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We implement a thermal-fluctuation driven logical bit reset on a superconducting flux logic cell.
We show that the logical state of the system can be continuously monitored with only a small
perturbation to the thermally activated dynamics at 500 mK. We use the trajectory information to
derive a single-shot estimate of the work performed on the system per logical cycle. We acquire a
sample of 105 erasure trajectories per protocol, and show that the work histograms agree with both
microscopic theory and global fluctuation theorems. The results demonstrate how to design and
diagnose complex, high-speed, and thermodynamically efficient computing using superconducting
technology.

Information storage and processing are vital in coordi-
nating modern society. A considerable fraction (10%) of
the global electrical power output is spent on operating
and cooling the required computing infrastructure [1].
On scales large and small, reduction and mitigation of
the processor waste heat is critically important to high-
performance computing. Two complementary strategies
for developing an optimal computing platform [2] suggest
themselves. The first improves the speed and energy-
efficiency of the hardware platforms through engineering
advances, and the second, a scientific endeavor, identi-
fies and pursues the fundamental physical limits of com-
puting machines. The latter originates most directly in
the works of Landauer [3], who argued from a micro-
scopic perspective that logically irreversible operations
have an irreducible energy cost. This limit is approached,
though, only when the clock rate of the computation
is low enough to allow nearly-adiabatic physical evolu-
tion [4–9]. Most generally, physically-embedded comput-
ing requires a trade-off between between efficiency and
speed, amongst other factors [10].

A key advance to efficient nonadiabatic computing ap-
peared with the fluctuation theorems (FTs) that exactly
describe the thermodynamics of small systems – sys-
tems that are necessarily driven out of equilibrium by
external controls during information processing [11, 12].
Experimental tests of FTs have been performed in a
variety of microscopic systems [13–19] – systems natu-
rally amendable to performing Landauer-efficient com-
putation. However, a large discrepancy exists between
the speed and complexity of the thermodynamically-
optimal systems, on one hand, and application-relevant
but inefficient traditional processors, on the other. As a
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consequence, the experimental challenges of operating a
Landauer-efficient processor so that its logical functional-
ity and thermodynamic performance are measurable typ-
ically preclude complexity beyond one-bit logic. Here, we
perform a now-classic Landauer bit erasure experiment
on a new hardware platform that promises to obviate
many such limitations – superconducting flux logic [20].
It is interesting to note that recent implementations of
heat engines based on weakly anharmonic superconduct-
ing resonators [21, 22] rely on altogether different opera-
tion principles compared to our device which exhibits a
strong nonlinearity due to flux quantization.

Exploiting the intrinsic advantages of superconduct-
ing flux circuits, our device not only allows for a faithful
implementation of the idealized picture put forth by Lan-
dauer, but provides a number of practical and theoretical
advantages. The magnetic fluxes threading the supercon-
ducing loops, though describing macroscopic phenomena,
are true microscopic coordinates in the sense that other
electronic degrees of freedom are frozen through conden-
sation to a quantum-mechanical ground state. Static
controls cause no dissipation on the device, as the mag-
netic fields are sourced with superconducting leads. The
intrinsic clock speed of the system, the plasma frequency,
is high (ωp/2π ∼ 1010 Hz). Industrial-scale fabrica-
tion en masse and coupling of a large number of flux
logic cells is possible [23, 24]. Owing to these features,
high-performance processors implementing complex log-
ical functions have been realized with superconducting
architectures [25–27]. For studying the fundamental
physics of computing, it is interesting to note that dy-
namics dominated either by classical or quantum effects
can be accessed within this class of devices by a simple
change of component values, external bias conditions, or
temperature [28]. Finally, it is straightforward to engi-
neer the dissipation acting on the remaining dynamical
coordinates. Intrinsic dissipation in superconducting cir-
cuits has been found to be very low at frequencies up
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FIG. 1. Gradiometric flux logic cell. (a) False-color elec-
tron micrograph of the device, realized as a two-layer su-
perconducting circuit on an insulating silicon substrate. (b)
Simplified circuit schematic of the information-bearing sub-
system. We take the dynamical coordinates to be the to-
tal magnetic fluxes ϕ and ϕdc threading the loops. (c) Con-
tour plot of the potential calculated for the component values
of the studied device, and external bias fluxes (ϕx, ϕx,dc) =
(−0.1018,−2.5887) coinciding with the start of the bit era-
sure protocols studied later. Two local, metastable minima,
and the unique saddle point are marked (black dots).

to 10 GHz [29, 30]. Conversely, enhancing dissipation lo-
cally is straightforward through the inclusion of resistive
normal metal shunts, or coupling to external microwave
ports.

In this work, we study information erasure in a gradio-
metric flux logic cell [Fig. 1(a)]. The information-bearing
sub-circuit [Fig. 1(b)] is described by the standard 2D

flux qubit Hamiltonian [31–33]

H =
Q2

2C
+
Q2

dc

C/2
+ U0f(ϕ,ϕdc) (1)

f(ϕ,ϕdc) =
1

2
(ϕ− ϕx)2 +

γ

2
(ϕdc − ϕx,dc)

2

+βL cos
ϕdc

2
cosϕ+ δβ sin

ϕdc

2
sinϕ. (2)

The dynamical coordinates expressed in terms of the
junction phases δ1, δ2 are ϕ = (δ1 + δ2) /2 − π and
ϕdc = δ2 − δ1. The bias terms are ϕx = 2πΦext/Φ0 − π
and ϕx,dc = 2πΦext,dc/Φ0. Q and Qdc are the com-
mon and differential-mode charges on the junction ca-
pacitors and conjugate to ϕ and ϕx, respectively. The
potential parametrization is related to the circuit com-
ponent values as follows: U0 = Φ2

0/(4πL), γ = L/2l,
βL = 2πL(Ic1 + Ic2)/Φ0, and δβ = 2πL(Ic2 − Ic1)/Φ0.

With a suitable choice of the device parameters and the
external bias point, the two-dimensional fluxoid poten-
tial has the required characteristics for implementing ef-
ficient bit storage and erasure. The theoretical potential
calculated with calibrated device parameters [Fig. 1(c)]
illustrates one of the basic requirements, namely two
metastable minima, and the true two-dimensional nature
of the system dynamics. In addition, the system allows
for independent control of the tilt and the barrier height
through the external control fluxes ϕx and ϕx,dc. The
barrier control has a large tuning range, and allows the
potential to be continuously deformed from two effec-
tively isolated wells to a landscape with a single global
minimum. We utilize this for device characterization.

Damping, and equilibrium noise associated with it, can
be accounted for with a Langevin equation in the classi-
cal regime. However, in this work, the characterization
experiments as well as the erasure trajectory datasets can
be quantitatively explained by a simpler model that only
involves the number and location of the critical points
of the fluxoid potential. In the subsequent discussion,
the labels L, R, and B refer to the two local minima and
the saddle point of the f(ϕ,ϕdc) potential landscape, re-
spectively. The right minimum is the one with the larger
ϕ coordinate. These points exist and are uniquely de-
fined at all times during the erasure protocols, but not in
general. Furthermore, we define Ui as the value of the po-
tential term U(ϕ,ϕdc) at the point i, and Uij = Uj −Ui.
Hence, ULB(RB) gives the barrier height for escape from
the metastable minimum L(R), and ULR is the energetic
biasing of the double-well system.

The system under study is not overdamped (Q-factor
evaluated for oscillations in the metastable potential
wells is not < 1). However, the energy relaxation time
Q/ωp = RC, where R is the effective damping resistance
of the logic cell, is much shorter than the timescale over
which the external controls are changed, giving the sys-
tem ample time to equilibrate during the execution of the
protocols. This is equivalent to the validity of the Marko-
vian activation-rate description of the inter-well dynam-
ics.
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FIG. 2. Quasi-static response of the flux logic cell. (a), (b)
Two-dimensional scan of tilt and barrier controls (Φx and
Φx,dc, respectively). Experimental plots (left) show the un-
processed phase of the local magnetometer readout. Theory
plots (right), from Eqs. (1) and (2), show the coordinate ϕ at a
local minimum of the potential. A bi-directional sweep of tilt
was performed for each value of the barrier control. Top pan-
els (a) show the mean response to the two sweep directions.
Bottom panels (b) show the response to the positive-direction
sweep subtracted from the response to the negative-direction
sweep, revealing metastability. (c) Detailed features of the
flux response for a few different values of the barrier control
[indicated by arrows on top of the (a) panels] in the non-
hysteretic regime. Data (markers) and theory (solid lines).
The nonlinear flux-to-phase transfer function of the magne-
tometer has been inverted.

As the first step of the experimental device calibra-
tion, we exploit the periodicity of the flux response to
set up an affine transformation between the idealized
controls ϕx and ϕx,dc and the output voltages of wave-
form sources that drive the on-chip flux lines through
an attenuator network. This transformation is applied
implicitly throughout the experiments. For quantitative

predictions, a straightforward minima-tracking algorithm
reproduces the global behavior of the trapped flux coordi-
nate ϕ, including the characteristic (Φ0, 2Φ0) periodicity
in control flux space [Fig. 2(a)], the number of local min-
ima [Fig. 2(b)], and the nonlinear response of the ϕ(ϕx)
in the single-valued regime [Fig. 2(c)]. We determine the
parameter values βL = 6.2, γ = 12, and δβ = 0.2 en-
tering Eq. (2) that yield the best agreement with experi-
mental data. We utilize the fact that the mean response
is insensitive to the value of U0 and moderate environ-
mental noise when the inter-barrier dynamics are frozen,
i. e., min{ULB , URB} � kBT , or there is only one global
minimum.

In the case when two minima are separated by a mod-
erate (several times kBT ) barrier, the thermally activated
Markovian inter-well transition rates are given by [34, 35]

ΓL,R =
Ω

2π
exp (−ULB,RB/Eesc) , (3)

where ΓL,R is the escape rate from well L(R), Ω is the
renormalized plasma frequency, and Eesc is the escape
energy scale. For thermally activated dynamics, Eesc =
kBT . A large body of theoretical results on the nature of
information flow and architectural costs in physical com-
puting devices has been derived for systems described by
a time-inhomogeneous Markovian model [36, 37]. Our
superconducting device generates faithful realizations of
such models in a system for which, moreover, the micro-
scopic dynamics are understood in detail.

An important aspect of the technical implementation
of the experiment is ensuring that the environmental
fluctuations driving the barrier-hopping dynamics cor-
respond to a true thermal bath. In particular, broad-
spectrum electromagnetic backaction from the local dc-
SQUID magnetometer can cause non-thermal activation
above the barrier. To characterize the device dynamics
free from magnetometer backaction, we employ a time-
domain pulse sequence [Fig. 3(a)] where we make a short
excursion of duration τ to an extreme tilt configuration,
thereby probabilistically causing the fluxoid particle to
escape to the other minimum. We then return the tilt to
the neutral setting (ULR = 0), and determine the flux-
oid state by a readout pulse. When performed under a
sufficiently high barrier, ensuring that the readout pulse
does not trigger state transitions at neutral tilt, the es-
cape rate during the maximum tilt can be determined
from the observed transition probability p as

Γ = − log(1− p)
τ

. (4)

Adherence to the activation rate model [Eq. (3)] can
be verified by determining the escape rate as a func-
tion of barrier heights (evaluated from the tilt ampli-
tude and polarity and system parameters) at different
temperatures. We have performed the experiment at a
constant barrier control ϕx,dc/2π = −0.3778 at temper-
atures up to 600 mK. The data displays the expected
exponential dependence of the escape rate on the barrier



4

0.02 0.04 0.06 0.08 0.1 0.12 0.14
Ubarrier/U0

101

102

103

104

105

 (H
z)

0 0.2 0.4 0.6
Tmc (K)

0

5

10

10
00

 
 E

es
c/U

0
0 0.2 0.4 0.6

Tmc (K)

0

5

10

10
00

 
 E

es
c/U

0
0 0.2 0.4 0.6

Tmc (K)

0

5

10

10
00

 
 E

es
c/U

0





0 500 μs

fine tilt

tilt

readout

τ

17 mK 150 mK
200 mK

250 mK

550 mK

450 mK
350 mK

FIG. 3. Backaction-free escape dynamics. (a) Pulse sequence
used for determining the escape rates. The sequence begins
with a deterministic reset. The fine tilt pulse is superim-
posed with the tilt waveform with a large attenuation. (b)
Escape rate as a function of the theoretical barrier height
during the fine tilt pulse at different sample temperatures
(markers). The experiment was performed at barrier setting
ϕx,dc/2π = −0.3778 using both positive and negative polar-
ity tilt pulses (upward and downward triangles, respectively).
Lines are fits to data (solid and dashed for + and − polarity,
respectively). (c) Escape energy, extracted as the inverse neg-
ative slope of the escape rate data, as a function of tempera-
ture, separately for + and − polarity data (upward and down-
ward triangles, respectively). Solid line is a zero-intercept fit
to data at T > 250 mK, and the dashed horizontal line indi-
cates the low-temperature saturation level.

height [Fig. 3(b)]. Due to strong asymmetry in the poten-
tial, measuring the escape rate in both directions (from
Left minimum to Right, and vice versa) serves as an addi-
tional check of the validity of the extracted model param-
eters. Next, we fit the escape energy at each temperature
and polarity independently. We find the escape energy
to be proportional to the sample temperature above 200
mK [Fig. 3(c)]. We take this proportionality to be proof
of thermally activated dynamics. The common prefactor

U0 of the potential can be determined with zero-intercept
fit of the dimensionless escape energy in the proportional
regime. We obtain U0 = kB × 56.3 K (positive polarity)
and U0 = kB × 56.7 K (negative polarity), corresponding
to L ≈ 140 pH. The low temperature saturation cor-
responds to a temperature Tcr = 103 ± 2 mK (positive
polarity) and Tcr = 105± 2 mK (negative polarity).

A fundamental explanation of the low-temperature sat-
uration is the transition from thermally activated dynam-
ics to macroscopic quantum tunneling (MQT). Within
this interpretation, Tcr = ~ωp/(2πkB) [38–40], and the
plasma frequency ωp/2π of the system is approximately
13.7 GHz at the operation point used for the escape
rate experiments. Alternatively, we can estimate C
from the total junction area (11.8µm2, based on a high-
magnification SEM image) and the nominal specific ca-
pacitance 45 fF/µm2 of the junction fabrication process.
This yields C = 530 fF and ωp/2π = 18.5 GHz. The 30%
relative discrepancy in estimated ωp will not affect the
conclusions we make. We use the lower value given by
the MQT experiment for the remainder of our analysis
here. Macroscopic resonant tunneling [41] peaks were
not resolvable, presumably due to small level separation
in terms of tilt flux (4.7 × 10−4Φ0). All further experi-
ments are performed at a temperature of 500 mK, firmly
in the thermal activation regime.

To extract work statistics for bit erasure at the single
trajectory level, the system state must be continuously
tracked throughout the protocol. Therefore, we charac-
terize the logical state-dependent backaction of the lo-
cal magnetometer when read out with a continuous low-
power sinusoidal (f = 10 MHz) waveform. The probing
frequency was chosen so that it is in the passband of an
ac-coupled cryogenic SiGe preamplifier. The preampli-
fier output was demodulated with an RF lockin-amplifier
into two zero-IF quadrature channels that were subse-
quently digitized. The magnetometer SQUID was not
part of a resonant circuit. Hence, the observed flux mod-
ulation characteristics [Fig. 4(a), (b)] as well the nature
of its backaction on the flux logic cell resemble those of
a current-biased dc-SQUID. From similar data, we ex-
tract magnetometer flux shift due to the logical tran-
sition at ϕx,dc = 0 to be 0.024Φ0, and the mutual in-
ductance between the magnetometer and the flux logic
cell M = 0.0254L ≈ 3.6 pH. From a separate low-
temperature dc four-write characterization of the readout
SQUID, we determine its shunt resistance Rshunt = 2.1 Ω.
We estimate the Q-factor due to shunt-induced damping
of the flux dynamics as [42]

Qshunt ≈
RshuntL

ωpM2
= 260, (5)

where we have used the approximation ωp ≈ 1/
√
LC,

thus neglecting the contribution from the Josephson in-
ductance. Noting that the chip contains two nominally
identical readout circuits placed symmetrically with re-
spect to the logic cell, we obtain an upper bound on
the inter-well relaxation timescale Q/ωp ≤ Qshunt/2ωp =
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FIG. 4. Magnetometer readout with different probe powers
and backaction on system dynamics at T = 500 mK. (a) Flux
modulation curves for −79 dBm to −72 dBm incident power,
in 1 dBm steps. Pickup from magnetometer bias to tilt and
barrier fluxes has not been compensated. (b) Phase response
for the three lowest powers. Data has been offset by 20◦ per
dBm for clarity. (c)-(f) Escape rates at ϕx,dc/2π = −0.3778
under continuous readout [(c), (d)] versus backaction-free
pulsed readout [(e), (f)] for the three lowest powers. Op-
eration point has been chosen so that the logical state R is at
the peak of the modulation curve. Consequently, the magne-
tometer is (close to) a zero voltage state in the logical state
L. Dash-dotted line is the same in all panels and serves as a
guide for the eye.

9.5 ns, where the total Q includes all damping mecha-
nisms. This sets the fundamental limit on what con-
stitutes an adiabatic evolution in the system. However,
the reset protocols studied in this manuscript are many
orders of magnitude slower, ensuring that the timing of
the logical state transitions can be accurately determined
from the finite-bandwidth magnetometer output.

The potentially harmful nonequilibrium backaction
from a dc-SQUID appears in the form of wideband mi-
crowave radiation with a complex spectrum peaked at

ωJ = 2eV/~ and harmonics, where V is the dc voltage
developed over the junction. For low-amplitude probing
currents, it is possible to choose the magnetometer flux
bias in such a way that the SQUID is in a finite-voltage
state for logical state L and in the zero-voltage state for
logical state R. This configuration would be expected to
result in logical-state-dependent backaction. We quan-
tify the backaction by repeating the earlier escape-rate
experiment with both continuous and pulse-modulated
readout at T = 500 mK. The data [Fig. 3(c)-(f)] is in
agreement with the model of readout backaction laid out
above. We find only the L-to-R escape under continu-
ous readout [Fig. 3(d)] to be affected. The escape rate
appears to be enhanced by a constant power-dependent
factor, but the effective temperature, quantified by the
slope of the Γ vs. Ubarrier characteristic, is not affected.
Guided by this characterization, we choose an incident
readout power of −79 dBm (to 50 Ω load) for the contin-
uous monitoring of stochastic bit erasure trajectories. At
this power level, the rate enhancement is equivalent to a
sub-kBT change in the energetics of the system, while
the signal-to-noise remains sufficient for fast discrimina-
tion of the logic state [Fig 5(c)].

To study the work statistics of bit erasure, we im-
plement the reset protocol used in Ref. [5]. The pro-
tocol starts from and ends in a storage state. Logi-
cal state reset is realized by piecewise linear controls
applied to the tilt and barrier channels. Efficient and
fast reset is achieved by changing the controls in a par-
ticular sequence: Drop barrier–Tilt–Raise barrier–Untilt
[Figs. 5(a),(b) show the waveforms; Fig. 6 shows the in-
duced potentials]. With the control waveform shapes
fixed, one still has a choice of their duration, flux off-
set, amplitude, polarity, and directionality.

We derive three transformed versions of the basic pro-
tocol that implements Reset-to-R functionality: Reset-
to-L, obtained by inverting the polarity of the tilt wave-
form while maintaining the same offset: ϕL

x (t) = ϕx(0)−
[ϕR

x (t) − ϕx(0)]. And, for both polarities, the reversed
protocol is obtained by time-reversing both the tilt and
barrier waveforms. Importantly, due to the finite δβ term
in the Hamiltonian [Eq. (1)], reversing the sign of the tilt
control ϕx and the longitudinal coordinate ϕ does not
result in an equivalent potential landscape. Hence, the
Reset-to-L and Reset-to-R protocols give rise to a differ-
ent distribution of microscopic trajectories. Snapshots
of the potential at key stages of the reset protocols are
shown in Fig. 6.

In the infinite time limit, an application of this pro-
tocol with appropriate scaling of the controls results in
a Landauer-efficient reset with Gaussian work statistics.
For a finite-duration protocol with ideal control of the
energetics, the resulting work histogram is bimodal and
displays characteristic features that can be traced back
to different sub-stages of the protocol [43]. In our experi-
ment, the asymmetry of the Hamiltonian leads to a non-
trivial functional dependence of the energetics (in par-
ticular, ULR) on the external controls (ϕx, ϕx,dc), giving
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is obtained by reversing both control channels in time. The reset protocol targeting state R has the polarity of the tilt waveform
inverted. (c) Two randomly chosen magnetometer traces. (d) Average occupation of the state L throughout the protocol when
the initial state is L (blue), R (red), or an equilibrium mixture of the idling potential (black). Experimental average from 105

trajectories (solid) and theory (dashed). (e) Distribution of work W from 105 experimental trajectories (markers) and from
Markovian theory (lines). Full distribution (black) and conditional distributions based on initial and final states (magenta,
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FIG. 6. One-dimensional projection of the potential at key
stages of the Reset-to-R (blue) and Reset-to-L (red, dashed)
protocols. The plotted quantity is the potential as a function
of the ϕ coordinate evaluated along a curve in (ϕ,ϕdc) space
that passes through the left minima, the saddle point, and
the right minima (in this order), and is parallel to the local
principal axis of curvature at these points. A constant offset
of 71.4 K has been subtracted for clarity.

rise to complex multimodal work distributions [Fig. 5(e)].
The important timescales of the experiment were cho-

sen to satisfy

τreadout � Γ−1
tilt � τtotal, (6)

where τreadout ≈ 0.1 ms is the time needed to detect a log-
ical transition, Γtilt is the typical transition rate of the
system during the Tilt phase (25 . . . 35 ms), and τtotal is
the total duration of the protocol. The first condition
ensures that the magnetometer can track the system dy-
namics, and the second ensures that the system can sam-
ple both wells during the protocol execution. For the
protocols studied here, Γtilt ≈ 1 kHz. Finally, we choose
τtotal = 50 ms. This allows us to collect N = 105 trajec-
tories for all four protocol transformations with a total
measurement time of 12 h with 50 % duty cycle. For
the duration of the acquisition, the system is run with
open-loop control.
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Fluctuation Theory result exp (W/kBT ) with T = 500 mK
(solid line).

We monitor the magnetometer output continuously
during the execution of each reset protocol. Two ran-
domly chosen traces are shown in Fig. 5(c). The polarity
of the magnetometer response is such that the Left log-
ical state corresponds to a positive output voltage. We
classify the instantaneous logical state according to the
sign of the magnetometer signal. Evaluating the mean
occupation of either logical state (here, we choose R) as
a function of time results in, over the 105 experimental
trajectories, a smoothly varying curve [Fig. 5(d)].

Evidently, logical state transitions correspond to the
zero-crossings in the magnetometer signal. We will use
this symbolic representation of the system state to de-
rive a per-trajectory work estimate. Consider a trajec-
tory that starts in state s0 ∈ {L,R} and involves n state
transitions such that the ith transition occurs at time
τi and takes the system to state si ∈ {L,R}. Defining
τn+1 = τtotal, we write the per-trajectory work as

W =

n∑
i=1

[Usi(τi)− Usi(τi−1)] (7)

= [Usn(0)− Us0(0)] +

n∑
i=1

[
Usi(τi)− Usi−1

(τi)
]
.(8)

The second equality makes use of the fact that the poten-
tials at t = 0 and t = τtotal are identical. The latter form
illustrates that W can be expressed as a sum of ULR(τi)
terms with alternating signs.

Even though our experimental flux traces consist of

discrete fluxoid state transitions, the underlying dynam-
ical coordinates are continuous. Evaluation of Eq. (8)
gives an accurate estimate of the true microscopic work,
provided: (i) two metastable minima exist throughout
the protocol; (ii) the system has time to equilibrate be-
tween logical transitions; (iii) the changes in control pa-
rameters are slow compared to the internal equilibration
time; and (iv) the potential landscape is only weakly per-
turbed. The details of this argument in the context of su-
perconducting flux logic are laid out in Ref. 43. An equiv-
alent approach is commonly used in studies of nonequilib-
rium thermodynamics in single-electron devices [19, 44].
Numerical Langevin simulations of a double-well system
satisfying the above conditions confirm that the work
distribution evaluated with the discretized formula in
Eq. (8) agrees with that obtained for the microscopic
work evaluated with continuous coordinates.

For the parameters of this experiment, the experimen-
tal initial tilt offset and the asymmetry of the potential
give rise to a nonzero ULR(0)/kB = −1.01 K. We deter-
mine this initial energy offset based on the equilibration
of the left and right state populations during the first
1/10th of the protocol, for which the system is in the
storage state. Conversely, choosing a weighting for left
and right initial conditions based on the Boltzmann fac-
tor corresponding to this energy offset results in a steady
occupation in the initial idling period [Fig. 5(d), black
line]. We use the same Boltzmann-factor weighing when
aggregating the work histograms. With this weighting,
Fluctuation Theorems are satisfied by the quantityW de-
fined above. Note that the first term of Eq. (8) vanishes
if the potential in the initial storage state is degenerate,
i. e., if ULR(0) = 0.

The per-trajectory work estimate is based on the cal-
ibrated potential, but does not require a model of the
system dynamics. Given that we, in addition, calibrated
the two-state activation rate model, we can use that
knowledge to predict the system’s time-domain response
to the erasure protocols. The renormalization of the
rates due to damping and local curvature of the poten-
tial [31, 34, 45] is a much smaller effect than the vari-
ance due to uncertainty in the model parameters. Conse-
quently, we substitute Ω = ωp as the prefactor in Eq. (3).
Such predictions are included in the mean occupation
plots of Fig. 5(d) as dashed lines, and the work his-
tograms of Fig. 5(e) as solid lines. This simple dynamical
model reproduces with good accuracy the mean occupa-
tions throughout the protocols as well as the locations
and relative weights of the peaks in the multimodal work
histograms. One can easily discern, however, that the
agreement is worse for the Reset-to-L family of proto-
cols. The reason for the disagreement is not clear at the
moment, but similar features can be observed in other
datasets acquired from the same device.

To quantify the effect of slow flux offset drifts, we pro-
cess the data in 10 chunks of 104 consecutive trajectories,
and plot the mean and 2σ confidence intervals for each
bin of the work histograms [Fig. 5(e)]. Left and right
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initial conditions have been weighted according to the
Boltzmann factor defined above. We include the per-bin
uncertainties in the evaluation of the Crooks-relation [12]
ratios ρ = Pfwd(W )/Prev(−W ) using standard error
propagation formulas [Fig. 7]. When evaluated in this
manner, the confidence intervals also include the statis-
tical uncertainty due to finite sampling, dominating the
uncertainty for low-count bins. The fact that the Crooks-
relation ratios fall on the expected line log(ρ) = kBT
within the error bars is another indication that our model
of the microscopic energetics of the flux logic system is
correct.

In conclusion, we presented a trajectory-level analy-
sis of the thermodynamics of information erasure in a
superconducting flux logic device, where a double-well
potential arises naturally through a combination of the
Josephson effect and flux quantization. We calibrated
a microscopic model of the device energetics and evalu-
ated detailed work histograms for bit erasure protocols
in a parameter regime where metastable two-state ap-
proximation is valid throughout the protocol. We also

demonstrated that a simple dynamical model, based on
the calibrated potential and barrier activation, explains
all experimental observations in detail. This sets the
stage for designing and diagnosing thermodynamically
efficient computing based on superconducting devices.

In this initial study, the execution speed of the bit re-
set was constrained by the limitations of the dc-SQUID
readout scheme. Future experiments employing either
dispersive readout [46] with a wideband quantum-limited
preamplifier [47] or thermal detectors [48] will enable
GHz-scale clock rates while still maintaining fraction-of-
kBT excess dissipation, and a similar resolution for the
extracted thermodynamical quantities.
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