve rþ ¼ 1, the one closest
to the right upper corner, is drawn for comparison.
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FIG. 2. In the first row, the dependence of the real and imaginary parts of the first quasinormal mode frequencyω0 for small Kerr-AdS5
black holes (a1 ¼ 0.002, a2 ¼ 0.00199, μ ¼ 7.96 × 10−8). In the second, the dependence of the composite parameter 2 − σ.

FIG. 3. The dependence of the real (left) and imaginary part (right) of the first quasinormal mode frequency ω0 at l ¼ 1 andm1 ¼ �1

for small Kerr-AdS5 black holes (a1 ¼ 0.002, a2 ¼ 0.00199, μ ¼ 7.96 × 10−8).

JULIÁN BARRAGÁN AMADO et al. PHYS. REV. D 99, 105006 (2019)

105006-16



where the terms left out are real, stemming from the relation
between θ0 and ω.
From Eq. (107), any possible imaginary part for the

eigenfrequency will then come from the imaginary part of
Ξn;l. The latter can be calculated by using the reflection
property of the digamma function

ImΞn;l¼−
iπ
2

�
tan

π

2
ðθþþθ−Þþ tan

π

2
ðθþ−θ−Þ

�
; ð108Þ

or, in terms of m1 and m2,

ImΞn;l ¼ π

2
tanh

�
π

2

ffiffiffiffiffi
ϵ1

p − ffiffiffiffiffi
ϵ2

p
1þ ffiffiffiffiffiffiffiffiffi

ϵ1ϵ2
p ðm1 −m2Þ

�

þ π

2
tanh

�
π

2

ffiffiffiffiffi
ϵ1

p þ ffiffiffiffiffi
ϵ2

p
1 − ffiffiffiffiffiffiffiffiffi

ϵ1ϵ2
p ðm1 þm2Þ

�
: ð109Þ

We then see that the imaginary part of Ξn;l can have any
sign, a strong indication that the l odd modes are unstable.
Numerical support for this is included in Fig. 3, in which
we use an arbitrary-precision PYTHON code (capped at 50
decimal places) to show a slightly positive imaginary part
for the resonant frequency at r≲ 0.02. We point out that,
indeed, instabilities in asymptotically anti–de Sitter spaces
are expected from general grounds [42], and odd l
instabilities for the massless case (Δ ¼ 4) were found
in Ref. [7].

V. DISCUSSION

In this paper, we used the isomonodromy method to
derive asymptotic expressions for the separation constant
for the angular equation (angular eigenvalue) in (63) as well
as the frequencies for the scalar quasinormal modes in a
five-dimensional Kerr-AdS background in the limit of
small black holes; see, in particular, Eqs. (95) and (97).
The numerical analysis carried out for the Schwarzschild-
AdS and Kerr-AdS cases showed that the τ function
approach has advantages when compared to standard
methods, in terms of faster processing times. For l even,
the correction to the vacuum AdS frequencies is negative
with a negative imaginary part for Δ > 1, the scalar
unitarity bound, showing no instability in the range studied.
For l odd, there are strong indications for instability due to
the general structure of the corrections in Eq. (109). In
particular, for l ¼ 1, the numerical results shown in
Fig. 3 exhibit an unstable mode for rþ ≤ 0.02 and nearly
equal rotational parameters. We plan to address the phase
space of instabilities and holographic consequences in
future work.
The method in this paper relies on the construction of the τ

function of the PVI transcendent proposed in the literature
following the Alday-Gaiotto-Tachikawa conjecture. The
conditions in Eq. (41) translate the accessory parameters in
theODEsgoverning thepropagationof the field—themselves

depending on the physical parameters—into monodromy
parameters, and the quantization condition (39) allows us to
derive the angular separation constant (63). In turn, the
quantization condition for the radial equation (40), through
series solutions for the composite monodromy parameters s
and σ, allows us to solve for the eigenfrequenciesωn;l, even in
the generic complex case.
The interpretation of the ODEs involved as the level-2

null vector condition of the semiclassical Liouville field
theory allows us to conclude that all descendants are
relevant for the calculation of the monodromy parameters,
even though, for angular momentum parameter l ≥ 2, one
can consider just the conformal primary (first channel) for
the parameter σ0t.
The scaling limit resulting from this analysis gives the

monodromy parameter σ in Eq. (75). For the parameter σ1t,
the requisite of a smooth rþ → 0 limit forces us to consider
the asymptotics of the whole series (56), thus involving all
descendants. This means that a naive matching of the
solution obtained from the near horizon approximation to
the asymptotic solution near infinity is not a suitable tool
for dealing with small black holes. For the composite
monodromy parameter σ1t, more suitably parametrized
by s in Eq. (B7), the requirement of a finite rþ → 0 limit
allows us to select the solutions (89) for l even and (105)
for l odd. Although finite in the small black hole limit,
the s parameter has a nonanalytic expansion in terms
of rmþðlog rþÞn.
For the s-wave l ¼ 0 calculations, we had to consider a

scaling limit in Eq. (56) where the Liouville momenta
associated to θþ and θ− go to zero as rþ, at the same time as
z0 and σ − 2 scales as r2þ. The formulas (80) and (81) are
reminiscent of the light-light-heavy-heavy limit of Witten
diagrams for conformal blocks [43]. It would be interesting
to understand the CFT meaning of this limit.
The Toda equation, which allows us to interpret the

second condition (41) on the Painlevé τ function, also
merits further study. As for the first condition, we note that
it provides the accessory parameters for both the angular
and radial equations—Q0 in Eq. (12) and K0 in Eq. (20),
respectively—as the derivative of the logarithm of the τ
function for each system. On the other hand, these
accessory parameters are both related to the separation
constant of the Klein-Gordon equation, as can be verified
through Eqs. (14) and (22). Including these terms in the
definition of a τ function for the angular and radial systems,
we can represent the fact that the separation constant is the
same for Eqs. (12) and (20) as the condition

d
du0

log τangular ¼
d
dz0

log τradial; ð110Þ

which in turn can be interpreted as a thermodynamical
equilibrium condition. Given the usual interpretation of the
τ function as the generating functional of a quantum theory,
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the elucidation of this structure can shed light on the
spacetime approach to conformal blocks. The present work
gives, in our opinion, convincing evidence that the
PVI τ function is the best tool—both numerically and
analytically—to study connection problems for Fuchsian
equations, in particular, scattering and resonance problems
for a wide class of black holes.
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APPENDIX A: NEKRASOV EXPANSION AND
FREDHOLM DETERMINANT FOR PAINLEVÉ VI

In what follows, we will assume the “sufficient general-
ity condition”

σ0t ∉Z; σ0t�θ0�θt ∉Z; σ0t�θ1�θ∞ ∉Z: ðA1Þ

The Nekrasov expansion of the PVI τ function is given as
a double expansion [22,23]

τðtÞ¼
X
n∈Z

N θ1
θ∞;σ0tþ2nN

θt
σ0tþ2n;θ0

snt
1
4
ððσ0tþ2nÞ2−θ2

0
−θ2t Þð1− tÞ12θ1θt

X
λ;μ∈Y

Bλ;μðθ⃗;σ0tþ2nÞtjλjþjμj; ðA2Þ

where

N θ3
θ2;θ1

¼
Q

ϵ¼�Gð1þ 1
2
ðθ3 þ ϵðθ2 þ θ1ÞÞÞGð1þ 1

2
ðθ3 þ ϵðθ2 − θ1ÞÞÞ

Gð1 − θ1ÞGð1þ θ2ÞGð1 − θ3Þ
ðA3Þ

withGðzÞ the Barnes function, defined by the solution of the functional equationGðzþ 1Þ ¼ ΓðzÞGðzÞ, withGð1Þ ¼ 1 and
ΓðzÞ the Euler gamma.8 The other parameters in Eq. (A2) are the coefficients of the c ¼ 1 Virasoro conformal block

Bλ;μðθ⃗; σÞ ¼
Y

ði;jÞ∈λ

ððθt þ σ þ 2ði − jÞÞ2 − θ20Þððθ1 þ σ þ 2ði − jÞÞ2 − θ2∞Þ
16h2λði; jÞðλ0j − iþ μi − jþ 1þ σÞ2

×
Y

ði;jÞ∈μ

ððθt − σ þ 2ði − jÞÞ2 − θ20Þððθ1 − σ þ 2ði − jÞÞ2 − θ2∞Þ
16h2λði; jÞðμ0j − iþ λi − jþ 1 − σÞ2 ; ðA4Þ

where Y denotes the space of Young diagrams and λ and μ
are two of its elements, with the number of boxes jλj and
jμj. For each box situated at ði; jÞ in λ, λi are the number of
boxes at row i of λ, λ0j, the number of boxes at column j of
λ; hði; jÞ ¼ λi þ λ0j − i − jþ 1 is the hook length of the
box at ði; jÞ. Finally, the parameter s is given in terms of
monodromy data by

s¼ðw1t−2p1t−p0tp01Þ−ðw01−2p01−p0tp1tÞexpðπiσ0tÞ
ð2cosπðθt−σ0tÞ−p0Þð2cosπðθ1−σ0tÞ−p∞Þ

;

ðA5Þ
where

pi ¼ 2 cos πθi; pij ¼ 2 cos πσij;

w0t ¼ p0pt þ p1p∞; w1t ¼ p1pt þ p0p∞;

w01 ¼ p0p1 þ ptp∞: ðA6Þ

The Fredholm determinant representation for the PVI τ
function uses the usual Riemann-Hilbert problem formu-
lation in terms of Plemelj (projection) operators and jump
matrices. The idea is to introduce projection operators which
act on the space of (a pair of) functions on the complex plane
to give analytic functions with prescribed monodromy
(Cauchy-Riemann operators). Details can be found in
Ref. [14]. One should point out that the two expansions
agree as functions of t up to a multiplicative constant:

τðtÞ ¼ const · t
1
4
ðσ2−θ2

0
−θ2t Þð1 − tÞ−1

2
θtθ1 detð1 − ADÞ; ðA7Þ

where the Plemelj operatorsA andD act on the space of pairs
of square-integrable functions defined on C, a circle on the
complex plane with radius R < 1:

ðAgÞðzÞ¼
I
C

dz0

2πi
Aðz;z0Þgðz0Þ;

ðDgÞðzÞ¼
I
C

dz0

2πi
Dðz;z0Þgðz0Þ; gðz0Þ¼

�
fþðzÞ
f−ðzÞ

�
; ðA8Þ

8Since τ is defined up to a multiplicative constant, this
functional relation is the only property of the Barnes function
necessary for obtaining the expansion.
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with kernels given, for jtj < R, explicitly by

Aðz; z0Þ ¼ Ψðθ1;θ∞;σ; zÞΨ−1ðθ1;θ∞;σ; z0Þ− 1
z− z0

;

Dðz; z0Þ ¼ΦðtÞ1−Ψðθt;θ0;−σ; t=zÞΨ−1ðθt;θ0;−σ; t=z0Þ
z− z0

×Φ−1ðtÞ: ðA9Þ

The parametrix ΨðzÞ and the “gluing” matrix ΦðtÞ are,
respectively,

Ψðα1;α2;α3;zÞ¼
�

ϕðα1;α2;α3;zÞ χðα1;α2;α3;zÞ
χðα1;α2;−α3;zÞ ϕðα1;α2;−α3;zÞ

�
;

ΦðtÞ¼
�
t−σ=2κ−1=2 0

0 tσ=2κ1=2

�
; ðA10Þ

with ϕ and χ given in terms of Gauss’ hypergeometric
function:

ϕðα1; α2;α3; zÞ ¼ 2F1

�
1

2
ðα1 þ α2 þ α3Þ;

1

2
ðα1 − α2 þ α3Þ; α3; z

�
;

χðα1; α2;α3; zÞ ¼
α22 − ðα1 þ α3Þ2
4α3ð1þ α3Þ

z2F1

�
1þ 1

2
ðα1 þ α2 þ α3Þ; 1þ

1

2
ðα1 − α2 þ α3Þ; 2þ α3; z

�
: ðA11Þ

Finally, κ is a known function of the monodromy parameters:

κ ¼ s
Γ2ð1 − σÞ
Γ2ð1þ σÞ

Γð1þ 1
2
ðθt þ θ0 þ σÞÞΓð1þ 1

2
ðθt − θ0 þ σÞÞ

Γð1þ 1
2
ðθt þ θ0 − σÞÞΓð1þ 1

2
ðθt − θ0 − σÞÞ

Γð1þ 1
2
ðθ1 þ θ∞ þ σÞÞΓð1þ 1

2
ðθ1 − θ∞ þ σÞÞ

Γð1þ 1
2
ðθ1 þ θ∞ − σÞÞΓð1þ 1

2
ðθ1 − θ∞ − σÞÞ : ðA12Þ

Meaningful limits for integer σ violating Eq. (A1) can be
obtained by canceling the factors in the denominator of s
with poles of the Barnes function from the structure
constants N σþ2n

θt;θ0
.

For the numerical implementation, we write the matrix
elements of A and D in the Fourier basis zn, truncated up to
the order of N. Again, the structure of the matrix elements
Amn and Dmn can be found in Ref. [14]. This truncation
gives τ up to terms OðtNÞ and, unlike the Nekrasov
expansion, can be computed in polynomial time. The
formulation does, in principle, allow for the calculation
for arbitrary values of t, by evaluating the integrals in

Eq. (A8) as Riemann sums using quadratures [44], so there
are good perspectives for using the method outlined here
for more generic configurations.

APPENDIX B: EXPLICIT MONODROMY
CALCULATIONS

Given σ0t and s satisfying Eq. (A1), we can construct an
explicit representation for the monodromy matrices—up to
conjugation—as follows.
The monodromy matrices are

M0 ¼
i

sin πσ0t

0
@ cos πθt − cos πθ0eiπσ0t 2si sin π

2
ðσ0t þ θ0 − θtÞ sin π

2
ðσ0t − θ0 − θtÞ

−2s−1i sin π
2
ðσ0t þ θ0 þ θtÞ sin π

2
ðσ0t − θ0 þ θtÞ − cos πθt þ cos πθ0e−iπσ0t

1
A; ðB1Þ

Mt ¼
i

sinπσ0t

0
@ cosπθ0−cosπθteiπσ0t −2sieiπσ0t sinπ

2
ðσ0tþθ0−θtÞsinπ

2
ðσ0t−θ0−θtÞ

2s−1i e−iπσ0t sinπ
2
ðσ0tþθ0þθtÞsinπ

2
ðσ0t−θ0þθtÞ −cosπθ0þ cosπθte−iπσ0t

1
A;

ðB2Þ

M1 ¼
i

sinπσ0t

0
@ −cosπθ∞þ cosπθ1e−iπσ0t 2seeiπσ0t sinπ

2
ðσ0tþθ1þθ∞Þsinπ

2
ðσ0tþθ1−θ∞Þ

−2s−1e e−iπσ0t sinπ
2
ðσ0t−θ1þθ∞Þsinπ

2
ðσ0t−θ1−θ∞Þ cosπθ∞−cosπθ1eiπσ0t

1
A;

ðB3Þ
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M∞ ¼ i
sin πσ0t

0
@ − cos πθ1 þ cos πθ∞e−iπσ0t −2se sin π

2
ðσ0t þ θ1 þ θ∞Þ sin π

2
ðσ0t þ θ1 − θ∞Þ

2s−1e sin π
2
ðσ0t − θ1 þ θ∞Þ sin π

2
ðσ0t − θ0 − θ∞Þ cos πθ1 − cos πθ∞eiπσ0t

1
A:

ðB4Þ

The matrices satisfy

MtM0 ¼
�
eiπσ0t 0

0 e−iπσ0t

�
; M∞M1 ¼

�
e−iπσ0t 0

0 eiπσ0t

�
: ðB5Þ

The parameters si and se are related to the parameter s defined in Eq. (A5) through

s ¼ si
se
: ðB6Þ

A direct calculation shows that

sin2πσ0t cos πσ1t ¼ cos πθ0 cos πθ∞ þ cos πθt cos πθ1 − cos πσ0tðcos πθ0 cos πθ1 þ cos πθt cos πθ∞Þ

−
1

2
ðcos πθ∞ − cos πðθ1 − σ0tÞÞðcos πθ0 − cos πðθt − σ0tÞÞs

−
1

2
ðcos πθ∞ − cos πðθ1 þ σ0tÞÞðcos πθ0 − cos πðθt þ σ0tÞÞs−1: ðB7Þ

We close by noting that, for the special case of interest where σ1t ¼ θ1 þ θt þ 2n, n ∈ Z, the expressions above are still
valid.
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