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ABSTRACT 
Flow and transport phenomena in porous media play a significant role in various fields of 
science and technology, comprising a spectrum from medical sciences over material sciences 
to soil and rock sciences. Also in building materials, the transfer of moisture and heat play a 
crucial role when assessing their properties and performances. Hence, three-dimensional 
analyses of the pore structure of building materials are becoming progressively more 
important in recent years, to obtain more accurate interpretations and simulations of their 
characteristics. Computed tomography has proven to be an excellent and versatile tool to 
perform these analyses non-destructively. The reconstruction of the pore structure is of high 
importance for establishing accurate models, as it plays a crucial role in determining 
important characteristics of building materials. These models allow to better understand the 
results of corresponding laboratory tests and in the near future might replace these time 
consuming experiments. In this paper the added value of Computed Tomography 
characterization will be demonstrated based on two case studies. The first will focus on the 
accurate simulation of moisture transfer while in the second one CT datasets are used to 
overcome a multiscale problem regarding the simulation of the effective thermal conductivity. 
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INTRODUCTION 
Three-dimensional characterizations of the pore structures of building materials are becoming 
progressively more important in recent years, in order to obtain more accurate interpretations 
and simulations of their properties and performance characteristics. This study focuses on two 
applications where pore-scale-based simulation is distinctively an added value: moisture flow 
and heat transfer. In both cases the accuracy of the pores-scale models greatly depends on the 
input parameters i.e. the geometry of the solid matrix material or the corresponding pore 
network. This paper will focus on the data acquisition part of the process and show the 
possibility’s regarding pore shape description and the incorporation of multi-scale datasets.   

Storage and transport of moisture in porous media play a significant role in the performance 
characteristics of building materials. Moisture is therefore often a critical factor when judging 
the durability and sustainability of built structures and the health and comfort of building 
occupants, and a reliable evaluation of moisture transfer in building materials is crucial for 
correct performance assessments. In order to determine the moisture behavior of building 
components, numerical simulation models are commonly used. However, these models 
require a good description of the moisture retention and moisture permeability functions, as 
these are crucial input data for a dependable simulation (Dong and Blunt, 2009).   
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Heat transfer through building materials and building components equally is important. These 
transfers make up a crucial part of the energy consumed for the conditioning of residential 
buildings. Porous building blocks, consisting of gas-filled pores in a solid material matrix, are 
therefore increasingly used in residential buildings, combining ease of construction and 
adequate mechanical properties with a relatively high thermal resistance. However, due to 
increasingly stringent energy requirements, further reduction of the thermal conductivity of 
these materials is needed to improve their performance and boost their application (Coquard 
and Baillis, 2009).  

DATA ACQUISITION 
Micro-CT 
The working principle of CT scanners is schematically depicted in Figure 1. The attenuation 
of X-rays when passing through the material is recorded for multiple rotation angles.  Because 
the attenuation depends on the interior composition of the sample, it is possible to reconstruct 
this internal information from X-rays that have travelled a different path through the sample. 
The generated X-rays are attenuated by the components of the sample and captured by the 
detector, generating projection images. Image reconstruction is a mathematical process, which 
calculates the CT slices based on the projection images using a back projection algorithm. The 
data at one pixel in one projection image comes from the attenuation of the object along the 
entire path from source to detector, explaining the need for multiple rotation angles and 
projections. The result of the reconstruction process is a 3D image stack of gray-scaled 
voxels. 

Figure 1. Schematic overview of the working of a CT scanner. The X-rays are generated in 
the source, travel through the object where they are attenuated and are captured by the 
detector. 

Segmentation 
In order to differentiate gas pore from solid matrix voxels, an image segmentation needs to be 
performed. Quantitative analysis of the porosity requires a voxel by voxel determination of it 
belonging to pore or solid phases. For segmentation an in-house dual-thresholding algorithm 
is used. This method is an adaptation of the single-threshold approach, which typically selects 
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pixels/voxels on the basis of their unique histogram range. However manually determining the 
boundary values is not straightforward in the case of insufficiently ideal histograms, with 
peaks that are not obviously separated. The applied dual or hysteresis thresholding uses two 
intervals of the histogram in order to determine the segmentation. Voxels corresponding to the 
first ‘strong’ threshold are classified as foreground voxels, while voxels selected by the 
second threshold are only considered foreground if they are connected to voxels already 
selected by the ‘strong’ threshold. The advantages of this algorithm are the reduced sensitivity 
to residual noise in the dataset and the selection of less insulated foreground voxels. However 
this method does not exclude operator bias when determining the threshold values which will 
have a significant influence on the results. Baveye et al. (2010) provide an excellent 
illustration on how inter-operator bias can influence the thresholding results. 13 experts where 
asked to segment a micro-CT image of a soil sample and the obtained porosity results varied 
between 0.13 and 0.72 with a standard deviation of 0.14. Hence, this inter-operator bias will 
have an important influence on the characterization of the studied material or interpretation of 
the results. 

Figure 2. Dual thresholding: a) Original slice, b) Histogram of the attenuation coefficients; the 
strong threshold is indicated in red; the weak threshold is indicated in green, c) Matrix 
selection using only the strong threshold, d) Resulting slice using both the strong and weak 
threshold. 

APPLICATIONS 
The segmented images provide the input information for both applications. When simulating 
moisture flow, the pore space needs to be characterised as accurately as possible by generating 
a pore network model (PNM). For the simulation of heat transfer, the pore space as well as the 
solid matrix need to be incorporated in the model. Both applications are discussed below. 

Fluid flow 
The pore space in a sample can be represented as a network of pores (larger void spaces) and 
throats (smaller void spaces connecting the larger pore spaces). CT datasets form the ideal 
tool to characterise both components up to the scan resolution. The visualised pore network is 
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transformed into a pore network model (PNM) which represents the studied pore structure as 
accurately as possible while retaining a certain simplicity by representing each component of 
the network by a set of parameters such as volume, surface area and shape descriptors. Hence, 
the PNM tries to capture local features of the pore-space which are important for the fluid 
storage and transport processes under investigation.  
Subsequently these PNMs are subjected to invasion algorithms that replicate different 
(de)saturation procedures: absorption, desorption, imbibition and drying. For unsaturated 
moisture storage and transport in building materials, Islahuddin and Janssen, (2017) 
developed a multi-scale hygric pore-scale simulator comprising the coexisting liquid and 
vapor phases of water. Hence in theory, PNMs form the basis of simulations which determine 
the moisture storage and moisture transport in building materials over the whole capillary 
range, allowing a complete and accurate determination of the hygric properties of building 
materials.  

As an example a  PNM has been generated for a sintered glass volume. This material is 
chosen because the entire pore size distribution can be captured by a 2.5 µm resolution micro-
CT scan (Figure 3 A). The CT dataset also allows to mathematically describe the shape of the 
pore bodies based on the length of the three principal axis (Figure 3 B) (Claes, 2015). 
Because the pore shape distribution in the sample is homogeneous a PNM can be used to 
determine the hygric properties of the sintered glass. Based on the code of Islahuddin and 
Janssen, (2017) the permeability and adsorption curves can be calculated for the entire water 
saturation range (Figure 3 C and D).  

Figure 3. Sintered glass: a) Pore Network Model, b) Pore shape analysis, c&d) Adsorption 
permeability curve. 

To assess the accuracy of the simulation, the obtained saturated permeability is compared with 
lab measurements. The simulated and measured saturated permeability are in the same order 
of magnitude, but the simulated one is slightly higher than the measured one: 1.86 10-5 vs 1.25 
10-5 kg/m s Pa respectively. This trend was also observed by Oren & Bakke, (2003) and Dong 
& Blunt (2009), who performed simulations on the Berea sandstone and noticed a discrepancy 
around a factor 2 between simulations and measurements. This factor can be explained by the 
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heterogeneity of the sample and the uncertainty associated in the course of imaging and image 
processing. 

Heat transfer 
One of the main advantages of micro-CT is its flexibility regarding sample size. Optimal 
sample diameters range between 1 mm and 4 cm. However, an inherent characteristic of CT is 
the negative relationship between scan resolution and sample size. The larger the sample, the 
bigger the voxel size becomes. Several materials, including building materials, often have a 
broad spectrum of pore sizes, ranging from nanometers to millimeters. The presence of 
multiple pore-scales in the studied sample can severely influence its physical properties. In 
order to test the applicability of CT on different scales, Reapor is chosen as a test case. Reapor 
is a highly-porous material mainly applied for acoustic absorption. The production process is 
based on recycled glass and consists of sintering together expanded granules, hence leading to 
a pore structure with a two-scale type of pore volume distribution: a cellular structure inside 
the granules and a granular structure overall. As there is a clear separation between the intra- 
and intergranular pore structures, a hierarchical approach is adopted to overcome the two-
scale nature of the material: simulation results obtained on the intragranular level are averaged 
and used in the simulations performed on the intergranular scale.  

Figure 4. a) Photograph of sample pore structure with the bimodal pore volume distribution 
clearly visible, b) Measured pore volume distribution of the Reapor material, c&d) Micro-CT 
slice scan result of the intra- and inter-granular scale, e&f) Segmented 3D image of intra- and 
inter-granular scale scans (after Van De Walle et al, 2018).  

In order to characterise the intra-granular scale a 2 mm diameter sample is scanned at a 
resolution of 1.2 µm. Based on these results simulations were conducted and the results are 
shown in Figure 5 A. A power-law trend-line is fitted through the results, showing an 
expected decrease of the thermal conductivity with increasing porosity.  
Subsequently these values are used to characterize the matrix material when analyzing the 
inter-granular pore network. The configuration of the matrix material is characterized by a 12 
µm resolution scan. The results of these simulations are shown in Figure 5 B. In order to 
assess the quality of the simulations, the results are compared to lab measurements and 
information provided by the manufacturer. On average, the simulations show a relative 
deviation of about 5 % with the experimental measurements, indicating a good performance 
of the model framework even when using a two-scale hierarchical simulation approach. 
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Figure 5. a) Simulation results on the intra-granular scale in the air-dry case, b) Comparison 
of simulations, experiments and analytical models for the air-dry case of the Reapor material 
(after Van De Walle et al, 2018).  

CONCLUSIONS 
The overall goal of this research is to come up with a more accurate description and 
characterization of the pore structure of building materials. Computer tomography (CT) 
proofs to be an excellent tool for achieving this objective. Because of its inherent 3D data 
acquisition, the complete internal structure of the scanned sample can be evaluated at different 
resolutions. The visualization of the connectivity of the pore network and the detection of 
additional phases results in an detailed characterization of the building material. The 
generation of 3D datasets also permits a more quantitative description and calculation of 
different important parameters such as porosity, hygric properties, heat transfer and spatial 
variability of these parameters.  
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