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Abstract

Gold nanoparticles with tunable absorption and scattering properties have been developed as 

contrast agents for various optical imaging techniques. As a hybrid modality that combines the 

merits of both optical and ultrasonic imaging, photoacoustic (PA) imaging also benefits from the 

use of these nanoparticles to greatly enhance the contrast for visualization of structures and 

biomarkers in biological tissues. Gold nanocages characterized by hollow interiors, ultrathin and 

porous walls are of particular interest for in vivo PA imaging because of their compact sizes, bio-

inertness and well-defined surface chemistry, as well as their strong and highly wavelength-

tunable optical absorption in the near-infrared (NIR) optical window of soft tissues. This review 

discusses the application of gold nanocages as a new class of contrast agents for PA imaging in the 

context of cancer diagnosis.
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1. INTRODUCTION

For early diagnosis of malignant tumors and other pathologies, there remains a strong need 

for a noninvasive, safe and economic imaging technique that uses nonradioactive contrast 

agents and provides a means for precise image-guided resection of diseased tissue. Optical 

imaging modalities are nonionizing and cost-effective, and they can provide excellent 

imaging contrast based on interactions between light and different tissue components, 

predominantly by either absorption or scattering events (1). It is known that optical 

absorption can be harnessed for functional imaging to reveal, for example, cancer hallmarks 

including angiogenesis and hypermetaboilsm due to the different absorption properties of 

endogenous species and exogenous contrast agents (2). Although optical imaging techniques 

can provide impressive optical-based contrast, penetration depth of unscattered photons is 

inherently limited by the strong scattering of light in biological tissues. As an imaging 

modality that can overcome this limitation and provide relatively high and scalable spatial 
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resolution, ultrasonography seems to be a viable alternative but lacks the molecular and 

functional information that optical absorption provides (3). Photoacoustic (PA) imaging is a 

hybrid imaging modality that combines the beneficial aspects of both optical and ultrasonic 

imaging techniques (4–6). It not only takes advantage of the strong optical absorption 

contrast associated with optical imaging but also offers high ultrasonic spatial resolution. 

The maximum imaging depth of PA imaging in biological tissues can be pushed up to 50 

mm by using diffusive photons (7–9). In contrast, purely optical imaging methods cannot 

provide high spatial resolution beyond one optical transport mean free path (~1 mm) (1,10).

Although the PA signal is sensitive to endogenous molecules such as hemoglobin or 

melanin, exogenous contrast agents are still needed for additional signal enhancement and 

thus precise visualization and delineation of different structures in biological tissues. 

Nanoparticles with strong optical absorption have been investigated as contrast agents, 

especially those based on gold (Au) and characterized by different morphologies (11). Gold 

nanoparticles can strongly absorb and scatter light at specific wavelengths, in a phenomenon 

commonly known as localized surface plasmon resonance (LSPR). For in vivo optical 

imaging techniques, in order to maximize the penetration depth in biological tissues, the 

LSPR peaks of nanoparticles to be used as contrast agents have to be tuned to the near-

infrared (NIR) region ranging from 700 to 900 nm, in the so-called optical window where 

the attenuation of light by blood and soft tissues is relatively low (12). This requirement 

cannot be satisfied with the conventional Au colloids characterized by a solid and a spherical 

(more or less) shape. To solve this problem, both Au nanorods and nanoshells have been 

developed by a number of research groups (13,14). Our group has also developed a novel 

class of Au-based nanostructures – Au nanocages (AuNCs) characterized by a single-crystal 

structure, hollow interiors, ultrathin and porous walls (15). The LSPR peaks of AuNCs can 

be easily and precisely tuned to any wavelength in the NIR region by controlling the size 

and/or wall thickness, making them ideal candidates of contrast agents for PA imaging. 

Other significant features of AuNCs as contrast agents reside in their much larger absorption 

cross sections (almost five orders of magnitude greater than those of conventional organic 

dyes), the low cytotoxicity of Au, as well as their ability to be easily bioconjugated with 

tumor-specific ligands (16–18).

In this review, we will first give a brief overview of the synthesis and optical properties of 

AuNCs, and then present a simple method based on PA imaging for measuring the 

absorption cross sections of Au-based nanostructures with different morphologies including 

nanocages, nanorods and nanospheres. Finally, we will highlight several demonstrations 

related to the use of AuNCs as contrast agents for in vivo PA imaging of different 

components in biological tissues, such as cerebral cortex, lymph nodes and melanoma 

tumors.

2. SYNTHESIS AND OPTICAL PROPERTIES OF GOLD NANOCAGES

In the presence of Ag solid, a Au salt, for example, HAuCl4, can be reduced to generate Au 

atoms through the galvanic replacement reaction in an aqueous solution because of the 

difference in electrochemical potential between Ag/Ag+ (0.80V) and Au/AuCl4− (1.00V) 

(19). The reaction can be described as the following:
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3Ag(s) + AuCl4
−(aq) Au(s) + 3Ag+(aq) + 4Cl−(aq) (1)

Silver nanostructures with all morphologies can serve as templates for nucleation and 

growth of Au, imparting their shapes to the resultant nanostructures. In the case of AuNCs, 

they are typically synthesized by templating against Ag nanocubes. Figure 1(A, B) shows 

scanning electron microscopy (SEM) images of Ag nanocubes and the resultant AuNCs, 

respectively, and the insets display their corresponding transmission electron microscopy 

(TEM) images. In order to generate AuNCs with high uniformity in terms of both sizes and 

shapes, one needs to start with Ag nanocubes narrowly distributed in size. We and others 

have developed a number of methods for the synthesis of Ag nanocubes, and their edge 

lengths could be readily controlled from 30 to 200 nm by adjusting the reaction parameters 

(19–23). Among these methods, the protocol based on polyol reduction has proven to be a 

facile route to high-quality Ag nanocubes in large quantities, in which ethylene glycol acts 

as both the solvent and source of reducing agent, and AgNO3 or CF3COOAg serves as a 

precursor to elemental Ag. The growth process is assisted with poly(vinyl pyrrolidone) 

(PVP), a capping agent capable of selectively binding to the {100} facets. Meanwhile, the 

addition of a trace amount of NaHS and/or Cl− ions into the reaction allowed rapid 

nucleation of single-crystal seeds and elimination of the twinned seeds due to oxidative 

etching, ensuring the formation of single-crystal Ag nanocubes.

With respect to the synthesis of AuNCs, an aqueous solution of HAuCl4 is typically titrated 

into an aqueous suspension of Ag nanocubes. The temperature of the reaction is maintained 

at 100°C in order to ensure an epitaxial growth for the Au atoms on the Ag nanocubes by 

avoiding the precipitation of AgCl (the solubility product, Ksp, is 1 × 10−6 at 100°C vs 1.56 

× 10−10 at room temperature) during galvanic replacement. When the reaction is stopped and 

cooled down to room temperature, the AgCl will precipitate out, but it can be dissolved by 

saturated NaCl solution through the formation of a soluble coordination complex with 

chloride. As a result, this by-product can be removed (together with the supernatant) from 

the AuNCs by centrifugation (24). According to a thorough mechanistic study by our group 

(19), the transformation from Ag nanocubes with sharp corners to AuNCs proceeds through 

the following steps: (i) Ag dissolution is initiated by pitting at a specific spot with high 

surface energy on the surface of a Ag nanocube (e.g., point defect or hole in the capping 

layer); (ii) more Ag from the interior of the cube is dissolved through the initial pinhole 

while a layer of Au is deposited on the surface of the cube, forming a Au–Ag nanobox 

through a combination of galvanic replacement and Au-Ag alloying; and (iii) pores are 

generated on the walls of the nanobox through a dealloying process, forming a highly porous 

structure known as nanocage. When the Ag nanocubes are truncated at corners, the pores 

will be preferentially generated at all the corners (25). In either case, the reaction process 

can be monitored by taking UV–vis spectra of aliquots sampled from the reaction solution at 

different times. Figure 1(C) shows the extinction spectra recorded from samples obtained by 

titrating Ag nanocubes with different volumes of HAuCl4 solution, corresponding to the 

different stages described above from Ag nanocubes to AuNCs. The LSPR peaks of the 

samples shifted from the visible to the NIR region as more HAuCl4 was added, indicating 

the easiness and precision in tuning the LSPR properties.
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3. MEASURING THE ABSORPTION CROSS SECTIONS OF GOLD 

NANOCAGES BY PA IMAGING

The extinction peak, also known as the LSPR of plasmonic nanostructures, consists of two 

components, absorption and scattering. Since the relative magnitude of light absorbed or 

scattered can be quantified by optical cross sections, the overall extinction cross section (σe) 

can also be divided into two parts, the absorption and the scattering cross sections (σa and 

σs, respectively). These two components are highly dependent on the size, shape, structure 

(solid vs hollow), and surroundings of the nanostructures. By tailoring these parameters, one 

can readily manipulate one of the two components for specific optical applications. For 

example, plasmonic nanostructures with relatively large σa can serve as contrast agents for 

PA imaging, while those with large σs is better-suited for optical coherence tomography 

(OCT) and dark-field optical microscopy (1). Therefore, it is necessary to know the relative 

contributions of σa and σs in order to optimize them for different applications.

Usually, σe can be calculated using Beer-Lambert Law according to the extinction spectra 

recorded using a UV–vis–NIR spectrometer (26). In order to separate the contributions of σa 

and σs to σe, theoretical calculations such as Mie theory (for spherical particles) and the 

discrete-dipole approximation (DDA, for particles with arbitrary shape) are usually 

employed (27,28). Although both theories can provide the expected σa and σs, it is still 

relatively difficult to experimentally measure these two parameters. We recently developed a 

simple approach that can measure σa of Au nanostructures with various morphologies (e.g. 

nanospheres, nanocages, nanorods) based on PA imaging (29). Since the PA signal is 

generated as a result of the optical absorption of a material, the signal amplitude should be 

proportional to the absorption coefficient (μa) of the material within a certain concentration 

range (30). Based on this principle, we first converted the PA signal to μa by benchmarking 

against a linear calibration curve (PA signal vs μa) derived from a set of aqueous solutions of 

an organic dye with a known σa, (e.g. methylene blue) at different concentrations. Then, we 

calculated σa by dividing the μa by the corresponding concentration of the sample tested. 

Since σe can be obtained from the extinction spectra, σs can now be easily derived from the 

equation σe = σa + σs .

Figure 2 (top) shows an experimental setup of the PA imaging system for the optical 

measurements. Three TygonR tubes were filled with aqueous suspensions of Au 

nanostructures or aqueous solutions of methylene blue, and they were embedded in an 

optically scattering medium which can prevent direct illumination of the sample by light. 

The light traveled down through an optical condenser and was focused on the samples in the 

tubes. When the sample was irradiated by the light scattered from the laser, some light was 

absorbed and converted into heat, generating ultrasonic waves, which were collected by a 

single-element 5 MHz ultrasound transducer placed inside the condenser. The spatial 

resolutions of the PA imaging system were 138 μm in the axial direction and 490 μm in the 

transverse direction. One-dimensional (A-scan) depth-resolved images (along the z-

direction) could be obtained by measuring the arrival times of the PA signals, and two-

dimensional PA images were acquired by scanning along the x-direction. Figure 2 (bottom) 

shows a typical depth-resolved, B-scan PA image of suspensions of AuNCs (edge length ~45 

Li et al. Page 4

Contrast Media Mol Imaging. Author manuscript; available in PMC 2020 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nm) at three concentrations of 0.13, 0.07 and 0.03 nM. The PA signals decreased with 

decreasing concentration of nanocages, indicating the proportional relationship between the 

PA signal and the concentration of particles.

Table 1 shows a comparison of the optical cross sections of Au nanostructures with different 

sizes and morphologies obtained by PA imaging and theoretical calculation. DDA was used 

for the calculation of AuNCs and nanorods, while the Mie theory was applied for the 

calculation of Au nanospheres. It can be seen that each type of Au nanostructures has its 

own characteristic absorption to extinction ratio (σa/σe), which agrees well with the 

calculated theoretical value. The discrepancies in the absolute value of σa and σe of AuNCs 

between experimental and theoretical results might be due to the variations in shape, wall 

thickness, and pore size of the nanocages. In addition, the σa/σe ratio for AuNCs with a 

smaller size (0.94) was higher than that of AuNCs with a larger size (0.82), while the 

absolute value of σa of large AuNCs (5.96 × 10−15 m2) was almost two times higher than 

that of small AuNCs (3.05 × 10−15 m2). The σa values of nanocages were much higher than 

those of nanorods (1.87 × 10−15 m2), indicating that the nanocages are better candidates as 

contrast agents for optical imaging.

4. GOLD NANOCAGES FOR PA IMAGING OF CEREBRAL CORTEX

Photoacoustic imaging has been successfully applied to the high-resolution visualization of 

structures in biological tissues at various depths, and has been demonstrated to be especially 

useful in imaging the cerebral cortex of small animals (3,31–33). It is known that 

nanoparticles can accumulate in a tumor or inflamed tissue via a passive targeting 

mechanism referred to as the enhanced permeability and retention (EPR) effect associated 

with the leaky vasculature and the dysfunctional lymphatic system of a tumor. This special 

feature is particularly useful for brain tumor detection because these particles could be 

denied access to the healthy vessels in the brain by the blood–brain barrier. Therefore, 

cancerous lesions in the brain could be imaged with accuracy due to the permeable or leaky 

state of surrounding blood vessels which allows for accumulation of nanoparticles and thus 

provides enhanced contrast. Gold nanoshells, a new type of optical tunable nanoparticles, 

were tested by Wang’s group as an exogenous contrast agent for visualization of vasculature 

in the rat brain (34). Compared with Au nanoshells, AuNCs with more compact sizes (<50 

nm for AuNCs vs >100 nm for Au nanoshells) and their larger optical absorption cross 

section should be better suited for in vivo PA imaging.

In a recent study, AuNCs have been successfully demonstrated as an intravascular contrast 

agent for PA imaging of a rat’s cerebral cortex (35). Figure 3(A) shows an ex vivo study that 

compared the PA signals generated by pure rat blood and by a mixture of AuNC-rat blood 

(at a concentration of 0.8 × 109 nanocages per gram of body weight). It can be observed that 

the PA signal amplitudes of the AuNC–blood mixture were increased by 85–106% over 

those of pure blood across a range of laser wavelengths from 764 to 824 nm. An in vivo 
experiment was conducted by sequentially injecting AuNCs functionalized with 

polyethylene glycol (PEG) into the circulatory system of a rat in three administrations of 0.8 

× 109 nanocages/g body weight. PA imaging of the rat’s brain was performed immediately 

prior to the first injection and up to 5 h after the final injection. Figure 3(B and C) shows the 
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PA images of a rat’s cerebral cortex before the injection of AuNCs and about 2 h after the 

final injection of AuNCs, respectively. The PA images clearly demonstrated that the rat 

brain’s vasculature could be imaged with greater clarity and enhanced contrast using AuNCs 

as contrast agents. By calculating the optical absorption of all PA images taken at different 

time points after the administration of AuNCs, it was found that the enhancement of blood 

absorption had a peak value of 81% over the intrinsic contrast at about 2 h after the final 

injection, which surpasses the 63% enhancement when Au nanoshells were used at similar 

doses (34). According to DDA simulations for the extinction properties of nanocages and 

nanoshells, although the Au nanoshells generally have greater extinction coefficient overall, 

AuNCs have significantly greater absorption cross section and absorption-to-scattering ratio 

around 800 nm. Therefore, the high tendency of AuNCs to absorb vs scatter light at their 

LSPR wavelengths makes them more attractive as contrast agents for an absorption-based 

imaging modality, such as PA imaging, than nanostructures of other morphologies. This 

improvement in contrast using AuNCs allows for more detailed and precise imaging of deep 

tissue vasculature and other structures, and thus more accurate detection of cancerous tissues 

in early states.

5. GOLD NANOCAGES FOR PA MAPPING OF SENTINEL LYMPH NODES

In addition to their application as an intravascular contrast agent, AuNCs can be used for 

cancer diagnosis, for example, in the context of sentinel lymph node (SLN) mapping (36). 

Breast cancer commonly spreads to the axillary lymph nodes, and metastasis to these lymph 

nodes is considered to be one of the most important predictors of prognosis. Sentinel lymph 

node biopsy (SLNB) has emerged as the preferred method for axillary lymph node staging 

(37). The first lymph node receiving drainage from the tumor is defined as the SLN and is 

most likely to be positive for metastases. Before a biopsy can be taken for staging purposes, 

SLN must be identified. Current methods for SLN mapping usually use a blue dye (e.g. 

isosulfan blue or methylene blue) or radioactive colloids (e.g. technetium-99 or 99mTc) 

(38,39). However, these approaches require either invasive techniques to visualize the blue 

stain or specialized facilities to deal with potentially hazardous radioactive components 

(40,41). Therefore, a technique which can map SLN without surgery or radioactivity is 

highly desirable.

Many imaging modalities, such as fluorescence imaging and magnetic resonance imaging 

(MRI), have been explored for noninvasive and nonionizing SLN mapping (42,43). As for 

fluorescence imaging, fluorescent beads or quantum dots have been used as optical lymph 

node tracers (41,44). However, the fluorescence-based imaging system has poor spatial 

resolution beyond one optical transport mean free path (~1 mm), which is not sufficient to 

clearly reveal the location of the SLN (the top surface of SLN in humans locates at an 

average depth of 12 ± 5 mm underneath the skin). Additionally, the high toxicity of quantum 

dots limits their application in clinical use (45). With respect to MRI, even though it can 

offer much better spatial resolution than optical imaging, its high cost and relatively low 

sensitivity are still major issues for practical applications. In comparison, a combination of 

AuNCs and PA imaging can provide high sensitivity, high spatial resolution and excellent 

imaging depth for SLN mapping at low cost, and therefore holds great potential to improve 

the techniques for axillary lymph node staging of breast cancer.
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Figure 4(A) shows a PA image of the axillary region of a rat before the injection of AuNCs 

(as a control experiment), revealing the vasculature within ~3mm below the skin surface. 

Figure 4(B) shows a PA image of the same axillary region acquired at 28 min after the 

injection of nanocages (2 nM, 100 μL) into the forepaw pad of a rat, and the SLN of the rat 

located at ~2 mm below the skin surface can be obviously identified from this image. In 

order to evaluate the accumulation of AuNCs in a SLN over time, the changes of PA signal 

amplitude was calculated versus the time after the injection (Fig. 4C). The PA signal from 

the SLN started to be detected at about 5 min after the injection, and then increased with 

time, and finally reached a plateau at ~140min after the injection, indicating the gradual 

accumulation of AuNCs in the SLN. Figure 4(D–F) shows the depth capability of PA 

imaging by placing chicken breast tissue on top of the rat skin to demonstrate the feasibility 

of this method for mapping the SLN of a breast cancer patient. The figure shows three 

successive PA images with one, two and three layers of chicken breast tissue (each layer was 

~10mm thick) placed on the axillary region of the rat. As shown in Fig. 4(F), the SLN as 

deep as 33 mm below the skin surface could be imaged with good contrast, which is 

significantly deeper than the ~12mm depth of SLN in humans. By providing additional 

functionality to the surface of AuNCs, for example, through the modification of targeting 

ligands to help concentrate their uptake in cancer cells, the AuNCs-based PA imaging 

system could serve as a promising method for noninvasive SLN identification of metastases.

6. BIOCONJUGATED GOLD NANOCAGES FOR PA IMAGING OF 

MELANOMAS

One of the biggest advantages of using AuNCs for applications in biomedical imaging lies in 

the well-established surface chemistry of Au, including the functionalization with a variety 

of targeting moieties to further enhance the contrast of the targeted region. In a recent study, 

we successfully demonstrated the use of AuNCs as a contrast agent for quantitative PA 

imaging of melanomas in vivo (46). We evaluated and quantitatively compared contrast 

enhancement on B16 melanomas provided by both passively and actively targeting AuNCs. 

In these cases, AuNCs with an edge length of ~46nm were functionalized, respectively, with 

[Nle4, D-Phe7]-α-melanocyte-stimulating hormone ([Nle4, D-Phe7]-α-MSH) at the distal 

ends of thiol-PEG groups (Fig. 5A) for active targeting, and with thiol-PEG groups (Fig. 5E) 

for passive targeting. [Nle4, D-Phe7]-α-MSH can specifically bind to the α-MSH receptors 

overexpressed on melanomas, thus guiding and enhancing the delivery of AuNCs to 

melanoma. Following intravenous injection of both types of derivatized AuNCs into two 

groups of mice, PA imaging of melanoma was performed at a light source of 778 nm, which 

overlapped with the maximal absorption of AuNCs. Before the injection of AuNCs, control 

images of melanoma and its surrounding microvasculatures were acquired for each group of 

mice using different ultrasonic detection frequencies and different light source wavelengths 

(10 MHz, 778 nm for melanoma imaging; 50 MHz, 570 nm for blood vessel imaging), as 

shown in Fig. 5(B and F). A series of PA time-course coronal maximum amplitude 

projection (MAP) images of melanomas for two groups of mice were acquired up to 6h post-

injection of 100 |l actively targeting AuNCs (Fig. 5, panels C and D) and passively targeting 

AuNCs (Fig. 5, panels G and H) at a concentration of 10nM, respectively. As can be visually 

deduced from these images, the PA signal enhancement within the melanoma (indicated by 
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the golden color) over time was significantly greater for actively targeting [Nle4, D-Phe7]-α-

MSH-AuNCs than for nonspecifically targeting PEG-AuNCs.

Figure 6(A) shows the statistical data for changes (%) in PA signal amplitude in melanoma 

as a function of post-injection time. At t = 6h post-injection, the signal enhancement from 

active targeting was ~300% higher than that from the passive targeting, clearly 

demonstrating the enhanced uptake and accumulation of AuNCs based on ligand-receptor 

binding on melanoma cells. Additionally, the trend of PA signal enhancement from the 

actively and passively targeting AuNCs was significantly different. The PA signal from 

[Nle4, D-Phe7]-α-MSH-AuNCs was rapidly increased in the first 3 h post-injection, and then 

slowly increased up to 6 h, while the signal from PEG-AuNCs displayed a gradual increase 

up to 5 h, and then leveled off. Moreover, the active targeting effect was also confirmed by 

inductively-coupled plasma mass spectrometry (ICP-MS) measurements of Au content in 

excised tumors (Fig. 6B), revealing that the average number of [Nle4, D-Phe7]-α-MSH-

AuNCs per tumor mass was 360% higher than the case with PEG-AuNCs.

7. CONCLUDING REMARKS

Photoacoustic imaging is a powerful emerging hybrid modality which provides strong 

optical absorption contrast with high ultrasonic resolution. The PA signals can be greatly 

enhanced by exogenous contrast agents, especially by optically tunable Au nanoparticles 

with strong absorption properties. Gold nanocages are ideal candidates of PA contrast agents 

because of their large absorption cross sections than commonly used organic dyes and 

tunable light absorption in the NIR region within the optical window of biological tissues. 

They have been successfully applied as intravascular contrast agents for PA imaging of 

cerebral cortex in a rat model to enhance the contrast between blood and the surrounding 

tissues, allowing more detailed vascular structures to be imaged at greater depths. We have 

also demonstrated the use of AuNCs as a new class of lymph node tracers for PA imaging of 

a SLN with a detectable depth as deep as 33 mm, which is adequate for clinical applications. 

When bioconjugated with tumor-specific ligands, AuNCs were further proven to be an 

efficient contrast agent for PA imaging of melanomas with both high sensitivity and 

specificity due to their enhanced accumulation within the tumor. We believe that a 

combination of AuNCs and PA imaging will provide a very promising platform for early 

cancer diagnosis, and set the stage for sensitive absorption-based modalities that can offer 

both anatomical and functional information.
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Figure 1. 
SEM images of (A) Ag nanocubes and (B) AuNCs. The inset shows the corresponding TEM 

images of the same sample. (C) UV–vis spectra of the samples obtained by titrating Ag 

nanocubes with different volumes of 0.1 mM HAuCl4 solution.
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Figure 2. 
(top) An experimental setup of a PA imaging system; (bottom) a typical depth-resolved B-

scan PA image (x-z scan) of a suspension of AuNCs at three different concentrations. 

Reproduced with permission from (29), copyright 2009 American Chemical Society.
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Figure 3. 
(A) The measured PA signal amplitude generated with and without AuNCs in rat blood at 

several wavelengths. Noninvasive PA imaging of a rat’s cerebral cortex (B) before the 

injection of AuNCs and (C) about 2h after the final injection of nanocages, which is the peak 

enhancement point. Reproduced with permission from (35), copyright 2007 American 

Chemical Society.
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Figure 4. 
PA images of the axillary region of a rat taken (A) before and (B) 28 min after the injection 

of AuNCs. (C) The changes of PA signal amplitude as a function of the post‐injection time. 

After the injection, PA signals increased with time, which means gradual accumulations of 

the nanocages. (D-F) Depth capability of SLN mapping with AuNCs. The PA images were 

acquired after the injection of nanocages for: (D) 126 min with a total imaging depth of 

10mm by placing a layer of chicken breast tissue on the axillary region; (E) 165 min with a 

total imaging depth of 21mm by adding another layer of chicken breast tissue; and (F) 226 

min with a total imaging depth of 33mm by using three layers of chicken breast tissue. The 

bars represent the optical absorption. BV, blood vessel. SLN, sentinel lymph node. 

Reproduced with permission from (36), copyright 2009 American Chemical Society.
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Figure 5. 
In vivo noninvasive PA time-course coronal MAP images of B16 melanomas using [Nle4, D-

Phe7]-α-MSH- and PEG-AuNCs. (A, E) a schematic of the [Nle4, D-Phe7]-α-MSH- and 

PEG-AuNCs. Time-course PA images of the B16 melanomas after intravenous injection 

with 100 μl of 10 nM (B-D) [Nle4, D-Phe7]-α-MSH- and (F-H) PEG-AuNCs through the tail 

vein. The background vasculature images were obtained using the PA microscope at 570 nm 

(ultrasonic frequency = 50 MHz), and the melanoma images were obtained using the PA 
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macroscope at 778 nm (ultrasonic frequency = 10 MHz). Reproduced with permission from 

(46), copyright 2010 American Chemical Society.
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Figure 6. 
(A) Increase of PA amplitude in the melanoma tumors after intravenous injection of [[Nle4, 

D-Phe7]-α-MSH-AuNCs and PEG-AuNCs (n = 4 mice for each group), respectively, for 

different periods of time. The PA signals increased up to 38 ± 6% for [Nle4, D-Phe7]-α-

MSH-AuNCs while the maximum signal increase only reached 13 ± 2% for PEG-AuNCs at 

a post-injection time of 6h (p <0.0001). (B) The average number of AuNCs accumulated in 

the melanomas dissected at 6h post-injection for the two types of AuNCs as measured by 

ICP-MS. Here Ntumor denotes the number of AuNCs per unit tumor mass (g). Reproduced 

with permission from (46), copyright 2010 American Chemical Society.
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