Structure, Volume 27

Supplemental Information

Development of "Plug and Play" Fiducial Marks

for Structural Studies of GPCR Signaling Complexes

by Single-Particle Cryo-EM

Przemyslaw Dutka, Somnath Mukherjee, Xiang Gao, Yanyong Kang, Parker W. de Waal, Lei Wang, Youwen Zhuang, Karsten Melcher, Cheng Zhang, H. Eric Xu, and Anthony A. Kossiakoff

b

Tar	get	mi	ni-G₅-	bt	bt-MBP-mini-G _s			bt-G _{i1} -DN			bt-Gα₅			bt-N	1BP-G (K46L)	RK1
Competition		-			MBP			-			-			MBP		
Concentration (nM)		10	5	0	10	5	0	10	5	0	10	5	0	10	5	0
barticle	10-2	0	00	0	0	00	0	0	0	0	0	0	0			
phage I	10-3	2		L	U	K	6	0		0	0		9			999 1.13
tion of	10-4	8		10	S.			0			0		Contraction of the second			
Dilut	10 ⁻⁵	0		123		0		00			-			U.S		

Figure S1. Selection of the G-protein-specific sABs, related to Figure 1. (a) Labeling efficiency for mini-G_s variants, $G\alpha_s$, G_{i1}-DN and GRK1 by a pull-down assay on SA magnetic beads. I- input, FT- flow-through, W- wash steps, E- elution. Arrows indicate the target proteins. Additional two bands visible in the elution fraction at around 15 kDa and 30 kDa correlate to the SA monomer and dimer, respectively. (b) Enrichment of the target-specific binders after four rounds of selection.

а

Figure S2. Thermal stabilization of the G_i **by the sABs, related to Figure 2 and Figure 5.** DSF melting curves of the Gi shows stabilization by selected sABs: (a) G46 and (b) G50X.

Figure S3. Representative raw EM images of the GPCR/effector protein/sAB complexes, related to Figure 3 and Figure 6. Negative stain images: (a) Rho/Gi/G46, (b) Rho/Gi/G50, (c) D1R/Gs/Gs6 (d) Rho/GRK/1F1, (e) Rho/GRK/1F1/GR6 and (f) cryo-EM image of Rho/GRK/1F1/GR6. Scale bar, 50 nm.

			Lib-L1			Lib	-L2			Lib	-L3			Lib	-H1			Lib	-H2	
Tar	get	bt-G _{i1} -DN				bt-G _{i1} -DN			bt-G _{i1} -DN			bt-G _{i1} -DN				bt-G	1-DN			
Comp	etitor					-					-			-	-					
Targ concen (pl	Target centration 100 0 10 0 (pM)		100 0 10 0			100 0 10 0		100 0 10 0		0	100 0 10		10	0						
cle	10-2							· · · ·			\bigcirc		\bigcirc		\odot	27) 197	\bigcirc	11.23 11.23 11.24	\bigcirc	1942 1974
ge parti	10 ⁻³	(j)			3				\bigcirc				٢				\odot			
on of pha	10-4																			
Dilutic	10-5	*																		

b

_

		L	ib-L1			Lik	-L2			Lil	o-L3			Lik	р-Н1			Lil	р-Н2	
Targ	get	bt-	-G _{i1} -DN			bt-G	i _{i1} -DN			bt-G _{i1} -DN				bt-C	G _{i1} -DN			bt-C	G _{i1} -DN	
Competitor		G _{i1} -DN			G _{i1} -DN			G _{i1} -DN			G _{i1} -DN			G _{i1} -DN						
Target concentration (nM)		1 0	0.1	0	1	0	0.1	0	1	0	0.1	0	1	0	0.1	0	1	0	0.1	0
cle	10-2	00) ()			۲								0				8		
age parti	10 ⁻³	S.		N.				Side Side									•			
ion of ph	10-4	de la														1. 				
Dilut	10 ⁻⁵																			

Figure S4. Phage pool enrichment after three rounds of the affinity maturation process, related to Figure 5. Affinity maturation process was performed using two different protocols: (a) regular selection and (b) off-rate selection protocol.

Figure S5. Initial screening of affinity matured variants of the sAB G50, related to Figure 5. Binders obtained after three rounds of affinity maturation were screened by a single-point competition phage ELISA. Clones marked in red were used for subsequent experiments. Results from regular selection protocol: (a) Lib-L1, (b) Lib-L2, (c) Lib-L3, (d) Lib-H1, (e) Lib-H2 and off-rate protocol: (f) Lib-L3 and (g) Lib-H2.

Figure S6. Selection strategy to obtain conformationally selective sABs against GRK1 triple mutant, related to STAR methods and Figure 6. (a) In the first selection sABs were generated against GRK1 (K46L) mutant and analyzed for binding to both variants K46L and ionic lock mutant. (b) Second selection aimed to develop conformationally specific antibodies against GRK1 triple mutant. Here three independent strategies were employed - (i) Competitive selection: selection pressure was employed using GRK1 (K46L) as a soluble competitor. (ii) Masking selection: conformationally insensitive sAB 1F1 was used to occlude the epitope. (iii) Regular selection: sABs were generated against GRK1 triple mutant without additional selection pressure.

Figure S7. Selection of the conformationally specific sABs against GRK1 ionic lock mutant, related to Figure 6. (a) Labeling efficiency for GRK1 ionic lock mutant by a pull-down assay on SA magnetic beads. I- input, **FT**- flow-through, **W**- wash steps, **E**-elution. Arrow indicates the target proteins. Additional two bands visible in the elution fraction at around 15 kDa and 30 kDa correlate to the SA monomer and dimer, respectively. (b) Enrichment of the target-specific binders after four rounds of selection.

а

Solastian	•			Loop sequenc	e
Selection	sAB	L3	H1	H2	H3
	G6	SYYVYP	VSSSSI	SIYPYYSSTS	GYFYWLRYTKSSYWGL
	G39	SSGWLV	FSSSYI	SISSYSGSTS	EISMMSTQYTYGI
Trimeric Gi	G46	SYYSPI	FSSSSI	YIYSSSGYTY	KWYYRVGSWPAM
	G50	SSSSLI	FYYSSI	SIYSYSGSTS	YPWYWWMEKPYLSLYGM
	G51	WSGTLI	VSSSYI	YISPYSGYTY	EQGGWSSYYSAI
	GS1	MFSSKLL	IYSSSI	SIYSSYGYTS	WKQYGFYHAYHGL
	GS3	LWYRPF	LSSSSI	SISSSYGYTS	WWAGQWYGSYGI
Gαs	GS5	GYRSALV	FSSSSI	SIYPYYGYTS	WYYNFSSRYGYAGSYGM
	GS6	SSSSLI	FSSSSI	SIYPYYGYTY	WAGYYSYYMRAL
	GS13	SIYYLPI	VSYYSI	SIYSYSGYTY	TTSFGPWWEYGF
	M1	ESSSRLF	FYYYSI	SISSSSGSTS	SPGPWYGPWYYFEYAM
	M4	SSSSLI	FSSSSI	SISSSSGSTS	YWGPYVYWSSYTSKSGGM
Mini-G₅	M7	YWSSLV	FYYSSI	SIYPYSGSTY	PVYGVYSLWFGSYYSWAM
	M19	SSSSLI	FSSSSI	SISSSSGSTS	GWSEKYSIQWWGHEAI
	M20	SSSSLI	VYYSSI	SISSSYGSTY	YWSPSYWWGDSVGSYRGF
	1A1	SYVSSLI	VSSYSI	SIYPSSGYTS	QSYGVYYAYPWPSFHYAM
CPK1	1E4	YMYSLPI	VYYYYI	SIYPSSGSTY	DWYSAYSYYVGF
	1E12	SSSSLI	VYSSSI	SIYSSSGSTY	VWLFYIGSKVYSPFHLGF
(11402)	1F1	MYYSSLI	LSYSSI	SIYPSSGYTY	EFYSYGYYYTAF
	1H4	YWPYYPV	FSYSSI	YISPSYGSTS	LGWSYSSSFPVGWYYGM
	GR1	LQSYKLI	FSSSYI	SISPYYGSTY	HYSYPYYGAGWYNYYYGL
GRK1	GR2	QYYSLI	FSSSSI	SISSSSGSTS	QGSYKWGYIYYVSNKGL
(K46L/R461A/	GR6	YWWSYPI	FYSSSI	SISSSSGSTS	WGMYYHYYSFRGF
Q462A)	GR14	YYSHVLI	IYYSSI	YISPSYGYTS	RQWVGYWYWGM
	GR49	SIGYLI	VYSSSI	SIYSSYGSTY	YRSVGGWFWYSHYIGL

 Table S1, related to Figure 1 and Figure 6.
 Sequence of CDRs of the best characterized G-proteins and GRK1 binders.

CDR	Mutation	kon (M ⁻¹ s ⁻¹)	k _{off} (s ⁻¹)	K₀ (nM)	ΔΔG _{mut-wt} (kcal mol ⁻¹)
	WT	1.2 x 10 ⁶	1.4 x 10 ⁻³	1.2	-
	S29A	5.7 x 10⁵	4.4 x 10 ⁻³	7.7	1.2
1.4	V30A	3.4 x 10⁵	1.2 x 10 ⁻²	36.6	2.1
LI	S31A	4.7 x 10⁵	2.3 x 10 ⁻³	5.0	0.9
	S32A	6.5 x 10⁵	2.6 x 10 ⁻³	4.0	0.8
	Y50A	3.0 x 10⁵	5.1 x 10 ⁻³	17.2	1.6
	S51A	2.4 x 10⁵	5.0 x 10 ⁻³	21.4	1.8
	S53A	5.6 x 10⁵	1.7 x 10 ⁻³	3.0	0.6
L2	S54A	8.0 x 10⁵	2.9 x 10 ⁻³	3.7	0.7
	L55A	7.9 x 10⁵	1.7 x 10 ⁻³	2.1	0.4
	Y56A	1.9 x 10 ⁶	2.3 x 10 ⁻³	1.2	0.1
	S57A	6.7 x 10⁵	2.5 x 10 ⁻³	3.7	0.7
	S92A	6.2 x 10⁵	5.1 x 10 ⁻³	8.3	1.2
	S93A	7.8 x 10⁵	1.4 x 10 ⁻³	1.8	0.3
L3	S94A	3.8 x 10⁵	7.5 x 10 ⁻³	19.6	1.7
	S95A	4.1 x 10⁵	1.8 x 10 ⁻³	4.3	0.8
114	Y33A	8.6 x 10⁵	2.1 x 10 ⁻³	2.4	0.5
HI	Y34A	3.2 x10⁵	7.8 x 10 ⁻³	24.4	1.8
110	Y57A	1.1 x 10⁵	3.3 x 10 ⁻³	29.2	1.9
HZ	S58A	1.9 x10 ⁶	5.4 x 10 ⁻³	2.9	0.6
	Y102A	4.2 x 10 ⁴	3.3 x 10 ⁻³	78.1	2.5
	P103A	9.6 x 10 ⁴	6.9 x 10 ⁻³	72.2	2.5
	W104A	6.9 x 10 ⁴	2.9 x 10 ⁻³	41.6	2.2
	Y105A	2.9 x 10 ⁴	2.3 x 10 ⁻³	78.8	2.5
	W106A	NB	NB	NB	-
	W107A	NB	NB	NB	-
	M108A	8.9 x 10 ⁴	8.5 x 10 ⁻³	94.6	2.6
	E109A	2.8 x 10 ⁶	8.0 x 10 ⁻³	2.9	0.6
H3	K110A	4.7 x 10⁵	2.3 x 10 ⁻³	4.9	0.9
	P111A	8.1 x 10 ⁴	4.5 x 10 ⁻³	56.0	2.3
	Y112A	9.4 x 10⁵	1.4 x 10 ⁻²	15.3	1.6
	L113A	2.8 x 10⁵	3.4 x 10 ⁻³	12.0	1.4
	S114A	2.7 x 10⁵	2.4 x 10 ⁻³	8.7	1.2
	L115A	3.2 x 10⁵	3.0 x 10 ⁻³	9.5	1.3
	Y116A	1.9 x 10 ⁴	1.8 x 10 ⁻³	95.4	2.6
	G117A	5.9 x 10 ⁵	1.0 x 10 ⁻²	17.4	1.6
	M118A	1.5 x 10 ⁵	7.8 x 10 ⁻³	52.0	2.3

Table S2, related to Figure 4. Kinetic parameters for alanine scanning mutants of the sAB G50 measured by SPR.

All the residues that make contact with the trimeric G_i in PBD: 6CMO according to PISA were mutated to alanine.

Mutation	k₀n (M⁻¹s⁻¹)	k _{off} (s ⁻¹)	K _D (nM)	ΔΔG _{mut-wt} (kcal mol⁻¹)
WT	6.3 x 10⁵	1.5 x 10 ⁻³	2.5	-
185A	5.0 x 10⁵	4.2 x 10 ⁻³	8.5	0.7
R86A	5.7 x 10⁵	4.6 x 10 ⁻³	8.1	0.7
R90A	8.8 x 10⁵	9.4 x 10 ⁻³	10.6	0.9
D94A	6.0 x 10⁵	6.0 x 10 ⁻³	9.9	0.8
F95A	5.3 x 10⁵	6.2 x 10 ⁻³	11.5	0.9
D97A	4.5 x 10⁵	1.8 x 10 ⁻³	3.9	0.3
R100A	8.6 x 10⁵	5.5 x 10 ⁻³	6.4	0.6
D103A	8.3 x 10⁵	1.3 x 10 ⁻³	1.5	-0.5
Q106A	7.8 x 10⁵	1.2 x 10 ⁻²	15.4	1.1
L107A	6.9 x 10⁵	1.8 x 10 ⁻³	2.5	0.0
F108A	NB	NB	NB	-
L110A	5.3 x 10⁵	3.2 x 10 ⁻³	6.0	0.5
E115A	5.9 x 10 ⁵	1.8 x 10 ⁻³	3.1	0.1

Table S3, related to Figure 4. Kinetic parameters for alanine scanning mutants of the $G\alpha_i$ -AHD measured by SPR.

All the residues that make contact with sAB G50 in PDB: 6CMO according to PISA were mutated to alanine.

Library	Modified loop		Library design									Theoretical diversity	*Actual diversity	
		S29	V30	S31	S32						Λ	6 0 x 10 ³	2 9 v 10 13	
	CDR-LI	NNC	NTT	DVT	NVT						4	0.9 X 10 ²	2.0 X 10 ¹⁰	
		Y50	S51	A52	S53	S54	L55	Y56			7	2.5×10^{6}	2.5×10^{13}	
	CDR-LZ	TDK	VVC	RST	NNC	NNC	NTT	NNC			1	3.5 X 10 ²	3.5 X 10 ¹³	
1:612		S92	S93	S94	S95	L96	197				c	1.6×10^{7}	1 G x 10 ¹³	
LID-L3	CDR-L3	NNS	NNS	NNS	NNS	NTT	NTT				0	1.6 X 10	1.0 X 10	
		F32	Y33	Y34	S35	S36					F	2.6×10^{5}	2 6 y 1013	
	CDR-HI	NTT	NNS	NNS	NNS	NNS					5	2.0 X 10 ²	2.0 X 10 ¹³	
Lib-H2		S53	154	Y55	S56	Y57	S58	G59	S60	T61	0	2.5×10^{8}	1 0 v 10 ¹³	
	CDR-H2	RST	NTT	NNS	NNS	NVT	NNT	RST	VVC	VVC	Э	2.5 X 10°	1.8 X 10 ¹⁰	

Table S4, related to STAR methods and Figure 5. Design of the sub-libraries for affinity maturation

* The actual diversity was determined from the cfu (colony forming unit) titer of the phage libraries.

sAB	Well ID	L1	Ĺ2	L3	H1	H2	k₀n (M ⁻¹ S ⁻¹)	k _{off} (s⁻¹)	K _D
wt G50		SVSSA	YSASSI YS	SSSSU	FYYSSI	SIYSYSGSTS	1 2 x 10 ⁶	1 4 x 10 ⁻³	1170
Lib-L1		SVSSA	10/100210	00002					1110
G50.21	L1 D1	DVYRA					1.5 x10 ⁶	3.5 x 10⁻⁴	234
G50.22	L1 C2	NVYAA					1.7 x 10 ⁶	3.3 x 10 ⁻⁴	193
G50.23	L1 E1	RVYDA					1.5 x 10 ⁶	3.4 x 10 ⁻⁴	221
G50.24	L1_C1	SV <mark>YD</mark> A					1.0 x 10 ⁶	4.1 x 10 ⁻⁴	395
Lib-L2			YSASSLYS						
G50.25	L2_H2		YSA <mark>V</mark> SL <mark>F</mark> S				1.7 x 10 ⁶	9.9 x 10 ⁻⁴	589
Lib-L3				SSSSLI					
G50.09	L3_E8			SVNKFI			6.5 x 10⁵	3.3 x 10⁻⁵	50
G50.10	L3_F11			SLSQVI			1.1 x 10 ⁶	1.2 x 10 ⁻⁴	113
G50.11	L3_G6			SLRKLI			1.1 x10 ⁶	5.5 x 10 ⁻⁶	5.1
G50.16	L3_E8			SRSQVV			1.6 x 10 ⁶	8.5 x 10⁻⁵	51.8
G50.17	L3_F5			SKSKII			2.0 x 10 ⁶	9.6 x 10⁻ ⁶	47.1
G50.18	L3_F6			SFGRVV			1.4 x 10 ⁶	3.1 x 10 ⁻⁴	213
G50.19	L3_F7			SRGMLF			9.6 z 10⁵	6.9 x 10⁻⁵	71.9
Lib-H1					FYYSSI				
G50.27	H1_C4				FRFSSI		1.1 x 10 ⁶	3.0 x 10⁻⁴	266
G50.28	H1_G3				FGLSSI		1.2 x 10 ⁶	8.6 x 10 ⁻⁴	725
G50.29	H1_F3				FRLSSI		6.9 x 10⁵	6.0 x 10 ⁻⁴	866
G50.30	H1_H3				FRTSSI		5.7 x 10⁵	5.4 x 10 ⁻⁴	934
G50.31	H1_E3				FRYSSI		1.2 x 10 ⁶	3.5 x 10⁻⁴	287
Lib-H2						SIYSYSGSTS			
G50.01	H2_E9					GF YSYSG RG S	2.5 x 10 ⁶	6.2 x 10⁻ ⁶	2.4
G50.02	H2_F5					GFYAYSASDS	2.0 x 10 ⁶	5.2 x 10⁻⁵	25.5
G50.04	H2_G12					GF YSYSG RA S	1.7 x 10 ⁶	5.7 x 10⁻⁵	30.8
G50.05	H2_G7					GIYGYSGSRS	2.0 x 10 ⁶	4.2 x 10⁻⁵	21.3
G50.06	H2_H3					GFYGYSGAGS	1.9 x 10 ⁶	9.4 x 10 ⁻⁶	5.0
G50.12	H2_B1					GFFG YSGGTS	7.9 x 10⁵	9.1 x 10 ⁻⁶	11.5
G50.13	H2_B5					GLFG YSGNDS	1.6 x 10 ⁶	1.3 x 10⁻⁵	8.2
G50.15	H2_D10					GFFGYSGGSS	1.7 x 10 ⁶	1.6 x 10 ⁻⁵	9.0
G50X		RVYD A	YSASSLYS	SVNKFI	FRFSSI	GFYGYSGAGS	1.7 x 10 ⁶	8.5 x 10⁻⁵	49.3

Table S5, related to Figure 5. Kinetic parameters of the affinity matured variants of the sAB G50 measured by SPR.

Red ones are different from the wt sAB G50.

Clone	Mutation	k _{on} (M ⁻¹ s ⁻¹)	k₀ _{ff} (s⁻¹)	K₀ (pM)	ΔΔG _{mut-wt} (kcal mol ⁻¹)
050.00	WT	1.5 x 10 ⁶	3.4 x 10 ⁻⁴	221	-
G50.23	R29A	9.9 x 10⁵	6.7 x 10 ⁻⁴	674	0.7
	V30A	4.6 x 10⁵	8.0 x 10 ⁻⁴	1760	1.2
RVIDA	Y31A	1.1 x 10 ⁶	2.1 x 10 ⁻³	1933	1.3
	D32A	7.2 x 105	2.1 x 10 ⁻⁴	295	0.2
	WT	6.5 x 10⁵	3.3 x 10 ⁻⁵	50	-
	S92A	4.0 x 10⁵	9.1 x 10 ⁻⁴	2266	2.3
(Lib L 2)	V93A	9.9 x 10⁵	8.9 x 10 ⁻⁵	89.8	0.3
	N94A	3.7 x 10⁵	2.9 x 10 ⁻⁴	782	1.6
SVINKFI	K95A	4.0 x 10⁵	6.6 x 10 ⁻⁴	1633	2.1
	F96A	5.8 x 10⁵	3.9 x 10⁻⁵	66.7	0.2
	197A	4.5 x 10⁵	8.5 x 10 ⁻⁵	187	0.8
	WT	1.1 x 10 ⁶	3.0 x 10 ⁻⁴	266	-
C50 27	F32A	4.6 x 10⁵	7.0 x 10 ⁻⁴	1435	1.0
(Lib L1)	R33A	8.8 x 10⁵	1.7 x 10 ⁻³	2020	1.2
	F34A	4.4 x 10⁵	2.3 x 10 ⁻³	5306	1.8
1 11 001	S35A	5.1 x 10⁵	3.7 x 10 ⁻⁴	732	0.6
	S36A	6.2 x 10⁵	1.8 x 10 ⁻³	2897	1.4
	137A	5.1 x 10⁵	1.1 x 10 ⁻³	2249	1.3
	WT	7.9 x 10⁵	9.1 x 10 ⁻⁶	11.5	-
	G53A	1.7 x 10 ⁶	1.7 x 10⁻⁵	10.5	-0.1
	F54A	8.3 x 10 ⁶	2.3 x 10 ⁻⁵	27.7	0.5
G50 12	F55A	6.7 x 10⁵	2.0 x 10 ⁻⁴	305	1.9
(Lib U2)	G56A	-	-	-	*
	Y57A	8.7 x 10⁵	1.5 x 10 ⁻⁴	166.0	1.6
010100010	S58A	8.7 x 10⁵	7.4 x 10 ⁻⁵	85.0	1.2
	G59A	-	-	-	*
	G60A	1.5 x 10 ⁶	2.4 x 10 ⁻⁴	15.9	0.2
	T61A	-	-	-	*
	S62A	-	-	-	*

Table S6, related to Figure S5. Kinetic parameters for Ala scanning mutants of the affinity matured variants measured by SPR.

The ones in red are different from the wt sAB G50.

* Off-rate (k_{off}) can't be measured as no dissociation of the analyte was observed in the SPR runs. Thus, K_D , and $\Delta\Delta G_{mut-wt}$ were not determined.