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bInstitut National de la Santé et de la Recherche Médicale, France

ABSTRACT

In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction
(IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction
is provided by the “space-filling” source trajectory along which the experimental data is collected. The speed
of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate
deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for
CBCT and compare convergence to that of more traditional techniques.
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1. INTRODUCTION

In X-ray computed tomography (CT), radiographs are collected as the X-ray source and detector move relative
to the sample. From this sequence of radiographs, CT reconstruction methods use a model of the tomographic
imaging system to reconstruct a 3d image of the sample.1 The resolution of the reconstructed 3d image is
limited by: the information content of the radiographs; the quality (i.e. signal-to-noise ratio) of the recorded
radiographs; and the accuracy of the assumed model of the tomographic imaging system.

The information content of the radiographs is sufficient to solve the reconstruction problem if appropriate
scanning parameters are chosen.1 The X-ray energy and flux must be chosen such that attenuation contrast is
visible at the detector, and the radiographs must be taken at a sequence of points on a scanning trajectory that
satisfies appropriate data completeness conditions.1 Helical and space-filling trajectories are both examples of
“complete” scanning trajectories.2–4

Noise in the radiographs leads to noise in the reconstructed 3d image.1 In contrast, inaccuracies in the
assumed model of the tomographic imaging system can lead to more structured artefacts.5–10 For example, if the
component of the imaging system deviate from their assumed locations (e.g due to thermal drift), this manifests
as blur or doubled edges in the sample.5–10 Incorrect modeling of refraction or spectral effects can lead to false
edges and streaking.11 These structured artifacts are particularly problematic for automated interpretation of
tomographic images, which is becoming increasingly necessary as these images becomes larger (see, e.g. the 186
GigaVoxel dataset presented in Myers et. al. 201612).

In order to reduce structured artefacts and improve the predictive power of CT imaging methods, we thus
wish to improve our assumed models of the tomographic imaging system. This sort of parameter estimation can
either be done as a pre-processing step before non-iterative tomographic reconstruction, or jointly with iterative
reconstruction of the tomographic image. Iterative model correction as a pre-processing step leads to substantial
improvements in image quality, but is becoming increasingly computationally costly. Many correction techniques
require a partial, or low-resolution reconstruction of the 3d image.5–10 This motivates us to explore iterative
CT reconstruction methods, where the model parameters for the tomographic imaging system may be estimated
jointly with the 3d image itself.6,7, 9, 10,13
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A variety of iterative CT reconstruction methods are present in the literature. A “gold standard” for simplicity
and robustness is Landweber iteration [known in the context of CT as the simultaneous iterative reconstruction
technique (SIRT)], whilst more complex Bayesian reconstruction algorithms [e.g. expectation maximisation for
transmission tomography (EMTR)] can display faster convergence and use more physically accurate noise mod-
els.14 Although these algorithms allow model parameter estimation to proceed jointly with the reconstruction9,13

they are not used routinely due to their prohibitive computational cost. Iterative CT reconstruction methods
take tens to hundreds of iterations to converge, and require at least one projection and back-projection oper-
ation per iteration.14 These projection and back-projection operations have computational complexity scaling
as O(N3lnN) (or O(N4) in most implementations), where N is the number of voxels along one side of the 3d
reconstructed image, and so are extremely time-consuming.15,16 In contrast, non-iterative methods require only
a single back-projection operation.

In order to make iterative CT reconstruction competitive for routine imaging it is thus essential to explore
methods to speed convergence, and reduce the number of iterations required to produce an acceptable 3d image.
In this paper we present a method for preconditioned multigrid Landweber iteration, and show that it produces
an acceptable 3d reconstructed image in only two iterations. The computational load of this method is thus
close to that of non-iterative reconstruction methods. We compare the reconstruction quality and convergence
speed to SIRT, and a variant of EMTR where convergence has been accelerated using ordered subsets. The
extremely fast convergence of this method comes largely from the preconditioning, which is possible when using
a scanning trajectory with an approximately spatially invariant point-spread function (PSF), such as a space-
filling trajectory.4

2. BENCHMARK ITERATIVE RECONSTRUCTION TECHNIQUES

To illustrate the performance (both in terms of quality and convergence) of the preconditioned multigrid Landwe-
ber solver, we will use a micro-CT dataset collected by Grzegorz Pyka at FEI. A micro-focus X-ray source was
used with an accelerating voltage of 70keV and source current of 90µA; low energies were filtered from the beam
using 0.1mm of steel placed over the source aperture. A geopolymer sample and Varian flat-panel detector were
placed 7.52mm and 330mm from the source point respectively. Using 0.7s exposures, 11099 radiographs (30402

pixel) were collected along a space-filling trajectory with a stride of 15.3 degrees.4 As such a large dataset
would take an unacceptably long time to reconstruct using conventional iterative techniques, a 3600 radiograph
subset of the data was extracted and downsampled by a factor of 4. Reconstruction was performed using a
GPU-accellerated, MPI-parallel framework,12 on a desktop box with 512GB of RAM, 2 Intel E5-2690v3 12-core
CPUs, and 3 nVidia Titan X GPUs (each with 12GB onboard RAM). The resulting volume was 640×640×2304
voxels.

Making the projection approximation and ignoring refraction, we express this CT imaging process mathe-
matically as

〈I(r,Θ)〉 = I0(r,Θ) exp [−(Pµ)(r,Θ)] . (1)

In this notation the vector r is a 2d position on the detector, Θ specifies a source and detector position along
the scanning trajectory, 〈I〉 is the expected value of the X-ray intensity recorded by the detector, I0 is the X-ray
intensity incident on the sample, P is the X-ray projection operator, and µ(x) is the linear attenuation coefficient
of the sample at 3d Cartesian coordinates x.

2.1 Simultaneous Iterative Reconstruction Techniques (SIRT)

SIRT reconstruction is a straightforward Landweber iteration according to14

µ(n+1)(x) = µ(n)(x) + αB
{

ln

[
I0(r,Θ)

I(r,Θ)

]
− [Pµ(n)](r,Θ)

}
, (2)

where B is the back-projection operator, (adjoint to the projection operator P), α is a tuning parameter typically
equal to the detector width in pixels, and µ(n) is the estimate of µ at the nth iteration. Each iteration requires a
single projection and back-projection operation. A reconstruction of the geopolymer sample is shown in figure 1.
The blur in the images demonstrates that the reconstruction algorithm has failed to converge after 10 iterations.
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Figure 1. A 6402 voxel slice through the 3d SIRT reconstruction of a geopolymer sample, taken orthogonal to the rotation
axis, after 2 (left) and 10 (right) iterations. The blurry areas are where the reconstruction has yet to converge.

2.2 Ordered-Subset Expectation Maximisation for TRansmission tomography (EMTR)

As a second point of comparison we consider EMTR with ordered subsets (OS). This algorithm is a Bayesian
maximum likelihood estimation algorithm that may be obtained by assuming the recorded contrast ln[I(r,Θ)]
follows a Poisson probability distribution.17 To accelerate convergence the radiographs are divided into M
disjoint subsets denoted here as I(r,Θ(m∈M)). We then define a single full-resolution iteration as involving a
single pass over every subset according to:

µ(n+1/M)(x) = µ(n)(x) +
B
{

exp
[
−[Pµ(n)](r,Θm)

]
− I(r,Θm)

I0(r,Θm)

}
B
{

exp
[
−[Pµ(n)](r,Θm)

]
× (PI)(r,Θm)

} , (3)

where PI denotes the length of the projection of the support of µ(x). OS-EMTR reconstructions of the geopoly-
mer sample are shown in figure 2, and demonstrate improved convergence compared to SIRT (figure 1). The
reconstruction from ten iterations of OS-EMTR still displays slight blurring around the edges, indicating it has
yet to converge. Note that each iteration of OS-EMTR requires two projection operations, and so is roughly half
again as computationally costly as SIRT.

3. PRECONDITIONED MULTIGRID RECONSTRUCTION

Having established a baseline in terms of the performance and convergence speed of existing methods, we now
present our method for iterative tomographic reconstruction by preconditioned multigrid Landweber iteration.

The central idea behind multigrid iterative reconstruction is to exploit the scaling of computational complexity
with the number of voxels N . As projection and back-projection scale strongly with N , they are very quick to
perform on downscaled datasets. Thus in multigrid iterative reconstruction the problem is solved on a hierarchy
of discrete grids, so that the quick-to-compute low-resolution solution may be used as a starting point to compute
a higher-resolution solution.13,18–20 A single iteration of the full multigrid algorithm may be defined recursively
as algorithm 1. Preconditioned Landweber iteration proceeds according to

µ(n+1)(x) = µ(n)(x) + αp ∗ B
{

ln

[
I0(r,Θ)

I(r,Θ)

]
− [Pµ(n)](r,Θ)

}
, (4)
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Figure 2. A 6402 voxel slice through the 3d OS-EMTR reconstruction of a geopolymer sample, taken orthogonal to
the rotation axis, after 2 (left) and 10 (right) iterations. Note the faster convergence, compared to figure 1; this is
predominantly due to the use of ordered subsets.

Figure 3. A 6402 voxel slice through the 3d preconditioned multigrid Landweber reconstruction of a geopolymer sample,
taken orthogonal to the rotation axis, after 1 (left) and 2 (right) iterations. Each iteration has a computational load
comparable to a single iteration of SIRT. Note that the algorithm has converged much faster than either figures 1 or 2,
where the algorithms were run for 2 and 10 iterations respectively.

where ∗ denotes 3d convolution and p is some preconditioning kernel chosen such that the condition number of
the operator p ∗ BP is less than the condition number of the operator BP. As p is a convolution kernel in the
3d volume space, the maximal reduction in condition number can be achieved when the PSF of the operator
BP does not vary significantly throughout the reconstruction volume. This is the case when using a space-filling
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II

Figure 4. Vertical 640×2304 voxel slices though the geopolymer sample, after: (left) 2 iterations of SIRT; (middle) 2
iterations of OSEMTR; and (right) 2 iterations of preconditioned multigrid Landweber. The preconditioned Landweber
method clearly produces better results, for the same computational cost. Note that the reconstruction degrades towards
the top and bottom of the volume, as we near the end of the trajectory and the data sufficiency conditions are no longer
satisfied.

trajectory; using the empirically-determined 33 voxel preconditioner

p =
1

64

−1 −1 −1
−1 0 −1
−1 −1 −1

 ,
−8 −4 −8
−4 64 −4
−8 −4 −8

 ,
−1 −1 −1
−1 0 −1
−1 −1 −1

 (5)
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def Multigrid(µ(n,g), I(g), Θ): /* Recursive multigrid iterator */

Data: Current estimate µ(n,g) on grid g; radiograph intensity I(g) on grid g; scanning trajectory Θ;
preconditioning filter p.

Result: Updated 3d linear attenuation coefficient µ(n+1,g) on grid g.

/* Solve the reconstruction problem on a coarse grid */

µ(n,g+1), I(g+1) ← Restrict(µ(n,g), I(g))

if g < max:
µ(n+1,g+1) ← Multigrid(µ(n,g+1), I(g+1), Θ, p)

else:
µ(n+1,g+1) ← osemtr(µ(n,g+1), I(g+1), Θ)

/* Use the coarse-grid estimate to correct the fine grid estimate */

µ(n,g) ← µ(n,g) + Prolongate(µ(n+1,g+1) − µ(n,g+1))

/* Perform a single preconditioned Landweber iteration */

µ(n+1,g) ← Landweber(µ(n,g), I(g), Θ)

/* Apply L1 regularisation by soft thresholding */

µ(n+1,g) ← SoftThreshold(µ(n+1,g))

/* Apply local regularisation with a bilateral filter */

µ(n+1,g) ← BilateralFilter(µ(n+1,g))
Algorithm 1: Recursive multigrid iterative tomographic reconstruction algorithm

results in the reconstructions shown in figure 3. These results demonstrate that the algorithm converges within
one or two full-resolution iterations, each of which is approximately as computationally costly as a single iteration
of SIRT.

A comparison of vertical slices (i.e. slices parallel to the source rotation axis) through the reconstructed
volume after 2 iterations of SIRT, OS-EMTR, and preconditioned multigrid Landweber, is shown in figure 4.
Upon visual inspection of these slices, it is clear that our preconditioned multigrid Landweber method converges
much more rapidly than either SIRT or OS-EMTR. Furthermore, upon comparison of figures 2 and 3, we note that
the 2-iteration preconditioned multigrid Landweber reconstruction is sharper than the 10-iteration OS-EMTR
reconstruction. This is unsurprising, as the OS-EMTR algorithm continues to converge after 10 iterations.

It is important to note that the grey levels in figure 4 are not normalised between the OS-EMTR and
preconditioned multigrid Landweber reconstructions. Algorithm 1 makes use of a soft-thresholding operation
that progressively reduces the grey levels in the reconstruction. This is not corrected by our preconditioned
Landweber iteration, as we have chosen a preconditioner with zero response to a DC offset. Thus, it is clear that
a more sophisticated preconditioning kernel is required. A publication presenting more rigorously-derived and
effective kernels is currently in preparation.

4. CONCLUSION

Figures 3 and 4 clearly demonstrate that by leveraging the approximately spatially-invariant PSF of a space-
filling trajectory, the preconditioned multigrid Landweber method converges much faster than either SIRT or
OS-EMTR. It approaches a reasonable image quality within one or two iterations, with a computational cost
closer to that of filtered backprojection, than to the other iterative methods we tested. Additional research
has verified the scaling of this algorithm to large datasets, demonstrating a successful reconstruction of a 186
GigaVoxel volume in 16.15 hours.12
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