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Summary 

 The 18O-signature of atmospheric water vapour (δ18OV) is known to be transferred 

via leaf water to assimilates. It remains, however, unclear how the 18O-signal transfer 

differs among plant species and growth forms. 

 We performed a 9 h greenhouse fog experiment (relative humidity ≥ 98%) with 18O-

depleted water vapour (-106.7‰) on 140 plant species of 8 different growth forms 

during daytime. We quantified the 18O-signal transfer by calculating the mean 

residence time of O in leaf water (MRTLW) and sugars (MRTSugars) and related it to leaf 

traits and physiological drivers. 

 MRTLW increased with leaf succulence and thickness, varying between 1.4 and 10.8 

h. MRTSugars was shorter in C3 and C4 plants than in CAM plants and highly variable 

among species and growth forms; MRTSugars was shortest for grasses and aquatic 

plants, intermediate for broadleaf trees, shrubs and herbs, and longest for conifers, 

epiphytes and succulents. Sucrose was more sensitive to δ18OV variations than other 

assimilates. 

 Our comprehensive study shows that plant species and growth forms vary strongly in 

their sensitivity to δ18OV variations, which is important for the interpretation of δ18O 

values in plant organic material and compounds and thus for the reconstruction of 

climatic conditions and plant functional responses. 

 

Summary Statement 

Our multi-species fog study revealed that the oxygen isotope signal transfer from water 

vapour to leaf water and assimilates varies substantially among plant species and growth 

forms. Our results help to improve the interpretation of the oxygen isotopic composition of 

water and organics in plants.  

 

 

Keywords: Carbohydrates, clouds, compound-specific isotope analysis (CSIA), fog, foliar 

water uptake, leaf wetting, precipitation, rain 
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Introduction 

The oxygen isotopic signature (δ18O) of photosynthetic assimilates (e.g. sugars) and cellulose 

hold valuable information about plant functional responses to environmental drivers and 

are therefore widely applied in ecophysiological and dendrochronological research (Roden 

et al., 2000; Helliker & Ehleringer, 2002a; Sternberg, 2009; Gessler et al., 2014). The δ18O 

composition of plant material is strongly related to leaf water composition (δ18OLW), which is 

mainly determined by leaf evaporative conditions (Kahmen et al., 2011; Cernusak et al., 

2016) and two isotopic sources: (1) δ18O of source water (δ18OS) that is taken up by plants 

from the soil and transported to the leaves via transpiration (Dawson et al., 2002; Cernusak 

et al., 2016), and (2) δ18O of atmospheric water vapour (δ18OV) via a bidirectional exchange 

of water molecules between the leaf and the atmosphere (Kim & Lee, 2011; Goldsmith et 

al., 2017). In studies employing δ18O composition of plant material, δ18OV is often assumed 

to be in equilibrium with δ18OS, although evidence for this assumption is scarce (Saurer et 

al., 2016; Brinkmann et al., 2018).  

However, recent studies demonstrate strong daily and seasonal variations in δ18OV based on 

local, regional and global hydrological processes that affect atmospheric weather conditions 

(Lee et al., 2006; Tremoy et al., 2012; Huang & Wen, 2014; Yu et al., 2015). This causes δ18OV 

to often be decoupled from δ18OS (Lai et al., 2008; Bögelein et al., 2017). As a consequence, 

δ18OV and δ18OS do not co-vary in their influence on δ18OLW and disentangling the relative 

importance of these two water sources on δ18OLW and thus on δ18O of plant material is 

therefore critical (Roden & Ehleringer, 1999; Helliker & Griffiths, 2007; Helliker, 2014). It is 

currently unclear which leaf functional traits influence uptake and incorporation of the 

temporal variations in δ18OV into the δ18O values of leaf water and assimilates (Roden & 

Ehleringer, 1999; Kim & Lee, 2011; Lehmann et al., 2018). A general survey of plant species 

of different growth forms covering a broad range of functional traits may therefore allow 

the identification of important drivers of 18O-signal transfer processes and improve the 

climatic and physiological interpretation of δ18O signals in plant organic material and 

compounds, such as the δ18O of leaf and tree-ring cellulose (Roden & Ehleringer, 1999; 

Helliker & Griffiths, 2007; Helliker, 2014) or δ18O of levoglucosan (Blees et al., 2017). 

Isotopic composition of leaf water can be modeled, provided that δ18O values of both water 

sources are known (Craig & Gordon, 1965; Dongmann et al., 1974; Flanagan et al., 1991): 
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δ18OLW = δ18OS + εeq + εk + (δ18OV - εk - δ18OS)* ea/ei   Eqn. 1 

where εeq and εk are equilibrium and kinetic fractionation factors and ea/ei is the ratio of the 

partial pressure of water vapour outside and inside the leaf. Importantly, the influence of 

δ18OV on δ18OLW increases as a function of ea/ei, and is strongest when the atmosphere is 

completely saturated with water vapour (Helliker, 2014). High humidity conditions cause the 

stomata to open, because transpirational water loss is strongly reduced (i.e. low vapour 

pressure deficit, VPD). This leads to unity between the ratio of the partial pressure of water 

vapour outside relative to inside the leaf (ea/ei = 1). Equation 1 can thus be simplified to: 

δ18OLW= δ18OV + εeq   Eqn. 2 

Thus, δ18OV variation is particularly important under high humidity conditions. Such 

conditions are often found in tropical and subtropical forests, where ca. 50% of days can be 

very humid (> 0.1 mm precipitation), closely followed by temperate and boreal forests 

(Dawson & Goldsmith, 2018). Further, specific precipitation events such as mist, dew, or fog 

can lead to high humidity and thus δ18OV variation can also be important for plants in many 

coastal, desert, or montane regions. One means of evaluating the 18O-signal transfer within 

an individual plant is to calculate the mean residence time of O in leaf water (MRTLW) and 

assimilates based on the isotope response after a step change in δ18OV during a high 

humidity period.  A shorter MRT indicates a faster 18O-signal transfer, which is consistent 

with changes in the pool size and in the flux going through that pool (or both) (Epron et al., 

2012). Therefore, MRT values likely depend on leaf anatomical and morphological 

properties which can widely differ among plant growth forms (Cernusak et al., 2008; Lai et 

al., 2008; Liang et al., 2018). Stomata are the primary entry point for δ18OV and thus 

differences in stomata pore size and density may influence the uptake of the atmospheric 

signal into the leaf water pool (Berry et al., 2018). In addition, photosynthetic modes (PM; 

i.e. C3, C4, CAM) that influence the timing of stomatal opening and leaf water content may 

also affect MRTLW values and thus the sensitivity of a plant species to δ18OV variations 

(Cernusak et al., 2008; Dubbert et al., 2017; Liang et al., 2018). However, studies focusing on 

the influence of leaf functional traits on the equilibration between δ18OV and δ18OLW and 

thus MRTLW are scarce (Roden & Ehleringer, 1999; Lai et al., 2008; Kim & Lee, 2011).   
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Our understanding on how δ18OV signals are transferred to δ18O of plant organic matter and 

assimilates is even more limited. Research to date has demonstrated that variation in δ18OLW 

induced by step changes in δ18OV can be incorporated into δ18O of plant organic matter and 

the incorporation may differ among different sugar compounds (Studer et al., 2015; 

Lehmann et al., 2018). However, it remains unclear if the observed compound-specific 

pattern, with some compounds being more sensitive to water vapour induced δ18OLW 

variations than others, can be generalized among species and growth forms. Furthermore, 

the 18O-signal transfer from leaf water to assimilates is known to depend on photosynthetic 

rates (Lehmann et al., 2018), photosynthetic modes (Helliker & Ehleringer, 2002b), and the 

turnover of leaf carbohydrate pools (Song et al., 2014). Some studies observed that high 

humidity conditions such as fog or leaf wetting, i.e. when the relevance of δ18OV variation is 

highest, can positively or negatively affect the photosynthetic rates of various species from 

different biomes (Eller et al., 2013; Berry & Smith, 2014; Aparecido et al., 2017; Dawson & 

Goldsmith, 2018). We therefore assume that the mean residence time of O in assimilates 

will vary strongly among species and growth forms, but this has not yet been quantified.  

To provide a more mechanistic understanding of the 18O-signal transfer from water vapour 

to leaf water and assimilates, we conducted a multi-species 18O-fog experiment and tested 

(1) how much the 18O-signal transfer differs among plant species and growth forms; (2) 

whether anatomical (e.g. stomatal density and size), morphological (e.g. leaf thickness and 

succulence) leaf traits, physiological processes (e.g. leaf gas exchange), leaf sugar pool sizes, 

and photosynthetic modes (determined via δ13C values) influence the mean residence time 

of O in leaf water and assimilates; as well as (3) identified the assimilates most sensitive to 

water vapour induced δ18OLW variations by compound-specific isotope analysis. 

Material and Methods 

Plant material and experimental procedure 

We surveyed 140 plant species from eight different growth forms (Table S1), including 

aquatics (i.e. plants growing in water-covered sediments or very moist soils with leaves 

above the water table, n = 6 spp.), coniferous trees (n = 10 spp.), epiphytes (i.e. non-

parasitic plants, but growing on other plants; for the experiment, however, all epiphytes 

were kept on a string above the ground without contact to another plant; generally 
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succulent and CAM; n = 11 spp.), grasses (n = 12 spp.), herbs (n = 28 spp.), succulents (i.e. 

succulent plants growing on soil, generally CAM, n = 19 spp.), broadleaf shrubs (n = 30 spp.) 

and broadleaf trees (n = 24 spp.). Plants were obtained from the Botanical Garden of the 

University of Basel, the garden of the Swiss Federal Institute WSL, and a commercial grower 

(Hauenstein-Rafz, Zurich, CH). The plant species originate from different ecosystems (e.g. 

temperate and tropical forests, deserts, freshwater lakes) and are thus expected to show a 

high variability in leaf functional traits, leaf gas exchange, photosynthetic modes, and 

turnover times in water and assimilate pools. Plants were generally potted in standard 

potting soil, except for aquatic plants, which were grown in water and epiphytes were 

grown without substrate in air. Plant height/length varied from 4 to 201 cm, with annual 

plants being fully developed and photosynthetically active at sampling date. 

All plants were transferred to a greenhouse at WSL and acclimatized for 4 weeks under well-

watered conditions (δ18O of tap water = -12.1 ± 0.5‰, mean ± SD), with minimum and 

maximum greenhouse air temperature of 17.8 ± 1.6 °C and 26.2 ± 4.8 °C, respectively and 

relative humidity (RH) ranging between 52 ± 11.9 % to 84.9 ± 4.5% (mean ± SD). The 

maximum daily photosynthetic photon flux density (PPFD) in the greenhouse averaged 975 

µmol m-2 s-1. All soils/hydroponics were covered with aluminum foil a day before the 

experiment to prevent 18O-label from the fog being taken up by the roots. 

The 9 h fog experiment started with a pre-treatment sampling at 08:30, when leaf material 

from all plants was sampled. At 09:30, all plants were quickly transferred to an adjacent 14 

m2 greenhouse (i.e. fog chamber) containing 18O-labelled water vapour at high humidity 

provided by nebulizers (Defensor 3001, Condair, Pfaeffikon, SZ, CH). The nebulizers were 

placed in a water bath that was constantly filled with 18O-depleted water (δ18O = -202.2‰). 

Air mixing was facilitated by several fans (⌀ = 30 cm). To account for within species 

variability in δ18O values of leaf water and assimilates, seven species from seven different 

growth forms were replicated (n = 5 individuals, Fig. 1), with the individuals distributed at 

different locations within the fog chamber. The leaf material from the replicated plant 

species were sampled at 5 points in time (10:30, 12:30, 14:30, 16:30, and 18:30), while the 

leaf material from all other species were sampled only at 18:30 (i.e. 9 h after labeling start). 
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Sampled leaf material was immediately transferred to 12 ml gas-tight glass vials (Labco, 

Lampeter, UK), frozen in LN2, and stored at -20°C for further analysis. The leaf material 

collected during the fog exposure was generally observed to be wet on the surface and was 

thus dried with soft paper tissues before being transferred to vials. During the 9 h fog 

exposure, rH was constantly above 98% with minimum temperatures of 20.5°C at 09:30 and 

maximum temperatures of 33°C at 16:30. The average PPFD during the fog event was about 

275 µmol m-2 s-1, with the maximum PPFD of 1122 µmol m-2 s-1 at 14:45.  

Isotope analysis of water vapour, leaf water, and assimilates 

δ18O of atmospheric water vapour was continuously monitored during the experiment using 

a laser spectrometer (L2120-i, Picarro, Inc., Santa Clara, CA, USA). Vapour was drawn with a 

flow rate of 0.25 l min-1 directly into the spectrometer for continuous measurement of 

water isotopologues. Calibration was carried out to account for the effects of changing gas 

concentrations, as well as to determine span and offset. The measurement precision was 

typically < 0.3‰ (SD).  

Leaf water was extracted using vacuum distillation (West et al., 2006; Lehmann et al., 2018). 

Analysis of δ18O of water samples was performed on a thermal combustion/ elemental 

analyzer coupled to a DELTAPLUSXP isotope ratio mass spectrometer (TC/EA-IRMS; all 

Finnigan MAT, Bremen, Germany). Measurement precision was typically < 0.3‰ (SD).  

The dried leaf material from the glass vials was milled to a fine powder and 60 mg of this 

powder was used for extraction of the water soluble compounds (WSC) in 1.5 ml deionized 

water at 85°C for 30 min. The neutral sugar fraction (defined here as “sugars”) was isolated 

from the WSC using ion-exchange chromatography (OnGuard II A, H, and P; Dionex, Thermo-

Fisher, Bremen, Germany) to remove ionic and phenolic compounds (Rinne et al., 2012). For 

δ18O and δ13C analyses, WSC and sugars aliquots were injected into silver capsules, frozen, 

and freeze dried. The assimilates were pyrolyzed at 1420°C (PYRO-cube, Elementar, Hanau, 

Germany) and the CO gas delivered to an IRMS (Weigt et al., 2015). The measurement 

precision was typically < 0.4‰ (SD) for oxygen and carbon isotopes. No significant oxygen 

isotope fractionation was observed during sugar purification (Lehmann et al., 2016; 

Lehmann et al., 2017). 



 

 
This article is protected by copyright. All rights reserved. 

δ18O values of the individual sugars glucose and sucrose before and after the 9 h labeling 

event were analyzed by gas chromatography/pyrolysis-IRMS (GC/pyr-IRMS) for 38 species of 

eight different growth forms. An aliquot of sugars per sample (c. 2 mg DW-1) was transferred 

to a 2 ml reaction vial, frozen, freeze-dried, and then methylated (Lehmann et al., 2016; 

Lehmann et al., 2017). Methylated sugars were injected (splitless at 250°C) and separated 

on a 60 m, 0.25 mm, and 0.25 µm ZB-SemiVolatiles GC column (Zebron, Phenomenex, 

Torrance, CA, USA) in a Trace GC Ultra gas chromatograph. The sugar derivatives were 

pyrolysed at 1280 °C in a commercially available oxygen isotope reactor and the CO gas 

transferred via a reference unit to an IRMS (all GC/pyr-IRMS parts supplied by 

ThermoFisher, Bremen, DE). A liquid nitrogen trap was used to ensure that no pyrolysis by-

products reached the IRMS, resulting in improved precision. All samples were measured 3 

times within a sample sequence. Interspersed sugar standard mixes of different 

concentrations were used for drift and amount corrections (Lehmann et al., 2016). The 

average measurement precision (SD) was 0.5‰ for glucose and 0.3‰ for sucrose. All δ18O 

and δ13C values are reported relative to the international VSMOW or VPDB scale, 

respectively. 

Analyses of leaf gas exchange, leaf traits, and leaf sugar pool size 

Leaf gas exchange parameters, including the net assimilation rate (An), stomatal 

conductance (gs), and transpiration rate (E), were determined a week before the labeling 

event over the course of several days between 10:30 - 15:30 using an infrared gas analyzer 

with a 6 cm2 leaf cuvette (Li-Cor 6400, Li-Cor Biosciences, Lincoln, NE, USA). It should be 

noted that leaf gas exchange measurements are highly challenging in wet air and that gas 

exchange parameters under control conditions only reflect an approximate of those under 

fog exposure. Fully developed leaf material was enclosed in the cuvette and when stable 

cuvette conditions were observed, five point measurements per sample were taken in a 10 s 

interval and average values calculated for each parameter. Cuvette conditions were set to 

an atmospheric CO2 concentration of 400 µmol mol-1, PPFD of 1200 µmol m-2 s-1, and a flow 

rate of 500 µmol s-1. Across all measurements we maintained a relative humidity of 54.1 ± 

8.2%, a leaf temperature of 25.9 ± 1.9°C, and a leaf-to-air vapour pressure deficit of 1.7 ± 0.4 

kPa. The gas exchange of some succulent and almost all epiphyte plant species could not be 

analyzed due to low gas exchange fluxes and/or a leaf form that did not fit the leaf cuvette. 
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The leaf area (LA) and fresh weight (FW) of the leaf material used for gas exchange 

measurements was determined by a leaf area measurement device (Li-Cor 3000, Li-Cor 

Biosciences, Lincoln, NE, USA) and an analytical balance. Subsequently, the leaf material was 

dried in an oven at 60°C until stable weight to determine the dry weight (DW). Leaf 

succulence (LS) was calculated according to Mantovani (1999): 

LS = (FW-DW)/LA  Eqn. 3 

Leaf thickness (LTh) from all species was determined using a micrometer screw gauge 

(Mitutoyo, Kawaski, Japan). Stomatal density (SD) and size (SS) of the abaxial leaf side were 

determined from leaf impressions made using clear nail polish, mounted to slides, and 

subsequently observed using a light microscope (Camargo & Marenco, 2011). SD was 

observed with a magnification of 20 to 40x by counting the number of stomata in a specific 

area (~0.175 mm2), while SS was determined in the same area by measuring the length of 

the stomatal aperture (n = 3 stomata per plant species). δ13C analysis was used to identify 

different photosynthetic modes (PM) following O'Leary (1988). The leaf sugar pool size (i.e 

[Sugars]) at the end of fog exposure was photometrically determined following the protocol 

of Schönbeck et al. (2018). 

Data analysis and statistics 

To quantify the effects of labeling, δ18O values of leaf water and assimilates during the 9 h 

fog event were corrected for natural isotope abundances (Lehmann et al., 2018): 

Δδ18O = δ18Ofog – δ18Oprefog  Eqn. 4 

where δ18Ofog is the isotope ratio of a sample taken during or at the conclusion of the 9 h 

labeling period, δ18Oprefog is the isotope ratio of a sample taken before labeling start (at 

08:30). 

Following Equation 4, we calculated a mean Δδ18O value of atmospheric water vapour 

(Δδ18OMV): 

Δδ18OMV = δ18OV-fog – δ18OV-prefog  Eqn. 5 

where δ18OV-fog is the average δ18O value of water vapour of the last 6 h of the experiment (-

122.7‰ ± 7.2‰) when δ18OV variations were low (see Fig. 1) and temperature (~31°C) and 
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humidity were constant (rH > 98%) and where δ18OV-prefog is the average δ18O value of water 

vapour of a 30 min period measured in the morning before the fog event started (-16.0 ± 0.5 

‰; both mean ± SD). The resultant Δδ18OMV value of -106.7 ± 7.2‰ reflects the isotopic 

labeling signal applied to the plants and denotes also the value expected for full isotopic 

equilibration between water vapour and leaf water. The Δδ18OMV value is thus used as a 

reference for this study. 

The mean residence times of O (MRT) in leaf water and assimilates during fogging were 

derived from exponential decay functions (Ruehr et al., 2009; Epron et al., 2012). The 

functions were fitted to Δδ18OLW and Δδ18OSugars values of the species sampled over the 

course of the 9 h labeling period (Fig. 1).  

Δδ18O (t) = Δδ18O0 * e(-λ*t) + C   Eqn. 6 

where Δδ18O (t) is the quantity of 18O after a given time (t), Δδ18O0 is the initial quantity of 

18O at t=0, λ is the decay rate (h-1), and C is the Δδ18OMV value to correct for negative values. 

MRT was calculated as 1/λ and then linearly related to Δδ18O values at 9 h after labeling 

start for each species (Fig. S1). Linear regressions of these relationships were then used to 

model MRTLW and MRTs of WSC (MRTWSC) and sugars (MRTSugars) for all other species and 

growth forms. With an alternative approach based on gas exchange and pool sizes, we 

calculate the turnover time (LS/E) for the transpirational net flux of water going through leaf 

water before the fog period as the ratio of LS (mol H2O m-2) to E (mol H2O m-2 s-1) following 

Cernusak et al. (2008). If not mentioned otherwise, one-way analysis of variance (ANOVA) 

and Tukey-HSD post-hoc were used to test for significant differences in isotope values, MRT 

values, LS/E, leaf gas exchange, leaf traits, and [Sugars] among the growth forms.  

Results 

Temporal variations in Δδ18O of leaf water and assimilates during fog treatment 

After transferring the plants to the fog chamber at 09:30, the 18O-depleted water vapour 

decreased for 3 h and stabilized at 12:30 with constant values until the end of the 

experiment at 18:30 (Δδ18OV, Fig. 1A, grey line). The Δδ18O values of leaf water (Δδ18OLW) 

showed a decreasing trend during the first few hours of the experiment in six of the seven 

selected species that were sampled in replicate at multiple times (Fig. 1A). Full equilibration 
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between the Δδ18OMV reference and Δδ18OLW was observed after 3 to 7 h, with a linear 

change rate of about 15.2‰ to 35.6‰ h-1.  

Δδ18O values of the water-soluble organic compounds (Δδ18OWSC) generally showed a linear 

decrease during the 9 h fog event. However, the 18O-signal transfer to assimilates was 

different among the growth forms (Fig. 1B). At the end of the fog exposure, Δδ18OWSC values 

of aquatic, conifer, and epiphyte plant species ranged between -8.3 to -11.4‰, while grass, 

broadleaf shrub, and broadleaf tree species ranged between -21.3 to -25.3‰. Similar 

temporal trends to Δδ18OWSC were observed in the further purified neutral sugar fraction 

(Δδ18OSugars), with a much stronger 18O-depletion and thus 18O-label incorporation, allowing 

a clearer distinction between the growth forms (Fig. 1C). The strongest 18O-signal transfer to 

sugars was observed in grass, broadleaf shrub, and broadleaf tree species (Δδ18OSugars of c. -

42.5‰, with a linear change rate of 4.7‰ h-1), while the 18O-label incorporation was 

approximately two-times lower in aquatic, conifer, and epiphyte species (Δδ18OSugars of c. -

19.1‰, with 2.1‰ h-1). In agreement with the effect of δ18OV on leaf water, the succulent 

species showed no clear 18O-signal transfer to WSC and sugars. The average standard error 

for Δδ18OLW, Δδ18OWSC, and Δδ18OSugars for each point in time, across all seven replicated 

plant species, was 3.2‰, 1.3‰, and 2.8‰, respectively. This indicates that the position 

within the fog chamber, the diurnal variability in light conditions, and the within-species 

variability resulted in low uncertainty for 18O-signal transfer processes. 

18O-signal transfer to leaf water and assimilates across 140 species  

We sampled leaf material before and at the end of fog exposure and measured Δδ18O values 

of leaf water and assimilates in 140 plant species. Δδ18OLW values showed a non-linear 

relationship with Δδ18OSugars across all species (Fig. 2A). Plants with the highest 18O-label 

uptake to leaf water (i.e. close to the Δδ18OMV reference of -106.7‰ ± 7.2, mean ± SD) 

showed a higher variability in Δδ18OSugars. We expected full isotopic equilibrium between 

water vapour and leaf water after a 9 h fog period at high humidity conditions (ea/ei = 1) and 

thus Δδ18OLW values to be similar to the Δδ18OMV reference (Lehmann et al., 2018). 

Surprisingly, Δδ18OLW values in only 54% of all measured species (i.e. 74 out of 137) were 

similar to the Δδ18OMV reference (within 1 SD). In contrast, Δδ18OLW values in 22% and in 24% 

of all measured species (i.e. 30-33 out of 137) were only near (within 2 to 3 SD) or far off 

(outside 3 SD) the Δδ18OMV reference, respectively, and thus not in full equilibrium with 



 

 
This article is protected by copyright. All rights reserved. 

Δδ18OV. Mean Δδ18OLW values of most growth forms ranged between -93.0‰ to -103.5‰ 

and were similar or only slightly off (e.g. aquatics and herbs) the Δδ18OMV reference (Table 

1). Mean Δδ18OLW values of -27‰ and -52.7‰ in succulents and epiphytes differed clearly 

from the Δδ18OMV reference and were thus not in full isotopic equilibrium with water 

vapour. In addition, oxygen and hydrogen isotopes in leaf water showed a clear 1:1 

relationship after 9 h fog exposure (Fig. S2).  

The mean Δδ18O values of WSC and sugars were highly variable among growth forms and 

ranged from -3.0‰ to -42.2‰ (Fig. 2B, Table 1), with the strongest 18O-signal transfer in 

grasses and aquatics and the lowest in epiphytes and succulents. Although compound-

specific analysis revealed no clear growth form differences for mean Δδ18O values of glucose 

and sucrose (Fig. 2B, Table 1), sucrose was generally the compound that was most 18O-

labelled at the end of fog exposure. Sucrose was on average 6.6‰, 11.9‰, and 17.3‰ 

more negative at the end of fog exposure than total sugars, glucose, and WSC across all 

growth forms, respectively. For pre-labeling conditions (i.e. natural abundance),  sucrose 

was on average 6.7‰, 8.5‰ and 40.1‰ enriched in 18O compared to glucose, sugars, and 

leaf water across all growth forms (data not shown). Thus, sucrose was the most 18O-

enriched compound for pre-labeling conditions and showed the highest 18O-label 

incorporation after fog exposure across all compounds. 

MRT values in relation to potential leaf traits and physiological drivers 

MRTLW values derived from Δδ18OLW values at the end of fog exposure and LS/E values 

derived from LS and E data before the fog ranged between 1.4 and 10.8 h (Fig. 3A). MRTLW 

varied among growth forms (P < 0.001), but not LS/E (P > 0.05). No clear relationship 

between both MRTLW and LS/E were observed (r2 < 0.11, P < 0.001). Moreover, MRTWSC and 

MRTSugars differed clearly among growth forms (P < 0.001), with the highest values in 

epiphytes, succulents and lowest in grasses and aquatics, ranging between 32.5 and 108.5 h 

for MRTWSC and 15.5 and 51.9 h for MRTSugars (Fig. 3B).  

Leaf traits and physiological drivers potentially influencing the 18O-signal transfer and thus 

the MRT in leaf water and assimilates varied among plant species and growth forms (Table 

3). We found significant variation in leaf stomatal conductance (gs), transpiration (E), 

stomatal density (SD), stomatal size (SS), leaf succulence (Ls) and leaf thickness (LTh), but not 
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in photosynthesis (An) and leaf sugar pool size ([Sugars]), as a function of different growth 

forms (Table 3). Stomatal density (SD) and size (SS) were negatively correlated (R = -0.55), 

whereas metrics of leaf water content, such as LS and leaf thickness (LTh) were positively 

correlated (R = 0.61, Fig. S3). The collinearity between similar traits indicates the difficulty in 

ultimately disentangling which anatomical or morphological traits are most closely related 

to variation in residence time.  

While the anatomical traits such as stomatal density (SD) and size (SS) were not clearly 

related to MRTLW (Figs. 4A, 4B, r2 ≤ 0.11), morphological traits such as LS and Lth showed a 

much clearer relationship (Figs. 4C, 4D, r2 ≤ 0.46). Generally, two-way ANOVAs indicated 

that MRTLW values varied significantly as a function of the interaction between growth form 

and a given leaf trait (P < 0.02 for SD, Ls or LTh). The interaction effects were largely driven by 

the succulent growth form. Leaf traits were also related to MRTWSC and MRTSugars, but 

weaker than with MRTLW (Fig. S3). Moreover, neither leaf gas exchange parameters 

(measured under controlled conditions) nor [Sugars] showed a clear relationship with MRT 

in assimilates (Fig. S3). In addition, we used the relationship between MRTSugars and δ13C of 

sugars to identify photosynthetic modes (PM) for species and growth forms (Fig. S4; Table 

S1). We found that PM influenced the MRT in leaf water and assimilates (Table 4). C4 plants 

showed the lowest MRTWSC and MRTSugars values, while MRTLW values were similar between 

C3 and C4 plants. In contrast, succulent and epiphyte CAM plants showed the highest MRTLW, 

MRTWSC and MRTSugars values, however, it should be considered that the experimental 

fogging occurred during daytime and not during nighttime, when CAM plants actively open 

their stomata for CO2 assimilation. Besides, MRTSugars values were clearly lower compared to 

MRTWSC values across all PMs.  

Discussion 

Leaf water content influences the mean residence time of O in leaf water 

Figure 1A shows that full isotopic equilibrium between water vapour and leaf water (i.e. 

Δδ18OMV) was generally reached within 3-7 h in the fog. This is consistent with previous 

observations showing that it takes several hours for leaf water pools to achieve full isotopic 

equilibrium and thus steady-state conditions after a step change in Δδ18OV (Roden & 

Ehleringer, 1999; Kim & Lee, 2011; Lehmann et al., 2018). However, only 54% of all 
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measured plant species actually reached the Δδ18OMV reference after 9 h of fog exposure 

with 18O-depleted water vapour source (Fig. 2A, Table 1) and, in particular, many herbs, 

epiphytes, and succulents did not achieve full isotopic equilibrium and thus steady-state 

conditions. The high Δδ18OLW variability among species is also reflected in MRTLW values, 

which ranged between 1.4 and 10.8 h among all tested growth forms (Fig. 3A). About 50% of 

the MRTLW variation among plant species and growth forms was explained by metrics of leaf 

water content such as leaf succulence (LS) and leaf thickness (Lth) (Figs. 4C, 4D). This fits well 

with evidence that leaf water content affects the isotopic leaf water enrichment (Cernusak 

et al., 2008; Ellsworth et al., 2013; Liang et al., 2018) and the δ18O of transpired water 

(Simonin et al., 2013; Song et al., 2015; Dubbert et al., 2017). High leaf water content likely 

causes a stronger dilution of the 18O-label, explaining the increase in MRTLW with LS. Given 

the influence of leaf water content on MRTLW and thus on steady-state conditions between 

water vapour and leaf water, non-linear steady-state models (Song et al., 2015) should 

probably be used in studies including succulent species (Cernusak et al., 2008; Liang et al., 

2018). In comparison, traits such as stomatal density and size were only weakly related to 

changes in MRTLW (Figs. 4A, 4B), implying that stomatal variations in our study are not the 

cause of the water-vapour induced Δδ18OLW variations. Importantly, the influence of Δδ18OV 

on Δδ18OLW in this study should not be interpreted as net leaf/foliar water uptake (i.e. a net 

influx of water entering the leaf). Although we cannot fully exclude that some species 

actively took up water from vapour or condensed water on leaf surfaces (Goldsmith, 2013; 

Gotsch et al., 2014), a passive foliar water uptake along a potential leaf water gradient is 

unlikely given that plants were well watered. We conclude that the isotopic equilibration 

between water vapour and leaf water can be influenced by the leaf water content across a 

wide range of plant species and growth forms. Leaf water content should therefore be taken 

into account in leaf water isotope models, particularly given species with different degrees 

of succulence. 

Moreover, from an isotopic point of view, Farquhar and Cernusak (2005) calculated that the 

amount of water entering the leaf through the stomata can be about twice as high as the 

amount of xylem water entering the leaf. Neglecting differences in the response to changes 

in humidity conditions, the estimation of MRTLW (during fog conditions) and LS/E (before fog 

conditions) allow this hypothesis to be tested. Both parameters describe similar pool and 
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flux relationships, however, we assume that both differ in their properties. MRTLW values 

are driven by a bi-directional flux of water in the vapour phase that mixes and equilibrates 

with water in the liquid phase, particularly under high humidity conditions when 

transpiration rates are at or close to 0 (Kim & Lee, 2011; Goldsmith et al., 2017). In contrast, 

LS/E values are determined by a transpirational net flux out of the leaves to the atmosphere 

that varies widely with leaf evaporative conditions and that depends on stomata regulation 

and leaf water content. LS/E values of broadleaf trees, coniferous trees, and succulents were 

similar to previous studies (Cernusak et al., 2008; Dubbert et al., 2014; Dubbert et al., 2017) 

and, across all growth forms, in a similar range as MRTLW (Fig. 3A). As humidity increases, 

LS/E values are expected to be higher (i.e. less xylem water entering the leaf), but the 

response of MRTLW to changes in humidity is unknown. We hypothesize lower MRTLW values 

with an increase in humidity (i.e. more vapour-derived water entering the leaf, Eqn. 1). The 

estimation by Farquhar and Cernusak (2005) might therefore be relevant under low leaf 

evaporative conditions, when LS/E values are high and MRTLW values low. However, the rate 

of water entering the leaf from the atmosphere might not always be twice as high as the 

rate of water entering from roots. To better understand this, measurements of MRTLW and 

LS/E along a humidity gradient could be made.  

18O-signal transfer to leaf assimilates varies among plant species and growth 

forms 

The transfer of the 18O-signal from water vapour to plant assimilates differed strongly 

among species and growth forms (Figs. 1, 2, Table 1). This variation was also evident in 

MRTWSC and MRTSugars (Fig. 3B), demonstrating a shorter O residence time in purified sugars 

than in the WSC. Although the 18O-label incorporation into assimilates was found to depend 

on relative humidity and on the photosynthetic activity of a plant (Studer et al., 2015; 

Lehmann et al., 2018), studies determining the MRT of assimilates after a 18O-labeling event 

are lacking. We therefore compared our results to those of 13CO2 experiments (Epron et al., 

2012). MRTWSC values derived from decay constant values after a 13CO2 pulse-labeling 

ranged between 5 to 25 h for beech and pine saplings across the season (Desalme et al., 

2017) and 57.6 h for non-drought stressed beech saplings (Ruehr et al., 2009) and were thus 

lower or similar to those of the present study. MRTSugars values of broadleaf and conifer 

saplings ranged between 14 and 22 h (Blessing et al., 2015; Galiano Pérez et al., 2017) and 
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were lower compared to MRTSugars values of 28 h and 40 h for broadleaf and conifer plants 

in the present study, respectively. However, MRT values of assimilates likely depend on the 

experimental conditions and the incorporation rate and allocation processes might differ 

between 13C and 18O-labels, as observed in a multi-isotope labeling experiment (Studer et 

al., 2015).  

MRT values of leaf water and assimilates revealed the fast-growing aquatics and grasses to 

be the most sensitive growth forms to δ18OV variations (Fig. 3). Species of these growth 

forms might therefore be useful candidates for tracing and reconstructing hydrological 

signals from water vapour sources in humid environments (Hu & Riveros-Iregui, 2016). 

However, it should also be noted that individual broadleaf tree, shrub, and herb species 

showed a relatively strong 18O-signal transfer that was similar to grasses and aquatics (Fig. 

2A). Thus, other plant species can also be used to determine and trace water vapour 

isotopic signals from plant organic matter (Helliker & Griffiths, 2007).   

Moreover, the observed differences in the 18O-signal transfer to sugars among plant species 

and growth forms may also be attributed to the photosynthetic response of each species to 

the high humidity conditions (Eller et al., 2013; Berry & Smith, 2014; Aparecido et al., 2017; 

Dawson & Goldsmith, 2018), however, An was not related to Δδ18OSugars (and thus to 

MRTSugars, Fig. S3). We assume that the An values measured before the experiment may not 

reflect the actual An values occurring during the fog event. However, given that gas 

exchange measurements could neither be made for all species nor during fog conditions and 

that control plants experiencing no fog exposure were absent, we cannot fully separate the 

physiological effects leading to changes in the 18O-signal transfer from water vapour to 

assimilates. Further, we expected that the leaf sugar pool size is partially related to the 18O-

incorporation into assimilates, however, neither [Sugars] nor the turnover time of leaf 

sugars (i.e. [Sugars]/An) showed a relationship with Δδ18OSugars (Fig. S3). The absence of a 

relationship might be explained by high concentrations of sugar alcohols which are not 

captured by the sugar pool measurements and have a much longer O residence time 

compared to sucrose and glucose (Lehmann et al., 2018); or by species-specific differences 

in the relative concentration of compounds and in allocation of recent assimilates towards 

respiration or carbon sinks (Epron et al., 2012). 
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However, the non-linear relationship between Δδ18OLW and Δδ18OSugars and by extension 

between MRTLW and  MRTSugars across all species and growth forms can be partially 

explained by mechanistic differences in CO2 uptake during photosynthesis (Fig. 2A). It 

should be considered that high MRT values in leaf water and sugars for epiphyte and 

succulent growth forms are caused by their photosynthetic CAM mechanism (Figs. 3, 4; 

Table 4), which has been confirmed for the majority of species in both growth forms (Fig. S4; 

Table S1). CAM plants open their stomata for CO2 assimilation mainly at nighttime, however, 

the experimental fogging was conducted during daytime. Nevertheless, some epiphyte or 

succulent CAM plants may have opened their stomata during daytime fogging (Phase II or IV 

of the CAM mechanism) and therefore have incorporated some 18O-label into water and 

sugars (Figure 2A, Table 1). Interestingly, the CAM epiphyte Tillandsia usneoides, which has 

been described as plant species that integrates the water vapour signal over time (Helliker, 

2014), was found to be an exception (Fig. 1A). We assume that this was caused by a lower 

leaf water content, causing a higher 18O-label uptake via water vapour compared to other 

CAM plants. Uptake of condensed water through the base of water-absorbent epidermal 

trichomes might also explain the strong 18O-signal transfer in Tillandsia usneoides, 

independent of stomatal opening. In contrast, C4 plant species are often characterized by 

higher assimilation rates and faster growth in comparison to C3 plants, explaining why these 

plants show the shortest MRTWSC and MRTSugars and thus the fastest 18O-signal transfer to 

assimilates among all photosynthetic modes. Whether or not C3 and C4 plant species of the 

same growth form differ in their 18O-label uptake requires further research.  

δ18O of sucrose as a sensitive tool to determine δ18O variations in leaf water 

Interestingly, across all growth forms, sucrose was on average the most 18O-labelled 

compound after the fog exposure (Fig. 2B, Table 1), but also the most 18O-enriched 

compound at natural isotope abundances. This confirms previous studies measuring δ18O 

values in individual carbohydrates of grass and tree species (Lehmann et al., 2017; Lehmann 

et al., 2018) and shows that the findings can be extended to a wider range of species and 

growth forms. It also demonstrates that sucrose is more sensitive to isotopic variations in 

water vapour and leaf water compared to other assimilates. We assume that the higher 18O-

label incorporation and 18O-enrichment in sucrose compared to other carbohydrates and 

metabolic fractions might be connected via processes occurring close to the site of 
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evaporation in the stomatal cavity, where the transpirational water loss and the exchange 

between water vapour and leaf water occur. The synthesis of sucrose might be closely 

linked to the production of triose phosphates that have been photosynthetically produced 

in strongly 18O-enriched water or, in extension, in 18O-labelled leaf water. Glucose might be 

disconnected from recent photosynthetic fluxes and functioning in either osmolytic 

processes (Lehmann et al., 2015; Rinne et al., 2015) or as a carbon storage pool with a lower 

turnover time that is mainly laid down in the vacuole (Nadwodnik & Lohaus, 2008). In 

addition, hexoses such as glucose may lose their original leaf water signal faster than 

sucrose due to isotope exchange processes (Sternberg et al., 1986). Oxygen isotopes in 

aldehyde and ketone groups of hexoses can be exchanged with those in surrounding water 

(Schmidt et al., 2001; Werner, 2003), explaining oxygen isotope fractionations among 

individual leaf sugars (Lehmann et al., 2017). It also explains why the isotopic leaf water 

signal in assimilates is partially obscured by unenriched xylem water before incorporation 

into structural plant components such as leaf or tree-ring cellulose (Barbour & Farquhar, 

2000; Roden et al., 2000). Thus, our results suggest δ18O analysis of sucrose as the most 

sensitive compound that can be traced throughout the plant for reconstruction of climatic 

and hydrological conditions (Gessler et al., 2013; Treydte et al., 2014).  

Conclusions and Implications 

Our multi-species approach showed that the 18O-signal transfer from water vapour via leaf 

water to sugars under high humidity conditions varies substantially among plant species and 

growth forms. Our results need to be considered in experiments focusing on water 

dynamics in plants varying in leaf succulence and thickness or where differences in 

photosynthetic modes are expected (i.e. comparison of δ18O values in leaf water among 

growth forms, e.g. host vs. parasitic plants, mature trees vs. herbs/grasses of the 

understory). Moreover, since the δ18O values of plant assimilates ultimately shape δ18O 

values of plant compounds (Zech et al., 2013; Gessler et al., 2014; Hepp et al., 2015), 

measuring the δ18O of sucrose and its incorporation into tree-ring cellulose along vertical 

gradients within individual trees might be a good starting point to trace the isotopic signal of 

water vapour and its environmental-hydrological information (e.g. weather and climatic 

conditions, atmospheric circulations patterns). Given the close relationship between oxygen 

and hydrogen isotopes after fog exposure (Fig. S1), water-vapour induced changes in δ2H 
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values of leaf water might be also imprinted on δ2H biomarker such as fatty acids or n-

alkanes (Sachse et al., 2012; Gamarra et al., 2016; Cormier et al., 2018), providing a new 

avenue for the reconstruction of hydrological information. Future studies should therefore 

include water vapour isotope measurements, particularly, in naturally humid environments 

such as coastal regions, cloud forests, or during intense periods of precipitation to better 

understand the transfer of isotopic signals under field conditions. Finally, it should be noted 

that the 18O-labeling via water vapour is an easy-to-apply method, which gives versatile 

information on water and carbon dynamics in plants and can also be combined with 13CO2 

or 14CO2-labeling to simultaneously trace the C, O, and H of fresh assimilates among 

different tissues.   
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Table 1: Isotope analysis of leaf water and assimilates across plant growth forms after 9 h fog exposure with 18O-depleted water vapour. Δ18O 
values of leaf water (Δδ18OLW), water soluble compounds (Δδ18OWSC), sugars (Δδ18OSugars) are shown, as well as Δ18O values of the individual 
sugars, glucose (Δδ18OGlucose) and sucrose (Δδ18OSucrose). F-values, degree of freedom (DF), and significance of one-way ANOVA (*** P < 0.001, * 
P < 0.05, n.s. = not significant) are given. Letters indicate significant differences among growth forms derived from Tukey-HSD post-hoc test. n 
denotes number of measured plant species per growth form. Means and SE are shown.   

Parameter Δδ18OLW (‰) Δδ18OWSC (‰) Δδ18OSugars (‰) n Δδ18OGlucose (‰) Δδ18OSucrose (‰) n 

FDF values F7,129 = 46.1*** F7,131 = 23.1*** F7,115 = 19.2***  F7,25 = 2.8* F7,10 = 1.5n.s.  

Aquatic -98.7 ± 3.3 a -19.7 ± 3.8 ab -40.5 ± 8.7 ab 5-6 -28.4 ± 8.2 a -25.7 ± 8.6 a 2 

Conifer -100.8 ± 2.5 a -8.9 ± 1.0 cd -17.1 ± 3.3 cd 8-10 -15.6 ± 9.2 a -7.2 ± 1.8 a 2-4 

Epiphyte -54.2 ± 10.9 b -6.4 ± 1.4 d -7.1 ± 2.1 d 9-11 -3.8 ± 2.9 a -35.4 a 1-5 

Grass -101.3 ± 2.8 a -24.2 ± 1.8 a -43.6 ± 2.9 a 9-12 -21.7 a -43.9 ± 8.8 a 1-2 

Herb -93.1 ± 3.0 a -14.0 ± 1.2 bc -24.6 ± 2.7 bc 23-28 -28.1 ± 5.8 a -56.9 ± 15.5 a 3-5 

Shrub -101.7 ± 1.1 a -16.5 ± 0.9 b -29.1 ± 2.3 bc 26-29 -24.8 ± 4.9 a -39.6 ± 13.5 a 5-6 

Succulent -27.0 ± 7.3 c -3.0 ± 0.8 d -3.6 ± 1.8 d 17-19 -4.8 ± 4.9 a -1.5 ± 1.4 a 2-5 

Tree -103.6 ± 1.0 a -17.3 ± 1.3 b -30.2 ± 2.4 bc 21-24 -26.7 ± 7.1 a -38.3 a 1-5 

Mean ± SE -85.1 ± 10.1 -13.8 ± 2.5 -24.5 ± 5.1 

 

118-139 -19.2 ± 3.6 -31.1 ± 6.6 

 

17-34 
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Table 2: Mean residence time of O (MRT) in leaf water, water soluble compounds (WSC), and sugars during 9 h of fog exposure with a 18O-
depleted water vapour. MRT values are derived from the decay constant (1/λ) of exponential decay functions (Eqn. 6) that were fitted to Δδ18O 
values of leaf samples of different plant species, which were taken during the labeling period (see also Fig. 1). All fits were very significant (P < 
0.05). The derived MRT values were related to mean Δδ18O values at 9 h after labeling start of the same species (Δδ18OMax, Fig. S1). 
Corresponding linear models and their regression coefficient (r2) are given. The linear models were used to calculate MRT values in leaf water 
and assimilates for all other individual species and growth form of this study. 

 Leaf water  WSC  Sugars  

Growth form (species) Δδ18OMax (‰) MRTLW (h)  Δδ18OMax (‰) MRTWSC (h)  Δδ18OMax (‰) MRTSugars (h)  

Aquatic (Pistia stratiotes) -91.5 2.9  -8.3 91.0  -16.2 37.9  
Conifer (Pinus sylvestris) -101.2 1.9  -9.1 90.9  -21.5 37.2  
Epiphyte (Tillandsia usneoides) -101.9 1.5  -11.4 72.4  -19.6 39.0  
Grass (Chasmanthium latifolium) -105.8 1.3  -25.3 32.0  -42.0 17.4  
Shrub (Corylus avellana) -104.0 1.2  -22.6 38.1  -43.2 15.3  
Tree (Fagus sylvatica) -105.9 1.1  -21.3 40.1  -42.3 16.3  

Linear Model y = 0.12x + 14.06  y = 3.58x + 119.23  y = 0.91x + 55.24  
r2 0.95  0.98  0.98  
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Table 3: Leaf gas exchange parameters, leaf traits, and leaf sugar pool size across different plant growth forms. Net assimilation rate (An), 
stomatal conductance (gs), transpiration rate (E), leaf sugar pool size ([Sugars] in % dry weight), abaxial stomatal size (SS) and density (SD), leaf 
succulence (LS), leaf thickness (Lth) are shown. F-values, degree of freedom (DF), and significance of one-way ANOVA (*** P < 0.001, ** P < 
0.01, * P < 0.05, n.s. = not significant) are given. Letters indicate significant differences among growth forms derived from Tukey-HSD post-hoc 
test. n denotes number of measured species per growth form. Means ± 1 SE are shown. 

Parameter 

 

 

An 

µmol m-2 s-1 

 

gs 

mmol m-2 s-1 

 

E 

mmol m-2 s-1 

 

[Sugars] 

% DW 

 

SS 

μm 

 

SD 

mm-2 

 

LS 

kg m-2 

 

Lth 

mm 

 

n 

 

 

FDF values F7,101 = 1.5n.s. F7,101 = 3.5** F7,101 = 3.7** F7,68 = 1.1n.s. F7,97 = 2.1* F7,97 = 2.8* F7,101 = 11.7*** F7,131 = 13.1***  

Aquatic 11.0 ± 3.3 a 386.3 ± 107.7 a 5.1 ± 1.0 a 2.6 ± 0.8 a 29 ± 6.1 ab 181.9 ± 100.9 ab 0.22 ± 0.04 b 0.8 ± 0.2 b 3-6 

Conifer 8.7 ± 1.0 a 105.2 ± 17.4 b 2.1 ± 0.4 b 5.3 ± 1.3 a 32.2 ± 3.2 ab 109.9 ± 15.2 ab 0.3 ± 0.05 b 0.6 ± 0.1 b 7-10 

Epiphyte 3.2 a 30.0 b 0.5 b 3.3 ± 0.5 a 34 ab 91.4 ab 0.23 b 1.7 ± 0.3 b 1-11 

Grass 6.7 ± 1.2 a 67.5 ± 12.1 b 1.3 ± 0.2 b 4.5 ± 1.1 a 28.5 ± 2.1 ab 170 ± 17 ab 0.13 ± 0.01 b 0.5 ± 0.1 b 10-12 

Herb 5.7 ± 0.7 a 134.6 ± 28.9 b 2.0 ± 0.3 b 2.7 ± 1 a 35.9 ± 2.9 a 111.1 ± 20.2 ab 0.25 ± 0.04 b 0.8 ± 0.1 b 12-27 

Shrub 7.3 ± 1.0 a 148.7 ± 34.3 b 2.2 ± 0.4 b 3.4 ± 0.7 a 31.1 ± 2.2 ab 173.1 ± 26.7 ab 0.12 ± 0.01 b 0.7 ± 0.1 b 12-30 

Succulent 4.0 ± 0.1 a 43.3 ± 6.7 b 0.8 ± 0.2 b 2.3 ± 1 a 35.9 ± 2.9 a 69.3 ± 17.4 b 0.77 ± 0.21 a 3.3 ± 0.6 a 3-19 

Tree 7.3 ± 0.6 a 118.7 ± 17.9 b 2.0 ± 0.2 b 3 ± 0.3 a 25.1 ± 1.6 ab 188.7 ± 23.3 a 0.11 ± 0.03 b 0.9 ± 0.1 b 13-24 
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Table 4: Differences in carbon and oxygen isotopic composition and mean residence times of 18O-label in leaf water and substrate pools across 
photosynthetic modes (PM). δ13C and δ18O values of sugars (δ13CSugars, δ18OSugars) were taken at 08:30 before the fog event. Mean residence 
time of O in leaf water (MRTLW), water soluble compounds (MRTWSC), and sugars (MRTSugars) are given. n denotes number of measured plant 
species per PM. For MRT values of CAM plants, which are derived from epiphyte and succulent growth forms, it should be considered that the 
experimental fogging period occurred during daytime and not during nighttime, when CAM plants actively open their stomata for CO2 
assimilation. Means ± 1 SE are shown. 

PM δ13CSugars (‰) δ18OSugars (‰) MRTLW (h) MRTWSC (h) MRTSugars (h) n 

CAM -15.8 ± 0.5 32.9 ± 0.7 10.7 ± 0.9 102.9 ± 3.7 51.8 ± 1.2 20-21 

C4 -13.6 ± 0.8 35.6 ± 2.4 1.3 ± 0.7 12.9 ± 11.7 3.9 ± 5.0 4 

C3 -28.6 ± 0.2 29.9 ± 0.2 2.0 ± 0.1 65.4 ± 2.4 30 .5 ± 1.3 93-103 
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Figure 1: Temporal Δδ18O variations during 9 h of fog exposure with 18O-depleted water 
vapour. Δδ18O values of (A) leaf water, (B) water soluble compounds, and (C) sugars of 

different growth forms before and during the fog event are shown. The 18O-depleted fog 
source water (Δδ18OV) is indicated by the solid grey line in the upper panel. The mean Δδ18O 
value of water vapour (Δδ18OMV = -106.7‰) is indicated by the dashed black line, reflecting a 
reference for full isotopic equilibration between leaf water and water vapour. Means ± 1 SE 

are given (n = 3-5 replicates per species). 
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Figure 2: Δδ18O values of leaf water and assimilates at the end of 9 h fog exposure with 18O-
depleted water vapour. (A) Relationships between Δδ18O values of leaf water (Δδ18OLW) and 

Δδ18O values of sugars (Δδ18OSugars) across individual plant species of 8 different growth 
forms. (B) Mean Δδ18O values ±1 SE of leaf water (LW), water soluble compounds (WSC), 

sugars, glucose, and sucrose for different growth forms are given. The mean Δδ18O value of 
water vapour (Δδ18OMV = -106.7‰) is indicated by the dashed black line, reflecting a 
reference for full isotopic equilibration between leaf water and water vapour. The 

uncertainties of Δδ18OMV are denoted by dark-grey (±1 SD, 7.2‰) and light-grey (±3 SD, 
21.6‰) shaded areas. Please refer to Table 1 for significant differences among growth forms 

and number of species per growth form. Aq = Aquatics, Co = Conifers, Ep = Epiphytes, Gr = 
Grasses, He = Herbs, Sh = Shrubs, Su = Succulents, Tr = Trees, AVG = average Δδ18O value 

across all growth forms. 
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Figure 3: Quantification of 18O-signal transfer from vapour to leaf water and assimilates 
across different plant growth forms. (A) Mean residence time of O in leaf water (MRTLW) 
during a fog event and turnover time of leaf water (LS/E) before the fog event. (B) Mean 
residence time of O in sugars (MRTSugars) and water soluble compounds (MRTWSC). Please 

refer to Table 1 for significant differences among growth forms and number of species per 
growth form. It should be considered that the experimental fogging period occurred during 

daytime and not during nighttime, when the majority of species in the succulent and 
epiphyte growth form actively open their stomata for CO2 assimilation due to the 

photosynthetic CAM mechanism. Aq = Aquatics, Co = Conifers, Ep = Epiphytes, Gr = Grasses, 
He = Herbs, Sh = Shrubs, Su = Succulents, Tr = Trees, AVG = average across all growth forms. 
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Figure 4: Influence of anatomical and morphological leaf traits on mean residence time of O 
in leaf water (MRTLW). Relationships between MRTLW values and (A, B) abaxial stomatal size 
(SS) and density (SD), and (C, D) leaf succulence (LS) and thickness (LTh) across individual plant 

species of 8 different growth forms are shown. It should be considered that the 
experimental fogging period occurred during daytime and not during nighttime, when the 
majority of species in the succulent and epiphyte growth form actively open their stomata 

for CO2 assimilation due to the photosynthetic CAM mechanism. 
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