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ABSTRACT

Over the past decade the widespread proliferation of mobile devices and wearable

technology has significantly changed the landscape of epidemiological data gath-

ering and evolved into a field known as Digital Epidemiology. One source of ac-

tive digital data collection is online participatory syndromic surveillance systems.

These systems actively engage the general public in reporting health-related infor-

mation and provide timely information about disease trends within the commu-

nity. This dissertation comprehensively addresses how researchers can effectively

use this type of data to answer questions about Influenza-like Illness (ILI) disease

burden in the general population. We assess the representativeness and reporting

habits of volunteers for these systems and use this information to develop statis-

tically rigorous methods that adjust for potential biases. Specifically, we evaluate

how different missing data methods, such as complete case and multiple impu-

tation models, affect estimates of ILI disease burden using both simulated data

as well as data from the Australian system, Flutracking.net. We then extend these

methods to data from the American system, Flu Near You, which has different pat-

terns of participant reporting, and evaluate additional methods of bias adjustment.
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Finally, we provide examples of how this data has been used to answer questions

about ILI in the general community and promote better understanding of disease

surveillance and data literacy among volunteers.
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CHAPTER 1

Introduction

1.1 INFLUENZA SURVEILLANCE

1.1.1 Global

Every year influenza epidemics are responsible for substantial clinical and eco-

nomic burdens that include an estimated 290 000 to 650 000 deaths worldwide.(Lee

et al., 2018c; Putri et al., 2018) National estimates of disease burden in the popu-

lation are essential to track the potential impact of influenza on hospitalizations

and death, aid in clinical resource allocation decisions, assess vaccine effectiveness,

and understand the overall global burden of influenza disease.(Lee et al., 2018c;

Lipsitch et al., 2011) In 2015, the World Health Organization (WHO) released a

manual for estimating seasonal influenza burden. The primary goal of this man-

ual is to provide a guideline for countries who do not have established burden of

disease studies because building accurate global burden of disease estimates for

influenza requires better data from all regions of the world.(World Health Organi-

zation, 2015)

1.1.2 United States of America

In the United States of America (U.S.), the Centers for Disease Control and Pre-

vention (CDC) has a national influenza surveillance system that collects and re-

ports weekly data from five different categories of surveillance: virology, outpa-

tient illness, mortality, hospitalization, and geographical spread. These systems

provide a picture of national influenza activity that determines the location and

timing of influenza activity, defines the types and subtypes of circulating influenza
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(Na(onal%Center%for%
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%
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Survellance%Network)%%

Figure 1.1: Schematic of CDC influenza surveillance.

viruses, detects changes in circulating viruses, tracks Influenza-Like Illness (ILI),

and measures the impact of influenza-related hospitalizations and deaths (Figure

1.1). (Thompson et al., 2006) Although influenza surveillance occurs throughout

the calendar year, the influenza season is defined by the Morbidity and Mortality

Weekly Report (MMWR) week 40 through week 20, which usually corresponds

with months October through May. The peak of the influenza season typically

occurs between December and March.

Influenza surveillance in the U.S. is robust and comprehensive, however, there

are several limitations to this system. Because state and health care provider re-

porting is voluntary and each state is responsible for the recruitment of healthcare

providers, the composition of provider-types, coverage of geographical regions,

and provider reporting vary from state to state. This convenience sample-driven

model of surveillance results in certain parts of the population being over or un-
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der represented in the reported influenza activity.(Polgreen et al., 2009a; Lee et al.,

2018a; Scarpino et al., 2012) Furthermore, all estimates are based only on those

who seek medical care and there is an inherent delay of approximately 1-2 weeks

between the day of visit and published date of estimates. Together, these systems

can provide an indication of where, when, and what influenza viruses are circu-

lating, but they do not provide the actual number of influenza infections during a

season.(Thompson et al., 2006)

1.2 DIGITAL EPIDEMIOLOGY

1.2.1 Overview

Over the past decade the widespread proliferation of mobile devices and wearable

technology has significantly changed the landscape of epidemiological data gath-

ering and evolved into a field known as Digital Epidemiology (DE).(Salathé, 2018;

Choi et al., 2016) DE provides an informal, complementary approach to traditional

sentinel surveillance methods by leveraging data generated outside of the public

health system through digital data sources, such as Google (Ginsberg et al., 2009),

Yahoo (Polgreen et al., 2008), and Baidu (Yuan et al., 2013) Internet searches; Twit-

ter posts (Signorini et al., 2011; Dredze et al., 2014; Chen et al., 2015); Wikipedia ar-

ticle views (McIver & Brownstein, 2014; Generous et al., 2014); clinicians database

queries (Santillana et al., 2014); and cloud-based Electronic Health Records (EHR)

(Santillana et al., 2016). These systems have the ability to reach a wider population

and provide real-time access to information about influenza activity. Ensemble

methods that use machine learning techniques to combine multiple Internet data

sources have led to influenza tracking systems that accurately monitor and fore-

cast CDC estimates of ILI activity at multiple geographical scales.(Santillana et al.,
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2015; Yang et al., 2015b; Santillana et al., 2014; Lu et al., 2018) While these alterna-

tive data sources provide real-time information about trends and general patterns

of disease activity, defining the underlying population at risk is often challeng-

ing.(Chunara et al., 2017)

1.2.2 Participatory syndromic surveillance systems

One source of active digital data collection is online participatory syndromic surveil-

lance systems.(Smolinski et al., 2017) Through these systems participants volun-

teer to report health information via online or mobile communication technolo-

gies on a weekly basis. The first of these systems, de Grote Griepmeting, or the

Great Influenza Survey, started in 2003 in the Netherlands and Belgium.(Marquet

et al., 2006) Since that time multiple systems have been established throughout

Europe, Influenzanet; Australia (AU), Flutracking.net; U.S., Flu Near You (FNY);

and Japan, Flu-Report.(Paolotti et al., 2014; Carlson et al., 2013; Smolinski et al.,

2015; Fujibayashi et al., 2018) These systems actively engage the general public

in reporting and provide timely information about disease trends within the com-

munity, thereby providing a mechanism for members of the community to become

"citizen-scientists".(Smolinski et al., 2017; Kullenberg & Kasperowski, 2016)

Participatory syndromic surveillance systems complement traditional health care-

based surveillance systems because they reduce the time-delay associated with

visiting a health care provider and capture individuals who do not seek medical

care. Studies in the U.S. have shown that approximately 45% of adults and 57% of

children with ILI seek healthcare.(Biggerstaff et al., 2014) Both FNY and the Ital-

ian crowd-sourced counterpart to Influenzanet, INFLUWEB, have reported that

approximately one third of their participants seek medical assistance.(Baltrusaitis

et al., 2017; Guerrisi et al., 2016) Furthermore, these systems allow for a longitudi-
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nal view of illness burden and have a well-defined population at risk, individuals

who reported whether or not they have symptoms. However, because not every

participant reports every week the population at risk can be inconsistent and in-

clude systematic biases.(Chunara et al., 2017)

1.2.2.1 Flu Near You

FNY is a U.S. based participatory syndromic surveillance system that was created

in 2011 through collaboration between HealthMap of Boston Childrens Hospital

and the Skoll Global Threats Fund.(Smolinski et al., 2015) Any resident of the

U.S. or Canada can register as a user through the FNY website, mobile app, or

Facebook. Upon registration, users provide information on their sex, month and

year of birth, residential zip code, and email address. Although individuals must

be at least 13 years of age to register, users can also add household members of

any age and submit reports on their behalf. Following registration, FNY users

are asked to submit brief weekly reports (Figure 1.2) where they can report any

symptoms that they or any registered household members had during the previ-

ous week (Monday through Sunday). The symptoms in the report include fever,

cough, headache, sore throat, diarrhea, body aches, fatigue, shortness of breath,

chills or night sweats, nausea, rash, or runny nose. If a user did not have any of

these symptoms, he, she, or they can also choose "I did not have any of the listed

symptoms." However, if a user reports any of these symptoms, he, she, or they

is asked to provide the date of symptom onset and whether or not they received

medical care for the symptom(s). Starting in early October, users are also asked

if they received an influenza vaccination for the current influenza season. Users

are sent a reminder to complete the symptom report every Monday through ei-

ther an email with a survey link or a push notification on their mobile phone. In
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Figure 1.2: Screenshot of a weekly FNY report.

exchange for participating in FNY, users can visualize local ILI activity on maps,

connect with local public health organizations, and find nearby locations offering

influenza vaccines.

1.2.2.2 Flutracking.net

Flutracking.net is an online health surveillance system of influenza in AU and,

as of 2018, New Zealand. Launched in 2006, the Flutracking system has grown

to include over 30 000 participants.(Flutracking.net, 2018) Upon registration, Flu-

tracking users provide basic demographic information, including month and year

of birth, gender, postcode of residence, indigenous status, highest level of educa-

tion, and whether or not they work directly with patients in a health care setting.

Users then complete weekly surveys about the presence of ILI symptoms includ-

ing fever, cough, and/or sore throat (Figure 1.3). Users who experience any of

these symptoms are asked follow-up questions about absenteeism from work or

normal duties, visits to health care providers, results of laboratory tests, and vac-

cination. Symptom surveys are sent every Monday, however, unlike other partici-

patory surveillance systems, Flutracking participants have the option to complete
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Figure 1.3: Screenshot of a weekly Flutracking.net report.

missed surveys up to five weeks previous.

1.3 OBJECTIVES

In this dissertation, we will address how researchers can effectively use data from

online participatory syndromic surveillance systems to answer questions about ILI

disease burden in the general population. We assess the representativeness and re-

porting habits of volunteers for these systems and use this information to develop

statistically rigorous methods that adjust for potential biases. Specifically, we eval-

uate how different missing data methods, such as complete case and multiple im-

putation models, affect estimates of ILI disease burden using both simulated data

as well as data from Flutracking.net. We then extend these methods to data from

FNY, which has different patterns of participant reporting, and evaluate additional

methods of bias adjustment. Finally, we provide examples of how this data has

been used to answer questions about ILI in the general community and promote

better understanding of disease surveillance and data literacy among volunteers.
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CHAPTER 2

Identifying the biases and limitations of participatory syndromic surveillance

systems

2.1 CHARACTERIZATION OF PARTICIPANT REPRESENTATIVENESS A-

ND DETERMINANTS OF PARTICIPANTS’ FOLLOW-UP IN FLU NEAR

YOU

2.1.1 Overview

Crowd-sourced participatory syndromic surveillance programs, such as Influen-

zanet, FluTracking.net, and FNY, correlate well with traditional, sentinel ILI ac-

tivity surveillance tools, and other platforms, such as GoViral, have validated the

use of participatory information for disease surveillance by comparing volunteers’

self-reported symptoms to specimens.(van Noort et al., 2015; Dalton et al., 2013;

Smolinski et al., 2015; Goff et al., 2015) Although participatory syndromic surveil-

lance systems track influenza activity in a timely fashion, a large, diverse, cohort

of users who participate regularly and are representative of the population is es-

sential for these systems to work effectively. Current participatory surveillance

systems in Europe have assessed the representativeness of their participant popu-

lation compared to the general populations and investigated factors that influence

participant follow-up.(Cantarelli et al., 2014; Blanchon et al., 2013; Bajardi et al.,

2014a,b) Here, we evaluate the representativeness of the FNY participant popula-

tion compared to the general population of the U.S. and explore the demographic

and behavioral characteristics that are associated with FNY’s "good" users.
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2.1.2 Representativeness

2.1.2.1 Methods

Data For this analysis, the FNY participant population includes all registered

users and household members residing within the 50 U.S. states with complete sex,

month and year of birth, and zip code information, and who submitted at least one

symptom report during the 2014-2015 influenza season, defined by MMWR week

40 (week ending October 4, 2014) through week 20 (week ending May 23, 2015).

National estimates of sex and age are from the U.S. Census Bureau’s 2014 annual

estimates of resident population.(U.S. Census Bureau, 2015) Socioeconomic status

(SES) is estimated at the county level using the Human Development Index (HDI)

as a proxy.(Lewis & Burd-Sharps, 2015) The HDI represents the county-level av-

erage of the educational index and income index and is measured on scale from

0-10, where 0 represents the lowest HDI and 10 represents the highest HDI. The

educational index is a weighted average of the educational attainment index (i.e.,

the measure of overall level of educational attainment achieved by the adult pop-

ulation) and the enrollment index (i.e., total number of students enrolled in school

divided by the total school-aged population of 3 to 24 year olds). The income in-

dex is calculated from county-level median income. The use of county-level HDI as

an SES proxy is further assessed by estimating user-specific HDI from the cohort

survey results and comparing these estimates to the corresponding county-level

HDI estimate. Consistent with the method established by the Measure of America,

the income index of the user-specific HDI is estimated by dividing the difference

between the log of the zip-code level median income of the user and the log of

the minimum U.S. median income by the difference between the log of the maxi-

mum and the log of the minimum U.S. median incomes. This ratio is multiplied



10

by 10 to scale the index between 0 and 10. The educational index is estimated

from the level of education response of the user survey, where lower educational

attainment, such as "did not graduate High School", are assigned smaller values

compared to higher educational attainment, such as "Ph.D., law, or medical de-

gree."

Statistical methods The representativeness of sex (male and female) and age

groups (<5, 5-14, 15-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+) of FNY partici-

pants compared to the general U.S. population are assessed using a two-sided chi-

square goodness of fit test. The county-level distribution of HDI of FNY partici-

pants is compared to the general U.S. population using a two-sample Kolmogorov-

Smirnov test. We also assess the representativeness during the 2012-2013 and 2013-

2014 influenza season as a sensitivity analysis.

2.1.2.2 Results and discussion

Although all 50 states are represented, FNY participants tend to cluster around

major cities and along the coasts (Figure 2.1). During the 2014-2015 influenza sea-

son, California had the most number of participants (n=6595), while Wyoming

had the fewest (n=89). When we adjusted for state population size, Rhode Island

had the greatest per capita representation (0.04%) and Mississippi had the smallest

per capita representation (0.008%). The 2012-2013 and 2013-2014 influenza seasons

display a similar geographic distribution.(Baltrusaitis et al., 2017)

Over the course of the 2014-2015 influenza season, 47 234 unique participants had

at least one symptom report that was either self-reported or submitted on their

behalf. Of these participants, 28 906 (61.20%) are female and 18 328 (38.80%) are

male. The proportion of female FNY participants is significantly over-represented
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compared to the general U.S. population (51.1% female, P<.001) (Figure 2.1). Other

participatory surveillance systems have reported an over representation of female

participants. During the 2011-2012 influenza season, Influenzanet participants

were more likely to be female than in the general population (56.8% vs 50.9%,

P<.001), and among FluTracking participants who completed at least one survey,

66% and 64% were female in 2011 and 2012, respectively.(Cantarelli et al., 2014;

Carlson et al., 2013) This over-representation of female participants is reflective of

other studies showing that women are more likely than men to seek online health

information.(Nölke et al., 2015; Fox et al., 2000)

Although each age group is represented in the FNY population, the distribution of

age is significantly different from the U.S. population (P<.001). Overall, adult pop-

ulations are over-represented (ages 40-79 years), while both younger populations

(ages <30 years) and older populations (ages 80+ years) are underrepresented (Fig-

ure 2.1). As with sex, patterns of age representations are similar to both Influen-

zanet and FluTracking participants.(Cantarelli et al., 2014; Carlson et al., 2013)

The HDI range in the FNY population is 0-9.54 with a median of 5.03. As shown

in Figure 2.1, the distribution of HDI scores is significantly greater for the FNY

population compared to the U.S. population (P<.001). When comparing the FNY

user-specific HDI estimates to the county-level HDI estimates in the population of

FNY users who completed the 2016 survey, we found that, in general, the county-

level HDI underestimates the user-specific HDI. This finding further supports our

conclusion that FNY participants have a higher HDI than the U.S. population. The

relatively high levels of HDI in the FNY population may be in part due to patterns

in Internet penetration. Studies from the Pew Research Center have shown that

Americans with high education levels and those in relatively affluent households

have high Internet penetration.(Perrin & Duggan, 2015) The characteristics of par-
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ticipants are similar for the 2012-2013 and 2013-2014 influenza seasons.(Baltrusaitis

et al., 2017)

2.1.3 Reporting behaviors

2.1.3.1 Methods

Data For this analysis only users who reported their own information, completed

at least one symptom report during the 2014-2015 influenza season before MMWR

week 18, and provided sex information at registration are included. In addition,

only residents of the U.S. between ages 13 and 80 at registration date are selected

because users must be at least 13 years of age to register. A limit of 80 years of

age is used to account for possible errors in year of birth input at user registration.

Users who meet these criteria are classified as either a "good user" or not based

upon the number of symptom reports they submitted during the season. Users

who complete more than three symptom reports during the season are classified

as "good users."

Statistical methods The demographic factors used in this analysis are sex (male

or female), age group (13-29, 30-39, 40-49, 50-59, 60-69, and 70-79), and HDI as a

continuous variable. In addition, whether or not a report of ILI, as defined by the

CDC, was reported at first entry is included. Although information from individ-

ual household members is not examined in the analysis, whether or not primary

participants reported for other household members is also included.

Associations between these demographic and behavioral factors and "good users"

are analyzed using multivariable logistic regression. For odds ratio (OR) compar-

isons among age groups, 50-59 is used as the reference group because it has the

largest number of users. The demographic and behavioral factors are independent
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variables, while level of follow-up is a dichotomous outcome ("good user" versus

not). The outcome is dichotomized because the distribution of number of reports is

not normally distributed, and the cut-off value of three is determined empirically

by assessing a histogram of number of reports. Sensitivity analyses are conducted

using more and less stringent definitions of a "good user", specifically, more than

ten entries and more than one entry, respectively, for the 2012-2013, 2013-2014, and

2014-2015 influenza seasons to confirm the robustness of our findings.

2.1.3.2 Results and discussion

Figure 2.2 summarizes the ORs and 95% Confidence Intervals (CI) across all char-

acteristics assessed. Overall, being a "good user" is associated with sex (male), re-

porting for household members, higher HDI score, not reporting an ILI at the first

survey, and older age. These findings are consistent using both more-stringent

(>10 entries) and less-stringent (>1 entry) definitions of a "good user", and the re-

sults are consistent across all three seasons, except for sex.(Baltrusaitis et al., 2017)

While females were less likely to be a "good user" during the 2014-2015 season, this

was not consistent with the 2012-2013 and 2013-2014 seasons. Given the differences

in reporting patterns by sex across years, an underlying factor, such as method of

member recruitment, may be a confounder of this association. In addition, the OR

comparing participation habits between males and females are close to 1, and a

previously published study from Influenzanet found that there are no significant

differences between reporting for males and females.(Bajardi et al., 2014a)
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2.2 COMPARISON OF FLU NEAR YOU TO TRADITIONAL HEALTH CARE-

BASED INFLUENZA TRACKING SYSTEMS AT MULTIPLE SPATIAL RE-

SOLUTIONS IN THE UNITED STATES OF AMERICA

2.2.1 Overview

The ability of FNY to complement, track, and forecast traditional provider-based

influenza surveillance systems has been established at the national and regional

levels in the U.S.(Smolinski et al., 2015; Santillana et al., 2015) However, because

characteristics of activity may differ across states and sub-populations, further in-

vestigation of these novel systems is essential at finer spatial resolutions.(Lipsitch

et al., 2011; Althouse et al., 2015; Lee et al., 2018a) The objectives of this project are

to assess whether FNY correlates with traditional influenza surveillance systems

across multiple spatial resolutions with different sample sizes and to determine the

minimum number of reports necessary to produce influenza activity estimates that

resemble the historical trends recorded by traditional sentinel surveillance systems

for a given spatial resolution.

2.2.2 Multiple geographical scales

2.2.2.1 Methods

Data FNY percent ILI is calculated by dividing the number of participants re-

porting ILI, defined by a symptom report of fever plus cough and/or sore throat,

in a given week, by the total number of FNY participant reports in that same

week at each spatial resolution. Participants are aggregated at each spatial res-

olution using the zip code provided at registration for the time-period of 2012-

2016. Information on patient visits to health care providers for ILI is collected



17

rho = 0.81

0

3

6

9

12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Year

IL
I A

ct
iv

ity

CDC ILINet FNY

Flu Near You & CDC ILINet 
 2012−2019 Influenza Seasons

Figure 2.3: National time series of FNY percent ILI (blue) with CDC
ILINet ILI activity (black) from October 2012 through February 2019.



18

through the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet,

https://www.cdc.gov/flu/weekly/overview.htm).(Centers for Disease Control ,

CDC) For this system, ILI was defined as fever (temperature of 37.8 ◦C [100 ◦F]

or greater) plus cough and/or sore throat without a known cause other than in-

fluenza. Weighted percent ILI, calculated by weighting the percentage of patient

visits to healthcare providers for ILI reported each week on the basis of state pop-

ulation, is used as the ILI activity measure. For regional analyses, we use the ten

Health and Human Services (HHS) defined regions (Appendix Table A.1). Data

from Boston is collected through the Boston Public Health Commission (BPHC),

which has operated a syndromic surveillance system since 2004. All nine acute

care Boston hospitals electronically send limited data for all emergency depart-

ment (ED) visits every 24 hours. Data sent includes visit date, chief complaint, zip

code of residence, age, gender, and race/ethnicity. ILI visits are defined as fever

and a cough or sore throat using chief complaints. Greater Boston was defined as

zipcodes associated with Suffolk, Norfolk, Middlesex, Essex and Plymouth coun-

ties. These zipcodes are associated with over 90% of Boston ED visits. Percent ILI

for Greater Boston is calculated by dividing the number of ILI visits by the total

number of ED visits.

Statistical methods We use Pearson correlations to compare FNY percent ILI to

CDC ILINet ILI activity. Correlations are calculated at the national and HHS-

defined regional resolutions during the time period of October 1, 2012 through

May 21, 2016, and for each of the four individual influenza seasons within this

time period (MMWR weeks 40 to 20) separately. We also present comparisons of

FNY percent ILI to CDC ILINet ILI activity for 49 states that voluntarily provided

historic data across all seasons. Finally, FNY percent ILI is compared to perecent
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ILI estimated from ED visits in the Greater Boston area. Boston was chosen as a

pilot city because of the large FNY user base and availability of data. Descriptive

statistics of the mean weekly reports are displayed as median (Interquartile Range

IQR) for each geographical resolution.

2.2.2.2 Results and discussion

Pearson correlations of FNY percent ILI versus CDC ILINet and BPHC as well as

mean weekly reports at all spatial resolutions are shown in Figure 2.4 and Ap-

pendix Table A.2. The national mean weekly reports across all seasons is 9699, and

the correlation is 0.81. At the regional level, the median of the mean weekly reports

is 889 (707, 1157). Region 7 has the smallest mean weekly reports (415), and Region

4 has the largest mean weekly reports (1798). The median correlation is 0.74 (0.73,

0.76). The median of the mean weekly reports at the state level is 128 (57, 263),

and the median correlation with CDC ILINet is 0.55 (0.43, 0.63). For Boston, the

mean weekly reports is 304 and the correlation with BPHC ILI activity estimates

is 0.69. In general, the correlation with CDC ILINet ILI activity decreases as the

geographical scale and corresponding mean weekly reports decreases (Figure 2.4).

The geographic distribution of FNY mean weekly reports shows large gaps of in-

formation especially in the middle and southern areas of the US, and participants

tend to cluster around large urban areas, with especially large user bases in the

greater metropolitan areas surrounding Boston, New York City, and San Francisco

(Figure 2.4). Our findings suggest that FNY percent ILI estimates correlate with ILI

estimates from traditional influenza surveillance systems in various spatial resolu-

tions if there is a sufficient number of reports.
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Figure 2.4: Correlation of FNY percent ILI with CDC ILINet ILI ac-
tivity and mean weekly reports at the national, regional, and state
levels.

2.2.3 Sample size estimation

2.2.3.1 Methods

We plot the Pearson correlations of the weekly proportion of FNY participants

reporting ILI with the proportion of individuals visiting healthcare providers in

CDC ILINet with ILI as function of the mean weekly FNY reports at the national,

regional, state, and city resolutions during time-period of 2012-2016 to visually

assess the relationship between the number of reports and correlation with estab-

lished sentinel surveillance systems. A bootstrap sampling approach is also used

to estimate the minimum number of FNY reports necessary to produce estimates

that resemble the historical government-lead surveillance system trends. For this

approach, Pearson correlations are calculated for subsets of the FNY from 0.1% to

15% of the full dataset in increments of 0.1% and compared to national weekly
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estimates of ILI from CDC ILINet. This process is repeated 1000 times using sam-

pling with replacement, and the 95% CIs were calculated by ordering the Pearson

correlation coefficients and selecting the 2.5th and 97.5th percentiles.

2.2.3.2 Results and discussion

As shown in Figure 2.5A, in general, correlation values increase as the mean weekly

FNY reports increase at all geographic resolutions. Spatial resolutions with at least

2.5% (approximately 250/ 9699) of total weekly FNY reports have correlations

greater than 0.5. As shown in Figure 2.5B, the correlation coefficient increases as

the number of weekly reports increases, but the rate of growth slows around 250

weekly reports, similar to the results shown in Figure 2.5A.

Correlations between FNY ILI and CDC ILINet ILI activity never reach perfect

correlation. Instead, they converge to approximately 0.8-0.9, as shown using both
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empirical and theoretical approaches. A similar observation was observed when

comparing methods of provider recruitment in Texas.(Scarpino et al., 2012) This

difference in correlation saturation may be a result of differences in the activity

being measured (e.g. ILI reports out of all persons enrolled vs. visits with ILI

out of the total number of patient visits) and the population under surveillance,

as the crowd-sourced population includes individuals who may not seek medi-

cal attention. As mentioned in section 2.1.2.2, FNY also differs by demographics.

Specifically, females and middle-aged individuals are over-represented in FNY.

With a sufficient number of weekly reports, approximately 250, data from FNY

can complement traditional healthcare-based systems, especially in populations

who do not access health care systems, areas with limited surveillance data, and

community based populations.
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CHAPTER 3

Developing and comparing appropriate methods to adjust for biases in

participatory syndromic surveillance systems

3.1 COMPARATIVE EVALUATION OF MISSING DATA METHODS FOR P-

ARTICIPATORY SYNDROMIC SURVEILLANCE DATA

3.1.1 Overview

In addition to tracking weekly prevalence of ILI, participatory syndromic surveil-

lance systems have been used to produce age-specific attack rates (AR), (Patterson-

Lomba et al., 2014; Chunara et al., 2015; Reed et al., 2016), determine risk factors of

ILI, (van Noort et al., 2015) estimate influenza vaccine effectiveness, (Carlson et al.,

2010; Debin et al., 2014; van Noort et al., 2015), and assess health care seeking be-

havior. (Tilston et al., 2010; Peppa et al., 2017) However, as discussed in section

1.2.2, because not every participant reports every week, the population at risk can

be temporally inconsistent and include systematic biases.(Chunara et al., 2017) The

most common approach to address the inconsistencies in user reporting habits has

been to select a cohort of "active users", where the definition of "active user" varies

by system and study, and assume that all missing reports were asymptomatic.(van

Noort et al., 2015; Patterson-Lomba et al., 2014; Chunara et al., 2015; Reed et al.,

2016) Unfortunately, no study has yet assessed how this deterministic assumption

affects estimates of disease burden. In this study, we assess how different missing

data methods affect estimates of ILI disease burden using both simulated data as

well as data from Flutracking.net.



24

3.1.2 Methods

3.1.2.1 Data

Data collection for Flutracking.net is described in section 1.2.2.2. For this study, ILI

is defined as report of both fever and cough, with or without sore throat. Surveys

submitted more than one week after the initial reminder are referred to as "ret-

rospective reports". Although Flutracking.net collects data from the beginning of

May through mid-October, we use reports submitted during the influenza season

in the southern hemisphere, defined as MMWR weeks 25 through 41, or approxi-

mately mid-June through the beginning of October. Descriptive statistics, includ-

ing age, sex, household status, and vaccination status are displayed as median

(IQR) for continuous variables and n (%) for categorical variables for of all partici-

pants who submitted at least one symptom report during the 2016, 2017, and 2018

influenza seasons.

3.1.2.2 Outcomes

As recommended by the WHO, we use the incidence rate (IR) as our measure of

influenza disease burden.(World Health Organization, 2015) The IR is equal to the

number of incident ILI reports, defined as a report of ILI in which ILI was not

reported the previous week, divided by the total person-time reported by partici-

pants:

Incidence Rate =

∑N
i=1

∑T
t=1 Yit∑N

i=1

∑T
t=1 (1−Rit)

× 10000 (3.1)

where,

Yit =


1, if ILI

0, otherwise
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Rit =


0, if Yit observed

1, if Yit missing

t = {25, .., 41}.

The rate is expressed as per 10 000 person weeks. Because person-time at risk

is unavailable for most routine influenza surveillance data, we also present the

incidence proportion (IP) for comparability across systems. The IP is equal to the

number of participants who reported ILI at least once during the influenza season

divided by the total number of participants:

Incidence Proportion =

∑N
i=1Qi

N
(3.2)

where,

Qi =


1,

∑T
t=1 Yit ≥ 1

0, otherwise.

The 95% CIs for these estimates are given by:

95% Confidence Interval =
(

IR or IP
e1.96/

√
d
, IR or IP × e1.96/

√
d

)
, (3.3)

where d is the number of cases.(Kirkwood & Sterne, 2003; Giesecke, 2002) We cal-

culate these measures for the overall population as well as by age group (<5, 5-17,

18-49, 50+). Finally, we present the weekly prevalence (WP) of ILI at each week,

which is calculated by dividing the number of ILI reports by the total number of

reports observed,

Weekly Proportiont =

∑N
i=1 Yit∑N

i=1 (1−Rit) .
(3.4)
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Because weekly prevalence is a measure that is estimated in near-real time, all

retrospective reports are assumed missing when calculating estimates. We assess

and compare these measures across three influenza seasons (2016, 2017, and 2018)

in Australia.

3.1.2.3 Missing data methods

We assess five different methods that account for missing data:

1. Ignore all missing data

2. Complete Case

3. Assume all missing reports are non-ILI reports

4. Multiple Imputation (MI)

5. MI with delta (δ) adjustment.

The first method ignores all missing data (i.e. select all Yit for Rit = 0), whereas the

second method includes only complete cases (i.e. select all individuals, i, where

Rit = 0 for all t). The third method assumes that all missing reports are non-ILI

reports (i.e.: P (Yit = 1|Rit = 1) = 0), similar to past studies. The next two methods

use MI methods to produce 10 point estimates, which are aggregated using Rubin’s

rules with a log transformation to account for non-normality.(Rubin, 2004) For the

first MI method (method 4), we fit a model assuming Missing at Random (MAR),

logitP (Yt = 1|Xt) = β0 + β1X1 + β2X1 + β3X3t + ..+ β2+tYt−1 (3.5)

where

Xt = {age group, gender, vaccination status at week t}.
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Because the MAR assumption may not be valid for this type of data, we also per-

form MI using a δ adjustment, which is a flexible and transparent method to im-

pute missing data under Missing Not at Random (MNAR) assumptions.(Leacy

et al., 2017) The δ MI method uses 3.5, however, prior to imputing the missing data

a fixed quantity, δ, is added to the linear predictor of the regression model,

logitP (Yt = 1|Xt, Rt) = β0 + β1X1 + β2X1 + β3X3t + ..+ β2+tYt−1 + δRt. (3.6)

In this case, δ represents the difference in log-odds of ILI for participants who did

not report compared to participants who did report. Both MI methods are fit using

the Multivariate Imputation by Chained Equations (MICE) package for R.(R Core

Team (R Foundation for Statistical Computing), 2016; van Buuren & Groothuis-

Oudshoorn, 2011)

3.1.2.4 Estimation of δ

Because the log-odds of ILI for participants who did not report are unknown, we

use the retrospective reports to estimate this value and create season-specific δ̃

estimates. In other words,

δ̃ = log

odds
(
P
(
Y = 1|R̃ = 1

))
odds

(
P
(
Y = 1|R̃ = 0

))
 (3.7)

where,

R̃it =


0, if Yit report for same week

1, if Yit report for previous week
.

Negative values of δ indicate that participants were less likely to report ILI for

retrospective reports compared to reports submitted during the same week.
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3.1.2.5 Simulations

We also evaluate the missingness data methods under three missingness mod-

els: missing completely at random (MCAR), MAR, and MNAR, using simulated

data. The data is simulated using a three-step process. First, 1000 Flutracking.net

populations (n=30 000 each) are simulated using the characteristics, including age

group, sex, and vaccination status, of the 2016 influenza season participant popu-

lation. Simulated participants are assigned an age group, sex, vaccination status,

and 17 weeks of symptom reports, Yit. These weekly symptom reports are simu-

lated using a multinomial distribution, where n, which is Poisson distributed with

an age-group specific mean, represents the total number of ILI reports for the par-

ticipant and p is the vector of weekly percent of sentinel general practitioner ILI

consultations as reported by AU’s Department of Health.(Australian Government

Department of Health, 2016a) Next, 17 missingness indicators, Rit, are simulated

to reflect distribution of Flutracking.net participant reports (Figure 3.1). As shown

in this figure, approximately 80% of Flutracking.net participants submitted 15-17

reports, whereas the remaining 20% of participants are approximately uniformally

distributed between 1 and 14 reports. We simulate these missingness indicators

using three separate missingness models:

1. MCAR

Ri ∼ Binomial (n = 17, pi) (3.8)

where,

pi =


0.05, with probability 0.8

Uniform (0.1, 0.95) , with probability 0.2
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2. MAR

Rit ∼ Bernoulli (pit) (3.9)

where,

pit =
eZi+γRit−1

1 + eZi+γRit−1

and

Zi =


−2.944, with probability Wi

Uniform (−2.197, 2.197) , with probability 1−Wi

and

Wit =
eβ0+β1X1+..+β7X7

1 + eβ0+β1X1+..+β7X7

for

X = {age group, gender, vaccination status}.

3. MNAR

Rit ∼ Bernoulli (pit) (3.10)

where,

pit =
eZi+γRit−1+δYt

1 + eZi+γRit−1+δYt
.

The values of β0 through β7 are estimated for Flutracking.net data using the meth-

ods described in section 2.1.3.1. We define δ equal to the 2016 Flutracking δ̃ es-

timate, however, we also present sensitivity analysis that assesses how varying

the MNAR assumption affects IR estimates. Finally, each of the five methods de-

scribed in the previous section is applied to produce overall and age-specific IR

and IP estimates, as well as the overall WP estimates for each simulated dataset.

We compare adjusted-estimates to the original simulation parameters through vi-
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olin plots and Normalized Root Mean Square Errors (NRMSE) normalized by the

original parameter,

NRMSE =

√∑T
i (B̂−B)

2

T

B
(3.11)

for T = 1000. In this equation, B represents either IR, IP, or WP.

3.1.3 Results

3.1.3.1 Flutracking.net

During the 2016, 2017, and 2018 influenza seasons, 29 671, 32 778, and 43 389

unique participants submitted at least one symptom report between week 25 and

week 41, respectively. Across all seasons, approximately 60% of the participants

identify as female, and the median age of participants range from 47 to 49. The

largest age group is 50+, followed by 18 to 49, 5 to 17, and finally <5. More than half

of the participants are primary users who submitted reports on their own behalf,

and 59%, 61%, and 67% of participants reported that they received the influenza

vaccination during the 2016, 2017, and 2018 influenza seasons, respectively (Table

3.1).
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Table 3.1: Descriptive statistics of the Flutracking.net cohort during
the 2016, 2017, and 2018 influenza seasons. Continuous variables are
displayed as median (IQR) and categorical variables are displayed as
n (%).

Variable 2016 2017 2018
Participants n 29,671 32,778 43,389

Sex male 11,153
(37.59)

12,665
(38.64)

17,086
(39.38)

female 17,267
(58.19)

19,277
(58.81)

25,561
(58.91)

other 1 (0) 5 (0.02) 19 (0.04)
unknown 1250 (4.22) 831 (2.54) 723 (1.67)

Age median (IQR) 47 (31, 58) 48 (31, 59) 49 (32, 61)

Age Group <5 963 (3.25) 1062 (3.24) 1506 (3.47)
5 to 17 3387

(11.42)
3813
(11.63)

4961
(11.43)

18 to 49 11,812
(39.81)

12,306
(37.54)

15,667
(36.11)

50+ 13,509
(45.53)

15,597
(47.58)

21,255
(48.99)

Household Primary user 17,525
(59.06)

19,170
(58.48)

24,945
(57.49)

Household
member

12,146
(40.94)

13,608
(41.52)

18,444
(42.51)

Vaccinated yes 17,526
(59.07)

19,966
(60.91)

29,081
(67.02)

no 12,145
(40.93)

12,812
(39.09)

14,308
(32.98)

The descriptive statistics of the reporting habits of participants during the 2016,

2017, and 2018 influenza seasons are shown in Table 3.2. The total number of symp-

tom reports submitted during the influenza season increased from approximately

450 000 in 2016, to almost 500 000 in 2017, and finally to more than 650 000 in 2018.
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Figure 3.1: Distributions of the number of Flutracking.net partici-
pant reports during the (A) 2016, (B) 2017, and (C) 2018 influenza
seasons.

The median number of weekly reports also increased from approximately 26 000

in 2016 to 39 000 in 2018. The distribution of the number of participant reports

is shown in Figure (3.1). During each influenza season, the median number of

reports per participant was 17 (16, 17), indicating that more than half of the par-

ticipants submitted a symptom report for every week during the influenza season.

As shown in Figure 3.2, most Flutracking.net participants register before week 25,

however, the percentage of participants who are lost to follow-up increases as the

season progresses, as shown by the dark gray bars. Most reports are submitted

within one week of the symptom report date, however, a larger fraction of these

reports are ILI compared to the retrospective reports, resulting in a negative value

of δ̃. The exact value of δ̃ varies by season, and the corresponding ORs of reporting

ILI for a retrospective report compared to reporting ILI for a report submitted the

same week range from 0.80 in 2018 to 0.92 in 2017. The percentage of retrospective

reports (dark blue) is fairly consistent through the season, but the proportion of
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missing reports (light grey) appears to increase until mid-season, at which point

it slowly decreases as more participants are lost to follow-up (dark grey). These

patterns are consistent across all influenza seasons.
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Table 3.2: Descriptive statistics of Flutracking.net participant report-
ing habits during the 2016, 2017, and 2018 influenza seasons. Con-
tinuous variables are displayed as median (IQR) and categorical vari-
ables are displayed as n (%).

Variable 2016 2017 2018
Participants n 29,671 32,778 43,389

Reports Total 452,627
(100)

498,465
(100)

665,935
(100)

Non-ILI 442,817
(97.83)

486,380
(97.58)

655,187
(98.39)

ILI 9810 (2.17) 12,085
(2.42)

10,748
(1.61)

Reports Sub-
mitted

Total 398,496
(88.04)

432,733
(86.81)

585,295
(87.89)

Within One
Week

Non-ILI 389,706
(97.79)

422,139
(97.55)

575,611
(98.35)

ILI 8790 (2.21) 10,594
(2.45)

9684 (1.65)

Retrospective
Reports

Total 54,131
(11.96)

66,096
(13.26)

80,640
(12.11)

Non-ILI 53,111
(98.12)

64,605
(97.74)

79,576
(98.68)

ILI 1020 (1.88) 1491 (2.26) 1064 (1.32)

Reports per
Week

median (IQR) 26,570 29,370 39,150

(26,470,
26,860)

(29,200,
29,520)

(38,550,
39,800)

Reports per
Participant

median (IQR) 17 (16, 17) 17 (16, 17) 17 (16, 17)

delta (δ̃) -0.158 -0.082 -0.226
OR (eδ̃) 0.85 0.92 0.80
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Figure 3.2: Histograms of Flutracking.net participant reporting
habits during the (A) 2016, (B) 2017, and (C) 2018 reporting periods.

3.1.3.2 Outcomes

Incidence Rate Appendix Table A.3 and Figure 3.3 display overall and age group

specific IRs and 95% CIs, expressed as number of ILI reports per 10 000 person

weeks, by influenza season. Although the 2017 influenza season had higher IRs

compared to the 2016 and 2018 seasons, the general patterns in estimates are con-

sistent across all seasons and age groups. The method that assumes that all missing

reports are non-ILI has the lowest IR estimates, whereas ignoring the missing value

and MI methods have the highest IR estimates. As expected, IR estimates from the

δ MI method are slightly less than estimates from the MI method without the δ ad-

justment indicating that retrospective reports are less likely to be ILI. In most age

groups, IR estimates from the complete case method are similar or slightly greater

than estimates from the method that assumes all missing reports are non-ILI.

Incidence Proportion The overall and age group specific IPs and 95% CIs for

each influenza season are shown in Appendix Table A.4 and Figure 3.4. Estimates
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(A) 2016, (B) 2017, and (C) 2018 influenza seasons.
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for the method that ignores missing data are not shown because this method is

equivalent to assuming that all missing reports are non-ILI. Similar to IR estimates,

IPs estimates from the method that assumes all missing reports are non-ILI and

complete case method are less than IP estimates from the MI and δ MI methods.

However, the differences in IP estimates appear to be less pronounced compared

to IR estimates.

Weekly Proportion Near-real time WP estimates are shown in Figure 3.5. Be-

cause the complete case population is unknown during the season, this method

is not applied. We also present the complete data with the retrospective reports

for comparison. The method that assumes all missing reports are non-ILI results

in WP estimates that are less than the other methods. WP estimates from the MI

method are slightly higher than WP estimates from the method that ignores miss-

ing values and the δ MI method. The estimates from these two methods are similar

to the complete data.

3.1.3.3 Simulations

Violin plots are shown in Appendix Figure A.1 and Appendix Figure A.2, for IR

and IP respectively, and WP time series results are shown in Appendix Figure A.3.

NRMSEs are displayed in Table 3.3. Under each model, assuming that all missing

reports are non-ILI underestimates the IR, IP, and WP, and results in the largest

NRMSE. When estimating the IR, the ignoring missing reports and MI methods

have smaller NRMSEs compared to the complete case and δ MI methods under

MCAR and MAR assumptions. However, under MNAR, IR estimates using the δ

MI have the smallest NRMSEs compared to the other methods. For IP, the complete

case and MI methods outperform ignoring missing reports, which is equivalent
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to assuming that all missing reports are non-ILI in this scenario. Under MCAR

and MAR models, the MI method has the smallest NRMSEs, and even though

the δ MI method underestimates the IP, the NRMSEs are similar to those from

the complete case method. Similar to IR, the δ MI method is the best method when

data are MNAR. When estimating the WP, the method that ignores missing reports

outperforms the other methods under each missingness model.
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Table 3.3: NRMSE, expressed as percentage, by age-group for IR and
IPs and overall for WP under MCAR, MAR, and MNAR missingness
models.

Model Age Ignore Assume Complete
Group missing missing are Case MI δ MI

data non-ILI
IR
MCAR Overall 0.44 14.02 1.52 0.73 2.51

<5 1.94 14.05 6.82 2.8 3.31
5-17 1.17 14.07 4 1.69 2.87
18-49 0.65 14.01 2.45 1.02 2.57
50+ 0.67 14.06 2.43 1.05 2.68

MAR Overall 0.56 14.59 1.73 0.83 2.57
<5 2.23 19.47 7.41 3.45 4.36
5-17 1.26 16.72 4.13 1.98 3.24
18-49 0.68 15.71 2.45 1.18 2.84
50+ 0.64 12.08 2.34 1.05 2.28

MNAR Overall 2.08 12.5 1.61 2.95 0.81
<5 3.65 16.95 7.57 5.02 3.24
5-17 2.91 14.45 4.25 3.71 1.77
18-49 2.64 13.52 2.78 3.19 1.11
50+ 2.18 10.22 2.68 2.65 0.91

IP
MCAR Overall - 12.98 1.44 0.64 2.55

<5 - 12.46 6.05 2.53 3.14
5-17 - 12.84 3.63 1.58 2.83
18-49 - 12.95 2.25 0.96 2.59
50+ - 13.16 2.32 0.96 2.74

MAR Overall - 13.54 1.61 0.69 2.62
<5 - 17.64 6.69 2.98 4.19
5-17 - 15.46 3.79 1.76 3.2
18-49 - 14.65 2.3 1.04 2.91
50+ - 11.31 2.2 0.96 2.33

MNAR Overall - 11.58 1.51 2.42 0.87
<5 - 15.29 6.78 4.08 3
5-17 - 13.32 3.89 3.02 1.75
18-49 - 12.59 2.54 2.66 1.17
50+ - 9.56 2.48 2.26 0.94

WP
MCAR Overall 2.17 14.14 - 3.01 4.04
MAR Overall 2.17 14.37 - 3.1 3.97
MNAR Overall 2.88 12.21 - 4.13 2.98
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3.1.4 Discussion

National estimates of disease burden in the population are essential to determine

the health and economic impact of influenza.(Lee et al., 2018c) However, most sen-

tinel surveillance includes only individuals who visit a medical care facility and

there is typically a delay from onset of patient symptoms to final publication of

reports. Alternative data sources, such as Flutracking.net, have the potential to

complement these traditional systems by capturing a population not routinely in-

cluded among the other healthcare-based systems and minimizing delays in re-

porting.(Smolinski et al., 2017)

Although global and AU estimates of IRs and IPs for ILI are not currently available,

laboratory-confirmed influenza is a nationally notifiable disease in AU.(Sullivan

et al., 2016) The National Notifiable Diseases Surveillance System (NNDSS) pro-

vides estimates of the notification rate of laboratory confirmed influenza per 100

000 population. These age-specific rates estimates range from 246.7 to 1237.2 per

100 000 population during the 2016 influenza season.(Australian Government De-

partment of Health, 2016b) As expected, these estimates are much lower than the

estimates from Flutracking.net because NNDSS estimates laboratory confirmed in-

fluenza, whereas Flutracking.net estimates ILI. Furthermore, the number of cases

represent only a proportion of the total cases occurring in the community, that is,

only those cases for which health care was sought, a test conducted and a diagno-

sis made, followed by a notification to health authorities. However, the patterns in

age group specific estimates are similar.

There are several limitations of this study. Because the estimates of ILI are based on

syndromic data, the specificity with respect to the actual circulation of influenza

viruses among the population is relatively low. Furthermore, the demographics
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of the Flutracking.net population differ from AUs national population. Females

and middle-aged individuals are over-represented in the Flutracking.net popula-

tion. Finally, in our MNAR simulation model the value of δ in equation 3.10 is

known, and the resulting δ MI model can be properly parameterized. In reality,

this value is unknown, and we were only able to estimate it from retrospective re-

ports. Sensitivity analysis show that as the probability of missing given a report

is ILI decreases, the method that assumes missing reports are non-ILI becomes a

better method of adjustment, as shown in Appendix FigureA.4. However, under

modest changes in the δ, for example increasing δ from .3 to .5 or 1.3, which corre-

sponds an increase in OR from 1.35 to 1.65 or 3.67, respectively, the δ MI method

still outperforms the method that assumes missing are non-ILI.

When using participatory surveillance data to estimate ILI disease burden in the

general population, the final estimates depend on the method used to account for

missing data. Under each simulation scenario, assuming that all missing reports

are non-ILI underestimates all estimates. Although the optimal method depends

on the estimate of interest and the missingness model, when properly parameter-

ized, the δ MI method provides estimates of disease burden that are similar to the

true parameter under MNAR models.

Based on this study, we recommend following Flutracking.net’s lead by providing

users with the opportunity to complete missing surveys. This system accommo-

dation not only adds approximately 10% more weekly reports, but also provides

valuable insight into reporting behaviors. Furthermore, the δ MI method accu-

rately predicted end of season WP estimates from real-time data. In the future,

the value of δ can be easily updated and adapted over the course of an influenza

season.
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3.2 COMPARATIVE EVALUATION OF METHODS THAT ADJUST FOR RE-

PORTING BIASES WHEN ESTIMATING INFLUENZA-LIKE ILLNESS B-

URDEN USING DATA FROM FLU NEAR YOU

3.2.1 Overview

Because the dynamics and severity of influenza in the U.S. varies each season,

yearly population estimates of influenza burden are essential to determine the risk

of morbidity and mortality in different segments of the population, guide vac-

cination programs, evaluate the use of diagnostic tests and antiviral drugs, and

plan for seasonal epidemics and future pandemics.(Thompson et al., 2006) Since

the influenza A (H1N1) Pandemic in 2009, the CDC has used a probabilistic mul-

tiplier model to estimate the seasonal influenza burden for the entire U.S. using

laboratory-confirmed influenza-associated hospital rates from Influenza Hospi-

tal Surveillance Network (FluSurv-NET) and results from health-seeking behavior

studies.(Reed et al., 2015; Shrestha et al., 2017; Rolfes et al., 2018)

To obtain these age group specific estimates of influenza burden, influenza asso-

ciated hospital rates from FluSurv-NET are first adjusted to correct for the under-

detection of influenza hospitalizations by multiplying the reported rate by both the

probability that a person hospitalized with an influenza infection would be tested

and the probability that a person who is positive for an influenza would have

a positive test. These adjusted hospitalization rates are then extrapolated to the

U.S. population. Next, the age-specific number of influenza illnesses who sought

health care are estimated based using the ratio of the estimated number of ill per-

sons per hospitalization. Finally, the estimated number symptomatic illnesses for

each age group are calculated using estimates of the percentage of persons with a

respiratory illness who sought medical care. These percentages are obtained from
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Figure 3.6: Schematic of the steps to estimate influenza disease bur-
den in the U.S. population from FluSurv-NET laboratory-confirmed
influenza-associated hospital rates (adapted from Reed et al. (2015)).

the 2010 Behavioral Risk Factor Surveillance Survey (BRFSS). A schematic of these

steps is presented in Figure 3.6.(Biggerstaff et al., 2012)

There are several limitations to this method. First, the number of hospital-based

influenza-confirmed cases come from FluServ-NET, which includes data from only

13 geographical areas representing only 9% of the U.S. population. As a result, the

data may not be representative of the entire U.S., especially among those who do

not seek medical care. In addition, estimates of health care-seeking behavior from

the 2010 BRFSS are based on trends in visits to health care facilities and influenza

diagnosis and treatment during the 2009 influenza pandemic. These trends may

not be applicable to post-pandemic years.

FNY has the potential to complement the CDC’s estimation methods because it
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captures individuals who do not seek medical care. However, as discussed in pre-

vious chapters, because not all participants report every week and participants

are more likely to report when ill, the estimates of disease burden may be bi-

ased.(Baltrusaitis et al., 2017) Past studies have used various methods to address

these issues including restricting analyses to cohorts of users that report regu-

larly,(Chunara et al., 2015; Cantarelli et al., 2014; Patterson-Lomba et al., 2014)

dropping the first report of all users, and using a spike detector.(Smolinski et al.,

2015) In this study, we apply these approaches that adjust for common report-

ing biases to estimate ILI burden in the general population using data from FNY

and compare these estimates to the CDC’s estimates of influenza burden. We also

present results from a simulation study that compares these approaches under dif-

ferent missingness and motivation to report assumptions.

3.2.2 Methods

3.2.2.1 Data

Data collection for FNY is described in Section 1.2.2.1. This analysis uses FNY

data from the 2015-2016, 2016-2017, and 2017-2018 influenza seasons, defined as

MMWR week 40 through week 20. These weeks usually corresponds with months

October through May.

3.2.2.2 Outcomes

Age group specific estimates of ILI burden are calculated by dividing the sum of

the weekly incident cases of ILI, defined as a report of fever with cough and/or

sore throat, by the population at risk at the beginning of the period. These pro-

portions are then extrapolated to the general population using the U.S. Census
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Bureau’s 2013-2017 American Community Survey 5-Year Estimates(U.S. Census

Bureau, 2015):

ILI Burdenagegroup =

∑Nagegroup

i=1 Qi

Nagegroup

×NUSagegroup (3.12)

where,

Qi =


1,

∑T
t=1 Yit ≥ 1

0, otherwise.

Yit =


1, if ILI

0, otherwise

t = {40, .., 20}.

The 95% CIs for these estimates are given by:

95% CI =

∑Nagegroup
i=1 Qi

N

e1.96/
√∑

Qi

×NUSagegroup ,

∑Nagegroup

i=1 Qi

N
× e1.96/

√∑
Qi ×NUSagegroup

 .

(3.13)

The age groups correspond to the CDC’s defined age groups: <5, 5-17, 18-49, 50-64,

65+.

3.2.2.3 Bias adjustment methods

Five different methods of bias adjustment are assessed:

1. All reports

2. Drop first report

3. Cohort
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4. Cohort with MI

5. Cohort with δ MI.

The first method includes all FNY participants, defined as users and household

members, who submitted at least one symptom report, whereas the second method

includes all FNY participants who submitted at least two symptom reports and

drops the first symptom report for all participants. All missing reports are as-

sumed to be non-ILI for both of these methods. The final methods include a cohort

of FNY participants who meet a specific reporting entry criteria, at least 10 symp-

tom reports, and applies the missing data methods explored in Section 3.1.2.3.

Specifically, the third method assumes that all missing reports are non-ILI reports,

the fourth method uses MI under the MAR assumption

logitP (Yt = 1|Xt) = β0 + β1X1 + β2X1 + ..+ β1+tYt−1 (3.14)

where

Xt = {age group, sex},

and the fifth method uses MI with a δ adjustment

logitP (Yt = 1|Xt, Rt) = β0 + β1X1 + β2X1 + ..+ β1+tYt−1 + δRt. (3.15)

Unlike Flutracking.net, FNY does not collect retrospective reports. Instead, we use

information from end of season surveys and expert opinion to define δ equal to

-0.5, which corresponds to an OR of 0.6. In other words, reports that are miss-

ing have 0.6 times the odds of being ILI compared to reports that are not missing.

For both MI methods, the MICE package in R is used to produce 10 point esti-
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mates.(R Core Team (R Foundation for Statistical Computing), 2016; van Buuren &

Groothuis-Oudshoorn, 2011) These point estimates are aggregated using Rubin’s

rules with a log transformation to account for non-normality.(Rubin, 2004)

3.2.2.4 Simulations

We also evaluate the missingness data methods using simulated data. The data is

simulated through a four-step process. First, 1000 populations (n=100 000 each)

of potential FNY participants are simulated using the characteristics of the 2016-

2017 influenza season participant population. Simulated potential participants are

assigned an age group, sex, and 33 weeks of symptom reports, Yit. These weekly

symptom reports are simulated using a multinomial distribution, where n, which

is Poisson distributed with an age-group specific mean, represents the total num-

ber of ILI reports for the participant and p is the vector of weekly percent of sen-

tinel general practitioner ILI consultations as reported by CDC ILINet. Next, a

sub-population of approximately 30 000 individuals are chosen to be FNY partic-

ipants. We assess the motivation (Mi) for being a FNY participant under three

different models:

1. Motivated Completely At Random (MoCAR)

Mi ∼ Bernoulli (pi) (3.16)

where,

pi = 0.3
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2. Motivated At Random (MoAR)

Mi ∼ Bernoulli (pi) (3.17)

where,

pi =
eβ0+β1Xi1+..+β7Xi7

1 + eβ0+β1Xi1+..+β7Xi7

for

X = {age group, sex}.

3. Motivated Not At Random (MoNAR)

Mi ∼ Bernoulli (pi) (3.18)

where,

pi =
eβ0+β1Xi1+..+β7Xi7+δ

∑
Yit

1 + eβ0+β1Xi1+..+β7Xi7+δ
∑

Yit

for

X = {age group, sex}.

Next, 33 missingness indicators, Rit, are simulated to reflect distribution of FNY

participant reports (Figure 3.7). All three missingness models start with a Beta-

binomial distribution with α=0.5 and β=1, to reflect the distribution of FNY re-

ports:

1. MCAR

Ri ∼ Binomial (n = 33, pi) (3.19)

where,

pi =
Zi + 1

33
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and

Zi ∼ Beta-binomial (n = 32, α = 0.5, β = 1)

2. MAR

Rit ∼ Bernoulli (pit) (3.20)

where,

pit =
eZ

′
i+β0+β1Xi1+..+β7Xi7+γRit−1

1 + eZ
′
i+β0+β1Xi1+..+β7Xi7+γRit−1

and

Z ′
i = log

(
Zi

1.000001− Zi

)
for

Xt = {age group, gender}.

3. MNAR

Rit ∼ Bernoulli (pit) (3.21)

where,

pit =
eZ

′
i+β0+β1Xi1+..+β7X7i+γRit−1+δYit

1 + eZ
′
i+β0+β1Xi1+..+β7Xi7+γRit−1+δYit

The values of β0 through β7 are estimated for FNY data using the methods de-

scribed in section 2.1.3.1. We define γ equal to -0.2 so that subsequent reports are

less likely to be observed if the previous report is also missing and δ equal to 0.5

so that reports are less likely to be missing if they are ILI. Although there are nine

potential combinations of motivation and missingness models, for this simulation

study, we assume that the motivation and missingness models are concordant. For

example, under MoCAR the missingness model is also MCAR. Finally, each of the

five methods described in the previous section is applied to produce age-specific
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seasons.

IP estimates (Equation 3.2). We compare adjusted-estimates to the original simula-

tion parameters through violin plots and NRMSE (Equation 3.11).

3.2.3 Results

3.2.3.1 Flu Near You population characteristics

The descriptive statistics for each population: total, drop first report, and at least

10 report cohort for the 2015-2016, 2016-2017, and 2017-2018 influenza seasons are

shown in Table 3.4. Although the 2015-2016 influenza season had more total partic-

ipants (n=43 944) than the 2016-2017 (n=28 526) and 2017-2018 (n=30 531) influenza

seasons, a greater percentage of participants were included in the drop first report

and at least 10 report cohort populations during these seasons. For the 2015-2016

influenza season, 63% of the total population was included in the drop first report

population and less than 30% of the total population was included in the at least

10 report cohort, whereas over 80% and 40% of the total population were included

in the drop first report population and at least 10 report cohort, respectively, dur-

ing the 2016-2017 and 2017-2018 influenza seasons. The 2016-2017 and 2017-2018
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influenza seasons also had a greater median number of reports per participant for

the total population compared to the 2015-2016 influenza season, 5 (1, 23) vs. 2

(1, 13). This change in reporting habits is captured in Figure 3.8. As indicated by

the blue bars, approximately 20% of the potential reports are submitted each week

during the 2015-2016 influenza season, on the other hand, approximately 30% of

the potential reports are submitted each week during the 2016-2017 and 2017-2018

influenza seasons. Across all seasons, the percent of females decreased and the

median age increased as the entry criteria became more restrictive.
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Table 3.4: Descriptive statistics of different FNY populations for the
2015-2016, 2016-2017, and 2017-2018 influenza season. Continuous
variables are displayed as median (IQR) and categorical variables are
displayed as n (%).

Variable Total Drop 1st report At least 10 cohort
2015-2016
N 43944 (100%) 27715 (63.07%) 13068 (29.74%)
Number of re-
ports

369235 (100%) 353006 (95.6%) 297603 (80.6%)

Reports per
week

11157 (10509,
11827)

10490 (9503,
11052)

9209 (8546, 9653)

Reports per par-
ticipant

2 (1 , 13) 8 (3, 23) 24 (16, 29)

Male 15585 (36.24%) 10552 (38.9%) 5594 (43.66%)
Female 27304 (63.5%) 16537 (60.96%) 7218 (56.33%)
Unknown 112 (0.26%) 39 (0.14%) 2 (0.02%)
Age 50.9 (34.7, 62.3) 52.5 (35.2, 63.5) 56.5 (38.2, 65.4)
2016-2017
N 29526 (100%) 24218 (82.02%) 12036 (40.76%)
Number of re-
ports

328455 (100%) 323147 (98.38%) 285844 (87.03%)

Reports per
week

10285 (9694,
10985)

9983 (9498, 10659) 9227 (8435, 9570)

Reports per par-
ticipant

5 (1, 23) 9 (2, 26) 26 (18, 30)

Male 11041 (38.17%) 9486 (40.01%) 5102 (43.04%)
Female 17818 (61.6%) 14191 (59.86%) 6750 (56.94%)
Unknown 66 (0.23%) 30 (0.13%) 2 (0.02%)
Age 53.6 (36.4, 64.1) 54.45 (37.2, 64.8) 58.2 (41.2, 66.5)
2017-2018
N 30531 (100%) 26546 (86.95%) 12354 (40.46%)
Number of re-
ports

344948 (100%) 340963 (98.84%) 297815 (86.34%)

Reports per
week

10255 (9721,
11018)

10155 (9644,
10860)

9047 (8702, 9366)

Reports per par-
ticipant

5 (1, 23) 8 (2, 25) 26 (18, 30)

Male 11505 (38.62%) 10242 (39.48%) 5187 (42.69%)
Female 18188 (61.06%) 15640 (60.29%) 6953 (57.23%)
Unknown 96 (0.32%) 60 (0.23%) 9 (0.07%)
Age 52.8 (35.8, 64.3) 54.1 (36.9, 64.9) 58.9 (42, 67.3)
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3.2.3.2 Disease Burden

Appendix Table A.5 and Figure 3.9 display age group specific estimates of ILI dis-

ease burden and 95% CIs, expressed as per 1 000 000 persons, by influenza season.

Overall, the 2017-2018 influenza season has the largest estimates of disease burden

for both influenza and ILI, and the 2016-2017 influenza season has the smallest es-

timates of disease burden for influenza and ILI. Although the general age group

patterns are consistent across all seasons, there are some slight differences in esti-

mates within each age group and season. The method that drops the first report

has smaller ILI burden estimates compared to the method that includes all reports.

This difference indicates that a large percentage of individuals report ILI for their

first report, particularly in the 18-49 and 50-64 age groups, where this difference

is more pronounced. For most age groups and seasons, the cohort methods have

larger estimates compared to the method that includes all reports, except for older

age groups during the 2015-2016 influenza season. As expected, both MI meth-

ods have larger estimates of ILI burden compared to all methods that assume all

missing reports are non-ILI. The estimates from the δ MI method are less than the

estimates from the MI, except for the <5, 50-64, and 65+ age groups during the

2016-2017 influenza season.

3.2.3.3 Simulations

Violin plots are shown in Figure 3.10, and NRMSEs are displayed in Table 3.5.

Under each model, using all reports and dropping the first report underestimate

the IP and have the largest NRMSEs. Under MoCAR/MCAR and MoAR/MAR

assumptions, the cohort MI method best estimates the original parameter and has

the smallest NRMSEs. However, under MoNAR/MNAR assumptions, the cohort
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method that assumes all missing reports are non-ILI has the smallest NRMSEs.

Although the cohort δ MI method has the second smallest NRMSE, there is a large

range of estimates in the <5 age group.

Table 3.5: NRMSE, expressed as percentage, by age-group for IR and
IPs and overall for WP under MCAR, MAR, and MNAR missingness
models.

Age All Drop 1st Cohort Cohort + Cohort +
Group reports report MI δ MI
MCAR
<5 61.42 56.32 32.34 18.50 89.33
5-17 61.90 56.88 32.53 7.23 15.70
18-49 62.30 57.32 32.96 5.20 12.25
50-64 62.61 57.67 33.38 5.91 12.59
65+ 62.95 58.04 33.78 8.03 12.60
MAR
<5 59.84 54.05 30.28 12.29 50.72
5-17 60.33 54.55 30.50 4.64 11.67
18-49 60.68 55.00 30.94 3.22 11.48
50-64 61.01 55.36 31.37 3.52 11.70
65+ 46.95 45.65 26.45 3.04 9.98
MNAR
<5 47.91 40.01 10.60 32.90 37.53
5-17 48.26 40.28 9.46 32.32 16.95
18-49 48.35 40.37 9.08 33.38 17.13
50-64 48.45 40.48 8.98 35.15 18.06
65+ 36.15 34.79 12.08 22.63 8.71

3.2.4 Discussion

The CDC has a well-established, robust influenza surveillance system. However,

this system primarily uses data from sentinel systems and relies on mathematical

models to estimate the overall influenza burden in the U.S. population. FNY has

the potential to compliment CDC by reaching populations who do not seek health

care for symptoms.
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Although studies have proposed different methods to address reporting inconsis-

tencies in participatory syndromic surviellance data, no study has evaluated these

approaches using both real data from FNY as well as simulated data. We found

that when estimating ILI burden, the drop first report method produces ILI bur-

den estimates that are less than using all reports. This difference indicates that a

large fraction of participants report ILI on their first report. In addition, both the MI

and δ MI models have the largest estimates. Based on the simulations, the cohort

approach with MI is most appropriate under MoCAR/MCAR and MoAR/MAR

models, whereas the cohort method that assumes that all missing data is non-ILI

is most appropriate under MoNar/ MNAR models. Past research has shown that

MoCAR/MCAR and MoAR/MAR models may not reflect reality. For example, 20-

30% of FNY users who completed a post-season survey reported that they are more

likely to report when ill (L. Goodwin, personal communication, March, 2019). Ad-

ditionally, as discussed in Section 2.1.3.1, FNY users who reported ILI symptoms

are less likely to continue reporting. As a result, when using FNY data to retro-

spectively estimate ILI burden, the cohort method that assumes that all missing

data is non-ILI may be most appropriate.

3.2.4.1 Choice of reporting entry criteria

A reporting entry criteria of at least 10 reports is used for the cohort methods to

be consistent with past studies.(Chunara et al., 2015; Reed et al., 2016) As a sensi-

tivity analysis, we assess the relationship between the reporting entry criteria with

both the percent of participants remaining and the percent of total data observed

as well as with the IP for all three seasons. As discussed in the Section 3.2.3.1, par-

ticipant reporting habits during the 2015-2016 influenza season are different than

the 2016-2017 and 2017-2018 influenza seasons, however, the overall patterns be-
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tween the reporting entry and percent of subjects remaining and percent of total

observed are similar (Figure 3.11). If all participants are included in the analysis

(100% participants remaining) then only 25-30% of the total possible reports for a

season are observed, which means that 70-75% of the data would need to be im-

puted. If a reporting entry criteria of at least 3 reports is used, then 50-60% of the

total participants remain and 45-55% of the total possible reports are observed. A

reporting entry criteria of at least 10 reports includes 30-40% of the total popula-

tion and 65-75% of the total possible reports are observed. There is a distinct trade

off between keeping participants and percent of observed reports when selecting

the reporting entry criteria, and this criteria should be carefully considered when

applying MI methods under MNAR. Despite this trade-off, there is little variation

in IP estimates (i.e.: the percent of participants who reported an incidence of ILI)

between reporting entry criteria of 5 through 25 across most age groups and sea-

sons (Figure 3.12). Based on these results, a reporting entry criteria of 5 may be an

appropriate choice, unless a MI method is applied.

3.2.4.2 Next Steps

As mentioned in Section 3.2.2.4, we assume that the motivation and missingness

models are concordant. However, because there are nine possible motivation and

missingness combinations, we will assess how these methods work under different

combinations. In addition, for the MoNAR and MNAR models, we only assessed

one value of δ. In the future, we will also assess how well the methods perform as

the value of δ changes.

Unlike Flutracking.net, FNY does not collect missed reports from users. As a re-

sult, there is no clear way to estimate the probability that a report is ILI given the

report is missing for FNY. For this analysis, we use information from end of sea-



62

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

25

50

75

100

10 20 30

P
er

ce
nt

(A) 2015−2016

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

10 20 30

(B) 2016−2017

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

10 20 30

(C) 2017−2018

Reporting Entry Criteria

●● ●●Data Observed Participants Remaining
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2015-2016, (B) 2016-2017, and (C) 2017-2018 influenza seasons.

son surveys and expert opinion to estimate δ. We are currently investigating better

ways to estimate this value. Furthermore, the estimates of ILI burden using the δ

MI method varied widely during the 2016-2017 influenza season. There were er-

rors in data collection from October 2016 through December 2016, and these errors

may have contributed to the issues in convergence for the δ MI method. Both the

MI and δ MI models will be re-run without data from this time period to assess

whether more consistent estimates of ILI burden can be obtained.

Since January, the CDC has been releasing weekly estimates of cumulative in-

fluenza burden. Our study has shown that a cohort method is the best approach to

estimate ILI burden. However, this method can only be applied for retrospective

analyses because we do not know which participants will reach the reporting entry

criteria at the beginning of the influenza season. As a result, other methods, such

as adjustment through a scaling factor, will be assessed to determine if near-real

time estimates of cumulative ILI burden can be produced.
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CHAPTER 4

Applying these methods to answer questions about influenza in the community

4.1 IS THERE REALLY MORE FLU IN THE SOUTH? SURVEILLANCE SYS-

TEMS SHOW DIFFERENCES IN INFLUENZA ACTIVITY ACROSS RE-

GIONS

4.1.1 Overview

As discussed in Section 1.1.2, the CDC tracks patients who seek medical attention

with ILI symptoms through ILINet. This surveillance system includes thousands

of volunteer health care specialists, including individual providers, group prac-

tices, and hospital-based clinics located throughout all 50 states, Puerto Rico, the

District of Columbia, and the US Virgin Islands. Because participation in ILINet

is voluntary and each state is responsible for their own recruitment of healthcare

providers, the composition of provider-types, coverage of geographical regions,

and consistency of provider reporting varies from state to state. This convenience

sample-driven model of surveillance results in certain parts of the population be-

ing over- or under-represented in the reported influenza activity.(Polgreen et al.,

2009b; Lee et al., 2018b; Scarpino et al., 2012) At both national and HHS-defined

regional levels, the CDC routinely reports the weekly percentages of patients pre-

senting with ILI to healthcare providers. In addition, each season the CDC cal-

culates and reports region-specific baselines, using influenza activity data from

previous seasons, to identify the beginning and end of the influenza season and

contextualize the severity of a given region-specific outbreak. These baselines vary

widely across regions, and the degree to which the differences in baselines, as well

as percent ILI visits during an influenza season, reflect actual differences in in-
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fluenza activity or systematic differences in the methods used to collect the data is

unclear. Recent models suggest that the spatial patterns in U.S. sentinel ILI surveil-

lance may be the result of socio-environmental factors, state-specific health poli-

cies, and sampling.(Lee et al., 2018b) Identifying and characterizing the presence

of potential methodological measurement biases in ILINet is important, as it is fre-

quently used as an indicator of influenza activity for decision-making purposes, as

well as the ground truth in mechanistic and statistical predictive modeling efforts

aimed at understanding disease transmission dynamics and monitoring and fore-

casting influenza activity.(Zhang et al., 2017; Biggerstaff et al., 2016, 2018; Brooks

et al., 2015; Tizzoni et al., 2012; Shaman et al., 2010; Yang et al., 2015a, 2017; Santil-

lana et al., 2015, 2014) Here, we qualitatively and quantitatively compare national

and region-specific baselines and ILI activity during three influenza seasons across

four surveillance data sources:

• CDC ILINet

• FNY

• athenahealth, a provider of cloud-based electronic health record (EHR) ser-

vices

• HealthTweets.org, a research platform that shares health trends data from

Twitter

to determine whether these data sources, commonly used as input in influenza

modeling efforts, show regional structural patterns that are similar to those ob-

served in CDC ILINets data. We also compare yearly self-reported health care-

seeking behavior of FNY participants to determine if this factor can better charac-

terize the differences in ILI activity across regions.
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4.1.2 Methods

4.1.2.1 Data

CDC ILINet The CDC reports the weighted percentage of patient visits to health-

care providers presenting ILI symptoms on a weekly basis at the national and re-

gional levels. These values are weighted on the basis of state population and rep-

resent the percentage of patient visits to healthcare providers that present as ILI,

defined as fever (temperature of 37.8 ◦C [100 ◦F] or greater) plus a cough and/or a

sore throat without a known cause other than influenza.

FNY Data collection for FNY is described in section 1.2.2.1. National and regional

percent of ILI symptoms reported is calculated by dividing the number of partici-

pants reporting ILI, defined as a report of fever plus cough and/or sore throat, in

a given week by the total number of FNY participant reports in that same week.

FNY participants are assigned to a region based on the zip code provided at regis-

tration. Unweighted FNY percent of ILI symptoms is used to maintain consistency

across previous studies and the FNY website.

athenahealth A provider of cloud-based services and mobile applications for

medical groups and health systems originates this data set. National and regional

percent of visits for ILI is calculated by dividing the Unspecified Viral or ILI Visit

Count, which is equal to the number of visits where the patient had an unspecified

viral diagnosis, an influenza diagnosis, or a fever diagnosis with an accompanying

sore throat or cough diagnosis, by the total number of provider visits each week.

HealthTweets.org This dataset is generated by an online research platform (Healt-

hTweets.org) that shares the output of Twitter data mining algorithms with re-
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searchers and public officials.(Paul et al., 2014) We use weekly aggregated trends

data from each state to calculate the influenza prevalence measure for each region.

Weekly national and regional influenza prevalence measures are calculated by nor-

malizing the number of influenza infection tweets in the health stream by the total

number of tweets in the general stream during the same week.(Broniatowski et al.,

2013)

4.1.2.2 Statistical methods

Baseline comparison CDC ILINet national and regional baselines for the 2017-

2018 influenza season are available on the CDC website.(Centers for Disease Con-

trol , CDC) National and regional baselines for FNY, athenahealth, and HealthTwee-

ts.org are estimated following CDCs baseline definition. A baseline is defined as

the mean percentage of ILI activity during non-influenza weeks, for the previous

three seasons, plus two standard deviations. Non-influenza weeks during these

seasons are the same for all three systems and are delineated, by the CDC, as pe-

riods of two or more consecutive weeks in which each week accounted for less

than 2% of the seasons total number of specimens that tested positive for influenza

in public health laboratories. Descriptive statistics of baselines are presented as

median (IQR).

ILI activity comparison Differences in weekly ILI activity across geographical

areas within each surveillance data source are assessed using data from the start

of the 2015-2016 influenza season (week of October 5, 2015) through the end of the

2017-2018 influenza season (week of October 1, 2018). Weekly ILI activity across

geographical areas within each data source is quantitatively compared by dividing

the difference in ILI activity between two areas by the maximum within each week,
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defined by

Mean Relative Difference =
1

K

∑
weekk

ILIik − ILIjk
max (ILIik, ILIjk)

(4.1)

for

i, j ∈ {Region 1:10, National}.

Mean relative differences within each data source are summarized using heatmaps,

where the geographical areas along the rows are represented by i in the equation

above and the geographical areas along the columns are represented by j. Time

series heatmaps are also presented to qualitatively compare weekly ILI activity

across geographical areas for each data source.

Health care-seeking behavior National and regional health care-seeking per-

cents are calculated for each influenza season by dividing the number of FNY par-

ticipants who sought medical care for ILI symptoms, as defined above, by the total

number of ILI reports within an influenza season. Because health care-seeking be-

havior varies by age,(Biggerstaff et al., 2014) health care-seeking rates are also ad-

justed by age-group (<18, 18-49, 50-64, 65+) using population data from the 2010

U.S. census.(U.S. Census Bureau, 2015)

4.1.3 Results

4.1.3.1 CDC ILINet

Table 4.1 and Figure 4.1 provide the ILI activity baselines for each data source

across national and regional levels. The national baseline for CDC ILINet during

the 2018-2019 influenza season is 2.2, and the median CDC ILINet regional baseline
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is 2.1 (1.8-2.3). Region 10 has the smallest baseline, 1.1, whereas Region 6 has the

largest baseline, 4.0. As shown in Figure 4.2A, Regions 2 and 6 have consistently

higher weekly percent of ILI visits compared to other regions, indicated by the red

shades across the row, whereas Regions 1, 8, and 10 have consistently lower weekly

percent of ILI visits, indicated by the blue shades across the row. This pattern is

also shown qualitatively in Figure 4.3A and Appendix Figure A.5, where darker

shades of blue, as seen for Regions 2, 6, and 9, correspond to higher percent of ILI

visits.

Table 4.1: Regional and national ILI activity baselines for the 2018-
2019 influenza season for CDC ILINet, FNY, athenahealth, and
HealthTweet-s.org

Geographical Area CDC ILINet FNY athenahealth HealthTweets.org
Region 1 1.8 2.1 1.3 0.8
Region 2 3.1 2.4 1.7 0.4
Region 3 2.0 2.4 1.5 0.5
Region 4 2.2 2.7 1.4 0.6
Region 5 1.8 2.6 1.1 0.5
Region 6 4.0 2.6 1.9 0.7
Region 7 1.6 2.5 1.0 0.7
Region 8 2.2 2.9 1.0 0.8
Region 9 2.3 2.5 1.7 0.6
Region 10 1.1 2.5 0.6 0.7
National 2.2 2.3 1.4 0.5

4.1.3.2 FNY

For FNY, the national baseline is 2.3, and the median regional baseline is 2.5 (2.4-

2.6). The minimum baseline is 2.1, Region 1, and the maximum baseline is 2.9,

Region 8. Compared to other data sources, the mean relative differences for FNY

in Figure 4.2B show less heterogeneity and no consistent patterns in percent ILI

across regions. Although the timing of peaks in percent ILI varies between regions,
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Figure 4.1: Spatial heatmaps of U.S. regional baseline ILI activity
for the 2017-2018 influenza season for (A) CDC ILINet, (B) FNY, (C)
athenahealth, and (D) HealthTweets.org
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Figure 4.2: Heatmaps of the mean relative difference of ILI ac-
tivity across geographical areas for (A) CDC ILINet, (B) FNY, (C)
athenahealth, and (D) HealthTweets.org
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Figure 4.3: Time series heatmaps of ILI activity across geographi-
cal areas for (A) CDC ILINet, (B) FNY, (C) athenahealth, and (D)
HealthTweets.org
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the relative percent ILI is consistent across regions and seasons (Figure 4.3B and

Appendix Figure A.6).

4.1.3.3 athenahealth

The national baseline for athenahealth is 1.4, and the median regional baseline is

1.3 (1.0-1.6). Region 10 has the minimum baseline of 0.6, and Region 6 has the

maximum baseline of 1.9. Similar to CDC ILINet, Regions 2, 6 and 9 have consis-

tently higher weekly percent of ILI visits compared to other regions, and Regions

7, 8, and 10 have consistently lower weekly percent of ILI visits (Figure 4.2C). This

pattern is reflected in Figure 4.3C and Appendix Figure A.7 as Regions 2, 6, and 9

have consistently higher percent of ILI visits across all seasons.

4.1.3.4 HealthTweets.org

The national baseline is 0.5, the median baseline is 0.6 (0.5-0.7), the minimum base-

line is 0.4, Region 2, and the maximum baseline is 0.8, Region 8. Unlike CDC

ILINet and athenahealth, HealthTweets.org show higher ILI activity in Regions 1,

7, 8, and 10 (Figures 4.2D). These regions have mean normalizing constants that

are less than half the mean normalizing constants of other regions (Table 4.2). As

shown in Figure 4.3D and Appendix Figure A.8, this pattern is consistent across

seasons.

4.1.3.5 Health care-seeking behaviors

The age-adjusted percent of FNY participants who sought health care for ILI symp-

toms are shown by season and across all seasons in Table 4.3 and Figure 4.4. At the

national level, a higher percent of participants sought health care for ILI symptoms
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Table 4.2: Descriptive statistics of the HealthTweets.org normalizing
constant at the national and regional level

Geographical Area Normalizing Constant
[Mean ± standard deviation]

Region 1 210.82 ± 114.917
Region 2 627.69 ± 330.270
Region 3 599.53 ± 293.320
Region 4 1103.78 ± 553.374
Region 5 798.25 ± 387.266
Region 6 845.30 ± 414.785
Region 7 171.05 ± 82.077
Region 8 121.96 ± 63.936
Region 9 5848.54 ± 3775.923
Region 10 181.33 ± 97.756
National 6352.25 ± 3351.390

during the 2016-2017 season, 35.1%, compared to the 2015-2016 and 2017-2018 sea-

sons, 21.7% and 29.2%, respectively. Within each season, Regions 2, 4, and 6 have

the highest percent of participants who sought health-care, whereas Regions 1, 5,

9, and 10 have the lowest percent of participants who sought health care.

Table 4.3: Age-adjusted regional and national percent of FNY partic-
ipants who sought health care for ILI symptoms

Geographical Area All Seasons 2015-2016 2016-2017 2017-2018
Region 1 25.98 20.82 33.29 27.77
Region 2 29.97 26.05 36.03 31.79
Region 3 28.66 22.07 37.03 31.73
Region 4 32.61 25.47 43.23 34.77
Region 5 26.43 21.53 34.59 26.73
Region 6 35.17 28.58 44.83 37.47
Region 7 30.93 23.79 41.95 32.09
Region 8 25.50 22.74 30.86 26.16
Region 9 22.49 19.06 27.77 24.69
Region 10 20.03 17.03 23.39 22.33
National 27.12 21.73 35.06 29.23
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Figure 4.4: Spatial heatmap of age-adjusted regional and national
percent of FNY participants who sought health care for ILI symp-
toms

4.1.4 Discussion

Our findings show that differences in ILI activity across regions, as reported by

a given surveillance system, are not consistent across surveillance platforms. In

other words, regions that show larger baselines (and thus higher overall historical

ILI activity) in one surveillance system appear to be different to their counterparts

in other surveillance systems. The heterogeneity of recruitment practices of health-

care providers for each system, the composition of provider types, and the variabil-

ity and consistency of coverage of geographical regions have the potential to con-

tribute substantially to these systematic differences in baselines.(Lee et al., 2018a)

Our findings suggest that these structural differences reflect methodological col-

lection practices rather than actual differences in influenza activity across regions.

The observed structural patterns within each surveillance system were consistent

across individual influenza seasons (Appendix Figure A.9). This pattern implies
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that the differences in ILI active do reflect a specific time period heterogeneity.

Specifically, baselines from CDC ILINet vary across different geographical areas,

and the geographical areas with the largest baseline values also have consistently

larger percent of ILI visits during the influenza season. On the other hand, FNYs

baselines and percent ILI were similar across geographical areas. This similarity is

captured by the homogeneity in the mean relative differences. One potential con-

tributing factor to the observed differences in patterns between these surveillance

systems is the activity being measured. CDC ILINet measures the number of pa-

tient visits with ILI symptoms out of the total number of patient visits, whereas

FNY measures the number of ILI reports out of enrolled persons who submitted

a report. Furthermore, the population under surveillance also differs, as FNY in-

cludes individuals who may not seek medical attention and FNY has a different

demographic profile compared to CDC ILINet. For example, females and middle-

aged participants are over-represented in FNY.(Baltrusaitis et al., 2017)

Although not identical, athenahealth showed similar patterns in both baseline

measures as well as percent of ILI visits to CDC ILINet across geographical ar-

eas. Both CDC ILINet and athenahealth use data from individuals seeking medical

care. However, athenahealth has only a partially overlapping coverage of health-

care providers, and the proportion of visit settings differs slightly between the

two systems. Most of athenaheaths providers see patients in office-based settings.

Other settings, such as Emergency Rooms (ER) and nursing facilities, are under-

represented compared to CDC ILINet.(Santillana et al., 2016)

Unlike FNY, patterns across geographical areas within Twitter ILI activity appear

to be the opposite of the patterns shown by CDC ILINet and athenahealth, as areas

with consistently lower Twitter ILI activity had consistently higher percent of ILI

visits for CDC ILINet and athenahealth, and vice versa. One potential reason for
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the differences in patterns in ILI activity across data sources is the difference in the

activity being measured. As mentioned above, both CDC ILINet and athenahealth

measure the number of ILI visits out of total visits, whereas HealthTweets.org nor-

malizes the number of influenza infection tweets by the total number of tweets in

the general stream. Also, the groups most susceptible to influenza illness, young

children and the elderly, may be underrepresented on Twitter. Furthermore, we

found that smaller normalizing constants correspond to higher values of ILI activ-

ity.

Despite these differences in patterns of ILI activity within systems, current research

shows that these alternative data sources track CDC ILINet at both the national

and regional levels. At the national level, the correlation between CDC ILINet and

athenahealth is 0.97, and regional correlations range from 0.90 to 0.97.(Baltrusaitis

et al., 2018) The correlation between CDC ILINet and FNY at the national level

is 0.81, and regional correlations range from 0.64 to 0.81.(Baltrusaitis et al., 2018)

Twitter-based influenza prevalence measures show a correlation of 0.93 with CDC

ILINet at the national level, and a correlation of 0.88 with New York Citys weekly

ED visits for ILI.(Broniatowski et al., 2013)

Compared to other recent publications, the percent of FNY participants who sought

medical care for ILI was less than reported estimates. A recent meta-analysis

that used estimates from multiple countries across different influenza seasons es-

timated an overall pooled health care-seeking rate of 0.52 (95% CI 0.46-0.59).(Ma

et al., 2018) In the U.S., national reported health care-seeking percents for children

were 56% and 57% during the 2009-2010 and 2010-2011 influenza seasons, respec-

tively. Among adults, 40% reported that they sought health during the 2009-2010

influenza season, and 45% reported that they sought health during 2009-2010 in-

fluenza season.(Biggerstaff et al., 2012, 2014) Interestingly, the percent of FNY par-
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ticipants seeking health care for ILI symptoms differs slightly across regions. These

differences may contribute to the differences in CDC ILINet and athenahealth

baseline activity, as regions with higher health care-seeking percents correspond

to regions with higher CDC ILINet and athenahealth baselines.

From a predictive modeling perspective, our findings may explain why certain

approaches designed to predict CDC ILINet values for the "Predict the Influenza

season challenge", weeks ahead of the publication of official CDC reports, may

work better than others. As discussed in the two existing reports that document

the performance of different methodologies to predict influenza activity, models

that rely on local statistical approaches that exploit region-specific autoregressive

information and historically observed ILI activity from previous seasons, as well

as external predictors (such as humidity data, Google searches, Wikipedia),(Brooks

et al., 2015; Shaman et al., 2010) outperform mechanistic agent-based stochastic

Susceptible-Infected-Recovered (SIR) models that aim at modeling individual hu-

mans behavior, to infer epidemic activity across spatial resolutions.(Biggerstaff

et al., 2016, 2018; Tizzoni et al., 2012) The former modeling approaches are "trained"

to track ILI levels in a region-specific fashion (frequently ignoring inconsistency

across spatial resolutions), whereas the latter agent-based stochastic SIR models

aim to predict the whole national epidemic outbreak across geographic areas. In

other words, if the ILI activity report varies depending on how data is aggregated,

then even a very accurate agent-based model may not be able to capture influenza

activity correctly for every geographic area.

Our study has several limitations. There were errors in FNY data collection from

October 2016 through December 2016 resulting in an underestimation in the weekly

percent of ILI reports. We did not adjust the ILI estimates for these weeks. There

was also an issue in data collection during week of August 28, 2017. We ad-
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justed the estimates for this week by taking the average percent of ILI reports of

the previous and subsequent weeks. In addition, there were a few weeks dur-

ing the summer of 2017 during which there were no reports of ILI activity for

HealthTweets.org. We did not input or estimate these missing weeks. Because the

overall patterns of ILI activity were similar across seasons (Appendix Figure A.9),

we do not suspect that these data issues affected our overall conclusions. Another

limitation is that because each system has a different measure of ILI activity we

cannot directly compare measures across systems.

Although ILI activity differs across geographical areas and data sources, the gen-

eral region-specific seasonal trends are similar and provide valuable information

about changes in influenza activity. Together, these platforms offer a more com-

prehensive view of influenza surveillance that helps public health offices monitor

and respond to seasonal influenza epidemics.
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4.2 HEALTH CARE-SEEKING BEHAVIOR AMONG FLU NEAR YOU PAR-

TICIPANTS

4.2.1 Overview

As discussed in 3.2.1, the CDC estimates seasonal influenza burden in the com-

munity through a probabilistic multiplier model that uses laboratory-confirmed

influenza-associated hospital rates from FluSurv-NET and results from health care-

seeking behavior surveys.(Shrestha et al., 2017; Rolfes et al., 2018; Reed et al., 2009)

The health care-seeking behavior surveys used in these models were conducted

through a module in BFRSS in select states during the 2009 pandemic and 2010-

2011 influenza season.(Reed et al., 2011; Biggerstaff et al., 2012, 2014) The goal

of these surveys is to collect information on the incidence and risk factors of ILI

and health care-seeking behaviors. Although telephone-based surveys are a well-

established method of determining this information and have the ability to reach

a large number of individuals, information is often collected sporadically because

of the expense and selection bias due to exclusion of households without landlines

is possible.

In 2015 FNY implemented follow-up survey questions that asked if and where

participants received medical attention for reported symptoms. Here, we sum-

marize the health care-seeking behavior of FNY participants who reported symp-

toms consistent with either ILI or acute respiratory infection (ARI) during three

influenza seasons (2015-2016, 2016-2017, and 2017-2018) to see if information col-

lected through this system is consistent with past trends and can be used to up-

date information on care seeking behaviors, which is 10 years old. Specifically,

we assess and compare monthly and seasonal trends in the percent of FNY par-

ticipants who sought health care across different demographic and census region
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subgroups.

4.2.2 Methods

4.2.2.1 Data

As described in Section 1.2.2.1, FNY users report any symptoms that they or any

registered household members experienced on a weekly basis. If FNY users report

any symptom, they are asked to provide the date of symptom(s) onset, whether

or not they received medical care for the symptom(s), and, if so, whether they

received this care from a doctor’s office, urgent care, clinic, ER, hospital, or other

facility. Although FNY collects data throughout the entire year, for the purposes

of this study, we examine FNY participant data reported only during the influenza

season, defined as MMWR weeks 20 through 40.

For this study, ARI is defined as a symptom report that included a combination of

at least two of the following symptoms: fever, cough, sorethroat, running nose,

or breathlessness, and ILI is defined as a symptom report of fever plus cough

and/or sorethroat. Only registered FNY participants who submitted at least three

symptom reports during the study time period, October 2015 through September

2018, and provided valid date and month of birth and zip code information are

included in the analyses. Appendix Figure A.10 summarizes a senstivity analysis

that assesses changes in the percent of FNY participants who sough health care for

symptoms over time for different inclusion criteria.

4.2.2.2 Statistical methods

We compare the monthly trends in the percent of FNY participants who sought

health care for both ARI and ILI symptoms across three influenza seasons by ag-
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gregating the weekly symptom report data by month (based on the calendar month

of the start of the reporting week). Trends in the percent of FNY participants who

sought health care are evaluated by age group (<18, 18-49, 50-64, 65+), sex (male,

female), census region (Northeast, South Midwest, and West), and place of care

(doctor’s office, urgent care, or other facility, which includes clinic, ER, hospital, or

other).

We also calculate seasonal estimates for the percent of FNY participants who sought

health care for ARI and ILI symptoms in the overall FNY population, as well as

by age group, sex, census region, and place of care. Because the age distribution

of the FNY population differs from the U.S. population,(Baltrusaitis et al., 2017)

we calculate age-adjusted estimates for the overall, sex, and census region pop-

ulations using the U.S. Census Bureaus 2013-2017 American Community Survey

5-Year Estimates.(U.S. Census Bureau, 2015) We compare statistical significance

across across groups using chi-square tests.

4.2.3 Results

4.2.3.1 Overtime

Acute respiratory illness Time series of the monthly percent of FNY participants

who sought health care for ARI symptoms is shown for the overall population as

well as by census region, age group, and sex in Figure 4.5. Between September 2015

and October 2018, the monthly percent of FNY participants who sought health care

for ARI symptoms ranged from 8.9 to 25.0%. Although no seasonal trends in health

care-seeking behavior for ARI are evident, a smaller percentage of participants

from the West census region sought health care for ARI symptoms compared to

participants from the Northeast, South, and Midwest. There are also differences
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across age groups. The youngest, <18, and oldest, 65+, age groups have the highest

percentage of participants who sought health care for ARI symptoms, followed by

the 50-64 age group, and finally the 18-49 age group. There are no differences

in health care-seeking behavior for ARI symptoms over time between males and

females.

As shown in Figure 4.6, where participants sought health care for ARI symptoms

was consistent over time. Across all seasons, most participants sought health care

for ARI symptoms at doctor’s offices, followed by urgent care facilities, then other

facilities, which includes ERs, clinics, and hospitals.

Influenza-like illness Figure 4.7 shows the monthly time series of the percent-

age of FNY participants who sought health care for ILI symptoms for the overall

population as well as by census region, age group, and sex. The timing of the

peak percentage of FNY participants who sought health care varies each season.

During the 2015-2016 influenza season, the percentage of FNY participants who

sought health care for ILI symptoms peaked between April and July. Whereas, the

percentage of FNY participants who sought health care for ILI symptoms peaked

between February and May during the 2016-2017 influenza season and between

January and June during the 2017-2018 influenza season. In general, the percent-

age of FNY participants from the South census region who sought health care for

ILI symptoms is greater than other regions, and percentage of FNY participants

from the West census region who sought health care for ILI symptoms is less than

other regions. The age group-specific trends in health care-seeking behavior varies

by season. During the 2016-2017 and 2017-2018 influenza seasons, a greater per-

centage of FNY participants in the <18 and 65+ age groups sought health care for

ILI symptoms compared to the 18-49 and 50-64 age groups. However, there are no
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Figure 4.5: Time series of the monthly percent of FNY participants
who sought health care for ARI symptoms by (A) Overall (B) Census
Region (C) Age Group (D) Sex.



85

0

5

10

15

20

09
/2

01
5

10
/2

01
5

11
/2

01
5

12
/2

01
5

01
/2

01
6

02
/2

01
6

03
/2

01
6

04
/2

01
6

05
/2

01
6

06
/2

01
6

07
/2

01
6

08
/2

01
6

09
/2

01
6

10
/2

01
6

11
/2

01
6

12
/2

01
6

01
/2

01
7

02
/2

01
7

03
/2

01
7

04
/2

01
7

05
/2

01
7

06
/2

01
7

07
/2

01
7

08
/2

01
7

09
/2

01
7

10
/2

01
7

11
/2

01
7

12
/2

01
7

01
/2

01
8

02
/2

01
8

03
/2

01
8

04
/2

01
8

05
/2

01
8

06
/2

01
8

07
/2

01
8

08
/2

01
8

09
/2

01
8

10
/2

01
8

Month/ Year

%
 o

f P
op

ul
at

io
n 

S
ee

ki
ng

 M
ed

ic
al

 C
ar

e 
at

 F
ac

ili
ty

Doctor's Office Urgent Care Other
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Figure 4.6: Time series of the monthly percent of FNY participants
who sought health care for ARI symptoms by place of care.

clear differences in the percentage of FNY participants who sought health care for

ILI symptoms between age groups during the 2017-2018 influenza season. Across

all seasons, no distict differences in health care-seeking behavior for ILI symptoms

are evident for males and females.

Similar to ARI, most FNY participants sought health care for ILI symptoms at

doctor’s offices, followed by urgent care, then other facilities (Figure 4.8). The

patterns of place of care do not change over time, until the 2017-2018 influenza

season. During this season, the percentage of FNY participants who sought care

for ILI symptoms at urgent care facilities increased, while the percentage of FNY

participants who sought care for ILI symptoms at other facilities decreased. Re-

porting of "other" decreased during this season because "other" was removed as

an option for web-based submissions at the start of the season.
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Figure 4.7: Time series of the monthly percent of FNY participants
who sought health care for ILI symptoms by (A) Overall (B) Census
Region (C) Age Group (D) Sex.
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Figure 4.8: Time series of the monthly percent of FNY participants
who sought health care for ILI symptoms by place of care.

4.2.3.2 By season

Table 4.4 displays the number of participants and total number of reports sub-

mitted each influenza season along with the number of symptomatic reports and

age-adjusted health care-seeking percentages for ARI and ILI. For ARI, the over-

all age-adjusted percent of FNY participants who sought health care are 19.06%,

22.88%, and 17.72% for the 2015-2016, 2016-2017, and 2017-2018 influenza seasons,

respectively. Across all seasons, the health care-seeking behaviors are significantly

different across age groups. The <18 and 65+ age groups have greater ARI health

care-seeking percentages compared to the 18-49 and 50-64 age groups. Although

females have greater age-adjusted ARI health care-seeking percentages compared

to males, this difference was statistically different only during the 2016-2017 and

2017-2018 influenza seasons (p<0.001). Health care-seeking behaviors across cen-
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sus regions are statistically significant during each season (p<0.001). Participants

from the South census region have greater age-adjusted ARI health care-seeking

percentages compared to the other regions each season.

The overall age-adjusted percent of FNY participants who sought health care for

ILI symptoms for the 2015-2016, 2016-2017, and 2017-2018 influenza seasons are

25.35%, 35.59%, and 28.81%, respectively. Similar to ARI, the health care-seeking

behaviors are significantly different across age groups. The <18 and 65+ age groups

have greater age-adjusted ILI health care-seeking percentages compared to the 18-

49 and 65+ age groups. Females also have greater age-adjusted ILI heath care-

seeking percentages compared to males, however, this difference is statistically

significant for only the 2016-2017 influenza season (p=0.001). Health care-seeking

behaviors across census regions are statistically significant during each season

(p<0.001). Across all seasons, FNY participants from the South census region

have the largest age-adjusted ILI heath care-seeking percentages, while FNY par-

ticipants from the West census region have the smallest age-adjusted ILI heath

care-seeking percentages.
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Table 4.4: Number of FNY participants, total symptom reports,
symptomatic reports, and estimates of the percent of FNY partici-
pants who sought health care for ILI and ARI symptoms by selected
demographics and census regions for the 2015-2016, 2016-2017, and
2017-2018 influenza seasons.*Indicates age-adjusted percent.

variable value No. No. of No.
(%)

% ILI No.
(%)

% ARI

part. reports ILI care ARI care
2015-
2016
overall* 27368 348903 6491

(1.86%)
25.35% 16262

(4.66%)
19.06%

age
group

<18 3167 36827 1174
(3.19%)

30.07% 2056
(5.58%)

22.42%

18 to 49 8850 96528 2198
(2.28%)

22.20% 5579
(5.78%)

15.88%

50 to 64 9121 121596 2174
(1.79%)

23.74% 5541
(4.56%)

18.88%

65 + 6230 93952 945
(1.01%)

29.21% 3086
(3.28%)

23.23%

p-value <0.001 <0.001
sex* male 10557 147829 2150

(1.45%)
23.16% 5434

(3.68%)
17.48%

female 16171 194223 4240
(2.18%)

26.21% 10610
(5.46%)

19.61%

p-value 0.267 0.096
census
region*

northeast 5422 71565 1194
(1.67%)

24.96% 3125
(4.37%)

18.61%

midwest 7550 92756 1660
(1.79%)

30.06% 3979
(4.29%)

22.42%

south 5565 70363 1315
(1.87%)

25.02% 3294
(4.68%)

20.05%

west 8708 112440 2291
(2.04%)

22.04% 5774
(5.14%)

16.35%

p-value <0.001 <0.001
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variable value No. No. of No.
(%)

% ILI No.
(%)

% ARI

part. reports ILI care ARI care
2016-
2017
overall* 23432 321058 3897

(1.21%)
35.59% 11906

(3.71%)
22.88%

age
group

<18 2647 31703 680
(2.14%)

40% 1493
(4.71%)

26.05%

18 to 49 6809 78016 1168
(1.5%)

33.73% 3361
(4.31%)

20.38%

50 to 64 7858 112571 1359
(1.21%)

32.89% 4327
(3.84%)

22.65%

65 + 6118 98768 690
(0.7%)

37.68% 2725
(2.76%)

25.43%

p-value 0.004 <0.001
sex* male 9256 136758 1278

(0.93%)
29.74% 4019

(2.94%)
18.72%

female 13656 179109 2552
(1.42%)

37.59% 7736
(4.32%)

24.70%

p-value 0.001 <0.001
census
region*

northeast 4632 66362 722
(1.09%)

34.58% 2294
(3.46%)

22.15%

midwest 6546 86840 1147
(1.32%)

42.45% 3150
(3.63%)

27.03%

south 4889 65845 890
(1.35%)

36.52% 2822
(4.29%)

25.36%

west 7281 100582 1121
(1.11%)

28.81% 3575
(3.55%)

17.82%

p-value <0.001 <0.001
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variable value No. No. of No.
(%)

% ILI No.
(%)

% ARI

part. reports ILI care ARI care
2017-
2018
overall* 24204 344515 5531

(1.61%)
28.81% 18623

(5.41%)
17.72%

age
group

<18 2725 32750 976
(2.98%)

33.30% 2406
(7.35%)

20.41%

18 to 49 7078 82355 1665
(2.02%)

26.79% 5467
(6.64%)

15.53%

50 to 64 7806 115537 1885
(1.63%)

27.80% 6260
(5.42%)

18.21%

65 + 6595 113873 1005
(0.88%)

29.05% 4490
(3.94%)

19.22%

p-value 0.003 <0.001
sex* male 9468 144070 1880

(1.3%)
26.33% 6265

(4.35%)
18.28%

female 14166 194441 3547
(1.82%)

29.86% 12096
(6.22%)

19.69%

p-value 0.106 <0.001
census
region*

northeast 4868 72383 987
(1.36%)

28.96% 3770
(5.21%)

17.11%

midwest 6805 94580 1496
(1.58%)

35.85% 4739
(5.01%)

22.28%

south 5017 71444 1239
(1.73%)

26.98% 4210
(5.89%)

16.92%

west 7456 105132 1790
(1.7%)

23.88% 5859
(5.57%)

14.98%

p-value <0.001 <0.001

The number and percent of FNY participants who sought health care for ARI

and ILI symptoms by place of care are shown in Table 4.5. The patterns in the

place of care are similar for ARI and ILI. During each season, approximately 60%

of FNY participants sought care at doctors offices, approximately 25% of FNY par-

ticipants sought care at urgent care facilities, approximately 3-4% of FNY partici-

pants sought care at clinics, approximately 5-6% of FNY participants seek care at
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EDs, and approximately 1-2% of FNY participants seek care at hospitals. During

the 2015-2016 and 2016-2017 influenza seasons, approximately 8% of FNY partici-

pants sought care at an "other" facility, however, less than 1% of participants sought

care at an "other" facility during the 2017-2019 influenza season. Again, reporting

of "other" decreased during this season because "other" was removed as an option

for web-based submissions at the start of the season.

Table 4.5: Number and percent of FNY participants who sought
health care for ARI and ILI symptoms by place of care

season Place of care No. (%) ILI visit No. (%) ARI visit
2015- 2016 total 1633 3110

dr office 933 (57.13%) 1882 (60.51%)
urgent care 391 (23.94%) 677 (21.77%)
clinic 57 (3.49%) 107 (3.44%)
ed 93 (5.7%) 152 (4.89%)
hospital 26 (1.59%) 42 (1.35%)
other 133 (8.14%) 250 (8.04%)

2016- 2017 total 1373 2747
dr office 799 (58.19%) 1627 (59.23%)
urgent care 326 (23.74%) 613 (22.32%)
clinic 51 (3.71%) 107 (3.9%)
ed 71 (5.17%) 107 (3.9%)
hospital 13 (0.95%) 20 (0.73%)
other 113 (8.23%) 273 (9.94%)

2017- 2018 total 1587 3343
dr office 928 (58.48%) 2134 (63.83%)
urgent care 488 (30.75%) 896 (26.8%)
clinic 48 (3.02%) 107 (3.2%)
ed 101 (6.36%) 161 (4.82%)
hospital 10 (0.63%) 18 (0.54%)
other 12 (0.76%) 27 (0.81%)

4.2.4 Discussion

Because traditional ILI surveillance relies on reports of medically attended ILI from

health care providers, understanding the health care-seeking behavior of individu-
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als can provide a more comprehensive picture of ILI disease burden in the commu-

nity. A recent meta-analysis reported an overall pooled health care-seeking rate of

0.52 (95% CI: 0.46-0.59).(Ma et al., 2018) However, this meta-analysis used health

care-seeking estimates from different countries and seasons and fails to capture

the potential seasonal, regional, and age group dynamics in health care-seeking

behavior. In the U.S., the 2010-2011 BFRSS survey estimated that 45% of adults

and 57% of children sought health care for ILI during this season. Although our

overall estimates range from 25% to 36%, the age-group and sex specific patterns

are similar.

FNY has several benefits compared to the BFRSS surveys. Because FNY collects

data from participants throughout the influenza season, we can assess how health

care-seeking behaviors change over time. We can also compare health care-seeking

behavior across seasons and for different combinations of symptoms. In addition,

all states and age groups are represented in FNY.

There are several limitations to this study. As discussed in Section 2, FNY is not

representative of the U.S. population. While we adjusted for age differences for

the seasonal estimates, we did not age-adjust the time series analysis. We also did

not adjust for age group while comparing health care-seeking percentages across

different demographics and census regions. In the future, we will use a log-linear

model to assess if there are any significant interactions between the demographics

and census regions and age groups. In addition, FNY relies on self-reported data

that is subject to recall and social desirability bias. FNY participant reporting is

also not consistent throughout the influenza season (Refer to Section 3.2). For this

study, we used a cohort method to address these inconsistencies, however, we did

not apply any additional missing data methods, as these methods were developed

to estimate ILI burden. Finally, there were errors in FNY data collection from Oc-
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tober 2016 through December 2016 resulting in an underestimation in the weekly

number of symptom reports. This error may contribute the observed troughs in

the time series during this period.

The percent of FNY participants who sought health care for ARI and ILI symp-

toms varies by season, geographical region, age-group, and sex. FNY can com-

pliment existing sentinal surveillance systems by adding important insight into

community-level disease trends and health care-seeking behavior.
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4.3 SCIENCE FRIDAY

4.3.1 Overview

This past fall Science Friday (SciFri) partnered with FNY to understand and en-

hance community disease surveillance by enrolling SciFri listeners as FNY partici-

pants (Figure 4.9). The goals of this project were to encourage weekly participation

in the FNY campaign, provide factual information about influenza virus, symp-

toms, spread, and vaccination, address misconceptions about the flu and vaccines,

and promote better understanding of disease surveillance and data literacy. The

project launched on November 16, 2018 with an on-air interview with Dr. John

Brownstein and wrapped on March 29, 2019 with an on-air interview with myself.

As part of this project, SciFri listeners signed up for FNY using a special land-

ing page, which allowed us to differentiate SciFri participants from all other FNY

participants. SciFri listeners also had the opportunity to sign up for weekly text re-

minders that included facts and tips related to influenza. All participants of FNY

were able to track the weekly percent ILI for the SciFri cohort, FNY cohort, and

CDC ILINet on through a time series visualization that was embedded on the FNY

website.

4.3.2 Summary

During the study period, 3150 SciFri listeners registered for FNY, and 2905 users

submitted at least one symptom report. An additional 543 household members

were registered by users, bringing the total SciFri cohort to 3448 participants. Com-

pared to registered FNY users who submitted at least one symptom report during

the 2018-2019 influenza season, SciFri users are younger, 55.3 (IQR: 35.3, 66.4) vs.

58.1 (IQR: 45.3, 66.7) and have a higher percentage of males (38.5% vs. 29.6%).
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Figure 4.9: Screenshot of the SciFri home page.

Overall, 28 056 symptom reports were submited, and the median number of symp-

tom reports per week was 1659 (IQR: 1627, 1705). As shown in Figure 4.10, symp-

tom reports submitted by SciFri participants make up about 10-15% of the total

weekly FNY symptom reports.

Overall, SciFri participants have a smaller weekly percentage of ILI symptoms

compared to both all reports submitted to FNY and registered FNY users (Fig-

ure 4.11). The overall ILI burden for SciFri participants (8.1%) is also less than the

overall ILI burden for all registered FNY users (12.4%). These estimates are not

age-adjusted and no missing data methods were applied.
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CHAPTER 5

Conclusion

Participatory syndromic surveillance systems complement traditional health-care

based influenza surveillance systems by monitoring disease activity in populations

who do not seek health care, areas with limited surveillance data, and community

based populations. They also provide an opportunity for the public to engage

directly in community-level disease surveillance. However, the potential public

health benefits of participatory surveillance data are maximized only by the devel-

opment of statistically rigorous methods that address potential biases.

Based on our research, we have outlined our conclusions and included recom-

mendations for establishing, maintaining, and analyzing data from partcipatory

syndromic surveillance systems:

1. Because females and older populations are over-represented in these pop-

ulations, we recommend providing sex or age group specific estimates or

weighting overall estimates by sex and age group.

2. We find that approximately 300-500 weekly symptom reports are necessary

to accurately track ILI in a given geographical area.

3. We recommend following Flutracking.net’s lead by providing users with the

opportunity to complete missing surveys. This system accommodation not

only adds approximately 10% more weekly reports, but also provides valu-

able insight into reporting behaviors.

4. For Flutracking.net, the δ MI method accurately predicted end of season WP

estimates from real-time data. In the future, the value of δ can be easily up-

dated and adapted over the course of an influenza season.
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5. When estimating ILI burden using a participatory syndromic surveillance

system with inconsistent reporting habits, such as FNY, we recommend us-

ing a cohort method that assumes all missing reports are non-ILI. Unless im-

putation methods are applied, an entry criteria of at least 5 is appropriate.

6. Differences in ILI activity across regions, as reported by a given surveillance

system, are not consistent across surveillance platforms. However, the gen-

eral region-specific seasonal trends are similar and provide valuable infor-

mation about changes in influenza activity.

7. The health care-seeking behaviors of individuals vary by season, age, and

geographical area. These dynamics should be taken into consideration when

estimating the overall disease burden in the general population from sentinel

surveillance data.

8. Finally, based on our collaboration with SciFri, we found that providing users

with an interactive environment that includes information about influenza

and ILI in their community improves user activity.

With the increase in the emergence of infectious diseases over the last few decades,

the application of this method of disease surveillance may prove useful in broader

early disease detection for other emergent diseases such as Zika virus and dengue

by providing actionable insights for public health stakeholders.
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APPENDIX A

Appendix

A.1 APPENDIX TABLES

Table A.1: HHS-defined regions and corresponding states.

Region States
Region 1 Connecticut, Maine, Massachusetts, New

Hampshire, Rhode Island, Vermont
Region 2 New Jersey, New York, Puerto Rico, US Virgin

Islands
Region 3 Delaware, District of Columbia, Maryland,

Pennsylvania, Virginia, West Virginia
Region 4 Alabama, Florida, Georgia, Kentucky, Missis-

sippi, North Carolina, South Carolina, Tennessee
Region 5 Illinois, Indiana, Michigan, Minnesota, Ohio,

Wisconsin
Region 6 Arkansas, Louisiana, New Mexico, Oklahoma,

Texas
Region 7 Iowa, Kansas, Missouri, Nebraska
Region 8 Colorado, Montana, North Dakota, South

Dakota, Utah, Wyoming
Region 9 Arizona, California, Guam, Hawaii, Nevada
Region 10 Alaska, Idaho, Oregon, Washington
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Table A.2: Pearson correlations between FNY and CDC ILINet/
BPHC and mean weekly reports at the national, regional, state, and
city resolutions.

Geographical All Seasons
Resolution ρ n̄

National 0.81 9699
Region 1 0.71 958
Region 2 0.64 700
Region 3 0.75 1093
Region 4 0.81 1178
Region 5 0.79 1476
Region 6 0.73 729
Region 7 0.73 415
Region 8 0.73 510
Region 9 0.77 1798
Region 10 0.76 819
Alaska 0.13 27
Alabama 0.58 66
Arkansas 0.53 51
Arizona 0.63 204
California 0.78 1503
Colorado 0.57 237
Connecticut 0.44 163
Delaware 0.19 26
Florida - 384
Georgia 0.64 182
Hawaii 0.18 34
Iowa 0.62 160
Idaho 0.52 50
Illinois 0.69 333
Indiana 0.63 147
Kansas 0.45 90
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Geographical All Seasons
Resolution ρ n̄

Kentucky 0.48 84
Louisiana 0.51 70
Massachusetts 0.75 576
Maryland 0.65 279
Maine 0.31 64
Michigan 0.48 271
Minnesota 0.65 163
Missouri 0.57 131
Mississippi 0.34 26
Montana 0.38 34
North Carolina 0.68 237
North Dakota 0.38 60
Nebraska 0.36 35
New Hampshire 0.49 59
New Jersey 0.57 196
New Mexico 0.6 96
Nevada 0.31 57
New York 0.62 442
Ohio 0.68 351
Oklahoma 0.55 125
Oregon 0.65 352
Pennsylvania 0.68 368
Rhode Island 0.4 58
South Carolina 0.46 88
South Dakota 0.43 23
Tennessee 0.45 112
Texas 0.68 388
Utah 0.67 131
Virginia 0.61 327
Vermont 0.36 38
Washington 0.61 390
Wisconsin 0.59 211
West Virginia 0.45 47
Wyoming 0.35 26
Boston 0.69 304
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Table A.3: Overall and age group specific IRs and 95% CIs, expressed
as number of ILI reports per 10 000 person weeks, by influenza sea-
son for Flutracking.net.

Age Ignore Assume Complete
Group missing missing Case MI δ MI

data non-ILI
2016
Overall 299.4 267.1 271.9 305.3 299.6

(294.4,
304.5)

(262.6,
271.7)

(266.3,
277.6)

(300.6,
310.2)

(294.9,
304.4)

<5 780.4 610.2 688.4 753.4 736.1
(733.5,
830.3)

(573.5,
649.3)

(635.4,
745.8)

(712.5,
796.6)

(695.6,
778.8)

5-17 364.2 315.2 327.2 370.6 362.8
(347.8,
381.3)

(301,
330.1)

(308.5,
346.9)

(355.2,
386.7)

(347.6,
378.7)

18-49 308.4 267.7 283.5 311 304.6
(300.3,
316.8)

(260.7,
275)

(274.3,
293.1)

(303.4,
318.8)

(297.1,
312.4)

50+ 248 230 228.7 252.1 248.3
(241.4,
254.7)

(223.9,
236.3)

(221.4,
236.2)

(245.7,
258.7)

(242,
254.8)

2017
Overall 340.8 303.1 307.1 348.7 344.3

(335.7,
346)

(298.6,
307.7)

(301.5,
312.8)

(343.8,
353.6)

(339.5,
349.3)

<5 882.6 687.4 782.1 883.6 855.5
(834.8,
933.1)

(650.2,
726.7)

(730,
837.8)

(841.3,
928)

(813.9,
899.3)

5-17 464.5 392.3 429.1 470.5 464.2
(446.8,
482.9)

(377.4,
407.9)

(409.1,
450.1)

(454.1,
487.5)

(448,
481.1)

18-49 345.7 298.6 306.1 347.9 343.6
(337.2,
354.4)

(291.2,
306.1)

(296.8,
315.6)

(339.9,
355.9)

(335.7,
351.6)

50+ 278.7 258.8 255.3 283.2 280.8
(272.2,
285.4)

(252.7,
265)

(248.1,
262.7)

(276.8,
289.6)

(274.5,
287.3)
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Age Ignore Assume Complete
Group Missing missing Case MI δ MI

data non-ILI
2018
Overall 218.5 196.2 197.6 224.1 217.5

(214.9,
222)

(193,
199.4)

(193.8,
201.6)

(220.7,
227.5)

(214.1,
220.8)

<5 696.7 552.3 644.8 701.9 657.8
(661.3,
734)

(524.3,
581.9)

(604.5,
687.7)

(670.2,
735.2)

(627.2,
690)

5-17 240.6 207.3 220.6 244.5 236.1
(229.6,
252.2)

(197.8,
217.2)

(208.2,
233.6)

(234.2,
255.3)

(225.9,
246.7)

18-49 229.6 198.4 206.7 231.8 224.1
(223.5,
235.9)

(193.1,
203.8)

(200,
213.7)

(226.1,
237.6)

(218.5,
229.9)

50+ 177.5 166.7 163 179.8 177
(173.1,
182.1)

(162.6,
171)

(158.2,
167.9)

(175.5,
184.2)

(172.7,
181.4)
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Table A.4: Overall and age group specific Incidence Proportions and
95% CIs, expressed as percent of population reporting ILI at least
once, by influenza season for Flutracking.net.

Age Ignore Complete
Group missing Case MI δ MI

data
2016
Overall 27.33 27.22 30.2 29.82

(26.74,
27.93)

(26.49,
27.97)

(29.58,
30.83)

(29.21,
30.45)

<5 50.05 54.21 56.37 55.5
(45.78,
54.73)

(48.19,
60.98)

(51.82,
61.31)

(50.99,
60.41)

5-17 33.1 33.45 37.12 36.6
(31.22,
35.09)

(31.01,
36.08)

(35.13,
39.23)

(34.62,
38.69)

18-49 27.79 28.4 31.16 30.69
(26.86,
28.76)

(27.19,
29.66)

(30.17,
32.18)

(29.71,
31.71)

50+ 23.85 23.53 25.77 25.53
(23.04,
24.69)

(22.57,
24.53)

(24.92,
26.64)

(24.69,
26.4)

2017
Overall 30.63 30.31 33.6 33.42

(30.04,
31.24)

(29.58,
31.05)

(32.98,
34.24)

(32.8,
34.06)

<5 56.97 60.16 63.56 63.08
(52.6,
61.69)

(54.31,
66.65)

(58.94,
68.54)

(58.48,
68.04)

5-17 40.62 42.48 45 44.77
(38.65,
42.7)

(39.9,
45.22)

(42.92,
47.18)

(42.69,
46.94)

18-49 30.72 30.63 34.22 34.02
(29.75,
31.71)

(29.43,
31.89)

(33.2,
35.27)

(33, 35.06)

50+ 26.33 25.82 28.29 28.16
(25.53,
27.14)

(24.88,
26.79)

(27.47,
29.14)

(27.34,
29.01)
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Age Ignore Complete
Group missing Case MI δ MI

data
2018
Overall 20.95 20.81 23.13 22.71

(20.53,
21.39)

(20.29,
21.33)

(22.68,
23.58)

(22.27,
23.17)

<5 48.34 53.02 54 53.08
(44.95,
51.98)

(48.33,
58.18)

(50.41,
57.84)

(49.53,
56.89)

5-17 23.22 24.39 26.4 25.78
(21.92,
24.6)

(22.71,
26.2)

(25.01,
27.87)

(24.4,
27.23)

18-49 21.67 22.05 24.46 23.96
(20.95,
22.41)

(21.15, 23) (23.7,
25.25)

(23.2,
24.73)

50+ 17.95 17.55 19.19 18.93
(17.39,
18.53)

(16.9,
18.22)

(18.61,
19.79)

(18.35,
19.52)
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Table A.5: Age-group specific estimates of disease burden and 95%
CIs expressed as per 1 000 000 persons by influenza seasons.

<5 5-17 18-49 50-64 65+
2015-2016
All reports 6.86 (6.17,

7.63)
11.09
(10.35,
11.87)

27.27
(26.34,
28.22)

11.48
(11.05,
11.93)

5.44 (5.11,
5.8)

Drop 1st
Report

6.7 (5.89,
7.62)

10.72
(9.83,
11.69)

22.08
(20.99,
23.22)

9.43 (8.95,
9.94)

4.86 (4.49,
5.27)

Cohort 10.42
(8.87,
12.23)

15.34
(13.74,
17.14)

25.93
(24.05,
27.96)

10.18
(9.48,
10.94)

5.33 (4.83,
5.89)

Cohort +
MI

12.43
(10.73,
14.4)

21.36
(19.45,
23.46)

37.88
(35.59,
40.31)

14.8
(13.95,
15.71)

7.93 (7.31,
8.6)

Cohort + δ
MI

12.09
(10.42,
14.04)

20.14
(18.29,
22.18)

34.36
(32.18,
36.68)

13.4
(12.59,
14.26)

7.42 (6.82,
8.07)

2016-2017
All reports 5.9 (5.06,

6.89)
9.35 (8.57,
10.2)

19.9
(18.86,
20.99)

8.7 (8.25,
9.17)

4.43 (4.1,
4.8)

Drop 1st
Report

5.91 (4.98,
7)

8.97 (8.12,
9.9)

17.87
(16.77,
19.04)

8.12 (7.64,
8.62)

4.29 (3.94,
4.67)

Cohort 9.64 (7.92,
11.72)

13.66
(12.09,
15.44)

21.66
(19.77,
23.73)

8.95 (8.27,
9.69)

4.89 (4.42,
5.41)

Cohort +
MI

12.81
(10.81,
15.18)

18.71
(16.86,
20.77)

30.66
(28.4, 33.1)

12.64
(11.83,
13.52)

7.03 (6.46,
7.65)

Cohort + δ
MI

14.25
(12.13,
16.75)

17.1
(15.33,
19.08)

27.51
(25.38,
29.83)

30.82
(29.52,
32.17)

25.64
(24.53,
26.8)
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<5 5-17 18-49 50-64 65+
2017-2018
All reports 6.9 (5.94,

8.01)
12.19
(11.35,
13.1)

25.78
(24.64,
26.98)

11.77
(11.25,
12.33)

6.2 (5.82,
6.62)

Drop 1st
Report

6.59 (5.58,
7.77)

12.01
(11.09, 13)

24.37
(23.14,
25.66)

11.53
(10.97,
12.11)

6.11 (5.71,
6.54)

Cohort 9.88 (8.09,
12.05)

19.04
(17.19,
21.09)

29.43
(27.21,
31.83)

12.92
(12.09,
13.81)

7 (6.45,
7.58)

Cohort +
MI

12.84
(10.78,
15.29)

25.31
(23.16,
27.66)

40.7
(38.07,
43.51)

17.2
(16.23,
18.22)

9.48 (8.85,
10.16)

Cohort + δ
MI

12.55
(10.52,
14.98)

23.86
(21.78,
26.15)

37.08
(34.57,
39.76)

15.73
(14.8,
16.71)

8.84 (8.23,
9.5)
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A.2 APPENDIX FIGURES
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Figure A.1: Violin plots of simulated overall and age group specific
IRs under three models of missingness: MCAR, MAR, and MNAR.
Dotted line represents the original simulated parameter.
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Figure A.2: Violin plots of simulated overall and age group specific
IPs under three models of missingness: MCAR, MAR, and MNAR.
Dotted line represents the original simulated parameter.
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Figure A.3: Times series of mean simulated overall and age group
specific IRs under three models of missingness: MCAR, MAR, and
MNAR. Red line represents the original simulated parameter.
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Figure A.4: Violin plots of simulated overall and age group specific
IRs under five MNAR models. Dotted line represents the original
simulated parameter.
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Figure A.5: Time series plots of weekly percent of ILI visits from
CDC ILINet across three influenza seasons (2015-2016, 2016-2017,
and 2017-2018) with baselines. Geographical areas on the columns
are represented by black and geographical areas on the rows are rep-
resented by blue.
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Figure A.6: Time series plots of weekly percent ILI from FNY across
three influenza seasons (2015-2016, 2016-2017, and 2017-2018) with
baselines. Geographical areas on the columns are represented by
black and geographical areas on the rows are represented by red.
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Figure A.7: Time series plots of weekly percent of ILI visits from
athenahealth across three influenza seasons (2015-2016, 2016-2017,
and 2017-2018) with baselines. Geographical areas on the columns
are represented by black and geographical areas on the rows are rep-
resented by blue.
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Figure A.8: Time series plots of weekly ILI activity from
HealthTweets.org across three influenza seasons (2015-2016, 2016-
2017, and 2017-2018) with baselines. Geographical areas on the
columns are represented by black and geographical areas on the rows
are represented by green.



118

Figure A.9: Heatmaps of the mean relative difference of ILI ac-
tivity across geographical areas for (A) CDC ILINet, (B) FNY, (C)
athenahealth, and (D) HealthTweets.org for each influenza season.
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