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1 Science Opportunity: Probing the Supermassive

Black Hole Population With Gravitational Waves
With masses in the range 106–109M�, supermassive black holes (SMBHs) are the most
massive compact objects in the Universe. They lurk in massive galaxy centers, accreting
inflowing gas, and powering jets that regulate their further accretion as well as galactic
star formation. The interconnected growth of SMBHs and galaxies gives rise to scaling
relationships between the black-hole’s mass and that of the galactic stellar bulge.

Galaxies grow over cosmic time via gas-accretion from the cosmic web and through merg-
ing with other galaxies; the latter leads to the resident SMBHs in each inspiraling to the
center of the post-merger remnant, forming a bound pair. The environment surrounding
these SMBHs influences their dynamical evolution, affecting how quickly their orbital evo-
lution becomes dominated by gravitational-wave (GW) radiation reaction. Somewhere well
within an orbital separation of 1 pc, the pair will decouple from external influences, and can
evolve primarily via the emission of GWs as a pure 2-body system. Through this decou-
pling, the GWs frequencies lie in the ∼ 1− 100 nHz band, far below any ground-based (e.g.
LIGO, Virgo, KAGRA) or putative space-borne (e.g. LISA) detector. Only pulsar-timing
arrays (PTAs) such as NANOGrav (North American Nanohertz Observatory for Gravita-
tional Waves), and potentially precision astrometry missions (e.g. Gaia), can directly probe
the decoupling. The ensemble signal from all binaries produces a stochastic background of
GWs, whose spectrum encodes their population demographics and dynamical evolution.

In this white paper, we address key questions for our understanding of SMBH populations
and galaxy formation, as well as opportunities for multi-messenger nHz-GW astrophysics:

Q1. How are galaxy properties linked to those of their resident SMBHs? At
moderate redshifts, SMBH masses are inferred through gas or stellar dynamics. These
measurements can be prone to biases, measuring all dynamical mass (not just the
SMBH) within a certain radius. GW observations directly measure the SMBH binary
system mass, allowing direct assessment of any scaling relations with a galactic host.

Q2. How do SMBH pairs evolve from kpc to mpc separations? Dynamical friction
causes SMBHs to sink within a common merger remnant, giving way to repeated
stellar-scattering events and circumbinary-disk hardening, then GW orbital decay. We
have no conclusive measurements of how long each of these stages lasts, or if there
are enough stars to harden the binary to sub-parsec separations. This evolutionary
sequence will be addressed directly by nHz-band GW observations, and enhanced at
the largest separations by EM observations (see related whitepaper by Kelley et al.).

Q3. What electromagnetic signatures mark the inspiral and coalescence of SMBHs?
Paired active nuclei (AGN) can be directly imaged as multiple radio cores, while quasi-
variability in nuclear light-curves may indicate binaries in tight orbits. Circumbinary
disks may also offer electromagnetic signatures. How will future instruments and sur-
veys work in synergy with nHz GW observations to unveil binary SMBH environments?

2 Science Context
2.1 Linking Supermassive Black Holes & Their Host Galaxies

Galaxy growth is hierarchical, occurring through both the accretion of gas and major or mi-
nor mergers. Massive galaxies (M∗ > 1011M�) are overwhelmingly elliptical, with quenched
star formation. SMBHs in the local Universe exhibit a relationship between their mass and
the large-scale observables of their host galaxies [1] (e.g. velocity dispersion of bulge stars,
bulge mass, etc.). The simplest explanation for this is a shared growth history, implying that
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Figure 1: Main steps of SMBH evolution following a galaxy merger. Adapted from Ref. [7, 8].

a central black hole seed is present when the galaxy first forms, then grows along with the
galaxy over cosmic time. This growth happens both by the inflow and accretion of gas onto
the SMBH, and the coalescence of two of these central SMBHs following a major galaxy
merger. The latter forms a binary system along the way to coalescence, emitting GWs
at nanohertz frequencies that are undetectable by ground-based (LIGO, Virgo) or planned
space-borne (LISA) detectors; only Galactic-scale detectors like PTAs have access to these
frequencies.

Factors that influence galaxy evolution (like merger rates and the galaxy stellar mass
function) have a knock-on influence on the expected number and brightness of these binary
SMBH GW sources. However, the rate of major mergers for massive galaxies across cosmic
time is poorly constrained; observations have large discrepancies due to differences in sample
selection and merger identification [2]. Even when hydrodynamic cosmological simulations
are compared with observed samples, the conclusions for massive galaxies do not converge
[3]. Additionally, there is large scatter in the observed relationship between the central black
hole mass and host-galaxy mass, making the underlying physical links between SMBH and
galaxy growth difficult to discern.

As mentioned in Sec. 1, GW observations directly probe binary SMBH dynamics, allowing
us to robustly answer the above Q1. The stochastic GW background signal measured by
PTAs can constrain the relationship between SMBH and host bulge masses [4], and inform
the galaxy-galaxy merger rate [5] – see [6] for an overview of PTA GW astrophysics.

2.2 Dynamical evolution of supermassive black-hole binaries

In Fig. 1, we show the main steps of evolution for two SMBHs in a post-merger remnant.
These are summarized as follows, starting with an uncoupled pair and proceeding inwards:
1. Dynamical friction (∼ 103 − 10pc)

The SMBHs sink via the drag force induced by relative motion of a massive body through a
diffuse medium (e.g., galactic dark matter, stars and gas of the remnant). When adequate
energy is extracted from the system, one BH enters the sphere of influence of the other
and they form a bound binary system.

2. Final parsec dynamics

(a) Stellar loss-cone/3-body scattering (∼ 101 – 10−1 pc)
The binary orbit continues to decay due to three-body interactions with nearby stars.
The population of stars that can interact with the binary may be depleted before the
binary reaches the separation at which GW radiation reaction dominates the orbital
evolution; this problem is known as the “final-parsec problem”.

(b) Gaseous circumbinary disk interaction (∼ 10−1 – 10−3 pc)
Galaxy mergers deliver large amounts of gas towards the center of the remnant
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[9]. The gas forms a circumbinary disk, which can catalyze binary evolution while
accreting onto the SMBHs and producing bright electromagnetic emission.

3. Gravitational-wave radiation reaction (∼ 10−3 pc – coalescence)
At these separations, binary evolution is rapid and driven by the emission of GWs. The
final progression to SMBH coalescence encompasses ‘inspiral’ (adiabatic orbital decay),
‘merger’ (complicated GW emission requiring numerical relativity), and ‘ringdown’ (de-
scribed by BH perturbation theory).

The main steps of SMBH evolution have been known for decades [8], yet large theoretical
uncertainties persist. This is unsurprising given the paucity of observed binaries. At sub-kpc
separations, a few galaxies have been detected with two active SMBHs (dual AGN). At sub-
parsec separations, many candidates have recently emerged from systematic searches for (1)
quasar spectra with Doppler-shifted broad emission lines in SDSS [10] and (2) quasars with
periodic variability in large time domain surveys [11, 12]. In the coming decade, significant
advances are expected on both theoretical and observational fronts; increasingly sophisticated
simulations as well as surveys with upcoming telescopes will address the following:

• Why are galaxies with two SMBHs rare? Although galaxies merge often, we rarely
observe dual and binary SMBHs. This suggests that either SMBH evolution is rapid,
and/or they do not typically produce bright electromagnetic signatures [13].

• Do binaries stall at parsec separations? Recent simulations with improved stellar
distributions have shown stellar scattering can effectively evolve a binary. However, these
models still cannot model the complete dynamics over the relevant timescales.

• Can gas catalyze the binary evolution in ‘dry’ mergers? Massive ellipticals have
relatively low cold-gas fractions. However, large quantities of hot gas can still be driven
towards the galactic nuclei, and may affect the hardening process.

2.3 Gravitational-wave Signatures
Fig. 2 illustrates the main classes of GW signal that are detectable with PTAs.

2.3.1 Stochastic background

The primary target for PTAs is the GW stochastic background formed by the superposition
of GWs from an ensemble of SMBH binaries. Assuming a continuous population of circular
binaries whose orbital evolution is dominated by the emission of GWs, the background
spectrum follows a hc ∝ f−2/3 power-law. Realistic GW spectra resulting from a finite
source population show ‘spikes’ caused by bright binaries that dominate over the ensemble
signal in a given frequency bin. Simulated spectra also become steeper at µHz frequencies,
as fewer systems reside there.

Previous sections indicated that binary environments influence GW emission with the po-
tential to stall or hasten orbital evolution. Effects from dynamical friction, stellar hardening
and circumbinary disk interactions may dampen the background signal at lower frequencies,
leading to a ‘turnover‘ below 10 nHz [14]. Binaries with eccentricity radiate GW energy over
a range of orbital-frequency harmonics, spreading the GW energy across many frequency
bins and can significantly impact the characteristic GW spectral shape. These influences on
the spectral shape are what allow PTAs to constrain the dynamical evolution mechanisms
of SMBH binaries, addressing Q2.

A background of GWs induces low-frequency temporal correlations in pulsar-timing
datasets, and (most importantly for detection purposes) quadrupolar inter-pulsar correlated
deviations to pulse arrival times described by the Hellings & Downs curve [15] for an Ein-
steinian GW background. Recent upper limits on the stochastic background have been used
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Figure 2: A population of supermassive binary black holes will influence pulsar-timing ar-
rays through various inter-pulsar correlated signals, e.g. (i) a GW background causing
long-timescale correlations; (ii) individual resolvable binary signals; (iii) the non-oscillatory
component of a GW memory burst, causing ramps in timing residuals.

to constrain sub-pc SMBH binary candidates from electromagnetic campaigns and system-
atic surveys [16, 17]. Such efforts have demonstrated that even without a direct detection of
the background, astrophysically relevant constraints are already being placed on the demo-
graphics of the cosmic SMBH binary population. As a result of non-detection, constraints
have also been placed on beyond-General-Relativity theories of gravity [18] and population
anisotropy [19, 20].

2.3.2 Resolvable binary signals

PTAs are also sensitive to GWs from discrete binary systems in the local Universe. PTAs
have placed blind limits on the GW strain from systems in the < 200 Mpc Universe (most
recently in [21, 22]), and put direct limits on binary candidates (ex. [23, 24]). Simulations
predict that PTAs will resolve individual binaries within the next 5− 20 years [19, 25, 26].

The observed GW signal depends on the source’s sky location, distance, chirp mass,
inclination angle, and polarization angle (and potentially orbital eccentricity [27]). The
distance and chirp mass are degenerate, but this can be broken if a GW’s impact on the
Earth and pulsars can be extracted (the so-called “pulsar term” and “Earth term”). The
GW frequency in these terms will differ due to the evolution of the binary, which depends
on the chirp mass but not the system’s distance.

2.3.3 Bursts with Memory

Memory is a non-oscillatory component of GW signals that grows throughout the entire
history of a source [28, 29]. During SMBH binary coalescence, when GW emission is maximal,
the memory grows quickly, acting as a propagating DC shift in the ambient space-time [30].
Such a GW burst with memory (BWM) is potentially detectable by PTAs [31–35].

When a BWM wave front passes a pulsar, the sudden change in the gravitational potential
causes an apparent change in the rotational frequency of the pulsar. When a BWM wave
front passes the Earth, the observed rotation of all pulsars in a PTA will simultaneously
change. The observed change will vary from pulsar to pulsar depending on the relative sky
position of the source, following the characteristic quadrupolar pattern of GWs.

4



3 Key Detectors & Requirements
3.1 Gravitational-wave detection

A detection of the quadrupolar signature of gravitational waves is the most direct way to
provide evidence for a SMBHB. PTAs will detect SMBHBs in the latest phase of their
evolution, at typical separations (depending on mass) 0.001 < a < 0.1 pc, with sensitivity
most prevalent to systems of mass > 108M�. If any source evolution (“chirping”) can be
detected through either a sufficiently long observation or via the pulsar-term signals, PTAs
will be able to directly track the inspiral evolution of a binary SMBH.

Detection of the GW background due to SMBHBs is likely going to occur early next
decade (if not before). While the initial detection will constrain the amplitude of the back-
ground, within 5 − 10 years post-detection we expect PTAs to begin to reveal the shape
of the background spectrum. Both the amplitude and shape of the background will pro-
vide critical constraints for the en masse interactions and co-evolution of galaxies with their
environments [4, 36, 37]. To ensure the continued success of these endeavours, PTA collabo-
rations like NANOGrav need access to big-dish radio telescopes (like Arecibo and the Green
Bank Telescope) or dish-arrays with equivalent sensitivities (such as DSA2000 or ngVLA)
with which to monitor & 50 pulsars every few weeks over a timescale of years to decades. So
equipped, PTAs will stake out the next GW frontier in the 2020s, years before 3rd-generation
ground-based GW detectors or the LISA mission become a reality.

3.2 Electromagnetic detection
Ideally, one would be able to directly constrain late-merger binary SMBH orbital dynamics
through either the direct tracking of a binary, or through statistical inference based on
a sample population. However, both of these are not yet possible due to the paucity of
confirmed binary SMBH candidates. Many proposed binary signatures exist (double-peaked
emission lines and periodic variability being among the chief suggestions), and have in fact
been identified in large galaxy monitoring samples [11, 38]. These targets hold some promise,
but there are potential alternate physical origins for these types of emission. Thus, most
binary SMBH signatures require confirmation. Upcoming synoptic instruments like LSST
will perform surveys that will potentially identify hundreds to thousands of such candidates;
however, decades-long orbital periods require extended monitoring over at least half a period.

Several upcoming instruments and facilities will contribute critical capabilities to this
science, addressing Q3. Among these: LSST may identify many SMBHB candidates based
on periodic variability; wide-field space-based X-ray missions may likewise identify periodic
sources; the ngVLA (if fitted with ∼8000 km baselines) and other ongoing long-baseline radio
facilities like the VLBA may identify and track the orbits of dual SMBHB cores [39, 40].

4 Summary
Precision timing of large arrays (& 50) of millisecond pulsars will detect the nanohertz GW
emission from a population of supermassive binary black holes within the next ∼ 3−7 years.
Resolvable individual binary signals and non-oscillatory merger-memory signals are expected
to follow ∼ 5 years thereafter. Long-term monitoring of Galactic millisecond pulsars (as
currently undertaken by NANOGrav, the European PTA, the Parkes PTA, and the fused
efforts in the form of the International PTA) requires big-dish radio instruments like the
Arecibo and Green Bank Telescopes, and dish-arrays with equivalent sensitivities. When
combined with pan-chromatic electromagnetic signatures (e.g. quasar variability) measured
by large synoptic time-domain surveys, VLBI radio imaging, and space-based X-ray missions,
the demographics and dynamics of supermassive binary black holes will be unveiled to an
unprecedented level.
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