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In statistics, the index of dispersion (or variance-to-mean ratio) is unity

(�2/hxi = 1) for a Poisson-distributed process with variance �2 for a variable x

that manifests as unit increments. Where x is a measure of some phenomenon,

the index takes on a value proportional to the quanta that constitute the

phenomenon. That outcome might thus be anticipated to apply for an

enormously wide variety of applied measurements of quantum phenomena.

However, in a photon-energy proportional radiation detector, a set of M

witnessed Poisson-distributed measurements {W1, W2, . . . WM} scaled so that the

ideal expectation value of the quantum is unity, is generally observed to give

�2/hWi < 1 because of detector losses as broadly indicated by Fano [Phys. Rev.

(1947), 72, 26]. In other cases where there is spectral dispersion, �2/hWi > 1.

Here these situations are examined analytically, in Monte Carlo simulations, and

experimentally. The efforts reveal a powerful metric of quanta broadly

associated with such measurements, where the extension has been made to

polychromatic and lossy situations. In doing so, the index of dispersion’s

variously established yet curiously overlooked role as a metric of underlying

quanta is indicated. The work’s X-ray aspects have very diverse utility and have

begun to find applications in radiography and tomography, where the ability to

extract spectral information from conventional intensity detectors enables a

superior level of material and source characterization.

1. Introduction

1.1. Foundations

Extraction of the maximum possible information from

datasets has been critical to the practical establishment of

many fields, among them X-ray charge-density analyses

(Coppens, 1997; Bolotovsky et al., 1995), and monochromatic

and polychromatic photocrystallographies (Coppens et al.,

2009; Fullagar et al., 2000; Helliwell et al., 1989; Kim et al.,

2002). The capability for hyperspectral X-ray imaging via shot

noise in energy-proportional X-ray imaging detectors does not

seem widely used within X-ray radiography and tomography

communities. The corresponding aspect of shot noise has been

indicated elsewhere (Uhlig et al., 2011), which motivated its

further elaboration in the present study.

Quantum shot noise exists in many situations, where clas-

sical statistics may be applied. When doing so, the following

two conditions may be indicated.

(i) A witnessed measurement is proportional to both the

number of quanta reaching the detector, N, and the detected

content of the quanta, E.

W ¼ NET Eð Þ; hWi ¼ hNiET Eð Þ: ð1Þ

(ii) The number of quanta shows shot noise (Poisson)

variation about its expectation value hNi, so that
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� ¼
ffiffiffiffiffiffiffiffi
hNi

p
ETðEÞ: ð2Þ

The measurement W may be the calibrated output of an

analog to digital converter, but it could equally be a mass, a

concentration, a deflection, a current or any other witnessable

magnitude. Depending on literary background and context,

the product NE might be formally defined as an intensity; to

avoid potential conflicts of understanding we avoid that

notation. The transfer function T(E) describes how E is

transmitted through the detector system to yield the witnessed

signal. Observe that a quantum efficiency Q(E) governs the

number of quanta N captured by the detector [and so effec-

tively resides within N in equations (1) and (2)], but that Q(E)

is functionally distinct from T(E). The product ET(E) is the

detector’s response to what it captures.

Rearrangement of equation (2) gives E ¼ �=
ffiffiffiffi
N
p� �

1=T Eð Þ½ �.

This has been used to estimate the energy of hot electrons in

matter (Uhlig et al., 2011), which is usually a preliminary step

of X-ray detection (Wilson, 1912; Fullagar et al., 2008).

The role of �2/hWi as a metric of E follows from equations

(1) and (2),

�2

hWi
¼ ET Eð Þ; ð3Þ

so is independent of Q(E), but still a function of T(E).

Alternatively, hWi=� ¼
ffiffiffiffiffiffiffiffi
hNi
p

(the signal-to-noise ratio for

Poisson signals) follows by cancellation of ET(E) from equa-

tions (1) and (2).

1.2. The polychromatic case

Equation (3) only really applies if E is single-valued (i.e.

monodisperse). Otherwise, the spectrum may be conceptually

divided into b evenly spaced energy bins of average energy

E1, E2 . . . , Eb. The filling of neighbouring spectral bins is

assumed to be uncorrelated, so numerator and denominator

contributions of the different energy bins are expanded

separately to give

�2

hWi
¼

n1E2
1T2 E1ð Þ þ n2E2

2T2 E2ð Þ þ þnbE2
bT2 Ebð Þ

n1E1T E1ð Þ þ n2E2T E2ð Þ þ þnbEbT Ebð Þ

¼
hS Eð ÞET2 Eð Þi

hS Eð ÞT Eð Þi
: ð4Þ

Here the second equality gives the result as a ratio of expec-

tation values. These involve the spectral density function

S Eð Þ ¼ Eini Eð Þ=N, with
P

ini ¼ N in the conceptual limit of

infinite b and N. That suggests use of integral notation,

although here the quest for properties of quanta motivates the

summation notation of statistical mechanics and thermo-

dynamics (Baker & Cousins, 1984; Schrödinger, 1989).

Equation (4) reduces to equation (3) in the monochromatic

case, but S(E) and T(E) otherwise become essential features

within the expectation brackets. Spectral dispersion manifests

through S(E), which by itself always acts to increase the value

of �2=hWi relative to the expectation energy hSðEÞi (see

Appendix E). Meanwhile partial registry manifests through

T(E) and suppresses �2=hWi via arguments introduced by

Fano (1947) (see Appendix H). Their combined influence may

be explored via equation (4) using models of S(E) and T(E).

The ratio of expectation values recalls a Rayleigh quotient

(Anton & Rorres, 1987), which would give an eigenvalue

corresponding to ET(E); while �2=hWi is the eigenfunction of

the repeated self-convolution process corresponding to the

central limit theorem (see Appendix G). The calibration of

T(E) for an energy-proportional detector is thus tantamount

to making a crude spectrometer from it. It enables hyper-

spectral imaging from the corresponding detector, even in

cases where individual quanta are not discernible.

1.3. Scope and organization

This document seeks to provide a useful collection of

information concerning the index of dispersion as a metric of

quanta. A mathematical review is avoided for accessibility

reasons, recognizing that any claims of novelty would be

impossible to defend in that arena. Readers may be able to

apply the interpretation offered here, that includes poly-

chromatic and lossy situations, to data of diverse natures. A

cursory introduction to historical and other aspects is made

next, before presenting X-ray observations from which

applied developments have been growing from this work, and

closing with some corollaries. Appendices are referred to

throughout. Their structure is as linear as reasonably possible,

offering a deeper look at the many necessary considerations

under suitable subheadings. They provide essential insights to

pertinent physics and mathematics, additional applied exam-

ples whose examination allows placement of general bounds

on applicability, and entry points to further literature.

2. Applicability

2.1. Historical and mathematical

The ability of the equations above to access the magnitude

of quanta applies in broad fields. For example, in the early

1800s, ideas of the quantization of matter were re-invigorated

by the likes of Dalton; molecular weights m became known

through the work of Avogadro via Dumas’ vapour density

measurements (soon also associated with the names Canniz-

zaro, Viktor Meyer and Hoffman) which then also led to

atomic weight determinations (Glasstone, 1940; Pauling,

1956). These use the fact that �T=P ¼ m=R in accordance with

the ideal gas law, for a gas of physical density � (which supplies

the necessary mass dimension on the left side), at temperature

T and pressure P with gas constant R. A connection to

equation (3) is seen through the kinetic theory of gases, briefly

motivated as follows. From the average velocity v of mole-

cules, P / mv�n (molecular momentum times numerical

density); while T / mv2 (molecular kinetic energy) may be

viewed as m-normalized dispersion of the molecular

momentum. The ratio T=P / �2
mv= mvð Þ analogous to equation

(3). The recovery of m is by multiplying by � ð¼ m�nÞ, the

measured physical density of the gas.

All the following have in common mathematics relating to

�2=hWi for the purposes of extracting quantum information,
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and are grounded in fluctuation analyses in statistical

mechanics (Barnes & Silverman, 1934; Schrödinger, 1952):

determination of the electron charge by shot noise measure-

ments (Hull & Williams, 1925); diffusion and random walk

models (Atkins, 1998); demonstration of the molecular

constitution of matter and Avogadro’s number determination

via Brownian motion (Glasstone, 1940); optical galvanometer

and cantilever noise in atomic force microscopy to measure

Boltzmann’s constant (Ising, 1926; von Smoluchowski, 1912;

White, 1963). Raindrop measurements by corresponding

arguments are presented in Appendix I. The closely related

Fano factor has been examined in neuroscience contexts to

evaluate whether neural spiking follows a Poisson distribution

(Eden & Kramer, 2010); the underlying arguments are

general. There are strong reasons to indicate a correspon-

dence principle linking many related phenomena (Hughes &

Ninham, 2016).

The Poisson distribution is broadly accepted in many

contexts, but it can be difficult to pin specific physical causes

for it. One derivation takes the binomial distribution in the

limit of N (number of tries) going to infinity while the product

Np (with p being the probability of ‘success’ per try) remains

constant; while the binomial distribution can itself be seen as a

limit of other distributions (Dudewicz & Mishra, 1988).

Relevance in combinatorial problems is implied, as when

adding random phases (Rayleigh, 1919) or when enumerating

microstates in statistical mechanics. Boltzmann’s combina-

torial approach to statistical mechanics can be avoided

(Darwin & Fowler, 1922; Schrödinger, 1952), whereupon the

Poisson distribution may be derived in functional form by

‘top–down’ approaches (Morse, 1969; Kittel & Kroemer,

1980), or from quantum mechanics (Henri-Rousseau & Blaise,

2011). These allow the Poisson distribution’s perception as a

distribution in its own right and not just as an approximation

to the binomial distribution (Noble, 1991); as an entropy-

related function (Jaynes, 2003); and independently of any

dimension chosen for its expression (e.g. the time domain is a

popular choice; Lindgren, 1976; Davis, 1996). Mathematical

consistency anticipates several approaches to the Poisson

distribution’s derivation, just as the Gaussian distribution also

enjoys (Jaynes, 2003). That empowers its use in both bottom–

up and top–down arguments, allowing robustness when facing

questions like ‘but what about quantum theory?’ (Jaynes,

2003; Cabello et al., 2016). Inevitably then, the Poisson

distribution’s deep roots lie beyond the scope of this manu-

script. Rather, the present contribution draws attention to the

connection it implies between �2=hWi and quanta, a rela-

tionship that is overlooked by many works that might have

attached tremendous significance to it.

2.2. Requirements

For a property of quanta to be revealed by the index of

dispersion, any patterns in data must be rigorously accounted

for – dispersion otherwise arises from variance in expectation

values too, just as it does from shot noise [equation (4)

contains this, in S(E)]. Such patterns alter the expectation

value for data points, which is the key to their removal by

subtraction, if needs are pressing and experiments cannot

eliminate the cause. On average, a pattern properly accounted

for always brings expectation values closer to measured data

(Appendix I). This reduces �2/hwi, whose minimum reliably

obtained value is therefore presumed best, provided that

underlying patterns do not involve an excessive number of

parameters (the optimum number of parameters given any

prior information is provided by Bayesian analysis; Sivia &

Carlile, 1992). Examining all the dimensions of a dataset often

suggests patterns, while examination of known dimensions

within existing data and improved experimental methodology

stimulates the quest. (Typical experimental pattern searches

may be seen in the determination of raindrop size Appendix I.)

The shape of a Poisson distribution very rapidly approximates

Gaussian even for quite modest expectation numbers of

quanta, but with the key additional property hxi ¼ �2

(Prigogine, 1978). The two distributions are often experi-

mentally indistinguishable, especially where differences are

involved. Where individual quanta are observed, Poisson

error-normalized residuals whose histogram matches a � = 0,

� = 1 Gaussian distribution indicate the exhaustion of a

dataset’s capacity to support further patterns (Uhlig et al.,

2013). (This is because the additional distribution caused by a

pattern would convolve with the observed residuals to

broaden their error-normalized histogram beyond the � = 0,

� = 1 Gaussian expected for the hxi-subtracted Poisson

distribution alone.) Where quanta are not directly observed,

the underlying Poisson distribution may be open to question.

However, using the ability of shot noise to numerically over-

whelm other noise sources, together with spectral examina-

tions, a picture of detector response can be built up. Poisson

shot noise is then unambiguously quantifiable in proportional

detectors that lack the sensitivity for single quantum

measurements.

2.3. Key restrictions and the case for thermal detection

Practical measurement of a mean and standard deviation

via equations (1) and (2) implies a set of M individual

measurements, under experiment conditions that anticipate an

expectation value. Such measurements might be done

sequentially (in time domain) or in parallel (using identical

detectors in spatial or angular domains). All three domains are

common in movies and images. Why then, is �2/hIi not used to

estimate colour information from black and white photo-

graphs? The X-ray experiments below show that at X-ray

photon energies (far exceeding the detector’s bandgap) the

X-ray colour can be determined in this way. However, for

energies not much above the detector bandgap,

ET Eð Þ ’ constant (Appendix H). This is because a quantum

with only fractionally more energy than the bandgap cannot

excite more than one electron-hole pair over that energy

barrier. Other consequences of the photon capture (mostly

heat) are usually not recorded. When the detector response

ET(E) loses dependence on E, equations (1)–(4) no longer

offer the required metric of E. The result is the same where
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thresholding (discrimination or windowing) is applied in the

front-end electronics of X-ray detectors. A different form of

ill-conditioning occurs when T(E) for a detector is exponential

or extremely large, for example in detectors that, like Geiger

counters (Strong, 1938), use avalanche gain mechanisms

(Fullagar et al., 2011b; Tutt et al., 2012), and methods of

thermal neutron detection that depend on unleashing rela-

tively enormous nuclear energies. There also, equations (1)–

(4) can fail as a reliable metric of E.

Recognition of this situation in photon-measuring direct-

detection CCDs (Fullagar et al., 2008) motivated many

investments in ultracryogenic microcalorimetry (Enss, 2005;

Mazin et al., 2013; Fullagar et al., 2007). By suitable measures,

not only is each quantum fully measured, but it is split into a

temperature-dependent number of low-energy quasiparticles,

fluctuations of which bound the accuracy of measurements of

the parent quantum according to thermalization temperature

and the absorber’s heat capacity (Moseley et al., 1984; Möss-

bauer, 1991; Enss, 2005; Ullom & Bennett, 2015). A critical

consequence of this low-temperature microcalorimetry

approach for X-ray science is that the typically �10�5

Darwin–Bragg losses of conventional diffraction-based

analyses (Als-Nielsen & McMorrow, 2001; Darwin, 1914) are

avoided (Fullagar, Uhlig et al., 2010; Fullagar et al., 2017),

opening scattering-law technique development (Uhlig, 2011;

Uhlig et al., 2013, 2015; Fullagar et al., 2017) around tempo-

rally remarkable in-house polychromatic hard X-ray sources

(Fullagar et al., 2007; Ta Phuoc et al., 2012).

2.4. Radiation application fields

Equations (1)–(4) apply in microcalorimeter systems and in

many other real-world imaging systems where the original
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Figure 1
Pseudomonochromatic XRF data were generated in experiments using two different detectors (a) and (b). For the XRF images, expectation intensities
(an example in c) were calculated from averages of 256 clearfield and 96 darkfield frames. (d) shows a selection of corresponding measured spectra. In (c)
an expectation isointensity strip is highlighted, whose contributing pixels show measurable intensity variance. Plotting the variance against the
expectation intensity in (e) yields an approximately straight line for each XRF sample, with a small y-axis offset due to inherent detector noise. In (f) the
fitted line slopes are plotted against average photon energy observed in the spectrometer. A straight line fit through the points in panel f yields the zero-
order estimate for the scintillator detector’s response.



quantum energy greatly exceeds bandgaps. These include

X-ray radiography/tomography (Paziresh et al., 2016), Laue

crystallography (Helliwell et al., 1989), polychromatic X-ray

phase contrast imaging (Wilkins et al., 1996), cryogenic

microcalorimetry approaches to astronomical (Mazin et al.,

2013) and THz (Becker et al., 2014) imaging, and other

disciplines (e.g. fast electron measurements; Uhlig et al., 2011),

and may be useful to estimate X-ray fluorescence (XRF)

contributions to diffuse scatter in recent XFEL reports (Ayyer

et al., 2016). In such situations we indicate the potential utility

to establish corresponding quantum energies and spectral

parameters, when appropriate spectral models are applied to

equation (4). Equation (4) is an entry point to the thermo-

dynamics of colour, with Figs. 1 and 2 being demonstrations

of it.

Laue crystallography leads to monochromatic (Bragg-

diffracted) reflections on detector planes. This polychromatic

technique is especially valuable for its ability to witness large

volumes of reciprocal space in single radiation shots (Šrajer et

al., 2001), which brilliant monochromatic sources cannot do

given ordered samples (Kim et al., 2002; Moffat, 2003; Helli-

well et al., 1989; Fullagar 2017). The energy of quanta in the

reflections is key to determining momentum transfer and

thereby structure (van Hove, 1954; Higginbotham et al., 2014;

McDonald et al., 2015), as well as molecular dynamics via

spectroscopy (van Hove, 1954; Fullagar, 1999; Ament et al.,

2011). In combination with earlier work (Uhlig et al., 2011),

results presented here indicate how to deduce that energy

using pixel-to-pixel intensity variance in single shot data.

X-ray radiography and tomography often uses a broadband

source and scintillator-coupled optical detector. This breed of

detector was used in experiments described below. Parametric

models relate S(E) to source spectra and (for example) density

� and atomic number Z of intervening materials (Alvarez &

Macovski, 1976). Owing to the great redundancy of projec-

tions traversing any given voxel, equation (4) offers clear

scope for improved spectral understanding of statistical

mechanics approaches to model-based refinement of
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Figure 2
(a) An observed Amptek spectrum after spectral stripping (closed circles), the agreement obtainable in our models (line), and a typical Monte Carlo
simulated spectrum (open circles; using different model parameters). (b) Monte Carlo tests of left- versus right-hand sides of equation (4) for several
simulated spectra and applying T(E) = 1, anticipating direct correlation of the axes, as observed. (c) Physically measured data for three distinct spectra,
observing three distinct slopes upon adjusting the intensity by tube current. In (d) (cf. b), physical measurements of �2=hIi are plotted against the
correspondingly simulated right-hand side of equation (4). Nine measurements combining three filter arrangements and three tube voltage settings are
evaluated, together with the data from (c). Random scatter about a straight line is seen, supporting the assumption T(E) = constant. (Physically different
detectors were used in Fig. 1 versus Fig. 2, explaining why their final panels show different slopes.)



polychromatic tomographic data (De Man et al., 2001; Elbakri

& Fessler, 2003; Nuyts et al., 2013). Equation (4) thus opens

spectral artefact correction and materials identification

(Paziresh et al., 2016) using statistical mechanics and a wide

range of machine learning approaches to find variational

minima.

2.5. Scaling laws

An easily overlooked aspect of Poisson (shot) noise is that

the value of �2/hWi obtained from measurements is indepen-

dent of the expectation number of photons hNi applied in the

individual intensity measurements, even when hNi 2 ð0; 1�.

This is seen in the cancellation of N that led to equation (3)

and in Monte Carlo simulations (Appendix E). Monte Carlo

approaches shown there also confirm the analytical anticipa-

tion [equation (15)] that variance among sets of {�2/hWi}

containing M determinations of it scales as �2
�2=hWið Þ / M�1

(here using delta notation to avoid a confusion of sigmas). So

in the absence of detector noise or instrumental digitization,

the energy resolution of a monochromatic source obtainable

by this averaging process is

�E

E
¼

� �2=Ið Þ

E
/ hNi0M

�1=2
: ð5Þ

With that lack of constraints and repeated measurement, the

resolution becomes arbitrarily good according to the standard

error in the mean of �2/hWi, essentially irrespective of the

expectation number of events in individual measurements. In

non-monochromatic situations the value of �2/hIi must not be

too loosely identified with E (see Appendix E); equation (4) is

instead appropriate.

2.6. A bound on utility

Instrument digitization must not pin measurement results to

particular values, since it eliminates intermediate values that

otherwise give meaningful contribution to the variance and

average. In this sense, the use of digital signal channels is

nothing other than a variant of quantum thresholding, but at a

different level. In Appendix I it is motivated that if �p

expresses the total measurable noise (from all sources

including human, analog and digitization), and if the digiti-

zation increment is a, then the ability to quantitatively

measure the index of dispersion is exhausted when

M > 144
�p

a

� �4

: ð6Þ

Equation (6) bounds the otherwise valuable situation that

followed equation (5); digitization causes its own quantum

‘bandgap’ problem that constrains equation (1) and the

Poisson-based uses that follow from it. For example, in the

raindrop measurement of Appendix I, it curbs any hope of

revealing the molecular weight of water! One cannot simply

make infinitely measurements of rain [large M in equation (5)]

in that experiment using the available digital scales, and

compensate for dispersion as in Appendix E and equation (4).

On the other hand, molecular weight determination from

vapour density is essentially independent of the number of

molecules due to / N0 scaling; there the necessary average

comes by collectively weighing the molecules in the respective

volume, a process for which the digitization error can often be

made insignificant in the macroscopic world.

3. X-rays

The X-ray spectrum witnessed by a detector [S(E) in equation

(4)] can usually be accurately accounted for using parametric

models, as is done below. Thereafter a combination of near-

monochromatic and polychromatic X-ray examinations,

together with physical understanding of a detector system,

offer incremental confidence in the nature and causes of the

detector response function T(E), as well as changes of S(E)

arising from samples. Such measurements are particularly

valuable given that specific details of radiation detectors and

their inner workings may be withheld from customers for

commercial reasons. The extraction of spectral functions from

inner products is known as unfolding. Many robotic inference

procedures (Jaynes, 2003) for spectral unfolding in radiation

contexts have been implemented (Sanna & O’Brien, 1971;

Weise & Matzke, 1989; Mukherjee, 2002; Ortiz-Rodriguez &

Vega-Carrillo, 2012) and reviewed (Matzke, 2002, 2003),

where this selection of references glimpses the history and

diversity of applied algorithms. Helpful practical entry points

for several of these algorithmic procedures are available to

experimentalists (van Dam, 2009). While acknowledging the

intimate relevance of those approaches, the present work

views the situation from an essentially causative perspective,

rather than the symptomatic post-collection perspective used

when unfolding. Doing so enables a potentially separable

investigation of the roles of spectral dispersion, partial

registry, amplifier gains, energy flow, digitization and other

aspects, at the same time permitting a collective overview of

highly diverse detector systems. Moreover, as a result of this

treatment we see that the ratio in equation (4) involves more

than just one inner product. For these reasons our title uses

the word ‘unravelling’; an intention being to help reveal the

causes.

3.1. A pseudo-monochromatic example

The sequence of panels in Fig. 1 shows pseudo-monochro-

matic XRF observations using a single pixel photon energy

dispersive spectrometer (an Amptek XR-100CR X-ray

detector with PX-4 digital pulse processor unit) in conjunction

with a scintillator-based optical X-ray imaging detector

(FlatPanel). A General Electric xs|180nf tungsten tube source

excited XRF from a range of materials. In these analyses the

detector’s intrinsic noise, �d, manifests as an offset in panel e

where fitted lines converge on the vertical axis: �2
d ¼ 156 IU2

(intensity units). A provisional indication is that T(E) is

substantially independent of E over the measured X-ray

energy range, leading to a constant slope in panel f and a zero-

order estimate of T Eð Þ ’ 0:0116 IU keV�1 over the range

�20 to �80 keV. There is insufficient reason to model higher-

order energy dependence, given recognisable constraints in
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the data thus far available. A pixel intensity signal level of

(say) 3�d is achieved only when the total deposited X-ray

energy corresponds to Etot ¼ 3�d=T Eð Þ ’ 3230 keV (equiva-

lent to �108 X-ray photons of 30 keV energy arriving in a

single pixel). This is not a photon detecting detector by any

stretch of the imagination; yet the basic spectroscopic

capabilities of this X-ray proportional area detector are seen

in panel f, via interpretation of the X-ray shot noise implicit in

equation (3).

A more detailed account of Fig. 1 follows.

3.1.1. Image procedures. Panel a sketches how XRF was

generated from samples of Ag (foil), Pb (sheet), BaCO3

(powder), Ta (sheet), Nb (foil), SnO2 (powder), NaI

(2.0 mol L�1 aqueous solution) and Pt (spatula), using tube

voltages of 70, 180, 80, 90, 70, 100, 100 and 120 keV, respec-

tively, and without X-ray filtering. Each XRF spectrum was set

up and recorded using an Amptek CdTe detector prior to

clearfield collection using a FlatPanel proportional area

detector. Darkfield frames (96) and clearfield frames (256)

were collected from each sample, from which respective

averages were calculated. Individual clearfield frames were

then least-squares fitted as linear combinations of those two

averages. Given few-percent flux variations from the tube

source and smaller systematic variation among darkfields also,

the fits prescribe X-ray expectation intensity, and background-

subtracted expectation intensity of each pixel in every frame.

Pixel locations corresponding to X-ray intensity expectation

bins were then identified throughout the 256 frame dataset.

Within each bin, the corresponding observed variance from

expectation was calculated. In this way, plots of variance

against expectation value are shown in panel e. They form a

continuous range of intensities in each data set, that turn out

to be essentially straight lines as anticipated by equation (3).

The slopes are manifestly dependent on the XRF photon

energy. A common ordinate intercept shows the detector

system’s inherent noise.

3.1.2. Spectrum aspects. Fig. 1 panel d shows selected

typical and pathological Amptek spectra. The XRF lines (typ.

K� and K� manifold) that were the basis for this pseudo-

monochromatic experiment are clear, as are small and varying

contamination by background spectral features (typ. coherent

and Compton scatter of bremsstrahlung used to excite the

XRF samples). Anisotropic behaviour of background spectra

reaching the area detector and the effects of incident angle on

its T(E) were not quantified in these measurements, though

such studies could be anticipated as usefully revealing of both

sample and detector. Three points on the same curve in panel

e with different intensities should not fall on the same straight

line if their spectrum is different. Observable features in the

background spectra therefore warn against over-interpreting

the apparently straight lines. Knowing this, no attempt is made

to model the possibility of slight nonlinearity of the data

presented in Fig. 1 panel e; they are simply displayed ‘as is’.

Nevertheless, in practice the data readily support straight-line

fits. Their slopes correlate well with expectation values

calculated from Amptek spectra, as shown in panel f. There,

ordinate values incorporate the observed background spec-

trum (but exclude the < 20 keV Cd, Te XRF escape peaks in

the Ba spectrum; Redus et al., 2009), also spectral weighting by

the relative QE curves of the Flatpanel versus Amptek

detectors (panel b). This incorporation of the background

spectrum leads to correlation between both detectors of the

otherwise unexpected energy inversion of XRF from Ba

versus I.

3.2. A polychromatic example

Fig. 2 supports equation (4) via polychromatic X-ray

measurements. Experimental circumstances meant that prac-

tical polychromatic measurements used a later model of the

same type of FlatPanel brand area detector. By incorporating

the bremsstrahlung, the polychromatic measurements extend

the measured energy range to �20 to �160 keV. Here the

observed intrinsic (darkfield) detector variance �2
d ¼ 28:3 IU2

was subtracted from the measured �2, hence the fitted lines in

panel c extrapolate to the origin. The same subtraction

ensures that �d is not a potential cause of nonlinearity in panel

d. In simulating the right hand side of equation (4), T(E) is

first assumed constant as motivated by Fig. 1. Those equation

(4) simulations give the abscissa in panel d for physical

measurements shown on the ordinate. Random and small

scatter about a straight line further justifies the assumption

T(E) ’ constant for this detector, and the results from panel c

are incorporated in the fitted value T(E) ’ 0.00330 IU keV�1.

The importance of the spectral models in determining the

placement of datapoints along the lines in panels b and d, and

the even scatter about those lines, show that shot noise in the

proportional area detector again provides an intrinsic measure

of spectroscopic information in this polychromatic situation,

accessible via equation (4). (Additional Monte Carlo work in

Appendix E3 shows the role of spectral dispersion in these

polychromatic data.)

A more detailed account of Fig. 2 follows.

3.2.1. Spectral simulation. The polychromatic analyses of

Fig. 2 incorporate spectral stripping algorithms (Redus et al.,

2009), and spectral simulations populated by Monte Carlo

procedures (see Appendix E). To proceed with equation (4),

the spectrum received by the detector is modelled

S Eð Þ ¼ � Eð Þ:�jfexp½��j Eð Þtj�g:f1� exp½��abs Eð Þtabs�g: ð7Þ

Here �(E) is the source spectrum (which potentially also

includes temporal, spatial and angular dependencies); the

middle product term describes spectral transmission projected

through intervening windows, air and sample materials; and

the final term is the fraction of incident photons that are

stopped in the sensitive absorption region of the detector

(quantum efficiency) such that detection may ensue. In typical

applications, samples are factored out of the middle product

term, but obviously their spectral contribution must remain

within equation (4)’s expectation brackets. A few online

databases for material �(E) coefficients are available; this

work used NIST’s XCOM database (Berger et al., 2010). Its

minimally 1 keV grid includes photoelectric, Compton and

small coherent scatter losses and suffices for the available
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X-ray spectrometer resolution, while covering the X-ray

output energies produced by the tungsten source with tube

voltage variously in the range �10–180 keV. Kramers’ law

simulates the bremsstrahlung spectrum, adding XRF contri-

butions when the tube anode potential exceeds the respective

inner shell binding energy. Fits to Amptek spectrometer

observations provide the relative magnitudes of spectral

components (K for bremsstrahlung and ak for XRF), thus

� Eð Þ ¼ K
Etube

E
� 1

� �
þ
X

k
ak� E� EXRFð Þ ð8Þ

Substituting equation (8) into (7) completes the received

spectrum S(E), followed by Monte Carlo population

(Appendix E). Part a of Fig. 2 shows typical examples of a

measured spectrum, a spectral fit, and a spectral simulation,

applied in the following context.

This parametrically modelled X-ray spectrum may be

shaped in two ways: by filtering through varying thicknesses of

different materials, and by adjusting the tube voltage, as

evident in equations (7) and (8). Panel b shows the outcome

from several simulations that did this. Since no actual detector

exists in such simulations, an ideal detector T(E) = 1 may be

modelled. That presupposes direct 1:1 correlation of the

ordinate and abscissa, as this Monte Carlo test confirms.

3.2.2. Polychromatic experiments. In actual measurements

of physical polychromatic radiation, the spectrum was

received by a 700 mm CsI scintillator-based FlatPanel detector

with 194 mm lateral pixel dimensions, its windows and stopping

power modelled within equation (7). Fig. 1 versus Fig. 2 used

two different FlatPanel detectors whose T(E) differ, presum-

ably due to different gain settings of an internal preamplifier

[see Appendix A equation (13)]. Two types of physical poly-

chromatic experiment were undertaken, as follows.

In both experiments, each measurement used 100 radio-

graphs collected 302 mm from the source. The mean and

variance of associated darkfield images was subtracted from

the respective intensities and variance of clearfield images.

Only the central 128 � 128 pixels were then considered, to

avoid beam profile compensations away from the central axis.

The mean intensity was calculated for each pixel, and the

squared deviance I � hIið Þ
2 calculated from this. Finally all

16 384 mean intensities and squared deviances were averaged

to give single estimates of intensity and variance.

The first type of experiment used 90 kV tube voltage with

additional filtering by (a) nothing, (b) 2 mm Al and (c) 2 mm

Al plus 0.25 mm Cu; yielding three distinct spectra. Intensity

was then varied using the tube current. According to equation

(4), plots of variance versus intensity should yield three linear

trends whose slopes depend on the spectrum, as observed in

Fig. 2(c).

The second type of experiment correlated the observed

�2/hIi with the right-hand side of equation (4), applying

equations (7) and (8) using the parameters of physical

experiments. Fig. 2(d) shows the result, being a physically

measured variant of panel b’s Monte Carlo simulations. Here,

nine different spectra used the same three filter arrangements,

with 60, 90 and 120 kV tube voltage. Intensity in the recorded

flatfield images was kept approximately constant by adjusting

the tube current. The zero-order approximation T(E) =

constant is an appropriate starting point and assumed in (d). A

first-order energy term was also tried in T(E) to reduce the

scatter of points. However, as in Fig. 1(f), even a first-order

correction is unwarranted by the available data. Models of

T(E) shall inevitably need adjustment as relevant details of

the detector’s internal workings come to light, as the nature of

measured data diversifies, and as their quality and quantity

increase.

4. Two corollaries

We close with two simple and foreseeably useful results that

appear to follow from equation (4).

4.1. Propagation

When aspects of an experiment are changed, observations

of �2=hWi will change, and a relationship between the values is

anticipated. Adding a material filter in a polychromatic beam

is an example; it alters measurable intensity (here I = W) and

its variance, and may be associated with a calculable spectrum.

That example allows developing the following argument.

(Note that a change might alternatively come about by

altering source or detector parameters; analyses follow a

similar path.) The non-filtered intensites {I1n, I2n, . . . } and the

preserved intensities after filtering {I1p, I2p, . . . } provide values

for �2=hIið Þn and �2=hIið Þp, while the effective intensity that

‘disappears’ due to the filter is

hIid ¼ hIin � hIip: ð9Þ

These intensities are the corresponding cumulant sums in the

denominator of the first equation (4), noting that the expec-

tation intensity lost to the filter hIid is, like the other inten-

sities, calculable from the incident spectrum and the filter’s

material and thickness parameters (of course incorporating

the detector’s spectral response). In the numerator of the first

equation (4), the stochastic filling of energy bins according to

their expectation distribution leads to noncorrelated quad-

rature addition. Now the key is that for the non-filtered

variance, this allows its quadrature sum’s separation into two

parts: components that shall disappear in a filter, and

components that shall not

�2
n ¼

X
i

�2
n;i ¼

X
i

�2
d;i þ

X
i

�2
p;i ¼ �

2
d þ �

2
p: ð10Þ

Combining equations (9) and (10) shows how �2=hIi values

propagate

�2

hIi

� �
n

¼ a
�2

hIi

� �
d

þ b
�2

hIi

� �
p

; ð11Þ

here abbreviating a ¼ hIid= hIid þ hIip
� �

and b =

hIip= hIid þ hIip
� �

for the measurable intensity ratios. Observe

that �2=hIið Þd is not usually a measured quantity. [It could be,

for example when measuring I0 versus I in transmission XAS,

or in other ‘stacked’ detectors (Hanley & Denton, 2005),
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whereby equation (11) could be verified. Moreover, the

expectation expression for hIid permits Monte Carlo estimates

of its associated �2
d if necessary.] The value of �2=hIið Þd

inferred from equation (11) allows parametric estimates of the

absorbing material and the spectrum consumed by it, since it

must be consistent with equation (4) in its own right.

4.2. Extension to photon energy-dispersing detectors

Equation (4) can be altered in an interesting way, in energy-

dispersive photon detectors that can additionally reveal the

full spectrum of the witnessed instances of W. Where that is

possible its left-hand side (LHS) denominator may be written

hW(E)i where the averaging is now over the measured energy

bins as well as the multiple recorded spectra, while retaining

direct equality to the first right-hand side (RHS) denominator.

In that situation there is an opportunity to equate the

denominator and numerator on the RHS by further incor-

porating energy bins Ei and the loss spectrum T(E) in the

inner product of the denominators, thus

�2

hWðEÞETðEÞi
¼

n1E2
1T2ðE1Þ þ n2E2

2T2ðE2Þ þ . . .þ nbE2
bT2ðEbÞ

n1E2
1T2ðE1Þ þ n2E2

2T2ðE2Þ þ . . .þ nbE2
bT2ðEbÞ

¼ 1 ð12Þ

The simple expression that results: �2 ¼ hWðEÞETðEÞi

suggests its value where quantum energy dispersing imaging

detectors are used in pileup mode.

5. Conclusion

A measure of the contribution of individual quanta may be

had from macroscopic measurements involving the index of

dispersion. Where linear response conditions are met and the

measured quanta are monodisperse, the index of dispersion

�2
W=hWi is proportional to the mean contribution of each

quantum [equation (3)]. The Fano factor (Fano, 1947)

expresses that proportionality inasmuch as it relates to partial

registry of quanta by the measurement apparatus. Otherwise,

energy dependence of losses T(E) and dispersion of the

spectrum S(E) are involved according to equation (4). The

situations where it lies behind the provision of quantum

information are diverse. For electromagnetic radiation,

requirements are that the measurement apparatus’ response is

not compromised by any measurement nonlinearity at the

level of the quantum (thresholding and exponential gain being

particularly offensive but common situations), and that the

quanta obey a Poisson distribution in their contribution to

witnessed signals Wi. Under these conditions �2=hWi can act

as a metric of the quanta’s individual content when M

measurements are made, although only up to the point where

equation (6) applies. Equation (6) invokes variance due to

digitization/pixellation intervals. When that happens it is time

to review and upgrade aspects of the experiment. Parametric

models of S(E) and T(E) can be substantially examined via

equation (4). This allows insight into an often ‘black box’

chain of events within apparatus, and the determination of

samples by hyperspectral approaches employing statistics. A

close relationship exists to unfolding procedures, which are

thereby usefully extended.

APPENDIX A
Expansions of equation (1) and the part played by T(E)

Equation (1) contains terms expandable according to the

context. Thus, for X-rays, the photon energy may be written

E = h	. The number of quanta captured by a detector may be

considered in its spectral form, as is done, for example, in

equations (7) and (8).

The transmission function T(E) in equation (1) covers a

great multitude of evils. The mere stopping of a quantum

within the sensitive region of the detector by no means

guarantees that its energy content will be fully measured, and

therein lies much of the nature of this work. In X-ray contexts,

the transfer of energy within the system to produce the

eventual witnessed measurement may involve many funda-

mental changes, involving ion and photoelectron generation,

partial (or complete) thermalization, surmounting of band-

gaps, exciton formation, fluorescence generation, analog

current and voltage manipulations etc. with partial losses and

introduction of noise at each step. Our formalism intentionally

retains flexibility for a huge variety of possible physical causes,

corresponding to a great variety of detector signal chains that

are known to exist. The fraction of a quantum’s energy that is

actually deposited in the detector may vary depending on the

precise location within the absorber where its wavefunction

opens a new energy channel, and for many reasons the

subsequent transformations and losses leading to an even-

tually witnessed signal can depend on the quantum energy.

The factor T(E) contains all these matters. The variety and

nature of conversions and losses obviously depends on the

particular detector, though in broad terms one might be

tempted to write something like:

T Eð Þ ¼ A Eð ÞB Eð ÞCðEÞ: ð13Þ

Here A(E) could permit description of non-detected heat

formation in non-calorimetric detectors, recombination losses,

finite optical and charge collection efficiencies; B(E) could

cover opamp gains, and potentially nonlinear processes such

as avalanche gains, while C(E) can describe matters such as

finite dynamic range, offset errors, artificial or intrinsic

thresholds, activation barriers and sources of spectral redis-

tribution. Given a particular detector, one typically has reason

to quantitatively examine and research all such aspects to the

extent permitted by warranties and industrial product disclo-

sure agreements. Clearly, for present purposes we must be

satisfied with general and broad awareness of the roles played

by the many factors that always do contribute to T(E).

Bandgaps and any artificial discrimination or thresholding,

digitization intervals, nonlinear gains, and spectral redis-

tribution are matters of particular awareness throughout this

work.
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APPENDIX B
The Poisson distribution

P hxi; kð Þ ¼
hxikexpð�hxiÞ

k!
ð14Þ

can be derived in various ways, allowing substantial decou-

pling from matters of temporal resolution (see Appendix F).

Given the imposition of T(E) = 1 permissible in theory, the

Poisson distribution has the distinguishing feature that

�2 ¼ hxi (Prigogine, 1978). Its index of dispersion is thus

�2=hxi ¼ 1. In the context of this work this may be interpreted

as saying that for the theoretical ideal system with T(E) = 1, its

index of dispersion is nothing other than the quantized

interval between successive integers in the denominator of

equation (14); in other words, �k = 1.

For sufficient k the Poisson distribution may be considered

almost continuous in k. The situation motivates the Stirling

approximation ln k! ’ k ln k� k for the high k values typical

in statistical mechanics; factorials may also be rendered

continuous using the �-function, being valuable for calculus

operations.

A feature of the Poisson distribution is its very rapid

convergence to Gaussian shape (Kittel & Kroemer, 1980)

even for quite small hxi (Appendix G). Measurements of

residuals in photon counting experiments are typically quite

unable to distinguish the two. By appropriate normalization of

known-Poisson residuals, observation of Gaussian distributed

residuals becomes a strong indicator that no further para-

meterization of a given dataset is possible (Uhlig et al., 2013).

APPENDIX C
Standard deviation essentials

We use the usual notation for variance �2 and its positive

square root �, the standard deviation. For observations

{x1, x2, . . . , xM} of an observed random variable x, the mean

hxi ¼
P

ixi

� �
=M. By definition

�2 ¼hx2i � hxi2

¼
X

i
xi � hxið Þ

2=M: ð15Þ

The first equality is valuable when given only the histogram of

outcomes from the process, and to parameterize continuum

situations. As a centrally important example of its use, a top-

hat function of width a associated with pixellation or digiti-

zation (Thompson et al., 2002) contributes the following

variance by evaluating the integral over the binwidth

�2
a ¼

1

a

Z a=2

�a=2

x2dx�

Z a=2

�a=2

xdx

� �2
( )

¼
a2

12
: ð16Þ

It often appears in detector design in connection with the least

significant digital bit of analog to digital converters, in which

context it may be referred to as ‘quantization’ noise (Janesick,

2001; Holst & Lomheim, 2007). The second equality in (15)

comes into play when faced with a corresponding dataset. It is

possible to make a ‘running’ estimate of the standard devia-

tion that grows as more of a dataset is absorbed into the

calculation, just as a ‘running’ average is possible. Quadrature

addition of uncorrelated variances is equivalent to convolu-

tion of the corresponding Gaussian distributions.

Using equation (15) the index of dispersion becomes

�2

hxi
¼
hx2i

hxi
� hxi ¼

P
ix

2
iP

ixi

� hxi ð17Þ

which also applies to any distribution. The index of dispersion

has the same units as x, being a clue to its significance.

The witnessed observables xi may have arrived via the

central limit theorem (Appendix G), as happens in our X-ray

measurements. In the case of non-calorimetric X-ray detec-

tion, intensity observations are the post-calibration conse-

quence of measurements that access only a fraction of the

original X-ray photons’ energy (see Appendix F and Appendix

H). Each xi in the dataset is burdened in this way; it carries a

part of the energy E that is its root cause, but it also carries the

scars of transfer through all aspects of the detection process

and measurement apparatus, T(E) [equation (13)].

Progress often starts by supposing that T(E) = 1, antici-

pating �2=hxi ¼ 1 for a Poisson distribution, as described

earlier. Further progress then comes from deeper analysis of

T(E) and recognition of the role played by spectral dispersion

in equation (4), which is an extension of the monochromatic

equation (3). In the remaining appendices, evidence is accu-

mulated that equation (24) is a closer expression of physical

reality than equation (3), although both are valid.

In its original context (Fano, 1947), the Fano factor

expressed essentially the fraction of monochromatic parent

quantas’ energy that can be accounted for in statistically

observed measurements. As such it is intimately connected to

the partial registry described in Appendix H. In other words,

the Fano factor may be said to equal the measured quantity

ET(E) (this being the instrument-related factor that

normalizes �2=hxi upon practical measurement of a Poisson

process), but only for a strictly monodisperse situation as

described by equation (3). Because spectral breadth acts to

increase the index of dispersion via equation (4), the inter-

pretation of a Fano factor may be rather complicated in

practice, and perhaps not always appropriate.

APPENDIX D
A random walk/Brownian motion analogy

Consider a flat field radiation image on an ideal proportional

X-ray area detector (no intrinsic noise), and imagine each

measured pixel intensity is represented by the length of a

piece of string. The analogy facilitates logical connection to

one-dimensional random walk diffusion, with its mature

contexts in many disciplines. (The string length might instead

be governed by the start and end positions of an ant, which for

every step forward randomly decides to take a step either

forward or backwards, the total number of steps chosen

according to a Poisson distribution.) Unlike radiation detec-

tors, there are normally no surreptitious losses when
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measuring string lengths. Here the string lengths will be

distributed with mean hxi and standard deviation �. Also

importantly, for any individual pixel within the field, its

repeated measurement will give those same values of mean hxi

and standard deviation �. For a Gaussian distribution the

probability of deviance by amount x from the mean hxi is

P / exp �
x2

2�2

� �
: ð18Þ

Statistical mechanics arguments show that the probability P of

ending such a walk an amount x different from the mean hxi is

approximately (Atkins, 1998)

P ¼
2


N

� �1=2

exp �
x2

2N�2

� �
; ð19Þ

where N is the total number of steps and � is the average step

size. By relating the coefficients of the exponents of (18) and

(19) (as is done to arrive at the Einstein–Smoluchowski

equation; Atkins, 1998; Mott & Gurney, 1948)

� ¼
ffiffiffiffi
N
p

�: ð20Þ

A key property of the Poisson distribution is �2 = x, so that as

implied by equations (1)–(3)

N ¼ hxi=�ð Þ
2: ð21Þ

Substituting (21) into (20) and rearranging finally reveals the

anticipated result for this lossless analogy: equality between

the average step size and the index of dispersion

� ¼ �2=hxi: ð22Þ

Brownian motion mathematics has been widely studied for its

strong relevance to statistical sciences. It may be useful to

mention a potential pitfall involving the limit of a ratio

(Klafter et al., 1996) as opposed to the ratio of a limit,

described further by Jaynes (1991).

APPENDIX E
Monte Carlo simulations

Spreadsheets easily demonstrate several key points of this

work. This work used Microsoft Excel and Python according

to scripting needs.

E1. Procedure

To populate an evenly binned S(E) spectrum [e.g. equations

(7) and (8)], the normalized cumulant function of S(E) is

formed. In its range, each energy bin thus acquires the width

S Eið Þ=
P

iS Eið Þ
� �

, collectively spanning the interval [0,1). Next,

a field of maximally entropic random numbers is established

on the same interval [0,1), with their total count N elected

according to a Poisson distribution about an expectation value

hNi. By raining the random numbers into the cumulant

intervals, each bin of S(E) randomly receives events in

proportion to its local value of S(E). The corresponding

Monte Carlo histogram of S(E) is built in this way. In other

words, its total population is Poisson distributed, as is each bin,

with each bin having the required expectation value of

NSðEiÞ=½
P

iSðEiÞ� in the limit of many simulations. This is the

Poisson-populated maximum-entropy Bayesian approach

indicated by Jaynes (1983); it can equivalently be seen as a

Monte Carlo approach to Lebesgue’s integration (Poole Jr,

1998). [As a practical approach it is worth noticing that

because of this bin-based approach, the outcome is subject to

the form of variance described by equation (16). While not a

problem in the immediate context, it can be avoided by

forming a list of maximally entropic random numbers that,

when arranged in order, may be effectively mapped to the

cumulant function in a linear fit (Jaynes, 1991).]

As a simple but key demonstration, using the Poisson

distribution of equation (14) with some parametric value of x,

each value in the field of random numbers can be mapped to

its corresponding k value. Given a large field of random

numbers, this Monte Carlo approach confirms that �2=hxi ’ 1

by either histogram or set-based approaches of equations (15)

and (17). However, if each looked-up k value is now multi-

plied by a factor g, then the same histogram or set-based

approaches yield �2=hxi ’ g, as expected from the role of

T(E) in equations (3) and (4).

E2. From monochromatic to bichromatic

Fig. 3 shows an informative example populated by this

Monte Carlo approach. It is an artificial bichromatic situation,

applied as an analytical test on the way to incorporating more

advanced spectral models, to ensure the expected quantitative

behaviour. Two photon energy bins (E1 and E2) with nomin-

ally equal population n1 = n2 diverge in energy from their fixed

average value SðEÞ, such that E1 ¼ SðEÞ � � and

E2 ¼ SðEÞ þ �. The average total intensity obeys i1 þ i2 ¼ I

and the intensities’ standard deviations add in quadrature:

�2
1 þ �

2
2 ¼ �

2. Equations (1), (2) and (4) are obeyed, and for

now assume a mathematically ideal detector [TðEÞ ¼ 1]. With

these conditions, equation (4) simplifies to

�2

I
¼

n1E2
1T2 E1ð Þ þ n2E2

2T2 Eð Þ

n1E1T E1ð Þ þ n2E2T E2ð Þ
¼

E2
1 þ E2

2

E1 þ E2

¼ hS Eð Þi þ
�2

hS Eð Þi

� hS Eð Þi: ð23Þ

The result is quadratic with respect to the difference � and is

plotted as the solid curve in the second panel of Fig. 3. In

particular it is not a flat line, as it would be if equation (4)

merely gave the expectation energy, hSðEÞi. Populating the

spectra using the procedure described above agrees well with

equation (23), supporting the viability of both the Monte

Carlo code and equation (4).

The observation in equation (23) and Fig. 3 warns that an

interpretation �2=hxi / hSðEÞi is fundamentally wrong (it is

not the mean value), except in monodisperse situations.

Rather, it shows to expect an estimate that will be slightly high

[by a fraction of hSðEÞi], the overestimate increasing according

to how disperse the spectrum is. The Cauchy–Schwarz

inequality offers generalization in this context (Polad, 2008).
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The name ‘index of dispersion’ is clearly appropriate for the

ratio �2=hxi, with the example above illustrating that it can be

at most 2 in the extreme case of divergent dispersion in lossless

measurements. The character of the test in Fig. 3 suggests its

roots in the calculation of central moments in statistics, which

is more clearly evident in equations (15)–(17).

A further aspect of this demonstration is that �2=hxi has the

potential to indicate an average value for the quanta where in

fact none of them actually have that precise value. (For

example, vapour density measurement of a mixed gas such as

air will not give the molecular weight of any actual existing

molecule; to be effective, the gas must be pure.)

E3. Dispersion in the polychromatic case

Fig. 4 extends the test of Fig. 3 to the full spectral simulation

of material filtered bremsstrahlung, applying equations (7)

and (8) with T(E) = 1 using the Monte Carlo procedure

inspired by Jaynes (1983). Again in this broadband case, it is

seen that the polychromatic spectral dispersion leads to good

correlation of �2/I with equation (4), while fractionally over-

estimating the simple average Eavg ¼ hSðEÞi.

E4. Tests of scaling laws

Other powerful results can be had from Monte Carlo

simulations. The following are obtained by this approach,

independently of prior expectations and without noise sources

that often frustrate real-world experiments. Consequently,

they are strong indicators of the correctness of (or mistakes

in!) corresponding analytical arguments. Simulations in Fig. 5

demonstrate that:

(i) The error in �2/I is independent of the expectation

number of photons in individual measurements.

(ii) Variance among measurements of �2/I scale as M�1,

where M is the number of measurements made. Equivalently:

�ð�2=IÞ / 1=
ffiffiffiffiffi
M
p

(like the standard error in the mean).

Unsurprisingly, further analogous simulations show that the

latter two outcomes apply equally well in polychromatic cases.

APPENDIX F
A pause on temporal aspects

Electromagnetic intensity is regularly encountered expressed

as a flux; the energy through a specified increment of

[positionx,y, divergencex,y] phase space, per unit of time. The
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Figure 4
This extends Fig. 2(b), showing how polychromatic spectral dispersion
alters the interpretation of the index of dispersion away from the average
energy SðEÞ. Here Monte Carlo tests of equation (4) used bremsstrahlung
and material filtering spectral simulation as per equations (7) and (8).
Each of the closed circles (read from left and lower axes) shows �2=I from
a set of simulations; scatter in the results are seen to slightly overestimate
the average photon energy SðEÞ. Open triangles (read from upper and
right axes) show the same results plotted against the argument of
equation (4).

Figure 3
A spectrum consisting of two nominally equally populated peaks is separated by an interval. This may be Monte Carlo populated with events, using the
scheme described in the text. Each point in the plot at right shows the outcome from a large number of such simulations, assuming ideal detection
[T(E) = 1]. As the gap between the peaks grows, the simulated values of �2/I diverge from the mean, in accordance with equations (23) and (4).



present work has deliberately avoided expressions involving

time. To see why, consider first a continuously emitting source.

Our concern is with situations where stochastic quantization

of the energy applies. In that very traditional situation, it

would seem only natural to attend to exposure durations.

However, a modified form of mathematical support is then

needed in ultrafast situations. There, photons travel as a

packet whose physical length is far shorter than the length of

the detector absorber in which their effects shall statistically

manifest. In the latter situation, what temporal basis is

appropriate for the observed flux? A temporally based

formalism might be arranged that encompasses a continuum

of such situations – however, its inclusion of the temporal

domain would find subsequent needs to encompass the time-

scales of various primary processes (Hart & Anbar, 1970),

gain-bandwidth products at the levels of primary physics

(Rose, 1963), spectral distribution of power associated with

detector noise sources (Robinson, 1962), secondary amplifi-

cation (Robinson, 1962; Horowitz & Hill, 1989) and their

inevitable Fourier transformation into spectral resolution.

Meanwhile, accounting for those aspects does nothing to

clarify or dispel the actual objective of this work, namely, to

witness the role of the index of dispersion as a metric of

quanta. To be sure, temporal expressions are absolutely

mandatory in their respective contexts, and can only be

collectively consistent with our present quarry. As a devel-

opmental analogy, the Maxwell Boltzmann distribution for

molecular velocities is necessarily consistent with the ideal gas

law – yet the ideal gas law is mostly preferred when entering a

description of gases. Desirable and inevitable consistency

across broad timescales (Coppens, 2015) must here be

moderated by a kind of artificial horizon (Jaynes, 1991). So we

have sought to relieve analyses of temporal aspects where

possible, at least for now.

The present quest appears serviceable by a time-

independent view of statistical mechanics, in which temporal

aspects can be at least allayed until they are required, as when

dealing with temporal fluctuations (Dugdale, 1966). In taking

this approach, we observe the equivalence of time averages for

stationary processes, and ensemble averages, typically denoted

�xx and hxi respectively (Robinson, 1962).

F1. Typical situations

In radiation detection contexts, the T(E) function invariably

is a function of time. This relates to the fact that different

physical phenomena are measurable as detectable signals, on

different timescales, depending on the detector. All too often,

X-ray detection has evolved from what is the easiest or most

empirically convenient trap-state symptom that can be

measured. All trap states (energetic photoelectrons, electrons

in conduction bands, colour centres, excitonic states, fluores-

cence etc.) must eventually thermalize and dissipate their

energy as heat (in the end motivating calorimetry). A complex

flow of temporally overlapping intermediate states can be

anticipated (Schmidt et al., 2003), and is inevitable in any

detector system. Fig. 6 implies some typical intermediate

processes via time-resolved photography of a cloud chamber

(Wilson, 1912). Insights from such images have been funda-

mental to charged particle and X-ray detector design. In the

photographed situation, either the scattered light or the

electrically measurable ionization are typically considered as

measurable output signals (cf. ionization chamber). The

optical signal is made ill-conditioned by a diffusion-moderated

avalanche-gain process, further involving the fundamentally

independent energy of the scattered light (Fullagar, Paganin et

al., 2010; Fullagar et al., 2011a). For the electrical signal,

spontaneous charge recombination has consequences in the

measured temporal domain, at the same time implicating the

independent energy supply of its electronic amplifier’s power

supply (Washtell, 1958). Depending on bias voltage and

geometric configurations one may end up with a gas-

proportional detector in the sense used by Fano (1947) or a

Geiger tube (Strong, 1938). In truth then, either signal evolves
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Figure 5
Each point in the left panel shows the variance among 200 Monte Carlo calculations of �2/I for a monochromatic 100 keV spectrum. Each of these 200 �2/
I calculations simulated a set of intensities, where the number of individual simulations (M in the text) is denoted by legend symbols. Within each
individual simulation, the Poisson expectation value for photon observation (N in the text) is indicated on the horizontal axis. The right panel is a log–log
plot using ln(M) as the ordinate axis; the fitted slope confirms the scaling �2

�2=Ið Þ
/ M��1, without recourse to algebraic analysis.



with time in nonlinear ways. Using the first of these two

approaches, the images in Fig. 6 next involved a chain of basic

physical events (Mott & Gurney, 1948) leading to the photo-

graphs. The final outcome is stable on human and indeed

trans-generational timeframes, today using digital storage

techniques’ binary information metastably trapped in flip-flop

circuits and bistable memory elements (Horowitz & Hill,

1989). Potentially usefully, the light scattered (Fullagar et al.,

2011b) from the many photoelectron trails should, under

suitable conditions, satisfy equation (1), from which the rest

follows. The total scattered light will obviously be subject to

many parameters including delay and exposure times, refrac-

tive indices, temperatures, wavelengths and so forth; but to

dwell on them cannot serve immediate interests. Different

physical, chemical, optical, thermal, electronic and other

detection schemes are each associated with temporal depen-

dency of T(E). Each has corresponding complexity that is

typically swept into equation (13).

F2. What non-thermal detectors do

One sees that the purpose of the X-ray detector is to inte-

grate an observable signal arising from one or other ephem-

eral intermediate state, with most approaches offering a proxy

for just a fraction of the quantum’s original energy on its

pathway to thermalization. The detector system must then

present this integral to the user in a permanent form amenable

to calibration, if the apparatus is to be useful as a proportional

detector. The observable phenomenon must manifest on a

timescale that is short compared with the integration, while

the integration must occur on a timescale that is short

compared with the user’s needs. The final result represents a

calibrated accumulation of whatever quanta are associated

with the observable fraction of the photons’ original energy.

The permanent form can be delivered as a photograph, a

logbook recording of a needle’s deflection, or binary numbers

for digital storage etc. The temporal and potentially lossy

processes that go on ‘under the bonnet’ of all radiation

detectors are assumed to have been addressed to the best

reasonable extent by detector manufacturers when one makes

a purchase; and they usually are.

F3. Time and statistical inference in the bigger picture

Being just another part of the electromagnetic spectrum,

the frequency (energy) dependence of X-ray noise assess-

ments is necessarily analogous to that observed elsewhere in

the spectrum. Noise versus bandwidth assessments in elec-

tronic circuits (Horowitz & Hill, 1989; Robinson, 1962)

translate quite generally into optical (Davis, 1996; Goodman,

1985) and X-ray spectral (Als-Nielsen & McMorrow, 2001)

considerations, duly motivating studies of mathematical

behaviour in the complex frequency plane in each case. In

absorption and scattering experiments matter is viewed as an

assembly of coupled oscillators (Thompson, 1919) and much

effort goes into calculating dispersion properties of the

assembly (Brillouin, 1946; Zangwill, 2015). The assembly is

collectively interrogated by individual quanta (Schrödinger,

1952), according to their energies and wave properties.

Despite this nonlocality the quantum can only open alter-

native energy channels in one place according to probability

(Rayleigh, 1880, 1919; Norton et al., 1955; Feynman, 1985;

Susskind & Friedman, 2014) and the conservation of energy.

This occurs with particle-like behaviour, according to the

quantum’s finite and range-independent energy. Appreciation

of this peculiar situation has been an everyday experience for

some generations of short-� diffraction scientists (Bragg,

1962), while the wave-particle delocalization of the quantum

and its seemingly magical collapse to open a highly localized

detection channel has never been an altogether comfortable

fact (Ives, 1951; Jaynes, 2003). Taken together with well

founded statistical interpretations (Landau & Lifshitz, 1969;

Glansdorff & Prigogine, 1971; Prigogine, 1978), it has been the

source of deep speculation (Bohm & Vigier, 1954; Hazelett &

Turner, 1979; LaViolette, 2010; Ananthaswamy, 2017).

Contemporary explorations of temporal symmetry (Hadad et

al., 2016) and other temporal developments (Yao et al., 2017)

suggest ongoing relevance to crystallography.

APPENDIX G
The central limit theorem

The central limit theorem is the saving grace of the complexity

that otherwise besets the T(E) function. Fig. 7 outlines its

Philip Coppens tribute

688 Wilfred K. Fullagar et al. � Unravelling the Fano factor Acta Cryst. (2017). B73, 675–695

Figure 6
Time-resolved X-ray pump, optical probe photographs of photoelectron
trails from an X-ray beam propagating in the left–right direction in a
cloud chamber (Wilson, 1912). In the lower image an electric field acting
in the vertical direction separated positive and negative droplets prior to
the flash of optical illumination that exposed the photograph. A doubling
of the trails shows the presence of droplets with both charge, while their
diffusion during the temporal interval is also evident. Reproduced with
permission.



modus operandii. Part (a) shows, on average, how a quantum

from a monochromatic source might contribute to a witnes-

sable response, as a fraction of its quantum energy, in some

different detectors. Normalizing the area under each curve

corresponds to assuming that the quantum contributes to a

witnessed signal. The quantum’s energy is measured with

E=h	 ¼ 1 only if it is witnessed entirely as heat, since in any

other detection scenario, a portion is invariably lost as (non-

detected) heat. Semiconductor detectors register just a frac-

tion of an original X-ray photon’s energy (e.g. �1.1 eV/

3.65 eV ’ 0.3 in silicon; the bandgap divided by the average

X-ray energy per electron-hole pair; the fraction may be

associated with the Fano factor as originally formulated; Fano,

1947). Scintillation or scatter based detectors are worse still,

with many optical losses, trap states and recombination

phenomena to compound and smear variations in optical

fluorescence yields and scatter directionality. Obviously many

other detector types exist too. Such a single quantum may or

may not be individually detectable, depending on the magni-

tude of those losses, the energy of the quantum, internal gain

in the detector, and the envelope of the detector’s noise, �d. In

the present work we rely on high photon energies far above

the scintillator material’s bandgap such that equation (1) is

valid. Their number N is sufficiently large to cause both the

signal (/ N) and shot noise (/
ffiffiffiffi
N
p

) to outgrow the �d

envelope of detector noise. Whatever the detector, its average

response curve to monochromatic quanta could be depicted as

in Fig. 7(a). Any such curve has a mean value �1 and a stan-

dard deviation �1.

When registering many quanta in a single measurement,

their pileup is observed. Just one quantum would have given a

detector response somewhere on the horizontal axis in panel a

of Fig. 7, with likelihood weighted by the vertical axis value. A

second quantum adds to this by doing the same; statistically

the result is a self-convolution. Subsequent quanta repeat this

convolution again and again, P times for P quanta. (The

process can also be modelled as a Markov chain.) In the limit

of many convolutions, the central limit theorem applies, and

whatever function appears in (a) smears to a Gaussian, shown

in (b). This Gaussian has mean � ¼ P�1 and standard

deviation � ¼
ffiffiffiffi
P
p

�1 (quanta’s mutual effects are non-corre-

lated in linear regimes of intensity measurement). In the limit

P!1, the ratio �2=� ¼ �2
1=�1 is uniquely preserved, being

the eigenfunction of the process (a property that is perhaps

insufficiently recognized). It should be clear that � is identi-

fiable with witnessed measurements W and � with their

variation, indicating the connection to equations (3)

and (4).

APPENDIX H
Partial registry

Multiple forms of partial registry (Moseley et al., 1984;

Prigozhin et al., 2003; Fullagar et al., 2008; Redus et al., 2009)
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Figure 7
The fractional energy of a monochromatic photon registered by a detector is sketched in (a) for a few detector types, and in any case may be less than the
detector’s intrinsic noise envelope (not shown). Pileup corresponds to repeated self-convolution, which in the limit of many photons leads to a Gaussian
distribution via the central limit theorem (b). In polychromatic cases the detector response can be different for different photon energies (c). After
modulating the detector response by the corresponding spectral weight, the average photon response may be as shown in (d). Their pileup again leads to
a Gaussian distribution via the central limit theorem.



cause spectral redistribution of observed spectra (Prigozhin et

al., 2000). From Appendix F and Appendix G we see that in

non-calorimetric cases a detection procedure witnesses only a

fraction of the photon’s original energy �1(E)E, noting the

general energy dependence of �1 (Fig. 7c). The quantity �1(E)

relates directly to the ‘internal quantum efficiency’ (Hartmann

et al., 2006). This fraction is transmitted through a detection

chain that hopefully(!) gives an output response proportional

to its input signal, but which can contain changes of form of

the signal en route that introduce more or less deliberate

nonlinearities, as outlined in Appendix A. Denoting the

detector chain’s actual response as T 0(E), it is now seen that

�2=hWi ¼ �1 Eð ÞET 0 Eð Þ; ð24Þ

whereby energy dependence can arise either for ‘fundamental’

reasons [the energy dependence of �1(E)], or for reasons

relating to the construction of the signal transfer apparatus

[T 0(E)]. In applications, proportionality to the actual photon

energy is what makes equation (24) useful. In eagerness to

exploit that, one typically lumps �1 Eð ÞT 0 Eð Þ ¼ T Eð Þ, as is

done in equation (3). The crime can be made with an aware-

ness that permits progress (Uhlig et al., 2011), but sometimes it

may also be at the expense of satisfactory knowledge that the

resulting observation has potential to be messed up in two

ways: at a ‘fundamental’ signal generation level [�1(E)] and/or

by nonlinearity in the signal transfer apparatus [T 0(E)].

Awareness of the deeper situation is required for the

polychromatic extension to equation (4). Such an

understanding in due course also motivates cryogenic

microcalorimetry (Enss, 2005; Fullagar et al., 2007; Fullagar,

Uhlig et al., 2010; Mazin et al., 2013), in which partial registry

due to trap state, photoelectron (Fullagar et al., 2008) and X-

ray fluorescence (Redus et al., 2009) losses are minimized at

the design stage (Moseley et al., 1984). There, �1 Eð Þ ’ 1, and

in a related way, T 0(E) does not suffer the consequences of

physical issues (e.g. bandgaps), or thresholding/discrimination,

or exponential gain (Robbins & Hadwen, 2003; Tutt et al.,

2012), that often are imposed between users and the physical

phenomena of radiation detection.

H1. The role of energy barriers at sufficiently low photon
energies

In particular, at optical and lower photon energies, this

work’s approach would surely have been very broadly applied

long ago (e.g. for estimation of colours from black and white

footage), if not for an important catch! The catch is simply that

a threshold photon energy (energetic barrier) exists in non-

calorimetric detectors, below which no detectable response is

produced other than by thermal or defect-assisted leakage.

This governs the nature of T(E) at the corresponding energies

and is easily illustrated by example. In silicon the bandgap is

�1.1 eV, but the electron yield does not increase beyond one

until photon energies exceed �4 eV, as shown in Fig. 8. These

considerations underpin the Shockley–Queisser efficiency

limit when presented with blackbody radiation (Shockley &

Queisser, 1961) and are an intrinsic aspect within the T(E)

term in equation (6). Such barriers are central to our rela-

tionship with energy and lie at the heart of debates between

photovoltaic and photosynthetic versus thermal approaches to

energy capture. The equivalent ‘chemical’ Arrhenius barriers

allow chemical energy to be barricaded (Gonick & Criddle,

2005) for use on demand between the hot source of the sun

and the cold sink of space (Raman et al., 2014). The resulting

capacity for nonequilibrium in turn drives the organization

that is characteristic of life (Turing, 1952; Prigogine, 1978).

However, in this work the consequence is that no radiation

receiver based on a suprathermal energy barrier can satis-

factorily obey equation (1) until the energy of the detected

quanta is very substantially higher than that barrier. Equation

(1) cannot be valid when the quantum to be detected faces

barriers comparable to or greater than its own energy. When

the proportionality of equation (1) is lost, the utility of �2=hWi
as a metric of the quanta breaks down.

The virtues of low-temperature thermal measurement are

thus quickly seen: metallic absorbers lack a bandgap except at

the quantum pseudo-continuum level. Sensitive calorimeter

detectors should thus enable spectroscopic information at

optical and sub-optical photon energies via equation (4), even

when the quanta themselves may not be individually

discernible above the detector noise (Mazin et al., 2013;

Becker et al., 2014). The latter is the situation that applies in

the X-ray experiments of Fig. 1 and Fig. 2, where the X-ray

photon energies are vastly greater than the absorbing scintil-

lator’s bandgap.
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Figure 8
The spectral production of a detectable electronic signal in silicon,
reproduced with permission (Hartmann et al., 2006). Like any other non-
calorimetric technique, the excitation of an electron over a bandgap
cannot produce a corresponding fractional number of conduction
electrons if the photon energy is only fractionally greater than the
bandgap energy. The correspondingly flat response caused by the
bandgap (here extending over the full visible spectrum) removes the
essential energy dependence in equation (1) for photons in this energy
range.



APPENDIX I
Information from macroscopic examples

I1. Statistical inference of raindrop size

Signal losses are avoidable in a simple wet-weather

experiment, inspired by a ‘bucket’ analogy for CCD operation

attributed to Kristian and Blouke (Janesick, 2001). This

experiment has the objective of measuring an average rain-

drop weight hwi by weighing the rainwater collected in an

array of cups. As indicated in Appendix F, the arrival time of

each drop is irrelevant, provided that all drops occur within

the designated exposure/integration interval. The rain’s

overall nature and size distribution will of course vary from

one shower to the next, and we have no model for its spectral

size dispersion (Appendix E3), so will assume it is mono-

chromatic. If one raindrop does not significantly influence

others, we can suppose a Poisson distribution for their arrival,

both in time, and from one cup to the next. The cups were

individually pre-weighed, and water was carefully wiped off

their outside surface prior to weighing, so that the mass of

water fallen inside each cup could be established. See Fig. 9.

We do not (at first) anticipate any spatial variation.

However, the first measurement (photographed) did show

some, giving high values for the edge cups due to splatter from

the surrounding pavement. This was addressed on subsequent

occasions using bricks under the tray to raise the cup lips

28 cm array away from the pavement; but now a second

measurement received little rain during a brief shower on a

dry day, and noticeable evaporation occurred during the hour

it took to measure the weights. A third measurement received

an intermediate amount of rain, and obviated evaporation

using a cover; the weights are shown in the table at bottom

right of Fig. 9. Digital scales had a display error of � 0.01 g,

giving a nominal error of� 0.02 g after subtracting the dry cup

weight. Here the complications appear to have been addressed

by the experiment and no patterns could be inferred when

plotting weights along the known dimensions of x, y or

measurement order. On this occasion we find �2/hwi =

0.004161 g (equivalent spherical diameter 2.00 mm). It is

presumed slightly higher than the mean collected raindrop

diameter due to dispersion (Appendix E3).

I2. A non-Poisson example, where futility meets utility

It is useful to consider if any meaning might be attached to a

measured value of �2=hxi for a distribution that we know not

to associate with a Poisson distribution. The normal (Gaus-

sian) distribution is a special and valuable case to consider.

This is because: (i) a Poisson distribution rapidly converges to

Gaussian shape with increasing hxi; (ii) a difference of Poisson

distributions is very commonly encountered [e.g. from the full

or partial nulling of currents in bridge circuits and servo

control mechanisms of scientific instrumentation (Moore et al.,

2003)]; and (iii) a vast number of everyday measurements lead

to Gaussian behaviour.

Given two nulled Poissonian distributions it can be seen

how the index of dispersion will fail, as follows. When two

equivalent Poissonians each involving the same kind of quanta

and each characterized by the same variance �2
P are mutually

subtracted, the resulting difference distribution will be

symmetric (and if not analytically Gaussian, then ordinarily so

close to Gaussian that there is rarely any reason to make a

distinction). For an uncorrelated subtraction the variances will

add in quadrature, so that �2 ¼ 2�2
P. The average � ¼ 0 makes

it clear that the index of dispersion �2=� says nothing about

the quanta that we know are involved in this example.

That rationale shows more generally to avoid situations

where noisy subtractions or additions are involved (such as

when estimating expectation values to subtract). The special

property �2 ¼ hxi of the Poisson distribution is essential to the

denominator if the index of dispersion is to be used as a

metric of quanta, and must not be interfered with by such
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Figure 9
Pre-weighed cups (top left) were arranged as an array (top right) and placed in the rain (lower left). At the end of the collection, the mass of water within
each cup was recorded (lower right; masses in grams). One cup in the array was missing (budget constraints).



manipulations. Any uncorrelated distribution added or

subtracted will convolve into an observed �2. However, as

long as that distribution has zero mean it will not alter the

index of dispersion’s denominator, only its numerator.

Quadrature addition in the numerator (arising from convo-

lutions) can only increase it, giving a falsely high index of

dispersion where such noise is present. One must be a savvy

and careful experimentalist if a measured index of dispersion

is to be trusted as a metric of quanta.

I2.1. Establishing a bound on a useful number of measure-
ments – analog meets digital. Situations arise where one has

some digital instrument and would like to know how many

measurements might be usefully made, before its digitization

variance confounds the best efforts of the best experi-

mentalist. To proceed, consider the standard error in the mean

�� ¼ �=
ffiffiffiffiffi
M
p

. Here we use � notation (instead of the

customary �), because we shall apply it to the variance �2 in

equation (15), in which �2 is itself expressed as a mean value.

Thus

��2 ¼
�2ffiffiffiffiffi
M
p : ð25Þ

In the absence of any digitization intervals, it may be

presumed that the accuracy of our knowledge of �2 would

become arbitrarily good as M!1. However, when using

digital apparatus the results get pinned according to the

digitization increment, and increasing M!1 can do very

little to reduce the uncertainty. The consequences are

contained in equation (16). So we extend equation (25) as

follows, using �2
g to denote the contribution of variances due to

purely analog sources

��2 ¼
�2ffiffiffiffiffi
M
p ¼

�2
gffiffiffiffiffi
M
p þ

a2

12
: ð26Þ

Viewing the second equality, it is evident that the right-hand

side will come to be entirely dominated by the digitization

variance as M increases. In due course analog errors become

negligible while digital errors remain. Then the remaining

inequality may be rearranged to

M > 144
�

a

� �4

; ð27Þ

corresponding to the situation where further measurements

will not reduce uncertainties. This is equation (6).

The indications above can be seen in the measurement

below, where 160 pieces of �5 mm diameter plastic pipe were

manually snipped to�5 mm lengths for a construction project.

The first length was used as an approximate visual template

for the remaining ones, but no particular effort was otherwise

made. Experience tells us to expect a roughly Gaussian

distribution of weights. The snipping procedure could be

interpreted as a kind of human servo mechanism that seeks to

give a null in the difference of pipe lengths, so from the

arguments above, the index of dispersion is not expected to

reveal any putative quantized phenomenon. The pieces were

individually weighed on the same scales used for the raindrop

experiment (with digital interval a = 0.01 g), taking care to

re-zero between each item. In this way the digitization interval

of the scales rounds down, so the average weight of each

digitization bin is 0.005 g higher than observed values. Table 1

shows the result, plotted in Fig. 10 using a Gaussian fit and also

a Poisson fit to show the similarity of the two. From the sum of

variances �2 ¼ �2
g þ a2=12 the analog component is �g =

0.0106 g and dominates the error as expected. The bound

established above shows that for this measurement M > �182

would only be wasted effort on the part of the experimenter,

because of the scales’ digitization increment. Unless the digi-

tization interval a is reduced, the experimenter can do nothing

to better determine real variance (of the kind sought in the

index of dispersion’s numerator) and thereby deconvolve it

from problems worthy of interest; while as soon as that is

done, the scaling M ’ a�4 will very quickly test patience

unless non-digital aspects of experiment error are also

addressed.

I2.2. The role of experimental iteration. Accurate knowl-

edge of the causes of error bars, and thereafter their magni-

tude, is mandatory in the iterative experimental quest to

reduce the variance in the numerator of the index of disper-

sion. The situation is challenging when unsure of the causes.

They might come from splatter on pavements or evaporation

(examples from the raindrop experiment in Appendix I1), a

faint breeze, temperature variability of device parameters,

small electrostatic fields in the surrounding, power supply

fluctuations, gradual sublimation of the sample, or of course

any number of other things, depending on circumstances. As in
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Figure 10
A histogram of manually snipped pipe weights, after compensating for the
rounding-down of the scales on the horizontal axis (see text). The
illustrated error bars show a total of one � in both horizontal and vertical
directions. The vertical error is assumed to be � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
counts
p

, or 1 if zero
counts (no Bessel correction). A normal (Gaussian) fit is shown in green.
By fitting a suitable scaling factor for the horizontal axis it can be
modelled comparably well by a Poisson distribution.

Table 1
Weights of �5 mm diameter plastic pipe cut to � 5 mm lengths using
snips (human error).

Bin average 0.115 0.125 0.135 0.145 0.155 0.165
Count 7 33 57 45 16 2



the raindrop experiment, identification is the key to elimina-

tion.

Error bars and confidence in their causes are the decisive

thing in that quest. Consequently we have refrained from

suggesting error bars in instances where to do so may be

misguiding, or where it would anticipate patterns that are

known to exist, but whose quantitative models would be at

first a wild guess then quickly a major and unnecessary

distraction. Fig. 1 offers an example here, where estimates of

anisotropic energy dependent Compton scatter of background

radiation and the role of detector plane obliquity mean we

have decided to turn away in the interest of progress. The

mentioned errors surely are there. It might be possible with

considerable difficulty (or might not) to crudely estimate their

contributions, or better, somehow eliminate them by experi-

ment refinement (as was done when unwelcome observations

were seen in provisional raindrop measurements, Appendix

I1). The linearity of the �2 versus I plots in Fig. 1 is compelling

enough that scrutinizing error bars with regard to those

matters would only retard the object of this work.

Where confidence exists in the mathematical robustness of

Monte Carlo simulations, they can be a powerful way to avoid

unknown causes of errors whose practical examination

becomes an unnecessary distraction. We have developed and

used them in that way, to demonstrate and guide this work.
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