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A B S T R A C T

We propose a mesh refinement technique for solving elliptic difference
equations on unbounded domains based on the fast lattice Greens function
(FLGF) method. The FLGF method exploits the regularity of the Cartesian
mesh and uses the fast multipole method in conjunction with fast Fourier trans-
forms to yield linear complexity and decrease time-to-solution. We extend this
method to a multi-resolution scheme and allow for locally refined Cartesian
blocks embedded in the computational domain. Appropriately chosen inter-
polation and regularization operators retain consistency between the discrete
Laplace operator and its inverse on the unbounded domain. Second-order ac-
curacy and linear complexity are maintained, while significantly reducing the
number of degrees of freedom and hence the computational cost.
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1. Introduction

Elliptic partial differential equations require fast numerical solvers scalable up to trillions of unknowns. In this

contribution, we will focus on elliptic difference equations on unbounded domains arising in numerous applications in-

cluding the incompressible Navier-Stokes equations (NSE), quantum mechanics, random walks, and plasma physics.

[1, 2, 3]. In particular, we will use the Poisson equation as a representative example of these. Common, scalable

methods to solve these equations include the fast Fourier transform (FFT) [4], the fast multipole method (FMM) [5],

multigrid methods and its variants (algebraic (AMG) and geometric (GMG)) [6], domain decomposition methods [7]

as well as wavelet transforms [8]. A recent comparison of FFT, FMM as well as AMG and MGM can be found in

[9], where the Poisson equation was solved in the unit cube with periodic boundary conditions and scaled up to 600
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billion degrees of freedom (DoF) and 220, 379 cores. The authors conclude that while FFT is the method of choice

for smooth source functions that require uniform resolution, it is outperformed by the FMM for localized source dis-

tributions where one can take advantage of nonuniform grids. In addition, state-of-the-art algebraic multigrid solvers

were found to be an order of magnitude slower than FFT, GMG or FMM. Note that while the authors compare these

methods for periodic boundary conditions only, we focus on free-space boundary conditions in the following. In this

case, it is expected that the efficiency between both FFT and multigrid method will decrease due to the difficulties of

satisfying free-space boundary with the appropriate Dirichlet boundary conditions or zero-padding, respectively.

A fast lattice Green’s function method (FLGF) has recently been proposed in [10] and shown extraordinary effi-

ciency in solving the class of elliptic difference equations in unbounded domains. The FLGF method is based on a

efficient convolution of the source distribution and its fundamental solution via FMM, the Green’s function. In contrast

to most existing FMM approaches, the FLGF method exploits the regularity of a Cartesian mesh, and uses a kernel-

independent, interpolation-based fast multipole method (FMM) to retain linear computational complexity inherent to

FMM. A similar approach has been proposed in [11] for two dimensional infinite lattices using skeleton points (see

also [12, 13]). Additionally, the FLGF exploits fast Fourier transforms (FFT) to further reduce the computational

costs compared to conventional solvers. It has been successfully applied to solve the incompressible Navier-Stokes

equations using a finite volume approach [14]. In addition, accurate simulations of external aerodynamics of complex

geometries were enabled by coupling it with the immersed boundary method (IB-LGF)[15]. Owing to the geometrical

flexibility of the FMM and the implied free-space boundary of the Lattice Green’s functions (LGF), the solver allows

for adaptive, possibly disjoint meshes that limit the computational domain to a set of blocks with non-negligible

vorticity only, with further computational savings associated with the typical compactness of this region. This is in

contrast to most common approaches, which employ spatially truncated domains with approximate free-space bound-

aries. These approximations introduce blockage errors, which affect accuracy and may even change the dynamics

of the flow [16, 17, 18]. Thus, large computational domains in combination with stretched grids [19, 20, 21], local

refinement [22, 23] and far-field approximations [24] are required to limit the influence of the approximate free-space

boundary condition.

A significant limitation of the FLGF approach, however, is uniform resolution. This limits its ability to reach

competitive time-to-solution requirements, commonly required by demanding academic or industrial applications. In

fact, while uniform Cartesian meshes can significantly decrease the cost per degree of freedom (DoF), the total number

of DoF can be prohibitive for strongly anisotropic or inhomogeneous problems with localized source regions. This

issue is particularly prominent for, e.g., high Reynolds number flows or problems where the range of scales is large.

The use of uniform meshes for this set of problems requires a resolution that is comparable to the smallest scales in the

problem, although these might be confined to a very small region of the computational domain, thereby yielding an

unnecessarily high number of DoF. To overcome this limitation, we propose here a multi-resolution extension of the

FLGF method. Most popular multi-resolution schemes include multigrid methods as well as FMM, which inherently

support local mesh refinement and have been successfully implemented in a variety of publicly available software

packages (see, e.g.: [25, 26, 27] or [28] for a review). However, our goal here is to retain the favorable efficiency of
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the FLGF method compared to the classical FMM as well as multigrid methods but reduce the number of DoFs by a

proposing block-structured mesh refinement algorithm for the FLGF method.

The paper is organized is follows: In section 2, we start by reviewing the fast lattice Green’s function method

in some detail to facilitate further discussion. Subsequently, the proposed multi-resolution scheme is presented in

section 3. In addition, we provide an analysis, discussion and a convergence study of the refinement scheme on a fluid

dynamics test problem.

2. Fast lattice Green’s function method

The lattice Green’s function method [10] solves inhomogeneous, linear, constant-coefficient difference equations,

defined on unbounded Cartesian grids, by convolution of the fundamental solution of the discrete operator, so-called

lattice Green’s functions (LGF), with the equation’s source term. LGFs can be obtained from Fourier integrals, and

its asymptotic expansions can be used to facilitate numerical or analytical evaluation. The formally infinite mesh

may however be truncated such that only cells with non-negligible source are retained. Going by example, for block-

structured meshes this allows us to adapt the computational domain by simply adding or removing the corresponding

blocks.

Here, we will focus on elliptic difference equations on unbounded domains, exemplified by the three dimensional

Poisson’s problem, which reads

∆u(x) = f (x), supp( f ) ⊆ Ω, (1)

where x ∈ R3 and Ω denotes a bounded domain in R3. Its solution or target field u can be obtained by convolution of

the fundamental solution of the Laplace operator G(x) = −1/(4π|x|) with the source field f (x) such that

u(x) = (G ∗ f )(x) =

∫
Ω

G(x − ξ) f (ξ)dξ. (2)

Correspondingly, the discrete scalar Poisson equation reads

LQu(n) = f (n), supp( f ) ⊆ Ωh, (3)

where u, f ∈ RQ, Ωh is a bounded domain in Z3, n = (n1, n2, n3) ∈ Z3 and Q ∈ {C} denotes cell-centered values. Its

solution is given by the discrete convolution

u(n) = (G ∗ f )(n) =
∑
m∈Ωh

G(n− m) f (m), (4)

where the fundamental solution or LGF of the discrete 7−pt Laplacian is denoted by G. An expression for G(n) can

be obtained by diagonalizing the Laplace operator LQ in Fourier space, inversion and a back-transform (see, e.g.,

[29, 30]). In terms of Fourier integrals this eventually yields

G(n) =
1

8π3

∫
[−π,π]3

exp (−inξ)
2 cos(ξ1) + 2 cos(ξ2) + 2 cos(ξ3) − 6

dξ. (5)
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For evaluation of the LGF it is typically more convenient to rewrite Eq.(5) as a one dimensional, semi-infinite integral

as

G(n) = −

∫ ∞

0
exp(−6t)In1 (2t)In2 (2t)In3 (2t)dt, (6)

where Ik(t) denotes the modified Bessel function of first kind and order k. While Eq.(6) is readily evaluated using an

adaptive Gauss-Kronrod quadrature or alike, it is more efficient to evaluate the Green’s function through its asymptotic

expansion in the far-field [31, 13, 32], i.e., large |n|. In particular, the target field u can then be written as

u(n) = unear(n) + ufar(n) + ε(n), (7)

where

unear(n) =
∑

m∈Ωnear
h (n)

G(n− m) f (m) (8)

ufar(n) =
∑

m∈Ωh\Ω
near
h (n)

Aq
G(n− m) f (m), (9)

and Ωnear
h , ε(n) are the near field and the error due to approximating G(n) with Aq

G(n) in the far field, respectively. The

q-term asymptotic expansion of G(n) is defined such that G(n) = Aq
G(n) + O(|n|−2q−1). For q = 2 and q = 3 it reads

A2
G(x) = −

1
4π|x|

−
x4

1 + x4
2 + x4

3 − 3x2
1x2

2 − 3x2
1x2

3 − 3x2
2x2

3

16π|x|7
. (10)

and

A3
G(x) =A2

G(x) +
1

128π |x|13

(
−228

(
x2

2x2
3x4

1 + x2
2x4

3x2
1 + x4

2x2
3x2

1

)
+ 621

(
x4

1x4
2 + x4

3x4
2 + x4

1x4
3

)
−

244
(
x2

2x6
1 + x2

3x6
1 + x6

2x2
1 + x6

3x2
1 + x2

2x6
3 + x6

2x2
3

)
+ 23

(
x8

1 + x8
2 + x8

3

))
,

(11)

respectively. In our implementation, we use a tabulated integration of Eq.(6) in the near field for |n| ≤ 100. The

asymptotic expansion is chosen to ensure a conservative error bound of the asymptotic expansion compared to the

direct integration of |ε| . 10−12, while keeping the number of terms to a minimum. Hence, q = 3 is used for

100 < |n| ≤ 600, whereas q = 2 suffices for |n| > 600.

2.1. Fast convolutions

The direct evaluation of the discrete convolution in Eq.(4) is prohibitive for large computational domains as

it requires O(N2) work for N degrees of freedom. The FLGF method [10] on the other hand employs a kernel-

independent interpolation-based fast multipole method (FMM) to compute the discrete convolutions in conjunction

with block-wise FFT convolution. The FMM achieves linear complexity O(N) by exploiting the fact that, for an

elliptic kernel, the solution in the far-field is much smoother than in the near-field. Thus, a low-rank representation of

the kernel is sufficient to accurately compute the contribution of far-field, while only the near field requires full-rank

representation of the kernel. A low-rank approximation of a kernel K(x, y) can be obtained by interpolation using

coarse grained sampling points x0, ..., xn−1. With the generic interpolation function φ(x), this yields

K̃(x, y) =

n−1∑
i=0

n−1∑
j=0

φ(x)K(xi, yi)φ(y), (12)
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Fig. 1: Schematic of the hierarchical domain composition of the far-field (red, left) for an octant BLB−1
i (blue, left). While the near field consist of

the nearest neighbors only, the far-field is composed out of the set of influence lists for all levels. For level l the influence list contains the children
of the nearest neighbors of Bl

i’s parent, which are not contained in the near field, i.e., are well separated.

and the discrete convolution can then be approximated by

u(xi) ≈
M−1∑
j=0

K̃(xi, y j) f (y j) =

M−1∑
j=0

n−1∑
p=0

n−1∑
q=0

φ(xi)K(xp, yq)φ(y j) f (y j) i = 0, ...,N − 1, (13)

where N is the number of target points and M the number of source points. The near- and far-field contributions

are treated by constructing a hierarchical decomposition of the domain using an octree structure T (quadtree in two

dimensions), for which Eq.(13) is evaluated recursively. The octree is defined to have a depth LB, where the tree root

is assumed to have level 0 and the base level LB − 1 corresponds to physical domain. The tree nodes are also referred

to as octants and octants without children are leaf nodes. The set of leafs on level l is indicated by Bl
Leafs. A distinct

feature of the FLGF as proposed in [10] is that each tree node corresponds to a region, which is represented by a

Cartesian block and contains Nb = n3
b cells. We further denote the i-th octant or block at level l by Bl

i and the set of

all octants at level l by Bl =
⋃N l

B
i=0 B

l
i, where N l

B is the number of octants on level l. The set of children and the parents

are denoted by C(Bl
i) and P(Bl

i), respectively.

Thus, for a given target field uLB−1
i , defined on the octant BLB−1

i on level LB−1, the near-field contribution consists

of the interaction, i.e., convolution, with regionN(BLB−1
i ), containing the octant itself and the nearest neighbor octants

on the finest tree level LB − 1. The far-field contributions are then evaluated recursively for the levels l = LB − 1, . . . , 0

and are defined as the convolution with octants in the influence region I(Bl
i) = {B̂l

i ∈ F (Bl
i)\F (Bl−1

i )}, which includes

the well-separated octants, i.e. F (Bl
i) =

⋃LB−1
l=0 Bl \ N(Bl

i), but excludes the regions well-separated from its parents

F (P(Bl
i)). Schematically, the domain decomposition in near and far-field regions is depicted in figure 1.

Note that using Cartesian blocks as octants allows for the convolution between each block and its influence list

to be computed by a block-wise FFT-based convolution. There, the convolution is converted to a complex Hadamard

product in Fourier space. As this is a circular convolution, the original block needs to be zero-padded. FFT-based

convolution is a standard technique and we refrain from reporting details in the interest of brevity but refer the reader to

[10]. Compared to a direct summation as indicated in Eq.(4) the block-wise FFT decreases computational complexity

from O(N2
b ) to O(Nb log Nb) for each block-convolution. It should be clear from the above that given a union of

source Bs =
⋃Ns−1

i=0 Bs,i and target blocks Bt =
⋃Nt−1

i=0 Bt,i the convolution can be evaluated as the sum of the individual
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Fig. 2: Schematic of the fast multipole method: Left: Upward pass - Source regularization . Middle: Level interaction - Convolution of a block
(blue) with its influence list (red). Right: Downward pass - Compute and accumulate the induced fields at the interpolation nodes. Note that each
FMM cell, corresponds to a Cartesian block in the FLGF.

convolutions as

ui =
∑
j∈Bs

conv(G j−i, f j), for i = 0, ...,Nt − 1, (14)

where the convolution operator is denoted as conv and G j−i is the vector containing the unique values of G(m − n)

evaluated on the grid points m and n of the blocks Bt, j and Bs,i, respectively. In the case of FLGF this convolution

is evaluated using FFT. The additional advantage of such a block-structured FMM approach is that regions with

negligible source can be removed entirely, yielding an adaptive and possibly disjoint mesh.

With these definitions and the corresponding tree structure, the evaluation of Eq.(13) can be split into three con-

secutive steps. First, we iterate in bottom-up order through the tree and compute the effective source terms on each

level. This is called the upward pass in FMM literature and computes f̃ (yq) =
∑M−1

j=0 φ(y j) f (y j) from Eq.(13). Second,

for each level in the tree the so-called level interaction is computed, where the convolution of each octant in the level

with its influence region is calculated. This corresponds to ũ(xp) =
∑n−1

q=0 K(xp, yq) f̃ (yq) in Eq.(13). Finally, iterating

from the root to the leaf octants, all contributions are interpolated and accumulated on the next level, which accounts

for u(xi) =
∑n−1

p=0 φ(xi)ũ(xp) of Eq.(13). This is called the downward pass. Schematically, the FLGF method is shown

on figure 2 and can be summarized by the following algorithm:

1. Upward pass: Compute effective source terms at interpolation nodes

For l = LB − 2, ..., 0 : For i = 0, ...N l
B

f̃ l
i =

∑
j∈C(Bl

i)

Rl+1 f̃ j, (15)

where the regularization operator Rl+1 is the adjoint of the interpolation operator Jl+1(see below).

2. Level Interaction : FFT Convolution with the octant in the influence region

For l = 0, ..., LB − 1 : For i = 0, ...N l
B

ṽl
i =

∑
j∈I(Bl

i)

conv(Gi− j, f j), (16)
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Fig. 3: Example of a block-refined mesh topology with two levels of refinement.

where conv(·) is the FFT convolution operator.

3. Downward pass: Compute and accumulate induced field at interpolation nodes

For l = 0, ..., LB − 1 : For i = 0, ...N l
B

ũl
i = ṽl

i + Jl−1
i ũl−1

i , (17)

where the interpolation operator Jl interpolates from the parent onto the child block.

Owing to the regularity of the Cartesian block mesh, the interpolation operators are implemented using Lagrangian

polynomials. As in [10], we typically use nI ≤ 10 interpolation nodes to a achieve a relative interpolation error of ε ≈

10−12 for an analytic function approximation. The regularization operator is given by the adjoint of the interpolation

operator and is sometimes called anterpolation in FMM literature. In summary the FLGF method combines the

fastest methods for regular meshes, while retaining the geometrical flexibility and overall linear complexity inherent

to FMM. Excellent computational rates and parallel performance have been reported in [10]. In the following, this

methodology will be extended to allow for block-refinement.

3. Block-refined FLGF method

While the FLGF method has shown to be a fast and promising approach for solving the Poisson problem, the

methodology is so far limited to block-structured meshes with uniform resolution and the octree is only used to

compute the block-structured FMM. Here we propose a multi-resolution, block-refinement strategy and define the

computational domain as Ω =
⋃LR−1

l=0 Ωl =
⋃LR−1

l=0
⋃Ml

m=0 Ωl
m, where Ωl

m denotes region m of refinement level l and may

itself be composed out of N l
m blocks with Ωl

m =
⋃N l

m
i=0 B

l
i and Ωl =

⋃N l
B

i=0 B
l
i (see figure 3). In this context, the mesh level

l >= 0 is defined as physical refinement domain. This is in contrast to the FMM in section 2.1, where the physical

domain was defined on the base level LB − 1. This slight abuse of notation will facilitate the discussion below. The

refinement method, however can conveniently use the same octree structure as used for the LGF. We will further use

the same nomenclature and distinguish between leaf octants and interior, non-leaf octants.
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When refining the physical domain by embedding locally refined grid patches within the computational domain,

the free-space boundary conditions implied by the lattice Green’s functions become problematic since the refinement

patches itself do have a well defined boundary condition, which is imposed by the surrounding domain and is not the

free space. However, if the source field is projected onto each level within its support by an appropriate coarsening

operator, we can, in principle, apply the FLGF method on each level independently. In terms of the octree structure

this corresponds to recursive coarsening of the source field on all leaf nodes up to the coarsest refinement level. We

further define the convolution of source regions with the LGF such that each target region, which is defined on non-

leaf, interior octants only interacts with leaf octants, whereas leaf octants interact with both leaf and non-leaf octants.

With a subsequent recursive interpolation procedure of the target fields, the contribution of all octant on all levels

to the target region can be accumulated and accounted for. Schematically, this method is depict in figure 4. More

concisely, we can summarize the scheme by the following expression for the target field ul
m

ul
m = Γl

m

∑
p<l

JpGp f p + Gl

∑
p≤l

∏
j>p

C j f p −
∑
p<l

Lp+1
Q JpGp f p


 , (18)

where f l = f l(x), ∀x ∈ Ωl and the projection operator Γl
m f = f l

m. In the above, we have also used a shorthand notation

for the convolution of the Green’s function Gl with a field ϕl on level l, which is given by

Glϕl = Gl(x, y)ϕl(y) =
∑
y∈Ωl

Gl(x − y)ϕl(y), x ∈ Ωl. (19)

Further, the interpolation from level l onto level l + 1 is denoted by Jl, whereas the coarsening operator Cl projects a

field from level l to level l−1. Note that we have included an additional source correction term (last term of Eq. (18)).

As will be shown later, this source correction step is not necessary to retain second-order accuracy but is used to

ensure consistency between the Laplace operator LQ and its inverse. While this multi-resolution scheme computes the

inverse of the multi-resolution Laplace operator numerically, the corresponding forward Laplace operator is apriori

not known. This is due to the fact that the LGF in Eq.(5) corresponds to the inverse of the 7-pt Laplace operator on

a uniform mesh with free-space boundaries only. For practical applications however, it is often necessary to apply at

least the gradient operator on the target field. Hence, it is desirable to know or at least be able to apply a consistent

forward operator and we seek Laplacian free field for each level, where the following equation to holds:

Ll
QΓl

∑
p<l

JlGl f l = 0, l = 0, ..., LR − 1. (20)

The source correction step ensures consistency between the forward operator per level, in this case the 7-pt Laplace,

and the computed inverse by numerically evaluating the error, originating from said inconsistency, on the next level

and subtracting it from the source on this level. This is indicated in figure 4b for the second and third refinement level

with the green region. Naturally, this is only applicable for non-leaf octants.

Using the notation from section 2.1, the algorithm for a target field ul
i, defined on octant Bl

i, is given by the

following steps:
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Fig. 4: Schematic of the mesh refinement methodology for the FLGF method. Left: Coarsification of the source field. Middle: Level interaction
(blue-red) and source correction (green). Right: Interpolation and accumulation of the target field.

1. Regularization:

For l = LR − 2, ..., 0 : For i = 0, ...N l
B

f̃ l
i =

∑
j∈C(Bl

i)

Cl+1 f j (21)

2. Level interaction:

For l = 0, ..., LR − 1 : For i = 0, ...N l
B

2..1 Convolution:

ṽl
i =



∑
j∈Bl

conv(Gi− j, f l
j) if Bl

i ∈ Bl
Leafs∑

j∈Bl
Leafs

conv(Gi− j, f l
j) else.

(22)

2..2 Source correction:

f̃ l+1
i ← f̃ l+1

i − Ll+1
Q

Jl f̃ l
i (23)

3. Accumulation and interpolation:

For l = 0, ..., LR − 1 : For i = 0, ...N l
B

ũl
i = ṽl

i + Jl−1ũl−1
i (24)

Note that the convolution in the second step is computed using the FLGF method as presented in section 2.1.

Since, we need to distinguish between the interaction of leaf nodes and the interior octants, we also have the carry out

the FMM twice. In practice, we first use the FMM for computing the convolution of the entire refinement tree and a

second time using the non-leafs nodes only. Subtracting both is equivalent to Eq.(22) and yields

ṽl(x) = Gl(x, y) f l(x) −Gl(x, yI) f (yI) ∀x ∈ Bl, yI ∈ Bl \ Bl
Leafs. (25)

Note that the computational complexity remains linear in the number DoFs per level and also scales linearly with the

number of refinement levels and thus retains linear complexity in the total number of DoFs.
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Regularization and Interpolation operators

The FLGF method is a second-order accurate scheme and we thus require the interpolation and regularization

operators to be at least second-order accurate to avoid degradation of the overall accuracy of the scheme. The field

values are stored at the cell centers, which leads to a staggered storage upon refinement, i.e., none of the field values

in any child cell are stored in the same physical location than the field values of the parent cell (see figure 5). This is

in contrast to vertex storage, which would lead to field values stored at coinciding locations for different levels. For

ease of implementation, we define the interpolation operator to be the second-order Lagrangian polynomials, which

already have been used for the FMM. Note that in the procedure above, the interpolant corresponds to the interaction

of a non-leaf octant with the leaf octants only. Thus the fields within each non-leaf octant are distinct. We use an

additional buffer layer of one cell around each octant and set the source within this region to zero. This allows us to

use an unbiased interpolation for each octant.

For the coarsening operator, we use a simple averaging procedure, which is second-order accurate and does not require

any neighbor information. In one dimension this yields

u(xl
i) =

u(xl+1
i ) + u(xl+1

i+1)
2

. (26)

3.1. Convergence

For validation of the multi-resolution scheme as presented above, we use the method of manufactured solutions.

As a test problem we consider a vortex ring with radius R and its streamfunction Ψ is defined as

Ψ(r, z) = f

 √
(r − R)2 + z2

R

 eθ, (27)

where

f (t) =

c1 exp
(
−

c2

1 − t2

)
if |t| < 1

0.0 else.
(28)

The streamfunction is related to vorticity by the Poisson equation ω = 4Ψ. This allows us to initialize the source field

by analytical evaluation of the Laplace and compare the numerically obtained solution of the streamfunction with the

analytical one in Eq.(27). In this setup we place six vortex rings in the unit cube, where a single large vortex ring with

c1 = 103, c2 = 10 and radius R = 0.125 is located in the center of the domain and five smaller once’s with c1 = 106,

c2 = 15 and radius R = 0.015 at z = 0.125 are arranged as shown in figure 6a.

As a first convergence test, a global mesh refinement study with a fixed mesh topology of three levels near the

vortex ring is carried out. An example mesh topology with six levels of refinement is shown in figure 6b. The mesh

u(xl
i) u(xl

i+1)

u(xl+1
i ) u(xl+1

i+1) u(xl+1
i+2) u(xl+1

i+3)

Fig. 5: Mesh refinement in one dimension.
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(a) Arrangement of the vortex rings. (b) Mesh topology for the vortex rings and six levels of refinement.

Fig. 6: Mesh topology and vorticity field for the vortex ring and the numerical solution of the streamfunction Ψh for six levels of refinement.
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Fig. 7: Convergence of the L2 and L∞ norm with respect to the analytical target field Ψ for the block-refined FLGF method for a fixed mesh
topology of three refinement levels and an increasing base level resolution ∆xmax.

is composed of cubic blocks and we initialize or refine the block if on level l the following criterion is met

ωl > αLR−lωl
max, (29)

where α = 1/32 unless stated otherwise. This criterion is conservative and is offered for the specific test problem

shown; it should be reevaluated for different applications.

In figure 7, the L2 and L∞ norm with respect to the analytical solution are shown with increasing base level

resolution. As expected a clear second-order convergence behavior is observed for the proposed multi-resolution

scheme. We also plot the target error for the case, where the source correction term is neglected. From the figure it is

apparent that the influence of the source correction term on both the convergence and the magnitude of target error is

negligible for global refinement and a total of three refinement levels.

In addition to changing the base level resolution, we now fix the base level resolution and increase the number of

refinement levels successively according to the refinement criterion in Eq.(29). The corresponding convergence of the

error in the fine level for both the corrected and the uncorrected version is shown in figure 8a. Note that while second-
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Fig. 8: Convergence study of six vortex rings with refinement coefficient α = 1/32
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Fig. 9: Convergence study of six vortex rings with refinement coefficient α = 1/8

order of accuracy is always retained in the proposed scheme when refining a fixed mesh topology on all refinement

levels uniformly (see figure 7), the order of accuracy will degrade if non-negligible source is contained in non-refined

regions as apparent in figure 8a. The saturation of the error is dependent on the specific refinement criteria chosen as

exemplary shown in figure 9a, where the refinement criterion was relaxed and α = 1/8 was used.

We also investigate the effect of the source correction term on the consistency between forward Laplace operator

LQ and its numerically computed inverse Ψh. To that end, we take the 7-pt Laplacian of the target field for each level

and compare it to the source field. On a uniform mesh, the source field is recovered up to the precision of the FMM.

For the multi-resolution mesh, the errors are reported in figure 8b. The figure shows, as expected, that the error of the

source field ωh = LQΨh compared to ω becomes large and increases with the number of refinement levels when the

appropriate source correction terms are not included. On the other hand, the correction has a relatively minor impact

on the target field itself, Ψh, as shown in figure 8a, but ensures consistency between the forward Laplacian and its

inverse. Analogous behavior is observed in figure 9b for the case of α = 1/8.
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of refinement levels.

Fig. 10: Computational rates and parallel performance.

4. Efficiency and parallel performance

To demonstrate the efficiency and parallel performance of the propose block-refined algorithm, we consider the

same test case as above and report its efficiency and parallel performance. We also refer to [10] for performance

investigations and the parallel implementation strategy of the uniform solver, which is similar to the one employed

here. However, for completeness we also report the computational rates here.

The solver was written in a C++ framework and uses MPI for parallel communications as well as FFTW for fast

Fourier transforms. The code implements an octree data structure, where each leaf corresponds to a cubic domain in

physical space. A server-client model is used for load balancing of the octree, where the sever stores the full octree but

does not allocate any data. The clients on the other hand store one or multiple sub-trees including the corresponding

data. For load balancing, the anticipated load (mainly the load of fast Fourier transforms) is computed for each octant

and the leaf octants are sorted according to their Morton code for each level. Finally, the sorted array of leaf octants

is split into junks with almost equal loads, which are then assigned to each processor. Subsequently, the parents are

assigned to the processor with the minimum load in a recursive fashion. Note that the FMMs are sequential in terms

of the level due to the correction term, which depends on previous levels and thus necessitates level-wise balancing

to avoid an imbalance of load on a particular level. All communication patterns between clients are established using

the server and communication costs are almost fully hidden using non-blocking MPI calls.

Note that by far most time is spend in the level interactions (∼ 99%) of the algorithm and in particular the level

convolution within each FMM. The time to construct or traverse the octree data structure is negligible due to the

block-wise nature of the algorithm, which also allows SIMD vectorization of the Fourier transforms and the Hadamard

product for additional speed.

Figure 10a shows the strong scaling for the computational rates of our implementation for various domain sizes N.

The parallel efficiencies are in line with the implementation of [10] as well as other kernel-independent FMM solvers

and thus verifies our implementation. In addition, in figure 10b, the dependence of the computational rate with the
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number of refinement levels is plotted for the case of N = 6443. As stated earlier, the complexity scales linearly with

the number of levels and we thus expect that the computational rates are independent of the refinement levels. This is

confirmed in 10b. Note however that the parallel efficiency is limited to the efficiency of the individual FMMs.

5. Discussion and Conclusion

In this paper, we presented a multi-resolution scheme for inhomogeneous, linear, constant-coefficient difference

equations on infinite grids based on an extension of the fast lattice Green’s function (FLGF) method. The new

method retains inherent advantages of the FLGF method, such as the use of uniform mesh interpolations and FFT-

based convolutions, and the inherent computational savings associated with satisfaction of the exact far-field boundary

conditions for domains truncated snugly around source regions, but allows for an arbitrary block-wise mesh refinement

by factors of two. The refinement procedure consists of regularization, level interaction as well as interpolation. By

consistent definition of all operators, second-order accuracy is retained, and the complexity of the scheme remains

linear in the number of DoFs. This was demonstrated for different refinement criteria using manufactured solutions

for the Poisson equation of the streamfunction of multiple vortex rings at different spatial scales. Linear complexity

in the number of refinement levels as well as parallel efficiency was shown numerically. Hence, the method is well

suited for large-scale computation of multi-scale phenomena that render conventional solvers based on uniform grids

or nonlinear complexity impractical.
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