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Abstract

Existing methods for the measurement of technical efficiency in the dynamic production models
obtain it from the implied distance functions without making use of the information about in-
tertemporal economic behavior in the estimation beyond an indirect appeal to duality. The main
limitation of such an estimation approach is that it does not allow for the dynamic evolution of
efficiency that is explicitly optimized by the firm. This paper introduces a new conceptualiza-
tion of efficiency that directly enters the firm’s intertemporal production decisions and is both
explicitly costly and endogenously determined. We build a moment-based multiple-equation
system estimation procedure that incorporates both the dynamic and static optimality condi-
tions derived from the firm’s intertemporal expected cost minimization. We operationalize our
methodology using a modified version of a Bayesian Exponentially Tilted Empirical Likelihood
adjusted for the presence of dynamic latent variables in the model, which we showcase using
the 1960–2004 U.S. agricultural farm production data. We find that allowing for potential en-
dogenous adjustments in efficiency over time produces significantly higher estimates of technical
efficiency, which is likely due to inherent inability of the more standard exogenous-efficiency
model to properly credit firms for incurring efficiency-improvement adjustment costs. Our re-
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1 Introduction

The use of explicit dynamic models of the firm’s intertemporal production decisions to account for

and provide estimates of technical (in)efficiency are still relatively scarce in the efficiency analysis

literature. Most existing studies rely on the static formulations of firm production (e.g., see Parme-

ter & Kumbhakar, 2014; Kumbhakar, Parmeter & Zelenyuk, 2017, for recent surveys). However,

for such static production models to provide a reasonably accurate description of the firm behavior,

the firm ought to be able to freely adjust all its inputs at any point in time which would obviate any

dynamic implications of its production decisions. In practice though, not all factors of production

are freely-varying in the face of adjustment frictions (e.g., time-to-install, hiring costs) that may

render them quasi-fixed in the short run. This notable weakness of the static production models

(and hence of the static inefficiency measurements derived therefrom) owing to their inability to

accommodate gradual adjustments in dynamic inputs, whereby the present production decisions

have dynamic implications for future production outcomes, has recently given rise to a new strand

of literature focused on incorporating intertemporal aspects of firm optimization into the efficiency

measurement. The work of Silva & Stefanou (2003, 2007) is a fundamental advance on these is-

sues, wherein the authors develop a dynamic optimization model of the firm production behavior

using intertemporal cost minimization with quasi-fixed factors, based upon which they propose

a nonparametric1 measure of dynamic (technical) efficiency (see Kapelko & Oude Lansink, 2017,

for a multi-direction extension). Alternatively, Rungsuriyawiboon & Stefanou (2007) use a shadow

cost approach in a similar intertemporal cost minimization framework to nonparametrically recover

efficiency measures under dynamic duality. For some earlier but simpler attempts to nonparametri-

cally model dynamic aspects of the firm production, also see Sengupta (1995) and Nemoto & Goto

(1999, 2003). More recently, Serra, Oude Lansink & Stefanou (2011) and Silva & Oude Lansink

(2013) have proposed a measurement of dynamic efficiency based on a primal directional-distance-

function-based representation of production technology which has been gaining popularity in the

literature partly because it can be operationalized via both the data envelopment and (econometric)

stochastic frontier methods.2 This formulation has since been extended to enable a decomposition

of dynamic efficiency (Kapelko, Oude Lansink & Stefanou, 2014) and to also measure “dynamic”

productivity growth (Oude Lansink, Stefanou & Serra, 2015), with multiple empirical applications

that have followed.

While the theoretical models of dynamic production decisions do explicitly postulate the firm’s

intertemporal optimization subject to adjustment frictions in quasi-fixed inputs, available method-

ologies for the estimation of dynamic efficiency in such frameworks in practice hardly make use of the

information embedded in such dynamic optimization problems. Rather, the popular go-to approach

1Estimated using the (non-stochastic) data envelopment analysis.
2The closely related literature includes studies of dynamic production systems in the presence of intertemporal
inefficiency and the lagged effects (Chen & van Dalen, 2010; Cherchye, De Rock & Kerstens, 2018), studies of
inefficiency under sequential technologies (Hampf, 2017) as well as the work that seeks to dynamize evolution of
time-persistent inefficiency in a more reduced dynamic framework (Wang & Huang, 2007; Skevas, Emvalomatis &
Brümmer, 2018).
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is to estimate technical efficiency from Silva & Oude Lansink’s (2013) dynamic directional distance

function (oriented in the space of freely-varying inputs and investments into quasi-fixed dynamic

factors) under its duality to the optimal current value function associated with the firm’s intertem-

poral cost-minimization problem under the Hamilton-Jacobi-Bellman conditions (e.g., Serra et al.,

2011; Kapelko et al., 2014; Oude Lansink et al., 2015; Kapelko, Oude Lansink & Stefanou, 2016,

2017; Minviel & Sipiläinen, 2018). Thus, in practice, the strategy for a (primal) estimation of

dynamic technical efficiency is effectively the same as that for the estimation of a more conven-

tional static efficiency except that in the former case a distance to the frontier is measured in the

space of variable inputs and investments as opposed to merely conditioning the distance function

on quasi-fixed levels of dynamic inputs. For instance, if one were to adopt econometric techniques,

the estimation then boils down to a familiar procedure of appending a convoluted stochastic error

containing a one-sided latent inefficiency and a two-sided noise to the distance function a pos-

teriori. Such an estimation approach may however be overly restrictive because it (i) does not

explicitly account for dynamics in efficiency itself as well as does not allow for the costly firm-

controlled efficiency change, (ii) neglects the likely possibility that past dynamic efficiency is a

part of the information set based upon which the firm optimizes, (iii) makes no use of information

about economic behavior in the estimation beyond an indirect appeal to duality despite seeking

a deeply structural “dynamic” interpretation of efficiency, and (iv) suffers from the endogeneity

problem due to simultaneity of the variable input and investment decisions. Lastly and perhaps

more importantly, the underlying conceptual framework of dynamic production that the available

estimation methodologies are based upon does not allow for the dynamic evolution of efficiency that

is explicitly optimized by the firm. While conditioning of the distance function on investments in

dynamic inputs implicitly allows a departure from the strong assumption of exogenous efficiency by

letting the firm to indirectly control the evolution of its efficiency (through investment decisions),

such an endogenization of dynamic efficiency is derivative/indirect in its nature. It also implicitly

assumes away the costliness of efficiency changes beyond the costs derived from frictions in dynamic

inputs thereby dispensing with the expenses pertaining specifically to efficiency improvements such

as adoption of quality control and other improved business practices, management training, etc.

In this paper, we contribute to the literature by developing a new (structural) conceptualiza-

tion of dynamic efficiency that directly enters the firm’s intertemporal production decisions and is

both explicitly costly and endogenously determined. We differentiate between the variable-inputs-

oriented inefficiency and factor-specific distortions in quasi-fixed inputs and allow all of these dy-

namic latent variables to jointly evolve over time. We then build a moment-based multiple-equation

system estimation procedure that incorporates the variable cost function and both the dynamic

and static optimality conditions derived from the firm’s intertemporal minimization of a discounted

stream of future costs. Not only does this system approach let us handle endogeneity of inputs

(and, implicitly, investments too), but it also facilitates a structurally meaningful interpretation of

the endogenous dynamic technical efficiency that evolves following its optimal path consistent with

the firm’s intertemporal cost-minimizing objective.
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Our methodology for the estimation of dynamic efficiency therefore provides a more elaborate

alternative to that based on dynamic distance functions estimated under duality which restrictively

treats efficiency as exogenous and distributed independently over time (e.g., see Serra et al., 2011).

Now, ours is not the first attempt to explicitly model temporal dynamics of latent technical efficiency

econometrically, where a few earlier works include Ahn, Good & Sickles (2000) and Tsionas (2006).

However, to our knowledge, no prior study has done so in conjunction with a full intertemporal

optimization problem of the firm like we do in this paper which, among other things, enables us to

endogenize inefficiency as well as to explicitly accommodate its costliness in the firm optimization.3

The latter is particularly desirable given the interest of economists in linking dynamic efficiency to

adjustment costs and the real option values of investment (e.g., Lambarraa, Stefanou & Gil, 2016).

We showcase our model by applying it to an annual state-level panel data on agricultural farm

production in lower 48 contiguous states of the United States during the 1960–2004 period. We

follow Gallant, Giocomini & Ragusa (2017) to estimate models involving moment conditions and

latent dynamic variables, although we do not use a Metropolis-Hastings approach or sequential

importance sampling because Sequential Monte Carlo is more efficient. We use a modified version

of a Bayesian Exponentially Tilted Empirical Likelihood adjusted for the presence of dynamic la-

tent variables in the model (i.e., variable-inputs-oriented technical efficiency and quasi-fixed factor

distortions) that, among other things, does not rely on using a fully parametric likelihood. The

joint dynamics of latent variables is formulated using a second-order vector autoregression, with

the choice of order motivated by temporal dynamics in the firm’s Euler equations. Among other

things, we find that the failure to allow for potential endogenous adjustments in efficiency over

time produces significantly lower estimates of dynamic efficiency, which is likely due to the in-

herent inability of a more traditional exogenous-efficiency framework to properly credit producing

units for incurring efficiency-improvement adjustment costs. The data overwhelmingly support our

approach.

The rest of the paper proceeds as follows. Section 2 introduces our model of dynamic production

decisions in the presence of endogenous efficiency. We describe the estimation details in Section 3.

Section 4 reports the empirical application. We conclude in Section 5.

2 Model

Consider the dynamic production process. Let xt ∈ ℜJ
+ denote the vector of freely varying inputs

with wt ∈ ℜJ
++ being the vector of corresponding prices. Further, let kt ∈ ℜM

+ be the vector of

quasi-fixed dynamic factors of production and qt ∈ ℜM
++ denote their corresponding “rental” prices

(user costs). Both wt and qt may evolve stochastically over time. Suppose also δ = [δ1, . . . , δM ]′ ∈

[0, 1]M is a vector of depreciation rates, and β ∈ [0, 1) is a time discount factor. The vector of

outputs is given by yt ∈ ℜQ
+.

In line with the tradition in the literature on dynamic efficiency, we consider an intertemporal

3Also, see Tsionas & Izzeldin (2018) for a static production model with costly inefficiency.
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cost minimization but, unlike previous studies, incorporate inefficiency directly into the optimiza-

tion problem as well as allow for uncertainty. The uncertainty, in this case, can arise from the

lack of perfect foresight about future market conditions including the input prices that may evolve

over time stochastically. We also assume firms are risk-neutral. The risk-neutrality assumption is

made primarily so that, in the firm optimization problem under uncertainty, we can work directly

with the expectation of a future stream of costs (the outcomes) without needing to consider the

optimization of their expected utilities. In this choice, we have opted to follow the convention in

the literature on costly investments into dynamic factors under uncertainty. More specifically, we

build on the seminal work by Pindyck & Rotemberg (1983). While we recognize that risk-neutrality

may be too restrictive of an assumption, the advantage of such a formulation is that it provide us

with the tractable way of modeling the firm’s intertemporal behavior that gives rise to the Euler

conditions in expectation which we then use as a basis to form the estimating moment conditions.

Notably, our setup is already more flexible than the existing work on dynamic efficiency that as-

sumes that the forward-looking firms have perfect foresight (e.g., Silva & Stefanou, 2003, 2007;

Rungsuriyawiboon & Stefanou, 2007; Serra et al., 2011; Silva & Oude Lansink, 2013).

Firms are said to operate in perfectly competitive factor markets rendering present and future

input prices exogenous. To highlight key features of our modeling approach, we begin with a simpler

standard framework with no inefficiency, which we then augment step by step to incorporate (i)

explicitly costly and (ii) endogenously determined inefficiency.

Optimization without Inefficiency. The firm’s more traditional intertemporal expected cost

optimization problem with respect to dynamic inputs is given by

min
kt

E0

∞∑

t=0

βt




C(wt,kt,yt) +

M∑

m=1

[
qm,tkm,t +Gm

(
km,t − (1− δm)km,t−1︸ ︷︷ ︸

im,t

)]




, (2.1)

where E0 denotes expectation at time t = 0 conditional on the available information; each mth

quasi-fixed dynamic input follows its respective law of motion, i.e.,

km,t = im,t + (1− δm)km,t−1 ∀ m,

with im,t being the gross investment flow into this input’s stock; Gm(·) is the function representing

adjustment costs in km ∀ m; and C(w,k,y) : ℜJ
++ × ℜM

+ × ℜQ
+ → ℜ+ is the restricted (short-

run) variable cost function optimized in the freely-varying static factors subject to the already

predetermined quasi-fixed kt:

C(wt,kt,yt) ≡ min
xt

w′
txt : F (xt,kt,yt) = 1, (2.2)

with F (xt,kt,yt) = 1 being the transformation function descriptive of the firm’s production process.
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Optimization Subject to Exogenous Inefficiency. To introduce inefficiency, we begin by con-

sidering the firm’s static optimization problem where we introduce a possibility for the over/under-

use of inputs à la Kumbhakar (1997), i.e.,

min
xt

w′
txt : F (ϑtxt,ηt ⊙ kt,yt) = 1, (2.3)

with the scalar xt-oriented technical inefficiency ϑt ≥ 1 measuring over-use in all freely varying in-

puts and each element of ηt = [η1,t, . . . , ηM,t]
′ ∈ ℜM

++ representing a distortion in the corresponding

quasi-fixed factor (i.e., the over- or under-use thereof). Note that, to capture likely heterogeneity in

the degree of fixity across kt, the factor distortions {ηm,t} are permitted to vary across individual

quasi-fixed inputs. The above problem is equivalent to

C
(
wt, k̃,yt

)
≡ min

x̃t

ϑ−1
t w′

tx̃t : F
(
x̃t, k̃t,yt

)
= 1, (2.4)

where x̃t ≡ ϑtxt and k̃t ≡ ηt ⊙ kt are the actual input quantities; and it is evident that the firm’s

actual cost is Ca(wt, k̃t,yt) = ϑtC(wt, k̃t,yt) and, hence, lnCa(wt, k̃t,yt) = lnC(wt, k̃t,yt) +

ut with ut ≡ lnϑt ∈ ℜ+ measuring variable cost inefficiency arising from the firm’s technical

inefficiency in the xt orientation.

Thus, extending framework in (2.1)–(2.2) to explicitly allow for exogenous inefficiency and factor

distortions taken by the firm as given, we obtain the following dynamic optimization problem:

min
k̃t

E0

∞∑

t=0

βt

{
ϑtC

(
wt, k̃t,yt

)
+

M∑

m=1

[
qm,tk̃m,t +Gm

(
k̃m,t − (1− δm)k̃m,t−1

) ]}
, (2.5)

with all endogenous choice variables measuring actual quantities employed in the production and,

thus, the optimization objective being reflective of actual costs inclusive of inefficiencies.

Optimization with Endogenous Inefficiency. While already an improvement over the more

traditional framework, the model in (2.4)–(2.5) continues to assume that inefficiency is effectively

random and that the firm has no impact on the extent of variable input over-use in its produc-

tion. Now, although oftentimes not stated explicitly, technical inefficiency in the stochastic frontier

analysis is assumed to be known to a decision maker at the firm. However, it is rarely made clear

whether inefficiency can be changed unless the model specification allows for the “environmental”

factors determining it. This raises a few questions. If inefficiency is known to the decision maker,

why is she not reducing it? Can inefficiency be freely adjusted or is this a costly adjustment process?

What is the optimal inefficiency level, if any?

In practice, not only is the past inefficiency a part of the firm’s information set based upon which

it makes decisions, but the improvements in efficiency are also subject to the firm’s control. We

explore this possibility below, wherein technical inefficiency is treated as a choice variable subject

to adjustment frictions and the firm can choose it optimally when making dynamic production
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decisions. To endogenize dynamic efficiency, we therefore further generalize intertemporal expected

cost minimization objective as follows:

min
k̃t,ϑt

E0

∞∑

t=0

βt




ϑtC

(
wt, k̃t,yt

)
+

M∑

m=1

[
qm,tk̃m,t +Gm

(
k̃m,t − (1− δm)k̃m,t−1

) ]
+H

(
lnϑt − lnϑt−1︸ ︷︷ ︸

Vt

)




,

(2.6)

where H(·) is a function that captures adjustment costs in ϑt, i.e., the cost of improvements in

the xt-oriented dynamic efficiency; and the dynamic inefficiency evolves according to a controlled

log-linear law of motion:

lnϑt = Vt + lnϑt−1,

with Vt being the improvement4 in inefficiency ϑt; and C(·) is as defined in (2.4). Thus, dynamic

inefficiency plays the role of an additional state variable. Here, we effectively conceptualize ϑt

akin to a dynamic intangible “input” subject to adjustment frictions that result in delayed changes

therein. Analogously, Vt may be thought of as a “net investment” into improved efficiency. We

postulate the law of motion for ϑt in logs to transform its codomain to have the evolving variable

be non-negative just like other dynamic state variables {km,t}.

A few more remarks about our conceptualization of inefficiency in the context of the firm’s

dynamic production decisions. First, just like in the standard stochastic frontier analysis, we do

not model inefficiency as a measure relative to other firms’ performance but as a deviation from

the firm’s own “true frontier.” Thus, for the decision maker to know her firm’s inefficiency, no

knowledge about other firms is required. Second, we assume that the decision maker knows the

firm’s inefficiency, but the latter is unknown to the econometrician. This inefficiency comes from

the firm’s failure to attain its production frontier. Such failures may be due to bad luck, machine

breakdown, mismanagement, human errors, etc. If she does not know it exactly, the decision maker

at the firm is reasonably expected at least to have a good estimate of such inefficiency. Third,

production decisions and the efficiency are oftentimes influenced by exogenous contextual factors

that the firm takes into consideration when optimizing and that are neither inputs nor outputs. We

have abstracted away from such a possibility having instead opted for a simpler model in order to not

distract the reader from the main focus of our paper which is on the endogenization of inefficiency.

Empirically however, such contextual factors can be seamlessly accounted for by conditioning the

variable cost function on them thereby effectively treating them as the “y” variables that, just like

the output quantities, are exogenous and quasi-fixed under the cost-minimization premise.

Also, note that, for computational tractability of our econometric model, in (2.6) we continue

to maintain the assumption that distortions in quasi-fixed factors {ηm,t} are exogenous to the

firm albeit, in principle, one can endogenize those as well. As it is to become clearer below, we

4That is, improvements in inefficiency correspond to negative values of Vt.
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do nonetheless allow {ηm,t} to also be time-persistent thereby indirectly accommodating dynamic

properties therein.

The key feature of our model is that it treats technical inefficiency ϑt (the adjustments therein,

to be precise) as an additional “choice” variable which generates the optimal path of ϑt compatible

with the firm’s intertemporal cost minimization, thereby enhancing its structurally meaningful

interpretation. The optimization problem also implies that {ηm,t}, which impact the actual use of

quasi-fixed inputs {k̃m,t}, cannot be independent over time.

The Euler equations corresponding to the problem in (2.6) are

0 = ϑt
∂C (·)

∂k̃m,t

+ qm,t +
∂Gm (·)

∂im,t
− β(1− δm)Et

{
∂Gm (·)

∂im,t+1

}
∀ m = 1, . . . ,M (2.7)

0 = ϑtC (·) +
∂H(·)

∂Vt
− βEt

{
H(·)

∂Vt+1

}
, (2.8)

along with the (actual) conditional demand equations for static inputs from (2.4):

xj,t = ϑt
∂C(·)

∂wj,t
∀ j = 1, . . . , J. (2.9)

Note that, in our setup, both the variable-input-oriented technical inefficiency ϑt and the dis-

tortions in quasi-fixed inputs ηt are the short-run measures because they affect the firm’s outputs

in time t. Their long-run counterparts would be a solution to the system in (2.7)–(2.9) when all

other variables are at their long-run stead-steady values.

For the practical implementation, we make the following parametric functional form assump-

tions. The variable cost function is said to take the translog form, i.e.,

lnC(wt, k̃,yt) = αo +α′
w lnwt +

1
2 lnw

′
tΓww lnwt +

α′
k(lnkt + ξt) +

1
2(lnkt + ξt)

′Γkk(lnkt + ξt) + lnw′
tΓwk(lnkt + ξt) +

α′
y lnyt +

1
2 lny

′
tΓyy lnyt + lny′

tΓyw lnwt + lny′
tΓyk(lnkt + ξt) + lnϑt (2.10)

≡ C (lnwt, lnkt + ξt, lnyt;θ) + lnϑt, (2.11)

where α0,αw,αk,αy and Γww,Γkk,Γwk,Γyy,Γyw,Γyk are respectively vectors and (symmetric)

matrices of conformable dimensions containing unknown parameters, which we denote collectively

by θ ∈ ℜP ; and

ln k̃ = ln(ηt ⊙ kt) = lnkt + ξt,

with ξt ≡ lnηt ∈ ℜM and lnϑt ∈ ℜ+ being, respectively, the unobservable quasi-fixed factor

distortion and inefficiency terms (in logs).

We assume convex factor adjustment cost functions, for which we adopt the quadratic form

which is a popular specification in both the theoretical and empirical literature (e.g., Gould, 1968;
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Pindyck & Rotemberg, 1983; Hall, 2004):

Gm(im,t) =
1
2γmi2m,t with γm > 0, ∀ m = 1, . . . ,M (2.12)

H(Vt) =
1
2γoV

2
t with γo > 0 (2.13)

and, for convenience, we let γ = [γ1, . . . , γM , γo]
′.

With this, the system of dynamic and static optimizing conditions in (2.7)–(2.9) then takes the

following form (maintaining the order of appearance of equations):

0 =
ϑt

ηm,t

[
αk + Γkk (lnkt + ξt) + Γwk lnwt + Γyk lnyt

]exp {C (lnwt, lnkt + ξt, lnyt;θ)}

km,t
+

qm,t + γm

(
ηm,tkm,t − (1− δm)ηm,t−1km,t−1

)
−

γmβ(1− δm)Et

{
ηm,t+1km,t+1 − (1− δm)ηm,tkm,t

}
∀ m = 1, . . . ,M (2.14)

0 = ϑt exp {C (lnwt, lnkt + ξt, lnyt;θ)}+ γo(lnϑt − lnϑt−1)− γoβEt

{
lnϑt+1 − lnϑt

}
(2.15)

vt = Sj,t − ϑt

[
αw + Γww lnwt + Γwk (lnkt + ξt) + Γyw lnyt

]
∀ j = 2, . . . , J, (2.16)

where the firm’s static condition (2.9) is presented in (2.16) in the share form with one of the share

equations omitted; Sj,t ≡
wj,txj,t

w′

txt
denotes the jth input’s variable cost share; and we append these

share equations with a (J−1)×1 vector of two-sided mean-zero stochastic disturbances vt. During

the estimation, we also include the variable cost function (2.11), i.e.,

v1,t = ln(w′
txt)− C (lnwt, lnkt + ξt, lnyt;θ)− lnϑt, (2.17)

mainly to add information about dynamic technical inefficiency ϑt. Notably, ϑt directly enters all

estimating equations (2.14)–(2.17). Further note that, just like with the derived share equations in

(2.16), here we also augment the variable cost equation with a two-sided zero-mean random error

term v1,t, which may correlate with vt. We do not impose any additional structure on these random

disturbances, including distributional assumptions (except for their mean-independence from the

predetermined data) which is a great advantage over previous techniques such as that of Tsionas

(2006).

Also, note that the above system of simultaneous equations does not contain endogenous static

input quantities. More generally, the structural identification of our estimator is rooted in the

economic theory yielding the moment conditions that utilize input prices, predetermined quasi-

fixed inputs as well as outputs (under the competitive cost-minimizing paradigm) as sources of

weekly exogenous variation. With this, we can compactly rewrite the (M + J + 1) estimating

equations in (2.14)–(2.17) as a simultaneous system of moments:

EtF(λt−1,λt,λt+1,Yt,Θ) = 0M+J+1, (2.18)
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where F(·) is a vector function of observable data Yt = [lnw′
t, lny

′
t,k

′
t−1,k

′
t,k

′
t+1, qt]

′, unknown

parameters Θ = [β, δ′,γ ′,θ′]′ and latent inefficiency and distortions λt = [ϑt, ξ
′
t]
′, containing

the right-hand sides of the Euler equations (2.14)–(2.15), stochastic share equations (2.16) and the

stochastic variable cost function (2.17). Note that, if it were not for the unobserved ϑt and {ξm,t} in-

side the moment conditions, equations in (2.18) could have been estimated by the multiple-equation

Generalized Method of Moments (GMM). In our case however, things are not as computationally

simple (also see Gallant et al., 2017; Gallant, Hong & Khwaja, 2018).

Before proceeding to the discussion of estimation of the system in (2.18), we would like to

note that, in our model, the econometric endogenization of inefficiency is firmly aligned with the

economic notion of an endogenous variable in the sense that it is a choice variable. That is, the

empirical treatment of endogenous ϑt does not reduce to merely modeling the atheoretic correlation

between this unobservable and regressors. In fact, under our structural assumptions about firm

behavior, ϑt is conceptualized analogously to a dynamic “input” subject to adjustment frictions

which renders it predetermined and thus weakly mean-independent of all regressors in our system

of estimating equations in (2.14)–(2.17). In practice, our empirical endogenization of ϑt stems from

the explicit inclusion of the intertemporal optimality condition for the former [eq. (2.15)] in the

system of estimated simultaneous equations. Also, by letting the inefficiency path be optimally

chosen within the firm’s dynamic optimization problem and explicitly incorporating the latter in

the estimation procedure, we are able to obtain inefficiency estimates that can be meaningfully

interpreted as being “dynamically optimal.”

3 Moment-Based Empirical Likelihood Estimation with Latent

Variables

We estimate our model via a Bayesian Exponentially Tilted Empirical Likelihood (BETEL) method

proposed by Schennach (2005) as an alternative to fully parametric Bayesian methods which we

modify to accommodate the presence of dynamic latent variables—namely, technical efficiency and

the distortions in quasi-fixed factors—in the moment conditions.

To fix ideas, first suppose that no latent variables are involved in the model and we have the

moment conditions of the following form: EtG(Yt,Θ) = 0dim(G) ∀ t = 1, . . . , n, where Yt and Θ

respectively represent data for each t and unknown parameters. Also, let the entire data for all

t = 1, . . . , n be denoted by Y. The Bayesian posterior corresponding to the BETEL is given by

p(Θ|Y) ∝ p(Θ)

n∏

t=1

ω∗
t (Θ), (3.1)

where p(Θ) is a prior and {ω∗
t (Θ), t = 1, . . . , n} are solutions to the following problem:

max
{ωt}nt=1

−
n∑

t=1

ωt logωt (3.2)

10



subject to

n∑

t=1

ωt = 1 (3.3)

n∑

t=1

ωtG(Yt,Θ) = 0dim(G), (3.4)

provided that the interior of the convex hull of
⋃n

t=1{G(Yt,Θ)} contains the origin.

Now suppose that the model contains dynamic latent variables λt and we have the moment

conditions in (2.18): EtF(λt+1,Yt,Θ) = 0M+J+1 ∀ t = 1, . . . , n, where we have suppressed the

dependence on λt−1 and λt for notational simplicity. Also, assume that dynamic latent variables

evolve according to some autoregressive process:

λt+1 = m(λt,π) + εt, (3.5)

where m(·) is the conditional mean function, π is a vector of parameters, and εt is a random

innovation.

Our objective is to reduce our estimation problem, which contains latent variables, into the

more conventional BETEL problem so that the posterior result from above may also be used in

our case. Thus, our posterior has the following form:

p(Θ,π,λ|Y) ∝ p(Θ)p(π)

n∏

t=1

p(λt+1|λt,π)

n∏

t=1

ω∗
t (Θ,λ), (3.6)

where λ = {λt, t = 1, ..., n}, and ω∗
t (Θ,λ) solves

max
{ωt}nt=1

−
n∑

t=1

ωt logωt (3.7)

subject to
n∑

t=1

ωt = 1 (3.8)

n∑

t=1

ωtF(λt+1,Yt,Θ)⊗ zt = 0(M+J+1)×dim(z), (3.9)

with zt being a vector of instruments.

Posterior in (3.6) depends on parameters Θ and π as well as the dynamic latent variables in

λ. While these latent variables are of fundamental interest in themselves, at the same time, they

must also be integrated out of the posterior to perform statistical inference on the parameters:

p(Θ,π|Y) ∝

∫
p(Θ,π,λ|Y)dλ, (3.10)

but the integral, in general, is impossible to evaluate analytically.

Before proceeding further, we first need to specify the process in (3.5). We opt for a second-order
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vector autoregressive (VAR) specification with Gaussian innovations, i.e.,

Λt = π0 + π1Λt−1 + π2Λt−2 + εt with εt ∼ N (0M+1,Σε), (3.11)

where Λt ≡ [ln 1
ϑt−1 , ξ

′
t]
′ contains (a function of) dynamic technical inefficiency ϑt ≥ 1 and the

distortion factors pertaining to the quasi-fixed inputs {ξm,t}; π0, π1 and π2 are the (M + 1) × 1

parameter vectors and π = [π′
0,π

′
1,π

′
2]
′. The transformation of ϑt into ln 1

ϑt−1 simplifies estimation

by having the latter be defined on the whole real line. The choice of a second-order VAR model

is motivated by the second-order dynamics induced by the optimization problem; see eq. (2.15).

Initial conditions for the latent variables, i.e., ϑ0 and ξ0, are treated as being unknown to the firm

(as parameters).

We use Markov Chain Monte Carlo (MCMC) methods to perform computations. Our MCMC

involves two steps that are carried out for each MCMC iteration. In the first step, we use Sequential

Monte Carlo (SMC), or Particle Filtering (PF), to provide draws for
{
λ
(i)
t , i = 1, . . . , N

}
, where i

indexes the MCMC simulation, and N is the total number of such simulations. In the second step,

we draw parameters Θ(i) and π(i). Since standard Metropolis-Hastings algorithms may be quite

computationally inefficient, we use Girolami & Calderhead’s (2011) Riemann manifold Langevin–

Hamiltonian Monte Carlo method (hereafter, the GC algorithm). This technique is reliable, requires

almost no tuning, and the MCMC draws that it provides have considerably less autocorrelation

compared to other MCMC algorithms.

In what follows, we briefly describe the employed methodologies.

Step 1. The SMC/PF methodology is applied to state-space models of the following generic form:

Y1:T ∼ p(Yt|λt) and λt ∼ p(λt|λt−1), (3.12)

where λt are state variables (for the background on Bayesian state estimation, see Gordon, Salmond

& Smith, 1993; Gordon, 1997; Doucet, Freitas & Gordon, 2001; Ristic, Gordon & Arulampalam,

2004). Given the data Yt, the posterior distribution p(λt|Yt) can be approximated by a set of

(auxiliary) particles
{
λ
(i)
t , i = 1, . . . , N

}
with probability weights

{
w

(i)
t , i = 1, . . . , N

}
such that

∑N
i=1w

(i)
t = 1. With this, we can approximate the predictive density by

p(λt+1|Yt) =

∫
p(λt+1|λt)p(λt|Yt)dλt ≃

N∑

i=1

p(λt+1|λ
(i)
t )w

(i)
t , (3.13)

with the final approximation for the filtering density being given by

p(λt+1|Yt) ∝ p(Yt+1|λt+1)p(λt+1|Yt) ≃ p(Yt+1|λt+1)
N∑

i=1

p(λt+1|λ
(i)
t )w

(i)
t . (3.14)

Then, the basic mechanism of particle filtering rests on propagating
{
λ
(i)
t , w

(i)
t , i = 1, . . . , N

}
to
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the next step, i.e.,
{
λ
(i)
t+1, w

(i)
t+1, i = 1, . . . , N

}
. Given Θ, Andrieu & Roberts (2009), Flury & Shep-

hard (2011) and Pitt, dos Santos Silva, Giordani & Kohn (2012) provide the Particle Metropolis-

Hastings (PMCMC) technique which uses an unbiased estimator of the likelihood function p̂N (Y|Θ)

since p(Y|Θ) is often unavailable in a closed form.

We use Gordon et al.’s (1993) particle filter, where particles are simulated through the state

density p(λ
(i)
t |λ

(i)
t−1) and then re-sampled with weights determined by the measurement density

evaluated at the resulting particle, i.e., p(Yt|λ
(i)
t ). The latter is simple to construct and rests

upon the following steps, for t = 0, . . . , T − 1 given samples λk
t ∼ p(λt|Y1:t) with mass πk

t for

k = 1, . . . , N :

1. For k = 1, . . . , N , compute ω
(k)
t|t+1 = g

(
Yt+1|λ

(k)
t

)
π
(k)
t , π

(k)
t|t+1 = ω

(k)
t|t+1

/∑N
i=1 ω

(i)
t|t+1.

2. For k = 1, . . . , N , draw λ̃
(k)

t ∼
∑N

i=1 π
(i)
t|t+1δ

(i)
λt
(dλt).

3. For k = 1, . . . , N , draw u
(k)
t+1 ∼ g

(
ut+1

∣∣∣λ̃
(k)

t ,Yt+1

)
and set λ

(k)
t+1 = h

(
λ
(k)
t ;u

(k)
t+1

)
.

4. For k = 1, . . . , N , compute

ω
(k)
t+1 =

p
(
Yt+1|λ

(k)
t+1

)
p
(
u
(k)
t+1

)

g
(
Yt+1|λ

(k)
t

)
g
(
u
(k)
t+1|λ̃

(k)

t ,Yt+1

) and π
(k)
t+1 =

ω
(k)
t+1∑N

i=1 ω
(i)
t+1

.

Lastly, the estimate of likelihood from ADPF is p(Y1:T ) =
∏T

t=1

(∑N
i=1 ω

(i)
t−1|t

)(
N−1

∑N
i=1 ω

(i)
t

)
.

Step 2. To update draws for the parameter vector of interest δ = (Θ′,π′)′, the GC algorithm

uses local information about both the gradient and the Hessian of the log-posterior conditional on

δ at the existing draw. The GC algorithm is started at the first-stage GMM estimator and MCMC

is run until convergence. Depending on the model and the subsample, this takes 5,000 to 10,000

iterations. We opt for 10,000 iterations. Then, we run another 50,000 MCMC iterations to obtain

the final results for posterior moments and densities of parameters and functions of interest.

Let L (δ) = log p (δ|Y) denote the log posterior of δ. Also, define V (δ) = est.cov ∂
∂δ log p (Y|δ)

to be the empirical counterpart of Vo (δ) = −EY|δ
∂2

∂δ∂δ′
log p (Y|δ). The Langevin diffusion for the

parameter vector δ is given by the following stochastic differential equation:

dδ (t) = 1
2∇̃δL {δ (t)} dt+ dB (t) , (3.15)

where

∇̃δL {δ (t)} = −V −1 {δ (t)} · ∇δL {δ (t)} (3.16)

is the “natural gradient” of the Riemann manifold corresponding to the log posterior. The elements
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of the Brownian motion in (3.15) are

V −1 {δ (t)} dBi (t) =
∣∣V {δ (t)}

∣∣−1/2
dim(δ)∑

j=1

∂
∂δ

[
V −1 {δ (t)}ij |V {δ (t)} |1/2

]
dt+

{√
V {δ (t)}dB (t)

}
i
.

(3.17)

The discrete form of the stochastic differential equation in (3.17) provides a proposal as follows:

δ̃i = δoi +
ε2

2

{
V −1 (δo)∇δL (δo)

}
i
− ε2

dim(δ)∑

j=1

{
V −1 (δo)

∂V (δo)

∂δj
V −1 (δo)

}

ij

+

ε2

2

dim(δ)∑

j=1

{
V −1 (δo)

}
ij
tr

{
V −1 (δo)

∂V (δo)

∂δj

}
+
{
ε
√

V −1 (δo)ξo
}
i

≡ µ (δo, ε)i +
{
ε
√
V −1 (δo)ξo

}
i
, (3.18)

where δo is the current draw, and ǫ is selected so that accept rate is about 25%. The proposal

density is

q
(
δ̃
∣∣δo

)
= Ndim(δ)

(
δ̃, ε2V −1 (δo)

)
, (3.19)

and convergence to the invariant distribution is ensured by using the standard-form Metropolis-

Hastings probability:

min



1,

p
(
δ̃
∣∣·,Y

)
q
(
δo
∣∣δ̃
)

p
(
δo
∣∣·,Y

)
q
(
δ̃
∣∣δo

)



 . (3.20)

4 Empirical Application

Data. We use annual state-level panel data on agricultural farm production in lower 48 contiguous

states of the United States during the 1960–2004 period reported by the Economic Research Service

(ERS) of the U.S. Department of Agriculture. These data, or subsets thereof, have been used

in the literature before, e.g., by O’Donnell (2012, 2016). There are three outputs—crops (y1),

livestock (y2) and other outputs (y3)—and four inputs: capital (k1), land (k2), labor (x1) and

total intermediate inputs (x2). The ERS constructs these output/input accounts for the farm

sector consistent with a gross output model of production [for details, see Ball, Bureau, Nehring

& Somwaru (1997); Ball, Gollop, Kelly-Hawke & Swinand (1999), or the ERS methods manual].

There is also information on prices. All data are in the form of relative indices. Physical capital

is subject to adjustment frictions (e.g., time-to-install) and thus is quasi-fixed. It is perhaps even

more natural to assume that land is quasi-fixed too. Labor and intermediate inputs are however

treated as freely varying. For capital and land, we allow for unknown depreciation rates.5 The

5As pointed out by a referee, assuming depreciation of land may be rather counter-intuitive because land has no
definitive useful life. We opt for a non-zero depreciation rate here primarily to allow for a greater degree of flexibility
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time discount factor β is also treated as an unknown parameter.

Estimation Details. Our priors are as follows. For the discount factor β, we use a beta prior

B(a, b). The same prior is used for the input adjustment cost coefficients {γm, m = 1, . . . , 2},

the efficiency adjustment parameter γo, and the depreciation rate parameters for capital and land

{δm, m = 1, 2}. In our baseline specification, we set a = 5 and b = 1. For the translog parameters

in (2.11), we adopt a flat prior subject to the restriction that monotonicity conditions hold at the

sample means and ten other randomly selected points in the hypercube defined by the posterior

means plus/minus twice the sample standard deviations. We do not impose monotonicity conditions

at other sample points but examine whether they hold at them (using the posterior means of the

parameters) once MCMC is finished. For the π parameters of the VAR model in (3.11), our prior

is N3(π, hI3), where π = 03 and h = 1. Using a relatively small value for h implies considerable

shrinkage (although this can be detected only if we know the likelihood contribution). For the

covariance matrix of the VAR errors Σε, our prior is p(Σε) ∝ |Σε|
−(n+1) exp{−AΣ−1

ε }, where we

set n = 1 and A = a2I3 with a2 = 0.1. For the initial conditions Λ1 and Λ2 in (3.11), our prior

is NM+1(03, h2I3) with h2 = 10. Alternative prior specifications are considered by varying hyper-

parameters a, b, π, h, n, a2 and h2. For sensitivity analysis, all these parameters are multiplied by

uniform random numbers from the (0, 100) interval. In the case of π, the resulting hyper-parameters

are also assigned a negative sign with the probability 1/2.

In the estimation, we impose the symmetry and linear homogeneity (in input prices) restrictions

onto the dual cost function in (2.17) which, naturally, also imply restrictions for the remaining

equations (2.14)–(2.16) in the system. Further, to allow for temporal shifts in the technological

frontier, we also include a time trend (along with its square and interactions terms) in the translog

cost function C (·) as well as a series of state dummy variables capturing unobservable state fixed

effects. Drawing on a structural identification power of the cost-minimization premise in face of

perfectly competitive factor markets, we use logs of input prices, quasi-fixed input and output

quantities along with the time trend and state dummies for instruments zt in (3.9). Except for

dummy variables, we also employ squares and interactions of all these instruments.

Lastly, we implement BETEL using 150,000 MCMC iterations the first 50,000 of which are

discarded to mitigate possible start-up effects. The SMC is implemented using 1012 particles per

MCMC iteration.

Results. To highlight the merits of our proposed methodology as well as to assess sensitivity of

the empirical results (and the conclusions that researchers may draw upon them) to the fashion in

which dynamic efficiency is conceptualized and modeled—as the firm’s endogenous choice variable

or as following an exogenous process—we estimate two models:

in our model and to accommodate the possibility of land quality deterioration due to intensive use of farmland or
over-use of chemical fertilizers, etc. Having said that, our estimate of the annual depreciation rate for land is indeed
very near zero (0.0015; see Table A.1) implying that fixing the former at zero a priori would have changed the
results little.
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Table 1. Posterior estimates of technological metrics

Model I Model II

Mean S.d. Mean S.d.

Panel A: (Short-Run) Cost Function Elasticities

Labor Price Elasticity ∂C/∂ lnw1 0.712 (0.022) 0.688 (0.015)
Intermediates Price Elasticity ∂C/∂ lnw2 0.288 (0.022) 0.312 (0.015)

Capital Elasticity ∂C/∂ ln k1 0.227 (0.015) 0.128 (0.027)
Land Elasticity ∂C/∂ ln k2 0.533 (0.031) 0.142 (0.016)

Crop Output Elasticity ∂C/∂ ln y1 0.505 (0.021) 0.368 (0.019)
Livestock Output Elasticity ∂C/∂ ln y2 0.191 (0.016) 0.372 (0.015)
Other Output Elasticity ∂C/∂ ln y3 0.233 (0.045) 0.303 (0.030)

Scale Elasticity of Cost
∑

q
∂C/∂ ln yq 0.975 (0.022) 0.934 (0.030)

Panel B: Dynamic Efficiency & Factor Distortions

Dynamic technical efficiency 1/ϑ 0.933 (0.012) 0.838 (0.033)

Distortion in capital η1 1.025 (0.006) 1.025 (0.007)
Distortion in land η2 1.048 (0.012) 1.039 (0.012)

Panel C: Productivity Growth Decomposition

Efficiency change (EC) −d lnϑ/dt 0.0213 (0.0185) 0.0056 (0.0026)
Technical change (TC) −∂C/∂t 0.0261 (0.0072) 0.0057 (0.0110)
Productivity growth EC+TC 0.0474 (0.0197) 0.0114 (0.0111)

NOTE: Model I endogenizes dynamic inefficiency, whereas Model II treats it as being exogenous.

I. The model with endogenously determined (optimal) dynamic efficiency implied by (2.6) and

estimated using a full system of the variable cost function along with dynamic and static

optimizing conditions given in (2.14)–(2.17). This is our proposed (and preferred) model.

II. The model with exogenous dynamic inefficiency implied by (2.5) and estimated using the

same system of equations less the first-order Euler equation corresponding to efficiency im-

provements in (2.15). This model is in line with a more traditional formulation of the dynamic

production subject to inefficiency although, to ensure maximal comparability with Model I,

here we continue to maintain a system approach as well as let technical inefficiency explicitly

enter the firm’s intertemporal optimization conditions as a state variable.

Table 1 summarizes the results from these two models. The reported are posterior means

and standard deviations of key technological metrics. For the estimates of underlying structural

parameters entering the firm’s expected dynamic optimization problem, see the Appendix.

Before proceeding to the discussion of main results concerning dynamic (in)efficiency and factor

distortions, we first examine the scale elasticity estimates
∑

q ∂C/∂ ln yq. These estimates are of

interest because they gauge returns to scale in the agricultural production. Specifically, the pro-

duction technology is said to exhibit increasing/constant/decreasing returns to scale if the scale

elasticity (of cost) is less than/equal to/greater than one. While both models produce a less-

than-one posterior mean point estimate of the scale cost elasticity, in the case of Model I the
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Figure 1. Distributions of posterior estimates of the scale elasticity of cost

corresponding 95% posterior coverage regions includes unity suggesting that, on average, the agri-

cultural farm production sector in the U.S. exhibits constant returns to scale during our sample

period, which is consistent with the findings by O’Donnell (2016) who uses similar data for the

Northeast in the 1960–1989 period. The alternative Model II however produces qualitatively dif-

ferent evidence in favor of significant economies of scale at the aggregate level. This tendency of

the second model to under-estimate scale elasticity and thus to over-estimate returns to scale in

the sector is distribution-wise as can vividly be seen in Figure 1, which plots sampling distributions

of posterior estimates of the scale elasticity of cost from the two models. Further, the empirical

results from the two models also non-negligibly differ in other aspects of the cost relationship.

Contrasting the posterior estimates of individual mean cost elasticities (see Panel A of Table 1),

we find that treating dynamic efficiency as exogenous (in Model II) appears to dramatically under-

estimate sensitivity of costs to quasi-fixed factors as well as to indicate a higher relative importance

of intermediate inputs (over labor) in the cost.

Panel B of Table 1 presents the estimates of primary interest to our paper. First, consider

the dynamic variable-input-oriented technical efficiency ϑ−1
t ∈ (0, 1]. We find that the failure to

allow for potential endogenous adjustments in efficiency over time (Model II) produces significantly

lower estimates of technical efficiency: the pooled mean posterior estimate of 0.84 vs. 0.93 from

our endogenous-efficiency Model I. The posterior results from Model II are also significantly more

variable, as can be seen from Figure 2, with more than a few point estimates of around 0.8 and

lower. Overall, this tendency of Model II to under-estimate efficiency is likely due to its inherent

inability to properly credit producing units for incurring efficiency-improvement adjustment costs.6

6Unfortunately, we cannot analytically derive this “over-estimation of inefficiency” result, which is why we cannot
claim the generality of this finding for other applications. Intuitively however, one would expect to obtain larger
inefficiency values when using the more standard model of dynamic efficiency that does not endogenize efficiency
because, due to its inability to accommodate costly (but optimal) adjustments in efficiency levels that eventually
lead to lower observable costs, such a model would not properly credit firms for incurring efficiency-improvement
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Figure 2. Distributions of posterior estimates of the dynamic efficiency
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Figure 3. Distributions of posterior estimates of the quasi-fixed factor distortions
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Figure 4. Distributions of posterior estimates of the productivity change and its components
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Next, we examine distortions in the use of quasi-fixed inputs. Our empirical results suggest

several findings. First, regardless of whether the variable-input efficiency treated as exogenous

or endogenous, the data consistently indicate an over-use in both quasi-fixed dynamic inputs as

evidenced by universally greater-than-one values of posterior estimates of η1 > 0 for capital and

η2 > 0 for land: see Figure 3 that plots their sampling distributions across the two models. Second,

both models indicate a greater degree of over-use in land than physical capital. Third, our preferred

Model I produces evidence of somewhat greater distortions in the land use, with the posterior mean

estimate of 4.8% compared to that of 3.9% from Model II (see Panel B of Table 1). When it comes

to the capital use however, the average distortions are the same across the two models (although

the distributions thereof are not).

Until now, we have paid little attention to the dynamics in production technology over time. We

now specifically focus on temporal changes in agricultural production. The dual cost-function-based

productivity growth measure and its decomposition into key components provide a natural avenue

for summarizing temporal dynamics in the production. Given our (based on preferred Model I) and

the previously reported evidence of unitary returns to scale in the U.S. farm production as well as

maintaining our implicit assumption of no allocative inefficiency, the dual multi-output productivity

growth index can be easily shown to be a sum of the technical change and efficiency change, with

each component respectively defined as −∂ lnCt/∂t and −d lnϑt/dt (e.g., see Kumbhakar & Lovell,

2000), which is how we measure it. The posterior mean estimates of productivity growth and its

components are reported in Panel C of Table 1; their respective sampling distributions are plotted

in Figure 4.

We document stark differences in the productivity growth estimates across the two models.

Our preferred endogenous-efficiency Model I estimates the average productivity growth rate in the

agricultural farm production at significant 4.7% p.a. whereas the corresponding estimate from the

exogenous-efficiency Model II is merely 1.1% and is insignificant. Based on the decomposition

results, we find that the latter model produces much smaller close-to-zero estimates of both the

mean efficiency and technical change. When endogenizing efficiency however, our results suggest

material improvements in dynamic efficiency over time at an about 2.6% average annual rate.

Interestingly, our posterior mean estimates of productivity growth in the farm production from

Model I are notably greater than those reported earlier by Ball et al. (1997) and more recently by

Andersen, Alston, Pardey & Smith (2018) and Plastina & Lence (2018). This may be plausibly

attributed to distinct differences in the productivity measurement methodologies. Unlike the cited

studies that pursue primal static-production approaches, our methodology is dual and follows a

dynamic framework.7

Having contrasted empirical results from the two models, a natural question is which of the two

is more favored by the data. The posterior estimate of the efficiency adjustment cost parameter

costs.
7A more close examination of how the choice of dynamic over static production frameworks affects the measurements
of agricultural productivity is beyond the scope of our empirical application but might provide a fruitful avenue for
future research.
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Figure 5. Distributions of the Bayes factor in favor of the endogenous-efficiency model

γo from Model I provides an indirect evidence in favor of the endogenous-efficiency model. We

estimate it to be significantly above zero (see Table A.1 in the Appendix) which lends support

to the dynamic endogenization of technical inefficiency ϑt. To select between the two models, we

also employ the Bayes factor constructed using their respective posteriors with that of Model II

used in the denominator, implying that the values above one would indicate that Model I is more

strongly supported by the data. To ensure robustness of model selection to the choice of priors and

the outlier influences in the data, we consider 1,000 alternative prior specifications (via changing

hyper-parameters) as well as re-estimate the models using leave-one-out subsamples. Figure 5 plots

the corresponding sampling distributions of the Bayes factor, from where it is evident that data

overwhelmingly favor our preferred specification that endogenizes dynamic efficiency.

5 Conclusion

Existing methods for the measurement of technical efficiency in the dynamic production models

obtain it from implied distance functions without making use of the information about intertem-

poral economic behavior in the estimation beyond an indirect appeal to duality despite seeking a

deeply structural “dynamic” interpretation of efficiency. The main limitation of such an estimation

approach is that it does not allow for the firm-controlled dynamic evolution of efficiency, thereby

effectively assuming that the firm’s efficiency is exogenous. In this paper, we introduce a new

(structural) conceptualization of efficiency that directly enters the firm’s intertemporal production

decisions and is both explicitly costly and endogenously determined. The obtained measure of firm

efficiency is thus explicitly dynamic. We differentiate between the variable-inputs-oriented inef-

ficiency and factor-specific distortions in quasi-fixed inputs and allow all of these dynamic latent

variables to jointly evolve over time. We build a moment-based multiple-equation system estimation
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procedure that incorporates the variable cost function and both the dynamic and static optimality

conditions derived from the firm’s intertemporal expected cost minimization. We operationalize

our methodology using a modified version of a nonparametric Bayesian Exponentially Tilted Em-

pirical Likelihood adjusted for the presence of dynamic latent variables in the model, which we

showcase using the 1960–2004 U.S. agricultural farm production data. Among other things, we

find that the failure to allow for potential endogenous adjustments in efficiency over time produces

significantly lower estimates of dynamic efficiency, which is likely due to the inherent inability of

a more traditional exogenous-efficiency framework to properly credit producing units for incurring

efficiency-improvement adjustment costs.

Appendix

Table A.1. Posterior Estimates of Deep Structural Parameters

Model I Model II

Mean S.d. Mean S.d.

Time discount parameter β 0.710 (0.012) 0.887 (0.015)

Depreciation rate for capital δ1 0.044 (0.012) 0.030 (0.007)
Depreciation rate for land δ2 0.0015 (0.0004) 0.017 (0.007)

Adjustment cost parameter for capital γ1 0.133 (0.021) 0.244 (0.015)
Adjustment cost parameter for land γ2 0.732 (0.025) 1.232 (0.120)
Adjustment cost parameter for inefficiency γo 0.255 (0.036) — —

NOTE: Model I endogenizes dynamic inefficiency, whereas Model II treats it as being exogenous.
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