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Abstract 

Researchers’ ability to draw inferences from their empirical work hinges on the degree of 
measurement error. The literature in Information Systems and other behavioural disciplines 
describes a plethora of sources of error. While it helps researchers deal with them when taking 
specific steps in the measurement process, like modelling constructs, developing instruments, 
collecting data, and analysing data, it does not provide an overall guide to help them prevent 
and deal with measurement error. This paper presents a synthesis of the insights in the 
literature through a decomposition of the logic of measurement. It shows how researchers can 
classify sources of error, evaluate their impact, and refine their measurement plans, in terms 
of specific steps or overall measurement approaches. We hope this will aid researchers in 
anticipating, avoiding, and alleviating error in measurement, and in drawing valid research 
conclusions. 
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1 Introduction 

The ability to draw valid inferences from empirical research in Information Systems and other 
behavioural disciplines hinges on the degree of measurement error (Cote & Buckley, 1988; 
MacKenzie, Podsakoff, & Podsakoff, 2011). Decades of methodological studies on 
measurement error have helped researchers and reviewers understand and recognize a variety 
of sources of such error (Podsakoff, MacKenzie, & Podsakoff, 2012). They have also helped in 
the development of measurement guidelines (Dillman, 2000; Lewis, Templeton, & Byrd, 2005; 
MacKenzie et al., 2011). 

However, measurement problems persist. In one Information Systems journal, for example, 
five of eight main obstacles that are frequent causes of desk rejects are (1) failures to recognize 
a lack of construct clarity, (2) common method bias, (3) formative constructs, (4) issues with 
self-report data, and (5) issues with data-analytic techniques (Gregor & Klein, 2014). Existing 
measurement practices “fail to address the full landscape of measurement issues and fail to 
prioritize the fundamental aspects” (p451, Burton-Jones & Lee, 2017).  

More broadly, the need for more rigor in methodology has been underscored in the 
establishment of the AIS Transactions on Replication Research, and in the frequent failures to 
reproduce findings from behavioural research (Open Science Collaboration, 2012, 2015; 
Servick, 2018). 

To help researchers measure well and draw valid conclusions, we see an opportunity in 
enhancing the provision of guidelines on anticipating, avoiding, and alleviating error. While 
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the huge number of studies on specific sources of measurement error, such as social 
desirability, common method, or violations of statistical assumptions, has helped us 
understand these sources, they may leave many researchers confused about what needs to be 
done about all of these given a measurement task (Bagozzi, 2011; Burton-Jones & Lee, 2017; 
MacKenzie et al., 2011; Spector, 1992). Arguably, researchers face “an almost unworkable 
number of tests to comply with” (Burton-Jones & Lee, 2017, p451) and “there are so many 
issues to consider … that we might be apt to throw up our hands in frustration” (Bagozzi, 
2011, p288). 

The literature that considers all measurement error, on the other hand, treat it either as a whole 
or unpacks it into abstract components, such as bias versus random error (Cote & Buckley, 
1988), and item-level versus construct-level error (MacKenzie et al., 2011). Being abstract and 
evaluated after data is collected, they do not always lend themselves to draw concrete 
implications for improving measurement plans (Zyphur & Pierides, 2017). Compounding this 
issue, many guidelines that help researchers develop measurement, carry often implicit 
methodological assumptions (Bollen & Lennox, 1991; DeVellis, 2003; Lewis et al., 2005; 
MacKenzie et al., 2011). Common assumptions are that measurement relies on reflective 
models, self-report questionnaires, and on one-off assessments. Inadvertently, these 
assumptions may encourage uncritical adoption of ready-made formulas (Zyphur & Pierides, 
2017), and prevent researchers from considering alternative methods or models of 
measurement, which could be valuable substitutes or complements (Zwanenburg, 2015). 

We therefore believe that a comprehensive classification of the sources of measurement error 
and their potential remedies will help researchers anticipate, avoid, and alleviate 
measurement error through revisions of measurement plans. In this paper, we take initial steps 
toward this objective. Based on the literature on sources of measurement error, we introduce 
a framework to classify these, and present the classification. We then discuss how an 
evaluation of their potential impact can inform decisions to improve plans of measurement. 
This can apply to a wide range of measurement approaches, e.g. the use of reflective, 
formative, and other measurement models; questionnaire surveys and other data collection 
approaches; qualitative and quantitative measurement variables. Thus, we hope this will help 
many researchers systematically evaluate potential measurement error, and identify 
appropriate improvements to avoid or alleviate their impact. 

2 The Meaning and Premise of Measurement Error 

Across the wide range of contexts of measurement, the objective of measurement is to obtain 
estimates of a construct that fit the meaning of that construct. This fit is the logical basis for 
drawing inferences, such as research conclusions (Burton-Jones, 2009) and is known as the 
validity of measurement (Markus & Borsboom, 2013; Nunnally & Bernstein, 1994; O'Leary-
Kelly & Vokurka, 1998; Peter, 1981).1 Error of measurement is the inverse: the gap between 
what is to be measured and what is actually measured (Nunnally & Bernstein, 1994).  

                                                      
1 This differs from what is termed ‘construct validity,’ a property of test score interpretations (see e.g. 
Borsboom et al. 2009, Cronbach 1989). It also differs from validity as ‘the lack of systematic error’ (e.g. 
Carmines and Zeller, 1979; Adcock and Collier 2001), as complementary to ‘reliability’ as the lack of 
random error. In our definition, reliability is a form of validity. Other forms, like content validity, cross 
validity, face validity, refer to positive findings from specific tests that can indicate problems with 
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This definition is consistent with various classical theories of measurement error, viewing 
error as the difference between the true value and the observed value (Nunnally & Bernstein, 
1994). True value here refers to the value that corresponds to the meaning of a construct when 
fully defined and applied to an instantiation.2 Like its estimates, it can be categorical, 
continuous, or of another type. Note that estimates of error, sometimes confusingly called 
‘error’ or ‘standard error’, can deviate from actual error because of violations to the 
assumptions underlying the methods of their estimation, such as linearity and independence 
of indicators. 

What is error in a measurement thus depends on the meaning of the construct of that 
measurement. A lack of clarity prevents the researcher from evaluating error and thus the 
validity of measurement and the broader research conclusions. While a clear meaning of the 
construct is a straightforward premise to the evaluation of error, ambiguity is a common 
problem (Gregor & Klein, 2014; MacKenzie et al., 2011). Indeed, as DeVellis (1991, p51) noted: 
many researchers think they have a clear idea of what they wish to measure, only to find out that their 
ideas are more vague than they thought. Frequently, this realization occurs after considerable effort has 
been invested in generating items and collecting data—a time when changes are far more costly than if 
discovered at the outset of the process. 

The meaning of a construct is clear when (a) the instantiations of the construct are clear, (b) 
each instantiation can only have one true value, and (c) the construct is embedded in a 
framework of other constructs. 

2.1 Clear Instantiations 

Instantiations of a construct can refer to entities or relationships between them (Burton-Jones 
& Lee, 2017).3 For example, an app’s usefulness can be thought of as an attribute of that app 
but perceptions of its usefulness are attributes of the relationship between this object and its 
observer (Gregor & Klein, 2014). The difference is critical, and choosing one over the other can 
carry many implications for the design of measurement. For example, if the target of 
measurement is the app’s usefulness and multiple perceptions are a meansof accessing that, 
how are different perceptions combined in a measurement model?  

Another important consideration in clarifying the instantiations of a construct is their relation 
to time. When targets of measurement are not tied to a particular moment or event, they can 
be subject to change over time. This can be slow or rapid, continuous or incidental: an app’s 
user might ‘get the hang of it’, or might become frustrated with a bad update. One instantiation 

                                                      

validity based on the domain of the construct, the sample, or the inspection of measurement 
respectively. 
2 True values are sometimes called true scores, which operationalists see as outcomes of measurement 
processes themselves (Nunnally & Bernstein, 1994). This view is problematic because it detaches the 
concept of validity from the meaning of constructs (Markus & Borsboom, 2013). 
3 Some authors use the terms object and entities interchangeably. Here, the word object is used in relation 
to the measurement target itself and entity in relation to possible referents of it, as implied by the 
meaning of a construct and its instantiations. The object of a measurement can also refer to a relationship 
between entities. 
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of it can be a selection from multiple moments, or an aggregate.4 Again, the difference can be 
critical. In sum, to evaluate measurement validity, it must be clear what the instantiations of a 
construct refer to structurally and temporally. 

2.2 One Instantiation, One Value 

A common issue with constructs is having multiple possible true values per instantiation, 
often due to multiple interpretations. An example is the construct of smartphone use frequency. 
Assuming a questionnaire is a method of choice, one might try measure it by asking, “how often 
do you use your smartphone?” with answer options ranging from never to very often. But what is 
often? A respondent may evaluate this through comparisons over time, comparisons with 
perceptions of their peers’ behaviour, or with perceived domestic, organisational, or societal 
norms (Tourangeau, Rips, & Rasinski, 2000; Zyphur & Pierides, 2017). Different evaluations 
may correspond to different true values, introducing ambiguity and impeding the evaluation 
of validity. They may be prevented through a clarification, ultimately based on previous work, 
standards in the literature, nomological networks, and/or the specific purposes of the 
measurement (Zyphur & Pierides, 2017). For example, if for the specific purposes of the 
measurement it is desirable to have a social-relative measure, one can refine the definition of 
the construct and the operations of its measurement items to prevent this ambiguity (e.g. 
Compared to your peers, how often do you use your smartphone?). 

2.3 Interrelated Constructs 

Elucidating the relationships between related constructs will help identify ways to define a 
construct and measure it. Such relations may be deterministic or probabilistic. When they are 
known, they constitute a construct’s ‘internal theory’ (Goertz, 2006; MacKenzie et al., 2011). 
Some relations might be the object of a study. They may also be part of or implied by the 
definition of the construct, such that measurement of the related concepts can be part of the 
measurement of the focal construct.  

For example, someone’s usage of a device will be equivalent to the usage of the device itself, 
which may be captured in automatic logs, minus the usage of the device’s other users. 
Potentially, capturing these related concepts to measure the construct may produce better 
validity than a direct approach. Thus, an evaluation of related constructs not only aids the 
clarity of the construct, it can also identify ways to measure it. 

In sum, identifying the instantiations, the multiplicity of their true values, and the relations 
with other constructs will be instrumental in anchoring this meaning conceptually and 
satisfying the premise of anticipating, avoiding, and alleviating error. 

3 A Classification of Sources of Error 

Sources of error undermine the logic of measurement in different ways and at different places. 
It may stem from random processes, affecting each data point separately, or systemic ones, 
affecting one or multiple arrays of data points, within or across data sets (Cote & Buckley, 
1988). It may be attributed to a variety of aspects of a measurement, such as an instrument, 
instructions of a questionnaire, a question’s wording or content, a response scale, a sequence 

                                                      
4 In this paper, selecting and sampling instantiations to measure are important study design 
considerations but are not treated in this paper. While unmeasured instantiations are of concern to 
drawing research inferences, they are outside of the scope of measurement proper. 
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of questions, a trait or state of a respondent, a measurement model, an overall method of 
collecting data, and assumptions of estimation techniques. Error may be attributable to an 
interplay of factors associated with these aspects. 

To allow researchers to systematically identify and evaluate potential sources of error that 
threaten the validity of their measurement, we first consider the logic of measurement in 
general and decompose it into conceptual, operational, and inferential components. We then 
illustrate how this logic can be further unpacked for particular instances of measurement. In 
the last Subsection, we will illustrate how this allows for a tailored classification of sources of 
error. 

3.1 Decomposing the Logic of Measurement 

Let us consider a single measurement instantiation such as the usefulness of a new app, using 
a non-zero set of indicators, which can be based, for example, on one or multiple questions, 
assessments, informants, or other sources of information. Logically, the measurement task is 
to use these indicators to connect the meaning of this construct’s instantiation, i.e. an 
unobserved true value, with an estimate value. Unpacking this logical relationship can help 
classify error, as illustrated in Figure 1.  

 

 
Figure 1: Left: A decomposition of the logical relationship of measurement into conceptual, 
operational, and inferential relationships, using three indicators. Right: While some error may be 
controlled for, various sources of error can affect the conceptual, operational, and inferential 
relationships (marked CE, OE, and IE for Conceptual, Operational, and Inferential error). This figure 
distinguishes between the targets of a measurement (i.e. what is to be captured) in white shapes and 
the actual data (i.e. what is actually captured) in black shapes. 

At a generic level, we can decompose the logical relationship into conceptual, operational, and 
inferential ones, as shown in the left panel. In the diagram, the meaning of the construct on 
top is translated into referents of three indicators, which are operated to yield three records, 
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which are then combined to infer an estimate of the construct. As visualised in the right panel, 
sources of error can introduce interference to this logical flow at each of these steps, some of 
which can be removed though data analytical techniques. 

3.1.1 Conceptual Relationships 

Here, a conceptual relationship refers to the relation between the meaning of a construct and 
what an indicator is to record, i.e. its referent. This referent may be identical to the meaning of 
the construct, or it may be a part, cause, effect, or manifestation of it: anything that stands in 
some relation to the construct (Law, Wong, & Mobley, 1998; MacKenzie et al., 2011; Polites, 
Roberts, & Thatcher, 2012). For example, the Likert-type item “Learning to operate the Web 
site is easy” carries meaning that can be seen as identical to or a manifestation of the meaning 
of the construct, the ease of use of the same web site (Gefen, Karahanna, & Straub, 2003). When 
an item would refer to ease of use in navigating the web site, this can be seen as referring to 
part of the meaning of the construct. Conceptual relationships can be compounded (Edwards 
& Bagozzi, 2000). Such compounded relationships are sometimes explicitly modelled using 
sub-constructs (Law et al., 1998; Polites et al., 2012). 

When accurate knowledge of the referents perfectly inform the true value of the construct, 
there is no error at this conceptual level. For example, if we know how much someone uses 
the web per weekday and in the weekend we can infer how much this person uses the web 
during the week, without error. Conceptual relationships are erroneous, however, when 
referents of indicators relate to the meaning of the construct in a non-deterministic way. For 
instance, measuring extraversion with a question about the frequency of going to parties relies 
on the idea that more extraverted people tend to go to parties more. Error may also relate to 
the referents of a set of indicators. This set may lack content validity, such as when they 
comprise a list that lacks mutual exclusivity or completeness, or when they include extraneous 
items (Haynes, Richard, & Kubany, 1995; Lewis et al., 2005; Messick, 1989). 

3.1.2 Operational Relationships 

An operational relationship refers to the relation between the referent of an indicator and its 
record, what is actually recorded. Error at this level stems from the actual physical and 
psychological processes that influence the generation of a datum. For question and answer-
based measurement, for example, these include capturing the referent of an indicator in a 
question, expressing that question, hearing or reading it, interpreting it, evaluating it, 
responding to it, and capturing that response in a record (Dillman, 2000). Much error in 
question-based measurement stem from these processes (Podsakoff et al., 2012; Tourangeau et 
al., 2000). As indicated in the right panel of Figure 1, a source of error can introduce 
interference in multiple operations. For example, social desirability error or error stemming 
from an unclear questionnaire introduction can affect the validity of some or all of a construct’s 
indicators. 

3.1.3 Inferential Relationships 

An inferential relationship refers to the relation between the records of the indicators and the 
estimate of a construct, as captured in mathematical and logical equations and operations. 
Inferential relationships can be modelled additively, multiplicatively, or otherwise, based on 
reflective, formative, and other models (MacKenzie et al., 2011; Mellenbergh, 1994; Polites et 
al., 2012). This is based on the conceptual and operational relationships including an 
understanding of how sources of error could affect them. For example, factor analytical 
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approaches typically assume that random error has affected each record, following a normal 
distribution with mean zero and a standard deviation that is estimated (Bollen & Lennox, 1991; 
Nunnally & Bernstein, 1994). Hence, these procedures can control for error to the degree it 
agrees with these assumptions. When these inferences are based on invalid assumptions or 
are erroneously implemented, they may fail to properly control for error and can introduce 
new error in the measurement process (Rigdon, 2012). For example, a factor model may be 
mis-specified or unidentifiable leading to false conclusions (Aguirre-Urreta & Marakas, 2012; 
Anderson & Gerbing, 1988; Jarvis, MacKenzie, & Podsakoff, 2003). 

Together, the conceptual, operational, and inferential components of the logic of measurement 
constitute a generic error classification framework. It is complete and non-exclusive in that any 
source of measurement error can be associated with a shortcoming in these components. It can 
be used to structure and systematize the evaluation of sources of error regardless of the form 
or method of measurement, as no methodological assumptions have been made. However, 
because of this, these relationships can still be both abstract and complex. Unpacking them 
further for specific instances of measurement can shed further light on the sources of error that 
can threaten their validity. 

3.2 Identifying Specific Logical Links 

The conceptual, operational, and inferential relationships can be abstract and complex as they 
may constitute a chain of logical links (Law et al., 1998; Polites et al., 2012; Tourangeau et al., 
2000). These more elementary links may connect one idea to one or multiple others, such as a 
concept to a proxy, an abstraction to its manifestations, a whole to its parts, a cause to one or 
multiple effects. Elucidating these links will ease the identification of sources of errors. 

As an extreme example, consider capturing the ease of use of an app with a single estimate by 
using four-dimensional indicator data involving (1) multiple parts (e.g. functions) of that app, 
(2) multiple users (who act as informants), (3) multiple questions, and (4) multiple times of 
assessment. Here, four consecutive one-to-multiple links can bridge this zero-dimensional 
construct (i.e. its estimate is a single point or a zero-dimensional array5) with the 4D indicators 
at the conceptual level, as illustrated in Figure 2. Further consecutive links unpack the causal 
chain of the measurement operations, from presenting a specific question to recording a 
response.6 At each consecutive link, we can identify potential sources of error by asking 
specific questions, like those listed on the right hand side of the Figure. Thus, decomposing 
the logic of a measurement into elementary logical can help researchers obtain a tailored error 
classification framework. 

 

                                                      
5 The word ‘dimension’ is used here in the context of a dataset, where aspects or facets of a construct 
may be positions on one dimension (e.g. its composition); elsewhere these aspects or facets may be 
called dimensions themselves (Law et al., 1998; Polites et al., 2012). 
6 In this Figure, the inferential relationship is not further decomposed. While some of its steps can be 
modelled as sequential logical links, such as data cleaning and dealing with missing data, its estimation 
step is often iterative in nature. 
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Figure 2: This example illustrates how decomposing the logic of a measurement into consecutive 
logical links can help researchers identify specific sources of error. 

3.3 Tying Logical Links to Sources of Error 

Extant knowledge of patterns observed before can inform which sources of error are associated 
with these links. Table 1 illustrates this by classing sources of error of a measurement 
according to its consecutive logical links involving one reflective model and one-off self-
reported questionnaire data. Table 2 classes common sources of error associated with a variety 
of logical links that may be applied in a modular fashion in a variety of measurements. 
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Logical Link Associated Sources of Error 

Construct 
to 

Manifestation 

A well-defined construct may be inappropriately modelled in terms of its manifestations 
(Aguirre-Urreta & Marakas, 2012; Jarvis, MacKenzie, & Podsakoff, 2012; Petter, Rai, & Straub, 
2012). A proclaimed manifestation may in fact not be consistent with the definition of the 
construct. It may be caused by other constructs, or the construct may only give rise to it under 
conditions that are not met, or it may not stand in a relationships to it as modelled (Cook & 
Campbell, 1979; Rigdon, 2014a). 

Manifestation 
to 

Question 

A question may inappropriately capture a manifestation of a construct. For example, a 
question may refer to something else or may be unclear (e.g. Dillman, 2000; Netemeyer, 
Bearden, & Sharma, 2003; Tourangeau et al., 2000). Its response scale may be confusing, 
inconsistent with the question, or unable to capture accurate answers (e.g. Verhagen, van Den 
Hooff, & Meents, 2015). 

Question 
to 

Evaluation 

Participants may inappropriately evaluate a question. For example, they may lack the 
motivation, energy, vocabulary, and other cognitive abilities to do so (Churchill, 1979; 
Nunnally & Bernstein, 1994; Tourangeau et al., 2000; Viswanathan, 2005). A question may be 
too difficult, inaudible, or illegible. The instructions may be unclear and the time pressure 
and incentives may be inappropriate. The time of the day, the location, and the order of the 
questions may have an unintentional influence on their evaluations (Dillman, 2000; Drury & 
Farhoomand, 1997; Harrison, McLaughlin, & Coalter, 1996; Podsakoff et al., 2012; Schwarz & 
Sudman, 1992). A participant may have distracting thoughts and feelings while evaluating a 
question, due to idiosyncratic associations with certain words, or perceptions of fatigue, 
hunger, pain, noise, a phone ringing, or even due to simultaneous actions (e.g. Edwards, 
2008). 

Evaluation 
to 

Response 

An evaluation may not be reported. Questions may be too sensitive to answer honestly (e.g. 
Dillman, 2000; Netemeyer et al., 2003; Tourangeau et al., 2000). The participant’s anonymity 
or the lack thereof may affect the honesty of the response. A participant may have certain 
response tendencies (e.g. Podsakoff, MacKenzie, Lee, & Podsakoff, 2003), or lack the 
motivation or incentives to provide accurate answers (e.g. Aronson, Wilson, & Brewer, 1998; 
Podsakoff et al., 2003; Podsakoff et al., 2012; Richman, Kiesler, Weisband, & Drasgow, 1999). 

Response 
to  

Record 

An accurate response may be inappropriately recorded due to its illegibility, a data entry 
mistake, a technical failure, and so on. 

Record 
to 

Factor Score 

A well-recorded response may not be used appropriately for calculating factor scores as its 
assumptions may be violated. The specification of the factor model may deviate from the 
conceptual model, i.e. it may deviate from the specified relations between a construct and the 
referents of its indicators (e.g. Petter, Straub, & Rai, 2007; Rigdon, 2013). 

Factor Score 
to 

Estimate 

A factor score may be an inappropriate estimate when the assumptions underlying the factor 
analysis are violated. These typically include local independence, linearity of relationships, 
and homogeneity of relationships across entities (e.g. Becker, Rai, Ringle, & Völckner, 2013; 
Havlicek & Peterson, 1977; Jarque & Bera, 1987; Meredith, 1993; Petter et al., 2007). Further, 
factors scores are indeterminate: their validity depends on the arbitrary method chosen to 
calculate them (Mulaik, 2010; Rigdon, 2012). 

Table 1: Sources of error associated with common logical links in a typical case of measurement 
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Link Associated Sources of Error 

Construct 
to 

Referent 

A construct may be inappropriately modelled in terms of its manifestations, effects, 
constituent parts, dimensions, or other referents of indicators that stand in some relation to 
the construct (Goertz, 2006; Petter et al., 2012). For example, a specification of its parts may 
be incomplete, superfluous, or it may contain overlapping parts (Haynes et al., 1995; 
MacKenzie et al., 2011). A dimensional model may inappropriately specify how dimensions 
combine to make up the construct (Law et al., 1998). 

Referent 
to 

Referent 

The referent of an indicator may be modelled in terms of its own referents, yielding a 
hierarchical model (e.g. Edwards, 2001; Law et al., 1998; Polites et al., 2012). These links can 
suffer from the same sources of errors as the links between the construct to be measured and 
the referents of its immediate indicators. 

Referent 
to 

Detection 

A referent of an indicator may be implemented through autonomous systems and physical 
detectors, such as those that automatically log events or aim to detect heart rate, skin 
conductance, eye movements, gamma waves, and so forth. Errors may stem from the 
processes of designing, installing, calibrating, and operating the instrument, depending on 
the specific apparatus. Logs of device use, for example, may be inappropriately ascribed to 
a principal user and ignore the use of replacements and other alternatives. Further, using 
detectors to infer referents of more abstract psychological constructs can be problematic 
(Dimoka, 2012; Fazio & Olson, 2003). For example, we still know little about how to best infer 
people’s stress, affect, and reward from detections of skin conductance, heart rate variability, 
and activation of the nucleus accumbens (basal forebrain) respectively (e.g. Carlson, 2013). 

Referent 
to 

Record 

A referent of an indicator may be linked directly to a record when relying on past 
measurements, or ‘secondary data’, stored in databases, documents, and logs. The sources 
of error corresponding to this link include all inconsistencies between the original 
measurement operations and what the result of these operations – i.e. the record – is taken 
to mean (Burton-Jones & Lee, 2017; Ketchen, Ireland, & Baker, 2013; Wennberg, 2005). 

Referent 
to 

Stimulus 

A referent of an indicator may be inappropriately implemented into a question, picture, 
sound, or any other linguistic or non-linguistic stimulus. For example, a sound may be 
inaudible, a question illegible, or the membership of a stimulus to an intended category may 
be ambiguous (e.g. Dillman, 2000; Greenwald, McGhee, & Schwartz, 1998). 

Stimulus 
to 

Response 

A good stimulus may not produce the appropriate response, when, for example, the 
instructions are unclear or evoke an inappropriate degree of time pressure, social pressure, 
or other forms of stress. The lag with which stimuli are presented may obscure the 
interpretation of response times (e.g. Greenwald et al., 1998). 

Record 
to 

Estimate 

Records may be inappropriately combined to produce estimates. Data cleaning steps may 
involve clerical errors. Missing data may be inputted inaccurately due to the shortcomings 
of the procedures (Little & Rubin, 2014; Schafer & Graham, 2002). The mathematical 
procedures of estimation may involve assumptions that do not hold (Jarvis et al., 2012; 
Rigdon, 2012; Viswanathan, 2005).  

Record 
to 

Model Estimate 

Records can be used to test the fit of models or the support for inter-construct hypotheses 
without separately obtaining estimates for constructs. Sources of error are violations to the 
assumptions underlying these estimation techniques, related to linearity, normality, 
measurement invariance, or independence of distributions (e.g. Becker et al., 2013; Havlicek 
& Peterson, 1977; Jarque & Bera, 1987; Meredith, 1993; Mulaik, 2010; Petter et al., 2007; 
Rigdon, 2012). 

Table 2: Sources of Error Associated with Logical Links of Measurement 

4 The Management of Sources of Error 

Evaluating a plan of measurement and informing its revisions require not only an 
understanding of where error comes from, but also what the impact of its sources are. This 
impact depends on how much interference each source introduces at each logical link, and 
how much of this interference is transformed, e.g. by way of dilution, compensation, or 
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statistical control. In other words, sources of error are best managed with an understanding of 
the patterns in where and how much they impact a measurement system. 

4.1 Patterns in Error  

Sources of error require most attention when they are systemic rather than incidental, i.e. when 
they affect the entire measurement system, or a subsystem.7 Figure 1 illustrates examples of 
sources of error that are incidental (labelled OE2), systematic (labelled CE1, CE2, OE3, IE1), 
and in between incidental and systematic (labelled OE1). Sources of error are more systemic 
when they apply to more dimensions of the indicator data, whether they do so at the 
conceptual, operational, or inferential level. For example, if the indicators refer to effects of a 
construct, two systemic and conceptual sources of error are (1) the existence of alternative 
explanations that can account for the effects and (2) the construct failing to cause the effects. 
Examples of systemic operational sources of error are violated assumptions underlying the 
indicators, e.g. when respondents do not have the required knowledge, ability, or motive to 
answer questions accurately. An incidental operational error may be due to one question being 
ambiguous. An example of a systemic source of error at the inferential level is a violation to 
the assumptions underlying estimation, causing new interference across estimates. 

Patterns of systemic error can be related to not only the aspects of a chosen measurement 
method (e.g. particular items, instruments, assessments or estimation procedures), also with 
the meaning of the construct itself. Figure 3 illustrates this with a joint distribution of four 
separate continuous indicators and the continuous construct they refer to. Here, error in 
Indicator A is independent of the construct, while error in Indicators B, C, and D co-varies 
with the construct. 

 

 
Figure 3: Illustrations of joint distributions of indicators and the construct they refer to (both 
continuous). Error in Indicator A is uniform, while error in Indicators B, C, and D co-vary with the 
construct. 

Consider one specific source of error in a measurement where an indicator refers to the 
frequency of an event that is an effect of the construct, and the effect could also be triggered 
by other causes. Here, the joint distribution might be similar to that of Indicator B in Figure 3, 
where high levels of the indicator tell us little about the construct. If the indicator would 
feature in a standard factor analysis, this error would violate the assumption that 

                                                      
7 We can speak of subsystems when constructs are modelled as consisting of multiple sub-constructs, 
when data is collected repeatedly, or from multiple informants, or when data is multidimensional for 
another reasons. 
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measurement error is normally and independently distributed as the level of error depends 
on the level of the construct. 

Another example is the bias introduced through socially desirability. When the response scale 
of an indicator refers to behaviours that vary in their social desirability, the values 
corresponding to the least socially desirable should be more indicative of the actual behaviours 
than those corresponding to the others. Similarly, when, for example, a computing skill is 
being tested with a quiz, and a question is very easy, only wrong answers are indicative of the 
level of skill. This may follow a joint distribution similar to Indicator D in Figure 3. 

In the case of categorical variables, such as a condition being either present or absent, there too 
can patterns in error co-vary with true values. For example, an indicator will have high 
sensitivity (i.e. high true positive rate) and low specificity (i.e. low true negative rate), when it 
is based on manifestations that are necessary but not sufficient. Vice versa, an indicator will 
have low sensitivity and high specificity when it relies on a manifestation that is sufficient but 
not necessary. 

Anticipating these patterns in potential measurement error can help inform the remedies that 
can best improve the validity of a plan of measurement. 

4.2 Remedies 

Whether a source of error is associated with one indicator or an entire system of measurement, 
four categories of remedies may be considered: modify, control, add, and drop. 

4.2.1 Modify 

The most preferred remedy is to modify a plan of measurement such that it no longer is 
sensitive to the source of error, without exposing it to another. For example, Indicator B, C, or 
D from Figure 3 would be improved if it could be modified such that it would behave 
according to Indicator A. For example, when the referent of a categorical indicator is necessary 
but not sufficient to indicate a particular construct, modifying it to one that is both necessary 
and sufficient would improve its usefulness. To illustrate, consider the item “Based on my 
experience with the online vendor in the past, I know it is trustworthy” used to indicate trust 
in the online vendor (Gefen et al., 2003). Arguably, one might trust online vendors based on 
reputation, reviews, or certificates, rather than one’s experience with it, and thus the indicator 
may underestimate trust. Modifying a set of items by including a complete range of trust 
sources, or removing the references to these sources altogether, will remove this particular 
source of error. 

While various guidelines in the literature help researchers deal with specific item-specific 
issues (Clark & Watson, 1995; Dillman, 2000; Haynes et al., 1995; MacKenzie et al., 2011; 
Tourangeau et al., 2000), protecting them against interference is easier said than done (Spector, 
2006). Interference tends to stem from a complex and hidden interplay of contextual, 
idiosyncratic, and circumstantial factors. For example, a researcher may not know fully the 
conditions under which a construct gives rise to its manifestations. It may be impossible to 
ensure that participants interpret all questions as intended and report answers accurately. 
Sometimes, shielding the measurement process against one threat exposes it to another. For 
example, indirect questioning may help prevent socially desirable responses but it may 
capture content outside of the construct’s domain (Fisher, 1993). One may wish to rely on 
methods different from question-and-answer by logging events or recording response times, 
eye movements, skin conductance, or other physical phenomena (Bradley, Greenwald, Petry, 



Australasian Journal of Information Systems Zwanenburg & Qureshi 
2019, Vol 23, Selected Papers from ACIS 2017 Anticipating, avoiding, and alleviating measurement error 

  13 

& Lang, 1992; Carlson, 2013; Segerstrom & Nes, 2007). As shown in Table 2, such alternative 
means may suffer from their own sources of error that are hard to prevent. Inevitably, potential 
threats to validity can be found along the entire logical relationship between a construct and 
its estimate. In Spector’s (2006, p230) words, “each operationalization of a variable or method-
trait combination carries with it a unique set of potential biases.” 

4.2.2 Control 

A second category of remedies is to deal with the interference from a given source of error and 
control for it, through measured or unmeasured approaches. For example, instruments that 
measure a respondent’s sensitivity to give social desirable rather than honest answers can be 
used as a measured control for social desirability bias (Paulhus, 1988). Similarly, other 
response tendencies such as acquiescence can be measured to allow for statistical control 
(Paulhus, 1991; Winkler, Kanouse, & Ware, 1982). While such measured approaches are more 
precise than unmeasured ones, they do impose an operational burden; it is impractical to 
measure many sources of error. 

Unmeasured approaches to control for error are common in factor analytic approaches, where 
error is modelled as affecting the indicator data. Typically, in factor analysis each unique 
indicator, such as a questionnaire item, is modelled as affected by random error that is 
completely independent and normally distributed around zero (Harman, 1976; Nunnally & 
Bernstein, 1994). While this does account for sources of error that behave accordingly, in many 
measurements indicators resemble one another – they may rely on the same questionnaire, 
assessment, response scale, and relation to the construct – often meaning that they share 
sources of error. Sometimes, such common method error is modelled as affecting a set of 
indicators (Harman, 1976; Lindell & Whitney, 2001; Tehseen, Ramayah, & Sajilan, 2017; 
Williams, Hartman, & Cavazotte, 2010). While popular, this technique can be problematic, as 
it relies on various assumptions (Chin, Thatcher, & Wright, 2012). A common assumption is 
that the common method error can be modelled as a unitary construct, which limits the ability 
to control for separate common sources of error, such as both acquiescence and social 
desirability. While unmeasured approaches to control for sources of error do not directly 
impact the operations of measurement, the more realistic their models, the more data is needed 
to identify these models statistically. 

Hence, measured and unmeasured approaches come with operational costs and constraints 
respectively. Knowledge of the specific sources of error and their behaviour will help inform 
how to implement these approaches with reasonable assumptions, to the best effect. 

4.2.3 Add 

Another way to mitigate the impact of sources of error is by introducing indicators, methods, 
or other measurement subsystems, that are less sensitive to these sources of error (Campbell, 
1957; Podsakoff et al., 2012). As a result, these sources of error become less systemic and 
incidental to a smaller part of the measurement plan; error would be diluted (Peter, 1981). 

Ways to diversify a set of indicators include appending self-report with peer-report; a single 
survey with the momentary assessment method; and a measurement of a construct as a sum 
of its parts with an indicator that refers to the construct as a cause of its effects. Diversifying 
indicators works well when new indicators are not clearly inferior to extant ones (Burton-
Jones, 2009), but complement them in terms of their ‘error profile’. The fewer indicators a 
source of error affects, the more limited its impact on the validity of measurement (Burton-
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Jones, 2009; Houts, Cook, & Shadish, 1986; Nunnally & Bernstein, 1994). As a peculiarity of 
just one indicator a source of error often has the least impact on the validity of measurement, 
depending on the reliance on that indicator in the method of estimation. 

Apart from diversifying a set of indicators, one can also specifically target a new indicator that 
is less sensitive to a given source of error. For example, Indicators B and C in Figure 3 
complement one another by being sensitive to opposite ends of the scale of the construct. 
Adding C to B or conversely may be especially worthwhile if either cannot be changed in an 
indicator that behaves more like Indicator A, noting that this non-traditional use of indicators 
does require compatible estimation techniques. Consider, for example, two items in a 
computer aptitude test, one difficult – and thus indicative of aptitude only at the higher end – 
and one easy, and thus indicative only at the lower end. Such items can be combined with 
models based on Item Response Theory such that the combined test can be indicative of 
aptitude along its entire scale (Embretson & Reise, 2013). 

While introducing dissimilar indicators may be operationally expensive, it can effectively 
reduce the impact of multiple sources of error that are specific to the extant set of indicators. 
If the new indicators themselves do not introduce a problematic degree of error, this approach 
is especially worthwhile. 

4.2.4 Drop 

In some cases, simply dropping an indicator is an effective way of removing error (MacKenzie 
et al., 2011). It can only be done, however, when the indicator is redundant in terms of its 
referent and method. That is, it cannot be culled if either its meaning or the means through 
which it accesses this meaning plays a critical role in the logic of measurement.  

In sum, the degree with which sources of error undermine the validity of measurement 
depends on where they interfere, how severely they interfere, and how much of their impact 
can be reduced. Often, their presence is inevitable and their impact elusive. Yet even while 
deficient, a thorough evaluation of these sources of error should inform the design of 
measurement as it can lead to better validity. 

5 Discussion 

This paper has provided a framework for unpacking the logical relationship of measurement, 
used that framework to evaluate and classify sources of error, and provided a strategy for the 
identification of remedies based on this classification. We believe the framework, 
classification, and the strategy can guide researchers as it builds on and synthesizes existing 
literature. 

By decomposing the logic of measurement into conceptual, operational, and inferential 
relationships, the framework ties in literature that is often unjustifiably disjointed. Work on 
constructs (e.g. Barki, 2008; Goertz, 2006) and conceptual modelling (e.g. Polites et al., 2012), 
including the discussion on reflective and formative models (e.g. Jarvis et al., 2012), is often 
disjointed from literature on the practical operations of measurement, even though it carries 
direct implications for the operations of measurement (e.g. “what questions can we ask and 
are these any good?”). Similarly, while the literature on estimation and the use of statistical 
techniques and tests is reliant on broad assumptions regarding the conceptual and operational 
relationships, it rarely examines these (Rigdon, 2014b; Zyphur & Pierides, 2017). Whether they 
are conceptual, operational, or inferential, sources of error are manifold and entangled; dealing 
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with one often raises other concerns. Appropriate management of these thus requires a 
holistic, systemic view. 

Our framework, classification, and strategy help with this in various ways. First, decomposing 
the logical relationship of measurement into conceptual, operational, and inferential 
relationships, the framework eases a complete and systematic evaluation of sources of error, 
since the relationships are mutually exclusive and completely exhaustive. As demonstrated 
with the classification of error, this evaluation can be further eased by breaking down these 
relationships into elementary logical links, allowing for a measurement-specific classification 
of potential error. Tying the identification of sources of error to this logical chain of 
measurement is arguably more intuitive than the more traditional approach of tying it to 
entities within measurement such as constructs or indicators – see e.g. the discussion on 
construct-level and item-level error in MacKenzie et al. (2011). Ultimately, sources of error 
affect the processes of measurement or the relationships between such entities, not entities 
themselves. Therefore, our recommendations should further help researchers in evaluating 
sources of error beyond the help provided by existing error classification frameworks. 

Second, the recommendations we offer stimulate a complete evaluation of sources of error 
rather than a more stepwise or ad-hoc evaluation. For example, past guidance in the 
development of one-off questionnaire instruments has recommended the generation of items 
first, then the specification of the measurement model, and later still the estimation 
procedures, with the consideration of potential sources of error at each step (MacKenzie et al., 
2011). While these procedures do allow for iteration and subsequent refinement, at each step 
only narrow, local remedies are sought, under the implicit assumption the measurement 
approach has been set in stone. Common assumptions are that a single assessment is to take 
place, to have a single informant per instantiation, to use a questionnaire, to use reflective 
models, and to model the indicators as linear combinations of the construct and normally 
distributed error (Churchill, 1979; DeVellis, 2003; MacKenzie et al., 2011). These choices are 
limiting themselves (Burton-Jones, 2009; Podsakoff et al., 2003; Rigdon, 2013), and assuming 
them implicitly does not inspire a holistic view on the entire measurement plan. Our 
recommendations encourage taking such a view, and revising measurement plans through its 
models, data collection techniques, informants, assessments, estimation techniques etc. In 
particular, they encourage adding methods that are maximally different, as these are least 
likely to share sources of error (Campbell & Fiske, 1959; Peter, 1981), and best help to 
triangulate measurement. At the very least, being method-agnostic, the recommendations may 
alleviate the issue of dogmatic application of ready-made formulas (Zyphur & Pierides, 2017). 

Relatedly, our recommendations help advance the consideration of measurement error in the 
development process. Most of the discussion of measurement error in the literature assumes 
data has been collected, when considerable effort has been spent and opportunities for 
avoiding and alleviating sources of error have narrowed. It focuses on statistical measures of 
various forms of validity, or lack thereof, and not on taking measures to improve the actual 
validity of measurement (Zyphur & Pierides, 2017). While less quantitative, a-priori evaluation 
of potential error can thus be more instructive. 

This paper has taken a first step in integrating extant insights into sources of error and offering 
recommendations to researchers with measurement plans for evaluating a-priori and 
systematically potential sources of error, whether these are conceptual, operational, or 
inferential. Such a comprehensive evaluation provides a basis for improving a plan of 
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measurement in an integrated, rather than ad-hoc manner, and allow for the identification of 
remedies that address multiple sources of error at once. As such, this strategy can complement 
and enhance existing approaches toward the development of measurement (MacKenzie et al., 
2011). 

Future steps to better measurement guidance could help researchers exploit practical 
opportunity for creative measurement solutions and simultaneously follow well-established 
best practices (Burton-Jones, 2009). For example, much measurement in the academic 
behavioural disciplines is part of a broader attempt to confirm structural models, where 
structural equation modelling is a well-established approach to do so. While it is often 
implemented with reflective measurement models where each indicator corresponds to one 
question on a manifestation of its construct, asked in a one-off self-report questionnaire, there 
are many possible variations. Within that approach, some literature has dealt with the use of 
alternative measurement models (Diamantopoulos, 2011; Diamantopoulos & Temme, 2013; 
Polites et al., 2012), and other literature has dealt with the use of indicator data from repeated 
assessment (Crowder, 2017; Muthén, 2002). A synthesis of streams of work like these 
positioned in the context of measurement development could help researchers identify and 
evaluate a broad range of possibilities, such that measurement can suit its circumstances 
(Zyphur & Pierides, 2017). This would more clearly show possible responses to the evaluation 
of sources of error that undermine a more traditional plan of measurement. 

Hence, our hope is that this paper will inspide further steps in the development of guidelines 
that help researchers anticipate, avoid, and alleviate source of measurement error. It should 
pave the way for well-designed, valid measurement within our disciplines. 
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