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Abstract 

The non-genomic mechanisms by which glucocorticoids modulate β2 agonist-induced-

bronchodilation remain elusive. Our studies aimed to elucidate mechanisms mediating 

the beneficial effects of glucocorticoids on agonist-induced bronchodilation.  Utilizing 

human precision cut lung slices (hPCLS), we measured bronchodilation to formoterol, 

prostaglandin E2 (PGE2), cholera toxin (CTX) or forskolin in the presence and absence of 

budesonide.  Using cultured human airway smooth muscle (HASM), intracellular cAMP 

was measured in live cells following exposure to formoterol, PGE2, or forskolin in the 

presence or absence of budesonide.  We showed that simultaneous budesonide 

administration amplified formoterol-induced bronchodilation and attenuated agonist-

induced phosphorylation of myosin light chain, a necessary signaling event mediating 

force generation. In parallel studies, cAMP levels were augmented by simultaneous 

exposure of HASM cells to formoterol and budesonide. Budesonide, fluticasone and 

prednisone alone rapidly increased cAMP levels, but steroids alone had little effect on 

bronchodilation in hPCLS. Bronchodilation induced by PGE2, CTX or forskolin was also 

augmented by simultaneous exposure to budesonide in hPCLS. Furthermore, HASM 

cells expressed membrane-bound glucocorticoid receptors that failed to translocate with 

glucocorticoid stimulation, and that potentially mediated the rapid effects of steroids on β2 

agonist-induced bronchodilation.  Knockdown of glucocorticoid receptor α had little effect 

on budesonide-induced and steroid-dependent augmentation of formoterol-induced 

cAMP generation in HASM.  Collectively, these studies suggest that glucocorticoids 

amplify cAMP-dependent bronchodilation by directly increasing cAMP levels. These 

studies identify a molecular mechanism by which the combination of glucocorticoids and 

β2 agonists may augment bronchodilation in diseases such as asthma or chronic 

obstructive pulmonary disease. 

  



Introduction 

Combination therapy including an inhaled glucocorticoid and a long-acting β2 

agonist represents a cornerstone in the management of airways disease including asthma 

and chronic obstructive pulmonary disease. Conceptually, combined use of an anti-

inflammatory agent with a bronchodilator improves medication adherence as compared 

to using each drug separately (1-3). Use of an inhaled corticosteroid (ICS) with a long-

acting β2 agonist (LABA) as rescue and maintenance therapy appears more effective than 

using an ICS or SABA alone or using an ICS/LABA for maintenance (4-10). Evidence 

now suggests, apart from enhanced adherence, combination therapy augments efficacy 

of either drug alone (11).  We posit that this effect is mediated by a rapid, non-genomic 

effect of glucocorticoids. To date, the molecular mechanisms by which non-genomic 

effects of glucocorticoids modulate bronchodilation remain unknown. (11). 

Glucocorticoids primarily mediate their effects by activating the glucocorticoid 

receptor (GR). In this canonical signaling, the GR resides in the cytoplasm in its inactive 

state and, upon ligand activation, translocates to the cell nucleus to interact with 

glucocorticoid response elements (GREs) and produce genomic effects altering protein 

expression. Recent evidence has emerged to suggest that glucocorticoids manifest rapid 

non-genomic actions on several signaling processes (11). These non-canonical, non-

genomic effects of glucocorticoids appear to involve non-specific interactions with the cell 

membrane and/or specific interactions with cytosolic GRs (cGR) or membrane-bound 

GRs (mGR). The rapid non-genomic effects appear to, at least in part, be mediated 

through a putative mGR (11).  

Several studies have reported an interaction of mGR with other membrane 

receptors, particularly G protein-coupled receptors (GPCR) (12).  Involvement of mGR 

and GPCR-dependent mechanisms in the rapid effect (~ 1 min) of corticosterone on 

NMDA-evoked currents in hippocampal neurons was demonstrated (12), suggesting that 

mGR may couple to multiple G proteins, including Gαs and Gαq/11. Other studies suggest 

that mGR directly activates downstream intracellular signaling pathways. Corticosterone 

acted via mGR to rapidly elicit PKC-dependent activation of ERK1/2 MAPK pathway in 

PC12 cells (13). Interestingly, proteomic analysis of CCRF-CEM cells identified 128 

proteins that were differentially regulated by activation of mGR using BSA-conjugated 



cortisol briefly (5 and 15 min) (14). These actions were unique to mGR, as no activation 

of cGR target genes (e.g. GILZ) were observed. Signal pathway analysis now provides 

evidence that mGR is involved in numerous pathways that are also regulated by 

glucocorticoids through cGR, suggesting that mGRs trigger early priming events, 

ultimately facilitating slower genomic activation by glucocorticoids (14).  

Our study identifies a molecular mechanism by which glucocorticoids acutely 

amplify β2 agonist-induced bronchodilation. By rapidly stimulating cAMP production, 

glucocorticoids augment the primary second messenger signal of β2 agonists and other 

bronchodilators. Ultimately, identification of plasma membrane components through 

which glucocorticoids impact cAMP signaling and bronchodilation may provide novel 

therapeutic targets for airways diseases, an area that has seen little innovation in the past 

45 years. 

 

Methods 

 

Reagents 

Reagents were purchased from the following vendors: formoterol, forskolin, 

carbachol, and TNFα (Sigma Aldrich, St. Louis, MO); budesonide (AstraZeneca); cell 

culture media and components (ThermoFisher, Waltham, MA); fetal bovine serum 

(Atlanta Biologicals, Flowery Branch, GA); GR antibody (Santa Cruz, Dallas, TX); β-actin 

antibody (Sigma Aldrich, St. Louis, MO); phosphorylated GRα (Cell Signaling 

Technology, Danvers, MA);  rabbit and mouse secondary antibodies for immunoblotting 

(LiCor, Lincoln, NE);  GRα targeted siRNA (Ambion, Austin, TX); non-targeting siRNA 

(Dharmacon, Lafayette, CO); HiPerFect transfection reagent (Qiagen, Germantown, MD); 

single analyte ELISA kits for IL-6, RANTES, and IL-8 (R&D Systems, Minneapolis, MN). 

 

hPCLS generation and bronchodilation assays 

Human precision cut lung slices (hPCLS) were prepared as previously described 

(15). Briefly, whole human lungs from non-asthma donors were dissected and inflated 

using 2% (wt/vol) low melting point agarose. Once the agarose set, the lobe was 

sectioned, and cores of 8-mm diameter were made. Cores containing small airways by 



visual inspection were sliced at a thickness of 350 μm (Precisionary Instruments VF300 

Vibratome, Greenville, NC) and collected in wells containing supplemented Ham’s F-12 

medium. To study bronchodilation, small airways contained within hPCLS were 

contracted with carbachol (CCh, 10-5 M), and then bronchodilated to formoterol (10-12 – 

10-6 M), budesonide (10-12 – 10-5 M), forskolin (10-12 – 10-5 M), PGE2 (10-10 – 10-5 M), or 

cholera toxin (0.01-100 µg/ml) ± budesonide (10-5 M, simultaneous administration). 

Human lung tissue samples were commercially obtained from anonymous donors 

(National Disease Research Interchange, Philadelphia, PA or the International Institute 

for the Advancement of Medicine, Edison, NJ), and are therefore exempt from IRB 

(Institutional Review Board) approval. Although these samples have demographic 

information, there is no information linking the subject’s identification to the tissue.  

Integrated area under the curve (AUC - % dilation/bronchodilator dose) was calculated 

from the dose response curves and was plotted along with maximal bronchodilation 

achieved over the entire dose response curve. 

 

Human airway smooth muscle (HASM) cells 

HASM cells were derived from tracheas obtained from non-asthma donor lungs 

that hPCLS were derived from. HASM cell culture was performed as described previously 

(16). Briefly, the cells were cultured in Ham’s F-12 medium supplemented with 10% FBS, 

100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2.5 mg/ml amphotericin B, and this 

medium was replaced every 72 hr. HASM cells in subculture during passages 1–5 were 

used, because these cells retain expression of native contractile proteins, as 

demonstrated by immunocytochemical staining for smooth muscle actin and myosin (17).  

 

cAMP assays 

For kinetic measurement of cAMP production in live cells, subconfluent HASM 

cells were plated in black-walled, clear flat bottom 96-well plates with HASM media, 

BacMam virus expressing the green cAMP difference detector in situ (cADDis) cAMP 

sensor (Montana Molecular, Bozeman, MT), and 1 μM trichostatin-A (Sigma Aldrich, St. 

Louis, MO) per well and grown overnight. Media was aspirated and replaced with PBS 

without calcium or magnesium, then the plate was covered and incubated at room 



temperature. Cell fluorescence was read from the plate bottom using excitation/emission 

wavelengths of 494 nm and 522 nm, respectively, using a SpectraMax M5 plate reader 

(Molecular Devices, Sunnyvale, CA). A kinetic read (5 min) on unstimulated cells was 

performed to determine variability in each well’s fluorescence (≤5%). Cells were 

stimulated with agonist and fluorescence changes were read at 30 second intervals for 

30 min.  

 

Cell surface biotinylation 

 Cell surface protein biotinylation was carried out according to manufacturer’s 

protocols (Pierce Biotechnology, Rockford, IL). Cells were grown to 90-95% confluence, 

incubated with a biotin solution, then scraped and lysed. Lysates were incubated with 

NeutrAvidin beads, then bound proteins eluted off. Eluates were assessed for 

glucocorticoid receptor, using epidermal growth factor receptor (EGFR; Cell Signaling 

Technology, Danvers, MA) as a positive control for cell surface biotinylation. Remaining 

cell lysates were examined for expression of GAPDH (Millipore, Burlington, MA) and 

COXIV (Cell Signaling Technology, Danvers, MA) as measures of intracellular/cytosolic 

proteins. 

 

Immunohistochemistry 

HASM cells were grown in chamber slides until confluent, then serum starved for 

18 hr. Cells were then fixed with 1% paraformaldehyde, washed, then blocked with 1% 

BSA/PBS solution containing 10% FcR block (Miltenyi Biotec, Auburn, CA). Cells were 

stained with a GR antibody (rabbit, Santa Cruz Biotechnology, Dallas, TX) in 1% 

BSA/PBS solution overnight. The slides were washed, stained with biotin-coated donkey 

anti-rabbit antibody (Jackson Immunolabs, Bar Harbor, ME) in 1% BSA/PBS, washed, 

then incubated with a streptavidin-Alexa Fluor 488 conjugated antibody (Jackson 

Immunolabs). The slides were washed, then the cells were permeabilized with 0.01% 

Triton X-100 and stained with DAPI. Slides were cover-slipped and imaged.  

 

Immunoblotting 



HASM cells were treated with carbachol (25 µM Cch, 10 min) then with formoterol 

(100 pM, 5 min) ± simultaneous budesonide stimulation (1 µM, 5 min). Cells were then 

treated with 500 M perchloric acid, plates scraped, and cells pelleted. Pellets were 

solubilized in RIPA and sonicated prior to being subjected to SDS PAGE and transferred 

to nitrocellulose membranes, as previously described (18) then assessed for 

phosphorylation of MLC and total MLC. Total GRα and phospho-GRα were assessed in 

cell lysates following siRNA transfection of HASM with non-targeting and GRα-targeted 

siRNA. 

 

Single analyte ELISAs  

HASM transfected with non-targeting or GRα-targeted siRNA were treated with 

budesonide (100 nM, 1 hr) prior to stimulation with TNFα (10 ng/ml, 24 hr).  Single analyte 

ELISAs were utilized to assess release of IL-6, RANTES, and IL-8 into the media.  Each 

condition represents duplicate samples from a single donor, each run in triplicate. 

 
 

Statistical analyses 

Standard curves for cAMP generation were fitted and unknown values 

extrapolated using GraphPad Prism 6.0h (GraphPad Software Inc., San Diego, CA). Data 

are presented as the mean ± SEM. Statistical comparisons (t-tests and one-way analysis 

of variance) were performed and graphics were generated using GraphPad Prism 6.0h 

(GraphPad Software Inc.).  Unpaired non-parametric analyses were used for hPCLS data 

that was not normally distributed to compare conditions.  Paired parametric analysis was 

used for HASM experiments (ELISA, western blots, and cAMP generation). 

 

Results 

 

Budesonide enhances formoterol-induced bronchodilation 

To examine whether a glucocorticoid and a β2 agonist can additively promote 

bronchodilation, human small airways in hPCLS were preconstricted to carbachol and 

then dilated to formoterol in the absence and presence of budesonide, with the 

budesonide being added simultaneously with the formoterol. Budesonide treatment 



augmented formoterol-induced bronchodilation (Figure 1), increasing maximal levels of 

bronchodilation. Similarly, the integrated bronchodilator response as represented by Area 

Under the Curve (AUC) significantly increased. Budesonide alone had little effect on 

luminal diameter dilation despite being administered at similar concentrations as 

formoterol (data not shown). These data show that simultaneous administration of 

budesonide augments β2 agonist-induced dilation of human small airways. 

 

Budesonide amplifies PGE2-, cholera toxin- and forskolin-mediated bronchodilation 

 Given that budesonide augments airway dilation to a β2 agonist, we next examined 

whether budesonide enhances dilation mediated by activation of other GPCRs coupled 

to Gαs or via direct activation of Gαs or adenylyl cyclase. We showed that simultaneous 

administration of budesonide enhances PGE2-induced bronchodilation of airways (Figure 

2), with increases in maximal bronchodilation and AUC to PGE2. To assess whether the 

effect of budesonide was due to activation of Gαs, a G protein shared between the β2AR 

and EP2/4 receptors, we utilized cholera toxin (CTX) to induce bronchodilation in hPCLS. 

Simultaneous administration of budesonide with CTX induced greater maximal 

bronchodilation overall responses to CTX compared to CTX alone (Figure 3). To assess 

whether budesonide enhanced direct adenylyl cyclase (AC)-induced bronchodilation, 

hPCLS were exposed to forskolin (FSK) in the presence or absence of budesonide. 

Simultaneous budesonide administration enhanced FSK-induced bronchodilation (Figure 

4), significantly increasing the AUC to FSK compared to control.  

 

Budesonide enhances formoterol-stimulated cAMP production   

To dissect the molecular pathways by which budesonide augments 

bronchodilation of human airway smooth muscle (HASM), HASM were infected with a 

recombinant BacMam expressing a fluorescent cAMP sensor, cADDis, and cAMP levels 

were measured after exposure to varying concentrations of formoterol. The cADDis 

sensor decreases fluorescence upon binding cAMP, providing real-time assessment of 

intracellular cAMP levels without inclusion of phosphodiesterase (PDE) inhibitors. 

Formoterol decreased cADDis fluorescence within minutes that typically stabilized within 

15-20 min (Figure 5A, inset). To account for the rate and maximal levels of cAMP 



production produced by formoterol, the product of the decay rate (K) and the level at 

steady state (plateau) were plotted for each drug concentration. Using this analysis, 

formoterol increased cAMP levels (Figure 5A). In parallel, formoterol-stimulated cAMP 

was measured in HASM treated with vehicle or 10-6 M budesonide given simultaneously. 

Budesonide shifted the formoterol concentration-response curve 3.9-fold leftward (Figure 

5B. Additionally, budesonide at 1 or 10 µM augmented formoterol-induced cAMP 

production, but that effect was not realized at 100 nM budesonide. The effect of 

budesonide on formoterol-stimulated cAMP production in HASM cells therefore mimicked 

the effect of budesonide on agonist-induced bronchodilation observed in hPCLS. 

 

Budesonide enhances PGE2- and forskolin-stimulated cAMP production  

To determine whether budesonide also enhanced cAMP signaling stimulated by 

PGE2, PGE2-stimulated cAMP production was detected by cADDis in a concentration-

dependent manner (Figure 5C). Inclusion of budesonide (1 µM) shifted the PGE2 curve 

leftward 8.4-fold. We next examined cAMP responses to forskolin (FSK), finding that FSK-

stimulated cAMP production was shifted leftward 8.2-fold by inclusion of 1 µM budesonide 

as compared to vehicle (Figure 5D). These data are consistent with the notion that 

budesonide enhances cAMP production initiated by multiple GPCRs in different signaling 

compartments in HASM cells, and that budesonide-mediated augmentation of these 

responses is receptor-independent.  

 

Budesonide, fluticasone and prednisone enhance directly stimulated cAMP production  

Because budesonide enhanced agonist-induced cAMP signaling, we investigated 

whether budesonide alone stimulated cAMP. Significant decreases in cADDis 

fluorescence was observed within seconds of addition of 1 or 10 µM budesonide (data 

not shown). 10 µM budesonide stimulated cAMP levels that were statistically different 

than vehicle within 2 minutes, while 1 µM induced significant changes within 5 minutes. 

The higher concentration of budesonide stimulated changes in cADDis fluorescence that 

were equivalent to maximal concentrations of forskolin (10 µM) or formoterol (not shown). 

However, cADDis is a readily saturated sensor so high levels of cAMP may not be 

distinguishable (19). We also examined cAMP production by other corticosteroids, finding 



that fluticasone and prednisone (data not shown) stimulated cAMP production. 

Fluticasone was equi-effective as budesonide although greater inter-experimental 

variability was observed while prednisone was less efficacious and less potent.  

 

A membrane-bound form of GR (mGR) is present in HASM cells 

 Since budesonide effects on cAMP generation and bronchodilation were rapid, we 

posited that budesonide activates a membrane-associated receptor. Other laboratories 

have identified a mGR that can evoke immediate steroid effects in other cell types (20-

22). Using cell-surface biotin labeling and immunohistochemistry (Figure 6), we showed 

that HASM express mGRs that fail to translocate to the nucleus from the membrane 

despite stimulation with a glucocorticoid (dexamethasone). As expected, cytosolic GR 

translocated to the nucleus as shown in Figure 6. 

 

Budesonide augments formoterol-induced dephosphorylation of myosin light chain 

 Contractile agonists activate GPCRs that evoke HASM shortening by promoting 

phosphorylation of myosin light chain (pMLC). To determine whether formoterol in the 

absence and presence of budesonide modulates agonist-induced excitation-contraction 

signaling, we examined attenuation of carbachol-induced pMLC by formoterol ± 

budesonide. Formoterol alone (10 pM – 10 nM) induced significant reversal of carbachol-

induced pMLC, and simultaneous administration of budesonide with formoterol (at 100 

pM) further augments formoterol-induced pMLC dephosphorylation (Figure 7). These 

data suggest that glucocorticoids can also augment formoterol effects on pro-contractile 

pathways in HASM cells. 

 

GRα knockdown in HASM cells has little effect on cAMP generation in response to 

budesonide or budesonide + formoterol 

To more directly assess the role of the GR in mediating rapid cAMP responses 

to glucocorticoids, we used siRNA to knock down GRα expression in 

HASM.  Transfection of validated siRNA sequences into HASM led to a nearly complete 

loss of GRα immunoreactivity (detected as a doublet of approximately 94 kDa) as 

compared to cells transfected with a scrambled siRNA (Figure 



8A).  GRα mRNA expression in control HASM was readily detected by quantitative RT-

PCR but was undetectable in cells transfected with GRα siRNA (not shown).  We 

then assessed cAMP levels in HASM following siRNA transfection.  Forskolin-stimulated 

cAMP responses were unaltered by GRα knockdown, implying that loss of GRα did not 

alter AC expression or function (data not shown). Budesonide (1 µM) or formoterol (0.1 

nM) each elicited equivalent cAMP responses in both GRα knockdown and control cells 

(Figure 8B and 8C).  cAMP responses to simultaneous addition of budesonide and 

formoterol were greater than either agent alone, but were similar in both control 

and GR⍺  knockdown conditions (Figure 8D).  Knockdown of GRα was confirmed by 

immunoblot, and showed reversal of budesonide attenuation of TNFα-induced 

inflammatory mediator release (data not shown).  These results suggest that 

GRα expression may not be required for rapid, non-genomic signaling by GC.  

 

 

Discussion 

  

In airway smooth muscle, contractile agonists stimulate Ca2+-dependent signaling 

evoking cell shortening regulated in part through increased [Ca2+]i transients, inhibition of 

sarcoplasmic reticulum Ca2+-ATPase (SERCA), and pMLC inducing actin-myosin cross-

bridge cycling and force generation. Agents that mobilize cAMP and activate protein 

kinase A (PKA) protect against or reverse agonist-induced bronchoconstriction. In 

epithelial cells and neurons, glucocorticoids modulate signaling pathways that promote 

relaxation of HASM. Dexamethasone stimulation of bronchial cells attenuated [Ca2+]i 

currents, which was reversed by SERCA inhibitors, PKA, and activated adenylyl cyclase 

(AC) within minutes (20). Further, corticosterone treatment reversed ATP-induced [Ca2+]i 

transients in mouse HT4 neuroblastoma cells (23). In primary HASM cells, budesonide 

stimulation alone increased cAMP levels (data not shown). Interestingly, we show that 

simultaneous budesonide and formoterol significantly reduced carbachol-induced pMLC 

(Figure 7), but little effect of budesonide alone. Others noted existence of a mGR that 

may mediate non-genomic, rapid effects of glucocorticoids. We demonstrate presence of 

mGR in HASM (Figure 6) that does not translocate upon glucocorticoid stimulation. Our 



work suggests that expression of GRα is not necessary to elicit cAMP production in 

response to budesonide or budesonide + formoterol (Figure 8). There is a possibility that 

residual GR protein whose expression was not attenuated by siRNA transfection may 

mediate the effect, but the existence of a modified GR that may not be subject to 

knockdown of the protein may mediate the effects of steroids on cAMP 

production/augmentation of bronchodilation.  Overall, these data suggest that despite the 

effect of glucocorticoids on attenuation of Ca2+-dependent pathways, glucocorticoids 

alone had little effect on agonist-induced bronchoconstriction of small airways (data not 

shown) in hPCLS but rather, amplified β2 agonist-induced bronchodilation. 

Although glucocorticoids alone induced cAMP production (data not shown), these 

steroids had little effect on bronchodilation of small airways in hPCLS (data not shown). 

Robust and sensitive assessment of cAMP pools is achieved using the cADDis reporter 

(19). Although the assay shows increases in cAMP production to budesonide alone, this 

increase in cAMP levels may be insufficient for promoting bronchodilation due to an 

inadequate magnitude or localization of the cAMP signal despite utilizing the same 

concentrations of budesonide as formoterol in the hPCLS bronchodilation assays (10-12 

– 10-5 M, data not shown). Glucocorticoids may therefore be increasing cAMP levels via 

direct activation of Gαs, activation of an unidentified GPCR, or inhibition of 

phosphodiesterases. Others suggest that increases in intracellular cAMP elicited by 

glucocorticoids may be due to inhibition of ABCC4, an ATP binding cassette transporter 

that pumps cAMP into the extracellular space.  In differentiated airway epithelial cells, 

dexamethasone, but not budesonide, augmented activity of GRE-luciferase when given 

with forskolin treatment.  Additionally, blockade of ABCC4 potentiated activity of the GRE-

luciferase in the presence of either dexamethasone or budesonide treatment (24).  Unlike 

airway epithelial cells, β2 agonist or forskolin treatment had little effect on extracellular 

levels of cAMP in HASM (data not shown).  However, we reported that ABCC4 is 

expressed in HASM cells, and its expression is augmented by budesonide treatment (25).  

In the aforementioned studies, glucocorticoid treatment was for 6-12 hours, conceivably 

the mechanisms modulating rapid glucocorticoid stimulation may differ.  Future studies 

will address whether non-genomic effects of glucocorticoids are mediated by activation 

of ABCC4 proteins. 



Others noted acute glucocorticoid stimulation activates signaling pathway 

components in non-muscle cells that are associated with bronchodilatory responses in 

smooth muscle. In bronchial epithelial cells dexamethasone inhibited agonist-induced 

[Ca2+]i, with the inhibition sensitive to AC and PKA inhibition (20). Other show a non-

genomic glucocorticoid effect that was PKA-dependent in a neural cell line (23). 

Accordingly, to assess mechanisms by which steroid may be augmenting agonist-induced 

bronchodilation we examined the effect of glucocorticoids on: (1) selectivity of responses 

we observed to the β2AR; (2) direct activation of Gαs; and (3) whether the response 

observed was receptor-dependent. We found that PGE2-, CTX-, and FSK-stimulated 

bronchodilation of small airways (Figures 2, 3 and 4, respectively) was augmented by co-

administration of budesonide. Similarly, PGE2-, and FSK-induced cAMP production in 

HASM (Figure 5C and D) was augmented by budesonide co-administration. Despite the 

cADDis characterizing budesonide’s effects on CTX-induced cAMP production, CTX 

induced such saturating levels of cAMP production in HASM cells making us unable to 

detect a synergism above CTX stimulation alone (data not shown).  

 Interestingly, synergism between glucocorticoids and β2 agoinsts has been 

examined previously.  A recent study noted that beclomethasone augmented formoterol-

induced reversal of pre-contracted airways (26), to about ~30% maximally (27).  Although 

there was synergism between the two therapeutics, the beclomethasone dose was given 

overnight, with effects likely genomic.  This is in direct contrast to what our studies show, 

where despite budesonide inducing cAMP production in HASM, it alone was unable to 

induce bronchodilation even at a concentration of 100 µM.  Additionally, the 2016 study 

utilized non-selective inhibitors of PKA and Gαs to establish roles for those protein in 

beclomethasone-induced bronchodilation in lung slices.  Our studies have the advantage 

of observing cAMP production in live primary HASM in real time, a system in which we 

can genetically manipulate components of signaling pathways to more rigorously 

ascertain the necessity and sufficiency specific molecules in the responses we observe. 

 Our studies identify mechanisms by which budesonide, a potent glucocorticoid, 

rapidly activates cAMP production and augments agonist-mediated bronchodilation. This 

is the first direct demonstration that glucocorticoids stimulate cAMP production in airway 

smooth muscle. These mechanisms may explain, in part, how combination therapy of β2 



agonists and ICS offer greater efficacy in comparison to either drug alone.  Interestingly, 

these beneficial effects occur separate and distinct from any anti-inflammatory effects 

(11).  Combination therapy represents a cornerstone for maintenance therapy in asthma 

and COPD. Evidence also suggests that this combination can serve as an anti-

inflammatory reliever therapy (when added to maintenance) that decreases exacerbation 

rates, improves asthma symptoms, and enhances lung function as compared to higher 

doses of inhaled corticosteroids (ICS) alone (4-6). Our data identify molecular 

mechanisms by which steroids and long-acting β2 agonists together improve 

bronchodilation. 
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Figure 1 – Acute budesonide stimulation augments formoterol-induced 

bronchodilation, but does not induce bronchodilation alone. (A) Simultaneous 

stimulation of hPCLS with budesonide (10-5 M) with formoterol (10-12 – 10-6 M) augments 

(B) maximal bronchodilation (formoterol vs. budesonide at 10-6 M formoterol, 71.4 ± 5% 

vs. 89.7 ± 7.3%), and increases the integrated (C) area under the curve vs. formoterol 

alone (formoterol vs. formoterol + budesonide, 156.8 ± 25.9 vs. 257.1 ± 51.6). Data 

represents n=15-25 donors, p<0.05 vs formoterol alone. (D) Budesonide alone does not 

induce bronchodilation in hPCLS. Data represents 2 (budesonide alone) - 15 (formoterol) 

donors, 6-36 slices/condition. 
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Figure 2 – Simultaneous budesonide treatment augments PGE2-induced 

bronchodilation of human small airways. Budesonide (10 µM) was given 

simultaneously with PGE2 (10-10 – 10-5 M) and bronchodilation was assessed. 

Concentration-response curves (A) are represented as % dilation for the combination 

compared to PGE2-induced dilation alone. Maximal bronchodilation at 10-5 M PGE2 (B, 

PGE2 vs. PGE2 + budesonide at a maximum of 10-5 M PGE2, 116.6 ± 16.6% vs. 283.3 ± 

37.3%) and integrated area under the curve (C, PGE2 vs. PGE2 + budesonide, 264.5 ± 

40 vs. 736.2 ± 209.6) of PGE2-induced bronchodilation were significantly increased. Data 

represents n=3 donors, *p<0.05 compared to PGE2 stimulation alone. 
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Figure 3 – Budesonide significantly augments cholera toxin-induced 

bronchodilation of human small airways. Budesonide (10 µM) was given 

simultaneously with cholera toxin (CTX, 0.01-100 µg/ml) and bronchodilation was 

assessed. Concentration-response curves (A) were normalized to CTX stimulation alone 

set to 100%. Maximum bronchodilation at 100 µg/mL (B, CTX vs. CTX + budesonide at a 

maximum of 100 µg/ml CTX, 105.5 ± 3.9% vs. 128.4 ± 17.5%) and area under the curve 

(C, (CTX vs. CTX + budesonide, 200.8 ± 13.8 vs. 361.5 ± 112.6) were significantly 

increased with budesonide stimulation. Data are representative of n=5 donors, 11-13 

slices/condition, *p<0.05 compared to CTX stimulation alone. 
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Figure 4 – Budesonide augments forskolin-induced bronchodilation of human 

small airways. Budesonide (10 µM) was given simultaneously with forskolin (Fsk, 10-12 

– 10-5 M) and bronchodilation was assessed. Concentration-response curves to Fsk (A) 

were plotted.  Maximal bronchodilation at 10-5 M FSK (B, FSK vs. FSK + budesonide at 

maximum of 10-5 M FSK, 83.7 ± 8.5% vs. 110.1 ± 10.6%) and area under the curve (C, 

FSK vs. FSK + budesonide, 151.9 ± 11.8 vs. 232.3 ± 29.1) were significantly increased 

in the presence of budesonide. Data are representative of n=5 donors, * p<0.05 compared 

to control/Fsk. 
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Figure 5 – Budesonide alone induces cAMP production in HASM cells, and 

enhances formoterol, PGE2, and forskolin-induced cAMP production. HASM cells 

were incubated with recombinant BacMam virus expressing the cADDis cAMP sensor for 

24 hr. After establishing baseline, fluorescence decay was monitored for 30 min after 

addition of drug. (A) cADDis sensor fluorescent decay curves elicited by various 

concentrations of formoterol were fit by one-phase decay non-linear regression analysis 

(inset, 10-12 – 10-6 M formoterol, log EC50 of -7.78 ± 0.185). The rate (K) was multiplied 

by the steady state change in fluorescence (plateau) for each concentration of formoterol. 



Each point represents the mean ± SEM of n=5. (B) Budesonide alone (1 or 10 µM) elicits 

cAMP production in cells, and is compared to forskolin (10 µM) stimulation.  Each point 

represents the mean ± SEM of n=4-6 cell lines and lines represent the fit by one-phase 

decay non-linear regression analysis. * denotes p < 0.05, ** denotes p < 0.01 of each time 

point compared to vehicle using multiple t tests and the Holm-Sidak method for correction 

of multiple comparisons. (C) Formoterol concentration-responses curves in the presence 

of vehicle or 1 µM budesonide. Each point represents the mean ± SEM of n=5 cell lines 

(log EC50 formoterol vs. formoterol + budesonide, -7.76 ± 0.205 vs. -8.36 ± 0.189, 

p=0.021). (D) PGE2 concentration-responses curves in the presence of vehicle or 1 µM 

budesonide. Each point represents the mean ± SEM of n=4 cell lines (log EC50 PGE2 vs. 

PGE2 + budesonide, -7.85 ± 0.062 vs. -8.78 ± 0.129, p=0.046). (E) Forskolin 

concentration-responses curves in the presence of vehicle or 1 µM budesonide. Each 

point represents the mean ± SEM of n=7 cell lines (log EC50 FSK vs. FSK + budesonide, 

-6.75 ± 0.168 vs. -7.67 ± 0.190, p=0.005). 
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Figure 6 - mGR exists in HASM. (A) HASM from non-diseased lung donors was 

biotinylated and purification of a membrane fraction determined the existence of a 

membrane bound form of the glucocorticoid receptor. Presence of the epidermal growth 

factor receptor (EGFR) and absence of GAPDH and COX IV (cytosolic proteins) were 

used as controls for purity of membrane protein isolation. (B) HASM cells were fixed with 

acetone following stimulation for 30 min with dexamethasone (1 µM). Fixed cells were 

then probed for glucocorticoid receptor and DAPI. Data are representative of 3 separate 

non-asthma donors for both (A) and (B). 



 

(A) 

 

(B) 

 

Figure 7 – Budesonide augments formoterol-mediated attenuation of carbachol 

(Cch)-induced phosphorylation of myosin light chain. HASM cells were treated with 

Cch (25 µM, 15 min), then treated simultaneously with formoterol (10 pM – 10 nM, 5 min) 

and budesonide (1 µM, 5 min). Phosphorylation of myosin light chain was assessed by 

immunoblot, using total myosin light chain as a loading control (A). Data are expressed 

as fold compared to control (B), and are representative of 5 separate HASM donors (* 

p<0.05). 

 

 



 

Figure 8 – Knockdown of GRα had little effect on budesonide or budesonide + 

formoterol-induced cAMP production in HASM.  HASM were transfected with siRNA 

specific for GRαor scrambled control (mock) for 72 hr. A:  Lysates were collected and 

analyzed by immunoblotting using antibodies specific for GRα or β-actin. Each lane 

shows one of 3 separate experiments on individual cell lines.  B, C and D: cADDis sensor 

was expressed in HASM with a recombinant BacMam virus then cAMP responses to 



budesonide (1 µM, B), formoterol (0.1 nM, C) or both budesonide and formoterol (1 µM 

and 0.1 nM, respectively, D) were measured in HASM were transfected with non-

targeting siRNA or siRNA specific for GRα. Each point represents the mean ± SEM of 

n=4-5 cell lines. 
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