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ABSTRACT 

PRAIRIE DOGS AND LIVESTOCK IN RANGELAND SYSTEMS: 

BALANCING BIODIVERSITY AND PRODUCTION IN THE NORTHERN MIXED-

GRASS PRAIRIE 

JAMESON BRENNAN 

2019 

A major constraint of beef production within the Standing Rock Reservation has 

been identified as a reduction in rangeland quality due in large part to wide-scale 

colonization by black-tailed prairie dogs (Cynomys ludovicianus).  The desire exists 

within the community to design a holistic framework which incorporates livestock 

management with the goal of increasing production and rangeland health while still 

maintaining increased diversity associated with prairie dogs.  Prairie dogs reduce the 

carrying capacity of cattle on rangelands by up to 50% on occupied hectares through 

direct consumption of vegetation and waste due to clipping to improve detection of 

predators.  Livestock stocking rates that do not account for the level of prairie dog 

occupation can result in a reduction in animal performance and a further decrease in 

rangeland productivity due to overgrazing.  Research is needed to understand season-long 

use of grazing cattle on and off prairie dog towns to better inform land manager decisions 

aimed at reducing over-utilization of grasslands and allowing higher production of 

livestock. 

This dissertation study was part of a larger study that was conducted in 

northcentral South Dakota from 2012 to 2016. This dissertation sub-study was designed 
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to evaluate the impact of prairie dogs and cattle on plant community production and 

composition, and to determine impacts of colonization on livestock grazing behavior, diet 

quality, and forage intake.  Three pastures with varying levels of prairie dog occupation 

(0%, 20%, and 40%) were studied.  Pasture stocking rates were adjusted to account for 

the level of forage removed by prairie dogs (50%) on active colonies. Two study 

treatments were evaluated: Ecological Site (n=3) and grazing treatment (n=4). Ecological 

sites (ES) were Shallow Loam, Loamy, and Thin Claypan. Grazing treatments included 

two in off-town locations (non-graze (NG) and cattle only graze (CG)) and two in on-

town locations (cattle and prairie dog graze (CPD), and prairie dog only graze (PD)). 

These treatments and their interactions were evaluated to determine their effects on 

vegetation (e.g. standing crop, diversity, species richness, etc.) and livestock (e.g. animal 

weight gains, diet quality and quantity, etc.) parameters. 

Goals of the dissertation herein are to understand 1) the interactions of prairie 

dogs and livestock on plant communities and 2) the impact of prairie dog occupation on 

livestock production.  Objectives of this dissertation are: 1) Evaluate plant community 

response to grazing on and off prairie dog towns to determine how livestock and prairie 

dogs alter plant community production and composition; 2) Develop strategies that 

enable identification of plant communities of interest on and off prairie dog towns using 

remote sensing techniques ; 3) Develop methods to utilize programming tools for 

efficient processing of GPS collar data ; 4) Evaluate relationships between plant 

communities and cattle grazing locations to identify patterns and trends in livestock 

grazing behavior throughout the growing season; 5) Evaluate diet nutrient composition 

and intake by cattle on plant communities on- and off-town over the grazing season; 6) 
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Develop a framework of cattle nutrient consumption in pastures with varying levels of 

prairie dog occupation; and 7) Synthesize existing research and results from this 

dissertation to explore potential synergism between prairie dogs and cattle on the 

landscape from a systems approach. 

Vegetation analyses show a significant difference in standing crop biomass 

between grazing treatments, with sites grazed only by cattle having 36% more biomass 

than those grazed only by prairie dogs.  Plant community data suggest that prairie dogs 

have a greater impact on production and species composition compared to cattle; percent 

composition of C3 grasses was greatest off-town, whereas percent composition of C4 

grasses was greatest on-town. An invasive C3 species of concern in the Northern Great 

Plains, Kentucky bluegrass, was almost non-existent on-town, but increased substantially 

off-town over the 5 years of the study for all ES; the most dramatic increase occurred on 

the Thin Claypan ES. Species diversity was not different between grazing treatments, 

however species richness was generally greatest on-town. Additionally, for the entire 

duration of the study (2012-2016), 46 species were only observed on-town and 17 only 

observed off-town out of a total 113 species observed throughout the 5 years of the study.   

The remote sensing analyses show that Random Forest (RF) models were highly 

effective at predicting different vegetation types associated with on and off prairie dog 

town locations (misclassification rates < 5% for each plant community).  However, 

comparisons between the predicted plant community map using separate years indicate 

6.7% of pixels on-town and 24.3% of pixels off-town changed class membership 

depending on the year.  The results show that while RF models may predict with a high 
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degree of accuracy, transition zones between plant communities and inter-annual 

differences in rainfall may cause instability in fitted models.  

An essential component of evaluating livestock behavior for this study was 

accomplished using GPG collars that record both location and activity. Traditional 

methods of hand-processing of GPS data require a large number of steps which are both 

time consuming and prone to errors.  As part of this dissertation, methods were created to 

streamline the processing of livestock GPS collar data, resulting in a technical note 

publication.  Due to the open source nature of Program R, custom functions can be 

created to merge GPS collar data, GIS data layers, and behavior algorithms to improve 

data processing efficiency.  

Plant communities of interest for the livestock behavior and intake components of 

this study were identified as grass-dominated on-town sites (PDG), forb-dominated on-

town sites (PDF), and grass dominated off-town sites (NPD).  Livestock behavior 

analyses from this study show cattle slightly prefer grazing on prairie dog towns, with 

shifts occurring to off-town locations over the duration of the grazing season.  Crude 

protein (CP) content from diet samples for PDF sites were significantly greater than for 

PDG and NPD sites.  Little difference in many of the diet metrics existed, however, 

between grass dominated sites (PDG and NPD). Despite higher CP content on forb 

dominated sites on-town (PDF), intake levels were depressed on these communities due 

to high bare ground and low vegetation production.  Individual livestock performance 

(average daily gains) averaged over the entire length of the study, were 0.74 kg. /day for 

the 0% occupied pasture, 0.86 kg. /day for the 20% occupied pasture, and 0.85 kg. /day 

for the 40% occupied pasture.  Reduced stocking rate in prairie dog pastures may have 
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contributed to greater individual animal performance.  Higher livestock performance for 

the prairie dog pastures is potentially due to access to a more diverse diet.  Reduced 

stocking rates in prairie dog pastures, however, resulted in a reduction in overall livestock 

production in terms of kg / ha.  At low levels of colonization in pastures, livestock may 

potentially benefit from increased diet selection, however, reduction in plant biomass on 

town may negate any potential gains at higher levels of colonization.  

The results from this study were combined to take a systems approach to 

understanding the impacts and interactions of prairie dogs and livestock on plant 

communities, and the impacts of prairie dog occupation on livestock production in 

northern mixed-grass prairie ecosystems. Our results indicate that having both on-town 

and off-town plant communities within a pasture can increase biodiversity and 

heterogeneity at broader landscape scales.  Differences in plant community composition 

may increase diet diversity for grazing livestock, potentially benefitting individual animal 

gains, provided forage quantity is not limited.  At low levels of colonization, livestock 

production may only be minimally impacted while still realizing benefits to biodiversity. 
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Introduction 

The Standing Rock Reservation in north-central South Dakota has been identified 

as a food desert, meaning access to fresh nutritious food is often limited or difficult.  This 

may seem contradictory in an area where the primary economic engine is agriculture, 

however, the majority of food produced on the reservation, specifically beef cattle fed on 

native rangelands, is exported away from the community to be finished and slaughtered 

only to return in limited availability at a premium price.  Essential to the sustainability of 

this community is increased production of local beef which in turn can be made available 

to local communities on the reservation.  A major constraint of beef production within the 

Standing Rock Reservation has been identified as a reduction in rangeland quality due in 

large part to wide-scale colonization of black tailed prairie dogs (Cynomys ludovicianus).  

Corson County, SD, which lies entirely within the Standing Rock Reservation, had an 

estimated 10,608 ha (26,213 acres) of prairie dog colonies, and of that 6,065 ha (14,989 

acres) were on tribal land (Cooper and Gabriel 2005).  Reduction in rangeland 

productivity due to prairie dog occupation is complicated by the fact that there is a desire 

within the Native American community to maintain prairie dogs on the land.  Although 

seen as a nuisance by many ranchers, prairie dogs hold an ecological and cultural value 

for Native Americans, and are still considered a medicinal source for many native people 

(Hendrickson et al. 2016).  The desire exists to design a holistic framework which 

incorporates livestock management with the goal of increasing production and rangeland 

health while still maintaining the increased diversity associated with prairie dogs.   

Black-tailed prairie dogs are a controversial species in rangeland management.  

Prairie dogs have been identified as a keystone species and ecosystem engineers 
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providing habitat to a number of other plant and wildlife species (Davidson et al. 2010, 

Kotliar et al. 1999). They are known to increase biotic diversity and community structure 

while playing an important role in ecosystem function (Hopson et al. 2015).  In semi-arid 

grasslands of the southwest, prairie dogs were shown to increase essential ecosystem 

services of water infiltration rates, carbon storage rates, and soil stabilization (Martinez-

Estevez et al. 2013).  Despite the potential benefits of increased biodiversity and 

ecosystem services, prairie dog colonies are often seen as a detriment to beef production 

systems by limiting carrying capacity of rangelands.   

Throughout most of the 20th century, prairie dog colonies were subject to control 

measures to reduce their numbers and eliminate purported competition with cattle for 

grazing resources (Sierra-Corona et al. 2015).  Estimates of prairie dog town extent prior 

to European arrival vary widely from 40 million ha to 100 million ha, however there is 

little evidence to support these numbers (Vermeire et al. 2004).  Although disagreements 

occur on extent of rangeland occupation, control efforts have no doubt limited their 

expanse over the past century, as wide-spread eradication efforts have sought to reduce 

occupation to increase rangeland productivity for cattle (Weltzin et al. 1997).  

Competition between prairie dogs and livestock is a major concern for land managers 

looking to optimize beef production while still conserving wildlife species (Augustine 

and Springer 2013). 

Cattle and prairie dogs exhibit up to a 60% dietary overlap in a mixed-grass 

prairie, which is a cause of concern for livestock producers (Miller et al. 2007).  Prairie 

dogs can limit forage quantity available to grazing livestock directly through consuming 

or clipping vegetation, or indirectly by shifting plant communities to a lower seral state 
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through repeated and persistent defoliation.  A study conducted by Gabrielson (2009) on 

a mixed-grass prairie in South Dakota, found that prairie dogs removed over four times 

more biomass on-town than cattle on-town. Stoltenberg (2004) attributed up to 90% of 

forage disappearance due to prairie dogs as the result of non-consumptive activities such 

as clipping.  As colonies age, older core areas of prairie dog towns are often characterized 

by high percentage bare ground, low vegetation production, and dominance by annual 

forb and dwarf shrub species; areas more recently colonized typically remain grass 

dominated  (Guenther and Detling 2003, Coppock et al., 1983).  Plant communities on-

town shift from mid-grass to shortgrass species dominance (Agnew et al. 1986; Koford 

1958), probably attributable to the high grazing resistance of blue grama (Bouteloua 

gracilis Willd. Ex Kunth) and buffalograss (Bouteloua dactyloides Nutt.) (Derner et al. 

2006).  The replacement of mid-grasses with grazing tolerant shortgrasses, and increases 

in bare ground has the potential to significantly reduce forage quantity available to 

grazing livestock.   

Numerous studies have shown prairie dogs significantly reduce herbaceous 

biomass compared with off-colony sites, with some estimates as high as a 60% decrease 

in standing crop biomass on-town (Augustine and Springer 2013; Gabrielson 2009; 

Johnson-Nistler et al. 2004; Stoltenberg 2004);  however, it has been argued that this 

decrease in forage quantity can somewhat be offset by an increase in forage quality that 

has been observed on-town (Augustine and Springer 2013; Connell et al. 2019; Coppock 

et al. 1983).  Johnson-Nistler et al. (2004) measured forage quantity and quality on a 

northern mixed-grass prairie of Montana, and found that plants on sites occupied by 

prairie dog towns were characterized by an increase in percentage crude protein, however 
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they also showed a decrease in standing crop biomass and total standing crop crude 

protein when compared to off-town sites.  Vermeire et al. (2004) noted that for livestock 

grazing prairie dog colonies, realizing the benefits of increased forage quality still 

depends on the amount of forage available, and forage quantity becomes more limited as 

colonies age and occupy greater portions of an area, potentially impacting livestock 

production.          

While there are many issues and concerns associated with prairie dogs and 

livestock production, very little research has really focused on livestock-prairie dog 

interactions and management systems to accommodate both.  In one of the few studies on 

the consequences  to livestock production associated with prairie dog colonization, 

Derner et al. (2006) demonstrated that an increase of prairie dog towns within pastures 

led to a decrease in cattle weight gains; the decrease was not, however, proportional to 

the increase in colony size.  Other studies have attempted to understand cattle grazing 

behavior in pastures colonized by prairie dogs by evaluating the preference of cattle for 

on- and off-town sites. For example, in visual roadside observations, Guenther and 

Detling (2003) concluded cattle selection of prairie dog sites differed little from random 

use; the largest percentage of pasture colonized in their study was, however, only 10.7%.  

Within the Chihuahua desert grasslands, researchers reported that cattle preferentially 

grazed on prairie dog colonies in the fall and winter grass dormancy season and spent 

most of their time foraging on off colony sites in the summer (Sierra-Corona et al. 2015).  

Specific studies on livestock grazing behavior on prairie dog towns, however, are limited 

and further research is needed to understand how changes in forage quantity and quality 

may be driving changes in grazing behavior across multiple growing seasons.  
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Additionally, research studies measuring livestock forage intake on- and off-town are 

non-existent, yet essential for understanding the value of prairie dog towns to contribute 

to overall livestock diets within prairie dog managed pastures.    

Dissertation Objectives   

Prairie dogs and cattle are often portrayed as being in direct competition for 

achieving conservation and production goals.  Yet rangelands occupied by prairie dogs 

are frequently used for livestock grazing, and the two species are inextricably linked 

together within an agro-ecological system.  In 2012 a large, multi-state, multi-institution, 

collaborative project (USDA NIFA AFRI CAP grant # 2011-68004-30052) was initiated 

with the overall goal of increasing food security for the people on the Standing Rock 

Sioux Reservation by improving livestock production on rangelands with extensive 

prairie dog occupation.  While the debate over prairie dogs on rangelands has primarily 

been framed as on- versus off-town, and livestock versus prairie dogs, the objective of 

this study was understand prairie dog-cattle systems and potential impacts and 

interactions between them as they relate to wildlife habitat, plant communities, and 

agricultural production.  A major component of that effort was to study livestock use of 

on- and off-town plant communities to determine their preferences and to evaluate the 

quality and quantity of forages that cattle obtain from the different plant communities on 

the pastures.  Goals of the dissertation herein are to understand 1) the interactions of 

prairie dogs and livestock on plant communities and 2) the impact of prairie dog 

occupation on livestock production.  

There are 7 objectives addressed within this dissertation, around which the 

dissertation is organized. Those objectives, and the chapters in which they are addressed 
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are: 1) Evaluate plant community response to grazing on and off prairie dog towns to 

determine how livestock and prairie dogs alter plant community production and 

composition (Chapter 1); 2) Develop strategies that enable identification of plant 

communities of interest on and off prairie dog towns using remote sensing techniques 

(Chapter 2); 3) Describe methods to utilize programming tools for efficient processing of 

GPS collar data (Chapter 3); 4) Evaluate relationships between plant communities and 

cattle grazing locations to identify patterns and trends in livestock grazing behavior 

throughout the growing season (Chapter 4); 5) Evaluate diet nutrient composition and 

intake by cattle on plant communities on- and off-town over the grazing season (Chapter 

4); 6) Develop a framework of cattle nutrient consumption in pastures with varying level 

of prairie dog occupation (Chapter 4); and 7) Synthesize existing research and results 

from this dissertation to explore potential synergism between prairie dogs and cattle on 

the landscape from a systems approach (Chapter 5). We hypothesize 1) prairie dogs will 

be the primary driver of changes in biomass and community composition; 2) high 

resolution satellite imagery converted to NDVI will give a relatively accurate and precise 

identification of on-town and off-town plant communities with stability in the model 

across years; 3) cattle will preferentially graze on prairie dog towns early in the growing 

season as they will be attracted to the higher quality/greener vegetation; however, grazing 

behavior will shift to off-town locations as the season progresses and forage becomes 

more limited at on-colony sites; and 4) livestock nutrient consumption will be 

disproportionately made up of off town locations due to the reduction in standing crop 

biomass on prairie dog sites.  
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We expect the results from this study will aid land managers in making decisions 

on how to better manage prairie dog occupied pastures for increased livestock production 

and improved rangeland health. 
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Chapter 1: Livestock and Prairie Dog Impact on Plant Community Production, 

Composition, and Dynamics 

 

Abstract 

Prairie dog occupation of rangelands is often seen as a detriment to beef 

production because of altered plant communities and reduced quantity of forage.  Within 

northern mixed-grass prairie, prairie dog colonies are often converted to low growing 

perennial grasses intermixed with patches dominated by annual forbs.  Despite the 

potential conflict over prairie dog colonization on livestock production, many studies 

have focused on plant community differences between on-colony and off-colony sites, 

ignoring the impact of livestock within these systems.  A study was conducted in 2012-

2016 near McLaughlin, South Dakota in a northern mixed-grass prairie ecosystem to 

determine the combined and separate impacts of cattle and prairie dogs on plant 

community production, composition, and dynamics across three Ecological Sites (ES; 

Thin Claypan, Loamy, and Shallow Loam).  Twenty-five paired sample sites on- and off-

colony were established and randomly assigned to be fenced to exclude livestock or 

remain open to livestock grazing, creating four grazing treatments: two in off-town 

locations (non-graze (NG) and cattle only graze (CG)) and two in on-town locations 

(cattle and prairie dog graze (CPD), and prairie dog only graze (PD)). Within each 

sample site three 0.25m2 permanent plots were randomly located.  Plots were sampled in 

early August of each year to estimate biomass for every species in each plot.  A mixed 

model ANOVA was used to test for differences in standing crop biomass and percent 

biomass for C3 grasses, C4 grasses, and forbs between treatments and ES.  For biomass, 

there were no significant interactions between ES and grazing treatment; results suggest 
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plant communities follow somewhat predictable responses across ES.  There was a 

significant difference (P < 0.05) in total biomass between all grazing treatments.  On-

town sites tended to be characterized by a reduction in C3 graminoid biomass and an 

increase in C4 graminoid and forb biomass compared on off-town.  The PD treatment had 

37% less biomass than the CG treatment, potentially due to increased level of herbivory 

and replacement of C3 mid-grasses with C4 shortgrasses.  Plant community composition 

differed primarily along on-town and off-town sites.  For on-town plant communities, 

dominant species were relatively stable through time, with re-ordering occurring only of 

sub-dominants.  For off-town plant communities, there was less re-ordering of sub-

dominants, but there was a major shift in dominant species associated with Kentucky 

bluegrass production.  Results of this study indicate that herbivory, specifically presence 

or absence of prairie dogs, is a primary driver in plant community production and 

composition.        

Introduction 

Colonization by prairie dogs and subsequent increases in grazing pressure can 

result in a shift of plant communities to those characterized by higher cover of perennial 

shortgrasses and annual forbs (Winter et al. 2002).  Wetzlin et al., (1997) showed that 

warm and cool season mid-grasses dominated uncolonized sites, whereas the shortgrass 

Schedonnardus paniculatus was an on-colony dominant. As colonies age, older areas 

may become dominated by forbs and dwarf shrubs with extensive areas of bare ground 

and low vegetation production, while areas more recently colonized remain grass 

dominated (Guenther and Detling 2003, Coppock et al., 1983).  Archer et al. (1987) 

reported that, following prairie dog habitation, biodiversity increased at the site, most 
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likely the result of decreasing the competitive capacity of mid-grasses to exclude other 

species (e.g. forbs).  Because graminoids are extensively and repeatedly defoliated by 

prairie dogs, they eventually lose their competitive advantage over other functional 

groups (Detling 1998).   

Competition between prairie dogs and livestock is a major concern for land 

managers looking to optimize beef production while still conserving wildlife species 

(Augustine and Springer 2013).  The shift in plant species on the Northern Great Plains 

from a midgrass to a shortgrass dominated plant community associated with prairie dogs 

has a large potential impact on livestock production, but may conversely carry benefits in 

terms of increases in biodiversity.  Prairie dogs have been identified as a keystone 

species, often seen as ecosystem engineers providing habitat to a number of other plant 

and wildlife species (Davidson et al. 2010, Kotliar et al. 1999). They are known to 

increase biotic diversity and community structure while playing an important role in 

ecosystem function, and have been shown to significantly increase plant species richness 

and diversity, mostly reflected in an increase in forb species and a more uniform 

distribution of biomass among species on-town versus off-town (Fahnestock and Detling 

2002).    

Throughout most of the 20th century prairie dog colonies have been subject to 

control measures to reduce their numbers and eliminate purported competition with cattle 

for grazing resources (Sierra-Corona et al. 2015).  Estimates of prairie dog town extent 

prior to European arrival vary widely from 40 million ha to 100 million ha; these 

estimates are based on early 20th century data with no evidence to support population 

numbers prior to European settlement (Vermeire et al. 2004).   Although there are 
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disagreements about the extent to which prairie dogs occupied rangelands, control efforts 

have no doubt limited their expanse over the past century as wide-spread eradication 

efforts have sought to reduce occupation to increase rangeland productivity for cattle 

(Weltzin et al. 1997).   

Cattle and prairie dogs exhibit a dietary overlap of up to 60% in Northern Great 

Plains mixed-grass prairie (Miller et al. 2007).  Prairie dogs can reduce availability of 

forage for livestock by directly reducing the quantity of forage available (through direct 

consumption, clipping plants to increase predator detection, and building soil mounds), 

and by changing species composition (Derner et al. 2006).  A study conducted by 

Gabrielson (2009) on a mixed-grass prairie in South Dakota, noted that prairie dogs 

removed over four times more biomass on-town than cattle on-town. Similar results were 

observed by Stoltenberg (2004), who showed that prairie dogs removed 2-3 times more 

forage on-town than cattle on-town. He also attributed up to 90% of forage disappearance 

due to prairie dogs as the result of non-consumptive activities such as clipping. 

Stoltenberg (2004) also determined that cattle removed 2 times more forage off-town 

compared to on-town when comparing similar ecological sites, a result mirrored by 

Gabrielson (2009). On northern mixed-grass prairie in Montana, Johnson-Nistler et al. 

(2004) observed a significant standing crop biomass reduction on colonized sites versus 

uncolonized sites (233.2 vs 585.7 kg/ha), and a 65% reduction in C3 grass biomass on 

prairie dog colonies.   

Although these studies demonstrate the potential impact of prairie dog 

colonization on forage available for livestock grazing, relatively little research exists 

studying the separate and combined impacts of livestock and prairie dogs on plant 
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communities occupying the same pastures.  Furthermore, much of the past research on 

the impacts of prairie dog colonization on vegetation has focused on differences between 

on-colony and off-colony sites, ignoring the impact of cattle or other large herbivores 

within these systems.  Research is needed to compare how cattle and prairie dogs drive 

differences in plant community responses over time, as well as the combined impact of 

prairie dog and cattle grazing.  The objectives of this study are to evaluate plant 

community response to grazing on and off prairie dog towns to determine how livestock 

and prairie dogs alter plant community production and composition.  We hypothesize that 

prairie dogs will be the primary driver of changes in biomass and community 

composition on the landscape. 

Materials and Methods 

Study Area 

The study area (45.74N, 100.65W) is located near McLaughlin, South Dakota on 

a northern mixed-grass prairie ecosystem.  Predominant soils at the site are clays and 

loams. Ecological Sites (ES), and the plant communities they support, vary widely; 

Loamy and Clayey are the predominant ES at the study area (Barth et al. 2014). Other 

common ES include Shallow Loam, Dense Clay, Shallow Clay, Clayey and Thin 

Claypan. Ecological Sites associated with prairie dog towns were predominantly Thin 

Claypan, Loamy, and Shallow Loam.  

Vegetation on the site is largely native, including western wheatgrass 

(Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula Trin.), and 

needleandthread (Hesperostipa comata Trin.. & Rupr.), intermixed with shortgrasses 

(blue grama (Bouteloua gracilis Willd. Ex Kunth) and buffalograss (Bouteloua 
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dactyloides Nutt.) and sedges (Carex spp.).  Kentucky bluegrass (Poa pratensis Boivin & 

Love) is an invasive exotic of concern at the site.  Plant communities on areas occupied 

by prairie dog towns on the study site are largely dominated by western wheatgrass and 

shortgrasses intermixed with patches of bare ground and annual forb dominated areas.  

Common forbs on prairie dog towns include annuals such as prostrate knotweed 

(Polygonum aviculare L.), fetid marigold (Dyssodia papposa Vent.), and dwarf 

horseweed (Conyza ramosissima Cronquist) as well as perennials such as scarlet 

globemallow (Sphaeralcea coccinea Nutt.).   

A weather station has been maintained on site from May 2013 operated by South 

Dakota Mesonet (South Dakota Climate and Weather, 2017).  Climate data for the site for 

2012 through April 2013 was acquired from a nearby weather station in Mobridge, SD 

(40 km east, www.usclimatedata.com).  Precipitation totals were compared between the 

Mobridge weather station and the onsite weather station for similarity in 2014-2016; 

average yearly difference between the sites was 71 mm, with the Mobridge site 

consistently having higher estimates.  Historical (1981-2010) mean annual precipitation 

at the Mobridge weather station was 414 mm (U.S. Climate Data, 2017).  Total annual 

precipitation (Jan.-Dec.) and total growing season precipitation (April-September) are 

presented in Table 1.1.   

 Four pastures at the study site, each approximately 200 ha in size, were fenced to 

include varying levels of prairie dog occupation (0%, 20%, 40%, 70%), with a total of 

283 ha of pasture occupied by prairie dog colonies.  Pastures were continuously grazed 

by yearling steers from June until the beginning of October.  Stocking rates were 

calculated to achieve approximately 50% utilization in each pasture based on research by 

http://www.usclimatedata.com/
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Stoltenberg (2004) that showed that cattle removed only half as much forage on-town 

compared to off-town when comparing similar ES. Thus, stocking rates for pastures with 

0%, 20%, 40% and 70% prairie dog occupation were 0.8, 1.03, 1.36, and 3.58 ha/AUM, 

respectively.  

Treatments 

 This study evaluated 2 treatments, ES and grazing. The 3 ES treatments were 

those often associated with prairie dog colonies on the study area: Thin Claypan, Loamy, 

and Shallow Loam. Topographic positions of these ES were toe slope (Thin Claypan), 

backslope (Loamy), and summit (Shallow Loam). Four grazing treatments were 

established. Two were located in off-town locations: non-graze (NG) and cattle only 

graze (CG). Two were located on established prairie dog towns: cattle and prairie dog 

graze (CPD), and prairie dog only graze (PD). 

Sample Sites 

Twenty-five sample sites were established on the study area (Table 1.2). Nine 

sample sites were established off-town, with 3 sites on each of the ES treatments. Sixteen 

samples sites were established on-town. Of those, there were 6 sample sites each on Thin 

Claypan and Loamy ES. Due to limited availability of the prairie dog town occupation of 

the Shallow Loam ES sites, we were able to establish only 4 sample sites on that ES.  

At each sample site, two 30 x 30 m areas of similar vegetation composition were 

identified. One was randomly assigned to be fenced to exclude livestock (exclosures) and 

the other was left unfenced and open to livestock grazing (non-exclosures). Exclosures 

were fenced with barbed wire; on-town exclosures provided the PD treatment and off-

town exclosures provided the NG treatment. The corners of non-exclosures were marked 
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unobtrusively with disk plates fixed in place with a long bolt driven through the center 

into the ground. On-town non-exclosures provided the CPD treatment and off-town non-

exclosures provided the CG treatment.    

Vegetation Sampling 

Within each exclosure and non-exclosure, three 0.25m2 permanent plots were 

randomly located for a total of 150 plots (75 within exclosures and 75 within non-

exclosures). Plots were sampled in early August of each year from 2012-2016 to 

correspond to peak standing crop biomass during the summer.  For every species in each 

plot, observers ocularly estimated cover, measured average plant height, and estimated 

current year biomass using a reference unit double sampling technique similar to that 

described by Boyda et al. (2015).  For each year, ten additional plots on-town and ten off-

town were established for individual observer calibrations for dominant species at the 

site.  For off-town calibration plots, western wheatgrass, green needlegrass, and 

shortgrass (Bouteloua and Carex spp.) were sampled; for on-town calibration plots, 

shortgrass, tumble grass, and western wheatgrass were sampled. Once sampling was 

complete, the dominant species in each calibration plot were clipped and separated into 

bags by species. Reference units for each species for each observer were bagged 

separately. All vegetation samples were dried for at least 72 hours at 60º Celsius and 

weighed.  Biomass estimates, species richness, and diversity measurements for individual 

plots were treated as subsamples and averaged for each exclosure/non-exclosure, with 

exclosure/non-exclosure being treated as the experimental unit. 

Statistical Analysis     
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Biomass, height, species richness, and diversity data were analyzed in Program R 

using a linear mixed effects model ANOVA with year and exclosure/non-exclosure as 

random factors, and exclosure/non-exclosure nested within year to account for repeated 

measures across years.  Fixed effects in the models included grazing treatment and ES 

treatment and any interaction between the two. Response variables were total current year 

standing crop biomass (TCYSC); percent of biomass composed of forb species, C3 

grasses, and C4 grasses; species richness; and species diversity. TCYSC biomass was the 

sum of the current year standing crop biomass of all species in a plot (g/0.25m2) and 

converted to kg/ha. Species richness was the total number of species per 0.25m2 plot, and 

species diversity was calculated using the Shannon-Wiener diversity index. 

Exclosure/non-exclosure was the experimental unit. For all analyses, least square means 

were calculated and pairwise comparisons computed using Tukey’s HSD.  For all 

models, residuals were checked for normality to meet the assumptions of the ANOVA 

model. 

Plant community composition differences between grazing treatments were 

determined using a Multi-Response Permutation Procedure (MRPP) with the Sorensen 

Bray-Curtis distance method.  MRPP is a nonparametric procedure used for testing 

hypotheses between two or more groups (Mitchell et al. 2015).  MRPP analysis was 

performed using PC-ORD 6 software (McCune and Mefford 2002).  To evaluate plant 

community change through time, species rank abundance was calculated as the TCYSC 

biomass estimate (g/0.25m2) summed across all plots for each species in each year and 

treatment combined across ecological sites. The mean rank shift metric was used to 

quantify changes in species rank abundance to indicate shifts in relative abundance 
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through time (Collins et al. 2008).  Additionally, species turnover across all ES by 

grazing treatment from one year to the next was calculated as: (the number of species 

gained + the number of species lost)/ total number of species (Cleland et al. 2013).  To 

visualize temporal changes in species dominance, rank clocks were constructed based on 

the four dominant species on-town and off-town (Batty 2006).  Plant community dynamic 

metrics were computed using the ‘codyn’ package in Program R (Hallett et al. 2016).    

To understand the plant community changes that occurred as a result of Kentucky 

bluegrass invasion between the beginning (2012) and end (2016) of the study, percent 

biomass comprised of Kentucky bluegrass was analyzed in Program R using ANOVA.  

Year (n=2), grazing treatment, and ES were treated as fixed effects in the model.  Due to 

the minimal presence of Kentucky bluegrass on-town, a second model was created using 

only off-town grazing treatments (CG and NG).  For all models, least square means were 

computed, and pairwise comparisons analyzed using Tukey’s honest significant 

difference test.  Model residuals were checked for normality to meet the assumptions of 

the ANOVA model.   

Results and Discussion 

Total Current Year Standing Crop (TCYSC) Biomass 

There was a significant ES effect (P=0.0006) and a grazing treatment effect (P 

<0.0001) for TCYSC biomass, but no interaction (P =0.5173).  Both Shallow Loam and 

the Loamy ES had significantly higher TCYSC biomass compared to Thin Claypan (P 

=0.037 and P =0.0023, respectively) (Table 1.3). Ode et al. (1980) demonstrated that sites 

occupying lowland areas may be more productive compared with upland sites in a South 

Dakota mixed-grass prairie, likely the result of greater water availability.  The low-lying 
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sites in our study area are, however, Thin Claypans, which have a restricted layer at 

shallow depths (5-15 cm; (NRCS 2003)). Barth et al. (2014) reported longer infiltration 

times associated with thin claypan sites, which could negate any of the potential increase 

in productivity of these sites due to down slope location.  

TCYSC biomass was different (P<0.05) between all grazing treatments (Table 

1.4).  It was greatest for NG as might be expected since there were no major grazers (i.e. 

cattle or prairie dogs) grazing these sites in any year. TCYSC biomass was lower for the 

CG treatment compared to NG with just cattle utilization, and lower still on sites where 

only prairie dogs had access (PD). The lowest TCYSC biomass was on the CPD 

treatment which was grazed by both cattle and prairie dogs. Given the moderate cattle 

stocking rates applied to the pastures and only 5 years protection from grazing in the NG 

treatment, the 17% reduction in standing biomass from NG to CG is likely a result of 

utilization rather than a major shift in plant community to lower production species. The 

nearly 50% reduction in TCYSC from NG to PD, however, is likely driven by both 

utilization and the plant community change that had occurred over the many years the site 

had been occupied by prairie dogs.   

The PD treatment had 37% less TCYSC biomass than the CG treatment; likely 

factors include the moderate livestock stocking rate and heavy use (consumption and 

clipping) by prairie dogs, as well as the vegetation changes associated with long-term 

prairie dog occupation. It has been reported that prairie dogs have a dramatic impact on 

vegetation relative to other large native ungulate grazers (Detling 1998).  Johnson-Nistler 

et al. (2004) reported a 60% reduction in standing crop biomass between colonized and 

uncolonized sites, although most of their sites were chosen to avoid areas grazed by cattle 
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prior to sampling.  The CPD treatment had the lowest TCYSC of the four treatments; the 

addition of cattle grazing on prairie dog towns reduced (P =0.0265) TCYSC by 19% from 

PD to CPD. Within the Chihuahua desert grasslands, Davidson et al. (2010) reported that 

plots accessible to both prairie dogs and cattle consistently had the lowest biomass 

compared to plots accessible to either species alone; differences, however, were not 

significant.  Gabrielson (2009) observed that, of the total forage disappearance on-town, 

cattle removed 17.4%, with the other 82.6% attributed to prairie dogs.  These results are 

similar to ours, where an 18.8% reduction in biomass between the PD and CPD sites was 

observed. Interestingly, the impact of cattle grazing on TCYSC is similar whether on off-

town sites (17% reduction on CG compared to NG) or on-town (19% reduction on CPD 

compared to PD). The lack of interaction between the main effects of ES and grazing 

treatment for TCYSC suggests that grazing is occurring similarly across an ecological 

gradient, and the main driver of differences in TCYSC is the effect of grazing treatment. 

Main effects of ES and grazing treatment were significant for percent of TCYSC 

made up by forb species, C3 grasses, and C4 grasses (Tables 1.2 and 1.3); there was, 

however, no interaction (forb: P =0.27, C3: P =0.15, C4: P =0.35).  Shallow Loam ES, 

located on summit position, had a higher percent of biomass comprised of forb and C4 

grass species and lower percent biomass of C3 grass species compared with the Loamy 

(backslope) and Thin Claypan (toe slope) ES (Table 1.3).  This is very characteristic of 

ES in our study area in which plant communities typically increase in forbs and C4 

grasses as you shift upslope. This is also consistent with Ode et al. (1980), who observed 

that upland plant communities had a higher percentage of biomass comprised of C4 

species compared to lowland sites.  The C4 photosynthetic pathway provides an adaptive 
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advantage in habitats characterized by high levels of irradiance, high daytime 

temperatures, and low levels of water availability (Teeri and G. Stowe 1976), all of which 

are expected on higher slope positions.  The results from our TCYSC biomass analysis 

suggest plant differences follow somewhat predictable responses across ES.     

Grazing treatment had a significant effect on percent of TCYSC biomass of forb 

species, C3 grasses, and C4 grasses (Table 1.4).  Percent forb biomass in the CPD 

treatment was greater than the other three treatments. Percent forb biomass was lowest 

for CG and NG, followed by PD (CG vs PD P =0.067, NG vs PD P =0.082).  Within the 

same site, Geaumont et al. (2019) reported forbs were a dominant functional group on-

town averaging 19% of cover.  Percent of biomass in cool season C3 grass species was 

significantly different between on-town and off-town treatments, with lower percentages 

occurring on-town. Conversely, percent biomass in C4 grasses was generally higher on-

town versus off-town (P ≤0.05 except P = 0.06 for CPD vs. CG).  In general, then, on-

town plant communities are characterized by a higher percentage of biomass comprised 

of forbs and C4 grasses and lower percentage of C3 grasses compared with off-town 

sites.   

Irisarri et al. (2016) observed in both the shortgrass prairie and northern mixed-

grass prairie that C3 grass biomass decreased and C4 grass biomass increased along an 

increasing gradient of grazing intensity.  Though their study focused solely on livestock 

grazing, the increased grazing pressure associated with prairie dogs is likely driving 

similar results on our study.  In most areas of mixed-grass prairies, needleandthread and 

western wheatgrass (C3 grasses) are considered decreasers while blue grama and 

buffalograss (C4 grasses) are considered increasers; thus buffalograss and blue grama 
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should be expected to increase and western wheatgrass to decrease in response to prairie 

dog colonization (Koford 1958).  Agnew et al. (1986) reported that buffalograss provided 

34% cover and was the dominant plant on-town, providing significantly greater cover on- 

compared to off-colony sites.   

Species Richness and Diversity    

There was a significant (P = 0.0082) grazing treatment by ES interaction for 

species richness (Table 1.5).  Within each grazing treatment, Shallow Loam had the 

highest species richness followed by Loamy and Thin Claypan ES. Treatment 

comparisons within ES indicate that species richness was significantly higher in on-town 

locations versus off-town locations for the Shallow Loam and Loamy ES, but not for 

Thin Claypan.  On the same study area, Field (2017) also reported that ES influenced 

species richness, with Thin Claypan having lower species richness than Loamy and 

Shallow Loam. He suggested that this is likely related to the dense argillic horizon of 

claypan soils, which may inhibit the growth of many species.  

There was no significant grazing treatment effect (Table 1.4) or interaction for 

species diversity (Shannon-Wiener index). There was, however, a significant ES effect (P 

<0.001), with all pairwise comparisons between ecological sites significant (Table 1.3).  

Shallow loam sites had the highest diversity index and Thin Claypan sites had the lowest.  

The increase in diversity from the bottom of the slope to the top is likely related to the 

shifts in composition (% forb, C3 grass, and C4 grass biomass) as discussed above, where 

percent forb biomass and percent C4 biomass increase as ES changes moving upslope. 

Yearly rank abundance curves (Figure 1.1) also reflect the lower log abundance of Thin 

Claypan sites compared to the other two ecological sites.   
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An interesting outcome from the species diversity analyses is that there was no 

significant difference between the four grazing treatments (Table 1.4). This is consistent 

with Archer et al. (1987), who reported that, while diversity increased in the first 3 years 

following colonization, after 4-6 years diversity values dropped to those comparable with 

off-town sites.  Thus, age (>20 years) of colonies on the study site may explain the lack 

of differences in species diversity.  Additionally, the Shannon-Wiener diversity index 

accounts for both richness and evenness of species present.  Low diversity index across 

treatments is likely due to a few graminoids (shortgrasses, western wheatgrass, and 

Kentucky bluegrass) accounting for the vast majority of biomass at both on-town or off-

town sites.  Though a larger percentage of biomass at on-colony sites is made up of C4 

grasses, this is often a replacement of C3 grass species not prevalent on prairie dog 

towns, such as green needlegrass and Kentucky bluegrass.  

Plant Communities Analysis 

As expected, there are significant differences (P < 0.05) between on-town and off-

town plant community composition (i.e. CG vs PD; CG vs CPD; NG vs PD; NG vs CPD) 

for every year of the study (Table 1.6). This suggests that the presence/absence of prairie 

dogs is a major factor determining plant community composition. Comparisons within 

on-town communities (PD vs. CPD) and within off-town communities (CG vs NG) vary 

between year. Only in 2013 was there a significant difference (P = 0.03) between PD and 

CPD. This is likely related to the high species turnover (Figure 1.2) observed in 2012-

2013 for the PD treatment, potentially due to differences in precipitation, as 2012 was the 

only year with below average moisture (Table 1.2). The CG vs NG treatment comparison 

p-values were very large at the beginning of the study, but declined over the years, with a 
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significant difference occurring in 2016 (Table 1.6). This may indicate that plant 

community composition has diverged within 4 years between areas that are protected 

from cattle grazing (NG) and those that are not (CG).  Additional years of data beyond 

the scope of this project would be needed to confirm whether divergence in NG and CG 

plant communities occurred or if the 2016 result was due to statistical noise.  Field (2017) 

also observed significant differences between on- and off-town plant community 

composition at the study site, but found no difference between sites based on 

presence/exclusion of cattle.  

As indicated above, species richness (# species/0.25 m2) is generally higher for 

on-town compared to off-town sites (Table 1.5). Total number of species encountered on-

town was also greater than off-town (Table 1.7). Of particular interest is the number of 

species unique to on- or off-town treatments in each year.  Between 51.5 and 59.2 % of 

the species found in on-town plant communities were unique to on-town locations; 

species unique to off-town communities ranged from 25.6 to 42.9 %, depending on year.  

Also of note was the higher proportion of annual unique species on-town compared to a 

low number of annual species off-town.  Archer et al. (1987) suggested the high level of 

herbivory on prairie dog towns may decrease the competitive capacity of mid-grasses to 

exclude other species (e.g. forbs).  Overlap of species between on- and off-town 

communities was low, with 60.9 – 68.1% of total plant species found within a year 

located either on-town or off-town but not on both.  It is important to note that a greater 

number of plots were sampled on-town compared to off-town, which may have increased 

total number of species encountered on-town to some extent.  The number of unique 

species which occur on-town and off-town agree with the results from the MRPP analysis 
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above which shows a separation of plant communities along on-town and off-town sites; 

this is documented in other studies.  Archer et al. (1987) showed in a detrended 

correspondence analysis of plant communities ranging from uncolonized, 2 years post 

colonization, and 4-6 years post colonization, that uncolonized sites were clustered at one 

extreme and the 4-6 year sites at the other extreme; and suggested that 69% of the 

floristic variation was attributable to time since colonization.  Within the study site, 

Geaumont et al. (2019) reported that plant community showed a stronger grouping in 

ordination space according to on-town versus off-town location, with scarlet 

globemallow and fetid marigold correlated with on-town sites, and green needlegrass, 

Kentucky bluegrass, and needleandthread correlated with off-town sites.  

The 5-year timeframe of this study provided a unique opportunity to compare 

community dynamics between on-town and off-town plant communities through time. 

An evaluation of mean species rank abundance (biomass) shifts indicates sites located on 

prairie dog towns (PD and CPD) underwent a large re-ordering of abundance of species, 

especially from 2014 to 2016 (Figure 1.3). Conversely, mean rank species abundance of 

off-town sites (NG and CG) declined and then stabilized over the 5 years of the study.  

This may suggest that there is greater community stability off-town versus on-town, as 

fewer species are shifting in abundance.  The rank clock of dominant species diagrams 

(Figures 1.4 and 1.5), however, suggest a somewhat different interpretation.  Rank clocks 

allow a temporal visualization of rank order abundance (biomass in g) over time in a 

circle starting with a vertical axis at 12 o’clock (Collins et al. 2008). It is clear from the 

rank clock diagrams for on-town sites (Figure 1.4) that there is no re-ordering of species 

abundance through time among the four most dominant species on-town, with only 
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yearly fluctuations occurring, likely due to differences in amount and timing of 

precipitation.  This can be contrasted with rank shift clocks for off-town treatments 

(Figure 1.5), where there is a major shift occurring in species dominance off-town. In 

these sites, Kentucky bluegrass became the dominant species after 2015, largely 

replacing western wheatgrass.  It appears that, over time, on-town plant communities had 

a relatively stable group of dominant species, with re-ordering occurring within the group 

of sub-dominant species, likely in response to yearly fluctuations in climatic variables. 

Off-town communities had less re-ordering of species, but a major shift in community 

composition as Kentucky bluegrass became the off-town dominant.  

The shift to dominance by Kentucky bluegrass has significant implications for the 

native northern mixed-grass prairie plant communities. For example, in a synthesis by 

Toledo et al. (2014), it is clear that plant communities dominated by Kentucky bluegrass 

have significantly less cover and diversity of native grass and forb species, and that once 

dominant, Kentucky bluegrass can influence available niches that other subdominant 

plants occupy. Bluegrass canopy cover has also been significantly correlated with a 

decline in flowering forb species richness (Kral-O'Brien et al. 2019).  Thus the decline of 

mean species rank shift (Figure 1.3) in off-town species in 2014-2016 corresponds to the 

increase in dominance of Kentucky bluegrass during that period, and is likely the result 

of sub-dominant species, primarily forbs, being suppressed due to invasion. 

There was a significant (P =0.005) 3-way interaction between grazing treatment, 

ES, and year (2012 vs 2016) for the percentage that Kentucky bluegrass represented of 

TCYSC biomass for the model, including all on- and off-town grazing treatments (Table 

1.8). Kentucky bluegrass was absent from most (67%) on-town sites in both years. The 
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greatest Kentucky bluegrass biomass composition on-town was 2.0% for CPD on 

Shallow Loamy ES in 2012; percent composition was 0% for those same sites in 2016. 

By contrast, Kentucky bluegrass composition off-town ranged from 1.8% to 37.0% in 

2012 and 25.6 to 54.6% in 2016. Similar results for Kentucky bluegrass on-town were 

observed by Archer et al. (1987), who reported Kentucky bluegrass was locally extinct 

two years after prairie dog habitation. This they suggest could be due to either a reduced 

tolerance to the heavy grazing on-town or to increased grazing pressure if Kentucky 

bluegrass were more preferred.   

Because Kentucky bluegrass was largely missing on-town, a reduced data model 

was run using only off-town grazing treatment sites (CG & NG) to test again for fixed 

effects of grazing treatment, ES, and year.  Results indicate a significant ES x year 

interaction (P = 0.009), suggesting change in the invasive grass species occurred 

differently across ES between 2012 and 2016 (Figure 1.6).  In 2012, percent composition 

of Kentucky bluegrass on the Thin Claypan ES was lower (P =0.0044) than on the 

Loamy ES (4.4% vs. 36.1%, respectively). Percent composition on Shallow Loam 

(13.26%) was not different (P >0.05) from the other two ES. Although Kentucky 

bluegrass appeared to increase in all three ES off-town, the change on the Thin Claypan 

ES was the most dramatic and the only increase that was significant (P <0.0001).  It went 

from 4.4% Kentucky bluegrass composition in 2012 to 52.4% in 2016, an almost 11-fold 

increase. By contrast, increases for off-town Loamy and Shallow Loam ES from 2012 to 

2016 were much smaller (1.38- and 2.37-fold increases, respectively) and not significant 

(P =0.6003 and 0.3436, respectively). Kentucky bluegrass composition was not different 

in 2016 between any of the ES off-town. Increases in Kentucky bluegrass colonization 
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were observed in North Dakota during the 1990’s, where Kentucky bluegrass had 

increased from near 0% foliar cover in 1984 to over 60% in the 2000’s, (Sanderson et al. 

2015). It was hypothesized that higher than average precipitation during those years may 

have provided a competitive advantage to Kentucky bluegrass. Four consecutive years of 

our study, 2013-2016, had above average annual precipitation and 2014-2016 had high 

growing season precipitation (Table 1.2), which may have contributed to the large 

expansion of Kentucky bluegrass on the off-town Thin Claypan ES.   

DeKeyser et al. (2013) observed in a natural area on the northern mixed-grass 

prairie, where sites were not grazed for a 23-year period, species composition shifted 

from a high percentage of native graminoids and forbs to a high percentage of invasive 

species, mainly smooth brome and Kentucky bluegrass.  In our study however, livestock 

presence or absence did not have an impact on colonization of Kentucky bluegrass; there 

was no difference between CG and NG within any ES for either 2012 or 2016 (Table 

1.8). This is in stark contrast to the impact of prairie dogs during that same time period, 

where Kentucky bluegrass composition was < 2.1% on all ES. Kentucky bluegrass 

composition was lower on-town compared to off-town for all ES in both years except for 

Thin Claypan in 2012. These results strongly suggest that heavy grazing on-town by 

prairie dogs is very effective at controlling the spread of Kentucky bluegrass in these 

ecosystems, whereas lighter grazing by cattle was ineffective. 

The rapid shift in Kentucky bluegrass dominance (3-5 years) at our study site 

(Figures 1.5 and 1.6) in off-town locations is one of the more surprising findings of our 

study. Another is that, while cattle grazing may have delayed Kentucky bluegrass 

dominance (Figure 1.5), it was not ultimately effective in preventing it. Cattle stocking 
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rates in our study pastures were, at most, moderate; they were established to prevent 

overgrazing by taking into consideration the utilization levels on-town by prairie dogs. 

Our cattle stocking rates were likely not high enough to limit Kentucky bluegrass 

dominance as was observed by Sanderson et al. (2015), where Kentucky bluegrass was 

slower to establish and become dominant on high stocking rate pastures compared to 

lower stocking rate pastures.  These results off-town and the virtual absence of Kentucky 

bluegrass on-town in our study, suggest that the use of intensive grazing to combat 

invasive cool season grasses warrants further investigation. 

Summary 

 Overall these results provide information to land managers on expected plant 

community responses across ecological sites for pastures managed with both prairie dogs 

and cattle.  The lack of interaction between ecological site and treatment for total biomass 

suggests that plant production changes occur somewhat predictably across ecological 

sites, but the primary driver is grazing pressure from either cattle, prairie dogs, or both 

species.  Over the course of the study, there were two major drivers of change for plant 

community composition. The first is herbivory, specifically the presence or absence of 

prairie dogs. The extensive differences between sites with prairie dogs (PD and CPD) and 

those without prairie dogs (NG and CG) as well as the lack of differences in community 

composition between CPD and PD and between NG and CG suggest the presence or 

absence of prairie dogs, and not cattle, on the landscape is a major driver of change in 

species composition.  The second major driver of change is invasion, specifically the shift 

towards a Kentucky bluegrass dominant system.  Presence or absence of cattle grazing 

had no effect of the rate of invasion, likely due to the low to moderate stocking rates; 
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however, the absence of Kentucky bluegrass on-town suggests that the high severity 

grazing by prairie dogs may act as a barrier to plant community invasion.  Though 

invasion is driving plant community change in off-town sites, the level of herbivory is 

also driving the susceptibility of a plant community to resist establishment of a non-

native.          
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Table 1.1: Total cumulative yearly precipitation (ppt) and growing season ppt (April-September) from weather stations located in 

Mobridge, SD and on the study site near McLaughlin, SD (May 2013 through 2016) for 2012 – 2016. Long term (LT) averages are 

from the Mobridge weather station.   

Year 

 

Yearly Mobridge ppt 

 (mm) 

Yearly 

McLaughlin  

ppt (mm) 

Growing Season Mobridge  

ppt (mm) 

Growing Season 

McLaughlin  

ppt (mm) 

2012  350.3 - 328.4 - 

2013  554.5 - 393.5 335.3A 

2014  512.3 460.5 466.1 439.2 

2015  567.2 427.2 514.9 385.8 

2016  481.8 456.7 369.1 397.8 

LT  414.0 - 320.0 - 
A Growing season data only includes May-September. 
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Table 1.2: The number of sample sites by ecological site and treatment on the study site near McLaughlin, South Dakota.  Twenty-five 

samples sites were established, and at each sample site, two 30 x 30 m areas of similar vegetation composition were identified. One 

was randomly assigned to be fenced to exclude livestock (exclosures) and the other was left unfenced and open to livestock grazing 

(non-exclosures).  Sites were established across three ecological sites: Thin Claypan, Loamy, and Shallow Loam and four treatments: 

CPD (cattle and prairie dog grazing), PD (prairie dog only grazing), CG (cattle only grazing), and NG (neither cattle nor prairie dog 

grazing). 

 Thin Claypan Loamy Shallow Loam 

CPD 6 6 4 

PD 6 6 4 

CG 3 3 3 

NG 3 3 3 
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Table 1.3: (TCYSC) Total current year standing crop biomass; percent of biomass made up by forbs, C3 species, and C4 species; and 

Shannon Wiener Index least square means followed by standard errors for 3 ecological sites studied on the study site near 

McLaughlin, South Dakota. Means within columns followed by a different letter are significantly different (P<0.05) 

Ecological site 

TCYSC  

Biomass (kg/ha) 

Percent Forb 

Biomass (%) 

Percent C3 

Biomass (%) 

Percent C4 

Biomass (%) 

Shannon Wiener 

      Index 

Shallow Loam 1755.4A (283) 19.5A (2.5) 51.7A (3.8) 27.8A (2.8) 1.23A (0.07) 

Loamy  1819.7A  (281) 12.4B  (2.3) 69.5B (3.6) 17B (2.7) 1.03B (0.07) 

Thin Claypan 1534.5B (281) 11.9B  (2.3) 73.2B (3.6) 14.7B (2.7) 0.83C (0.07) 
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Table 1.4:  (TCYSC) Total current year standing crop biomass; percent of biomass made up by forbs, C3 species, and C4 species; and 

Shannon Wiener Index least square means followed by standard errors for the 4 grazing treatments evaluated on the study site near 

McLaughlin, South Dakota.  Means within columns followed by a different letter are significantly different (P<0.05). Grazing 

treatments are CPD (cattle and prairie dog grazing), PD (prairie dog only grazing), CG (cattle only grazing), and NG (neither cattle 

nor prairie dog grazing). 

Grazing 

Treatment 

TCYSC 

 Biomass (kg/ha) 

Percent Forb Biomass 

(%) 

Percent C3 

Biomass (%) 

Percent C4 

Biomass (%) 

Shannon Wiener 

      Index 

NG 2447A (285) 9.3A (2.7) 74.4A (4.0) 14.3A (3.0)  0.97A (0.07) 

CG 2036B (288) 8.5A (2.9) 75.8A (4.2) 15.1AB (3.2)  1.07A (0.08) 

PD 1285C (282) 15.9A (2.4) 56.9B (3.6) 27.1C (2.7)  1.03A (0.07) 

CPD 1043D (282) 24.6B (2.4) 52.3B (3.6) 22.9BC (2.7)  1.04A (0.07) 
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Table 1.5: Species richness (# species/0.25 m2) for grazing treatments within ecological sites on the study site near McLaughlin, South 

Dakota. Grazing treatments are CPD (cattle and prairie dog grazing), PD (prairie dog only grazing), CG (cattle only grazing), and NG 

(neither cattle nor prairie dog grazing).  Means followed by a different letter are significantly different (P<0.05). 

Ecological 

Site 

Grazing 

Treatment 

Species 

Richness 

(#/0.25 m2) 

 NG 6.4BCD (0.4) 

Shallow 

Loam CG 7.04ABC (0.56) 

 PD 8.47A (0.4) 

  CPD 8.17AB (0.4) 

 NG 5.6CD (0.46) 

Loamy CG 5.16CD (0.46) 

 PD 7.58AB (0.32) 

  CPD 7.74AB (0.32) 

 NG 4.78D (0.46) 

Thin Claypan CG 5.13D (0.46) 

 PD 5.22D (0.32) 

  CPD 5.5CD (0.32) 
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Figure 1.1: Rank proportional abundance curves for each ecological site (ES) in each year on the study site near McLaughlin, South 

Dakota. The y-axis is the log proportional abundance of the total standing crop biomass of each species plotted against their species 

rank.  Sites with a more gradual curve have a greater distribution of species biomass and longer slope of line has greater richness. 
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Table 1.6: Pairwise comparisons between plant community composition each year on the study site near McLaughlin, South Dakota 

using the Multi-Response Permutation Procedure. Values are estimated p-values for grazing treatment comparisons for each year.  

Grazing treatments are CPD (cattle and prairie dog grazing), PD (prairie dog only grazing), CG (cattle only grazing), and NG (neither 

cattle nor prairie dog grazing). 

 

 

 

 

 

 

 

Year CG vs PD 
CG vs 

CPD 
NG vs PD 

NG vs 

CPD 
CG vs NG PD vs CPD  

2012 0.001 0.001 0.001 0.001 0.91 0.78 

2013 0.001 0.001 0.001 0.001 0.37 0.03 

2014 0.001 0.001 0.001 0.001 0.36 0.4 

2015 0.001 0.001 0.001 0.001 0.059 0.11 

2016 0.001 0.001 0.001 0.001 0.004 0.07 
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Figure 1.2: Percentage of total species turnover (appearances + disappearance) for each grazing treatment on the study site near 

McLaughlin, South Dakota. Grazing treatments are CPD (cattle and prairie dog grazing), PD (prairie dog only grazing), CG (cattle 

only grazing), and NG (neither cattle nor prairie dog grazing).   Turnover is calculated as the percent of species either present or 

absent from one current year to previous year, e.g. difference between 2012-2013.
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Table 1.7: For each year, 2012-2016, on the study site near McLaughlin, South Dakota, number of plant species present (Total #), 

number of unique species (occurring only on that type of site; # Unique, number in parenthesis are # of annuals), and percent that 

unique species represent of all species (% Unique) occurring on-town and off-town; and total number of species occurring on- and off-

town combined, sum of on- and off-town unique species, and percent unique species represent of all on- and off-town species. 

Year On-Town Species   Off-Town Species   On- and Off-Town Combined 

 Total # 

# 

Unique 

% 

Unique 

 

Total # 

# 

Unique 

% 

Unique 

 

Total # 

# 

Unique 

% 

Unique 

2012 49 (9) 29 (9) 59.2  35 (1) 15 (1) 42.9  64 (10) 44 (10) 68.1 

2013 52 (14) 28 (12) 53.8  41 (4) 17 (2) 41.5  69 (16) 45 (14) 65.2 

2014 66 (15) 34 (13) 51.5  48 (3) 16 (1) 33.3  82 (16) 50 (14) 60.9 

2015 72 (17) 40 (14) 55.6  43 (4) 11 (1) 25.6  83 (18) 51 (15) 61.4 

2016 64 (10) 35 (9) 54.7  42 (2) 13 (1) 31.0  77 (11) 48 (10) 62.4 
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Figure 1.3: Plot of the mean species rank shift (MRS) through time by grazing treatment on the study site near McLaughlin, South 

Dakota.  MRS quantifies changes in species rank abundance of current year standing crop biomass and indicates re-ordering of 

relative abundance through time.  Grazing treatments are CPD (cattle and prairie dog grazing), PD (prairie dog only grazing), CG 

(cattle only grazing), and NG (neither cattle nor prairie dog grazing). 
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Figure 1.4: Rank clock of the four most dominant species standing crop biomass abundance for on-town grazing treatments on the 

study site near McLaughlin, South Dakota.  Abundance is measured as the total standing crop biomass abundance (g/0.25m2) summed 

across all plots for each of the four species.  Species are ticklegrass (Agrsca), short grasses (Bouspp), dwarf horseweed (Conram), and 

western wheatgrass (Passmi).  Grazing treatments are CPD (cattle and prairie dog grazing) and PD (prairie dog only grazing). 
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Figure 1.5: Rank clock of the four most dominant species standing crop biomass abundance for off-town grazing treatments.  

Abundance is measured as the total standing crop biomass abundance (g/0.25m2) summed across all plots for each of the four species.  

Species are shortgrasses (Bouspp), western wheatgrass (Passmi), Kentucky bluegrass (Poapra), and green needle grass (Stivir). 

Grazing treatments are CG (cattle only grazing), and NG (neither cattle nor prairie dog). 
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Table 1.8.  Percentage (%) of total current year standing crop biomass composed of Kentucky Bluegrass by ecological sites on the 

study site near McLaughlin, South Dakota. Treatments are CPD (cattle and prairie dog grazing), PD (prairie dog only grazing), CG 

(cattle only grazing), and NG (neither cattle nor prairie dog grazing). Results had a significant three-way interaction between 

treatment, ecological site, and year (P =0.005). Means followed by a different letter across rows and columns are significantly 

different (P<0.05). 

  
 

2012  2016  
Thin Claypan Loamy Shallow Loam  Thin Claypan Loamy Shallow Loam 

NG 1.8 ef 35.0 bc 11.0 ef  52.3 a 45.0 ab 25.6 cd 

CG 7.0 ef 37.0 bc 15.6 de  52.6 a 54.6 a 37.4 bc 

PD 0.0 f 0.0 f 0.0 f  0.0 f 0.39 f 0.0 f 

CPD 0.0 f 0.58 f 2.0 ef  0.0 f 1.14 f 0.0 f 
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Figure 1.6. Graph of Kentucky bluegrass percent composition from 2012 to 2015 for 3 Ecological Sites on off-town locations in 

pastures on the Standing Rock study site in northcentral South Dakota.  
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Chapter 2: Comparing Random Forest Models to Map Northern Great Plains Plant 

Communities Using 2015 and 2016 Pleiades Imagery 

This paper in its current form (as reproduced, below) has been accepted into 

Biogeosciences Discuss under the citation:  

Brennan, J., Johnson, P., and Hanan, N. (2019) Comparing Stability in Random Forest 

Models to Map Northern Great Plains Plant Communities Using 2015 and 2016 

Pleiades Imagery. Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-194, 

in review 

 

Abstract 

The use of high resolution imagery in remote sensing has the potential to improve 

understanding of patch level variability in plant structure and community composition 

that may be lost at coarser scales. Random forest (RF) is a machine learning technique 

that has gained considerable traction in remote sensing applications due to its ability to 

produce accurate classifications with highly dimensional data and relatively efficient 

computing times.  The aim of this study was to test the ability of RF to classify five plant 

communities located both on and off prairie dog towns in mixed grass prairie landscapes 

of north central South Dakota, and assess the stability of RF models among different 

years.  During 2015 and 2016, Pleiades satellites were tasked to image the study site for a 

total of five monthly collections each summer (June-October).  Training polygons were 

mapped in 2016 for the five plant communities and used to train separate 2015 and 2016 

RF models.  The RF models for 2015 and 2016 were highly effective at predicting 

different vegetation types associated with, and remote from, prairie dog towns 

(misclassification rates < 5% for each plant community).  However, comparisons 

between the predicted plant community map using the 2015 imagery and one created 

with the 2016 imagery indicate 6.7% of pixels on-town and 24.3% of pixels off-town 

changed class membership depending on the year used.  Given the low model 



49 
 

misclassification error rates, one would assume that low changes in class belonging 

between years.  The results show that while RF models may predict with a high degree of 

accuracy, overlap of plant communities and inter-annual differences in rainfall may cause 

instability in fitted models.  Researchers should be aware of similarities between target 

plant communities as well as issues that may arise with using single season or single year 

images to produce vegetation classification maps.  

Introduction 

Remote sensing of rangelands greatly improves our ability to study and 

understand complex ecological interactions across the landscape. One of the main 

advantages of remote sensing data is its capacity to cover wide areas, allowing 

assessment of plant communities at landscape level scales as compared to traditional 

point-based assessments (Ramoelo et al. 2015; Yu et al. 2018).  Numerous studies have 

demonstrated the utility of remote sensing applications in monitoring rangeland 

condition, including mapping of vegetation communities, plant species composition, 

biomass estimation, and impact of grazing intensity on the landscape (Blanco et al. 2008; 

Franke et al. 2012).  Successive images throughout a growing season may potentially 

help explain patterns of cattle distribution and landscape utilization across temporal 

scales, or capture phenological changes within the landscape to distinguish differences in 

warm- and cool-season grass life history, or changes associated with early brown-down 

in forb- versus grass-dominated communities on prairie dog towns. 

Within the Northern Great Plains, black tailed prairie dog colonization is an issue 

of concern for livestock producers (Miller et al. 2007).  Competition between prairie dogs 

and livestock is a major concern for land managers looking to optimize beef production 
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while still conserving wildlife species (Augustine and Springer 2013).  Prairie dogs can 

reduce availability of forage for livestock by directly reducing the quantity of forage 

available (through direct consumption, clipping plants to increase predator detection, and 

building soil mounds), and by changing species composition (Derner et al. 2006).  Older 

core areas of prairie dog towns often become characterized by extensive areas of bare 

ground and low vegetation production, which is generally limited to annual forb and 

dwarf shrub species.  Pastures containing extensive areas of bare ground due to prairie 

dog colonization may potentially depress livestock forage intake rates and ultimately beef 

production.  Understanding the impact of prairie dogs on plant communities, and use 

patterns of livestock within rangelands occupied by prairie dogs requires the ability to 

map plant communities at landscape scales.   

Advances in remote sensing technology have facilitated the mapping and 

assessment of a broad range of habitats at different scales (Corbane et al. 2015). For 

example, Schmidtlein et al. (2007) used hyperspectral imagery at 2m resolution in 

combination with ordination techniques to map functional plant group gradients in a 

Bavarian pasture.   Within the Delaware Gap National Recreation Area, multiple Landsat 

7 scenes were used (30m resolution) with classification tree algorithms to map forest and 

plant communities for the National Park Service Vegetation Mapping Program (de 

Colstoun et al. 2003). In Majella National Park, Italy, 4m resolution imagery was used 

with NDVI to map and predict grass and herbaceous biomass variability over a 200 km2 

area (Cho et al. 2007).  While the focus of many of these remote sensing studies is on 

mapping plant communities at landscape scales to study land use changes and address 
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conservation related issues, the utility of using thematic maps derived from high 

resolution satellite imagery to study plant and animal interactions has been less explored. 

Several methods for accurately classifying plant communities using remote 

sensing techniques have been used in numerous ecological and natural resource studies. 

One method, random forest classification (RF), has gained considerable traction in the 

remote sensing community for its ability to produce accurate classifications, handle 

highly dimensional data, and provide efficient computing times (Belgiu and Drăguţ 

2016). RF is seen as an improvement over simple classification tree analysis by reducing 

noise and misclassification of outliers (Laliberte et al. 2007; Nitze et al. 2015).  RF is an 

ensemble decision tree classifier which combines bootstrap sampling to construct several 

individual decision trees from which a class probability is assigned (Mellor et al. 2013).  

RF builds each tree using a deterministic algorithm selecting a random set of variables 

and a random sample from the calibration data set (Ramoelo et al. 2015).       

The utility of random forest algorithms has been proven in remote sensing 

applications.   Lowe and Kulkarni (2015) showed that RF outperformed maximum 

likelihood, support vector machine, and neural network classification models using two 

Landsat scenes.  Ramoelo et al. (2015) successfully used RF modeling to predict leaf 

nitrogen content using World-View 2 satellite images in grassland and forest 

communities.  Similarly, Mutanga et al. (2012) concluded that RF regression modelling 

provided an effective methodology for variable selection and predicting biomass in 

wetland environments. The greatest limitation of the general use of RF has been, and 

continues to be, due to the lack of off-the-shelf tools for RF implementation within the 

most common GIS and remote sensing software packages (Hamiton 2013). 
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Considerable research has focused on the application of RF classification across 

different plant communities at various scales, however, concerns exist over the 

transferability of these models to different sites or between seasons.  Previous research 

has shown that RF models have a high degree of classification accuracy at local scales, 

but model accuracy decreases significantly when applied to spatially separated sites, 

showing a lack of stability in the model (Juel et al. 2015).  Other research has focused on 

the use of seasonality of image acquisition on improvement of RF models due to spectral 

differences in plant communities as a result of phenological change during a growing 

season.  Corcoran et al. (2013) showed an improvement of RF model accuracy in 

classifying wetlands in northern Minnesota with the inclusion of spring Landsat 5 images 

across two years over a full season versus summer only, and fall only models.  

 Many of the plant community classification studies in remote sensing tend to 

focus on acquiring a single image or multiple images across a single growing season, 

reducing the influence of inter-annual precipitation on NDVI values (Adjorlolo et al. 

2014; Beeri et al. 2007; Guo et al. 2000).  Furthermore, most research studies focus 

solely on spectral differences in plant communities and fail to analyze community 

differences on the ground at the species level (de Colstoun et al. 2003; Geerken et al. 

2005).  While classification rates are often reported in studies, the potential overlap in 

plant community species is rarely explored as a potential source of error within the 

models.  Additionally, very little research has examined how yearly differences in NDVI 

values across plant communities can alter classification models, especially in high 

resolution satellite imagery.   



53 
 

We conducted a large, collaborative study from 2012-2016 designed to evaluate 

livestock production on mixed-grass prairie pastures with varying levels of prairie dog 

occupation. A major goal of that study was to determine which plant communities on the 

pastures cattle preferred to graze, and how those preferences shifted within and between 

years. Plant communities on the site were categorized based on location (on- or off-town) 

and visually apparent dominant plant functional groups.  We expected the plant 

communities to remain relatively stable during the study, however their signatures on 

satellite imagery could change within and between years as a result of the timing and 

magnitude of rainfall and dry periods, timing of green up, phenological progression, and 

other factors. The overall goal, then, was to develop maps that accurately classify plant 

communities based on satellite imagery collected between seasons and years. Specific 

objectives of this study were to 1) determine differences in the five identified plant 

communities based on species composition, 2) assess the utility of using a RF model with 

high resolution satellite imagery to classify plant communities of interest within the 

Northern Great Plains, and 3) determine the stability of the RF model when using 

subsequent years of satellite imagery with identical training data. Our ability to map and 

understand these plant dynamics and patterns at large scales will give researchers insight 

into applying RF models across years.  Research from this study will allow us to better 

assess how plant communities drive cattle foraging behavior, and evaluate how changes 

throughout a growing season can cause cattle to shift behavior in response to new 

resources becoming available.   

METHODS 

Study site 
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The study area (45.74N, 100.65W) was located near McLaughlin, South Dakota 

on a northern mixed-grass prairie ecosystem.  Native prairie pastures (810 ha total area) 

were leased from 2012-2016; pastures were continuously stocked with yearling steers 

from June-October of each year to achieve 50% utilization.  Of the 810 ha, approximately 

186 ha were occupied by black-tailed prairie dogs (Cynomys ludovicianus).  Predominant 

soils at the site were clays and loams. Ecological sites, and the plant communities they 

support vary widely; Loamy and Clayey were the predominant Ecological Sites at the site 

with inclusions of Dense Clay, Shallow Clay, and Thin Claypan (Barth et al. 2014).  

Plant species dominating the site were largely native, including western wheatgrass 

(Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula Trin.), and needle-and-

thread (Hesperostipa comata Trin. & Rupr), intermixed with blue grama (Bouteloua 

gracilis Willd. Ex Kunth), buffalograss (Bouteloua dactyloides Nutt.), and sedges (Carex 

spp.). The most common non-native species on the site was Kentucky bluegrass (Poa 

gracilis Boivin & Love). Woody draws occupied moist drainage areas; vegetation 

consists primarily of bur oak (Quercus macrocarpa Nutt.), American plum (Prunus 

americana Marshall), and chokecherry (Prunus virginiana L.). These draws were 

frequently flanked by snowberry-dominated patches (Symphoricarpos occidentalis 

Hook.).  Plant communities on areas occupied by prairie dog towns on the site were 

largely dominated by western wheatgrass and shortgrasses (buffalograss, blue grama, and 

sedges) intermixed with patches of bare ground and annual forb dominated areas.  

Common annual forbs on prairie dog towns included prostrate knotweed (Polygonum 

aviculare L.), fetid marigold (Dyssodia papposa Vent.), and dwarf horseweed (Conyza 

ramosissima Cronquist) as well as perennials such as scarlet globemallow (Sphaeralcea 



55 
 

coccinea Nutt.).  Mean annual precipitation at the site in 2015 and 2016 was 427.2 and 

456.7 mm, respectively (South Dakota Climate and Weather 2017). 

 Five plant communities of interest for our study site were identified: 1) Forb-

dominated sites on prairie dog towns (PDF), 2) Grass-dominated sites on prairie dog 

towns (PDG), 3) Snowberry-dominated sites off-town (SNOW), 4) Cool season grass-

dominated sites off-town (COOL), and 5) Warm season-dominated sites off-town 

(WARM). 

Training sites 

To facilitate classification, training site polygons were mapped for PDF, PDG, 

COOL, WARM, and SNOW plant communities using ArcPad for Trimble GPS units in 

the summer of 2016.  Twenty training sites were mapped for each of the plant 

communities except WARM, for which only 8 sites were mapped due to the difficulty of 

finding homogenous stands of warm season grasses. Plant species in the Northern Great 

Plains are dominated by cool season species; warm season species, where they occur, are 

typically intermixed into stands of cool season species. Training sites for each plant 

community were selected from across the entire study area to capture potential site 

differences across research pastures.  Sites were mapped in the field by walking the 

perimeter of the plant community patch with a Trimble GPS unit.  Training polygon 

perimeter boundaries were always at least 3 meters interior of patch edge to minimize 

error introduced to the training data as a result of GPS signal noise. Identified patches 

were then converted into a polygon shapefile within ArcGIS to be used as training 

polygons for the RF classification algorithm.  Within each training site polygon, three 
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0.25 m2 plots were randomly located.  Within each plot, percent cover by species was 

recorded in the summer of 2016 at the time of polygon mapping. 

Plant Community Analysis 

Plant community analysis was performed on vegetation data collected from the 

three 0.25m2 plots measured in each training polygon. Differences between plant 

community compositions were determined using a Multi-Response Permutation 

Procedure (MRPP) with the Sorensen Bray-Curtis distance method.  MRPP is a 

nonparametric procedure used for testing hypotheses between two or more groups 

(Mitchell et al. 2015).  Differences in community compositions were analyzed separately 

between on-town groups (PD = PDF and PDG) and off-town groups (NPD = COOL, 

WARM, and SNOW).  Although differences between all 5 plant communities are likely 

to occur, comparisons between on-town and off-town were not made. On-town and off-

town sites were mutually exclusive from each other; for example, PDG cannot occur off-

town.  To analyze trends in species composition between plant community plots, Non-

metric Multidimensional Scaling (NMS) ordination was used (Kruskal 1964).  Only 

species that occurred in 3 or more plots were included in the ordination analysis.  NMS 

analysis was conducted using the Sorensen Bray-Curtis distance method with 250 

iterations and a stability criterion of 0.00001.  Analysis was repeated five times to 

confirm ordination pattern in the data.  Similarity index matrices were generated to 

compare plot differences between off-town plant communities and between on-town 

plant communities and averaged by plant community.  All ordination analyses (MRPP 

and NMS) were performed using PC-ORD 6 software (McCune and Mefford 2002). 

Imagery 
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During the summers of 2015 and 2016, Pleiades satellites were tasked to image 

the study site.  Pleiades satellites, which are members of the SPOT family of satellites, 

are operated by AIRBUS Defense and Space.  This platform was chosen due to its high 

spatial resolution (0.5 m pan chromatic, 2 m multispectral) and four band spectral 

resolution: pan chromatic (480-830 nm), red (600-720nm), green (490-610 nm), blue 

(430-550 nm), and near infrared (750-950 nm).  Pleiades satellites were designed for 

commercial tasking and monitoring, allowing multiple revisits to a project site.  A total of 

ten image collections were acquired in the summer of 2015 and 2016 (five each year) 

from June through October during the 1st-15th of each month (Table 2.1). Image collection 

times were chosen to correspond to the time periods when cattle were actively grazing on 

the site.  Multispectral images were pan-sharpened and orthorectified by the image 

provider (Apollo Imaging Corp).  Boundaries of the prairie dog town were mapped in the 

fall of 2015 using a handheld Trimble GPS unit. Post collection processing of the images 

included extracting off-town and on-town locations using the “Extract By Mask” tool in 

ArcGIS.  Separate RF models were developed for on-town and off-town plant 

communities because such plant communities are mutually exclusive on the site (e.g. 

PDG cannot exist at off-town locations).  Each monthly image collection was converted 

into an NDVI image using the formula: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 

Random Forest Model 

For the RF model, the Random Forest package of the Comprehensive R Archive 

Network (CRAN) implemented by Liaw and Wiener (2002) was utilized.  Training data 

were constructed by stacking all satellite imagery spectral bands (Red, Blue, Green, and 
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NIR) and NDVI bands for each month of each year (25 total dimensions per year) to 

create a raster stack for each year’s imagery (2015 and 2016).  To train the model, pixel 

values were extracted from the satellite imagery raster stack for each training polygon 

mapped in the field.  The random forest models were built using 100 decision trees and 

default number of nodes at each split, with plant community data as the response 

category (WARM, COOL, SNOW, PDF, PDG) and spectral band values as the predictor.  

Models built for comparison include 2015 off-town, 2015 on-town, 2016 off-town, and 

2016 on-town.  A combined years model was also constructed using all available spectral 

data from 2015 and 2016 (50 dimensions).   

Within the random forest package, Out of Bag (OOB) error rates were calculated 

by reserving one-third of the training data to test the accuracy of the predictions.  Models 

were then used to predict class belonging for 2015 and 2016 raster stacks and the 

combined 2015 and 2016 stack.  To assess the stability of the RF models from year to 

year, the “Combinatorial And” tool in ArcGIS was used to create a new raster combining 

plant community prediction data from 2015 and 2016.  The output was used to calculate 

percent of pixels that were unchanged between the 2015 and 2016 model predictions and 

percent of change that occurred between years for plant community predictions.   

Results and Discussion 

MRPP pairwise comparisons were made within on-town communities (PDF vs. 

PDG) and within off-town communities (COOL vs. WARM vs. SNOW), but not between 

on- and off-town communities (Table 2.2). Each plant community was significantly 

different from all other communities within its on-town or off-town area (P < 0.001).  

Substantial differences are evident between off-town plant communities in the 2-D plot of 
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the NMS ordination (final stress = 15.465, instability < 0.00001 after 98 iterations), with 

some overlap occurring between communities (Figure 2.1).  The On-Town 2-D NMS 

ordination plot (final stress = 15.591, instability = 0.0005 after 50 iterations) also 

indicates substantial differences between communities, but with fairly minimal overlap 

(Figure 2.1).  While there is some overlap between plant communities, in general 

similarities between plant communities are low, with a similarity index generated from a 

Sorensen (Bray-Curtis) distance matrix of 21.5 – 27.9% when comparing off-town plant 

communities and 15.6% when comparing PDF and PDG (Table 2.2).   

Variable importance factor graphs indicate that NDVI training values by month 

tend to contribute the most to each model for both years, both on- and off-town (Figure 

2.2).  Similar results were observed by (Mishra and Crews 2014), where spectral 

classification features (mean NDVI or ratio NDVI) were the most significant for 

classifying vegetation morphology in a savanna grassland.  Differences between 

importance of months between years within site is likely the result of interannual 

precipitation timing between the years, with plant communities greening up or browning 

down earlier or later depending on seasonal rainfall.  Results from the RF model show 

low OOB misclassification error rates (Table 2.3) indicating a high degree of accuracy in 

the model.  The lower similarity index (Table 2.2) for on-town communities compared to 

off-town communities may help explain the lower OOB classification error rates (Table 

2.3) as well as the lower frequency of pixels changing class in the on-town communities 

(Table 2.4).  OOB error rate was below 5% for all models.  OOB accuracy is an unbiased 

estimate of the overall classification accuracy eliminating the need for cross-validation 

(Breiman 2001).   Lawrence et al. (2006) showed OOB error rates to be reliable estimates 
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of class accuracy for identifying invasive species.  Similarly, OOB error rates have been 

reported to be reliable in mapping corn and soybean fields across multiple years (Zhong 

et al. 2014).  Belgiu and Drăguţ (2016) acknowledge that the reliability of OOB error 

measurements needs to be further tested using a variety of datasets in different scenarios 

Consistency in error rates for plant communities appears to indicate stability in 

the 2015 and 2016 RF models which used identical training sites on consecutive yearly 

satellite imagery.  However, when comparing yearly predicted plant community maps, 

differences between community classifications are slightly more pronounced, indicating 

the models may not be as stable as predicted based solely on the OOB error rates.  The 

pixels that were classified as representing one plant community in 2015 and a different 

one in 2016 were 24.3% of the total off-town pixels and 6.7% of total on-town pixels 

(Table 2.4).  The pixels changing from COOL to SNOW and SNOW to COOL 

represented the highest percentage of pixels that changed plant community in off-town 

areas.  COOL and SNOW plant communities, however, occupied the largest area on the 

site, and represented 70.3 and 21.0% of total pixels in 2015 and 68.5 and 25.1 % of total 

off-town pixels in 2016, respectively.   

It is unlikely in this northern mixed-grass prairie ecosystem that all the changes in 

plant communities indicated by classification of pixels were real changes from one plant 

community type to another over one year. Such major shifts in species composition 

typically occur much more slowly. The results from the plant community analysis 

indicate training sites were chosen appropriately to account for differences in species 

composition on the ground, therefore apparent changes are much more likely due to 

factors that affect the spectral signature of the vegetation. One explanation for the 
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difference in year to year classification could be attributed to the interannual variability 

of rainfall between 2015 and 2016 (Figure 2.3).  While overall total rainfall between 

years was similar, differences in timing of precipitation that occurred likely affected 

timing of green up and dormancy for many of the cool and warm season species on the 

site. This, then, would create different NDVI patterns between years (Figure 2.4). 

Wehlage et al. (2016) for example, found that yearly rainfall differences resulted in large 

differences in NDVI and biomass measurements across two years in a dry mixed-grass 

prairie. Goward and Prince (1995) suggested that the relationship between NDVI and 

annual rainfall in any given year also depends on the previous year history of rainfall at 

the site, and Oesterheld et al. (2001) showed that annual above ground primary 

production of shortgrass communities is related to current as well as previous two years 

precipitation. The above average rainfall at the study site in 2015 could have added to the 

increase in average NDVI in 2016 when compared to 2015 through an increase in 

cumulative biomass or production at the site.  Another possible cause for changes in plant 

community classifications between years is overlap of plant community species where 

two plant communities share a boundary. The edges of plant communities in the NGP are 

seldom sharp; more often there is a transition zone, where species from each community 

intermingle. This, along with variability in phenological development of different plants 

(e.g. cool season vs. warm season) associated with precipitation, as mentioned above, 

could result in pixels appearing to be associated with one plant community in one year 

and its neighboring plant community the next. It should also be noted that plant 

communities in the region, which are predominantly comprised of cool season grasses, 

often include varying levels of warm season species; and snowberry thickets often have 
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an understory of grasses, especially near the perimeter. Thus one should expect some 

level of spectral mixing within each community, and the possibility that climatic factors 

could result in changes in NDVI values that, at least initially, might suggest apparent 

changes between plant communities.   

As noted above, one issue with using categorically classified vegetation maps is 

that plant communities in space are rarely mutually exclusive, and tend to change along a 

continuum with environmental gradients (Equihua 1990).  Thus, within both on-town and 

off-town plant communities, transition zones are likely to account for a portion of the 

classification change between plant communities between years (Figure 2.5).   

Alternative approaches to mapping plant communities can be the recognition of fuzzy 

properties enabling a single point in space to exhibit characteristics of a number of plant 

communities (Duff et al. 2014; Fisher 2010).  For example, Schmidtlein et al. (2007) used 

NMS of species data in combination with imaging spectroscopy to produce ordination 

maps of community structure.  While fuzzy classification maps are more likely to give a 

better picture of plant community composition on a per pixel basis, they are also more 

difficult to use to draw inferences of species dominance and livestock use across 

landscapes.   

A final RF model combining all available bands and NDVI values for 2015 and 

2016 reduced error rates for all plant communities below 1% (Table 2.3).  While we have 

shown that error rates may not result in more stable predictions, using all available data 

for a model will likely improve accuracy and result in a more accurate thematic map 

(Figure 2.6).    Zhou et al. (2018) using RF models showed that using a combination of 

four seasons of Sentinel-1 images and a GaoFen-1 satellite winter image produced the 
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highest classification rate of urban land cover scenes over individual seasonal images.   

Likewise, several other studies have reported increases in classification accuracy in RF 

models with the addition of combined seasonal images, hyperspectral data, LiDAR 

images, radar (SAR) images, and ancillary geographical data such as elevation and soil 

types (Corcoran et al. 2013; Pu et al. 2018; Shi et al. 2018; Xia et al. 2018; Yu et al. 

2018).  RF models have the ability to handle highly dimensional correlated data, and data 

combined from multiple different data sources across different temporal scales. The 

internal information provided by the model, such as variable importance, can be a useful 

tool for researchers to select features of greatest importance to reduce computation times 

in the instance of large datasets.  At the size of our study area (810 ha) and a maximum of 

50 variables, the combined 2015-16 data model only slightly added to computation time, 

but not enough to warrant feature trimming from the dataset.  Variable importance plots 

from the combined data model also indicate that different months between years 

contribute highly to the classification accuracy between models.  For example June 2016 

NDVI and October 2015 NDVI were the most important for classification of the data 

based on the variable importance plot from the combined years’ model.   

Implications 

Stability of models is important when applying similar techniques across different 

sites, plant communities, and in this case years.  Differences in year-to-year NDVI values 

may alter classification results; those differences may be even more pronounced if only 

one or two satellite imagery scenes are used from a single year.  One of the main benefits 

to RF classification in remote sensing is the relatively fast computing time (Belgiu and 

Drăguţ 2016), and, given the availability of free satellite imagery, researchers would be 
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prudent to include multiple images across years and seasons in their model to improve 

accuracy.  Furthermore, while the desired outcome is often to produce thematic maps, 

recognizing that plant communities rarely exist in discrete communities is important 

when trying to interpret remotely sensed classification maps.  This is likely to be 

magnified as pixel size increases, resulting in less “pure” vegetation structure in the 

classified pixel.  Further work should examine the reliability of OOB error rates across 

different scenarios, and the influence of year and timing of image acquisition on 

classification results.  
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Table 2.1. Acquisition dates of Pleiades satellite imagery tasked for each month (June – October) 

in 2015 and 2016. 

    

2015 Dates of Acquisition 2016 Dates of Acquisition 

6/1/2015 6/5/2016 

7/9/2015 7/2/2016 

8/4/2015 8/2/2016 

9/1/2015 9/11/2016 

10/8/2015 10/1/2016 
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Table 2.2: Similarity index (Sorensen (Bray-Curtis) distance method) values averaged by plot 

across plant communities.    

    

Community1 Similarity Index (%) 

COOL vs. SNOW 27.9 

COOL vs. WARM 27.6 

SNOW vs. WARM 21.5 

PDG vs. PDF 15.6 
1Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated 

(PDF); plant communities in off-town areas are cool season grass-dominated (COOL), 

warm season grass-dominated (WARM), and snowberry-dominated (SNOW). 
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Figure 2.1. NMS ordination plots for plant communities located on and off of prairie dog 

towns, based on plant cover by species data collected in 2016 on the study site in north 

central South Dakota.  Plant communities on prairie dog towns are grass-dominated 

(PDG) and forb-dominated (PDF); plant communities in off-town areas are cool season 

grass-dominated (COOL), warm season grass-dominated (WARM), and snowberry-

dominated (SNOW). 
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Table 2.3: Out of Bag misclassification error rates (%) for each plant community for 2015, 2016, and 

combined year random forest models. 

        

Plant Community1 2015 Model 2016 Model 2015-2016 Combined Model 

COOL 0.20% 0.20% 0.03% 

SNOW 2% 2% 0.60% 

WARM 3% 5% 0.70% 

PDG 0.30% 0.20% 0.07% 

PDF 0.90% 0.70% 0.30% 
1 Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated 

(PDF); plant communities in off-town areas are cool season grass-dominated (COOL), 

warm season grass-dominated (WARM), and snowberry-dominated (SNOW). 
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Table 2.4: Percent of pixels within each area (prairie dog town and off-town) for each 

plant community that remain unchanged and are changed between class belonging 

between 2015 and 2016 models. 

Community Location Transitions1 Percent of Total Area Pixels 

Prairie Dog Town 
Unchanged Pixels 93.3 

PDG ↔ PDF 6.7 

Off-Town 

Unchanged Pixels 75.7 

COOL ↔ SNOW 14.1 

COOL ↔ WARM 6.7 

SNOW ↔ WARM 3.5  

1Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated 

(PDF); plant communities in off-town areas are cool season grass-dominated (COOL), 

warm season grass-dominated (WARM), and snowberry-dominated (SNOW). 
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Figure 2.4:  Comparison of mean monthly NDVI for training polygons in five plant 

communities on the study site in north central SD.  Plant communities on prairie dog 

towns are grass-dominated (PDG) and forb-dominated (PDF); plant communities in 

off-town areas are cool season grass-dominated (COOL), warm season grass-

dominated (WARM), and snowberry-dominated (SNOW). 
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Figure 2.5: Random forest classification maps from 2015 and 2016 of one pasture in the 

study area in north central South Dakota.  Plant communities on prairie dog towns are 

grass-dominated (PDG) and forb-dominated (PDF); plant communities in off-town areas 

are cool season grass-dominated (COOL), warm season grass-dominated (WARM), and 

snowberry-dominated (SNOW). 
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Figure 2.6: Final random forest generated thematic map of the entire study site in north 

central South Dakota produced from the combined 2015-2016 imagery data.  Plant 

communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF); 

plant communities in off-town areas are cool season grass-dominated (COOL), warm 

season grass-dominated (WARM), and snowberry-dominated (SNOW). 
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Chapter 3: Technical Note: A Method to Streamline Processing of Livestock 

GPS Collar Data 

This paper is currently in print in Rangeland Ecology & Management under the 

citation: 

Brennan, J., Johnson, P., & Olson, K. (2019). Technical Note: Method to Streamline 

Processing of Livestock Global Positioning System Collar Data. Rangeland 

Ecology & Management, 72, 615-618 
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Chapter 4: Grazing Behavior, Forage Quality, And Intake Rates Of Livestock 

Grazing Pastures Occupied By Prairie Dogs 

 

Abstract 

 Prairie dogs have long been seen as competing with cattle.  Prairie dogs can 

reduce the carrying capacity on rangelands by up to 50% through direct consumption of 

vegetation and by clipping plants to improve predator detection.  Studies have shown that 

forage quality and digestibility are greater on prairie dog towns than off-town, however 

research is lacking that quantifies rates of forage and nutrition intake by cattle.  In 2012-

2016, a study was conducted in northcentral South Dakota to evaluate livestock grazing 

behavior, diet quality, and forage intake on three plant communities in pastures occupied 

by prairie dogs.  Plant communities studied were grass-dominated on-town sites (PDG), 

forb-dominated on-town sites (PDF), and grass dominated off-town sites (NPD).  Three 

pastures with varying levels of prairie dog occupation (0%, 20%, and 40%) were studied.  

Pasture stocking rates were adjusted to account for the level of forage removed by prairie 

dogs (50% of on-town forage removed).  Each pasture was grazed by a separate herd of 

yearling steers, a random subset of which were fitted with GPS collars equipped with 

motion sensors to determine graze locations.  Daily time spent grazing was estimated for 

each plant community and averaged by month for each pasture. Forage quality and intake 

were estimated using ruminally-fistulated steers that were allowed to graze in 30 minute 

increments in temporary exclosures within each plant community and pasture for June, 

July, and August of each year.  Rumen diet samples were weighed and analyzed for OM, 

CP, NDF, and ADL.  Intake was calculated as the rate of OM per minute and multiplied 

by average monthly grazing time based on GPS collar data.  Livestock grazing preference 

decreased linearly on grass dominant sites on-town and increased linearly for off-town 
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sites through the growing season.   CP content was significantly higher (P = 0.002) on the 

PDF sites versus the PDG and NPD sites, however, few other differences in forage 

quality were evident between spatially dominant PDG and NPD communities.  OM 

intake rates were similar between PDG and NPD communities, however PDF intake rates 

were reduced 59% compared with off-town sites.  Results from this study indicate that 

grass dominant communities on prairie dog colonies should be considered as valuable for 

grazing livestock, but older core areas of prairie dog towns provide no nutritive value to 

foraging animals.  Livestock performance was higher on prairie dog colonized pastures, 

suggesting that increased diet diversity within pastures colonized by prairie dogs may be 

beneficial to grazing livestock provided forage quantity isn’t limited.   Results from this 

study will inform land managers of potential forage contributions of on-town and off-

town plant communities in pastures colonized by prairie dogs.   

 

Introduction 

Black-tailed prairie dogs have been identified as a keystone species in prairie 

ecosystems and ecosystem engineers providing habitat to other plant and wildlife species 

(Davidson et al. 2010; Kotliar et al. 1999). They also increase biotic diversity and the 

diversity of community structure while playing an important role in ecosystem function 

(Hopson et al. 2015).  In semi-arid grasslands of the southwest, black-tailed prairie dogs 

were shown to increase essential ecosystem services of water infiltration rates, carbon 

storage rates, and soil stabilization (Martinez-Estevez et al. 2013).  Prairie dog colonies 

are, however, also viewed as being very detrimental to beef production systems by 

limiting carrying capacity of rangelands.   
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Prairie dogs reduce available forage through direct consumption, clipping plants 

to increase predator detection, building soil mounds, and changing species composition 

(Derner et al. 2006).  Colonization by prairie dogs and subsequent increases in grazing 

pressure can shift plant communities from mid-grass dominant to those characterized by 

high cover of perennial shortgrasses and annual forbs (Winter et al. 2002).  Because 

graminoids are extensively used by prairie dogs, they eventually lose their competitive 

advantage over other functional groups (Detling 1998).  Older core areas of prairie dog 

towns are often characterized by high percentage bare ground, low vegetation production, 

and dominance by annual forb and dwarf shrub species; areas more recently colonized 

typically remain grass dominated  (Guenther and Detling 2003, Coppock et al., 1983).  A 

shift in plant communities in the Northern Great Plains from mid-grass to shortgrass or 

annual forb domination has a potentially large, negative impact on livestock production.   

Cattle and prairie dogs exhibit high dietary overlap, up to 60% in a mixed-grass 

prairie, which is a cause of concern for livestock producers (Miller et al. 2007).  Derner et 

al. (2006) showed that an increase in prairie dog town size within pastures led to a 

decrease in cattle weight gains, however the decrease was not proportional to the increase 

in colony size.  Although forage quantity is often limited, plant nutrient content and 

forage digestibility are improved within prairie dog town sites (Coppock et al. 1983). 

Through repeated defoliation, vegetation on prairie dog towns is often maintained in an 

immature state, with higher nutritive content (Olson et al. 2016).  Johnson-Nistler et al. 

(2004)  measured forage quantity and quality on northern mixed grass prairie in Montana, 

and found that sites occupied by prairie dog towns were characterized by a decrease in 
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standing crop biomass and standing crop crude protein; concentration of crude protein in 

vegetation on colonized sites was, however, higher.   

Livestock are able to select a balanced diet given suitable choices on rangelands 

that contain a diverse array of plant species and growth stages with varying levels of 

nutritional value (Provenza 1991).  At low levels of colonization, livestock diets may be 

improved as they select a diet from a variety of mature and immature forages on- and off-

town.  Alternatively, dry matter intake may be limited in pastures with high levels of 

occupation, likely negating any potential gains in dietary quality.  While limited research 

exists on prairie dog impacts on forage quality, abundance, and impact on livestock 

weight gains, even less research has evaluated how prairie dogs impact livestock grazing 

behavior, nutrient intake, and performance. 

Understanding cattle grazing behavior can improve opportunities to manage 

prairie dog occupied pastures for better livestock performance and optimization of 

rangeland health.  Guenther and Detling (2003) reported cattle selection of prairie dog 

sites differed little from random use, however the largest percentage of pasture colonized 

in their study was 10.7%.  Within the Chihuahua desert grasslands, researchers reported 

that cattle preferentially grazed on prairie dog colonies in the fall and winter grass 

dormancy season and spent most of their time foraging at off colony sites in the summer 

(Sierra-Corona et al. 2015).  Studies on livestock grazing behavior on prairie dog towns, 

however, are limited and further research is needed to understand how changes in forage 

quality may be driving changes in grazing behavior across multiple growing seasons. 

In 2012 a large, multi-state, multi-institution, collaborative project was initiated 

with the overall goal of increasing food security for the people on the Standing Rock 
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Sioux Reservation in North Dakota and South Dakota by improving livestock production 

on rangelands with extensive prairie dog occupation. A major component of that effort 

was to study livestock use of on- and off-town plant communities to determine their 

preferences and to evaluate the quality and quantity of forages that cattle obtain from the 

different plant communities on the pastures.  Objectives of this study were to 1) evaluate 

relationships between on- and off-town plant communities and cattle grazing locations to 

identify patterns and trends in livestock grazing behavior throughout the growing season, 

2) evaluate diet nutrient composition and intake by cattle on plant communities on- and 

off-town over the grazing season, and 3) study livestock performance in response to level 

of prairie dog occupation within the pastures. 

Methods 

All procedures involving animals were approved by the SDSU Institutional 

Animal Care and Use Committee (Approval no. 12-027A & 15-039A). 

Study Area 

The study area (45.74N, 100.65W) was located near McLaughlin, South Dakota 

on a northern mixed-grass prairie ecosystem.  Predominant soils at the site were clays and 

loams. Ecological Sites (ES) and the plant communities they support varied widely. 

Loamy and Clayey were the predominant ES at the site, with inclusions of Dense Clay, 

Shallow Clay, Clayey, and Thin Claypan (Barth et al. 2014).  Vegetation on the site was 

largely native, including western wheatgrass (Pascopyrum smithii Rydb.), green 

needlegrass (Nassella viridula Trin.), and needle-and-thread (Hesperostipa comata Trin. 

& Rupr), intermixed with blue grama (Bouteloua gracilis Willd. Ex Kunth), buffalograss 
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(Bouteloua dactyloides Nutt.), and sedges (Carex spp.).   Kentucky bluegrass (Poa 

gracilis Boivin & Love) was an invasive exotic of concern at the site.  Plant communities 

on areas occupied by prairie dog towns on the site were largely dominated by western 

wheatgrass and shortgrasses intermixed with patches of bare ground and annual forb-

dominated areas.  Common forbs on prairie dog towns included annuals such as prostrate 

knotweed (Polygonum aviculare L.), fetid marigold (Dyssodia papposa Vent.), and dwarf 

horseweed (Conyza ramosissima Cronquist), as well as perennials such as scarlet 

globemallow (Sphaeralcea coccinea Nutt.).    

A weather station has been maintained on site from May 2013 operated by South 

Dakota Mesonet (South Dakota Climate and Weather, 2017).  Climate data from 2012 

until April 2013 was acquired from a nearby weather station in Mobridge, SD (40 km 

east, U.S. Climate Data, 2017).  Precipitation totals were compared between the 

Mobridge weather station and the onsite weather station for similarity in 2014-2016; 

average yearly difference between the sites was 71 mm, with the Mobridge site 

consistently having higher estimates.  Historical (1981-2010) mean annual precipitation 

at the Mobridge weather station was 414 mm (U.S. Climate Data, 2017).  Total annual 

(Jan.-Dec.) precipitation (mm) for 2012-2016 was 350.5, 496.8, 460.5, 427.2, and 456.7, 

respectively.   

Experimental Procedures 

 Three pastures at the study site, each approximately 200 ha in size, were 

established to have varying levels of prairie dog occupation (0%, 20%, 40%). Total area 

of the pastures occupied by prairie dog colonies was 122 ha.  Boundaries of prairie dog 

towns were mapped using a handheld GPS unit.  The 0% colonized pasture was 

http://www.usclimatedata.com/
http://www.usclimatedata.com/
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maintained at that level over the duration of the study.  Pasture boundaries were 

established to include similar proportions of landscape features such as ecological sites 

and topography.  Pastures were grazed continuously by yearling steers from June until 

early October; stocking rate was set to achieve 50% total (cattle + prairie dog) utilization.  

Previous research on prairie dog colonies within western South Dakota has demonstrated 

cattle utilize only half as much forage on a prairie dog town compared to the same ES 

off-town (Gabrielson 2009; Stoltenberg 2004).  Pastures were stocked for similar grazing 

pressure (animal unit month [AUM]) based on expected forage availability on and off 

prairie dog towns, adjusted for the percentage of pasture colonized.  Formula for 

calculating total available forage was:  

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐹𝑜𝑟𝑎𝑔𝑒 𝑂𝑓𝑓 𝑇𝑜𝑤𝑛 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑂𝑓𝑓 𝑇𝑜𝑤𝑛 × 𝑈𝑡𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 × (𝐴𝑙𝑙𝑜𝑡𝑚𝑒𝑛𝑡 ×

(1 − % 𝐶𝑜𝑙𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛))  

𝐴𝑣𝑎𝑖𝑙𝑏𝑙𝑒 𝐹𝑜𝑟𝑎𝑔𝑒 𝑂𝑛 𝑇𝑜𝑤𝑛 = (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑂𝑓𝑓 𝑇𝑜𝑤𝑛 × 0.5) × 𝑈𝑡𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ×

(𝐴𝑙𝑙𝑜𝑡𝑚𝑒𝑛𝑡 × % 𝐶𝑜𝑙𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛)   

𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐹𝑜𝑟𝑎𝑔𝑒 = 𝐴𝑣𝑎𝑖𝑙𝑏𝑙𝑒 𝐹𝑜𝑟𝑎𝑔𝑒 𝑂𝑛 𝑇𝑜𝑤𝑛 + 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐹𝑜𝑟𝑎𝑔𝑒 𝑂𝑓𝑓 𝑇𝑜𝑤𝑛 

 

Stocking rates for pastures with 0%, 20%, and 40% prairie dog occupation were 0.8, 

1.03, and 1.36 ha/AUM, based on mean steer body weight of 357 kg with a grazing 

season of 4.33 months (Table 4.1).    

Three plant communities of interest were identified in the study: grass-dominated 

off-town locations (i.e. no prairie dogs; NPD), annual forb-dominated sites on-town (i.e. 

prairie dog forb; PDF), and grass-dominated sites on-town (i.e. prairie dog grass; PDG).  

Plant community location was mapped using remotely sensed high resolution satellite 

imagery (Brennan et al. 2019).  Remote sensing analysis generated a thematic raster map 
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of plant communities for the study site.  For the pasture with 20% level of colonization, 

the proportion of each plant community was: 81% NPD, 16% PDG, and 3% PDF.  For 

the pasture with 40% level of colonization, the proportion of each plant community was: 

58% NPD, 36% PDG, and 6% PDF.    

Livestock Behavior 

Locations and behavior of cattle were determined through the use of Lotek 

3300LR GPS collars (Lotek Wireless, New Market, Ontario, Canada) equipped with 

motion sensors to discriminate between graze and non-graze locations. The collars were 

set to record a location fix and average motion sensor reading every 5 minutes.  Livestock 

GPS data were collected every year from 2012 through 2016.  Within each pasture, a 

subset of steers was outfitted with collars and allowed to graze freely.  The number of 

steers collared per pasture varied from n = 2 to n = 6 depending on collar failure.  Steers 

were gathered into corrals monthly to download data and charge batteries.  A 

classification tree algorithm was used to determine whether a GPS fix was classified as a 

graze or non-graze location based on methods described by Augustine and Derner (2013).  

Using the ‘extract’ function from Program R, the pixel value (NPD, PDG, and 

PDF) was extracted from the thematic plant community map for each GPS fix.  Total 

number of daily graze fixes within each plant community was calculated for each steer 

and multiplied by fix interval (5 minutes) to get an estimate of the total daily time spent 

grazing for each steer in each pasture and plant community within a pasture.  For each 

steer, daily preference indexes (PI) were calculated for each plant community.  Daily 

time spent grazing within a given plant community was divided by the total daily time 

spent grazing to calculate the proportion of daily time spent grazing for each plant 
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community. Preference index was calculated by dividing daily proportion of grazing time 

in each plant community by the percentage of the pasture the plant community occupied.  

An example would be an animal in the 20% colonized pasture that spent 500 minutes 

grazing for a given day, and 80 of those minutes were in the PDG plant community.  This 

would result in 16% of the total time spent grazing that day on the PDG plant 

community.  Dividing this by the proportion the PDG plant community occupied in that 

pasture (16%) would yield a PI of 1.  A PI of 1 indicates the resource was being used in 

proportion to its availability; a PI greater than 1 indicates preference and a PI less than 1 

indicates a resource was not preferred.  Daily PI data were averaged by month for June, 

July, August, and September for each steer within each pasture and plant community.   

Diet Quality 

Six ruminally cannulated steers were used to determine the nutritive quality and 

rate of intake of forage consumed by steers grazing in the PDF, PDG, and NPD plant 

communities. Sampling took place over the span of one week in each of June, July, and 

August for 2012-2016. Temporary electric fence enclosures were constructed on PDF, 

PDG, and NPD plant communities within each pasture the day prior to sampling.  

Enclosure sizes were approximately 625 m2.  Two weeks prior to the sampling and when 

not being used for data collection, the cannulated steers were put in experimental pastures 

consisting of forage similar to the forage to be sampled.  Steers were held in temporary 

pastures (each much larger than the sampling enclosures) during the week of sampling.   

At dawn on each sampling day, steers were herded into corrals and their rumens 

evacuated based on techniques described by Lesperance et al. (1960) and Olson (1991).  

Each steer was then transported to and allowed to graze in an enclosure for 30 minutes.  
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Typically three steers were used to sample each enclosure during each sampling period.  

Time spent grazing within the enclosure was recorded. Steers were taken back to the 

corrals and all newly grazed masticate was removed from the rumen. Masticated samples 

were immediately weighed following collection for rate of intake calculations. A 

subsample was collected and frozen for diet analysis.  Rumens were rinsed and each steer 

was transported to a second enclosure and allowed to graze for 30 minutes. Steers were 

again returned to the corrals and masticated samples from the second bout of sampling 

were removed and weighed, and a subsample was collected and frozen. After two 

enclosures were sampled per day per steer, the rumen contents that had been removed at 

the beginning of the day were replaced.  Over the week of sampling, NPD, PDG, and 

PDF in each pasture were sampled once.  

Frozen samples were lyophilized and ground to pass a 2-mm screen in a Standard 

Wiley Mill, No. 3 (Arthur H. Tomas Co., Philadelphia, PA, USA).  Samples were 

analyzed for determination of DM, OM, CP (AOAC 1990), NDF, ADL (Goering and 

Van Soest 1970), and IVOMD (Tilley and Terry 1963).  All results for diet quality are 

reported on an OM basis.  

Intake 

Rate of forage intake (g OM/min) was estimated using the weighed masticated 

sample from each cannulated steer sampling.  Masticated sample weights were converted 

to grams OM and divided by the duration of grazing during the sampling period 

(typically 30 minutes) to give rate of intake.  Crude protein intake rate (g CP/min) was 

estimated by multiplying the rate of OM intake by the percentage of crude protein on an 
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OM basis.  Digestible OM intake (DOMI) rate (g DOMI/min) was estimated by 

multiplying the rate of OM intake by the percentage of IVOMD.     

Total daily forage intake for each month, pasture, and plant community was 

calculated based on a method described by Chacon et al. (1976) and modified to use GPS 

collars instead of vibracorders to calculate grazing time.  Daily grazing time (minutes) 

was estimated by averaging steer grazing time from GPS collars for each pasture, plant 

community, month, and year. Average daily grazing time was multiplied by the rate of 

forage intake for each corresponding pasture, plant community, month, and year to 

estimate total daily forage intake (g OM/day).  Additionally, average daily grazing time 

was multiplied by rate of CP intake and rate of DOMI to estimate total daily CP intake (g 

CP/day) and total daily DOMI (g DOMI/day).   

Preference indexes were estimated by dividing the daily forage intake for each 

year, month, pasture, and plant community by the sum of total daily forage intake for the 

corresponding sampling period to get a proportion of intake harvested from each plant 

community.  This proportion was then divided by the percentage of the pasture the plant 

community occupied to calculate intake PI.  An example would be an animal in the 20% 

colonized pasture that consumed an estimated 10,000 g OMI in a day, and 1600 g of the 

OMI was from the PDG plant community. This would result in 16% of the total daily 

OMI coming from the PDG plant community.  Dividing this by the proportion the PDG 

plant community occupied in that pasture (16%) would yield a PI of 1.  Intake PI was 

additionally calculated for CP intake and DOMI.   
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Animal Performance 

At the beginning and end of each grazing season, unshrunk steer body weights 

were recorded on two consecutive days for calculation of individual animal performance 

and production.  Steers were allowed to graze forage on site for a minimum of one week 

prior to initial weights being recorded to allow gut fill to be adapted to pasture forage.  

Average daily gains (ADG) were calculated for each animal (kg/head/day). Total pasture 

production (kg/ha) was also calculated to evaluate the tradeoffs between animal 

performance and production per unit of land as a result of reduced stocking rates to 

accommodate forage removed by prairie dogs. 

Statistical Analyses 

All statistical analysis was done using SAS (SAS Institute, Cary, NC).  At the 

onset of the project, the goal was to study livestock interactions with prairie dogs at a 

larger ranch scale.  Thus, to keep pastures large enough to be at ranch scale, there was 

only one replicate pasture for each level of prairie dog colonization (0%, 20%, and 40%).  

Due to the duration of the study (5 years), there was replication through time. 

 Total daily time spent grazing was analyzed by averaging estimated daily steer 

grazing times for each year, pasture, and month.  Pasture had three levels (0%, 20%, and 

40% prairie dog colonization) and month had 4 levels (June, July, August, and 

September).  Total daily grazing time was analyzed using Proc Mixed.  Pasture, month, 

and their two-way interaction were fixed effects and year was a random effect.  Grazing 

time PI data was analyzed by averaging estimated daily steer PI across each year, pasture, 

plant community, and month.  Only pastures at 20% and 40% colonization were analyzed 

for PI, as PI could not be calculated in a pasture with 100% NPD.  PI data was analyzed 
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using Proc Mixed, with PI as the response variable.  Pasture, plant community, month, 

and all two- and three- way interactions were fixed effects in the model and year was a 

random effect.  Contrasts statements were used to test two specific treatment 

comparisons: 1) on- versus off-town plant communities (PDG & PDF vs. NPD) and 2) 

grass versus forb plant communities (NPD & PDG vs. PDF). Additionally, orthogonal 

polynomial contrasts statements were used to test PI for each plant community for a 

significant linear, quadratic, or cubic relationship with month.   

Diet metrics (CP, NDF, ADL, and IVOMD) were averaged by year, pasture, plant 

community, and month and analyzed using Proc Mixed.  Pastures at 20% and 40% 

colonization were analyzed for diet metrics, as the 0% colonized pasture did not contain 

PDF and PDG plant communities.  Diet metric was the response variable and pasture, 

plant community, month, and all two- and three- way interactions were fixed effects in 

the model.  Diet metrics were analyzed using the same model as PI above.  

Differences between NPD plant community diet metrics were analyzed between 

0%, 20%, and 40% colonized pastures using Proc Mixed to test whether off-colony sites 

differed in forage quality between prairie dog and non-prairie dog occupied pastures.  

Pasture, month, and two-way interactions were fixed effects in the model, and year was a 

random effect.  Month was specified as a repeated measure.  Orthogonal polynomial 

contrasts statements were used to test whether each diet metric had a significant linear or 

quadratic relationship with month. 

Intake measurements included rate, total daily, and PI for OM, CP, and DOMI.  

Measurements were averaged by year, pasture, plant community, and month and 

analyzed using Proc Mixed using the model previously described for PI.  Pastures at 20% 
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and 40% colonization were analyzed for intake measurements, as the 0% colonized 

pasture did not contain PDF and PDG plant communities.  Differences between the 0%, 

20%, and 40% colonized pastures for OM, CP, and IVOMD intake rates and total daily 

OM, CP, and DOM intake for the NPD plant community were analyzed using Proc 

Mixed using the model previously described for diet quality metrics.  Total daily intake 

for the 20% and 40% pastures were estimated by summing intake estimates across on- 

and off-town plant communities.   

Livestock performance (ADG) and production (kg/ha) were averaged by year and 

pasture for the 0%, 20%, and 40% colonized pastures.  Data was analyzed using Proc 

Mixed with pasture as a fixed effect and year as a random effect.  Orthogonal polynomial 

contrasts statements were used to test whether performance and production had a 

significant linear or quadratic relationship with level of colonization (0%, 20%, or 40%). 

For all models the Kenward-Roger option was used to estimate denominator 

degrees of freedom. When repeated measures were involved, the variance-covariance 

matrix was chosen in an iterative process wherein best fit was chosen based on the 

Bayesian Information Criterion.  Least square means and standard errors were generated.   

Results and Discussion  

Livestock Behavior 

For total time spent grazing, there were no significant interactions (P = 0.64) or 

main effects for pasture (P =0.44) or month (P =0.09).  Overall average grazing time 

spent each day (least square means) was 7.45, 7.85, and 7.55 hours (SEM = 0.23) for the 

40, 20, and 0 % occupied pastures, respectively.  In his review of the literature, Kilgour et 

al. (2012) found that cattle spend between 6.8 and 13 hours grazing per day depending of 
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forage quality and quantity.  Studies have shown that livestock grazing times increase as 

available forage decreases (Chacon and Stobbs 1976; David et al. 1985; Scarnecchia et 

al. 1985).  Lack of differences in grazing time between pastures and months, plus the 

relatively low time spent foraging on average, suggest that adequate forage was available 

in all pastures regardless of percent occupation by prairie dogs.  The stocking rate 

imposed in this study that accounted for the percentage of forage removal attributed to 

prairie dogs likely meant cattle in these pastures did not need to increase grazing time in 

response to limited forage due to prairie dog competition.   

 Results from the grazing behavior PI analysis indicated a significant two-way 

interaction between pasture and plant community (P =0.0005, Table 4.2) and between 

plant community and month (P<0.0001, Table 4.3).  Contrasts statements indicated that 

there was a significant difference between on-town and off-town plant communities for 

the 20% occupied pasture but not the 40% occupied pasture.  The primary driver in the 

interaction appears to be PDG in the 20% occupied pasture, which exhibited a higher 

preference (1.58) than other plant communities.  Habitat type preference is useful as long 

as it is used on a relative scale allowing habitats to be ranked (Aebischer et al. 1993).  

Several studies have used preference indexes (forage ratios) as a measurement of food 

selectivity (Jacobs 1974; Krueger 1972; Manning et al. 2017), however sensitivity of 

preference indexes to changes in areas with smaller proportions of habitat can potentially 

over-inflate importance.  This may partially explain differences in pasture response.  The 

smaller percentage of PDG in the 20% pasture may cause that community to be more 

sensitive to changes that are occurring relative to the 40% colonized pasture.  In both the 

20% and 40% colonized pastures, contrasts statements show that livestock significantly 
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preferred grass plant communities over forb plant communities.  Our results indicate that 

livestock are primarily selecting grass dominant sites over forb dominant sites within 

pastures containing prairie dogs.  Previous research has shown that cattle primarily 

consumed graminoids in all seasons, and forbs contributed between 5-15% of cattle diets 

in a mixed-grass prairie (Hanley and Hanley 1982; Plumb and Dodd 1993).  The PDF 

plant community represents older core areas within prairie dog colonies that have 

typically undergone the most severe disturbance.  Grasses and grass-like cover is low 

(<10%), and species which do persist are primarily forb and shrub species (Hendrix 

2018).   Total plant species diversity has been shown to be reduced on older prairie dog 

towns, and dominated by fringe sage (Artemisia frigida Willd.) (Coppock et al. 1983).  

Plants able to sustain prolonged grazing pressure associated with these older core areas 

may be high in defense chemicals as a mechanism to deter herbivory, which would 

further deter livestock grazing of these sites.   

Over the duration of the grazing season, NPD preference increased linearly with 

time while PDG preference decreased linearly with time (Table 4.3).  The significant 

cubic relationship for PDF across months indicated that cattle had a preference for the 

forb community early in the grazing season, which leveled off near 1 in the middle, and 

the forb community was avoided at the end of the grazing season.  The proportion of PDF 

plant community (3% and 6%) within the pastures may be small enough that PI values 

could be skewed.  Livestock preferred grazing on-town locations relative to their 

abundance early in the grazing season, however, preference shifted toward off-town 

locations over time.  Seasonal grazing fluctuations were also reported by Sierra-Corona et 

al. (2015), where livestock showed strong preference for foraging on prairie dog towns in 
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fall and winter and spent most of their time foraging off colony in the summer in a 

Chihuahua desert grassland.  These results and ours differed from Guenther and Detling 

(2003) who reported no significant seasonal differences (June- mid-August) for cattle 

grazing on prairie dog colonies during intensive surveys.  Guenther and Detling (2003) 

indicated through road side surveys that cattle significantly selected for prairie dog 

towns, however, they concluded that the magnitude of the effect was small and likely 

differed little from random use.  Within our study, cattle showed a preference for the 

PDG plant community, but similarly the magnitude of the effect was not that large. 

Diet Quality 

 All diet metrics had a significant main effect of month (table 4.4).  There was an 

overall decline in forage quality through time characterized by linear decreases in CP 

(also displayed a quadratic response) and IVOMD, and linear increases in NDF and 

ADL.  Within a northern mixed grass prairie, Johnson et al. (1998) reported a linear 

decline in CP and IVOMD, whereas NDF and ADF increased linearly with advancing 

season (June-December).  Within our study NDF had no other significant relationship 

besides month (P =0.037).  Similarly, Johnson-Nistler et al. (2004) reported no 

significant difference in NDF between colonized and uncolonized sites for any plant 

functional group.  ADL (P =0.008) and IVOMD (P =0.032) had significant pasture x 

plant community interactions (Table 4.2).  Contrasts indicated a significant difference 

between grass and forb communities for ADL, with the PDF community having higher 

ADL than the two grass communities.  Research has shown that dicots have higher lignin 

content than monocots (Boufennara et al. 2012), which is likely the cause of higher ADL 

values on the PDF community.  Contrasts comparisons between on-town and off-town 



97 
 

for ADL were mixed, with only the 20% occupied pasture having a significant difference, 

likely the result of higher ADL within the PDF community for that pasture.  IVOMD had 

a significant contrast between on- versus off-town for the 40% occupied pasture.  Mixed 

results for IVDMD of on- and off-colony forage samples were also reported by 

Augustine and Springer (2013), with differences and magnitude of effect varying 

between sites and whether standing dead biomass was included in the sample.  No 

difference for IVDMD was observed by Johnson-Nistler et al. (2004) comparing forage 

on- and off- colony.  Though statistically significant, differences between the 20% and 

40% pastures for IVOMD were likely the result of sampling variability and were not 

biologically significant.   

CP was the only diet metric with a significant plant community main effect (P 

=0.002).  Least square means were: 12.2, 12.4, and 16.2 (SEM=0.82) for the NPD, PDG, 

and PDF plant communities, respectively.  Contrasts indicated CP was different between 

on- and off-town (P = 0.01) and between grass and forb sites (P = 0.0004).  Previous 

research has shown CP and nitrogen content on-colony to be higher compared to off-

colony vegetation (Augustine and Springer 2013; Chipault and Detling 2013; Coppock et 

al. 1983; Johnson-Nistler et al. 2004).  While these results appear similar to those 

observed in our study, the main difference was that the higher CP content was only 

associated with the forb dominant sites on-colony in our study.  The main driver between 

CP content on-town versus off-town was higher CP content of the PDF community, 

which comprised a relatively small proportion of total area on prairie dog towns, with 

virtually no difference between the two grass communities.  Connell et al. (2019) 

reported that CP content was 1.4 times higher in western wheatgrass samples on prairie 
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dog colonies, and was significantly greater than on off colony sites throughout the 

growing season (June-August).  It is likely that differences in our results and those of 

others may be attributed to the methods used in determining forage quality.  Previous 

studies of the quality of forages on prairie dog towns have relied on clipping vegetation 

by hand, whereas this study examined the forage selected and consumed by cattle.  

Several studies have shown fistula samples contain significantly more protein than hand 

clipped samples due to animals’ ability to select higher quality diets (Kiesling et al. 1969; 

Bredon et al. 1967; Weir and Torell 1959). They do this, in part, by initially removing the 

uppermost layer of vegetation composed primarily (>80%) of leaves (Chacon and Stobbs 

1976).  Thus it is likely that hand-clipped vegetation samples do not accurately represent 

what is actually removed by grazing livestock.  The moderate to low stocking rates 

maintained on the prairie dog occupied pastures in this study ensured that forage was not 

limiting, and fistulated steers were likely able to select a higher quality diet than what 

was generally available to them, even in off-town locations.       

Comparisons of CP, NDF, ADL, and IVOMD for the NPD community in the 0%, 

20%, and 40% colonized pastures show no significant difference between pasture (P > 

0.05 for all comparisons).  This indicates there was no difference between pastures for 

off-town forage quality, regardless of whether a pasture was colonized or not.  For all off-

town diet metrics across all 3 pastures, there was a significant month main effect (P < 

0.05), with a linear decline in CP and IVOMD, a linear increase in NDF, and a quadratic 

increase in ADL over time.  Forage quality declines throughout the growing season are 

expected as vegetation matures over time. 
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Intake 

 All intake measurements had a plant community main effect (P < 0.05), and no 

(P> 0.05) main effects of pasture, month, or interactions (Table 4.5).  For OM, CP, and 

DOM intake rates, there were significant contrasts between on- versus off-town 

communities and grass versus forb communities.  The main driver of differences in on- 

versus off-town was the lower intake rate for the PDF plant community (9.86 g OM/min).  

Little difference existed between mean intake rates for PDG and NPD.  These results 

indicate that animals grazing grass-dominated sites on-town were able to consume forage, 

CP, and digestible OM at similar rates compared with off-town locations.  Though CP 

content was higher in the PDF plant communities, the relatively low production and high 

bare ground associated with these older core areas of prairie dog towns were depressing 

intake rates for OM, CP, and DOM.   

Comparisons of total daily intake of OM, CP, and DOM indicate that cattle were 

getting a greater amount of their diet from off-town NPD communities versus the on-

town communities.  Given that intake rates were similar between NPD and PDG 

communities, the difference in total daily intake can be attributed to more time spent 

grazing off-town due to a greater abundance (total area) of that plant community.  For the 

PDF plant community, total OM and CP intake least square means were numerically 

negative, and all total daily intake values on PDF were not different from zero.  DOMI 

for the PDF community was less than 1% of total DOMI from the 3 communities 

combined.  Previous research has shown that free ranging cattle prefer locations in 

pastures with higher than average CP and lower than average NDF (Ganskopp and 

Bohnert 2009).  Within our study, there was no difference in NDF between the three 
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plant communities.  Though the PDF plant community had significantly higher CP 

content compared to the grass dominant communities, intake results indicate that forb 

dominant sites within prairie dog colonies provide little to no nutrient value to grazing 

livestock.  The low production and high bare ground associated with older core areas of 

prairie dog colonies would likely depress intake rates to the point of negating any benefits 

received from an increased CP content associated with these communities.  Within our 

study site, the percentage of pasture comprised of the PDF plant community was 

relatively small, but rangelands occupied by prairie dogs with a significant amount of 

older core areas would likely see a large reduction of carrying capacity for livestock 

production.       

Estimation of intake is difficult due to changes in environmental factors, feed 

quality, and animals’ physiological state (Coleman et al. 2014).  Coleman (2005) noted 

that variability among animals given the same diet, particularly a forage diet, may be 

quite high, ranging from 10 to 30% of the mean.  Empirical equations for predicting 

intake typically only account for 50-70% of the variation in intake, often with relatively 

high standard errors (Galyean and Gunter 2016).  Given the difficulties in measuring 

intake, especially as it applies to free ranging animals, data reported in Table 4.5 was 

likely not a true estimate of daily intake for yearling steers grazing in the pastures.  

However, relative differences among means are reflective of pasture, plant community, 

and monthly effects on intake.  Reports of estimated cattle forage intake on prairie dog 

colonies are lacking in the literature, making direct comparisons of observations difficult.  

However, total estimated daily OM intake was 8.93 kg/day within prairie dog occupied 

pastures.  Beginning steer weights over the entire project averaged 325 kg/steer and 
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ending weights averaged 424 kg/steer, so daily intake as a percentage of body weight 

ranged from 2.1% to 2.7%, which was within expectations for free ranging livestock 

(Coleman et al. 2014; National Academies of Sciences and Medicine 2016).      

Expressing total daily intake as a PI, however, showed there was no difference for 

intake preference between on-town and off-town communities.  Contrast statements 

comparing grass versus forb communities indicated significant differences for OM, CP, 

and DOM intake PI.  For the PDF plant community, 95% confidence intervals (CI) of the 

mean for OMI PI were 0.36-0.83.  CI values that didn’t overlap 1 for PDF indicate that 

forage consumption was strongly avoided on this community.  For the NPD plant 

community, the 95% CI was 0.82 – 1.02, a CI overlapping 1 suggests that OMI from off-

town locations was in proportion to what was available to them.  The CI for the PDG 

plant community for OM PI was 1.01-1.49, and indicated that livestock slightly to 

heavily preferred getting a larger proportion of their diet from grass dominant sites on-

town.  Diet data from our study showed little difference in forage quality between PDG 

and NPD plant communities, therefore it was unlikely that livestock were showing 

preference for on-town grass dominant sites based on increased quality.   Research has 

shown that cattle showed a preference for and were able to maximize daily energy intake 

on short patches due to the reduction of senescent leaves of low quality forage (Devries 

and Daleboudt 1994; Hodgson et al. 2009).  Johnson-Nistler et al. (2004) observed up to 

7 times more standing dead forage present on uncolonized sites compared to colonized 

areas, mainly attributed to prairie dogs clipping vegetation which greatly reduced the 

amount of grasses that reached maturity.  Reduction in standing dead material may allow 
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grazing steers to harvest forage more efficiently on PDG communities because the need 

for sorting is reduced. 

Comparisons between NPD intake rates for the 0%, 20%, and 40% colonized 

pastures displayed no relationship (P > 0.05) with pasture, month, or their interaction 

(data not shown).  Comparisons between total daily intake for OM, CP, and DOM 

between the 0%, 20%, and 40% occupied pastures had no significant pasture effect or 

interactions (P>0.05), and only a significant month effect for total daily OM intake (P = 

0.03).  Least square means of total daily OMI by month were: 8508, 11371, and 11377 g 

(SEM = 2168g) for June, July, and August, respectively.  The lack of significant 

differences between pastures demonstrated that cattle were able to consume a similar 

amount of forage, CP, and DOM intake across pastures with varying levels of 

colonization when stocking rate was adjusted for prairie dog forage removal. 

Livestock Performance and Production 

 There was a pasture effect (P = 0.0025) for livestock performance (ADG).  Least 

square means were 0.74, 0.86, and 0.85 kg/hd/day (SEM = 0.03) for the 0, 20, and 40% 

pastures, respectively.  Polynomial contrasts for ADG across level of colonization 

indicated significant linear (P = 0.0015) and quadratic effects (P = 0.049).  Long term 

average gain (ADG) estimates (1969-2002) for livestock grazing low, good, and excellent 

condition range within the northern great plains were 0.70, 0.77, and 0.73 kg/hd/day 

(Dunn et al. 2010).  Lack of differences in diet quality and intake rates between the 

spatially dominant NPD and PDG plant communities suggests that animal performance 

should be similar across pastures with and without prairie dog colonization.  One 

potential explanation for the difference in ADG observed is that livestock may benefit 
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from increased diet diversity associated with prairie dog colonies.  Previous research has 

shown that forbs contributed 15% of cattle diets in June and July and 5-10% of diets from 

August to September (Plumb and Dodd 1993).  Prairie dogs have been shown to 

significantly increase plant species richness and diversity, often through increasing forb 

species biomass on-town versus off-town (Fahnestock and Detling 2002).  Geaumont et 

al. (2019), in analyzing species assemblages and community structure between on-town 

and off-town locations, revealed a definitive contrast in vegetation, and concluded that 

having both habitats on the landscape increases plant diversity at broader scales.  At the 

landscape scale, access to both on- and off-town plant communities may increase diet 

diversity available to free ranging livestock.  Additionally, plant community shifts on-

town towards those dominated by shortgrass species have been documented (Agnew et 

al. 1986; Koford 1958), and are probably attributable to the high grazing resistance of 

blue grama and buffalograss (Derner et al. 2006).  Higher percentages of warm season 

grasses on-town may further increase diet diversity by expanding the seasonality of high 

quality forages within pastures occupied by prairie dogs.  

Secondly, within the context of most grazing studies, climate and stocking rate 

should be considered.  Augustine and Springer (2013) predicted in a shortgrass steppe 

and northern mixed-grass prairie that competition between prairie dogs and cattle is likely 

with below average precipitation, and facilitation dominates with above average 

precipitation.  Given that rainfall at our study site for four out of five years was above 

average, forage on-town was likely not a constraining factor and facilitation between 

prairie dogs and cattle may have occurred.  Numerous studies on rangelands have shown 

that lower stocking rates can lead to increased individual animal performance (e.g. 
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Derner et al. 2008; Dunn et al. 2010; Holechek et al. 1998).  Stocking rate for the current 

study was established for production expectations for an average year. Higher than 

average precipitation for all years except the first, however, likely resulted in higher 

forage production than average. Stocking rates were reduced in colonized pastures to 

account for the amount of forage removed by prairie dogs, but there was no adjustment 

for increased production both on- and off-town.  Thus, colonized pastures were likely 

stocked at an effectively lighter rate than the 0% occupied pasture, possibly leading to 

differences observed in ADG.     

Livestock production (kg/ha) displayed a significant pasture effect (P <0.001).  

Least square means were: 31.6, 28.7, and 21.4 (SEM=2.0) for the 0, 20, and 40% 

pastures, respectively.  Results from the livestock production analysis indicated a 

significant quadratic effect (P = 0.033) of production versus level of colonization. 

Stocking rates adjusted for level of colonization had a direct impact on differences 

observed in livestock production.  The quadratic effect observed in production 

demonstrated that increased ADG on the 20% colonized pasture may have offset some of 

the production loss associated with the lower stocking rate.  Derner et al. (2006) reported 

cattle weight gains were significantly impacted by level of prairie dog colonization, 

though differences in production were not evident until colonization exceeded 30% of the 

pasture.  The quadratic relationship between production and level of colonization, as well 

as those observed from Derner et al. (2006) indicate that livestock production may not be 

proportionally impacted at low levels of prairie dog colonization.   

Management Implications 
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Producers who manage pastures occupied by prairie dogs have difficult choices to 

make about maintaining high production and healthy grasslands.  Pastures occupied by 

prairie dogs are commonly stocked (acres per AUM) regardless of the level of 

colonization.  Within this study, stocking rates adjusted for percentage of colonization 

ensured that forage was not limited and thus reduced competition between livestock and 

prairie dogs, likely driving some of the responses observed in livestock grazing 

preference and diet selection.  Results from our study, however, indicate that different 

plant communities associated with prairie dog colonies have different values for 

livestock.  Grass dominant areas on-town were preferred and contributed more to nutrient 

intake than expected and should be considered valuable by livestock producers.  Older 

core areas of prairie dog towns, however, had little to no nutritive value to grazing 

livestock, and large areas of this plant community would likely depress nutrient intake by 

foraging animals.  Animal performance results indicate that one benefit of low levels of 

prairie dog colonization to livestock production may be increased ADG, potentially due 

to increased diet diversity and seasonality.  Though difficult to assess in our study due to 

reduced stocking rates in colonized pastures, livestock production may only be minimally 

impacted by prairie dogs at low levels of colonization.  Control efforts in these cases may 

not be beneficial relative to cost, especially if prairie dog towns occupy lower 

productivity sites within pastures.  In pastures with high levels of prairie dog occupation 

and large proportions of core, bare ground and annual forb dominated communities, 

livestock production will likely be negatively impacted and grass resources overgrazed if 

pastures are stocked without regard to level of occupation. 
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Table 4.1: Stocking rates variables for three experimental pastures on the study site near McLaughlin, South Dakota.  The 

pastures had varying levels of prairie dog colonization.  Stocking rates were adjusted to account for the amount of forage 

removed by prairie dogs (50%) based on level of colonization. 

% 

Colonizationa 

Area 

(ha) Headb 

Stocking 

rate 

(ha/AUMc) 

0 203 75 0.80 

20 193 55 1.03 

40 209 45 1.36 

 

a Level of prairie dog colonization of the pasture 
b Number of cattle in the pasture 
cAUM calculate as the: (# of head) x (duration of grazing) x (animal unit equivalent), where the duration of grazing was 4.33 

months and the animal unit equivalent for average weight of steers was 357kg/454 kg. 
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Table 4.2: Livestock grazing behavior preference index (PI) and forage diet quality (ADL and IVOMD) least square means 

and standard errors for results with a significant pasture x plant community interaction (P < 0.05) evaluated on the study site 

near McLaughlin, South Dakota.  The study was conducted from 2012 to 2016.  Pastures with two levels of prairie dog 

colonization (20% and 40%) were analyzed.  Plant communities of interest in the study included grass-dominated sites on 

prairie dog towns (PDG), forb-dominated sites on prairie dog towns (PDF) sites, and grass-dominated sites off prairie dog 

towns (NPD). 

    Plant Community   Contrastsa 

  Pastureb NPD PDG PDF SEMc 

On vs 

Off 

Grass vs. 

Forb 

PId 20% 0.93 1.58 1.08 0.1 <0.0001 0.015 

 40% 0.92 1.02 0.74 0.09 0.5232 0.0008 

        
ADLe 20% 5.56 5.45 9.06 0.53 <0.0001 <0.0001 

 40% 6.67 5.52 7.65 0.53 0.805 0.0074 

        
IVOMDf 20% 60.45 61.69 57.67 2.54 0.704 0.144 

  40% 54.04 61.36 61.05 2.54 0.001 0.15 
a Contrast: On Vs. Off compares NPD vs PDG & PDF, Grass vs. Forb compares NPD & PDG vs. PDF. 
b Pasture indicates level of prairie dog colonization. 
c Maximum SEM provided 
d PI (preference index) calculated as the percentage of daily time spent grazing within the plant community divided by the 

percentage of area the plant community occupied within the pasture. 
e ADL is % acid detergent lignin on an organic matter basis 
f IVOMD is in vitro organic matter digestibility 
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Table 4.3: Livestock grazing behavior (PI) least square means and standard errors for results with a significant plant 

community x month interaction (P < 0.05) evaluated on the study site near McLaughlin, South Dakota.  The study was 

conducted during the summers from 2012 to 2016.  Plant communities of interest in the study included grass-dominated sites 

on prairie dog towns (PDG), forb-dominated sites on prairie dog towns (PDF) sites, and grass-dominated sites off prairie dog 

towns (NPD).   

    Month   Contrastsa 

  

Plant 

Community Jun Jul Aug Sep SEMb Linear Quad. Cubic 

 NPD 0.796 0.865 0.953 1.1 0.065 0.001 0.321 0.761 

PIc PDG 1.726 1.45 1.185 0.856 0.134 <0.0001 0.756 0.814 

  PDF 1.358 0.903 0.978 0.412 0.08 <0.0001 0.323 0.0006 

 

a Orthogonal polynomial contrasts to determine whether the relationship between plant community and month was linear, 

quadratic, or cubic 
b Maximum SEM provided 
c PI (preference index) calculated as the percentage of daily time spent grazing within the plant community divided by the 

percentage of area the plant community occupies within the pasture. 
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Table 4.4: Forage diet quality least square means and standard errors for results of the month main effect (P <0.05) evaluated 

on the study site near McLaughlin, South Dakota.  The study was conducted during the summers from 2012 to 2016.  Forage 

quality samples were collected through the use of ruminally cannulated steers for June, July, and August of each year.  

  Jun Jul Aug SEMa Linearb Quad.b 

CPc 16.2 12.66 11.93 0.748 <0.0001 0.0011 

NDFd 72.31 73.94 76.25 2.09 0.032 0.76 

ADLe 5.91 6.9 7.24 0.25 <0.0001 0.71 

IVOMDf 64.98 58.04 55.11 1.94 <0.0001 0.133 
a Maximum SEM provided  
b Orthogonal polynomial contrasts to determine whether the relationship between plant community and month is linear or 

quadratic. 
c CP is % crude protein content on an organic matter basis 
d NDF is % neutral detergent fiber on an organic matter basis 
e ADL is % acid detergent lignin on an organic matter basis 
f IVOMD is % in vitro organic matter digestibility 
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Table 4.5: Livestock intake least square means and standard errors for results with a significant plant community main effect 

(P <0.05) evaluated on the study site near McLaughlin, South Dakota.  The study was conducted from 2012 to 2016. Forage 

intake rates were collected through the use of ruminally cannulated steers grazing plant communities of interest.  Plant 

communities of interest in the study included grass-dominated sites on prairie dog towns (PDG), forb-dominated sites on 

prairie dog towns (PDF) sites, and grass-dominated sites off prairie dog towns (NPD).  Total daily intake was estimated by 

multiplying intake rate by average time spent grazing within that plant community estimated from GPS collars.  Intake 

preference index (PI) calculated as the proportion of total daily intake from each plant community adjusted for the proportion 

of the pasture the plant community occupied. 

  Plant Community   Contrastsa 

  NPD PDG PDF SEM 

On vs. 

Off 

Grass vs. 

Forb 

Intake Rate (g/min)       
OMb 24.22 22.68 9.86 3.21 0.0002 <0.0001 

CPc 2.78 2.66 1.54 0.49 0.0019 0.0001 

DOMd 13.74 13.77 5.95 2.22 0.0042 <0.0001 

Total Daily Intake (kg)       
OM 6.00 2.94 -0.41 1.08 <0.0001 <0.0001 

CP 0.69 0.34 -0.03 0.14 0.0005 0.0013 

DOM 3.49 1.57 0.04 0.66 <0.0001 <0.0001 

Intake PI 
      

OM 0.92 1.25 0.60 0.12 0.962 0.0004 

CP 0.91 1.25 0.77 0.15 0.375 0.0492 

DOM 0.89 1.31 0.59 0.13 0.5921 0.0003 

 

a Contrast: On Vs. Off compared NPD vs PDG & PDF, Grass vs. Forb compared NPD & PDG vs. PDF. 
b OM is organic matter 
c CP is crude protein content on an organic matter basis 
d DOM is digestible organic matter 
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Chapter 5:  Developing A Systems Approach for Addressing The Prairie Dog – 

Livestock Conflict 

Abstract 

 Numerous controversies exist regarding competition and conflict between wildlife 

species and livestock.  One of the more controversial conflicts is that between prairie 

dogs and cattle, which has broad impacts on conservation and agricultural production.  

From a conservation perspective, prairie dogs are viewed as ecosystem engineers 

providing habitat to a number of species by altering vegetation structure and composition 

and increasing biodiversity.  From an agricultural viewpoint, prairie dogs compete with 

cattle for forage resources, reducing the carrying capacity on rangelands.  Increasingly, 

rangeland management has sought to incorporate historical disturbance regimes into 

management strategies to improve heterogeneity on the landscape. Although fire and 

large ungulate grazing have been the focus, heterogeneity associated with prairie dog 

occupation of rangelands may be a logical extension of that effort.  Regardless, it is 

crucial that management and conservation strategies on rangelands occupied by prairie 

dogs account for concerns of livestock producers if they are to be adopted, especially on 

private lands.  The overall goal of this paper is to approach the prairie dog-cattle conflict 

from a systems perspective to understand the potential benefit of having both on-town 

and off-town plant communities for plant diversity, wildlife, and livestock production.  

Our study demonstrates that plant communities on-town can differ significantly from off-

town communities in northern mixed-prairie, however, the presence of both plant 

communities within a pasture can increase diversity at broader landscape scales.  This is 

important because, while prairie dog towns support a variety of wildlife species, there are 
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many species that require greater vegetation structure. Those species require plant 

communities not found on prairie dog towns. Accommodating the array of habitat 

structure needed by the suite of wildlife on grasslands, then, requires incorporation of a 

wide variety of disturbance regimes on the landscape.  From a livestock production 

perspective, our study suggests that the inclusion of prairie dogs within a pasture may 

increase diet diversity through shifting plant species composition, which may potentially 

be beneficial for grazing livestock provided forage quantity isn’t limited.  Incorporation 

of a prairie dog-livestock management framework requires active management of both 

species to reduce competition and prevent degradation.  Though certain wildlife species, 

such as black-footed ferrets, may require extensive prairie dog colonies for habitat, 

benefits to biodiversity can still be realized on pastures containing relatively small areas 

of prairie dog towns, which may minimize impacts to livestock production.   

Introduction 

Rangeland ecosystems often sit at the nexus of balancing economic and 

conservation goals.  Within the United States, rangelands and grasslands occupy roughly 

29% of the land use area, and of that an estimated 52% is privately owned (Nickerson et 

al. 2011).  The majority of rangelands around the world are utilized for agricultural 

purposes, primarily livestock grazing, which is sometimes seen as being in conflict with 

environmental goals.  Critical to the use and preservation of rangelands is the 

sustainability of these landscapes from an economic agricultural perspective, as well as 

from a conservation perspective. Numerous studies have looked at conflicts, whether 

perceived or real, between domestic livestock and wildlife (Atickem and Loe 2014; 

Augustine and Derner 2012; de Souza et al. 2018; Hegel et al. 2009; Ranglack et al. 
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2015; Thomas 1996).  One of the more controversial species that sits at the heart of 

livestock-wildlife conflicts is the prairie dog. Its presence on the landscape sparks 

tremendous controversy, especially regarding potential implications for conservation 

goals and livestock production.   

 Throughout much of the 20th century, prairie dog colonies have been subject to 

extensive control measures to reduce their numbers in order to minimize their 

competition for forage with grazing livestock (Sierra-Corona et al. 2015).  Estimates of 

prairie dog town extent prior to European settlement vary widely and are based on early 

20th century data with no evidence to support pre-settlement population numbers 

(Vermeire et al. 2004).  Although disagreements of extent of rangelands occupied occur, 

control efforts have no doubt limited their expanse over the past century as wide-spread 

eradication efforts have sought to reduce occupation to increase rangeland productivity 

for cattle (Weltzin et al. 1997).  In 1998, a petition was filed to list black tailed prairie 

dogs as a threatened species under the Endangered Species Act, with the US Fish and 

Wildlife Service (USFWS) concluding that listing may be warranted.  As a response to 

potential listing, a multistate cooperative effort, including South Dakota, was established 

to create management plans to prevent federal listing of the species, with minimum 

acreages set to maintain long-term self-sustaining prairie dog populations.  Of the 

411,000 acres of prairie dog colonies within the state of South Dakota, an estimated 38% 

are located on private lands (Cooper and Gabriel 2005), demonstrating the need for 

livestock producer cooperation in accomplishing conservation goals.   

From a conservation perspective, prairie dogs have been identified as a keystone 

species, and are often seen as ecosystem engineers providing habitat for a number of 
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other plant and wildlife species (Davidson et al. 2010; Kotliar et al. 1999).  They are 

known to increase biotic diversity and community structure while playing an important 

role in ecosystem function (Hopson et al. 2015).  Smith and Lomolino (2004) argued that 

the importance of conservation of prairie dogs goes beyond that of a single species and is 

an important strategy for preserving the prairie ecosystem.  In semi-arid grasslands of the 

southwest, prairie dogs were shown to increase essential ecosystem services of water 

infiltration rates, carbon storage rates, and soil stabilization (Martinez-Estevez et al. 

2013).  Additionally, prairie dogs create habitat for a number of other wildlife species 

through providing refuge via burrow systems and by altering existing vegetation structure 

and composition.   

From an agricultural perspective, many concerns exist over the impact of prairie 

dogs on plant biomass production and consequently livestock production.  Prairie dogs 

reduce the carrying capacity of rangelands through consumption of forage and clipping 

vegetation to increase predator detection.  Cattle and prairie dogs exhibit a high dietary 

overlap, up to 60% in a mixed-grass prairie, which is a cause of concern for livestock 

producers (Miller et al. 2007).  Within the shortgrass steppe, Derner et al. (2006) showed 

that livestock weight gains were negatively correlated to an increase in prairie dog 

colonization, though the decrease in gains was not in proportion to the increase in 

colonization.  Numerous studies have shown prairie dogs significantly reduce herbaceous 

biomass compared with off-colony sites (Augustine and Springer 2013; Gabrielson 2009; 

Johnson-Nistler et al. 2004; Stoltenberg 2004), however, it has been argued that this 

decrease in forage quantity can somewhat be offset by an increase in forage quality on-

town (Augustine and Springer 2013; Connell et al. 2019; Coppock et al. 1983b).   
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Recently within the field of rangeland management, there has been substantial 

interest in increasing heterogeneity on rangelands. Heterogeneity in plant communities 

and vegetation structure has tremendous value in providing increased ecosystem services 

and habitat for a variety of wildlife species.  Previous research has evaluated pyric 

herbivory as a management strategy to increase plant community and structural 

heterogeneity, leading to benefits for both wildlife species and livestock production 

(Fuhlendorf and Engle 2001; Fuhlendorf and Engle 2004; Augustine and Derner 2014). 

There is also interest in utilizing livestock grazing to increase heterogeneity on the 

landscape to create a mosaic of habitats available to wildlife (Derner et al. 2009).  In the 

absence of historical disturbances on the landscape such as fire, it has been hypothesized 

that prairie dog colonies can effectively create habitat conditions for species such as 

mountain plovers, because the effects on vegetation structure are more stable in space and 

time (Augustine and Derner 2012).  Because of the large percentage of private ownership 

of grasslands, strategies involving prairie dogs to promote heterogeneity are unlikely to 

be adopted by ranchers if livestock production is negatively affected.  Therefore the need 

exists to develop a framework which can balance the potential biodiversity benefits 

associated with prairie dogs with the concerns of livestock producers. 

Prairie dogs and cattle are often portrayed as being in direct competition for 

achieving conservation and production goals.  The fact remains that the majority of 

rangelands occupied by prairie dogs are also used for livestock grazing, and the two 

species are inextricably linked together within an agro-ecological system.  While the 

debate over prairie dogs on rangelands has primarily been framed as on- versus off-town, 

and livestock versus prairie dogs, this issue would benefit from evaluation using a 
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systems perspective.  Within a given pasture, presence of both on-town and off-town 

plant communities may provide the greatest potential ecosystem benefit.  Additionally the 

scale and age at which colonies exist on the landscape will have a direct impact on the 

value of prairie dogs to provide increased plant species diversity, wildlife habitat, and 

livestock diet diversity.       

Plant communities 

One of the largest sources of concern for livestock producers regarding prairie 

dogs is the reduction in biomass on-town compared to off-town.  In our study, there was 

37% less standing crop biomass in the prairie dog only treatment compared to the cattle 

only graze treatment (Table 1.3).  Within the northern mixed-grass prairie, Johnson-

Nistler et al. (2004) reported a 60% reduction in standing crop biomass and Augustine 

and Springer (2013) reported a 63% reduction in commonly grazed species biomass on 

colonized compared to uncolonized sites.  Not all studies in the Great Plains, however, 

have documented reductions in biomass on-colony compared to off-colony.  In the 

shortgrass prairie of Colorado, Augustine and Springer (2013) reported no statistical 

differences in biomass between on-town and off-town sites.  Within the mixed-grass 

prairie sagebrush ecotone in Wyoming, Connell et al. (2019) reported no difference in 

aboveground herbaceous biomass between praririe dog colonies and sites without prairie 

dogs across three growing seasons.  While the results of these studies indicate that the 

impact of prairie dogs on vegetation production may differ between ecosystems, studies 

in the northern mixed-grass prairie suggest that significant reductions in biomass 

production due to prairie dogs are likely. 
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One of the two major drivers of biomass reduction on-town is the removal of a 

large proportion of forage by prairie dogs due to either direct consumption or through 

clipping of vegetation to aid in predator detection.  Gabrielson (2009) observed that, of 

total forage removed on-colony, 83% was attributed to prairie dogs, with the additional 

17% attributed to cattle.  Stoltenberg (2004) estimated that upwards of 90% of the forage 

disappearance due to prairie dogs during the growing season is the result of non-

consumptive clipping (Stoltenberg 2004).  The second driver of biomass reduction on-

town is plant community change.  In the northern mixed-grass prairie, colonization tends 

to increase the prevalence of grazing tolerant shortgrasses.  On-town sites are 

characterized by a decrease in C3 grasses, such as western wheatgrass and green 

needlegrass, and an increase in C4 grasses, primarily buffalograss and blue grama.  Shifts 

in plant communities on-town to those dominated by shortgrass species have been 

documented (Agnew et al. 1986; Koford 1958), and are probably attributable to the high 

grazing resistance of blue grama and buffalograss (Derner et al. 2006).  Replacement of 

mid-grasses with shortgrasses is likely a major cause of biomass reduction observed in 

this ecosystem compared with other grassland sites.  Additionally, older core areas of 

prairie dog towns are often characterized by high percentage bare ground, low vegetation 

production, and dominance by annual forb and dwarf shrub species; areas more recently 

colonized typically remain grass dominant (Guenther and Detling 2003, Coppock et al., 

1983a).  The relative proportion of prairie dog towns consisting of older core areas may 

have a more dramatic effect on biomass production, forage availability, and species 

diversity at the pasture and colony scale than simply forage removal attributed to prairie 

dogs. 
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 Many studies have focused on the impact of prairie dogs on plant communities.  

Results from this study (Table 1.5) show that significant plant community composition 

differences occurred in every year of the study for all comparisons between on-town vs. 

off-town treatments.  Though species richness is also dependent on ecological site, on-

town sites tended to be characterized by higher species richness compared with off-town 

sites within the same ecological sites (Table 1.4).   Prairie dogs have been shown to 

significantly increase plant species richness and diversity, resulting in a more even 

distribution of biomass among species on-town versus off-town (Fahnestock and Detling 

2002).  In shortgrass prairie, the total number of species, both annual and perennial, 

increased on-town versus nearby off-town sites (Bonham and Lerwick 1976).  Increases 

in plant community richness and diversity, however, may not persist and may be 

dependent on colony age.  Archer et al. (1987) reported that increases in diversity 

occurred in the first 3 years following colonization, but dropped to values similar to those 

on off-town sites after 4-6 years.  Similarly, it has been observed that total number of 

plant species was greatest on younger versus older prairie dog towns, with the reduction 

in diversity on older colonized areas the result dominance of a single dwarf shrub species 

(Coppock et al. 1983).  These results suggest that colony age has an impact on plant 

community composition, especially through a reduction in the competitive ability of 

graminoids due to increased utilization levels.    

Numerous other research studies, have focused on differences between off-town 

and on-town plant communities (e.g. Agnew et al. 1986; Archer et al. 1987; Coppock et 

al. 1983; Fahnestock and Detling 2002), and demonstrate that a significant driver in plant 

community change on the landscape is presence or absence of prairie dogs.  While these 
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on- vs. off-town contrasts are important to make, within a grassland system the greatest 

benefit to diversity is the inclusion of both within a pasture.  In our study (Table 1.6), a 

large percentage of species occur every year either on-town or off-town but not on both.  

Additionally, for the entire duration of the study (2012-2016), 46 species were only 

observed on-town and 17 only observed off-town out of a total 113 species observed 

throughout the 5 years of the study.  This highlights the importance of thinking of on- and 

off-town communities as a system, as opposed to focusing on their differences as has 

occurred in most studies. Geaumont et al. (2019), in analyzing species assemblages and 

community structure between on-town and off-town locations, revealed a definitive 

contrast in vegetation, and concluded that having both habitats on the landscape increases 

plant diversity at broader scales.  The potential benefit of having a heterogeneous 

landscape of plant communities and structures at the pasture scale may serve to improve 

both wildlife habitat and livestock forage resources. 

Wildlife 

 Large scale prairie dog eradication programs limited the expanse of prairie dog 

colonies to the point of consideration for listing under the Endangered Species Act.  

Although conservation of prairie dogs as an individual species is important, much focus 

has been placed on the ability of prairie dogs to create habitat for other species associated 

with colonies.  Protection of prairie dogs as a species has been suggested to provide a 

framework from single-species management to management of an ecological system 

(Miller et al. 1994).  In their ecological review of black-tailed prairie dogs, Sharps and 

Uresk (1990) noted that their burrowing activities and feeding habits created habitat for 

134 vertebrate wildlife species in South Dakota.  Agnew et al. (1986) reported a greater 
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abundance of rodent species on-town compared with off-town sites.  Species such as 

swift foxes, golden eagles and other birds of prey, and black-footed ferrets rely heavily 

on prairie dogs as prey (Hillman 1979; Hillman and Sharps 1979; Sharps and Uresk 

1990). Among the species most often studied as being associated with prairie dog 

colonies and dependent upon their impacts on the landscape are grassland nesting birds. 

 The importance of prairie dog colonization on grassland bird species has been 

documented for species such as mountain plover, burrowing owls, killdeer, horned larks, 

and lark sparrows, that benefit from pastures with short vegetation and ample bare 

ground, which are commonly associated with prairie dog towns (Augustine 2011; 

Augustine and Baker 2013; Geaumont et al. 2019).  Although habitat requirements differ 

from species to species, one of the potential benefits of prairie dogs on the landscape is 

an increase in vegetation heterogeneity.  Contemporary range management plans have 

focused on maximizing livestock production through the uniform use of plant 

communities, resulting in decreased vegetation heterogeneity with corresponding 

reductions in species richness and wildlife habitat (Derner et al. 2009; Fuhlendorf and 

Engle 2001).  Knopf (1996) and Reynolds and Symes (2013) suggested that all bird 

species endemic to prairies evolved within a grazed grassland mosaic ranging in gradient 

from idle areas to excessively disturbed areas.  Prairie dogs create large distinct patches 

within the grassland matrix resulting in a mosaic of plant community types (Whicker and 

Detling 1988).  Agnew et al. (1986) observed that maximum plant height was 

consistently lower on prairie dog towns compared with off-town sites.  Similarly, Connell 

et al. (2018) found that prairie dogs reduced vegetation height and visual obstruction by 

at least 54% compared with areas that had been undisturbed and those that had been 
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burned in previous years, and concluded that prairie dogs are critical drivers of variation 

in vegetation structure on the landscape.   

While the presence of prairie dogs on the landscape may provide a benefit to 

some grassland nesting birds, their impacts on plant communities may also be detrimental 

to other species of concern.  Species such as the lesser prairie chicken, upland sandpiper, 

and grasshopper sparrow rely on concealment in taller vegetation structure for nesting in 

rangelands (Derner et al. 2009; Herse et al. 2018).   Connell et al. (2018) reported that 

sagebrush (Artemesia tridentata) was reduced by 76-81% on sites with prairie dogs when 

compared to undisturbed sites.  Like prairie dogs, sagebrush is also considered a keystone 

species, and a reduction in shrub densities may negatively affect populations of sage-

obligate species such as sage grouse (Beck et al. 2012).  Although mountain plover 

density is positively correlated with prairie dog colonies, Duchardt et al. (2019) 

documented mountain plover densities decline towards the center of extremely large 

colonies as distance to colony edge exceeded 800 m. Duchardt et al. (2019) suggested 

that plovers may avoid areas that are too sparse in vegetation structure, potentially due to 

reduced insect biomass (Schneider et al. 2006).   

Results from these studies demonstrate that while prairie dogs may provide 

habitat for a large number of other species, management for prairie dogs alone may not 

be most beneficial to biodiversity at the landscape scale.  The scale at which prairie dog 

colonies exist on the landscape, colony age, and plant communities they support may 

determine the extent to which habitat is suitable for other wildlife.  At one extreme, is the 

habitat requirement and scale for the black-footed ferret, where colonies in excess of 

10,000 individuals are needed to sustain 10 breeding pairs of black-footed ferrets, and 
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colonies over 4,300 ha may be necessary for successful reintroduction (Dobson and Lyles 

2000; Jachowski et al. 2011).  However, the value of black-footed ferret habitat on prairie 

dog towns may be somewhat dependent on the plant communities present.  Jachowski et 

al. (2008) found, at large scales, areas of high vegetation cover supported greater 

densities of prairie dogs and thus better suitability for ferret habitat.  They concluded that 

management of vegetation might be able to improve habitat for ferrets by creating large 

high density areas of prairie dogs.   

It is clear from these studies that the importance of prairie dogs in supporting 

wildlife habitat in grassland ecosystems is not uniform. Not all wildlife species benefit 

from the presence of prairie dog towns, including those that require tall or moderate 

vegetation structure. They may, however, be beneficial for species requiring short 

vegetation structure (e.g. mountain plovers), have prairie dogs as a primary food source 

(e.g. black-footed ferrets), or utilize burrows and mounds (e.g. burrowing owls). Size of 

prairie dog towns can alter the benefits to some wildlife species, with very large towns of 

more limited value to plover densities and large, barren core areas of less value to black-

footed ferrets due to limited prairie dog densities compared to better vegetated perimeter 

areas. Prairie dog towns are not all the same and their vegetation is typically not uniform. 

Established prairie dog towns can include a wide variety of plant communities (Hendrix 

2019), each of which likely is of differing value to wildlife species utilizing prairie dog 

colonies.  Active management of prairie dog colonies to develop/maintain a variety of 

plant communities may be necessary to provide the greatest benefit to wildlife while 

mitigating impacts to livestock production.   
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Livestock Diets and Competition for Resources 

Although there may be large impacts on livestock production associated with 

prairie dog colonization and conservation, very little research exists where livestock-

prairie dog interactions have been specifically studied.  Understanding cattle grazing 

behavior can improve opportunities to manage prairie dog occupied pastures for better 

livestock performance and to optimize rangeland health, yet relatively few studies have 

looked at the effects and interactions of cattle grazing behavior and forage intake within 

prairie dog occupied pastures.  Guenther and Detling (2003) indicated through road side 

surveys that cattle significantly selected for prairie dog towns; however, they concluded 

that the magnitude of the effect was small and likely differed little from random use.  

Within the Chihuahua desert grasslands, researchers reported that cattle preferentially 

grazed on prairie dog colonies in the fall/winter grass dormancy season and spent most of 

their time foraging at off colony sites in the summer (Sierra-Corona et al. 2015).   In our 

study (Table 4.3), livestock had a higher preference for grazing on-town early in the 

season, but grazing behavior shifted towards off-town locations as the growing season 

progressed.  Guenther and Detling (2003) reported that there was no significant 

difference between cattle foraging rates (bites/min) between off-town and on-town sites, 

and Sierra-Corona et al. (2015) showed that prairie dog colonies can provide favorable 

grazing habitat for cattle.  We obtained similar results for forage intake rates for grass-

dominated sites on- and off-town, however intake rates were depressed for forb-

dominated sites on-town (table 4.5).  Results from these studies suggest that grass 

dominated sites on prairie dog colonies should be considered as valuable forage for 

grazing livestock by producers; however, the value of forage resources on-town is not 
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evenly distributed spatially.  Older core areas of prairie dog towns provide little to no 

value to grazing livestock, and, as colonies age, the greater proportion of older core areas 

will greatly limit forage quantity and depress forage intake rates, thus impacting livestock 

production.     

Research conducted looking at prairie dog impacts on livestock production has 

primarily focused on the impacts of prairie dogs on forage quantity and quality.  

Numerous studies within the northern mixed-grass prairie have shown prairie dogs 

significantly reduce herbaceous biomass compared with off-colony sites (Augustine and 

Springer 2013; Gabrielson 2009; Johnson-Nistler et al. 2004; Stoltenberg 2004).   Our 

study demonstrates that on-town sites grazed only by prairie dogs had 37% less standing 

crop biomass compared to off-town sites grazed by cattle (Table 1.3).  Other northern 

mixed-grass prairie studies have documented as much as 60% less biomass on-town 

compared to off-town (Augustine and Springer 2013; Johnson-Nistler et al. 2004).  

Though it is generally recognized within the northern mixed-grass prairie that prairie 

dogs reduce forage quantity, conservationists often argue that this may be offset by 

increases in forage quality.   Connell et al. (2019) reported a significant increase in crude 

protein (CP) content (1.4 x higher) for western wheatgrass samples across June, July, and 

August, and a significant increase in CP content only in June for composite samples.  

Grant-Hoffman and Detling (2006) measured plant nitrogen content in four dominant 

species, and found virtually no differences in nitrogen content between grass species on-

town and off-town in southwest Colorado.  Augustine and Springer (2013) studied 

differences in forage quality across 4 prairie dog complexes in the shortgrass and mixed-

grass prairies, and found significantly greater forage nitrogen on-town versus off-town 
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(1.41% compared to 1.08%); differences in forage digestibility were, however, site 

specific.  Johnson-Nistler et al. (2004) measured forage quality on a northern mixed-grass 

prairie, and found that plants on sites occupied by prairie dog towns were characterized 

by an increase in percentage crude protein, however they also showed a decrease in total 

standing crop crude protein when compared to off-town sites and no differences in forage 

digestibility.  In our study, CP content in cattle diets was greater in forb-dominated 

communities on-town, with virtually no difference between grass-dominated sites on- and 

off-town; forage digestibility results were inconsistent (Table 4.2).  The importance of 

highlighting these studies is to demonstrate that potential increases in forage quality are 

not universal and vary across studies, seasons, sites, local weather conditions, plant 

species, and other factors. It is also important to note that in most of these studies forage 

quality measurements were made on hand-clipped samples. In our study, measurements 

were made on forage actually consumed by cattle; several studies (Kiesling et al. 1969; 

Bredon et al. 1967; Weir and Torell 1959) have demonstrated that diets selected by cattle 

are of higher quality than the overall quality of forage on offer. Vermeire et al. (2004), 

noted that for livestock grazing prairie dog colonies, realizing the benefits of increased 

forage quality still depends on the amount of forage available, and forage quantity 

becomes more limited as colonies age and occupy greater portions of an area, potentially 

impacting livestock production.          

Cattle grazing in prairie dog occupied pastures in Oklahoma gained less weight 

annually than in pastures without prairie dogs (O’Meilia et al. 1982). While this result 

was not statistically significant, the estimated cost to the producer was between $13.76-

$23.81 per steer.  Derner et al. (2006) reported cattle weight gains were significantly 
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impacted by level of prairie dog colonization, although differences were not evident until 

colonization exceeded 30% of the pasture. Results from our study (Chapter 4) indicate 

that cattle grazing in pastures with prairie dogs had higher average daily gains 

(kg/hd/day).  Minimal differences in forage quality were observed on our study site 

between the grass-dominated off- and on-town communities that dominated the study 

area (forb-dominated communities on-town were only a minor component of the study 

area), making it difficult to make inferences regarding the influence of forage quality on 

animal performance.  Stocking rates within our study were moderate, and adjusted for the 

proportion of pasture colonized by prairie dogs, which has a direct impact of livestock 

production (kg/ha).  However, a significant quadratic effect of level of colonization (0%, 

20%, and 40%) on production was observed, suggesting that at moderate stocking rates, 

low levels of prairie dog colonization may not impact livestock production.  Within 

prairie dog occupied pastures, shifts in plant communities to those with higher forb 

diversity, greater abundance of grazing tolerant warm season grasses, and reduced 

standing dead material may provide a benefit to grazing livestock in terms of increased 

diet diversity compared with access only to non-prairie dog areas.   

Results of these studies indicate that the relative impact of prairie dogs on 

livestock grazing behavior and production is a complex issue with tradeoffs occurring 

between forage production, forage quality, level of colonization, colony age, and climate.  

Despite these tradeoffs, the potential exists to manage cattle-prairie dog systems in a way 

that minimizes reductions in agricultural production, and provides management 

opportunities to increase biodiversity and heterogeneity on the landscape.    
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Managing Livestock - Prairie Dog Systems 

 Management of rangelands is undergoing a paradigm shift, from one focused on 

even utilization of forage resources so as to maximize livestock production, to one that 

recognizes the need for heterogeneity on the landscape to benefit biodiversity and 

wildlife habitat.  Derner et al. (2009) proposed utilizing livestock as ecosystem engineers 

to achieve conservation objectives, providing land managers with the opportunity to 

reduce conflicts between conservation and livestock production goals on rangelands.  

Research has demonstrated that manipulation of timing and intensity of grazing can be 

used to improve sage-grouse populations and habitat (Monroe et al. 2017), improve 

forage quality for wintering elk (Vavra and Sheehy 1996), and maintain structural 

heterogeneity on the landscape following patch burning (Fuhlendorf and Engle 2001).  

Vavra (2005), in his review of livestock wildlife systems, concluded that if livestock 

continue to graze public lands, managers need to provide grazing systems that are both 

compatible with wildlife and produce economic return to livestock producers.  It can also 

be argued that conservation groups working in grasslands will require partnerships with 

private landowners to achieve conservation goals at broader scales beyond public lands.  

In cases of single species management, targeted grazing systems can be used to meet 

specific habitat needs. The development, however, of a management framework that 

incorporates livestock production and development of habitat for wildlife, such as prairie 

dogs, has the potential to enhance and maintain whole ecological systems.  Key to 

maintaining livestock - prairie dog systems is actively managing both species to reduce 

competition and prevent degradation.   
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From a livestock management perspective, reducing overgrazing may help to 

either prevent initial colonization or limit the expansion of existing prairie dog towns.  

Licht and Sanchez (1993) showed that prairie dog colonies were associated with cattle 

point attractants (watering tanks & supplemental feed sites), which are areas that 

typically see heavy use by livestock.  In cases with a high proportion of prairie dog 

colonization within a pasture, stocking rates which do not account for forage removal 

attributed to prairie dogs may result in overgrazing and subsequently accelerate prairie 

dog expansion.  Research has shown that taller vegetation height associated with deferred 

grazing might be an effective tool in discouraging prairie dog colony expansion (Cable 

and Timm 1987).  Sites with shorter vegetation height provide much more suitable 

habitat for prairie dogs, as was pointed out by Truett et al. (2001) in their 

recommendations for selecting sites for translocating prairie dogs. Land managers 

concerned with encroachment or expansion of prairie dogs into uncolonized areas of 

pastures would be prudent to minimize heavy livestock grazing.  

From a prairie dog management perspective, numerous methods exist for 

controlling or limiting prairie dog colonization, including poisoning.  In an economic 

evaluation of prairie dog control in South Dakota, Collins et al. (1984) found that the cost 

of controlling prairie dogs was higher than the value of forage gained for livestock.  

Though not evaluated in the study, they suggested that a control program may be 

economically feasible if used to prevent the spread of prairie dogs.  Hendrickson et al. 

(2016) suggested that the impact of prairie dogs on livestock production could be 

minimized if colonies were confined to less productive ecological sites.  Hendrix (2018), 

in developing state and transition models for prairie dog towns within Custer State Park, 



134 
 

found older core areas were considered undesirable for management due to losses of 

native grasses, increased bare ground and potential for erosion and exotic species 

invasion; older core areas also required large and typically expensive inputs to restore 

sites to a more desirable state.  Chronic overgrazing is detrimental because it reduces 

primary productivity, impedes plant growth, and alters species composition (Krausman et 

al. 2009).  Effective management of prairie dogs should seek to limit sites from becoming 

highly degraded, which in turn may help to limit the impact on plant communities, 

wildlife habitat, and livestock production.                

The scale and age of colonies will likely play a role in evaluating compatibility 

between cattle and prairie dogs within an ecosystem.  Pastures which contain smaller 

proportions of prairie dogs may be able to provide benefits to biodiversity and wildlife 

species.  For example, Geaumont et al. (2019) found that the presence of prairie dogs in 

pastures grazed by cattle was more important to avian communities than level of prairie 

dog occupation.  The importance of this study, then, demonstrates that while conservation 

of species such as the black-footed ferret may require vast colonies of prairie dogs, 

benefits to plant and bird biodiversity can still be realized within pastures containing 

smaller proportions of prairie dog towns.  Low levels of colonization may not impact 

cattle production, and benefits may also be realized to grazing livestock through 

increased diversity in diet selection.  Relegating a relatively small area (<20%) of a 

pasture to prairie dogs may be a more palatable option to land managers concerned over 

balancing wildlife conservation with losses in livestock production.  
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