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Abstract
Atmospheric CO2 observations have the potential tomonitor regional fossil fuel emission (FFCO2)
changes to support carbonmitigation efforts such as the Paris Accord, but theymust contendwith the
confounding impacts of the natural carbon cycle. Here, we quantify trend detection time and
magnitude in gridded total CO2 fluxes—the sumof FFCO2 and natural carbonfluxes—under an
idealized assumption thatmonthly total CO2fluxes can be perfectly resolved at a 2°×2° resolution.
UsingCoupledModel Intercomparison Project 5 (CMIP5) ‘business-as-usual’ emission scenarios to
represent FFCO2 and simulated net biome exchange (NBE) to represent natural carbonfluxes, wefind
that trend detection time for the total CO2fluxes at such a resolution has amedian of 10 years across
the globe, with significant spatial variability depending on FFCO2magnitude andNBE variability.
Differences between trends in the total CO2fluxes and the underlying FFCO2 component highlight
the role of natural carbon cycle variability inmodulating regional detection of FFCO2 emission trends
usingCO2 observations alone, particularly in the tropics and subtropics wheremega-cities with large
populations are developing rapidly. UsingCO2 estimates alone at such a spatiotemporal resolution
can only quantify fossil fuel trends in a few places—mostly limited to arid regions. For instance, in the
Middle East, FFCO2 can explainmore than 75%of the total CO2 trends in∼70%of the grids, but only
∼20%of grids inChina canmeet such criteria. Only a third of the 25megacities we analyze here show
total CO2 trends that are primarily explained (>75%) by FFCO2.Our analysis provides a theoretical
baseline at a global scale for the design of regional FFCO2monitoring networks and underscores the
importance of estimating biospheric interannual variability to improve the accuracy of FFCO2 trend
monitoring.We envision that this can be achievedwith a fully integrated carbon cycle assimilation
systemwith explicit constraints on FFCO2 andNBE, respectively.

1. Introduction

Current estimates of fossil fuel CO2 emissions (FFCO2)
rely primarily on self-reported energy data from indivi-
dual countries (IPCC 2013). Despite efforts to improve
emission inventories, there is an increase in both relative
and absolute errors in global FFCO2 emissions because
emissions are rising faster in nations with less accurate
estimates (Andres et al 2014). To support individual
countries’ objectives for the Paris Agreement, atmo-
spheric observations of CO2 have the potential to

provide an independent assessment of reported FFCO2

emissions and associated trends (Peters et al 2017b,
Battersby 2018). However, these observations provide
constraints on the net contribution of both anthropo-
genic and natural sources and sinks. The annual atmo-
spheric CO2 growth rate owing to FFCO2 is reduced
by roughly a half due to ocean and land sinks, with the
latter exhibits significant interannual variability (IAV)
(Le Quéré et al 2018, Sellers et al 2018). This IAV is one
of the primary confounding factors in the attribution of
changes inFFCO2basedonCO2 concentrations.
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Historically, global surface networks were designed
to study ecosystemCO2 fluxes (i.e., net biome exchange
(NBE))measuring CO2 far away from urban locations.
Atmospheric simulations of these observations relied
upon ‘bottom-up’ inventories for FFCO2 (Gurney et al
2002, Rödenbeck et al 2003, Peters et al 2007, Chevallier
et al 2010, Francey et al 2013, Peylin et al 2013, Liu et al
2014, Gaubert et al 2019) to account for increases in
background CO2.With increasing surface observations
in urban regions (McKain et al 2012, Staufer et al 2016,
Turner et al 2016, Wu et al 2016, 2018, Verhulst et al
2017, Mitchell et al 2018) and the advent of satellite
constellation dedicated to carbon gas measurements
(O’Brien et al 2016, Pillai et al 2016, Broquet et al 2018,
Crisp 2018), atmospheric CO2 concentrations will be
measured with much higher precision and resolution
than before (Battersby 2018), with greater potential to
distinguish natural and anthropogenic contributions.
Nevertheless, the attribution of temporal-spatial varia-
tions in the atmospheric CO2 concentration to anthro-
pogenic emission trends is fundamentally limited by
the balance of natural and anthropogenic variability
and magnitude (National Research Council et al 2010,
Shiga et al 2014).

One approach is to focus on limited domains
where anthropogenic CO2 emissions dominate CO2

variability. For example, urban regions contribute to
more than 70% of the global FFCO2 emissions and are
likely to increase asmetropolitan areas are projected to
grow (Duren andMiller 2012,Hutyra et al 2014), mak-
ing them an especially attractive target for FFCO2

monitoring. Urban CO2 monitoring networks esti-
mate city-scale FFCO2 emissions using high-
frequency measurements of CO2 gradients between
emitting sources and surrounding suburbs (McKain
et al 2012, Lauvaux et al 2016, Staufer et al 2016, Wu
et al 2016, Verhulst et al 2017, Mitchell et al 2018). On
the other hand, space-borne column-integrated CO2

(XCO2)mixing ratio observations are also shown to be
sensitive to CO2 enhancements over megacity ‘urban
domes’, e.g. Los Angeles (Kort et al 2012, Schwandner
et al 2017) or power plants (Nassar et al 2017). How-
ever, the isolation of local FFCO2 emission sources
using suchmethods depend on CO2 observations with
relatively low and stable biosphere influences such as
in arid regions.

Globally, extended urban landscapes exhibit con-
siderable heterogeneity with a mosaic of residential,
transportation, industrial, vegetation and agriculture
areas, which may be situated in complex terrain. Wu
et al (2018) showed that for Indianapolis, which has
flat terrain but with similar magnitudes of biogenic
and anthropogenic CO2 fluxes, a CO2 observation net-
work of up to 12 sites at the city scale is not able to
constrain FFCO2 emissions effectively. The Indiana-
polis case indicates that the relative contribution from
FFCO2 and NBE to the total CO2 has a direct impact
on the accuracy of estimating FFCO2. Consequently,
any attempt to scale these city-scale case studies

globally will need to account for this contribution and
how it changes in space and time. Moreover, it is
unclear if or when surface and aircraft measurement
system would be deployed globally (e.g. Lagos,
Moscow,HoChiMinhCity).

Satellite remote sensingmeasurements with global
coverage have been available for nearly a decade
(Buchwitz et al 2018) with an increasing constellation
that will include geostationary sounders (Polonsky
et al 2014, Rayner et al 2014), which could provide cri-
tical constraints on the global time series of total CO2

fluxes. It is unclear, however, how that time series will
relate to the underlying FFCO2 emissions at those
scales. To that end, we focus on two factors here:
(1) how long it takes for a significant trend to emerge
in the total CO2 fluxes, noted as detection time, given
the confounding impact of NBE variability across the
globe, and (2) the relationship between trends in the
total CO2 fluxes and trends in the FFCO2 at each grid.
In order to isolate the impact of the intrinsic variability
of NBE from the accuracy and precision of a particular
observing system, we make an important assumption
that monthly total CO2 flux time series could be per-
fectly known at a 2°× 2° resolution. This corresponds
to an idealized atmospheric CO2 observing and attri-
bution system that can fully solve monthly gridded
carbon fluxes at such a resolution with a perfect trans-
port model and sufficient CO2 measurements. Conse-
quently, these results are an upper bound in the
detection time and accuracy of the trends at such a
temporal and spatial resolution.

2.Data andmethod

2.1. CMIP5 emsRCP8.5 simulations
Weuse synthetic total CO2 fluxes by combining FFCO2

emissions under a ‘business-as-usual’ scenario, com-
monly noted as emsRCP8.5 (Taylor et al 2012), and
corresponding emission-driven simulations of bio-
spheric carbon fluxes—denoted as NBE—from the
Coupled Model Intercomparison Project 5 (CMIP5,
https://esgf-node.llnl.gov/search/cmip5/). The mean
annual global FFCO2 during 2005–2015 in emsRCP8.5
is 9.24±0.74 PgC yr−1, which agrees well with the
emission inventories suggesting 9.22±0.56 PgC yr−1

(Le Quéré et al 2016) (figure 1(a)). To mitigate some
known model biases in the CMIP5 carbon-climate
feedback mechanisms that manifest as unrealistic
trends in the land carbon sink (Friedlingstein et al 2014,
Hoffman et al2014), we applied amodel selection based
on the agreement between simulated CO2 growth rate
and the observed changes during 2005–2015 (see
supplementary text 1 online at stacks.iop.org/ERL/14/
084050/mmedia).

Four models are included for further analysis,
namely BNU-ESM, HadGEM2-ES, IPSL-CM5A-LR,
and MPI-ESM-LR. The resulting model ensemble
provides an uncertainty estimate of NBE fluxes. All
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models are resampled to 2°× 2°. This spatial resolu-
tion is limited by current global ESM simulations, but
at the same time, equivalent to our current global
inversions (Gurney et al 2002, Rödenbeck et al 2003,
Peters et al 2007, Chevallier et al 2010, Francey et al
2013, Peylin et al 2013, Liu et al 2014, Gaubert et al
2019). Monthly time series for trend detection were
selected to represent seasonal flux variabilities. The

time series of the global FFCO2 and NBE are shown in
figure 1(b). FFCO2 and NBE for the grid cell contain-
ing Beijing are shown in figure 1(c) as an example. The
variation coefficient (vc, defined as the ratio of the
standard deviation to the mean) for the global FFCO2

is 0.3, while −6.4 for the global NBE. For Beijing, the
cv is 0.11 for FFCO2 and−14.2 for NBE. In both cases,
NBE variation dominates the variability fromFFCO2.

Figure 1.Time series of global fossil fuel CO2 emission (FFCO2) and net biome emission (NBE). (a)Global annual FFCO2 andNBE
simulated by the fourmodels we use fromCMIP5 esmRCP8.5 ensembles from2005 to 2100.Dotted black lines represent FF emissions
alongwithGCP estimates shown in red; color-coded lines represent individual ESMwhile black solid line represents themedian of the
selected ESMs. (b)Globalmonthly FFCO2 andNBE for the period 2005–2015. Themonthly FFCO2 emissions are represented by the
dotted-black line, which has a small seasonal cycle relative toNBE shown in color-coded lines. The added annual total emissions are
shown in (a). (c)Monthly FFCO2 and total CO2fluxes in themodel grid Beijing locates. The blue line shows themonthly time series of
the total CO2fluxes, the vertical dotted blue line indicates the trend detection time, the corresponding trend is shown in dashed-blue
line. The cyan line shows themodeled seasonal cycle as represented by equation (2), and the shaded areas show the 95% confidence
interval. Corresponding results for the FFCO2 are shown in red.
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2.2. Trend detectionmethod
For simplicity, we define a linear trend to estimate the
first-order change in the time series, as changes in
FFCO2 are expected to be gradual in the near future;
this approach also allows for a simple comparison
across different regions. The time series of observed
fluxes can be defined by a simple additive noisemodel:

y t F t , 1= +( ) ( ) ( )

where y(t) are the derived fluxes at a gridded location,
F(t) is a function to describe howfluxes change in time,
and  represents the ‘unexplained variability’ in the
system. We represent the times series as a simple
model that includes a linear trend and seasonal cycle:
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where t is the decimal year, a0 and a1 are offset and
slope, Cn and Dn are coefficients for the amplitude of
seasonal variations, and n represents the normalized
frequency index of the harmonics-4 are chosen here.
IAVs not captured by the harmonics is attributed to
the unexplained variability term ( ). The least square
method of the optimization function in the Python
package scipy is used.

We use a search method that starts with a 3 year
temporal window and extends 1 more year at each
iteration until a significant trend emerges (defined by
the p-value of a1 being less than 0.05 for two con-
secutive end years). The length of this temporal win-
dow thus represents the trend detection time. We first
estimate the detection time and associated trend (a1)
of the total CO2 fluxes at each model grid cell from
2015 onward, and then, we compare the estimated
total CO2 trends with corresponding trends imbedded
in FFCO2 emissions to evaluate whether trends in the
total fluxes are directly relevant for FFCO2 in different
places across theworld.

3. Results

3.1. Spatial distribution of the detection time and
corresponding trend
The detection time has a global median of 10 years,
which means that a significant trend in the total CO2

fluxes could be identified within a decade for over a
half of the land grids (figure 2). In 4% of the grids, no
significant trend emerges over the 85 simulation years.
The median of detected trends in the total CO2 fluxes
are 0.9 gC m−2 yr−2, but the spatial variations are very
large (the 10th and 90th percentiles being −87.5 and
78.5 gCm−2 yr−2). To relate these changes to anthro-
pogenic emission variability, we also compute FFCO2
trends in the absence of the biosphere. Trends in the
FFCO2 component have a median of 0.4 gCm−2 yr−2,
with their 10th and 90th percentiles being 0.01 and
4.3 gCm−2 yr−2 at corresponding detection time of
the total CO2 fluxes. The magnitude of trends in the
FFCO2 are over a factor of 2 smaller than trends in the

total CO2 fluxes and an order of magnitude less
variable. This difference is driven primarily by the IAV
in NBE, in particular extreme events in the natural
carbon cycle. For example, a period of successive
droughts can impose a large sub-decadal trend in the
total CO2 flux that is not representative of longer-term
biospheric or FFCO2 fluxes. Consequently, caution
must be exercised in the interpretation of short-term
total CO2 trends in regionswith an active biosphere.

A regional summary of the detection time and
corresponding trend is shown in figure 3. The Middle
East has the shortest detection time across the globe—
5 years, with the least divergence between the
FFCO2 (2.50.5

6.0 gCm−2 yr−2) and the total CO2

4.2 2.9
18.2
- gCm−2 yr−2) trends (the median is reported

here, with the subscript and superscript showing the
10th and 90th percentiles, respectively, hereafter). In
contrast, Canada has the longest detection time (295

85

years), followed byRussia (235
65 years). Detection time in

the tropics is not particularly long, but large divergences
between the total CO2 andFFCO2 trends are found indi-
cating that trends in the total CO2 fluxes are induced by
NBE instead of FFCO2. Although themedian of the total
CO2 trends in the Central and South America agree
roughly with the FFCO2 trends, their variability are lar-
ger by more than an order of magnitude than FFCO2

(2.4 70.4
47.4
- and 1.1 76.1

59.3- - gCm−2 yr−2 for the total CO2,
whereas 0.60.1

1.5 and 0.20.02
0.7 gCm−2 yr−2 for the FFCO2,

respectively). Also,NBE fromdeforestation and landuse
changes are also important anthropogenic signals in
those regions, but not addressed here. As for Southeast
Asia and Oceania, the median of the total CO2 trends
also differ significantly from the FFCO2 trends, as the
model ensemble mean suggest enhanced land carbon
sink over the corresponding total CO2 trend detection
time ( 28.7 119.8

67.2- - and 19.1 77.7
17.3- - gCm−2 yr−2 for the

total CO2, whereas 1.10.04
3.3 and 0.030.01

0.4 gCm−2 yr−2 for
the FFCO2).

Each region, however, is a combination of grids
with strong andweak FFCO2 trends. Focusing on grids
where FFCO2 trends are greater than 5 gCm−2 yr−2

(∼300 locations globally), approximately a third of
grids show total CO2 trends within 25% of con-
comitant FFCO2 trends. These trends are primarily in
Eastern China, Europe, Middle East, and North
America. For example, China contributes to ∼25% of
these large FFCO2 trends. Of those, about 20% show
total CO2 trends within 25% of the FFCO2

trends, while ∼40% differ by more than 100%. The
differences are less pronounced in the Middle East,
where over 70%of total CO2 trends is within 25%. It is
in this region where top-down systems may be the
most effective in the near-term at a sub-decadal scale,
even at a coarse resolution. We note that although the
specific numbers are dependent on the current model
simulations and the starting year, the spatial distribu-
tion of the relative contribution of biosphere to the
detection of FFCO2 trends should be robust given our
current understanding of the natural carbon cycle.
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However, we also expect that as more extensive regio-
nal monitoring networks become available, the rela-
tive weight of FFCO2 and natural carbon fluxes will
change whenmoving towards a higher spatiotemporal
resolution, and hence, the signal-detection may
improve upon the baselines we documented here.

3.2. Tradeoff between the detection time and the
representativeness of estimated trend
The magnitude of estimated trends decreases expo-
nentially with the increase of detection time because
the trend in NBP is closer to neutral over longer time
scales (figure S3). This is not surprising as short-term
variations that qualify as a statistically significant trend
at sub-decadal scales may not be representative of the
long-term change.We further test that trends obtained
using longer initial window lengths for the search
method are generally of smallermagnitudes than those
estimated using a shorter initial window (figure S4).
Using longer initial window of 5 and 10 years result in
longer median detection time of 12 and 19 years with
the differences between the total CO2 and FFCO2

trends reduced to 0.13 28.6
17.9
- and 0.21 8.9

7.8
- gCm−2 yr−2

using 5 and 10 year windows, respectively, with 43%
and 79% reductions in the 10th and 90th quantile
range compared to the results using 3 year initial
window (0.22 47.4

33.6
- gCm−2 yr−2). Although it is prefer-

able to monitor short-term variations of regional
FFCO2 emissions, this analysis indicates that the use of
CO2 observations to infer FFCO2 flux changes at a
relatively short time scale should be treated with
caution as the variations in the NBE over a few years
could confound the attribution of observed CO2

trends even though those short-term NBE trends are
not indicative of the long-term biosphere trends. A
higher accuracywith longer detection time only occurs
where the natural biosphere is balanced over several
decades; in regions where land-use change and carbon
feedbacks are important, natural trends could still
dominate the total CO2 trend (figure 2).

To isolate the role of NBE variability in shaping the
distribution of trend detection time, we created a test
scenario SFF_Uniform in which both the emission inten-
sity and trend in the FF fluxes are uniformly dis-
tributed in space with the global total FFCO2 equal to
that of RCP8.5 (figure S5). The spatial variations are

Figure 2. Spatial distribution of the trend detection time of the total CO2fluxes and corresponding trends in the total CO2fluxes and
in the FFCO2 component. The results are based on themodeledNBE ensemblemean.
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now determined by the variability and trends embed-
ded in the NBE fluxes alone. Compared to the refer-
ence (shown in figure 2 and noted as SFF_RCP8.5), the
detection time in SFF_Uniform for trend in the total CO2

fluxes becomes longer in regions where the original
FFCO2 are high, e.g. such as East Asia, India, Europe
and Northeast US, while detection time shortens sig-
nificantly in regions where the uniformly distributed
FFCO2 induce more detectable trends (figure S5). The
comparison between SFF_RCP8.5 and SFF_Uniform illu-
minates the interplay between FF and NBE to the
detection of trends in the total CO2 fluxes. Variability
in the NBE remains to be the largest drawback of
detection time. For example, the short detection time
for the Middle East (less than 5 years) for both
SFF_RCP8.5 and SFF_Uniform show that low NBE in the
arid regions allow FF trends to emerge more easily
regardless of the choice of detection method. As for
Eastern China, which has a large absolute FF emission
flux in the original emission scenario, it requires a
much longer detection time for the case of SFF_Uniform.
However, future CO2 emissions may deviate from the
RCP8.5 scenario and plateau or even decrease in the
future if emissions follow the Intended Nationally
Determined Contributions submitted to UN Frame-
work Convention on Climate Change. In such cases,
independent constraints on the natural carbon cycle

fluxes are evenmore critical to quantify actual changes
in FFCO2 fluxes.

3.3.Detection time and trends inmegacities
Megacities are of particular interest because of their
disproportionate impact on the anthropogenic carbon
budget and we expect that future observing systems
will focus on quantifying megacity emissions and
trends. We use population as a criterion to focus on
the grids where the top 25 mega-cities are located.
Significant trends can be detected in approximately
one third to a half of the cities within a decade with a
monthly 2°× 2° resolution (14 out of 25; figure 4).
Intuitively, cities with a relatively short detection time
are associated with either a relatively large trend in FF
flux (>10 gC m−2 yr−2) or a significant trend in NBE
over the detection window. For the former, trends in
the total CO2 fluxes are in good agreement with trends
in the FFCO2 fluxes (e.g. New York, Seoul, Los
Angeles, Tokyo); whereas for the latter case, the
divergences between the total CO2 and FFCO2 trends
are large, in some cases differ in an order ofmagnitude
(e.g. London, Dhaka, Sydney). There is also a large
uncertainty range in the trends of the total CO2 flux
using individual ESMs, due to differences in trends
embedded in each NBE simulations and in the
detection time.

Figure 3.Regional summary of (a) trend detection time and (b) correspondingmagnitude of trends in the total CO2fluxes and in the
FFCO2 component, respectively. For each region, the central rectangle spans thefirst quartile to the third quartile with a segment
inside the rectangle showing themedian; whiskers above and below the box show theminimumandmaximum; outliers are noted as
small dots (defined as 1.5×interquartile rangemore above the third-quartile or below thefirst-quartile). Regionalmask is shown in
figure S2.
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Overall, there are eight cities whose total CO2 trends
matches trends in the FFCO2 to within 25%. Based
upon these results and the detection time for both
methods, we would expect that only in arid regions like
Middle East, it would be possible to observe FFCO2

change effectively in the near term with a CO2—only
monitoring system. Tropical regions remain a sig-
nificant challenge. At 2°× 2° degree resolution the
detection time for Sao Paulo, Bangkok, and Lagos are
close to a decade, theweak FF trend ismasked by strong
NBE trends leading to total CO2 trends of−13,−9, and
25 gCm−2 yr−2, respectively (comparing to FFCO2

trendof 2.6, 3.5, and 1 gCm−2 yr−2).

4.Uncertainty and perspectives

In this study, we show the spatial distribution of trend
detection time of total CO2 fluxes and how these
derived total CO2 trends are representative of the
FFCO2 trends at a 2°× 2° degree with monthly data.
This analysis provides us helpful information at a
global scale regarding how feasible it is at a certain
location to define an ‘urban dome’, where the back-
ground air that has a small influence from natural
carbon fluxes and their associated IAVs. We note that
the analysis is performed at a relatively coarse spatial
resolution, which is limited by current available global
NBE simulations and at the same time equivalent to
global atmospheric inversions that ingest the currently
available global observations. Higher resolution in
both space and time would likely be achieved for city
scale FFCO2 studies where local CO2 gradient between
the urban center and the rural area would be the key

information to quantify FFCO2. Nevertheless, our
analysis is relevant as urban landscapes often exhibit
considerable heterogeneity in the land cover and land
use, thus the mixed contribution from anthropogenic
and biospheric sources will not be automatically
solved with increasing spatial and temporal resolution
alone. At a higher resolution, the relative contribution
of FFCO2 and NBE would change, e.g. it will become
easier to detect FFCO2 signal from the total CO2 fluxes
if the magnitude of FFCO2 fluxes outweigh the NBE
over the estimated domain, as we illustrate here using
different FFCO2 scenarios. Still, for cases where a clear
‘urban dome’ could be identified, inter-annual varia-
tions in the NBE of the background region could be
aliased into the FFCO2 trend estimates if they are not
adequately considered. For instance, an increase in the
CO2 enhancement over the urban dome could result
from an increase in the city FFCO2 or an increase in
the net carbon uptake by the suburban vegetation.

As we expect to monitor progressive changes in
FFCO2, trend detection is an efficient way to define the
relative change and whether a certain region is on
track of the promised emission reduction trajectory.
However, a linear trend determined with a statistical
model has limited skill in representing non-
monotonic or nonlinear changes and is sensitive to
the starting and ending points. In addition, a regular
seasonal cycle we considered here may not model well
ecosystems without regular seasonality (e.g. ecosystem
with larger variations in the onset of dry and wet sea-
sons). Nevertheless, our simple approach derives a
global reference for regionally specific studies prior to
the establishment of global, but fine-scale detailed
observations. Our sensitively test starting from

Figure 4.Results of the top 25megacities (a) the trend detection time and (b) trends in the total CO2fluxes versus trends imbedded in
the FFCO2 at the trend detection time of the total CO2fluxes. Individual scatter shown in small crosses represent results usingNBE
simulated by different ESMs, the solidmarkers represent the ensemblemean and the error bars along the y-axis indicate standard
deviations using differentNEB simulations.
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random years instead of 2015 to test the sensitivity of
the starting point suggest the resultant global pattern
being quite robust. Our test using different length of
the initial searchingwindow also confirm this point.

This analysis highlighted, on the one hand, a few
regions that are feasible for using top-down FFCO2

constraints, and on the other hand, the difficulty of
disentangling FFCO2 changes from the natural carbon
cycle with CO2 observations alone. Therefore, multi-
ple pieces of information will be needed to observe
regional FFCO2 trend accurately. For instance, peri-
odic 14C measurements (Basu et al 2016, Wang et al
2017) and the combination of other fossil fuel tracers
(e.g. NO2, CO) could bring in additional information
even though there are complications due to the varia-
tion and uncertainty in their emission factor ratio to
CO2 and by atmospheric chemistry (Gamnitzer et al
2006, Rayner et al 2014). In addition, proxies to con-
strain the terrestrial ecosystem production (e.g. solar
induced fluorescence and carbonyl sulfide, OCS)
could also contribute essential information by adding
more constraints to different components of the car-
bon cycle to estimate the progress of climate mitiga-
tion (Schimel et al 2015, Bloom et al 2016, Bowman
et al 2017, Liu et al 2017, Sellers et al 2018). Also, many
countries also invoke land use management for their
National Determined Contributions (Grassi et al
2017), thus monitoring corresponding biospheric
fluxes remains highly relevant. Furthermore, from the
inventory viewpoint, indicators to track emission
activity and technology development are also impor-
tant (Peters et al 2017a). With increasing spatial-
temporal resolution and coverage of the above-men-
tioned features (Broquet et al 2018), a data assimila-
tion scheme that includes consideration for both
FFCO2 and NBE uncertainties and integrates multiple
observational streams will help to account for varia-
tions in these twofluxes consistently.

5. Conclusion

Our results provide an initial assessment of the trend
detection time and associated trends in the gridded
total CO2 fluxes over the globe with synthetic fluxes
from CMIP5 under the assumption of an idealized
CO2 observing and attribution system that can derive
such fluxes. The trend detection time for gridded total
CO2 has amedian of 10 years at a resolution of 2°× 2°
degree using monthly flux data, with large spreads
depending on fossil fuel emission magnitude versus
NBE variability. The differences between trends in the
total CO2 fluxes and in the underlying FFCO2 comp-
onent highlight the role of natural carbon cycle
variability in modulating regional detection of FFCO2

emission trends using CO2 observations alone, parti-
cularly in the tropics and subtropics wheremega-cities
with large populations are emerging and developing
rapidly. As we have shown, using CO2 flux estimates

alone at such a resolution can only quantify fossil fuel
trends in a few places—mostly limited to the arid
region. Monitoring FFCO2 at a city scale with a finer
spatial resolutionmay become easier when themagni-
tude of FFCO2 fluxes outweigh the NBE variations.
However, these local estimates will still need to be
integrated with regional, national, and ultimately
global estimates of natural and anthropogenic carbon.
Consequently, it will be important to constrain the
background biosphere fluxes so that their uncertain-
ties are not aliased into the FFCO2 estimates. There-
fore, the challenge of assessing international carbon
mitigation progress requires an approach linking both
bottom-up and top-down estimates within an assim-
ilation and attribution system that integrates informa-
tion on both natural and anthropogenic carbon fluxes.
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