
Healthy, Intelligent and Resilient 
Buildings and Urban Environments

7th International Building Physics Conference

Proceedings

ibpc2018.org    #ibpc2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/275800178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


New microclimate monitoring method and data process for investigating 
environmental conditions in complex urban contexts 

Ilaria Pigliautile1,*, Veronica Lucia Castaldo1 and Anna Laura Pisello2 

1CIRIAF - Interuniversity research centre on pollution and environment Mauro Felli – 
Department of engineering, University of Perugia, 06125, Italy 
2 Department of Engineering, University of Perugia, Perugia, 06125, Italy      

*Corresponding email: pigliautile@crbnet.it

ABSTRACT 
The rapid urbanization of the last century coupled with local climate change imputable to 
anthropogenic actions triggered a huge research effort aimed at investigating urban 
microclimate. Typically, cities present a variety of microclimates due to the internal variation 
of their landscapes in terms of morphology, surfaces properties, presence of greenery, etc. 
Location-specific microclimate conditions affect both (i) building energy needs and (ii) 
citizens’ quality of life. For these reasons, a small-scale analysis from the citizen perspective 
with high-time-resolution environmental data is required. Recent studies tried to reach that 
level of precision by using remote sensing, movable observational transects or dense network 
of weather stations located in specific points of the urban settlement. Within this framework, 
the current study presents a new bottom-up methodology which aims at identifying granular 
microclimates within the same built environment. The method consists of a cluster analysis of 
experimental data collected by a wearable miniaturized weather station which allows the 
monitoring of outdoor parameters at the pedestrian height and with high-time resolution. 
Experimental campaigns were conducted in five different case studies, where a planned 
monitoring path was repeated at different times during the day. The heterogeneity of the 
context demonstrates the replicability of the proposed method, suitable for clustering different 
areas of a same urban context characterized by variable local microclimate. The study 
contributes to better understand the variability of building boundary conditions for energy 
need prediction and indoor/outdoor environmental comfort assessment.  

KEYWORDS  
Urban Microclimate, Urban heat island, Outdoor thermal comfort, Monitoring, Environmental 
quality. 

INTRODUCTION 
The urban population is continuously growing, and it will reach the 60% of the world 
population in 2030 according to United Nation predictions (2016). The urbanization process 
progressively changes land usage, consequently modifying the energy balance in cities 
leading to the well-known phenomenon of the Urban Heat Island (Oke, 1973;). UHI 
negatively affects both citizens’ health (Serrat et al., 2006;) and building stock energy 
consumption (Akbari et al., 2001). Moreover, such negative consequences are going to be 
exacerbated in the next decades due to climate change since extreme weather evens as the 
heatwaves are predicted to be more intense and more frequent (Founda and Santamouris, 
2017). Nevertheless, the complex and heterogeneous morphology of cities causes sensible 
diversification of the microclimate within the urban canopy layer. As a matter of fact, Jonsson 
(2004) found out an intra-urban temperature difference of the same magnitude as the detected 
urban-rural differences in Gaborone, Botswana. Intra-urban temperature differences up to 5°C 
were also detected in Wien, Austria, by Mahdavi et al. (2017). Moreover, the study 
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demonstrated how specific microclimate conditions affect the building thermal performance 
leading to a mean annual heating load variation up to 16.1 kWh/m2 per year among the 
analysed areas. 
Within the presented framework, the detection of intra-urban microclimate diversifications 
and how much they are related to different urban structures is a key point for the scientific 
community. To get this goal, high-spatial-resolution weather data are required. Nowadays, the 
most common implemented methodologies include: (i) remote sensing (Voogt and Oke, 
2003;), (ii) permanent network of weather stations (Paolini et al., 2017), and (iii) 
observational mobile transects (Hart and Sailor, 2009; Parace et al., 2016). Nevertheless, an 
investigation procedure focused on the pedestrian perspective is still missing. This work 
presents a new bottom-up methodology which aims to identify different and distinctive 
microclimates within the same built environment from raw environmental data collected 
accordingly to the pedestrian perspective. An innovative monitoring wearable system is 
presented and the obtained outcomes are post-process through k-means clustering procedure. 
The outlined methodology is applied to five different case studies to test its validity in 
different urban configurations. The final findings can therefore help policymakers to select 
suitable mitigation strategies for the most critical areas of their cities in terms of both outdoor 
thermal comfort and building stock energy consumption. 

METHODS 
The present work proposes a bottom-up process to detect local urban microclimate conditions 
based on collected experimental data. The main environmental parameters are monitored by 
means of a miniaturized wearable weather station which can be easily warren by a pedestrian 
(Pigliautile and Pisello, 2018). Therefore, the perspective of the monitoring campaign is 
human centred, and the collected data represent what citizens are subject to, in terms of 
environmental forcing, air quality, and thermal overheating/overcooling. The collected data 
are therefore statistically analysed by means of clustering to identify the intra-urban 
microclimate diversification.  

Monitoring campaigns 
The monitoring system is a miniaturized weather station coupled with GPS tracer to link the 
collected environmental data to their site-specific location, i.e. latitude, longitude, altitude and 
attitude. The system is settled upon a common bike helmet and records all the parameters 
listed in (Pigliautile and Pisello, 2018) every 2 seconds, such as air temperature, relative 
humidity, global solar radiation, wind speed, CO2 concentration, and geographical 
coordinates. 
Five different monitored case studies are here presented. Every case study deals with different 
urban contexts as summarized in Table1. All the monitoring pathways were planned to pass 
through areas characterized by different (i) geometrical configuration, (ii) orientation, (iii) 
amount of anthropogenic sources, and (iv) greenery. The equipped operator covers the same 
pathway at least twice during a day, i.e. around midday and around sunset, to have both (i) 
space and (ii) time daily variation of the key environmental parameters. Moreover, the length 
of each pathway allows to complete a single recording session in less than one hour on foot, 
so all the parameters fluctuation can be assumed to be space- and no time-dependent.  

Table 1. Monitoring campaigns details 
Case study Typology Start Time Day Length 
Knossos Palace 
archaeological site, 
Greek 

Open area 9:00 a.m. 07/04/2017 1.2 km ~40 minutes 
3:00 p.m. 1.6 km ~40 minutes 
7:00 p.m. 1.3 km ~40 minutes 
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Gubbio historic centre, 
Italy 

Packed, 
historical 

8:30 a.m. 08/02/2017 2.6 km ~45 minutes 
2:30 p.m. 2.8 km ~45 minutes 
6:30 p.m. 2.7 km ~45 minutes 

New York City 
(Soho), USA 

Packed, low rise 
building 

1:00 p.m. 11/30/2017 2.4 km ~35 minutes 
6:30 p.m. 11/28/2017 2.4 km ~35 minutes 

New York City (Upper 
East Side), USA 

2:00 p.m. 11/29/2017 3.7 km ~45 minutes 
5:30 p.m. 12/01/2017 3.6 km ~45 minutes 

New York City (Wall 
Street), USA 

Packed, high 
rise building 

11:45 a.m. 11/29/2017 - ~25 minutes 
5:00 p.m. 11/30/2017 3.3 km ~25 minutes 

Data analysis 
After having collected the abovementioned data, we grouped them adopting the k-means 
algorithm (Lloyd, 1982) which classifies data through a priori fixed k number of clusters. This 
allowed us to figure out potential relationships within the huge amount of observations 
derived from the monitoring sessions. The iterative grouping procedure minimizes the 
distance between the observations belonging to the same cluster and, in turn, maximizes the 
distance among observations belonging to different clusters. The algorithm minimizes the 
following objective function: 
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 - cj ǁ is the chosen Euclidian distance between an observation xi
(j) and its cluster 

centre cj, i.e. its centroid. The authors assumed three different numbers of final clusters k, i.e. 
2, 5, and 8, to get the sensitivity of such bottom-up approach in determining the intra-urban 
microclimate variation. Moreover, we grouped data considering a 3D reference space defined 
by three environmental parameters which are recognized as affecting the citizens well-being: 
(i) the global solar radiation (W/m2), (ii) the CO2 concentration (ppm), and (iii) the apparent
temperature (°C). The obtained data partitions are therefore analysed in terms of their spatial
distribution linking the belonging cluster and the GPS coordinates of each observation. The
length of each segment, defined by space-contiguous observations belonging to the same
class, is calculated and only segments longer than 5m are considered for the analysis. Figure 1
summarizes the adopted methodology for the data analysis.

Figure 1. Scheme of the applied methodology. 
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RESULTS  
The presented analysis aims to find out different microclimate conditions within all the 
considered case studies. The application of the k-means algorithm with a k value of 2 
recognizes the solar radiation as the main driver of the clustering procedure. As a matter of 
fact, the two centroids representative of the data subgroups are mainly distinguished by their 
values of solar radiation. Such differences are more evident at midday and in low density 
urban areas, i.e. the Knossos palace archaeological site, where a maximum centroids’ distance 
of 733.4 W/m2 is highlighted in terms of solar radiation (Figure 2a). On the contrary, less 
evident is the data partitioning due to solar access at pedestrian level within the more packed 
urban contexts, i.e. the three monitored areas of New York City. In particular, the partition of 
data collected in New York City high-rise building settlement, i.e. Wall Street (Figure 2b), is 
driven by the CO2 concentration which presents the widest range of collected values. 
Therefore, the two data sub-groups are identified by centroids which are really close in terms 
of apparent temperature and solar radiation, i.e. 0.6°C, 0.1°C and 4.5 W/m2, 6.1 W/m2 at day- 
and night-time respectively but differ from each other for 130 ppm and 100 ppm of CO2 
concentration at 2:00 p.m. and 5:30 p.m. respectively.  
The two data sub-groups are equally distributed in space in the open site of Knossos and in 
the packed historic centre of Gubbio at 2:30 p.m. The low solar radiation data in Knossos, i.e. 
centroid’s value of solar radiation equal to 53.5 W/m2, 94.8 W/m2, and 60.3 W/m2 at 9 a.m., 
3:00 p.m., and 7:00 p.m. respectively, correspond to the areas shaded by the existing greenery. 
Similarly, the low and high radiation clusters in Gubbio, i.e. centroids’ radiation of 101.7 
W/m2 and 776.7 W/m2 respectively, identify urban canyons mainly characterized by different 
orientations, i.e. north-south and east-west oriented respectively (Figure 2c). On the other 
hand, low incoming solar radiation areas are prevalent in the monitored zones of New York 
City. Nevertheless, areas with high level of incoming radiation are mainly concentrated in 
north-south oriented canyons and at crossroads. 

Figure 2. Spatial distribution of the two data clusters (k=2) obtained for the monitored open 
area (a), packed high rise (b), and packed historical configuration (c). 

The data partition into 5 sub-groups generates diversified clusters in terms of both solar 
radiation and CO2 concentration values in all the considered case studies. Therefore, such 
partition identifies different microclimate situations of low and high incoming solar radiation 
combined with less or more polluted air conditions. The generated clusters depict quite well 
the distinction among open areas and different typologies of urban canyons in all the packed 
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urban case studies, especially during day-time. Moreover, such partition highlights site-
specific critical conditions in terms of CO2 concentration level just before traffic-lights almost 
in all the monitored areas of New York. This condition is particularly evident in SoHo (Figure 
3) where data clusters related to detected high level of CO2 concentration, i.e. 600 ppm and
514 ppm in correspondence of low and high solar radiation values respectively, continuously
cover up to a maximum of 46 m for a total amount equal to the 13.4% of the whole monitored
path length.

Figure 3. Spatial distribution of the five data clusters (k=5) obtained in SoHo, New York City. 

Nevertheless, not the whole 5 data sub-groups can be considered representative of site-
specific conditions. The application of the minimum length filter, i.e. 5 m, reduce up to 67.1% 
the total amount of recorded data in the open archaeological site of Knossos. It means that the 
environmental parameters in mainly open and natural areas are more sensitive to temporary 
weather changes rather than being affected by specific spatial configurations. 
Finally, the clustering procedure with 8 pre-defined number of classes does not show up 
further significant intra-urban variations of the monitored environmental parameters leading 
to redundant fragmentations of the data samples. 

DISCUSSIONS 
The statistical analysis of the collected data provides an intra-urban detection of specific 
microclimate conditions. The spatial distribution of each generated data cluster shows 
distinctive urban configurations along the monitored pathways during day-time and with a k 
of 2. The availability of incoming solar radiation at pedestrian height is depicted as the most 
influencing parameter for the microclimate diversification. The selection of 5 final clusters 
points out a relatively more detailed intra-urban microclimate detection considering also other 
environmental parameters, i.e. CO2 concentration variation. Nevertheless, such high number 
of classes, i.e. 5, is not suitable for open areas, i.e. Knossos archaeological site, where the 
environmental parameters fluctuations are more time- than space-dependent. Finally, the 
selection of 8 final data clusters seems to be too much detailed for the detection of site-
specific microclimate conditions also in high urbanized and packed contexts. 

CONCLUSIONS 
The presented bottom-up approach to detect the intra-urban microclimate variation shows its 
promising effectiveness being applied in different contexts and seasons. The statistical data 
analysis through k-means algorithm can identify those areas presenting similar configuration 
within each case study. The proper number of final clusters depends on the monitored context 
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typology in order to obtain spatially significant data sub-grouping. A further development of 
this work will focus on the evaluation of the right k value for each defined urban configuration 
typology. 
Nevertheless, the outlined data clusters are associated to peculiar comfort conditions within 
the same urban context. Therefore, the presented methodology could help urban policymakers 
to figure out criticalities. A rank of risk in terms of human health or building stock energy 
consumption peak can be assigned to the obtained environmental data clusters. In this way, 
areas needing priority intervention can be easily highlighted.  
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