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ABSTRACT 
With the growing application of renewable energy, the stability of power systems can be 
seriously affected due to the fluctuations in the instantaneous generated power. As one of the 
potential solutions for this upcoming challenge, energy flexibility of buildings has received 
attention for research and technology development. Demand response and energy flexibility 
should be implemented at a large scale to have the accumulated energy flexibility to a 
magnitude, which can be meaningful for energy sectors. Studies have shown that the energy 
flexibility of a building is greatly influenced by both building physical characteristics and 
occupancy pattern of residents. To the best knowledge of authors, occupancy has not been 
considered in the study of building cluster. The aim of this paper is to present the modelling 
process of occupancy/vacancy of Danish households based on Danish Time Use Survey 
(DTUS) 2008/09 data. In this paper, we present a data-driven approach to generate 
occupancy/vacancy models for different types of household and for building cluster of different 
scales. As the result, vacancy profile and vacancy duration models are developed. The 
stochasticity of occupancy is also unveiled. The next step is to apply these models to quantify 
energy flexibility of building cluster and the uncertainty of energy flexibility due to the 
stochastic occupancy. 
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INTRODUCTION 
The penetration of renewable energy resources is increasing rapidly. In EU countries, at least 
20% of total energy demand must come from renewables by 2020 (EU, 2009). Denmark plans 
to be fossil-fuel free by 2050 (The Danish Government, 2013). High penetration of intermittent 
renewables will affect the stability of energy grid and energy flexibility in the grid will be more 
crucial. Buildings account for one third of total energy consumption in Denmark and most other 
developed countries, which amounts to considerable potential for activating flexible energy 
demand in buildings. In future smart cities, demand response and energy (demand) flexibility 
of buildings are likely to play a significant role. 

Demand response and energy flexibility should be implemented at a large scale to have the 
accumulated energy flexibility to a magnitude, which can be meaningful for energy sectors. To 
the best knowledge of the authors, there are only a few publications about demand response or 
energy flexibility at building cluster level. Vigna et al. (2018) presented an overview of the 
concept of building cluster and its relevant concepts. A definition to Building Cluster was 
defined from the perspective of building and energy grid interaction. In this definition, the 
building cluster is an aggregation of buildings which can be managed by a common agent such 
as a utility company to exploit the energy flexibility of the building cluster. 
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Studies have shown that the energy flexibility of a building is greatly influenced by both 
building physical characteristics and occupancy pattern of residents (Masy et al., 2015), (Li et 
al., 2017). A review of large scale demand response estimation (Goy and Finn 2015) conducted 
in 2015 concluded that studies by then commonly oversimplified building models without 
considering different building types nor various building characteristics such as thermal 
characteristics and occupants behavior. There are only a few studies done after 2015 (Li et al., 
2016), (Ma et al., 2016), (Georges et al., 2017), but none of the studies included the influence 
from occupancy and occupant behavior. The lack of data support and multidisciplinary 
knowledge together with the requirement on computational efficiency are among the main 
reasons for achieving better investigations.    

In this study, we aim to model the stochastic occupancy to quantify its influence on energy 
flexibility of building cluster with different scales of occupants and quantify the uncertainty of 
flexibility. The value of the uncertainty quantification is in the planning of energy services.  

METHODS 
Occupancy models are developed based on data from Danish Time Use Survey (DTUS) 
2008/09 (Bonke and Fallesen, 2010). The data consists of 9640 individuals and 4679 
households. Individuals’ daily activities were logged in two diaries, one for a weekday and 
another for a weekend day with 10 min time interval starting at 4:00 and ending at 3:50 the next 
day (Bonke and Fallesen, 2010), (Barthelmes et al., 2018). In this study, only weekday is 
considered, as on weekend vacancy time is much shorter for residential buildings and the 
pressure on the energy grids could be less in comparison with weekdays.  

Based on the Statistics Denmark (2017), 84% of the households living in apartment buildings 
consist of no more than three members. The data of household with one to three persons from 
the DTUS are used in this study. The data consists of 1641 one-person households, 1980 two-
person households and 448 three-person households, which is generated from the same data 
source presented in (Barthelmes et al., 2018). 

Occupancy modelling includes three steps: 1) data resampling, 2) occupancy/vacancy profiling 
and 3) occupancy/vacancy duration estimation. 

1) Occupancy data resampling
We resampled the data by randomly divide N households into X samples with each sample
contains Y (n, 2n, 3n …) households using Bootstrapping method. Limited by the total number
of each type of household, we predefined n=100 for one-person household, n=50 for two-person
household and n=33 for three-person household. For example, in the case of 1641 one-person
households, the data processing steps are as follows.

a) Sample size: 100 households.
b) Randomly divide 1641 households into 16 groups with each group contains 100

households.
c) Repeat the above process for several times (In this study, 10 times).
d) Obtain 160 samples.
e) Change sample size to 200, 300, 400 …

2) Vacancy profiling based on Normal Distribution Probability
Each data sample is a 3D matrix as shown in Equation (1) with 1 indicates occupancy and 0
indicates vacancy.
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𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

= �

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1

⋮
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛

�
𝑠𝑠1

1 ⋯ 𝑠𝑠1
144

⋮ ⋱ ⋮
𝑠𝑠𝑛𝑛1 ⋯ 𝑠𝑠𝑛𝑛144

�(𝑠𝑠𝑖𝑖
𝑡𝑡 = 1 𝑜𝑜𝑜𝑜 0), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�   (1) 

Taking the case of the 160 samples of 100 one-person households as an example to explain the 
processing in detail. The size of the 3D matrix is 100×144×160 (households: 100, the length of 
timeline: 144, samples: 160). As the time interval is 10 min, there are thus 144 states for one 
day. For every state, vacancy percentage of 100 households are calculated. As for every state, 
there are 160 different samples; there are thus 160 vacancy percentages. A Normality Test (95% 
confidence) is carried out on these 160 vacancy percentages. The result can be expressed in 
equation (2). 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡~𝑁𝑁(𝜇𝜇,𝜎𝜎2)  (2) 

Where 𝜇𝜇: mean, also the mathematical expectation; 𝜇𝜇 + 1.96𝜎𝜎: upper limit of 95% confidence 
interval, 𝜇𝜇 − 1.96𝜎𝜎: lower limit of 95% confidence interval. 
The result of probability distribution of vacancy is a 3×144 matrix as shown in Equation (3). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
𝜇𝜇

𝜇𝜇 + 1.96𝜎𝜎
𝜇𝜇 − 1.96𝜎𝜎

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

�
𝜇𝜇1 ⋯ 𝜇𝜇144
⋮ ⋱ ⋮

(𝜇𝜇 − 1.96𝜎𝜎)1 ⋯ (𝜇𝜇 − 1.96𝜎𝜎)144

�  (3) 

The above data processing is applied to all three household types. This results with probability 
distribution of vacancy matrices for every sample size and every type of household.  

To assign the above probability distribution of vacancy to Danish households, we used the data 
from Statistics Denmark (2017). Among the households living in apartment buildings, 38% are 
one-person household, 33.7% are two-person household and 11.9% are three-person household. 
Only 16% of Danish households living in apartment buildings consist of more than three 
residents. Therefore, households of four people and above are not included in this study. Taking 
these three household sizes as a whole, one-person household accounts for 45.5%, two-person 
household accounts for 40.3% and three-person household accounts for 14.2%. Vacancy 
matrices for every sample size and every type of household are aggregated according to these 
three percentages as shown in Equation (4). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

[45.5% 40.3% 14.2%] �
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣3 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

�          (4) 

3) Vacancy duration based on Kaplan-Meier estimator
Survival analysis (Kaplan-Meier estimator) is applied to estimate vacancy duration, which is
the time duration occupants are away from home. The Kaplan-Meier estimator, also known as
the product limit estimator, is a non-parametric statistic to compute probabilities of occurrence
of an event from a certain moment (Goel et al. 2010). The estimator is given by:

𝑆𝑆(𝑡𝑡) = ∏ �𝑛𝑛𝑖𝑖−𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖

�𝑖𝑖:𝑡𝑡𝑖𝑖   (5) 

Where 𝑛𝑛𝑖𝑖 is the number of activates on-going at time 𝑡𝑡𝑖𝑖 and 𝑑𝑑𝑖𝑖 is the number of actions ended. 
The followings are the steps of survival analysis. 
a) The initial matrix (InitialOccupancyData) shown in Equation (6) is used for survival

analysis.
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

=

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1

⋮
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛

�
𝑠𝑠1

1 ⋯ 𝑠𝑠1
144

⋮ ⋱ ⋮
𝑠𝑠𝑛𝑛1 ⋯ 𝑠𝑠𝑛𝑛144

�(𝑠𝑠𝑖𝑖
𝑡𝑡 = 1 𝑜𝑜𝑜𝑜 0)  (6) 

b) There are 144 observation states in the timeline. For each state, all the vacant households
is identified and then the vacancy duration of these households is calculate from this
moment to the future. Then the matrix of SurvivalTimeLength is generated as shown in
Equation (7).

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ =

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1

⋮
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛

�
𝑑𝑑1

1 ⋯ 𝑑𝑑1
144

⋮ ⋱ ⋮
𝑑𝑑𝑛𝑛1 ⋯ 𝑑𝑑𝑛𝑛144

�   (7) 

Where 𝑑𝑑𝑖𝑖𝑡𝑡 is the vacancy duration at time t of ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖, 𝑑𝑑 = 0 means occupancy. 

c) For every state (1~144), Kaplan-Meier Estimator is used to estimate the probability of
vacancy duration as shown in Equation (8).

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑃𝑃𝑡𝑡) = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �

𝑡𝑡
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1

⋮
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛

�
𝑑𝑑1
𝑡𝑡

⋮
𝑑𝑑𝑛𝑛𝑡𝑡
��  (8) 

RESULTS 
With the aggregation of the probability distribution of vacancy of different types of household, 
vacancy matrix becomes a 3D matrix where the first two dimensions are shown in Equation (3) 
and the third dimension is the sample size. This vacancy matrix is generated for cluster of 
households consisting of one person, two persons and three persons.  Fig. 1 shows three 
different sample sizes of the matrix. With number of residents and number of households 
specified, sample size of occupancy model is determined and thus the occupancy model can be 
chosen. In the timeline of one day, there are 144 states with 10-minute interval between each 
state. For each state, the mathematical expectation, 𝜇𝜇 + 1.96𝜎𝜎 and 𝜇𝜇 − 1.96𝜎𝜎 of vacancy 
percentage are determined as it is shown in Fig. 1. For example, for a building cluster with 1000 
residents and 643 households, the right diagram in Fig. 1 is the vacancy profile can be used. 

Fig. 1 Vacancy profile of clusters with different number of people and households 
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As it is shown in Fig.1, expected value of vacancy percentage does not change with the number 
of residents. However, σ becomes smaller with more residents aggregated. In other words, 
uncertainty of vacant percentage decreases with the size of residents increases.  

Fig. 2 Survival analysis of vacancy for all 144 states. 

The probability of vacancy duration is shown in Fig. 2. It is the aggregation of results from all 
144 states. This figure shows the probability a house is vacant from any states onwards. For 
example, if a house is unoccupied at 8:00 (see x-axis), the probability it is still unoccupied after 
two hours (see y-axis) is around 80% (color bar) and after six hours is around 60%. 

DISCUSSIONS 
In this study, using a data-driving approach, statistical occupancy models were developed for 
the investigation of the uncertainty of energy flexibility due to the stochastic nature of 
occupancy using TUS data. Some existing studies showed that TUS data was a valuable 
resource by validating their TUS-based approaches against field measurements. Fischer et al. 
(2015) modelled household electricity load profiles based on German TUS. The models were 
validated against measurement data from 430 households with good accuracy. Widén et al. 
(2009) modelled household electricity load profile based on Swedish TUS data. The profile was 
validated with electricity measurements in a few households. It revealed that the models 
captured important features of the measured data. Although there is no measured data from 
Danish households available for the authors now, model validation is planned for further work. 
Nevertheless, the models developed in our study can be a tool for the simulation of energy 
flexibility of buildings for district energy planning under the background of mass application 
of renewable energy in the future. In addition, this method can be used in other geographical 
areas if TUS data of these areas are available. The vacancy percentage, vacancy duration, 
household size, etc. might be different due to different geographical and demographical 
conditions. This method can also be used to capture seasonal differences in vacancy using TUS 
data collected during specific seasons, such as heating/winter season.   

CONCLUSIONS 
In this paper, we presented a data-driven approach to generate occupancy/vacancy models for 
different types of household and for different scales of building cluster using Danish Time User 
Survey 2008/09 data. Using this approach, vacancy profile and vacancy duration of any building 
cluster can be generated. The stochasticity of occupancy is also unveiled. The next step is to 
apply these models in the quantification of energy flexibility of building cluster and the 
uncertainty of the quantification due to the stochastic occupancy. The value of the uncertainty 
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quantification is in the planning of energy services. A typical case is that a grid operator will 
have information on the reliability of deploying a certain amount of households and buildings 
for using demand flexibility to balance the grid. 
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