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ABSTRACT 
Despite the benefits of occupant behavior (OB) models in simulating the effect of design 
factors on OB, there are challenges associated with their use in the building simulation 
industry due to extensive time and computational requirements. To this end, we present a 
novel method to incorporate these models in building performance simulations (BPS) as 
design-sensitive schedules. Over 2,900 design alternatives of an office were generated by 
varying orientation, window to wall ratio (WWR), the optical characteristics of windows and 
blinds, as well as indoor surfaces’ reflectance. By using daylight simulations and stochastic 
OB modeling, unique light use schedules were generated for each design alternative. A 
decision tree was then developed to be used by building designers to select light use schedules 
based on design parameters. These findings are relevant for building energy codes as they 
provide an approach to incorporate design-sensitive operational schedules for use as BPS 
inputs by practitioners. These design-sensitive schedules are expected to be superior to default 
ones currently specified in codes and standards, which ignore the effect of design factors on 
OB, and ultimately on energy consumption. 
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INTRODUCTION 
Occupant behavior (OB) is recognized as one of the sources of uncertainty in building 
performance simulations (BPS) (Delzendeh et al., 2017; Haldi and Robinson, 2010; Parys et 
al., 2011). It is often represented in BPS based on default assumptions rather than measured 
observations or predictive models (Virote and Neves-Silva, 2012), which could lead to a 
performance gap between estimated and measured energy consumption (Menezes et al., 
2012). Default schedules, specified in building energy codes and standards, do not necessarily 
reflect the way buildings are occupied and used today, given new societal and technological 
trends (O’Brien et al., 2017). For example, default schedules assume 90 – 95% occupancy for 
office buildings during regular business hours. However, previous studies showed that peak 
occupancy rarely exceeds 50% in private offices (Duarte et al., 2015). The current schedule-
based occupant modeling approach also assumes occupants are passive recipients of indoor 
environmental conditions and do not react to discomfort (Hong et al., 2015). However, the 
relationship between occupants and buildings is a two-way process, in which occupants’ 
actions that influence energy consumption, are in turn influenced by building design and 
indoor environmental conditions (Gaetani et al., 2016; Haldi and Robinson, 2010; Yan et al., 
2015). Therefore, default schedules that are currently prescribed in building energy codes and 
standards do not incentivize designers to explore the effect of design decisions on OB. 

To partially address this issue, previous studies introduced stochastic models to represent OB 
more accurately in BPS based on monitoring of existing buildings (e.g. Haldi and Robinson, 
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2010; Page et al., 2008; Reinhart, 2004). These models can simulate occupants’ presence or 
actions when triggered by environmental or situational conditions (Hong et al., 2016; Parys et 
al., 2011). Actions may include the use of lights, blinds, windows, thermostats or other 
building systems. Despite the advances in OB modeling research in the past decade, several 
issues remain unresolved such as these models’ transferability and validation on a wider scale 
(Lindner et al., 2017). Similarly, the significant computation time required to run these 
models in BPS hinders their use in the building simulation industry, which is the main issue 
we address in this paper.  

Quantifying the effect of OB on buildings’ energy consumption requires integrating OB 
models in BPS tools. Several approaches can be used to achieve this, depending on the 
specific tool being used, its capabilities, and the available information about the model (Hong 
et al., 2017). Regardless of which approach to follow, one of the main challenges facing OB 
models’ implementation in the building simulation industry is the extensive time and 
computational requirements for integrating them in BPS tools (Yan et al., 2015).  As an 
alternative approach, we present a workflow to generate design-sensitive schedules that can be 
readily used as BPS inputs. Generating these design-sensitive schedules is based on 
parametric simulations of building design alternatives and using data-mining techniques to 
establish the relationship between design parameters and operational schedules. The process 
of generating these schedules which entails modeling OB needs to be performed only once, 
while its results can be used by building simulation practitioners to select design-sensitive 
schedules for their proposed designs.  

The main goal of this paper is to provide a proof of concept application of the proposed 
workflow. However, undertaking this workflow on a larger scale to include other design 
factors, end-uses, and locations is a necessary step before results can be used by building 
simulation practitioners. Specific objectives of this study focused on generating light use 
schedules for 2,916 unique design alternatives of an office in Ottawa, ON. For each design 
alternative, parameters that influence workplane illuminance, and consequently the way 
occupants use lights were changed. These design parameters included, building orientation, 
WWR, windows and blinds’ visible transmittance, wall, floor, and ceiling materials’ 
reflectance. The second objective focused on developing a decision tree classification model 
to help in selecting light use schedules based on design parameters. 

METHOD 
The RADIANCE-based simulation program DAYSIM was used to calculate workplane 
illuminance in an office room during the whole year. The shoe-box office model, shown in 
Figure 1, had a floor area of 15 m2 and height of 3 m2, and was simulated in Ottawa, ON.  

Figure 1 Three-dimensional diagram of the modeled shoe-box office 
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All possible combinations of the design parameters shown in Table 1 were modeled, resulting 
in 2,916 design alternatives. A window was modeled on one façade, whose dimensions were 
calculated to correspond to the proposed WWR for each design alternative. Since workplane 
illuminance, which triggers the use of lights is also influenced by blinds’ position, five whole-
year simulations were performed with the blind position in five equal increments: fully open, 
1/4, 1/2, 3/4, and fully closed, resulting in a total of 14,580 simulations. 

Table 1 Design parameters used to model different design alternatives of the shoe-box office model 
Design parameters Variations 

Building Orientation South - 0° West - 90° North - 180° East - 270° 
WWR 20% 40% 60% 
Glazing Visible Transmittance 0.5 0.6 0.7 
Blinds Visible Transmittance 0.05 0.1 0.15 

Ceiling Reflectance 0.6 0.7 0.8 
Floor Reflectance 0.2 0.3 0.4 
Wall Reflectance 0.4 0.5 0.6 

The next step entailed generating light use schedules for each design alternative based on 
modeling OB. An occupancy model developed by Page et al. (2008), a blind use model 
developed by Haldi and Robinson (2010), and a light use model developed by Reinhart (2004) 
were implemented in MATLAB for each design alternative. Details about these models’ 
parameters and their implementation process can be found in Gunay et al. (2016), and Lindner 
et al. (2017). Results were used to calculate an average daily light use schedule for each 
design alternative, based on their annual light use profile.  

A decision tree classification model, developed using the Classification and Regression Trees 
(CART) algorithm by Breiman et al. (1984), was then implemented in MATLAB to predict 
daily light use based on design parameters. This algorithm generates a flowchart tree structure 
to categorize data into various subsets and is applicable for predicting categorical responses. 
Therefore, the average daily light use schedules which represent the target response were first 
transformed into a categorical variable. For each design alternative, the duration of light use 
per day was calculated from its daily light use schedule generated earlier. The duration of 
light use was then categorized as High, Medium, or Low by splitting the dataset equally over 
these three categories. Results of this equal split indicated that light use durations below 5.7 
hours/day were classified as low, durations between 5.7 and 6.7 hours/day were classified as 
medium, and durations above 6.7 hours/day were classified as high. Therefore, three 
categories of light use schedules were used to build the decision tree classification model, by 
assigning each of the 2,916 design alternatives to one of these categories.  

To provide a practical application for the developed decision tree classification model, three 
distinct light use schedules were specified that correspond to the three categories of light use 
durations. These schedules can be used as inputs in BPS tools, and have the same shape 
profile as the average light use schedule calculated from the entire dataset for all design 
alternatives. They were generated by normalizing the average light use schedule for all design 
alternatives, and multiplying it by the average light use duration of each category (5.15, 6.2, 
7.4 hours/day for low, medium and high categories, respectively). 

Developing the decision tree was a two-step process, where the dataset was split into two 
subsets; a training subset randomly populated using 80% of the data, and a validation subset 
populated using the remaining 20%. Readers can refer to (Breiman et al., 1984) for more 
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details on the methodology of developing decision tree classification models. The training 
subset was then used to generate the model, while its accuracy was evaluated by making 
predictions against the validation subset. Accuracy was measured by comparing the predicted 
categorical response from the model to the original category of each data-point in the 
validation subset. Furthermore, the relationship between original values of light use duration 
in the validation subset (prior to categorization), and the average light use duration of its 
predicted category was assessed using the coefficient of determination R2. 

RESULTS 
Using the CART algorithm, a classification decision tree, shown in Figure 2, was developed. 
Post-pruning the decision tree with a confidence factor of 0.01 resulted in a total of seven 
decision tree nodes, of which eight were leaf nodes, representing low, medium, or high light 
use durations. The confusion matrix, shown in Table 2, evaluated the decision tree’s 
classification accuracy. It indicated that 61% of the validation dataset, were correctly 
classified. However, only 1.9% of the dataset was incorrectly classified by more than one 
profile away from the correct one (e.g. High light use duration being classified as low). As 
shown in Table 2, the number of correctly classified records is given in the main diagonal, i.e. 
upper-left to lower-right diagonal; while others were incorrectly classified. Using the 584 
records in the validation subset, and comparing their daily light use durations to the average 
light use duration of their predicted classes, R2 was 0.66. 

Despite the relatively low accuracy of this decision tree, one of its main advantages is the ease 
of use for practical applications by following the path from the root node to any of the leaf 
nodes. For example, if WWR is less than 0.3, building orientation is higher than 225°, and 
glazing visible transmittance is higher than 0.5, then medium light use duration and its 
corresponding schedule should be used in BPS. Changes to the parameters of the decision tree 
algorithm, the cross-validation method or the classification method used to split target 
variables can improve its accuracy. However, the main goal of this paper is demonstrating the 
workflow to generate design-sensitive schedules, and not improving the accuracy of the 
specific data-mining techniques used. 
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Figure 2 Decision tree diagram for selecting light use profiles 
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Table 2 Decision tree confusion matrix 
Classified as → Low light use 

profile 
Medium light use 

profile 
High light use 

profile 
Low light use profile 137 49 4 
Medium light use profile 78 116 50 
High light use profile 7 39 103 

DISCUSSION 
Decision trees can help designers and building simulation practitioners select approximate 
light use schedules based on their design. Instead of using one default light use schedule that 
does not consider the effect of design parameters on OB, the proposed method provides three 
potential schedules that correspond to different building designs. Given the modeled office 
location in Ottawa, ON, future research should include other locations which can be treated as 
an additional parameter in the decision tree to select location-specific light use schedules.  

It is important to note that the specific daily light use durations and schedules reported in this 
study were a function of the OB models used, and the design parameters investigated. 
However, more robust OB models and other parameters that influence OB such as clothing, 
and the decision to sit or stand at modern workstations should be investigated in future 
research. The presented workflow only focused on showing a methodology to eliminate the 
extensive time requirements for running OB models by providing design-sensitive schedules, 
but it did not address these models’ transferability or validation in other buildings. 

CONCLUSION 
This paper demonstrated a novel method for generating design-sensitive schedules that can be 
used in BPS. For proof of concept, a decision tree was developed for selecting light use 
schedules based on design parameters. These design-sensitive schedules represent an 
improvement over the default schedules provided in current codes and standards, which do 
not match actual building operations. One approach to improve the accuracy of default 
schedules could be updating them based on data from a statistically representative sample of 
existing buildings, taking their design parameters into consideration. However, given the 
extensive logistical requirements for data collection at such large scale, the method presented 
in this paper relies on data-mining and parametric building simulations to account for the 
effect of building design on OB. This method only addresses the time and computational 
barriers to OB modeling, by providing ready-to-use design-sensitive schedules that can be 
used as BPS inputs. It does not address other issues related to OB modeling such as models’ 
validation, which was outside the scope of this paper. Incorporating these schedules in 
building codes and standards would require extending the workflow on a larger scale for 
different locations and building archetypes. 
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