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ABSTRACT 

EVALUATING GREEN SOLVENTS AND TECHNIQUES IN EXTRACTION 

METHODS 

SHANMUGAPRIYA DHARMARAJAN 

2019 

Of all analytical techniques, extraction is a huge solvent-consuming process that 

could adversely impact the environment. Use of petroleum-based solvents for extraction 

of oilseeds is still a common practice, despite the potential fire hazard and the toxic water 

pollution. The rising awareness of chemical activities created immense need for 

sustainable development schemes and strategies that should address the environmental 

impact without compromising the yield. In the course of developing green extraction 

techniques, automation, alternative solvents, and selective extractions are the growing 

trend. This dissertation aligns with that progress by surveying green solvents, comparing 

their performance during oil extraction, examining a prototype automated extraction 

system, and studying the efficiency of selective adsorbents. 

Green solvents are of great interest as they are sourced from renewable feedstock 

and pose little or no danger to the environment. But their application in analytical 

chemistry is not widely appreciated. This dissertation aimed to study the extraction 

efficiency of green solvents during accelerated solvent extraction of soybean oil. Five 

green solvents, 2-methyltetrahydrofuran (2-MeTHF), alpha-pinene, cyclopentyl methyl 

ether (CPME), ethyl lactate, and t-butyl methyl ether (TBME), were chosen based on the 

literature, solubility, and viscosity. Using the GSK solvent-scoring system obtained from 

literature, the ecological and economic impact of these solvents were roughly identified 



xix 

with respect to n-hexane. As the solubility of analytes can influence the initial part of the 

extraction, relative solubility of triglycerides (of the major soybean fatty acids such as 

linoleic acid, oleic acid, palmitic acid, and stearic acid) in the green solvents was 

theoretically predicted using a computer program. Also, the viscosities of the green 

solvents at different temperatures was investigated prior to the extraction study.  

Soybean, the most dominant oilseed in the market with rich protein and oil 

content, was used as the sample for the extraction study. As the initial analysis indicated 

that the lower size particles give greater oil recovery, soybean particles of average 

diameter 513 µm were chosen for the elaborate extraction evaluation. For a small-scale 

fast extraction of analytes from solid and semisolid samples, accelerated solvent 

extraction (ASE) is a powerful and sophisticated device. This fully automated extraction 

system uses very little solvent at elevated temperature and pressure and is able to run 

several queued experiments at programmed conditions. To rely on the results from ASE 

of soybean oil using green solvents, the hot-ball model was used as a validating tool. The 

hot-ball model gives a theoretical extraction profile for an ideal spherical matrix that can 

be used to evaluate and validate any experimental extraction results.  

As diffusion plays a major role in the kinetics of extraction, comparing the 

diffusion coefficient of green solvents was the key approach. Upon assessing the 

performance of green solvents with respect to percent oil recovery, CPME demonstrated 

the highest diffusion coefficient and highest % recovery for soybean oil. A remarkable 

99% recovery was attained within 30 min, which is 17 times faster than n-hexane. These 

results suggest CPME as a promising green alternative solvent for soybean oil extraction.  
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The second part of this dissertation examines a new green extraction system. A 

prototype automated extractor from CEM was investigated in terms of its extraction 

efficiency. The knowledge obtained from previous ASE extraction studies were used to 

gauge the capabilities of this instrument, and the hot-ball model was used to validate the 

results.  

Adsorbents are a significant part of the post-extraction cleanup process and 

studying their efficiency could reveal their ability to green the analytical techniques. The 

mechanism of adsorption is complex, and it varies with each adsorbate-solvent-adsorbent 

system. The last part of the dissertation aimed to investigate the oil adsorption efficiency 

of five adsorbents – silica, florisil, activated carbon, alumina and diatomaceous earth – 

during ASE extractions at different temperatures and concentration. Results showed that 

activated carbon has remarkable tendency to retain oil, at low temperatures and high 

adsorbent concentrations.  

 



1 

1 INTRODUCTION AND BACKGROUND 

1.1 Green Analytical Chemistry 

The concept of sustainable development and protection of the environment 

emerged in the scientific community in the late 20th century. To address the increasing 

concern about the impact of chemical activities on environment, Anastas and Warner 

formulated the 12 principles to define green chemistry in 1998.1 As the awareness grew, 

the responsibility to practice environmental friendly chemistry spread across all areas in 

the discipline. The key principles of green chemistry, which insist a contribution from 

analytical chemistry, include prevention of waste, use of non-toxic substances, use of 

safer solvents and auxiliaries, design for energy efficiency, reduction of derivatives, real-

time analysis for pollution prevention, and inherently safer chemistry for accident 

prevention.2-3 Thus the demand for developing green analytical methodologies shaped at 

both the industrial and the laboratory scale.  

To meet the increasing needs in everyday life, a rapid expansion of manufacturing 

technology became unavoidable. But by employing the green chemistry principles in the 

designing of these technologies, an exploitation of the environment can be avoided. As 

the size of industrial production goes up, the amount of chemicals used in the analytical 

steps such as extraction, purification, and identification would also increase. To curb 

generating large amount of waste, a modification of existing analytical technologies 

incorporating green measures is necessary. Identifying the ways to cut down chemical 

wastes, and using of safer chemicals are the two significant efforts that analytical 

chemists can definitely contribute.3 This initiative toward environmental protection set a 

stage for a new area of research called “green analytical chemistry”.  
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1.1.1 Trends in Green Analytical Chemistry 

The primary objective of green analytical chemistry is to not only lower the 

environmental impact of the analyses, but also to provide the information crucial to make 

decisions regard to environmental and human health. To meet these objectives, new 

innovative models should be introduced in the two main schemes of analytical chemistry, 

the sample preparation and the signal generation. 

In recent years, the trends in green analytical chemistry took a direction toward 

advancing the sensitivity of analytical devices to determining analytes at low 

concentration in complex sample matrix, particularly in environmental analysis.4 If fast, 

precise and accurate result at ppb level is the goal, this may not be achieved without a 

progression in developing of new sample preparation procedures. The traditional sample 

preparation methods consist of operations such as preservation and pretreatment of the 

sample, calibration and preparation of equipment, extraction of analytes from the sample 

matrix, separation of the extract from undesired co-extracts, removal of solvent, drying 

and further purification before chromatographic analysis. These analytical steps are 

crucial in testing of toxic substances in food, plants and environmental samples.5 But 

ironically, this procedure generates greater toxic substances than what is being tested. 

Many efforts were made in recent years to automate some of these tedious and exhausting 

procedures in order to maximize the reliability, and at the same time minimize the use of 

chemicals.6-8   

1.1.2 Solvent Reduction and Replacement  

Solvent are used in large quantities especially in the purification stage, as they 

play a vital role in increasing the recovery. A study reports that out of all types of 



3 

materials used to manufacture an active pharmaceutical ingredient, non-aqueous solvents 

constituted 80-90% by mass.9 Until the advent of green chemistry, the impact of lavish 

solvent usage on the environment had been underestimated. Solvents represent about 75-

80% of harmful impact on environmental health out of all materials used in 

pharmaceutical companies in 2005.10-11 The solvent market was one of the profitable 

areas for petroleum industries, despite the unsustainable nature of petroleum based 

solvents. The process of fabricating solvents is energy consuming in every step, which 

itself causes damage to the environment. A wide range of techniques have been 

introduced in the last decade to reduce the use of solvents in small scale analytical 

processes (discussed in section 1.2). The scaling up of these techniques to an industrial 

level is still a goal.3  

The choice of solvent is another important factor influencing the percent recovery 

in sample preparation steps. A solvent neither participates in reaction with the 

components of sample nor is it directly responsible for the composition of the extract, but 

its physical properties such as polarity, viscosity, and boiling point are crucial in carrying 

out an extraction. Thus unnecessary use of environment-damaging solvents would 

devalue the fortune of extracts obtained in the process. Though hydrocarbon solvents are 

cheap and have the ability to dissolve a wide variety of oils, their low water solubility 

poses danger to aquatic lives.12 The consequence of using undesirable solvents can be 

eliminated by opting for green solvents. Around the world, a growing number of inquiries 

on harmful solvents force many countries to restrict the application of widely used 

solvents such as toluene, dichloromethane, chloroform, DMF, etc.13   
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Among the several methods developed to define and index green solvents, the one 

based on the net cumulative energy demand (CED) of solvents is common. The 

difference between the energy required to produce a solvent and the energy reclaimed at 

final stage of solvent is used to calculate the CED of the solvent.14 Other considerations 

in assessing greenness of solvents include fire and explosion safety, toxicity to humans, 

water and air hazard, reaction and decomposition, etc. However, users do not always 

entail the selection tools, but some basic understanding of solvents can be used to choose 

an alternative solvent with minimum safety concern, low toxicity and little impact on the 

environment. Solvents sourced from renewable feedstock are promising candidates.15 

Many unconventional bio-based solvents were incorporated in recent solvent selection 

guides, as discussed in section 2.1.2. Efficiency of these green solvents in analytical 

techniques is not quite recognized, and this is a fresh area of research.     

 

1.2 Green Extraction Techniques 

The reduction of chemical wastes in sample preparation is a cornerstone of green 

analytical chemistry. As new technologies rapidly developed in the new millennium, the 

already widespread green initiatives carefully utilized them to improve sample 

preparation methods. Miniaturization and automation of extraction techniques 

remarkably increased the precision and accuracy, and at the same time reduced the 

amount of sample, solvent and energy consumption.8 Some other advantages along this 

line include effective use of labor, reduced exposure to dangerous substances, preventing 

accidents at workplace, fewer consumables, better waste management, and reduction of 

residue accumulation. A brief account of the promising green extraction techniques is 
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discussed in this Introduction. In Figure 1.1 relative contribution of green extraction 

techniques showed that assisted or accelerated extraction techniques contributed the most 

(43%). The other extraction techniques such as solid-phase extraction techniques, 

microextraction techniques and alternative solvent techniques contributed 29%, 22% and 

6% respectively. 

 

Figure 1.1 Relative contribution of green extraction techniques in recent literature based 
on the data reported by Berton et al.8 

1.2.1 Assisted or Accelerated Extraction Techniques 

In order to increase the mass transfer of analytes into a solvent of low volume, the 

physical condition of the medium is altered in the assisted or accelerated extraction 

techniques. Many recent reports provide evidence that the extraction efficiency can be 

enhanced with the aid of high pressure, ultrasound and microwave.8 

Pressurized fluid extraction (PFE) or accelerated solvent extraction (ASE) is a 

commonly used techniques for environmental, food and biological samples.16-19 

43%

6%

22%

29%

Assisted or Accelerated Extraction Techniques (43%)

Alternative Solvent Techniques (6%)

Microextraction Techniques (22%)

Solid-Phase Extraction Techniques (29%)
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Compared to the conventional open vessel Soxhlet extraction (SE), the solvent in ASE 

extraction cell reaches high temperature and pressure that increases the solvent 

penetration, sample solubility, and analyte diffusion rate. ASE is more automated and a 

much safer extraction technique that requires only about 30-35 mL of solvent for 10 

grams of sample, and most extraction can be done in 30 min.17 In this dissertation, the 

majority of extraction study is conducted using ASE. The option of carrying out in-cell 

cleanup is an addition advantage of ASE that is discussed in detail in section 4.1.2.  

Microwave assisted extraction (MAE) is another prominent green extraction 

techniques that reduces solvent usage to as low as 30 mL per 10 grams of sample.20 

Microwave radiation generates heat directly at the molecules of polar solvents, which is 

more energy efficient than using of heating chambers. The increased temperature in 

sealed vessels elevates the pressure, which subsequently lowers the viscosity of solvent 

and promotes analyte diffusion. In case of non-polar solvents, a microwave-active polar 

counterpart is mixed to receive the radiation. Some common solvent mixtures for MAE 

are toluene-methanol, hexane-acetone, cyclohexane-isopropanol, and xylene-

dichloromethane.21 22 

Ultrasound assisted extraction (UAE) employs high-energy ultrasound to 

disintegrate and disperse the solid sample into liquid solvent. As this strategy increases 

the surface-to-volume ratio to assist analyte extraction, a very low volume of sample is 

sufficient in most cases.23 A focused ultrasonic probe immersed in solution is often used 

to increase the concentration of soundwaves. This method was reported for extraction of 

toxic substance (eg., polybrominated diphenyl ethers) in environmental and biological 

samples.24 25 
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1.2.2 Alternative Solvent Techniques:  

Supercritical fluid extraction (SFE), cloud point extraction (CPE), and ionic 

liquids (ILs) are some of the alternative solvent techniques that fit in the concept of green 

sample preparation methods. SFE uses solvents at temperature and pressures above their 

critical points, which ultimately increases the diffusivity of those solvent for better 

extraction efficiency. Supercritical carbon dioxide, is a widely used solvent for this 

purpose.26 CPE utilizes the amphiphilic nature of surfactants to abstract analytes that are 

not readily soluble in water, by micelles formation.27 ILs, such as 1-octyl-3-

methylimidazolium hexafluorophosphate, possess high thermal stability, and low vapor 

pressure, and ability to dissolve wide range of analytes. The last two alternative solvent 

techniques were barely studied, but existing reports indicate that a proper selection of 

solvents could notably increase the extraction efficiency.28  

1.2.3 Microextraction Techniques  

Liquid-phase microextractions (LPME) are suitable for aqueous samples, where 

an extracting organic solvent and a dispersing solvent are introduced into liquid phase 

sample to create a microemulsion. Due to the increased surface contact, increased mass 

of analyte from the aqueous sample matrix is transferred to the organic solvent. This 

method was reported to work best with environmental water samples, semi-solid 

sediments, milk and plant, and animal tissues.29-30 

1.2.4  Solid-Phase Extraction Techniques  

Solid-phase extraction (SPE) techniques use a multilayer column filled with 

sorbents for the selective extraction of analytes from the sample dissolved in eluent. 

Dispersive solid-phase extraction (d-SPE) uses sorbents that can be dispersed into the 
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sample solution for increased surface contact, and selective extraction. This method is 

commonly employed in QuEChERS (more detailed discussion is given in section 4.1.1). 

Solid-phase microextraction (SPME) is a solventless technique that uses sorbent coated 

thin-silica fiber to adsorb analytes from sample.  

1.2.5 Previous Works Done in Our Research Lab 

Our research group has been engaged in exploring and comparing different 

extraction techniques for past several years. Previously, we had investigated the 

efficiency and greenness of different extraction methods such as Soxhlet, accelerated 

solvent extraction, microwave assisted extraction, ultrasound assisted extraction, and 

Soxtec (automated Soxhlet).31 Table 1.1 shows the comparison of energy score, 

extraction temperature, solvent volume, and typical extraction time of the different 

extraction methods. With smallest volume, extraction time, and energy, the performance 

of ASE and MAE stand out among the other modern techniques.  

Table 1.1 Comparison of Soxhlet, Soxtec, ASE, MAE, and ultrasound for greenness. 
(Table adapted from Driver 2009)31 

 
 

The application of ASE for the extraction of beeswax from honeycomb, cappings, 

slumgum, and filter cakes using supercritical CO2 was investigated.32  We had also 

investigated the effects of temperature, pressure, and time on extraction yield, and the 



9 

efficiency of common adsorbents such as silica gel, diatomaceous earth, florisil, alumina 

oxide, and activated charcoal in discoloring of extracted beewax.32  

A list of extraction methodology was compared with a viewpoint of complexity 

and selectivity in extraction (Figure 1.2).33 Pressurized fluid extraction (PFE or ASE) is a 

solvent-based technique, where polarity match between the analyte and the extraction 

phase is the key to selectivity.  

 

Figure 1.2 Comparison of extraction methods based on the complexity and selectivity. 
(Image obtained from chromacademy.com)  

ASE can be used for complete extraction of various classes of compounds. This 

technique is accepted by US EPA, US Contract Laboratory Program, US ASTM, and in 

other countries like China and Germany. Also, methods using ASE for determination of 

polycyclic aromatic hydrocarbons and chlorinated hydrocarbons have been validated in 

National Oceanic and Atmospheric Administration (NOAA).34 
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1.3 The Objectives of this Study 

 The overall objective of this dissertation is a continuing effort of exploring green 

analytical techniques. The main focus is to study the performance of green solvents and 

adsorbents during a seed oil extraction using automated solvent extraction systems. Also, 

the experiments were designed to understand the effect of diffusion in small scale and 

short-time extractions.  

The specific objectives are summarized as 

(i) Compare the extraction efficiency of green solvents using a green 

extraction technique.  

(ii) Propose green alternatives to the commonly used hydrocarbon solvent n-

hexane for soybean oil extraction.  

(iii) Validate the green solvent extraction technique using the hot-ball model 

and diffusion study. 

(iv) Explore and examine a prototype automated extraction system. 

(v) Compare the oil adsorption efficiency of a few common adsorbents 

during accelerated solvent extraction. 

 



11 

2 COMPARISON OF GREEN SOLVENTS DURING CHEMICAL 

EXTRACTION OF SOYBEAN OIL 

2.1 Introduction 

2.1.1 Accelerated Solvent Extraction 

Accelerated solvent extraction (ASE) uses small volume of organic solvents at 

high pressures and temperatures to extract analytes from samples. ASE is one of the 

modern extraction techniques that have been developed in last two decades to replace the 

classical ways of extractions. Various techniques like automated Soxhlet extraction,35 

microwave extraction,36 sonication extraction,37 supercritical fluid extraction,38 and 

accelerated solvent extraction have been developed to reduce both the volume of solvent 

required and time of sample preparation.34   

Extraction with ASE is performed at elevated temperature (50-200 ºC) and 

pressure (500 – 3000 psi) conditions for short times (5-10 min). A sample cartridge 

packed with solid or semisolid sample is preheated and filled with extraction solvent 

under the programmed extraction conditions. A compressed gas is used to flush the 

solvent that contains extracted analyte from the cartridge into a collection vessel.39 

Unlike the Soxhlet, where the solvent temperature is below the boiling point, in ASE the 

solvent temperature is maintained above the atmospheric boiling point. As the sample 

cell in ASE is pressurized, the solvent remains in liquid state even above its boiling point.  

Thus the volume of solvent required for ASE extraction is relatively small (about 90% 

less than Soxhlet extraction).40 This pressurized fluid extraction method takes less time to 

recover maximum extractable analyte that is due to the 1) solubility and mass transfer 

effect, and 2) disruption of surface equilibria.  
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Figure 2.1 Schematic diagram of accelerated solvent extraction (ASE) system describes 
flow of pressurized solvent during the extraction process (image obtained from Richter et 
al 1996)39 

 

Figure 2.2 Image of Dionex™ ASE™ 350 Accelerated Solvent Extractor used in this 
research work. (Image obtained from ThermoFisher Scientific). 
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Accelerated solvent extraction is a trademark name of an instrument 

manufactured by Dionex for pressurized fluid extraction. Figure 2.1 shows the schematic 

diagram of an ASE unit that describes the flow of pressurized solvent through the 

extraction cell and the flow of extract into a collection flask. Figure 2.2 shows the actual 

model (Dionex™ ASE™ 350) that was used in this research work. It consists of 

extraction cells that are heated in an oven and pressurized with solvent pumped from a 

reservoir using compressed gas. The cell is rinsed after extraction and the solvent with 

extract is collected in a collection vial.  

The enhanced performance of ASE over the other extraction techniques was 

reported by Richter et al.39 The use of elevated temperature increases the ability of 

solvent to dissolve the analyte.41 It is difficult to obtain the relationship between the 

temperature and the diffusion rate for a multicomponent analyte, but in general, the 

diffusion rate increases with the temperature.  The introduction of fresh solvent during 

the static extraction increases the concentration gradient, and hence enhances the mass 

transfer (Fick’s first law of diffusion).42 This will result in an escalated extraction rate.   

In this research work, we used the Accelerated Solvent Extraction to compare the 

efficiency of different green solvents in extracting oil from soybean sample. The 

operating conditions of ASE was optimized for the green solvents and the soybean 

sample.    
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2.1.2 Green Solvents 

The goal of green chemistry is to lower the effect of chemicals on human health 

and practically avoid contamination of the environment. This should be achieved through 

adapting our classical techniques to alternative, environmentally friendly reactions or 

extraction media and at the same time make effort to increase reaction or extraction rates.  

Solvents have received great attention under the growth of the green chemistry 

field. Though solvent is not an active part of composition of a reaction product and does 

not directly alter the mechanism of a chemical process, a large volume of solvent is 

normally used in extraction or purification steps.43-45 Because solvents have no effect on 

the function of the chemical processes, it is unnecessary to use toxic or environmentally 

hazardous solvents.14 While less polar solvents, like hydrocarbons, possess the ability to 

dissolve a wide variety of oils in extraction and separation processes, their low water 

solubility leads to bioaccumulation and aquatic toxicity.12 Common solvents like 

dichloromethane, chloroform, benzene, and toluene are suspected of being carcinogenic 

to humans and lead to ozone depletion.46-47 There are several restrictions from 

“Registration, Evaluation, Authorization and Restriction of Chemicals” (REACH) of 

Europe on the chemicals like toluene, chloroform, and dichloromethane.48 Amide- 

containing solvents have high polarity and are used in reactions where a wide range of 

reagents need to be dissolved. Amide-containing solvents like N,N-dimethylformamide 

(DMF), N,N-dimethylacetamide (DMAc), and N-methylpyrrolidinone (NMP), as well as 

certain hydroxyethers and chlorinated solvents have fallen under scrutiny because of their 

environmental risk factors.  To evade these restrictions, replacement strategies look for 

solvents of close structural similarity that are not yet covered by the regulatory affairs, 
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ignoring the fact that these replacements could often have same health and environmental 

hazards.  

Categorizing solvents based on the regulatory assessment and the environment, 

health and safety (EHS) profiles requires a sophisticated selection tool. The approach of 

replacing conventional solvents with greener bio-based organic solvents should also 

address the performance of solvent, and the energy demand in production and implication 

of green solvents. The net cumulative energy demand (CED) in producing a solvent is the 

difference in the amount energy required to produce the solvent and the amount of energy 

recovered at end in various ways (incineration, recycling, etc.,).49 Figure 2.3 shows the 

incorporation of the energy demand and the EHS scores of different solvents that will 

give a big picture of the impact of solvents.  

 

Figure 2.3 Chart combines the environment, health, and safety (EHS), and cumulative 
energy demand (CED) of some common solvents. (Image obtained from Byrne et al. 
2016)14 
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GlaxoSmithKline (GSK) has published different versions of a solvent selection 

guide with a detailed breakdown of different EHS scores.50-51 This guide serves the 

purpose of identifying and comparing alternatives to common but hazardous solvents for 

medicinal and other scale-up chemical laboratories. The selection guide uses a scale of 1 

to 10 to estimate the life-cycle environmental impact relative to the other solvents in the 

dataset. It also incorporates factors like waste generation, health effects, flammability 

/explosion, reactivity, and stability of the solvents. Table 2.1, adapted from the GSK’s 

selection guide, shows the scores of some common solvents along with the some less 

common greener solvents that are used in our research. Greater numbers in a scale of 1 to 

10 indicate the greenness of the solvent.  

Table 2.1 GSK scores for the some common organic solvents and the solvents we used in 
our research. (Data obtained from Henderson et al 2011)51 

Solvent  MP ºC BP ºC Waste Environment 
Impact Health Flammability 

/ explosion 
Reactivity 
/ stability 

Life 
cycle 
score 

Water 0 100 4 10 10 10 10 10 
Ethanol -114 78 3 8 8 6 9 9 
Methanol -98 65 4 9 5 5 10 9 
Ethyl acetate -84 77 4 8 8 4 8 6 
Acetone -95 56 3 9 8 4 9 7 
Toluene -95 111 6 3 4 4 10 7 
Benzene 6 80 5 6 1 3 10 7 
Diethyl ether -116 35 4 4 5 2 4 6 
Tetrahydrofuran -108 65 3 5 6 3 4 4 
Dimethyl Formamide -61 153 4 6 2 9 9 7 
Acetonitrile  -45 82 2 6 6 6 10 3 
Carbon tetrachloride  -23 77 4 5 3 4 10 7 
Dichloromethane -95 40 3 6 4 6 9 7 
Chloroform -64 61 3 6 3 6 9 6 
n-hexane -95 69 5 3 4 2 10 7 
2-Methyltetrahydrofuran -137 78 4 5 4 3 6 4 
alpha-pinene -62 157 NA NA 4 7 NA NA 
Cyclopentyl methyl ether -140 106 6 4 4 5 8 4 
Ethyl lactate -23 154 7 5 4 8 10 NA 
t-Butylmethyl ether -109 55 4 5 5 3 9 8 

 
In this dissertation these five less common but greener solvents were selected to 

study their efficiency of extraction of oil from a natural product (soybean). Table 2.2 

shows the structure and properties of the five green solvents used in our research.   
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Table 2.2 List of green solvents (along with n-hexane) used to study the extraction of 
soybean oil and the physical properties of those solvents.52-53 

Solvents CAS 
Molecular 

Weight 
(g mol-1) 

Boiling 
Point 
(ºC) 

Flash 
point 
(°C) 

Viscosity 
at 25 ºC 

(Cp) 

Energy to 
Evaporate 1 kg of 

Solvent (kW·h) 

n-hexane  
110-54-3 86.16 69 -23 0.32 

 0.121 

O

2-Methyltetrahydrofuran  

96-47-9 86.13 78 -12 0.56 0.126 

alpha-Pinene  

 
80-56-8 136.24 157 32 1.32 0.144 

O
Cyclopentyl methyl ether  

5614-37-9 100.16 106 -1 0.55 0.132 

OH

O

O

Ethyl lactate  

97-64-3 118.13 154 46 2.44 0.014 

O
t-Butylmethyl ether  

1634-04-4 88.15 55 -28 0.35 NA 

 

(a) 2-Methyltetrahydrofuran (2-MeTHF):  

Typical ether solvents like diethyl ether, tetrahydrofuran (THF), 1,2-

dimethoxyethane (DME), and 1,4-dioxane have been widely used in synthesis and 

extraction for a long time because of their high solubility for a wide range of organic 

compounds. However, their characteristics like low boiling point, easy peroxide 

formation, and poor solvent recovery make them unfit for green chemistry.54 

 2-MeTHF is a green alternative to dichloromethane (DCM) and tetrahydrofuran 

(THF), as it is derived from the natural renewable resources like bagasse and corncobs. 2-

http://www.sigmaaldrich.com/catalog/search?term=1634-04-4&interface=CAS%20No.&lang=en&region=US&focus=product
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MeTHF is an aprotic polar solvent and has similar physical properties of toluene. Also, it 

has a low peroxide-formation ability compared to THF. Although, 2-MeTHF is 

structurally similar to THF, it has a higher boiling point (78 ºC) than THF (65 ºC) that 

makes it a suitable solvent for high temperature reactions and extractions. Also, 2-

MeTHF has a low heat of vaporization, which prevents the loss of solvent during reflux 

and saves energy during the distillation.53  

In an evaluation of green solvents for the substitution of n-hexane in the 

extraction of natural pigments, Varon et al used computer simulation to predict the 

physiochemical properties and solubility for various solvents, and then performed solid-

liquid extraction to compare the efficiency of extraction.55 2-MeTHF was reported to give 

better yield than n-hexane in the extraction of carotenoids from carrot. It was shown that 

2-MeTHF had a higher percent recovery of 80% compared to n-hexane, 68%.  This 

vepromising report revealed that green solvents like 2-MeTHF has greater potential to 

replace n-hexane for the extraction of natural products. Moreover, the energy of 

evaporation of 1 kg of 2-MeTHF was reported to be 0.126 kW h, which is very close to 

the energy of evaporation of n-hexane, 0.121 kW h. In this dissertation, the solubility and 

diffusion coefficient of 2-MeTHF for the extraction of soybean oil were calculated and 

compared with other solvents. 
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(b) alpha-Pinene:  

alpha-Pinene (or α-Pinene) is a terpene and possess a bicyclic hydrocarbon 

structure with two isoprene units. Terpenes are a large class of natural organic 

compounds found chiefly in citrus fruits, conifer resins, and in many other plants with 

different physical and chemical properties. Limonene, linalool, carvone, pinene, carotene, 

lycopene, and cymene are some of the well-known terpenes.  Some of the terpenes are 

viable alternatives to petroleum solvents like n-hexane, as they are derived from low-cost 

agricultural waste, low toxic, and biodegradable.52  

Pinenes (both α and β-pinene) are extracted from pine resin or pine oil. Pinenes 

are used to produce insect repellant, varnishes, and solvents to thin paint. Pinenes are 

now becoming valuable solvents, as their solubility-related properties are very similar to 

n-hexane, and likely behave the same way in dissolving natural oils in extraction 

processes. However, since pinene has slightly higher dielectric constant, it exhibits more 

dissociating power than n-hexane. Considering the safety point of view, alpha-pinene has 

higher flash point (32 ºC) compared to n-hexane (-23 ºC), so it is less flammable.53 The 

viscosity and density of alpha-pinene is greater than n-hexane, which can be a setback in 

extraction efficiency. Also, it may require more energy consumption related to recovery 

of solvent, as the boiling point of alpha-pinene is 157 ºC. α-Pinene has been reported to 

be used in extraction of lipids from yeast53 and oil from microalgae.52 But to our 

knowledge, there is no literature that reports a comparison of extraction efficiency of α-

pinene with n-hexane and other green solvents for soybean oil extraction.   
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(c) Cyclopentyl methyl ether (CPME):  

Cyclopentyl methyl ether (CPME) offers a green solvent for chemical processes 

by not only decreasing the solvent waste, but also laboratory safety due to CPME’s 

unique composition which resists the formation of peroxides.54 This makes CPME more 

stable than THF for longer times, and reduced the frequency of peroxide testing. Also, 

because CPME is more hydrophobic and has a limited miscibility in water (1.1g/100g at 

23°C), it provides a greater selectivity over THF in many synthesis processes. CPME has 

a higher boiling point (106 ºC) compared to THF that offers a higher reaction temperature 

and reduces the reaction time. With a low heat of vaporization, loss of solvent can be 

avoided during the reflux process and saves energy during the recovery. These properties 

contribute to green chemistry through a reduction in the total amount of solvents used, 

waste solvent created, and carbon dioxide emissions produced. CPME can reduce costs 

due to its high recovery rate (90%). Wide synthetic utility and a detailed toxicity study 

suggest CPME as a green and sustainable solvent of choice for modern chemical 

transformations.56 CPME can be efficiently manufactured at low cost by the methylation 

of cyclopentanol or through an addition reaction of methoxide to cyclopentene, these two 

methods provide a good operating condition and better atom economy. 

CPME has been reported to give better yield than n-hexane in the extraction of 

carotenoids from carrots. In a study of green solvents for the substitution of n-hexane in 

the extraction of natural pigments, Varon et al used computer simulation programs to 

predict the physiochemical properties and solubility for various solvents, and then 

performed solid-liquid extraction to compare the efficiency of extraction.55 It was 

reported that CPME had a percent recovery of 95%, compared to 68% for n-hexane.  This 
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promising report revealed that green solvents like CPME have greater potential to replace 

n-hexane for the extraction of natural products. Moreover, the energy of evaporation of 1 

kg of CPME was reported to be 0.132 kWh, which is very close to the energy of 

evaporation 0.121 kW h for n-hexane.  

 

(d) Ethyl lactate:  

Ethyl lactate is a significant lactate ester. Since lactic acid is a common functional 

group in many natural metabolites in biological systems, ethyl lactate is not a potential 

health risk, because it readily converts into alcohol and lactic acid in a metabolic 

hydrolysis. The low toxicity of ethyl lactate, even in high concentration, is reflected in 

the FDA approval in food flavors and pharmaceutical products.57  The environmental 

impact of ethyl lactate is very low, as it can fully biodegrade in a short time. This 

environmentally benign green solvent completely biodegrades into CO2 and water. The 

vapor of ethyl lactate itself has no impact on ozone depleting. Ethyl lactate possesses a 

high flashpoint that makes it safe to work with. Ethyl lactate is synthesized from 

renewable low-cost agricultural waste (carbohydrate products), therefore industrial 

production of this green solvent does not require a petrochemical source.  This reduction 

of energy and cost of production favors the replacement of traditional solvents by ethyl 

lactate for large- scale extractions.  

Literature sources show that ethyl lactate is currently used for cleaning purposes, 

manufacturing of electronic devices, paint, and pharmaceutical products.58 The polarity 

of ethyl lactate is moderate that makes it miscible in both hydrophilic and hydrophobic 

liquids. The specific topography of ethyl lactate allows it to form hydrogen bonds with 
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other solvents.58 This hydrogen bond donor and acceptor property offers an excellent 

solvent property, and recent studies report an excellent efficiency of ethyl lactate in the 

extraction of natural products from plant matrices.57  

The physical properties of ethyl lactate show that it has a moderate viscosity. This 

could be a critical consideration in estimating its extraction efficiency, but it can be 

suitable for different types of industrial applications.59  

 

(e) t-Butyl methyl ether (TBME):  

t-Butyl methyl ether is considered as a green solvent, for its high score in 

preventing waste, environmental hazard, health hazard, reactivity, and life cycle. TBME 

has a relatively low boiling point (55 ºC) compared to n-hexane. So, in the solvent 

recovery standpoint, TBME consumes less energy than n-hexane. Although TBME is 

flammable, it is still a potential alternate to other more highly flammable ether solvents 

such as diethyl ether and carcinogenic ether solvents such as 1,4-dioxane, and 1,2-

dimethoxyethane.  

TBME has been used for extraction of lipids from cells and tissues.60 The 

advantage of using TBME in place of chloroform for extraction of lipids from cells was 

reported that it has faster and cleaner recovery due to the low density and viscosity of 

TBME. Furthermore, compared to other ether solvents, TBME is relatively more stable, 

with less peroxide-formation ability.  
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2.1.3 Soybean Oil 

Soybeans are one of the important oilseeds that have rich protein (40% by 

weight), and oil (21% by weight) content, and it dominates the market as 70% of total 

oilseed meals produced every year is soybean meal.61 The typical composition of soybean 

seed is shown in the Table 2.3. The defatted solid left after the oil extraction is called 

soybean meal. Soybean meal accounts for between 51% and 76% of money earned in the 

process of extraction of soybeans.  

Table 2.3 Typical composition of soybeans (dry weight basis).61 The amount of oil is 
21%, which is the potential analyte in our extraction studies.  

Components Weight % 

Protein 40 % 

Carbohydrate 29 % 
Oil 21 % 

Lysine 2.5 % 
Threonine 1.5 % 

Cysteine 0.7 % 

Methionine 0.5 % 

Tryptophan 0.5 % 

Ash 4.5 % 
 

Soybean oil has a unique composition among other common vegetable oils with a 

higher content of linoleic acid (54%) in triglyceride form.62 The relative amount of 

different triglycerides found in the oil can be measured by converting them into fatty acid 

methyl esters (FAME). Table 2.4 shows the average amount of fatty acid methyl esters 
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typically present in soybean oil.61 This composition makes soybean oil more stable 

towards oxidation and well suited to use as a salad oil, frying oil, margarine, etc.  

Table 2.4 Major fatty acid methyl esters obtained from the hydrolysis and derivatization 
of triglycerides in soybean oil.61 

Major FAME Typical (%) 

Methyl Linoleate 54 % 
Methyl Oleate 23 % 

Methyl Palmitate 11 % 
Methyl Stearate 4 % 

 

Nowadays, the major methods of extracting oil from oilseeds are by screw 

pressing, by extruding-expelling or through the use of organic solvents. Solvent 

extraction is currently the most efficient way of extracting soybean oil, which is 

commonly used in the laboratory scale. It is reported that the average residual oil, left in 

the soybean meal after extraction, is only 1.2% in the solvent extraction method, 

compared to the 6.3% residual oil in screw-pressed and 7.2% residual oil in extruding-

expelling methods.61 The high-protein and low-oil contents obtained in solvent-extracted 

soybean meal is desired for feeding poultry and swine. This makes solvent-extraction a 

widely used soybean oil recovery method, and it accounts for the 98% of soybean 

processed in United States.  

Currently, the main solvent used for soybean oil extraction is the petroleum 

distillate containing a mixture of hexane isomers. The hexanes (mixture of isomers) 

contains about 45% to 70% of n-hexane. As discussed in the section 2.1.2, the 

hydrocarbons have high environmental and health impact (lower scores in the GSK 

scale). Also, n-hexane is considered as a neurotoxin in United States. The maximum 
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workplace exposure level has been set to be 500 ppm for n-hexane, and at higher 

concentration it was proven as toxic.48 Industrial scale extraction of soybean oil involves 

a large volume of n-hexane that pose a fire hazard, as its flash point is low, and thus the 

flammability/explosion score is also very low (Table 2.1).50, 63 Also with the low 

vaporization point the loss of solvent during the distillation is high and that ends up in the 

waste stream.  

With the increasing environment and health concern of n-hexane, and the 

legislative pressure against the use of hydrocarbons, there is a significant interest in 

alternative solvents.64 Supercritical carbon dioxide (scCO2) is a considerable alternative 

as it requires only mild treatment and sensory characteristic. Several research attempts 

have used scCO2 for the extraction of soybean oil, and the results show that this 

alternative solvent’s extraction yields are lower than the typical n-hexane’s extraction 

yield of 20%. Using supercritical CO2 as solvent at 300 bar and 40 ºC, Nodar et al (2013) 

has reported 19.5% extraction, Stahl et al (1980) has reported 16.4% extraction,65 and 

Friedrich et al has reported 19.9% extraction.66  However the use of scCO2 may not be an 

energy- and cost-efficient extraction process.62, 67 Phan et al has evaluated the use of a 

switchable-polarity solvent system (SPS) where the solvent’s polarity and hydrophilicity 

can be switched back and forth. The results show that alternative solvents can recover 

soybean oil less efficiently than n-hexane. To our knowledge, there is no preceding work 

that reported the use of green solvents for the extraction of soybean oil. This dissertation 

study reports the results of extraction of soybean oil using five green solvents, as well as 

the role of diffusion, application of hot-ball model, and effect of particle size. 
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2.1.4 Solvent Extraction and Diffusion Coefficient  

Extraction can be defined as moving of one or more compounds from one phase 

to another. Extraction takes place by partitioning of compound between two immiscible 

phases. Extraction of soybean oil studied in this dissertation is a type of solid to liquid 

extraction, where the analyte (mixture of triglycerides) is moved from a solid phase 

(ground soybean) into a liquid phase (organic solvent). Though the term extraction is 

used commonly and frequently, the mechanism behind it is complex, and is influenced by 

many factors. Thermodynamics and kinetics are the two main areas that need to be 

considered when developing a method for separation. Thermodynamics deals with the 

overall energy change in the system, whereas kinetics concerns the path it takes during 

the progress of separation.  

The second law of thermodynamics says that the position of equilibrium favors 

the side where entropy (or disorder) is greater. Separation (or purification) is not an 

entropy-favored process, as the mixing of different compound is when entropy gains. To 

take care of this, extraction methods are often developed to drive the equilibrium towards 

separation by changing other factors, like adding work (eg. heat), or choosing the right 

solvent that has greater affinity to the analyte, etc.31, 68 

Kinetics of extraction is less appreciated, but it plays a great role beyond the 

thermodynamics of separation. The plot of mass extracted versus the extraction progress 

(Figure 2.4) shows an asymptotic curve. The first part of this plot is an equilibrium 

region, where the mass extracted increases steeply, and the extraction is driven by 

solubility and partition (or distribution). As the extraction progresses, the second part of 

the plot is levelled off, and the extraction is driven by solute diffusion.  
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Figure 2.4 The plot defines the three regions i) an equilibrium region dominated by 
solute partitioning, ii) a diffusion region controlled by solute diffusion, and iii) a 
transitional region. (Image adapted from Raynie 2000)68  

Diffusion is a spontaneous and irreversible process of migration of a compound 

from a higher concentration region to a lower concentration region, which ends in a 

concentration equilibrium. This is similar to heat energy transfer from hotter region to a 

cooler region. During the second part of the extraction progress the concentration 

gradient of analyte between the sample matrix and the solvent causes the mass of analyte 

transfer into solvent phase. The rate of mass flow per unit area is called diffusion flow 

(J), and the unit is g cm-2 s-2.  

𝐽𝐽 =  −𝐷𝐷 (∆𝑐𝑐/∆𝑥𝑥)  (Equation 2.1) 

The Fick’s first law of diffusion, above, provides a correlation between the 

diffusion flow and concentration gradient, where D is diffusion coefficient (cm2s-1), c is 

concentration (g/cm-3), x is distance (cm), and (∆𝑐𝑐/∆𝑥𝑥) is concentration gradient (g cm-4).  

Diffusion coefficient is independent of solute concentration and is specific for a solute-

solvent pair. In some cases, where a steady rate of concentration change is not expected, 
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the concentration change with time is used, and that is explained by Fick’s second law of 

diffusion.   

∆𝑐𝑐
𝐷𝐷𝐷𝐷

= 𝐷𝐷 (∆
2𝑐𝑐

∆𝑥𝑥2
)  (Equation 2.2)  

2.1.5 Hot-ball Model of Extraction 

In the extraction of solutes from solid samples, it is significant to consider the 

solute-sample attraction and the ability of solute to diffuse out of the porous sample 

matrix into the solvent. The diffusion is influenced by the geometry and tortuosity of the 

porous sample. The diffusion of analyte from a porous solid sample into a liquid solvent 

resembles transmission of heat energy from a hot body to its environment, as described in 

the hot-ball model.69-70 This model helps to analyze and validate the results of an 

extraction process. Typically, in a solid-to-liquid extraction process, most of the solute is 

extracted in a short period at the beginning, followed by a tailing off of the extraction 

rate. Hence, to recover 99% of solute, it would take ten times more time than what it 

needed to extract first 50%.  

The hot-ball model is ideal for a perfectly spherical porous solid matrix with a 

small amount of homogeneously dispersed extractable material (solute or analyte) at the 

beginning. Also, it is assumed that the initial concentration of solute in the extraction 

phase (solvent) is always zero, and the solvent is moving fast enough to maintain this 

zero concentration. As the small quantity of solute is infinitely dilute in the extraction 

phase (solvent), the extraction is not controlled by solubility but by diffusion. Another 

assumption is that the movement of solute compounds through the porous sample matrix 

is similar to the process of diffusion.  
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The hot-ball model, equation 2.3, defines the rate of extraction in terms of ratio of 

mass m of analyte remaining in the sample after an extraction time t to the initial mass mₒ 

of extractable analyte, where, n is integer and D is the diffusion coefficient.  

 

𝑚𝑚
𝑚𝑚0

 =   � 6
𝑛𝑛2
�∑ 1

𝑛𝑛2
∞
𝑛𝑛=1 𝑒𝑒𝑥𝑥𝑒𝑒 −𝑛𝑛

2𝜋𝜋2𝐷𝐷𝐷𝐷
𝑟𝑟2

  (Equation 2.3) 

 

Since the extraction time varies for every system depending on various factors 

like sample type, solute-solvent pair, extraction method, and work applied (temperature, 

pressure, agitation), there needs to be a simplified or reduced time. To simplify the 

equation, a reduced time term, tᵣ is defined in equation 2.4. Reduced time is a function of 

the diffusion coefficient, extraction time, and particle radius, and is proportional to the 

extraction time in a real system.  

𝑡𝑡𝑟𝑟 =  𝜋𝜋
2𝐷𝐷𝐷𝐷
𝑟𝑟2

 
 (Equation 2.4) 

When this equation is simplified to the sum of exponential decay, the plot of 

ln(m/mₒ) versus extraction time t (or reduced time tᵣ) will ultimately be linear. This is 

because at the beginning of the extraction there is a concentration gradient at the outer 

area of the spherical sample particle, and the mass transfer is faster to reach an 

equilibrium. This part of the plot is steeper. The second part of the plot is driven by 

diffusion, when the concentration across the sphere is homogeneous, and the rate of 

extraction is a simple exponential decay. The extrapolation of the linear diffusion portion 

of the plot of ln(m/mₒ) versus time can provide valuable information on the length of time 

an extraction should take to attain quantitative recovery. 
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Figure 2.5 Theoretical plots of hot-ball model.  
[Left side plots] Percentage recovery vs. scaled time for the hot-ball model and its 
variations. (a), the basic model; (b), with the effect of particle shape (continuous line) 
compared with the basic model (dashed line); (c), the effect of solubility limitation 
(continuous line) compared with little solubility limitation (dashed line); [Right side 
plots] ln(m/mₒ) vs. scaled time (tᵣ) for the hot-ball model and its variations (a),the basic 
model; (b) with the effect of particle shape; (c) with the effect of solubility limitation 
(continuous line) compared with little solubility limitation (dashed line). – (from ref.69)  

Figure 2.5 is plots of the hot-ball model graphs for an ideal extraction process, 

that correlates the percentage recoveries versus reduced time tᵣ.69 This data was 

transformed into a straight line using integral calculus, and the plot of natural logarithm 

of the mass of extractable material remaining as a fraction of the original mass of 

extractable material, ln(m/mₒ), versus reduced time was shown on the right side in Figure 

2.5. The basic model is also adapted to the effect of particle shape and solubility 
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limitation. A steep equilibrium region and a linear diffusion region are seen in every plot. 

To interpret the plot in words, the change in rate of extraction is high at first until around 

60% of the extractable material is recovered, which corresponds to reduced time tᵣ of 0.5. 

After an equilibrium in concentration gradient was achieved, the change in rate of 

extraction becomes small, and the flat region extends until 99% of the extractable 

material is recovered. The mathematical expression of this plot (equation 2.3) describes 

the concentration of the extractable material remaining in sample at any given time. The 

significance of the hot-ball model can be realized when applied to a real extraction 

system.   

In a study of kinetics of extraction, the linear portion of the plot of ln(m/mₒ) 

versus reduced time tᵣ is taken into account. That is usually above the reduced time tᵣ 

value of 0.5. The extrapolation of this linear diffusion region gives a ln(m/mₒ) intercept 

that is around –0.5 for spherical particles, however the ln(m/mₒ) intercept of non-spherical 

particles is more negative than -0.5.  

Application of this hot-ball model to this research study is explained in detail in 

section 2.2.5. Knowing that ground soybean samples used in this study were not perfectly 

spherical, our aim is to analyze our results and validate the extraction methods with a 

close fit to hot-ball model. In this study the hot-ball model equation can be utilized to 

align the actual extraction times to the reduced time scale. Then with a normalized time 

scale, the diffusion coefficient of any solute-solvents system can be calculated using 

equation 2.5. This would give more insight on the efficiency of using green solvents in 

extraction of soybean oil.  

𝐷𝐷 =  𝐷𝐷𝑟𝑟𝑟𝑟
2

𝜋𝜋2𝐷𝐷
  (Equation 2.5) 
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In a comparative study, diffusion coefficient for extraction of fat from coffee was 

calculated for different extraction techniques. The diffusion coefficient varies based on 

the temperature used in the techniques. Soxhlet had the slowest diffusion as the 

temperature was below the boiling point of the solvent. Soxtec had a litter faster diffusion 

as the temperature was equal to the boiling point of the solvent. The other techniques like 

accelerated solvent extraction, microwave assisted extraction, and ultrasound extraction 

had similar fast diffusion as the temperatures were above the boiling point in those 

techniques.31 Driver’s outcome precedes the aim of this study that finding diffusion 

coefficients for different green solvents is significant in order to compare their extraction 

efficiency.  
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2.2 Experimental Methods 

2.2.1 Materials and Reagents 

Soybeans sample was supplied by Prof. Kasiviswanathan Muthukumarappan from 

the Department of Agricultural & Biosystems Engineering, South Dakota State 

University. Soybeans were ground using a Thomas Scientific analytical mill (1725/1425 

rpm). Care was taken not to expose the ground soybean sample to moisture. The ground 

soybean samples were dried in an oven at 80 °C overnight and then separated into size 

fractions using 1400 µm, 1000 µm, 850 µm, 600 µm, 425 µm, 300 µm, 149 µm, 53 µm 

sieves. The separated particles were stored in an air-tight container. Extractions were 

performed using pressurized fluid extraction, Dionex™ ASE-350 (Thermo-Fisher, 

Sunnyvale, CA). 

Solvents used:  

• n-hexane (from Thermo-Fischer Scientific).  

• 2-Methyltetrahydrofuran (2-MeTHF) (from Thermo-Fisher Scientific),  

• alpha-Pinene 97% stabilized with alpha-Tocopherol (from Acros Organics), 

• Cyclopentyl methyl ether 99+% extra pure stabilized (CPME) (from Acros 
Organics  

• Ethyl lactate (from Sigma Aldrich)  

• t-Butyl methyl ether (TBME) (from EMD).  

 

2.2.2 Solubility Study in Computational Method 

The computer software, COSMOquick version 1.5, a version of COSMO-RS, was 

used to predict the relative solubility of the triglycerides of major soybean fatty acid, 

trilinolein, triolein, tripalmitin, and tristearin in different solvents. Briefly, the structures 

or names of the triglycerides and 21 different solvents were given as inputs to search for 
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SMILEs (Simplified Molecular Input Line Entry Specification) of the compounds. The 

program then used the SMILEs to create charge-density surface (also called σ-surface) 

for those compounds. The 3D structures and charge density profiles of the compounds 

were exported. The charge-density profiles of all compounds were plotted to compare the 

negative and positive charge-densities on a 2D-line graph. The chemical potential (also 

known as the σ-potential) on the surface was used to see the possibility of intermolecular 

bonding (hydrogen-bonding donor and acceptor, and non-hydrogen bonding donor and 

acceptor) characteristic of the solute and solvent compounds. Then solute roles were 

assigned to the triglycerides (one at a time) and solvent roles were assigned the 21 

different solvents. Temperature was defined as 100 ºC (the same temperature used for 

ASE extraction) to predict the relative solubility. The program weighed the highest 

solubility (mol/mol) of a solute-in-solvent as the baseline and gave a probability percent 

for solubility of that particular solute in other solvents.  

2.2.3 Viscosity Study 

Dynamic viscosity of the green solvents was determined by using a viscoanalyzer 

(ATS Rheosystems, NJ) with respect to change in temperature. The starting temperature 

was set to 25 ºC and ending temperature was determined by the boiling point of the 

solvents. Equilibrium time was set to 50 s. 

2.2.4 Extraction of Soybean oil using Accelerated Solvent Extractor 

Extraction was performed using pressurized fluid extraction Dionex™ ASE-350 

(Thermo-Fisher, Sunnyvale, CA). Temperature was maintained at 100ºC and a pressure 

of 1500 psi was used.34 Post-extraction solvent flush was set to 60 % and post-extraction 
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purge time was set to 60 seconds. One gram of ground soybean and two grams of sand 

(dispersing agent) were accurately weighed and carefully packed between two 30-mm 

Whatman cellulose filters in a 33-mL stainless steel ASE vessel. The void volume was 

filled with glass beads and sealed. Then the extraction vessel was placed onto the ASE 

system. The extraction was conducted using the solvents 2-methyltetrahydrofuran, 

cyclopentyl methyl ether, ethyl lactate, t-butyl methyl ether, alpha-pinene, and n-hexane 

at static extraction times 5, 10, 15, 20 and 30 minutes with 7 minutes preheat time. One 

extraction cycle was used for each solvent. Three replicates were done for each solvent. 

The extraction results were studied gravimetrically. Once the extraction is completed, the 

extract was transferred to pre-weighed collection vials. Then solvent recovery was done 

in a rotatory evaporator or distillation under low pressure. After the distillation of solvent, 

the extracted oil was dried under nitrogen flushing.  The nitrogen drying and weighing 

process were repeated until two consecutive weights consistent to within ±0.0009 grams 

were obtained. The mass obtained from the triplicate were plotted using Microsoft Excel. 

Average of the three masses and the standard deviation were calculated. After each 

experiment, the extraction cells were thoroughly washed, rinsed with acetone, and dried 

before using for next experiment.  

2.2.5 Application of the Hot-ball Model to Extraction Data 

The data obtained from the extraction of soybean oil in ASE using different 

solvents was evaluated in two ways with respect to the hot-ball model. First, it was 

qualitatively analyzed to see if the experimental plots of percentage recovery versus 

extraction time, and the ln(m/mₒ) versus extraction time appear to fit the theoretical hot-

ball model plots.69-70 Second, it was quantitatively analyzed through the use of the hot-
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ball model in calculating the diffusion coefficient of different green solvents for 

extraction of soybean oil. The diffusion coefficients were then used to compare the 

extraction efficiency of the green solvents.  

The experimental plot of percent extraction versus extraction time was generated 

separately for each solvent using Microsoft Excel. The average mass of soybean oil 

extracted was converted into percent extraction using the equation. 

𝑒𝑒𝑒𝑒𝑝𝑝𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡 𝑒𝑒𝑥𝑥𝑡𝑡𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑒𝑒𝑝𝑝 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑥𝑥𝐷𝐷𝑟𝑟𝑚𝑚𝑐𝑐𝐷𝐷𝑒𝑒𝑒𝑒 
𝑜𝑜𝑛𝑛𝑜𝑜𝐷𝐷𝑜𝑜𝑚𝑚𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑚𝑚𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑒𝑒

 × 100  (Equation 2.6) 

The percent extraction versus extraction time was plotted for each solvent. The 

maximum percent extracted during the ASE extraction is 23.24%, and that data was 

obtained from the 513-µm soybean particles in CPME solvent at 30 min extraction. This 

mass 0.2324 g was considered as the maximum extractable mass for 1 g of soybean 

sample. This maximum extractable mass is considered as 99% recovery, and that was 

used to calculate the original (100%) mass of oil = 0.2347 g present in 1 gram of sample. 

This mass was used to calculate the percent recovery for each solvent using the equation.  

𝑒𝑒𝑒𝑒𝑝𝑝𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡 𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑥𝑥𝐷𝐷𝑟𝑟𝑚𝑚𝑐𝑐𝐷𝐷𝑒𝑒𝑒𝑒 𝑜𝑜𝑟𝑟𝑜𝑜𝑚𝑚 1 𝑔𝑔 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑒𝑒
𝐷𝐷𝑜𝑜𝐷𝐷𝑚𝑚𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒𝐷𝐷 𝑜𝑜𝑛𝑛 1 𝑔𝑔 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑒𝑒

 × 100  (Equation 2.7) 

To evaluate the extraction efficiency of each solvent, a plot of percent of oil 

recovered versus extraction time was graphed and the shape of curve was compared to 

the theoretical hot-ball model. The equilibrium, and diffusion regions of the asymptotic 

plot were identified. Once the asymptotic plot was validated for a close fit to the model, 

then a first-order kinetics plot for each solvent was also graphed and compared to the 

theoretical model. In the first order kinetic plot, ln(m/mₒ), that is the natural logarithm of 
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mass of unextracted oil (m) remaining in the sample divided by the original mass of 

extractable oil (mₒ) in 1 gram of sample was plotted against the extraction time.  

This first-order kinetics plot was utilized to compare the extraction efficiency of 

different solvents. The diffusion region of the kinetics plot was identified, which was set 

to be the data obtained from last three extraction times (15, 20, and 30 min). When the 

extraction was influenced predominantly by diffusion, the rate of extraction was slower 

and the plot had become linear. Extrapolation of this diffusion region (the linear portion 

of the plot) allowed determination of the y-intercept and slope. With the liner regression, 

r2, being optimal the y-intercept and slope were utilized to scale the actual extraction time 

to the theoretical reduced time, in order to match the theoretical model.  

In the hot-ball model a reduced time was used so that the model can be applied to 

a wide range of extraction methods, irrespective of the extraction technique, size of 

extraction, solvent-sample system, and length of extraction. To match the experimental 

data obtained from this study to the theoretical model, reduced time, tᵣ, was calculated for 

each solvent extraction data. In the theoretical kinetic plot, the reduced time of one (tᵣ = 

1) occurred where the change in slope is one (m = 1). Therefore, in the experimental 

kinetic plot, the slope and y-intercept of the best-fit line were used to calculate the actual 

extraction time, t, at which the y-value, that is the ln(m/mₒ) value, is one unit different 

than the y-intercept. In other words, in the slope equation, it was known that (x2 - x1) is 

the difference in tᵣ, and the (y2-y1) is the difference in ln(m/mₒ).  If the denominator, the 

difference in tᵣ is 1, then the numerator, the difference in ln(m/mₒ) should also be 1, to 

obtain the value of 1 for the slope.  
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𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚 =  (𝑠𝑠2−𝑠𝑠1)
(𝑥𝑥2−𝑥𝑥1)

  (Equation 2.8) 

The actual extraction time, t, corresponding to the theoretical reduced time tᵣ = 1 

is calculated for each solvent, and a new plot of ln(m/mₒ) versus reduced time was 

graphed for each solvent. The extraction time, t, correspond to tᵣ = 1, was substituted in 

the reduced time equation along with the radius, r, of the particle to calculate the 

diffusion coefficient, D, and the time required for the extraction to be complete. In this 

calculation, it was assumed that the soybean particles were all spherical with a diameter 

of 513 µm.  

𝐷𝐷 =  𝐷𝐷𝑟𝑟𝑟𝑟
2

𝜋𝜋2𝐷𝐷
 (Equation 2.9) 

2.2.6 IR Spectroscopy 

To confirm the identity of the extracted soybean oil, an IR spectrum for oil 

extracted using each solvent was acquired. Then it was compared to the IR spectrum of 

the commercial soybean oil (brand: NutriOli – Pure Soybean Oil). All IR spectra were 

recorded at room temperature using a Nicolet 380 IR Spectrometer (Thermo Scientific). 

2.2.7 Esterification of Extracted Soybean Oil  

Around 30 mg of soybean oil sample taken in a vial, 2 mL of n-hexane and 2 mL 

of 10% BF3 in methanol were added and stirred gently. After the oil was completely 

dissolved, the mixture was transferred to the 25-mL round bottom flask and refluxed at 

60 °C for 60 min in an oil bath. Then the reaction was quenched using 4 mL of DI water 

and 2 mL of n-hexane. After a thorough shaking, the organic layer was separated. The 

organic layer was washed twice with water. To dry the organic layer, around 1g of 
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anhydrous sodium sulfate was added and set aside for 10 min. For further drying, the 

organic phase was passed through a column packed with MgSO4, sand and cotton. The 

fatty acid methyl esters (FAME) sample was then filtered through a 0.2-µm filter before 

GC-MS characterization. This same procedure was used to derivatize the soybean oil 

obtained at 30 min from each green solvent extraction. 

2.2.8 GC-MS Characterization 

The methyl esters of fatty acid obtained from each solvent extraction was 

analyzed using an Agilent 7890 gas chromatograph (Agilent Technologies, Little Falls, 

DE) coupled to an Agilent Technologies 5975C mass spectrometer. The instrument was 

equipped with a 30 m×0.25 mm, 0.25-μm DB-5 column (Agilent Technologies, Little 

Falls, DE) and the velocity of carrier gas (hydrogen) was kept constant at 1.2 mL/min. 

The oven-temperature program was initially held at 150 °C for 2 min, then ramped at a 

rate of 15 °C/min to 250 °C. The temperature was then held at 250 °C for 2 min. Splitless 

injection (2 μL) was performed with a HP7673A automatic sampler and an injection port 

of 250 °C with the transfer line temperature kept at 300 °C. The MS temperatures were 

ion source 230 °C and quadrupole 150 °C. The scan range was 40-550 U (2.91scans/s). 
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2.3 Results and Discussion 

2.3.1 Experimental Design  

This research was focused to study the efficiency of alternative solvents to n-

hexane for extracting oil from soybeans. As diffusion plays a major role in the kinetics of 

extraction, comparing the diffusion coefficient of green solvents is the key approach. 

Figure 2.6 sketches the experimental design involved in this comparison analysis.  The 

following sections discuss these steps and results in detail. Sample preparation involves 

grinding of soybeans in analytical mill and separation of different size particles using 

sieves. Accelerated solvent extraction was then performed for different size particles, 

using the reference solvent n-hexane, to determine the best particle size that offers 

maximum oil extraction. The best particle size was then used for further analysis with 

green solvents. Five green solvents were chosen based on their greenness score and 

solubility predicted in computational method. These five green solvents (2-MeTHF, 

alpha-pinene, CPME, ethyl lactate, and TBME) were then used in ASE under the optimal 

operation condition obtained from literature. The extracted oil was then separated from 

the solvent and the yield was calculated using gravimetric analysis. Quality of the 

extraction was determined using IR spectroscopy. The fatty acid methyl ester 

composition of soybean oil was verified using GC-MS analysis of FAME derivatives. 

The extraction results were evaluated using theoretical (hot-ball) model, and the diffusion 

coefficient for each green solvent was calculated to compare the efficiency of extracting 

soybean oil. 
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Figure 2.6 Flow chart showing the process involved in the comparison of efficiency of 
green solvent in ASE extraction of soybean oil.   
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2.3.2 Sample Pretreatment 

Sample pretreatment is an essential step before any extraction process. For a 

solid-liquid extraction, it is ideal to grind the oilseeds to small particles that have 

maximum surface area. In this study dry soybeans were ground using an analytical mill. 

This ground particle can easily absorb atmospheric moisture that would affect the quality 

of extraction. During the grinding and storing processes, care was taken to expose the 

particles only to minimal moisture. Figure 2.7 shows the whole dry soybeans on the left 

and the ground soybean sample on the right. 

 

Figure 2.7 Soybeans before and after grinding 

The ground soybean sample was dried in oven before taken for sieving. Copper 

sieves of pore sizes 1400 µm, 1000 µm, 850 µm, 600 µm, 425 µm, 300 µm, 149 µm, and 

53 µm were used to sieve the particles into different size fractions, as shown in the 

Figure 2.8. The average size of the particles was determined by taking the average of the 

pore size of one sieve, and pore size of the next smaller sieve.  
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Figure 2.8 Sieving process of ground soybean sample. 

The average diameter of the particles after the sieving were 1200, 925, 725, 513, 

363, 225, and 101 µm. The percentage of the particle sizes yielded from sieving process 

was plotted in Figure 2.9 

 

Figure 2.9 The percent yield of different size soybean particles following the sieving 
process.  
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It is observed that the grinding of soybean yielded various size particles. The size 

distribution shows that the majority of the particles passed through the sieve opening size 

of 850 µm and stopped by the sieve opening size of 600 µm in diameter, therefore the 

average size of particles were assumed to be 725 µm, and the percent yield in sieving 

process is 54.4%. The next majority of particles passed through the sieve opening size of 

600 µm and stopped by the sieve opening size of 435 µm, therefore the average size of 

the particles was assumed to be 513 µm in diameter. The percent yield of 513 µm 

particles in the sieving process is 24.5%. As the percent yield of the ground soybean 

particles decreases when the size increase or decreases away from the above diameter. 

Though smaller particles offer overall increased surface area, the amount of particles with 

uniform particle size is also enough to run a large number of extraction experiments. 

Therefore, the particle sizes with higher percentage yield were considered more useful for 

this study. 

 

2.3.3 Effect of Particle Size on Extraction Yield 

In order to determine the best soybean particle size for the green-solvent 

extraction study, an investigation on effect of particle size on extraction yield was carried 

out first. ASE extraction was performed for the four different particle sizes 513, 725, 925, 

and 1200 µm using the reference solvent n-hexane at 100 ºC, and 1500 psi. The amount 

of soybean oil extracted from one gram of different particle sizes were determined 

gravimetrically. Table 2.5 shows the extraction results and the Figure 2.10 shows the 

percent oil extracted at different times from one-gram soybean samples of different sizes.   
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Table 2.5 Results of ASE extraction of oil from different size soybean particles using n-
hexane (temperature is 100 ºC). 

Particle 
size 

(µm) 

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Standard 
deviation (n=3)  

(g) 

Percent of oil 
extracted per 

gram of soybean 
sample 

(%) 

513 

0 0 0 0 
5 0.1702 0.0056 17.02 
10 0.1865 0.0110 18.65 
15 0.1976 0.0155 19.76 
20 0.1990 0.0004 19.90 
30 0.1997 0.0013 19.97 

725 

0 0 0 0 
5 0.1402 0.0085 14.02 
10 0.1504 0.0039 15.04 
15 0.1570 0.0009 15.70 
20 0.1741 0.0010 17.41 
30 0.1703 0.0010 17.03 

925 

0 0 0 0 
5 0.1112 0.0008 11.12 
10 0.1221 0.0010 12.21 
15 0.1273 0.0019 12.73 
20 0.1293 0.0024 12.93 
30 0.1312 0.0047 13.12 

1200 

0 0 0 0 
5 0.0721 0.0024 7.21 
10 0.0865 0.0003 8.65 
15 0.0993 0.0132 9.93 
20 0.1019 0.0009 10.19 
30 0.1043 0.0009 10.43 
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Figure 2.10 Comparison of percent of oil extracted from different size soybean particles 
in ASE using n-hexane. 

The rate of extraction was higher at the beginning of extraction for all particle 

sizes, this can be seen in the steep curve in the percent extracted plot. As the extraction 

progressed further, the change in rate of extraction flattened. Also, the quantity of oil 

extracted increased as the particle size decreased. This trend was seen for all extraction 

times. It is reasonable to consider that the oil from the interior of the seed traverse a 

shorter path when the seed is crushed to smaller size. The maximum yield obtained for 

the largest particle size 1200 µm was 10.43±0.09%, which is almost half of the maximum 

yield obtained for the particle of size 513 µm. This decrease in extraction yield is an 

effect of the change in internal mass transfer resistance (diffusion path length).  

From the results attained for the four different particle sizes, it can be concluded 

that the internal mass transfer resistance will decrease as particle size decreases. A longer 
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extraction time would be needed for the larger particles to achieve the same yield as those 

observed with 513 µm. This trend was found common for other type of samples, as 

similar effect was observed in previous studies reported for ASE extraction of fats from 

coffee bean,31 extraction of soybean oil using supercritical CO2,62 and extraction of wheat 

germ oil using supercritical CO2.71 

On the basis of the above, the best extraction yield of soybean oil by n-hexane at 

100 ºC and 1500 psi was obtained for 513 µm particles. As discussed previously, it was 

harder to recover the particle sizes smaller than 513 µm in the sieving process of sample 

preparation. Therefore the 513-µm soybean particles were selected to be used for the 

green-solvent extraction study.   

 

2.3.4 Solubility of Soybean Oil Components in Green Solvents 

Because less polar nature of the triglycerides, the extraction of soybean oil is 

usually carried out in organic solvents like n-hexane. This study is aimed to investigate 

the performance of greener alternatives to n-hexane. The selection of green solvents was 

initially carried out by a literature survey based on the economic and ecological 

parameter, and the scores given for impact on health, environment, waste, energy 

recovery, fire hazard, and life cycle of different solvents (listed in Table 2.1). However, 

when it comes to a large-scale extraction, efficient interaction of a particular solute-

solvent system is important. As discussed the first part of the asymptotic plot of any 

extraction is influenced by thermodynamic factors until an equilibrium in concentration is 

reached. This initial steep curve referred as equilibrium region is where the effects of 

solute partition and solubility exist. A low interfacial tension between the solute and 

extraction phase would facilitate mass transfer across the phase boundary. Therefore, it is 
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essential to study the solubility. The preliminary requirements of extraction are 

described68: “Prior to choosing an extraction method, knowledge must be gained about 

the structure (including functional group arrangement), molecular mass, polarity, 

solubility, pKa, and other physical properties of both the species of interest and potential 

interfering compounds.” As solubility of solute is one of the fundamental properties, this 

section of the dissertation discusses the preliminary solubility investigation performed 

prior to the ASE extraction of soybean oil using different green solvents.  

Although an experimental solubility data would be more reliable, it is easier to 

use a relative solubility scale to meet the purpose of this dissertation study. A computer 

prediction of the solubility of soybean fatty acid triglycerides in green solvents along 

with other common solvents was performed. Polarity difference between two phases is 

the key factor to predict the solubility. Most of the solubility prediction methods 

characterize the solute-solvent interaction according to the classical “like-dissolve-like” 

rule.68  The underlying concept in the most common solubility parameter, Hansen 

Solubility Parameter, is based on the total cohesive energy density approximated by the 

sum of energy density required to overcome the atomic dispersion force (δd
2), the polarity 

(δp
2) and the hydrogen-bonding ability (δh

2), as given in the following equation.  

𝛿𝛿𝐷𝐷𝑜𝑜𝐷𝐷𝑚𝑚𝑜𝑜2 =  𝛿𝛿𝑒𝑒2 +  𝛿𝛿𝑚𝑚2 +  𝛿𝛿ℎ2  (Equation 2.10) 

In this study, a theoretical prediction method called “The Conductor-like 

Screening Model for Real Solvents” (COSMO-RS), was used to predict the solubility. 

This computer program uses a statistical thermodynamics approach based on quantum 

chemical calculations to determine the solubility without experimental data. It is a two-
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step process. In the first step, a molecule input was made, and it was converted into 

SMILES (Simplified Molecular Input Line Entry Specification). Then a virtual conductor 

environment for the given molecule is simulated, and the induced polarization charge 

density was mapped on its surface, similar to the electrostatic potential map, that is 

referred as charge density or σ-surface. A 3D structure was also generated as shown in 

the Table 2.6. and Table 2.7. In the second step, the polarization charge density was used 

for the quantification of the interaction energy. A charge-density profile or σ-profile was 

calculated for each molecule from their 3D distribution of polarization charges on the 

surface (Figure 2.11). This profile offers detailed data about the molecular polarity 

distribution. This σ-profile was then used to calculate the chemical potential of the 

surface, referred as σ-potential that describes the likeliness of the molecule to interact 

with other molecules via intermolecular forces. In the 2D σ-potential graph shown in 

Figure 2.12, the negative charge was located on the right (H-bond acceptor), and the 

positive charge is located on the left (H-bond donor) for protic compounds. Also, the 

negative and positive charges of aprotic compounds were also shown on the graph.   
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Table 2.6 Structure and σ-surface of the fatty acid triglycerides in soybean oil used for 
the COSMO solubility calculation.  

Solute Ball and stick model 
(energy minimized) Calculated σ-Surface 

Trilinolein 

  

Triolein 

  

Tripalmitin 

  

Tristearin 
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Table 2.7 Structure and σ-surface of the n-hexane and green solvents used for the 
COSMO solubility calculation.  

Solvents Ball and stick model (energy minimized) Calculated σ-Surface 

n-hexane 

  

2-MeTHF 

  

alpha-Pinene  

  

CPME 

  

Ethyl lactate 

  

TBME 
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Figure 2.11 Computer predicted σ-profile (charge density profile) of solvents and solute 
compounds (Generated in COSMO Software). This chart compares the distribution of 
positive and negative charges on the surface of solvent and solute molecules.   

 

Figure 2.12 Computer predicted σ-potential of soybean triglycerides compounds 
(Generated in COSMO Software). This chart shows the chemical potential of the four 
different triglycerides compounds are more or less same. 
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Figure 2.13 Computer predicted σ-potential of soybean hexane and green solvents 
(Generated in COSMO Software). This chart shows that the chemical potential of the 
solvents varies with polar, nonpolar, protic and aprotic nature of the compounds.  

From the chemical potential of the pure solute µi
pure and the chemical potential of 

the solute in solvent at infinite dilution µi
solvent, and the free energy of fusion ∆Gfus,i the 

experiment solubility xi was calculated in mol/mol using the equation 

∆𝐺𝐺𝑜𝑜𝑓𝑓𝑚𝑚,𝑜𝑜 =  𝜇𝜇𝑜𝑜
𝑚𝑚𝑓𝑓𝑟𝑟𝑒𝑒 −  𝜇𝜇𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑛𝑛𝐷𝐷 − 𝑅𝑅𝑅𝑅𝑠𝑠𝑒𝑒𝑙𝑙10(𝑥𝑥𝑜𝑜)  (Equation 2.11) 

The predicted value of log10xi and the solubility xi of each major soybean 

triglycerides in different solvents were listed in Table 2.8. The probability of solubility xi 

is expressed in percentage that can be visualized as the ratio of amount of solute 

dissolved in solvent.  (mol of solute / mol of solvent) x 100.  

Presence of long hydrophobic carbon chain and a hydrophilic ester functional 

group can be seen in the charge density map of the triglycerides of four major fatty acids, 
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linoleic acid, oleic acid, palmitic acid, and stearic acid. This makes those triglycerides 

less polar. Therefore, they have a poor solubility in the highly polar solvents like solvents 

such as water, ethanol, methanol, and acetonitrile. The predicted solubility percentage is 

less than 20% for those solute-solvents systems. A higher solubility was predicted for the 

triglycerides in the common non-polar solvents like carbon tetrachloride, benzene, 

toluene and n-hexane.  

It is more useful to compare the solubility of the triglycerides of major fatty acids 

in green solvent to their solubility in n-hexane. Looking at the σ-potential curve of the 

triglycerides of fatty acids in Figure 2.12, it can be recognized that all of them have a 

strong hydrogen bonding acceptor and strong non-hydrogen bond donor character. The 

solvent that best match with this chemical potential would best dissolve the soybean oil. 

Figure 2.13 shows the σ-potential of n-hexane and green solvents. It can be visualized 

that ethyl lactate and alpha-pinene have σ-potentials that has poor match with that of the 

soybean triglycerides. This is because these two solvents are hydrocarbons and do not 

have any non-carbon electronegative atoms. Although alpha-pinene has an unsaturation 

with small localized charge density that is not enough to match with the polarity of 

triglycerides. The predictions reveals that ethyl lactate is not the best for solubilizing 

soybean oil, and that is clearly marked by the solubility probabilities of triglycerides in 

these that solvent, given in Table 2.8. n-hexane and other green solvent 2-MeTHF, 

alpha-pinene, CPME, and TBME were predicted to have a high solubility probability for 

the triglycerides.  

Industrial extraction of soybean oil is currently carried out in n-hexane, petroleum 

ether, and ethyl acetate. On the basis of the above predicted solubility, all of the green 
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solvents in the list are expected to give higher extraction yields, at least in the equilibrium 

region of the extraction curve, where solubility plays an influential role. Based on the 

solubility probability given in the above table, the green solvents 2-MeTHF, α-pinene 

CPME, and TBME should have slightly higher extraction yields than ethyl lactate, at 

least in the first part of extraction.   
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Table 2.8 Predicted solubility probability of triglycerides of major soybean fatty acids in 
different solvents. Green color represents high solubility (100%-60%), yellow color 
represents moderate solubility (60%-20%), and red color represent low solubility (20%-
0%). 

Solvents 

Trilinolein Triolein Tripalmitin Tristearin 

log10(xi) 
Solubility 

Probability 
(%) 

log10(xi) 
Solubility 

Probability 
(%) 

log10(xi) 
Solubility 

Probability 
(%) 

log10(xi) 
Solubility 

Probability 
(%) 

Water -23.623 0.0 -24.820 0.0 -23.203 0.0 -26.150 0.0 

Ethanol -1.4645 3.4 -1.7542 1.8 -1.7932 1.6 -2.0927 0.8 

Methanol -3.3227 0.0 -3.7839 0.0 -3.7385 0.0 -4.2964 0.0 

Ethyl acetate 0.0000 100.0 0.0000 100.0 0.0000 100.0 -0.0326 92.8 

Acetone 0.0000 100.0 0.0000 100.0 -0.3046 49.6 -0.4544 35.1 

Toluene 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

Benzene 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

Diethyl ether 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

THF 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

DMF -0.1423 72.1 -0.6594 21.9 -0.9420 11.4 -1.1875 6.5 

Acetonitrile -5.1739 0.0 -6.1241 0.0 -6.1742 0.0 -7.1162 0.0 

CCl4 -0.2584 55.2 -0.2510 56.1 -0.3339 46.4 -0.3096 49.0 

DCM 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

Chloroform 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

n-hexane 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

2-MeTHF 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

alpha-Pinene 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

CPME 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 

Ethyl lactate 0.0000 100.0 -0.3024 49.8 -0.5079 31.1 -0.6517 22.3 

TBME 0.0000 100.0 0.0000 100.0 0.0000 100.0 0.0000 100.0 
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2.3.5 Viscosity of Green Solvents at Different Temperature 

For an extraction of a small quantity of solute in a large quantity of solvent, 

diffusion is the predominant factor that controls the extraction time and yield. As 

discussed, the rate of extraction in the kinetic region is smaller compared to the 

thermodynamic region, but still the time required for the maximum extraction is 

determined by the diffusivity of solute in solvent. The diffusion, in other words the mass 

transfer of solute from one phase to another, is highly dependent on viscosity (η) of the 

solvent. Viscosity is informally related to the thickness of a fluid, but formally it is a 

measure of the fluid’s internal flow resistance or resistance to deformation by shear stress 

or tensile stress. Rate of diffusion increases with decrease in viscosity of the solvent, as 

the solvent can easily pass through the solid sample matrix with a low interfacial 

tension.68 This highlights the importance of studying the viscosity of the green solvents in 

comparison with n-hexane.  

Viscosity of a fluid is related to the molecular structure of the substance and 

intermolecular links, and is affected by temperature, and pressure.72 Viscosity of a fluid 

decreases with increase in temperature. Although this inverse proportional relation 

applies to all fluids, the size of influence varies for different substances. Viscosity of 

some substances are strongly influenced by temperature, with a 1 ºC rise in temperature 

can lower the viscosity by 10%.  

In most cases, viscosity of a fluid increases with pressure. When it comes to liquid 

the effect of pressure on viscosity is very little compared to the effect of temperature. 

This is because, liquids are almost noncompressible with small changes in pressure. For 
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most liquids it takes the change in pressure from 0.1 to 30 MPa to cause a considerable 

change in viscosity that is similar to what a 1 ºC temperature change would cause.72,73  

Viscosity of green solvent at varying temperature was measured experimentally 

using ATS Rheosystems viscoanalyzer, and the results are presented in Figure 2.13.  

 

Figure 2.14 Comparison of change in viscosity of solvents at different temperature.   

Of the six solvents tested, ethyl lactate has the highest viscosity value of 2.4 cP at 

room temperature, and it gradually lowers around 0.5 cp for every 10 ºC rise in 

temperature until 100 ºC. When the temperature is close the boiling point of ethyl lactate, 

the change in viscosity is nearly flat.  The viscosity of ethyl lactate at 141 ºC is 0.7 cP, 

and this is higher than the room temperature viscosity of a few other green solvents and 

n-hexane. The next higher viscosity is recorded for alpha-pinene. At room temperature 

the viscosity of alpha-pinene is 1.3 cP, and it gradually lowers at the rate of 0.1 cP for 10 
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ºC rise in temperature. The viscosity of alpha-pinene at 141 ºC is 0.53 cP, again this is 

greater than the room temperature viscosity of other green solvent and n-hexane.  

Viscosity of CPME at room temperature is 0.57 cP. CPME, 2-MeTHF and TBME 

follows n-hexane very closely with changing trend of viscosity at different temperatures. 

For these three solvents the effect of temperature on viscosity is not prominent, and the 

curve is less steep compared to ethyl lactate and alpha-pinene. CPME’s viscosity is 0.35 

cP near its boiling point. 2-MeTHF’s viscosity near its boiling point is 0.30 cP, which 

slightly lower than the viscosity of CPME. Viscosity of TBME is the lowest of all green 

solvents. At room temperature, the viscosity of TBME is 0.36 cP and near its boiling 

point is 0.31 cP. The boiling point of TBME is 55 ºC, which is the lowest of all.  Hexane 

is a completely non-polar hydrocarbon, and its viscosity is lowest of all other solvents. At 

room temperature the viscosity of hexane is 0.29 cP, and that does not change much with 

the temperature. The viscosity of hexane near boiling point is 0.26 cP. 

In ASE extraction of soybean oil, the temperature was maintained at 100 ºC, that 

is higher than the boiling point of TBME, 2-MeTHF, and n-hexane, and lower than the 

boiling point of CPME, alpha-pinene, and ethyl lactate. However, to keep all solvents in 

liquid state, the pressure was maintained at 1500 psi. This is an ideal operating condition 

for ASE extraction study for a new solute-solvent systems.34 As 100 ºC is well below the 

critical point of all the solvent used for extraction, the solvents were just pressurized to 

maintain their liquid state.  

As pressure does not have a notable effect on viscosity of liquid solvents, the 

above results and discussion concludes that at 100 ºC n-hexane, 2-MeTHF, CPME and 

TBME have lower viscosity, therefore a higher diffusion rate and consequently a higher 
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mass transfer is expected for those solvents in ASE extraction of soybean oil. On the 

other hand, a smaller diffusion rate is expected from ethyl lactate and alpha-pinene.  

2.3.6 Characterization of extracted oil 

Soybean oil extracted from ASE method was characterized using GC-MS. 

Triglycerides can be easily hydrolyzed to from fatty acids, which are polar and can form 

hydrogen bonds in their free, underivatized form. This may cause adsorption issues 

during the gas chromatography. Reducing the polarity of carboxylic acids may make 

them more amenable for GC-MS analysis. For our characterization purpose, the 

triglycerides in the soybean oil were converted into fatty acid methyl esters (FAME) prior 

to the GC-MS analysis. The Lewis acid catalyzed esterification reaction scheme shown 

below was performed to transform the major fatty acids such as palmitic acid, linoleic 

acid, oleic acid, stearic acid into their respective methyl esters.74 Boron trifluoride in this 

reaction functions as a Lewis acid that catalyze the reaction by increasing the 

electrophilicity of carbonyl carbons in fatty acids.  Methanol in this reaction functions as 

the nucleophile that attacks the carbonyl carbon to replace hydroxide and produce ester. 

The reaction mixture was washed with base water to remove any unreacted fatty acid and 

reagents. The ester products were highly soluble in the organic phase that was collected, 

and dried using sodium sulfate and magnesium sulfate columns to get rid of trace water.  

Figure 2.16 shows the reflux apparatus setup used for the esterification of fatty acids. 
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Figure 2.15 Reaction scheme show the conversion of fatty acids (from triglyceride) in 
the soybean oil into methyl esters using Lewis acid catalyzed esterification.  

 

 

Figure 2.16 Photograph of the reaction setup used for methyl esterification of fatty acids 
in soybean oil. 
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2.3.7 ASE Extraction Results and Hot-ball model Comparison 

The following sections discuss the results of extraction of soybean oil in 

accelerated solvent extractor (ASE) using n-hexane, the reference hydrocarbon solvent, 

and these selected green solvents 

• 2-Methyl tetrahydrofuran (2-MeTHF) 

• Alpha-Pinene 

• Cyclopentyl methyl ether (CPME) 

• Ethyl lactate 

• t-butyl methyl ether (TBME) 

All the following ASE extraction results were obtained at 100 ºC temperature and 

1500 psi pressure. This operating condition of ASE technique that is ideal for studying 

new solute-solvent system was adopted from the literature.34 This operating condition 

was also tested and reported to be working well for extraction of fats from coffee.31 

Thermal degradation point of analyte was also considered while choosing the operating 

conditions.  

 

Figure 2.17 Picture of extracts (that contains oil) collected from ASE. As the amount of 
solvent used is about 30 mL, a concentration and drying process was required after 
extraction.  
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The number of cycles, solvent flush volume, purge time, and sample preheat time 

were determined based on the sample type and volume. Extraction times were set to 5, 

10, 15, 20 and 30 min. All extractions were done in triplicate with soybean particle size 

of 513 µm, and the yields were calculated gravimetrically. The average of the triplicate 

and the standard deviation were reported for each solvent.   

The percentage extracted was calculated for each solvent using equation 2.6. 

Typically 21% of a soybean is made of oil (Table 2.3), however the highest extraction 

yield obtained in this study was 23.24% (or 0.2324g), which is from CPME. Hence, the 

amount of maximum extractable (or 100%) analyte per gram of sample was calculated to 

be 0.2347 g, by assuming the highest experimental yield, that is the yield obtained at 30 

min using CPME, as the 99% recovery. Also, it was assumed that the analyte oil was 

evenly distributed among all soybean particles. Based on this, a percent recovery was 

calculated for each solvent using the equations 2.6 and 2.7. A plot of percent recovery 

versus extraction time is shown for each solvent separately, and a qualitative comparison 

with the hot-ball model was made to validate the experimental results. The main areas of 

the graph to look for are the initial steep rise in percent recovery (thermodynamics 

regions), and a later tailed off percent recovery (kinetics region). As shown in Figure 

2.18, a visual fitting of experimental plot to the theoretical plot is made for each solvent 

extraction.  
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Figure 2.18 Example of qualitative comparison of experimental plot of percent recovery 
vs. extraction time, obtained from n-hexane extraction, with the theoretical hot-ball 
model plot.  

A kinetic plot of ln(m/mₒ) versus extraction time was shown separately for each 

solvent-extraction for a better qualitative and quantitative analysis.  In these kinetics 

plots, the reduced time tᵣ = 1, is set to match the time in which the linear portion of the 

curve changes by a value of ln(m/mₒ) = 1. A second horizontal axis on the top was added 

to the same graph that represents the reduced time. Having two axes would help 

qualitatively visualize how the reduced time is scaled to the actual extraction time. The 

kinetic plot of each solvent is compared to the theoretical hot-ball model kinetic plot to 

validate the experimental results. The important areas to look for are initial steep curve, 

linear diffusion region, the slope of extrapolation of diffusion regions, and the intercept 

of the extrapolation line at t=0 axis. A quantitative comparison is that the ln(m/mₒ) value 

at the intercept should be more negative than -0.5 in order to validate the experimental 

results for non-spherical soybean particles, as shown in Figure 2.19. The ln(m/mₒ) value 

at the intercept and the slope of the diffusion region would be quantitatively used to 

calculate the diffusion coefficient, and the time required to extract a desired amount of 
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soybean oil. Application of hot-ball model to qualitatively validate the extraction results, 

and quantitatively calculate the diffusion coefficient was reported for each solvent. IR 

and GC-MS spectra were given to confirm the purity of the extracted oil. A comparison 

of extraction efficiency of all solvents was made at the end.  

 

Figure 2.19 Example of qualitative and quantitative comparison of experimental plot of 
ln(m/mₒ) vs. reduced time, obtained from CPME solvent extraction, with the theoretical 
hot-ball model plot.  
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2.3.8 n-Hexane Extraction and Hot-ball Model Results 

(a) Qualitative comparison to the hot-ball model 

The percent recovery of soybean oil using n-hexane is plotted against extraction 

time in Figure 2.20. A fast initial rate of extraction is observed as predicted by the hot-

ball model. In the graph it appears as a steep rise in percent recovery between 0 – 15 min. 

As listed in Table 2.9 an average of 67.62±1.14% of the total extractable mass of 

soybean oil is recovered in five minutes. The first part, that is the 0 – 15 min, is 

considered as the equilibrium region, were the solute partitioning, and thus solubility of 

the solute-solvent system, plays a dominant role. As presented previously in Table 2.8, 

the predicted relative solubility of triglycerides of the major fatty acids of soybean oil in 

n-hexane is high. As the extraction progressed, the rate of extraction becomes smaller, 

and that is indicated by a flattening of the recovery curve. After 15 min, the rate of 

extraction turns out to not change much. This agrees with the prediction of hot-ball 

model. The maximum recovery of 85.85±0.66% is observed at 30 min. 

The diffusion region of the recovery graph starts at 15 min and after that a slow 

exponential decay of extraction rate was observed.  As most of the oil has already been 

extracted, the mass transfer of the remaining oil is drawn by the concentration gradient 

through diffusion. Viscosity of solvent should be the predominant factor in this diffusion 

region. A quantitative approach with respect to hot-ball model is needed to analyze this 

region.  
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Table 2.9 Results of accelerated solvent extraction (ASE) of soybean oil using n-hexane 
as solvent (particle size is 513 µm, temperature is 100 ºC).  

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Percent of oil 
extracted per 

gram of 
soybean sample 

(%) 

Percent 
Recovery 

(where  
mₒ = 0.2347 g)  

(%)  

Standard 
deviation for 
% recovery 

(n=3)   
(%) 

0 0 0 0 0 

5 0.1587 15.87 67.62 1.14 

10 0.1918 19.18 81.72 3.54 

15 0.1985 19.85 84.58 1.83 

20 0.2006 20.06 85.46 2.08 

30 0.2015 20.15 85.85 0.66 
 

 

Figure 2.20 Percent of oil recovered out of total extractable oil in soybean sample using 
n-hexane at different extraction times. Particle size is 513 µm.  
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(b) Calculation of diffusion coefficient using hot-ball model 

The characteristic of experimental data of soybean extraction using n-hexane is 

matched to the hot-ball model. The extraction kinetics is plotted using the natural 

logarithm of ratio of mass of unextracted oil to the original mass of extractable oil, 

ln(m/mₒ) versus extraction time, as shown in Figure 2.21. To match with the theoretical 

model, this extraction time is simplified to the reduced time, tᵣ. The extraction time 

(horizontal axis on the bottom) is quantitatively scaled to the reduced time (horizontal 

axis on the top) in the same graph. The numerical values are given in the Table 2.10. The 

actual extraction time equivalent to reduced time tᵣ = 1, for n-hexane is calculated to be 

189 min. The kinetic curve initially falls infinitely steeply. Even though this is a small 

portion of the curve, it represents the loss of majority of extractable material from the 

particle (84.58±1.83%) within 15 min. But after the extraction time of 15 min, which 

corresponds to the tᵣ of around 0.08, the rate of fall tails off and the curve become almost 

linear.  

At first the concentration at the surface of the sample particle diffuse out quickly, 

and as the extraction progresses, the surface concentration drops significantly. This leads 

to a large concentration gradient near the surface, which makes the solute from core of 

the particle to diffuse out. Eventually, when the concentration gradient thins out, a 

smoother profile is established, and the loss of solute concentration is turns out to be a 

simple exponential decay.    
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Table 2.10 Hot-ball model results for the ASE extraction of soybean oil using n-hexane.  

Extraction 
time  
(min) 

Average mass 
of analyte oil 
extracted per 

gram of 
soybean sample  

(g) 

Average mass (m) 
of analyte 

unextracted per 
gram of soybean 

sample  
(if mₒ = 0.2347 g) 

(g) 

m/mₒ ln(m/mₒ) Reduced 
time tᵣ  

0 0 0.2347 1.0000 0 0 

5 0.1587 0.0760 0.3238 -1.1276 0.027 

10 0.1918 0.0429 0.1828 -1.6994 0.053 

15 0.1985 0.0362 0.1542 -1.8692 0.080 

20 0.2006 0.0341 0.1453 -1.9290 0.106 

30 0.2015 0.0332 0.1415 -1.9558 0.159 
 

 

Figure 2.21 Plot of ln(m/mo) vs. extraction time for n-hexane scaled to the reduced time 
(tᵣ) to compare with the hot-ball model.  
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Extrapolation of the linear portion of the curve to t = 0 axis provides an intercept 

of ln(m/mₒ) = -1.802. This aligns to the hot-ball model with the effect of non-spherical 

particle shape that was given in Figure 2.5.  The close fit of experimental y-intercept 

with the y-intercept of hot-ball model endorses the experimental data obtained from n-

hexane extraction to be valid, as the 513 µm ground soybean particle were not spherical.  

The linear regression of the trend line is 0.8523 and the slope of the line -0.0053. 

The intercept on t = 0 axis is -1.802. From this data, the diffusion coefficient of n-hexane 

is calculated to be 5.9 x 10-9 cm2s-1. Also, the time required for the recovery of 99% of oil 

using n-hexane is 531 min, which is relatively higher than other solvents. The 

experimental viscosity of n-hexane is relatively low compared to the other solvent.  

The identity of soybean oil extracted in ASE using n-hexane is confirmed by IR 

spectroscopy. Figure 2.22 shows that the IR peaks for the stretching frequencies of C=O 

at 1743 cm-1, sp3 C-H at 2853 cm-1 and 2923 cm-1, sp2 C-H at 3009 cm-1, and C-O at 1159 

cm-1 for the triglycerides in the extracted soybean oil perfectly match with the IR peaks of 

commercial soybean oil.  

The GC-MS chromatogram also confirms the identity of fatty acid methyl esters 

in the n-hexane extracted soybean oil (Figure 2.23). For four major fatty acid methyl 

esters in the extracted oil have a relative abundance that matches with the theoretical 

relative ratio of the four fatty acids soybean sample. 
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Figure 2.22 Comparison of IR spectra of commercial soybean oil and soybean oil 
extracted in ASE using n-hexane. 

 

Figure 2.23 Gas chromatogram shows the presence of fatty acid methyl ester derivatives 
from soybean oil extracted in ASE using n-hexane.  

3.504.004.505.005.506.006.507.007.508.008.509.009.5010.00
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

Time-->

Abundance

[_GCMS_SMT]TIC: [BSB1]Hexfame150910.D\data.ms

Methyl palmitate 

Methyl linoleate 

Methyl oleate 

Methyl stearate 



72 

2.3.9 2-MeTHF Extraction and Hot-ball Model Results 

(a) Qualitative comparison to the hot-ball model 

The percent recovery of soybean oil using 2-MeTHF is plotted against extraction 

time in Figure 2.24. As was seen for n-hexane, 2-MeTHF also has a fast initial rate of 

extraction as predicted by hot-ball model. In the graph it appears as a steep rise in percent 

recovery between 0 – 15 min. This is steeper than n-hexane initial rate of extraction. As 

given in the Table 2.11, results of accelerated solvent extraction (ASE) of soybean oil 

using 2-MeTHF as solvent (particle size is 513 µm, temperature is 100 ºC). an average of 

89.69±0.19% of the total extractable mass of soybean oil is recovered in five minutes. 

This is relatively high compared to that of the reference solvent n-hexane.  As the 

extraction progressed, the rate of extraction becomes smaller, indicated by a flattening of 

the recovery curve. After 15 min, the rate of extraction turns out to not change much. 

This agrees with the prediction of hot-ball model. The maximum recovery of oil using 2-

MeTHF is 95.88±1.36% that is observed at 30 min. 

The initial steep rise in rate of extraction can be related to the predicted high 

solubility for the triglycerides of soybean oil in 2-MeTHF at 100 ºC (Table 2.8). The 

diffusion region of recovery graph starts from 15 min where a slow exponential decay of 

extraction rate was observed.  Viscosity of solvent should be the controlling factor in this 

region. A quantitative approach with respect to hot-ball model is discussed below to 

analyze this region.  
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Table 2.11 Results of accelerated solvent extraction (ASE) of soybean oil using 2-
MeTHF as solvent (particle size is 513 µm, temperature is 100 ºC).  

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Percent of oil 
extracted per 

gram of 
soybean sample 

(%) 

Percent 
Recovery 

(where  
mₒ = 0.2347 g)  

(%)  

Standard 
deviation for 
% recovery 

(n=3)   
(%) 

0 0 0 0 0 

5 0.2105 21.05 89.69 0.19 

10 0.2158 21.58 91.93 0.18 

15 0.2220 22.20 94.57 0.37 

20 0.2239 22.39 95.40 0.65 

30 0.2250 22.50 95.88 1.36 
 

 

Figure 2.24 Percent of oil recovered out of total extractable oil in soybean sample using 
2-MeTHF at different extraction times. Particle size is 513 µm. 
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(b) Calculation of diffusion coefficient using hot-ball model 

The shape of experimental kinetic plot of extraction of soybean oil using the 

green solvent 2-MeTHF fits with the hot-ball model. The extraction kinetics is plotted 

using the natural logarithm of ratio of mass of unextracted oil to the original mass of 

extractable oil, ln(m/mₒ), versus extraction time, as shown in Figure 2.25. The extraction 

time (horizontal axis on the bottom) is quantitatively scaled to the reduced time 

(horizontal axis on the top) in the graph, as previously explained for n-hexane. The values 

are given in the Table 2.12. The actual extraction time at tᵣ = 1, for 2-MeTHF is 

calculated to be 58 min. The curve initially falls infinitely steeply, and it represents the 

loss of majority of extractable material from the particle (94.57±0.37%) within 15 min. 

But after of 15 min, which corresponds to the tᵣ of around 0.26, the rate of fall drops off 

and the curve become linear similar to what is seen for n-hexane. 

The linear regression of the trend line is 0.9113, the slope is -0.0173, and the 

intercept on t = 0 axis is at the value of ln(m/mₒ) = -2.6854. From this data, the diffusion 

coefficient of 2-MeTHF is calculated to be 1.9 x 10-8 cm2s-1. This is significantly high 

compared n-hexane. The actual time required to recover 99% of the oil is calculated to be 

112 min. This increased diffusion coefficient and thus the short extraction time for 2-

MeTHF are related to the viscosity of the pressurized liquid 2-MeTHF solvent at 100ºC.  

The identity of soybean oil extracted in ASE using 2-MeTHF is confirmed by IR 

spectroscopy. Figure 2.26 shows that the IR peaks for C=O, sp3 C-H, sp2 C-H, C=C, and 

C-O stretching frequencies of triglycerides in extracted soybean oil perfectly match with 

the IR peaks of commercial soybean oil. In Figure 2.27 GC-MS chromatogram shows 

the presence of four major fatty acid methyl esters in the extracted soybean sample.  
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Table 2.12 Hot-ball model results for the ASE extraction of soybean oil using 2-MeTHF  

Extraction 
time  
(min) 

Average mass 
of analyte oil 
extracted per 

gram of 
soybean sample  

(g) 

Average mass (m) 
of  analyte 

unextracted per 
gram of soybean 

sample  
(if mₒ = 0.2347 g) 

(g) 

m/mₒ ln(m/mₒ) Reduced 
time tᵣ  

0 0 0.2347 1.0000 0 0 

5 0.2105 0.0242 0.1031 -2.2720 0.087 

10 0.2158 0.0189 0.0807 -2.5174 0.173 

15 0.2220 0.0127 0.0543 -2.9141 0.260 

20 0.2239 0.0108 0.0460 -3.0788 0.346 

30 0.2250 0.0097 0.0412 -3.1896 0.519 
 

 

Figure 2.25 Plot of ln(m/mo) vs. extraction time for 2-MeTHF scaled to the reduced time 
(tᵣ) to compare with the hot-ball model.  
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Figure 2.26 Comparison of IR spectra of commercial soybean oil and soybean oil 
extracted in ASE using 2-MeTHF.  

 

Figure 2.27 Gas chromatogram shows the presence of fatty acid methyl ester derivatives 
from soybean oil extracted in ASE using the green solvent 2-MeTHF.  
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2.3.10 alpha-Pinene Extraction and Hot-ball Model Results  

(a) Qualitative comparison to the hot-ball model 

The percent recovery of soybean oil using alpha-pinene is plotted against 

extraction time in Figure 2.28. A fast initial rate of extraction as predicted by hot-ball 

model is observed for alpha-pinene, as a steep rise in percent recovery between 0 – 15 

min. The percent recovery for alpha-pinene at 5 min is greater than n-hexane, but smaller 

than all other solvents. As given in the Table 2.13 an average of 84.31±0.72% of the total 

extractable mass of soybean oil is recovered in first five minutes. This is relatively high 

compared to that of the reference solvent n-hexane.  As the extraction progressed, the rate 

of extraction becomes smaller, indicated by a flattening of the recovery curve. After 15 

min, the rate of extraction tailed off. This agrees with the prediction of hot-ball model. 

The maximum recovery of oil using alpha-pinene is 92.96±2.93% that is observed at 30 

min. This is smaller than observed for most of the other green solvents at 30 min.  

The predicted relative solubility of triglycerides in alpha-pinene at 100 ºC is high 

around 100%. (Table 2.8). This is reflected in the higher percent recovery at the 

beginning of the extraction, where solubility plays major role. Like the previous two 

solvents the diffusion region of percent recovery graph start from 15 min where a slow 

exponential decay of extraction rate was observed.  Viscosity of solvent should be the 

controlling factor in this region. A quantitative approach with respect to hot-ball model is 

discussed below to analyze this region.  
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Table 2.13 Results of accelerated solvent extraction (ASE) of soybean oil using alpha-
pinene as solvent (particle size is 513 µm, temperature is 100 ºC).  

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Percent of oil 
extracted per 

gram of 
soybean sample 

(%) 

Percent 
Recovery 

(where  
mₒ = 0.2347 g)  

(%)  

Standard 
deviation for 
% recovery 

(n=3)   
(%) 

0 0 0 0 0 

5 0.1979 19.79 84.31 0.72 

10 0.2147 21.47 91.46 0.33 

15 0.2176 21.76 92.70 0.63 

20 0.2180 21.80 92.88 0.08 

30 0.2182 21.82 92.96 2.93 
 

 

Figure 2.28 Percent of oil recovered out of total extractable oil in soybean sample using 
alpha-pinene at different extraction times. 
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(b) Calculation of diffusion coefficient using hot-ball model 

Qualitatively the appearance of experimental kinetic plot of extraction of soybean 

oil for alpha-pinene fits with the hot-ball model. The extraction kinetics is plotted using 

the natural logarithm of ratio of mass of unextracted oil to the original mass of 

extractable oil, ln(m/mₒ) versus extraction time, as shown in Figure 2.29. The extraction 

time (horizontal axis on the bottom) is quantitatively scaled to the reduced time 

(horizontal axis on the top) in the graph, as previously explained for n-hexane and 2-

MeTHF. The values are given in the following Table 2.15. The actual extraction time at tᵣ 

= 1, for alpha-pinene is calculated to be 455 min. The curve initially falls infinitely 

steeply like any other solvents, and this represents the loss of majority of extractable 

material from the particle (92.70±0.63%) within 15 min. But after the extraction time of 

15 min, which corresponds to the tᵣ of around 0.033, the rate of fall drops off and the 

curve become almost linear similar to what is seen for n-hexane and 2-MeTHF. 

The linear regression of the trend line is 0.8206, the slope is -0.0022, and the 

intercept on t = 0 axis is at the value of ln(m/mₒ) = -2.5905. From this data, the diffusion 

coefficient of alpha-pinene is calculated to be 2.4 x 10-9 cm2s-1. This is significantly low 

compared to n-hexane and other green solvents. The actual time required to recover 99% 

of the oil is calculated to be 920 min. Compared to other solvents this decreased diffusion 

coefficient and the extended extraction time for alpha-pinene are related to the higher 

viscosity of the pressurized liquid alpha-pinene solvent at 100 ºC. The identity of 

soybean oil extracted in ASE using alpha-pinene is confirmed by IR spectroscopy and 

GC-MS chromatography in Figure 2.30 and Figure 2.31.  
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Table 2.14 Hot-ball model results for the ASE extraction of soybean oil using α-pinene. 

Extraction 
time  
(min) 

Average mass 
of analyte oil 
extracted per 

gram of 
soybean sample  

(g) 

Average mass (m) 
of analyte 

unextracted per 
gram of soybean 

sample  
(if mₒ = 0.2347 g) 

(g) 

m/mₒ ln(m/mₒ) Reduced 
time tᵣ  

0 0 0.2347 1.0000 0 0 

5 0.1979 0.0368 0.1569 -1.8519 0.011 

10 0.2147 0.0200 0.0854 -2.4609 0.022 

15 0.2176 0.0171 0.0730 -2.6173 0.033 

20 0.2180 0.0167 0.0712 -2.6429 0.044 

30 0.2182 0.0165 0.0704 -2.6529 0.066 
 

 

Figure 2.29 Plot of ln(m/mo) vs. extraction time for alpha-pinene scaled to the reduced 
time (tᵣ) to compare with the hot-ball model.  
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Figure 2.30 Comparison of IR spectra of commercial soybean oil and soybean oil 
extracted in ASE using alpha-pinene. 

 

Figure 2.31 Gas chromatogram shows the presence of fatty acid methyl ester derivatives 
from soybean oil extracted in ASE using the green solvent alpha-pinene.  
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2.3.11 CPME Extraction and Hot-ball Model Results 

(a) Qualitative comparison to the hot-ball model 

The percent recovery of soybean oil using CPME is plotted against extraction 

time in Figure 2.32. A fast-initial rate of extraction as predicted by hot-ball model is 

observed for CPME, as a steep rise in percent recovery between 0 – 15 min. The percent 

recovery for CPME at 5 min is greater than previous solvents. As given in Table 2.13 an 

average of 93.59±1.30% of the total extractable mass of soybean oil is recovered in first 

five minutes. This is relatively high compared to that of the reference solvent n-hexane 

and all other green solvents. As the extraction progresses, the rate of extraction becomes 

smaller, indicated by a flattening of the recovery curve. After 15 min, the rate of 

extraction tailed off. This agrees with the prediction of the hot-ball model. The maximum 

recovery of oil using CPME is 99.02±0.16% that is observed at 30 min. This is the 

highest of all solvents tested in this study and considered for the calculation of 100% 

extractable mass.  

The predicted relative solubility of triglycerides in CPME at 100 ºC is high 

(Table 2.8). This is reflected in the higher percent recovery at the beginning of the 

extraction, were solubility plays major role. Like the previous solvents the diffusion 

region of percent recovery graph start from 15 min where a slow exponential decay of 

extraction rate was observed.  Viscosity of solvent should be the controlling factor in this 

region. A quantitative approach with respect to hot-ball model is discussed below to 

analyze this region.   



83 

Table 2.15 Results of accelerated solvent extraction (ASE) of soybean oil using CPME 
as solvent (particle size is 513 µm, temperature is 100 ºC).  

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Percent of oil 
extracted per 

gram of 
soybean sample 

(%) 

Percent 
Recovery 

(where  
mₒ = 0.2347 g)  

(%)  

Standard 
deviation for 
% recovery 

(n=3)   
(%) 

0 0 0 0 0.00 

5 0.2197 21.97 93.59 1.30 

10 0.2269 22.69 96.68 1.77 

15 0.2301 23.01 98.03 0.05 

20 0.2313 23.13 98.54 0.05 

30 0.2324 23.24 99.00 0.16 
 

 

Figure 2.32 Percent of oil recovered out of total extractable oil in soybean sample using 
CPME at different extraction times.  
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(b) Calculation of diffusion coefficient using hot-ball model 

The appearance of the experimental kinetic plot of extraction of soybean oil using 

CPME fits with the hot-ball model. The extraction kinetics is plotted, ln(m/mₒ), versus 

extraction time, as shown in Figure 2.33. The extraction time (horizontal axis on the 

bottom) is quantitatively scaled to the reduced time (horizontal axis on the top) in the 

graph. The values are given in the Figure 2.33. The actual extraction time at tᵣ = 1, for 

CPME is calculated to be 22 min, which is the smallest of all solvents. The curve initially 

falls infinitely steeply like any other solvents, and this represents the loss of majority of 

extractable material from the particle (98.03±0.05%) within 15 min. But after 15 min, 

which corresponds to the tᵣ of around 0.686, the rate of fall drops off and the curve 

become almost linear similar to what is seen for other solvents. 

The linear regression of the trend line is 0.9886, the slope is -0.0457, and the 

intercept on t = 0 axis is at the value of ln(m/mₒ) = -3.2673. From this data, the diffusion 

coefficient of CPME is calculated to be 5.1 x 10-8 cm2s-1. This is the highest value 

compared all other solvents tested. The actual time required to recover 99% of the oil is 

calculated to be 30 min. The highest diffusion coefficient and the shortest extraction time 

for CPME are related to the low viscosity of the pressurized liquid CPME solvent at 100 

ºC. The identity of soybean oil extracted in ASE using CPME is confirmed by IR 

spectroscopy. Figure 2.34 shows that the IR peaks for C=O, sp3 C-H, sp2 C-H, C=C, and 

C-O stretching frequencies of triglycerides in extracted soybean oil perfectly match with 

the IR peaks of commercial soybean oil. GC-MS chromatogram (Figure 2.35) also shows 

the presence of four major fatty acid methyl ester with a relative abundance that matches 

with the theoretical ratio of the four fatty acids soybean sample.  
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Table 2.16 Hot-ball model results for the ASE extraction of soybean oil using CPME  

Extraction 
time  
(min) 

Average mass 
of analyte oil 
extracted per 

gram of 
soybean sample  

(g) 

Average mass (m) 
of analyte 

unextracted per 
gram of soybean 

sample  
(if mₒ = 0.2347 g) 

(g) 

m/mₒ ln(m/mₒ) Reduced 
time tᵣ  

0 0 0.2347 1.0000 0 0 

5 0.2197 0.0150 0.0641 -2.7480 0.229 

10 0.2269 0.0078 0.0332 -3.4042 0.457 

15 0.2301 0.0046 0.0197 -3.9250 0.686 

20 0.2313 0.0034 0.0146 -4.2248 0.914 

30 0.2324 0.0023 0.0098 -4.6254 1.371 
 

 

Figure 2.33 Plot of ln(m/mo) vs. extraction time for CPME solvent was scaled to the 
reduced time (tᵣ) to compare with the hot-ball model. 
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Figure 2.34 Comparison of IR spectra of commercial soybean oil and soybean oil 
extracted in ASE using CPME solvent 

 

Figure 2.35 Gas chromatogram shows the presence of fatty acid methyl ester derivatives 
from soybean oil extracted in ASE using the green solvent CPME.   
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2.3.12 Ethyl Lactate Extraction and Hot-ball Model Results 

(a) Qualitative comparison to the hot-ball model 

The percent recovery of soybean oil using ethyl lactate is plotted against 

extraction time in Figure 2.36. A fast-initial rate of extraction was seen as predicted by 

hot-ball model. In the graph it appears as a steep rise in percent recovery between 0 – 5 

min. As given in the Table 2.17 an average of 94.36±0.13% of the total extractable mass 

of soybean oil is recovered in five minutes. This is relatively high compared to that of the 

reference solvent n-hexane and other green solvents.  As the extraction progressed, the 

rate of extraction becomes smaller, indicated by a flattening of the recovery curve. After 

15 min, the rate of extraction turns out to not change much. This agrees with the 

prediction of the hot-ball model. The maximum recovery of oil using ethyl lactate is 

96.09±0.29%, that is observed at 30 min. 

The initial steep rise in rate of extraction can be related to the predicted solubility 

of the triglycerides of soybean oil in ethyl lactate at 100 ºC (Table 2.8). The diffusion 

region of the recovery graph starts from 15 min where a very slow exponential decay of 

extraction rate was observed.  A high viscosity of ethyl lactate should be the controlling 

factor in this region. A quantitative approach with respect to hot-ball model is discussed 

below to analyze this region. 

(b) Calculation of diffusion coefficient using hot-ball model 

Qualitatively the appearance of the experimental kinetic plot of extraction of 

soybean oil for ethyl lactate fits with the hot-ball model. The extraction kinetics is plotted 

using the natural logarithm of ratio of mass of unextracted oil to the original mass of 

extractable oil, ln(m/mₒ), versus extraction time, as shown in Figure 2.37.  
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Table 2.17 Results of accelerated solvent extraction (ASE) of soybean oil using ethyl 
lactate as solvent (particle size is 513 µm, temperature is 100 ºC).  

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Percent of oil 
extracted per 

gram of 
soybean sample 

(%) 

Percent 
Recovery 

(where  
mₒ = 0.2347 g)  

(%)  

Standard 
deviation for 
% recovery 

(n=3)   
(%) 

0 0 0 0 0.00 

5 0.2215 22.15 94.36 0.13 

10 0.2241 22.41 95.48 0.16 

15 0.2251 22.51 95.91 0.18 

20 0.2251 22.51 95.91 0.33 

30 0.2255 22.55 96.09 0.29 
 

 

Figure 2.36 Percent of oil recovered out of total extractable oil in soybean sample using 
ethyl lactate at different extraction times. 
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The extraction time is quantitatively scaled to the reduced time in the graph and 

the values are given in the Table 2.18. The actual extraction time at tᵣ = 1 for ethyl lactate 

is calculated to be 303 min. The curve initially falls infinitely steeply like any other 

solvents, and this represents the loss of majority of extractable material from the particle 

(95.91±0.18%) within 15 min. But after the extraction time of 15 min, which corresponds 

to the tᵣ of around 0.050, the rate of fall drops off and the curve become almost linear. 

The linear regression of the trend line is 0.8929, the slope is -0.0033, and the 

intercept on t = 0 axis is at the value of ln(m/mₒ) = -3.1405. From this data, the diffusion 

coefficient of ethyl lactate is calculated to be 3.7 x 10-9 cm2s-1. This is higher compared n-

hexane, and alpha-pinene, but lower than CPME, 2-MeTHF, and TBME. The actual time 

required to recover 99% of the oil is calculated to be 447 min. The lower diffusion 

coefficient and the extended extraction time for ethyl lactate are related to the highest 

viscosity of the pressurized liquid ethyl lactate solvent at 100 ºC. The identity of soybean 

oil extracted in ASE using ethyl lactate is confirmed by IR spectroscopy. Figure 2.38 

shows that the IR peaks for C=O, sp3C-H, sp2C-H, C=C, and C-O stretching frequencies 

of triglycerides in extracted soybean oil match with the IR peaks of commercial soybean 

oil.  The GC-MS chromatogram, Figure 2.39, shows the presence of the four major fatty 

acid methyl esters in the extracted soybean sample. Interestingly, the relative abundance 

of methyl oleate, methyl palmitate and methyl stearate, with respect to methyl linoleate 

were lower than what was seen for other solvents. This agrees with the lower predicted 

solubility of oleic acid (49.8%), palmitic acid (31.1%), and stearic acid (22.3%) in ethyl 

lactate, compared to their solubility in other solvents (100%).  
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Table 2.18 Hot-ball model results for the ASE extraction of soybean oil using ethyl 
lactate  

Extraction 
time  
(min) 

Average mass 
of analyte oil 
extracted per 

gram of 
soybean sample  

(g) 

Average mass (m) 
of analyte 

unextracted per 
gram of soybean 

sample  
(if mₒ = 0.2347 g) 

(g) 

m/mₒ ln(m/mₒ) Reduced 
time tᵣ  

0 0 0.2347 1.0000 0 0 

5 0.2215 0.0132 0.0564 -2.8756 0.017 

10 0.2241 0.0106 0.0452 -3.0975 0.033 

15 0.2251 0.0096 0.0409 -3.1965 0.050 

20 0.2251 0.0096 0.0409 -3.1965 0.066 

30 0.2255 0.0092 0.0391 -3.2427 0.099 
 

 

Figure 2.37 Plot of ln(m/mo) vs. extraction time for ethyl lactate was scaled to the 
reduced time (tᵣ) to compare with the hot-ball model.  
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Figure 2.38 Comparison of IR spectra of commercial soybean oil and soybean oil 
extracted in ASE using ethyl lactate. 

 

Figure 2.39 Gas chromatogram shows the presence of fatty acid methyl ester derivatives 
from soybean oil extracted in ASE using the green solvent ethyl lactate.   
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2.3.13 TBME Extraction and Hot-ball Model Results 

(a) Qualitative comparison to the hot-ball model 

The percent recovery of soybean oil using TBME is plotted against extraction 

time in Figure 2.40. A fast-initial rate of extraction was seen as predicted by the hot-ball 

model. In the graph it appears as a steep rise in percent recovery between 0 – 10 min. As 

given in the Table 2.19 an average of 85.09±1.21% of the total extractable mass of 

soybean oil is recovered in five minutes. This is relatively high compared to that of the 

reference solvent n-hexane and alpha-pinene, but lower than CPME, 2-MeTHF, and ethyl 

lactate. As the extraction progressed, the rate of extraction becomes smaller, indicated by 

a flattening of the recovery curve. After 15 min, the rate of extraction becomes to not 

change much. This agrees with the prediction of the hot-ball model. The maximum 

recovery of oil using TBME is 92.87±0.12%, which is observed at 30 min. 

The initial steep rise in rate of extraction can be related to the predicted solubility 

of 100% for the triglycerides of soybean oil in TBME at 100 ºC (Table 2.8). The 

diffusion region of recovery graph starts from 15 min where a very slow exponential 

decay of the extraction rate was observed.  A low viscosity of TBME should be the 

controlling factor in this region. A quantitative approach with respect to the hot-ball 

model is discussed below to analyze this region. 
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Table 2.19 Results of accelerated solvent extraction (ASE) of soybean oil using TBME 
as solvent (particle size is 513 µm, temperature is 100 ºC).  

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Percent of oil 
extracted per 

gram of 
soybean sample 

(%) 

Percent 
Recovery 

(where  
mₒ = 0.2347 g)  

(%)  

Standard 
deviation for 
% recovery 

(n=3) 
(%) 

0 0 0 0 0.00 

5 0.1997 19.97 85.09 1.21 

10 0.2118 21.18 90.26 1.25 

15 0.2153 21.53 91.75 0.56 

20 0.2169 21.69 92.42 0.05 

30 0.2180 21.80 92.87 0.12 
 

 

Figure 2.40 Percent of oil recovered out of total extractable oil in soybean sample using 
TBME at different extraction times. 
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(b) Calculation of diffusion coefficient using hot-ball model 

Qualitatively the appearance of the experimental kinetic plot of extraction for 

TBME fits with the hot-ball model. The extraction kinetics is plotted using the natural 

logarithm of ratio of mass of unextracted oil to the original mass of extractable oil, 

ln(m/mₒ), versus extraction time, as shown in Figure 2.41. The extraction time is 

quantitatively scaled to the reduced time in the graph, as previously explained. The 

values are given in the Table 2.20. The actual extraction time at tᵣ = 1 for TBME is 

calculated to be 109 min. The curve initially falls infinitely steeply like other solvents, 

and this represents the loss of a majority of extractable material from the particle 

(91.75±0.56%) within 15 min. But after 15 min, which corresponds to tᵣ of around 0.138, 

the rate drops off and the curve becomes almost linear. 

The linear regression of the trend line is 0.9242, the slope is -0.0092, and the 

intercept is at the value of ln(m/mₒ) = -2.3715. From this data, the diffusion coefficient of 

TBME is calculated to be 1.0 x 10-8 cm2s-1. This is higher compared with n-hexane, 

alpha-pinene, and ethyl lactate, but lower than CPME and 2-MeTHF. The actual time 

required to recover 99% of the oil is calculated to be 244 min. The identity of soybean oil 

extracted in ASE using TBME is confirmed by IR spectroscopy. Figure 2.43 shows that 

the IR peaks for C=O, sp3C-H, sp2C-H, C=C, and C-O stretching frequencies of 

triglycerides in extracted soybean oil match with the IR peaks of commercial soybean oil. 

GC-MS chromatogram (Figure 2.43) also shows the presence of four major fatty acid 

methyl esters in the extracted oil with a relative abundance that matches with the 

theoretical relative ratio of the four fatty acids soybean sample.   
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 Table 2.20 Hot-ball model results for the ASE extraction of soybean oil using TBME  

Extraction 
time  
(min) 

Average mass 
of analyte oil 
extracted per 

gram of 
soybean sample  

(g) 

Average mass (m) 
of analyte 

unextracted per 
gram of soybean 

sample  
(if mₒ = 0.2347 g) 

(g) 

m/mₒ ln(m/mₒ) Reduced 
time tᵣ  

0 0 0.2347 1.0000 0 0 

5 0.1997 0.0350 0.1491 -1.9030 0.046 

10 0.2118 0.0229 0.0974 -2.3286 0.092 

15 0.2153 0.0194 0.0825 -2.4948 0.138 

20 0.2169 0.0178 0.0758 -2.5791 0.184 

30 0.2180 0.0167 0.0713 -2.6409 0.276 
 

 

Figure 2.41 Plot of ln(m/mo) vs. extraction time for TBME solvent was scaled to the 
reduced time (tᵣ) to compare with the hot-ball model.  
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Figure 2.42 Comparison of IR spectra of commercial soybean oil and soybean oil 
extracted in ASE using TBME solvent. 

 

Figure 2.43 Gas chromatogram shows the presence of fatty acid methyl ester derivatives 
from soybean oil extracted in ASE using the green solvent TBME.   
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2.3.14 Comparison of Extraction Efficiency of Green Solvents 

Typically, soybeans are made of 21% of oil, but this may vary based on 

geographical location, climate, and cultivation method. The comparison of extraction 

using green solvents should provide informative results, as there is no published literature 

found for a direct comparison of the diffusion and extraction efficiency using these 

solvents. Also, the application of the theoretical hot-ball model would offer a validation 

for the experimental data. As discussed in the previous sections, all of the experimental 

extraction results fit perfectly with the hot-ball model including the effect of non-

spherical particle shape.  

The highest extraction percentage quantified in this study is 23.24% by weight of 

the soybean sample. This is acquired from the 30 min ASE extraction using CPME 

solvent at 100 ºC and 1500 psi. The operation condition was maintained constant for all 

solvent extractions. The percentage extractions values obtained from all solvents are 

compiled in Table 2.21. The chart shown in Figure 2.44 compares the percent of oil 

extracted using different solvents at various times. The mass of the above highest 

extraction yield is considered as 99% recovery. Based on this, the maximum (100%) 

extractable mass is calculated to be 23.47%. The relative percent recoveries for all 

solvents at various times are compiled in Table 2.22, and the chart shown in Figure 2.45 

compared the percent recoveries for all solvent at various times.   
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Table 2.21 Comparison of percent of soybean oil extracted in ASE using different 
solvents at different times.  

Percent of soybean oil extracted in ASE using different solvents (%) 

Extraction time (min) 0 5 10 15 20 30 

Hexane 0 15.87 19.18 19.85 20.06 20.15 

2-MeTHF 0 21.05 21.58 22.20 22.39 22.50 

alpha-Pinene 0 19.79 21.47 21.76 21.80 21.82 

CPME 0 21.97 22.69 23.01 23.13 23.24 

Ethyl lactate 0 22.15 22.41 22.51 22.51 22.55 

TBME 0 19.97 21.18 21.53 21.69 21.80 
 

 

Figure 2.44 Percent of oil extracted from soybean using different solvents at different 
extraction times. As the y-axis is an extended % extraction, zero intercept is not shown.  
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Table 2.22 Comparison of percent of soybean oil recovered in ASE using different 
solvents at different times.  

Percent of soybean oil recovered in ASE using different solvents (%) 

Extraction time (min) 0 5 10 15 20 30 

Hexane 0 67.62 81.72 84.58 85.46 85.85 

2-MeTHF 0 89.69 91.93 94.57 95.40 95.88 

alpha-Pinene 0 84.31 91.46 92.70 92.88 92.96 

CPME 0 93.59 96.68 98.03 98.54 99.00 

Ethyl lactate 0 94.36 95.48 95.91 95.91 96.09 

TBME 0 85.09 90.26 91.75 92.42 92.87 

 

 

Figure 2.45 Percent of oil recovered from soybean using different solvents at different 
extraction times.  
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The ln(m/mₒ) versus extraction time plot of all solvents are compared in a single 

chart given in Figure 2.46, and the linear regression values for the extrapolation of 

diffusion regions of solvent is compiled in Table 2.23. The fit for trend line for each of 

the solvents is good with linear regressions greater than 0.82, as shown in the table. Also, 

the t = 0 intercepts for all solvents are more negative than -0.5, the theoretical intercept 

proposed in the hot-ball model. The difference in intercept is expected since the 513-µm 

ground soybean particles are not spherical as indicated by the t = 0 intercept. This 

matches with the effect of non-spherical particle shape on the original hot-ball model.  

For the irregular shaped soybean sample, the concentration of the oil at the 

beginning of extraction is transferred quickly due to the solubility. In general, for non-

spherical particles the intercept on the t = 0 axis is greater negative than -0.5, as the 

surface-to-volume ratio is greater than that of spheres. This effect would be larger for 

more irregular particles. Also, since the soybean particles are irregular in shape, the initial 

part of the logarithmic plot is a more rapid curve, and extraction tail doesn’t perfectly 

superimpose on hot-ball model. Therefore, it is expected that the time needed to recover 

99% of oil, is a greater multiple of the time required to extract the first 50%, than the 

original hot-ball model.  

The reference solvent n-hexane yields the lowest percent recovery of all solvents 

at any extraction times tested. The values listed in the Table 2.21 indicates that the 

maximum oil recovered using n-hexane is 85.85±0.66% at 30 min. This is in fact lower 

than the percent of oil recovered at 5 min for all other solvents. The justification for this 

poor performance of n-hexane should originate from the slow diffusion of oil into n-

hexane. The diffusion coefficient of n-hexane is 10 time smaller than CPME. At 5 min n-
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hexane can extract only 67.62±1.14%, and this slow start impacts the transition region 

and diffusion region of the extraction. 

However if the diffusion region of the ln(m/mₒ) versus extraction time plot of n-

hexane is extrapolated, it gives a slope of -0.0053 and an intercept of t = 0 axis at -1.8026 

(Table 2.23).  The slope of n-hexane is steeper than that of alpha-pinene (-0.0022) and 

ethyl lactate (-0.0033). As this linear portion of first order kinetic line is steeper than that 

of alpha-pinene and ethyl lactate (Figure 2.46), n-hexane has a faster diffusion rate than 

the other two. The reason for this may arise from the viscosity of n-hexane, which is 

significantly lower than the viscosity of the alpha-pinene, and ethyl lactate. As a result, 

the diffusion coefficient of the two green solvents alpha-pinene (2.4 x 10-9 cm2s-1) and 

ethyl lactate (3.7 x 10-9 cm2s-1) for the solute is notably lower than the diffusion 

coefficient of n-hexane (5.9 x 10-9 cm2s-1).  
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Table 2.23 Linear regression analysis for the plot of ln(m/mₒ) vs. extraction time for 
different solvents.  

Solvent  ln(m/mₒ) intercept  
at t=0 Slope R2 

Hexane -1.8020 -0.0053 0.8523 

2-MeTHF -2.6854 -0.0173 0.9113 

Alpha Pinene -2.5905 -0.0022 0.8206 

CPME -3.2673 -0.0457 0.9886 

Ethyl Lactate -3.1405 -0.0033 0.8929 

TBME -2.3715 -0.0092 0.9242 
 

 

Figure 2.46 Comparison of ln(m/mₒ) vs extraction time of different solvents   
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However, when it comes to the total time a solvent takes to recover the maximum 

(99%) solute, there are two effects, solubility and diffusion, that need to be considered. 

Given in the Table 2.24, the calculated time required for 99% soybean oil recovery is 

531 min for n-hexane, which is significantly shorter than the 920 min for alpha-pinene. 

This longer extraction time can be justified by high viscosity of alpha-pinene. But for 

ethyl lactate, although the diffusion coefficient is smaller than n-hexane, the total time 

required for 99% recovery is 447 min, shorter than n-hexane.  

Interestingly, the other three green solvents, CPME, 2-MeTHF, and TBME, are 

more efficient in extracting soybean oil. They all have higher rate of extraction in both 

the initial equilibrium region and in the final diffusion region. As given in the Table 2.22, 

the percent recovery at 5 min for CPME, 2-MeTHF, and TBME are 93.58±1.30, 

89.69±0.19, and 85.09±1.21% respectively, that are significantly higher than n-hexane’s 

67.6%.  

The percent recovery at 30 min for CPME, 2-MeTHF, and TBME are respectively 

99.00±0.16, 95.88±1.36, and 92.87±0.12% and are significantly higher than n-hexane 

85.85±0.66%. Also, the extrapolation of the diffusion region yields a steeper slope for 

these three green solvents compared to that of n-hexane. This may be because, the 

viscosity of CPME, 2-Me-THF, and TBME are very close to the viscosity of n-hexane. 

The higher solubility effect in equilibrium region, and the lower viscosity effect in the 

diffusion region are cumulatively reflected on the diffusion coefficients of these solvents. 

As given in the Figure 2.47, CPME stands out with a highest diffusion coefficient of 5.1 

x 10-8 cm2s-1 of all solvents, which is ten times more than that of n-hexane. The diffusion 

coefficients of 2-MeTHF (1.9 x 10-8 cm2s-1) and TBME (1.0 x 10-8 cm2s-1) are also higher 
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than n-hexane. The calculated time required for maximum (99%) recovery is 6.5 x 102 

min that is extremely shorter extraction period compared to that of n-hexane’s 1.0 x 105 

min.      

Although, these values are determined in ASE at 100 ºC and 1500 psi, the trend in 

diffusion coefficient and the time required for maximum extraction time would not 

change much in other extraction methods at the same temperature. This comparison study 

offers a strong qualitative and quantitate result that can be interpreted into the following 

ranking. This ranking compares the overall efficiency of the solvents based on their total 

time required for 99% of soybean oil recovery (Figure 2.48). 

1) CPME (best) 
2) 2-MeTHF 
3) TBME 
4) Ethyl lactate 
5) n-hexane  
6) alpha-Pinene  



105 

Table 2.24 Calculated extraction time equivalent to tᵣ = 1 and diffusion coefficient for 
ASE extraction of soybean oil using different solvents (particle size = 513 µm). 

Solvent 
Extraction time 
equivalent to tᵣ 

= 1 (min) 

Diffusion 
coefficient D 

(cm2s-1) 

Predicted time 
required to 

recover 99% of 
oil (min) 

Hexane 189 5.9 x 10-9 531 

2-MeTHF 58 1.9 x 10-8 112 

Alpha Pinene 455 2.4 x 10-9 920 

CPME 22 5.1 x 10-8 30 

Ethyl Lactate 303 3.7 x 10-9 447 

TBME 109 1.0 x 10-8 244 
 

.  

Figure 2.47 Comparison of diffusion coefficients of green solvents with n-hexane.  
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Figure 2.48 Comparison of the overall efficiency of green solvents based on the time 
required for 99% oil recovery.   
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2.4 Summary and Conclusions 

Five green solvents, namely 2-methyltetrahydrofuran (2-MeTHF), alpha-pinene, 

cyclopentyl methyl ether (CPME), ethyl lactate, and t-butyl methyl ether (TBME), and a 

petroleum-based reference solvent n-hexane were tested in accelerated solvent extraction 

(ASE). The experiments were designed with an emphasis on comparing the efficiency of 

green solvents based on their diffusion coefficient and the time required for maximum oil 

extraction. 

Soybean sample preparation was carried out with grinding of dry soybeans, 

sieving the particles into different size fractions, and drying the particles before 

extraction. To study the effect of particle size on the extraction yield, ASE extraction was 

carried out for four different particle sizes using n-hexane. Results of this study showed 

that the extraction yield increases as the particle size decreases. A maximum of only 10% 

oil was extracted from the largest size 1200 µm diameter particles. Whereas a maximum 

of 20% oil was obtained from the 513-µm diameter particles. This concludes that the 

extraction yield was doubled when the particle size was reduced to half.    

The five green solvents were selected based on a literature survey of the 

ecological and economic impacts of solvents. A solvent scoring system was adopted to 

roughly compare the relative impact of the solvents on waste, health, environment, fire 

hazard, reactivity, and lifecycle. After this preliminary screening of green solvents, 

solubility of the triglycerides of major soybean fatty acids (linoleic acid, oleic acid, 

palmitic acid, and stearic acid) in the green solvents were theoretically predicted and 

compared to the other common solvents. The COSMO program predicted solubility data 

revealed that all the five green solvents possess a high solubility as n-hexane for the 
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triglycerides. Except ethyl lactate, all other green solvents were predicted to have high 

relative solubility for the triglycerides of soybean fatty acids. This theoretical solubility 

data was later used to evaluate and justify the trends seen in extraction results.  

Viscosities of the green solvents at different temperature were experimentally 

acquired and compared to the viscosity of the reference solvent n-hexane. Except ethyl 

lactate and alpha-pinene, whose viscosities at 100 ºC are 0.9 and 0.7 cP respectively, all 

other green solvents possess low viscosity, close to n-hexane. This viscosity data was 

also used to evaluate and justify the trends seen in extraction results.  

The experimental extraction results were analyzed using the theoretical hot-ball 

model. This model illustrates any extraction process using a plot of percent recovery 

versus time or plot of ln(m/mₒ) versus time. The structure of the plots consists of an initial 

solubility-controlled equilibrium region, followed by a viscosity-dominated diffusion 

region. The plots obtained from the experimental results were qualitatively compared to 

structure of the hot-ball model plots for non-spherical particles. Also, the experimental 

results were quantitatively analyzed to calculate the diffusion coefficient and the time 

required for maximum extraction.  

Each of green solvents studied in this dissertation showed a best-fit to the hot-ball 

model despite of the irregular shape of the solute particles. The initial rapid rate of the 

extraction followed by a development of a liner portion at around the reduced time, tᵣ = 

0.5 validated the experimental data to be reliable. The extrapolation of the linear portion 

of the logarithmic curves of all solvents gave intercepts on t = 0 axis that are always more 

negative than the value of -0.5 for a theoretical spherical sample particle. This was related 

to the fact that the tested 513-µm soybean particles were mostly non-spherical and 
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irregular shapes. The mass transfer out of the solid matrix is not a perfect diffusion within 

homogeneous medium, but more likely a migration of mass from one adsorption site to 

another, as the extraction fluid replaces the solute molecules at the adsorption site.  

Among the green solvents tested, cyclopentyl methyl ether (CPME) demonstrated 

an excellent overall performance in both solubility-controlled and diffusion-controlled 

extraction regions. The diffusion coefficient of CPME (5.1 x 10-8 cm2s-1) was the highest 

of all solvents and it was remarkably almost ten times greater than that of the 

conventional petroleum-based solvent n-hexane (5.9 x 10-9 cm2s-1). The time required to 

recover 99% of the soybean oil, was calculated to be 30 min for CPME. The next highest 

efficient alternate solvents were 2-MeTHF with 112 min, TBME with 244 min, and ethyl 

acetate with 447 min time required for 99% oil recovery. These above highly efficient 

solvents could be the potential green alternatives for n-hexane. The time required for n-

hexane for 99% soybean oil recovery is 531 min. alpha-Pinene takes 920 min for that, 

hence it is less efficient than n-hexane. 

The long linear tails in the kinetic plots of green solvents involve a mass transfer 

of only minority of solute, but still this diffusion region is significant in industrial 

extraction processes to calculate the time it takes to complete an extraction. 



110 

3 EXTRACTION OF SOYBEAN OIL USING A PROTOTYPE AUTOMATED 

EXTRACTOR  

3.1 Introduction 

This chapter focuses on examining a new green extraction technique. The 

prototype extractor from CEM is a crossover between automated Soxhlet extraction and 

energized solvent extraction. The results from extraction of soybean oil using n-hexane 

were validated using the hot-ball model and compared to the results from ASE.  

3.1.1 Automated Soxhlet Extraction 

Soxhlet extraction is the process of extracting analyte from a solid matrix to the 

liquid phase using a Soxhlet extractor. This old solid-liquid extraction technique is used 

widely in analysis of food and agricultural products. The apparatus invented by Franz 

Von Soxhlet in 1879 has three components, a percolator flask that heats and circulates the 

solvent, a sample chamber that holds the filter paper thimble with solid sample, and a 

siphon arm drains the solvent back into the flask of boiling solvent.75 The heated and 

refluxed solvent is introduced into the extraction chamber where the partially soluble 

analyte are slowly transferred to the warm fresh solvent through a dispersion mechanism. 

The disadvantage of the Soxhlet extraction is that it is time consuming (6-24 hours) and it 

requires a large volume of samples (150-800mL). The alternate extraction methods were 

developed to minimize the extraction time and solvent usage.76-79 Partial or fully 

automated Soxhlet techniques were developed to improve the simplicity, ease of handling 

and adaptability of this traditional technique.80 

The general mechanism of a solid-liquid extraction technique is that the analyte 

disperses from a more concentration region (solid matrix) to a less concentration region 
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(solvent) until an equilibrium is reached.81 Applying heat energy and adding fresh solvent 

in this mechanism increases the recovery. The solid matrix is stopped at the filter paper 

thimble while the extracted analyte passes along with the solvent.  

There are several automated Soxhlet extraction systems available in market, such 

as Soxtec (by Foss Analytics), Soxtherm (by OI Analytics), and Ankom XT10 (by 

Ankom Technology). They generally use sophisticated technology for controlling 

extraction time, solvent volume, and temperature while maintaining a better yield. We 

previously investigated the efficiency of the Soxtec Extractor (Tecator Soxtec System 

HT6 1043 Extraction Unit, by Foss Analytics, Edina, MN) in extracting lipids from 

coffee beans.31 In this instrument the sample loaded in a cellulose thimble was soaked in 

10-15 mL boiling solvent for about 40-50 minutes. The diffusion coefficient in Soxtec is 

ten times greater than that of Soxhlet. This higher extraction efficiency of Soxtec is due 

to the constant contact between the sample and boiling solvent, as opposed to the 

Soxhlet.82On the other hand, Driver reported that the diffusion coefficient of Soxtec is 5 

times lower than that of ASE. 

3.1.2 Prototype Automated Extractor from CEM  

In this work CEM Corporation’s prototype automated extractor, named Energized 

Dispersive Guided Extractor (EDGE), was used to extract oil from soybean. This 

instrument is more automated than Soxhlet and simpler than pressurized fluid extractor 

(PFE or ASE). This prototype extractor handles one sample cell at a time. An upgraded 

version of EDGE is available on the market that can handle 12 samples at a time. This 

extractor can be used to isolate fat from food, pesticides from produce, semi-volatile 
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organic compounds from soil, phthalates from plastic, air pollutants from XAD resin, or 

absorbed pollutants (polychlorinated biphenyls) from polyurethane foam (PUF) plugs.83  

The prototype automated extractor from CEM, shown in Figure 3.1, consists of 

an extraction chamber that can be moved in and out of a heating block. Temperature of 

the heating block can be adjusted on the instrument. Pressure can be controlled and 

monitored with a gauge on the instrument. On this prototype instrument the volume of 

solvent is manually measured and pumped into the system. A cellulose thimble loaded 

with solid sample is placed into the extraction chamber. In this static extraction process 

the sample would have a constant contact with the solvent. After extraction the solid 

matrix are stopped at the thimble, while the extract pass through the thimble to collection 

vial. This relatively simple process would take about 30 minutes to complete, and the 

volume of solvent is much less than the traditional Soxhlet technique.  

 

 

Figure 3.1 The prototype energized dispersive extraction from CEM Corporation. 
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Figure 3.2 The sample holder (Q-cup) used in CEM EDGE. (Image obtained from 
CEM.)  

An alternate to the cellulose thimble is the Q-cup that is made of ultra-thin coated 

aluminum (for efficient heating) and a cellulose membrane for filtration. The parts are 

shown in the Figure 3.2. After inserting the cellulose filter, the bottom of the aluminum 

cell is screwed. A sample up to 30 g can be loaded into the cell. This packed aluminum 

cell is placed into the heating chamber. A pressure cap is placed to create a pressurized 

seal on the top of the cell.  

A rapid extraction and filtration are promoted by the dispersive effect created in 

the chamber. A solvent is first introduced from the bottom to fill the gap between the 

chamber and the cell.  This small volume of solvent initiates the heat transfer to the 

solvent and sample matrix. Then, more solvent is added from the top to completely soak 

the sample. As the chamber walls are heated, the solvent pressure in the gap between cell 
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and chamber increases. This overcomes the pressure inside the cell, forcing the solvent to 

disperse into the sample. Once the sample reaches the desired temperature, the instrument 

maintains the temperature for a set time. Then the solvent filters through the cellulose 

membrane and passes through a cooling coil to the collection vial. This mechanism is 

shown in the Figure 3.3.  

An upgraded version of the automated extractor (EDGE) is shown in Figure 3.4. 

This instrument is lot cheaper than other extraction techniques such as microwave, 

QuEChERs, pressurized fluid extraction (PFE), Soxhlet, automated soxhlet, and 

ultrasonic techniques. EDGE can extract up to 30 g in 5 minutes that includes filtering 

and cooling cycles. Although, CEM claims that EDGE is 6 times faster than PFE the 

extraction efficiency needs to be considered. The amount of solvent required in EDGE 

and PFE is almost same.  
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Figure 3.3 The energized dispersive extraction process in CEM prototype extractor. 
(Image obtained from CEM) 

   

Figure 3.4 An upgraded version of automated energized dispersive extraction EDGE 
from CEM. (Image obtained from CEM)  



116 

3.2 Experimental Methods 

3.2.1 Materials and Reagents 

Soybeans sample was supplied by the Department of Agricultural & Biosystems 

Engineering, South Dakota State University. The sample preparation described in section 

2.3.2 was followed and an average particle size of 513 µm was used in this study. 

Extraction was performed using the prototype automated extraction system named 

Energized Dispersive Guided Extractor (EDGE) from CEM Corporation (Matthews, 

NC). n-Hexane was purchased from Thermo-Fischer Scientific.  

3.2.2 Extraction of Soybean Oil Using CEM’s Prototype Extractor 

The CEM’s prototype automated extractor uses a Soxhlet-like technique to 

extract, for example, the oil from soybean. In a cellulose thimble, 1 g of ground soybean 

with average particle size of 513 µm was added along with 2 g of sand (dispersive agent). 

The thimble was then placed into an extraction chamber that can be sealed and lowered 

into a heating block using the linear actuator switch. The temperature was maintained at 

100 ºC and the pressure at 6 psi. The extraction was conducted with 30 mL of n-hexane 

manually pumped using the syringe. Turning on a switch sent the solvent to the 

extraction chamber in two stages and initiated the extraction process, as explained in 

section 3.1.2. This prototype extractor can handle only one extraction at a time. 

Experiments were performed at various extraction times (5, 10, 15, 20 and 30 minutes) 

with triplicate samples for each time. Once the extraction was completed, the extracts 

were collected in a pre-weighed glass vial. Then solvent recovery was done in rotatory 

evaporator or distillation under low pressure. After the distillation of solvent, the 

extracted oil was dried under nitrogen flushing.  The nitrogen drying and weighing 
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process were repeated until two consecutive weights consistent to within ±0.0009 grams 

were obtained. The mass obtained from the triplicate were plotted using Microsoft Excel. 

Average of the three masses, and the standard deviation were calculated.  

The extraction results were validated using the hot-ball model as explained in 

Section 2.2.5. IR spectral analysis, esterification and GC-MS characterization were 

conducted as described in Sections 2.2.6, 2.2.7, and 2.2.8. 
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3.3 Results and Discussion 

3.3.1 Validating the CEM Extractor using the Hot-Ball Model 

In this section the results of extraction of soybean oil using n-hexane in CEM’s 

prototype extractor are evaluated by comparing to the theoretical hot-ball model. The 

extraction was carried at 100 ºC and 6 psi. Extraction times were set to 5, 10, 15, 20 and 

30 min. All extractions were done in triplicate with soybean particle size of 513 µm, and 

the yields were calculated gravimetrically. The average for the replicates and the standard 

deviation were reported. The amount of maximum extractable (0.2347 g) analyte per 

gram of sample was calculated based on the results from previous ASE extraction. It is 

assumed that the oil was evenly distributed throughout the soybean particles. The percent 

recoveries were calculated using equations 2.6 and 2.7. 

(a) Qualitative comparison to the hot-ball model 

First, a visual fitting of the experimental plot to the theoretical plot was made. The 

percent recovery of soybean oil using n-hexane in the CEM prototype extractor is plotted 

against the extraction time in Figure 3.5. Like in ASE, a fast initial rate of extraction is 

observed. In the graph it appears as a steep rise in percent recovery between 0 – 15 min. 

As listed in the Table 3.1 an average of 43.46±0.75% of the total extractable mass of 

soybean oil is recovered in five minutes. The first 15 min is considered the equilibrium 

region. As the extraction progressed, the rate of extraction becomes smaller, and that is 

indicated by a flattening of the recovery curve. After 15 min, the rate of extraction turns 

out to not change much. This agrees with the prediction of the hot-ball model. The 

maximum recovery of 61.94±2.07% is observed at 30 min.The diffusion region of the 
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recovery graph starts at 15 min, and after that a slow exponential decay of extraction rate 

was observed.    
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Table 3.1 Results of soybean oil extraction using n-hexane in the CEM prototype 
extractor (particle size is 513 µm, temperature is 100 ºC).  

Extraction 
time  
(min) 

Average mass of 
oil extracted per 
gram of soybean 

sample  
(g) 

Percent of oil 
extracted per 

gram of 
soybean sample 

(%) 

Percent 
Recovery 

(where  
mₒ = 0.2347 g)  

(%)  

Standard 
deviation for 
% recovery 

(n=3)   
(%) 

0 0 0 0 0.00 

5 0.1020 10.20 43.46 0.75 

10 0.1291 12.91 54.99 1.95 

15 0.1360 13.60 57.94 2.19 

20 0.1399 13.99 59.62 1.57 

30 0.1454 14.54 61.94 2.07 
 

 

Figure 3.5 Percent oil recovered from the soybean sample using n-hexane at different 
extraction times in the CEM prototype extractor. The average particle size is 513 µm.  
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(b) Calculation of diffusion coefficient using the hot-ball model 

The characteristics of experimental data of soybean extraction using n-hexane in 

the CEM prototype extractor is matched to the hot-ball model. The extraction kinetics is 

plotted using the natural logarithm of ratio of mass of unextracted oil to the original mass 

of extractable oil, ln(m/mₒ), versus extraction time, as shown in Figure 3.6. The 

extraction time is quantitatively scaled to the reduced time in the graph, as previously 

explained. The numerical values are given in the Table 3.2. The actual extraction time 

equivalent to reduced time tᵣ = 1, for n-hexane is calculated to be 151 min. Like in ASE 

extraction, the kinetic curve initially falls infinitely steeply. Even though this is a small 

portion of the curve, it represents the loss of majority of extractable material from the 

particle within 15 min. But after 15 min, which corresponds to the tᵣ of around 0.066, the 

rate of fall tails off and the curve become almost linear. 

Extrapolation of the linear portion of the curve to t = 0 provides an intercept of 

ln(m/mₒ) = -0.771. This aligns to the hot-ball model with the effect of nonspherical 

particles shape that was given in the Figure 2.5.  The close fit of experimental y-intercept 

with the y-intercept of hot-ball model endorses the experimental data obtained from the 

prototype extractor to be valid, as the 513-µm ground soybean particle were not 

spherical.  
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Table 3.2 Hot-ball model results for soybean oil extraction using n-hexane in the CEM 
prototype extractor.  

Extraction 
time  
(min) 

Average mass 
of analyte oil 
extracted per 

gram of 
soybean sample  

(g) 

Average mass (m) 
of analyte 

unextracted per 
gram of soybean 

sample  
(if mₒ = 0.2347 g) 

(g) 

m/mₒ ln(m/mₒ) Reduced 
time tᵣ  

0 0 0.2347 1.0000 0.0000 0 

5 0.1020 0.1327 0.5654 -0.5702 0.033 

10 0.1291 0.1056 0.4501 -0.7983 0.066 

15 0.1360 0.0987 0.4206 -0.8661 0.099 

20 0.1399 0.0948 0.4038 -0.9069 0.132 

30 0.1454 0.0893 0.3806 -0.9659 0.198 
 

 

Figure 3.6 Plot of ln(m/mo) vs. extraction time for n-hexane scaled to the reduced time 
(tᵣ) to compare with the hot-ball model.  
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The linear regression of the trend line is 0.9927, and the slope of the line -0.0066. 

The intercept on t = 0 axis is -0.771. From this data, the diffusion coefficient of extraction 

of soybean oil in the CEM prototype extractor is calculated to be 7.3 x 10-9 cm2s-1. This is 

close to diffusion coefficient obtained for n-hexane in ASE, 5.9 x 10-9 cm2s-1. The time 

required for the recovery of 99% of oil using n-hexane is 816 min.  

The identity of soybean oil extracted in CEM’s prototype extractor using n-

hexane is confirmed by IR spectroscopy. Figure 3.7 shows that the IR peaks for C=O, 

sp3 C-H, sp2 C-H, C=C, and C-O stretching frequencies of triglycerides in extracted 

soybean oil match with the IR peaks of commercial soybean oil.  

The GC-MS chromatogram also confirms the identity of fatty acids in the n-

hexane extracted soybean oil (Figure 3.8). For four major fatty acid methyl esters in the 

extracted oil has a relative abundance that matches with the theoretical relative ratio of 

the four fatty acids soybean sample. 
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Figure 3.7 Comparison of IR spectra of commercial soybean oil and soybean oil 
extracted in the CEM prototype extractor using n-hexane. 

 

Figure 3.8 Gas chromatogram shows the presence of fatty acid methyl ester derivatives 
from soybean oil extracted in the CEM prototype extractor using n-hexane.  
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3.3.2 Comparison of Extraction Efficiency of ASE and the CEM Prototype 

Extractor 

Efficiency of two extraction systems, Dionex™ ASE-350 from Thermo-Fisher, 

Sunnyvale, CA and a prototype automated extraction system (EDGE) from CEM 

Corporation, Matthews, NC, was compared. 

It is significant to note that the two extraction systems work under a similar 

mechanisms. Dionex™ ASE-350 applies a pressurized fluid extraction method, where a 

highly pressurized solvent at an elevated temperature elutes through the solid sample. 

This would result an escalated extraction rate. The CEM prototype extractor applies a 

related extraction method, where a solvent at a relatively lower pressure is in constant 

contact with the solid sample for a set time. Comparing these extraction results will 

confirm the related extraction mechanisms. 

In both ASE and the CEM prototype extractor, the following parameter were kept 

constant: solvent (n-hexane), volume of solvent (30 mL), soybean particle size (513 µm), 

weight of sample (1 g), weight of dispersing agent (2 g), temperature (100 ºC), and 

extraction time (5 - 30 min). The pressure maintained in the two extraction systems vary 

drastically; in ASE the pressure is 1500 psi and in the CEM prototype extractor it is 6 psi, 

enough to raise the solvent boiling point.  

Figure 3.9 compares the percent recovery of soybean oil at different extraction 

times for the two methods. Both curves fit with the hot-ball model, but evidently, ASE 

yields the higher recovery at all extraction times, a result of the extractor configuration.  
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Figure 3.9 Comparison of percent recovery from ASE and CEM’s prototype extractor. 

The initial steep equilibrium region ends at 5 min for both curves. At 5 min, ASE 

recovers 67.62±1.14% of soybean oil, whereas the prototype extractor recovers only 

43%. The difference in percent recovery during this solubility driven part of extraction 

process can be highly influenced by the solvent flow mechanism of the ASE instrument, 

resulting in a greater solvent volume. The high temperature provides a high solubility, 

while the high pressure facilitates a high penetration of solvent into the sample matrix.84  

The trend in the equilibrium region persists in the transition region (10-15 min) of 

the extraction curve. At 15 min, ASE recovers 84.58±1.83% of oil, whereas the prototype 

extractor recovers only 57.94±2.19%.  

The diffusion region of the extraction curve starts at 15 min for both methods, 
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00053). The slightly steeper slope for the CEM prototype may be due to the fact the 

concentration gradation is high during the diffusion region or an artifact of the instrument 

design. That is, the ratio of concentration of unextracted oil in the soybean particle to the 

concentration of oil in extracted in the solvent is high. The diffusion coefficient for ASE 

extraction (5.9 x 10-9 cm2s-1) and the CEM prototype extraction (7.3 x 10-9 cm2s-1) are not 

very different. This suggests that the diffusion occurs during both extraction methods are 

not affected by the extraction mechanism.  

 

Figure 3.10 Comparison of ln(m/m0) curves from ASE and the CEM prototype extractor. 
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3.4 Summary and Conclusions 

A prototype automatic extractor from CEM Corporation was explored and 

investigated for extracting soybean oil. The results indicate that the extraction system 

from CEM is less efficient than ASE in terms of amount of oil extracted from soybean 

during short extraction times 5 – 30 min.  Although it fits in the hot-ball model, the 

percent recovery of soybean oil in the prototype extractor is about 25% less than that of 

ASE. One possible reason for this difference in recovery is that the penetration of solvent 

through the sample matrix is high in the pressurized fluid extraction (in ASE), which 

allows a better solvent-sample interaction. It is significant to note that the two extraction 

systems may have their advantages and disadvantages with regard to the cost of 

instruments, cost of operation, ease of handling, energy consumption, and extraction time 

for multiple samples. But they are both more automatic and greener than the traditional 

solid-liquid extraction methods.  

 



129 

4 EFFICIENCY OF ADSORBENTS IN ACCELERATED SOLVENT 

EXTRACTION 

4.1 Introduction 

Selectivity of modern extraction techniques can be improved by the addition of 

adsorbents to the system. Treating the extract with adsorbents before chromatographic 

analysis would eliminate additional clean-up steps, improve selectivity, and ease 

automation.7 Because ASE is an exhaustive extraction technique, extracts obtained from 

complex samples would often include undesired compounds called co-extractant. These 

co-extracted substances can interfere with the determination and application of the 

desired analytes. The ability to extract the most amount of analytes with little or no 

interfering co-extracts would boost the desirability of ASE. This selective extraction can 

be achieved by choosing right solvents, using adsorbents, and manipulating the extraction 

conditions such as temperature.85 This chapter discusses the efficiency of different 

adsorbents in retaining (or adsorbing) oil contents such as saturated and unsaturated fatty 

acid triglycerides during ASE extraction.  

4.1.1 Use of Adsorbents in Extraction 

Adsorption is a phenomenon where the concentration of a solute at the surface of 

a solid becomes greater than the concentration throughout the solution. The driving force 

for adsorption is the subsequent decrease in surface tension between the solid and 

solution. Physical adsorption is promoted by a weak van der Waals force of attraction 

between the adsorbent and the adsorbate molecules. This attraction force is similar to the 

condensation of gas molecules into their liquid state. Chemical adsorption, or 

chemisorption, is promoted by a relatively stronger dipole-dipole attraction between the 
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surface of the adsorbent and the adsorbate molecule.86 In many cases both physical and 

chemical adsorption take place, and it is hard to distinguish them.  

Adsorbents are widely used in solid-phase extraction (SPE) technique. SPE is 

based on chromatographic principles, where the solvent carrying extract is treated with 

adsorbents to improve the analyte fractionation. Optimizing the functional group 

interaction of sample, solvent, and adsorbent would enable precise separation of desired 

compounds from the co-extracts. In addition to conventional SPE columns, several other 

ways are used to improve the selectivity of extraction.  

QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) is one of the 

popular methods used for rapid screening of large number of samples, mainly for 

analyzing pesticide residue in food and agricultural products. Dispersive solid phase 

extraction (d-SPE) is included as a simple and novel clean-up step in the QuEChERS 

technique to process the extracts from fruit, vegetables, oil, sediment, soil, etc.87-88 Apart 

from QuEChERS, dispersive solid phase extraction has evolved as an independent 

sample preparation and extraction technique in recent years.6   

The main advantages of d-SPE are its simplicity, repeatability, low cost, speed 

and wide applicability to different types of samples and analytes.89-93 Saito et al reported 

the use of d-SPE to pretreat extremely small amount of biological samples in analyzing 

overdose of drugs.94 Cerqueira et al have used d-SPE in QuEChERS to determine the 

pesticides and pharmaceutical and personal care products in drinking water treatment 

sludge with a quantification limit of 1 to 50 µg kg-1.95 Fontana et al have successfully 

applied d-SPE to determine several pesticides and other contaminants, such as 
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sulfonamides, polychlorinated biphenyls (PCBs) and PBDEs in diverse types of food and 

environmental samples.88  

Recent developments in automation of SPE and d-SPE support the trend toward 

green chemistry, miniature experiments, and high extraction efficiency.6, 96-97 A complete 

automation of d-SPE pose significant challenges as it is difficult to couple this with other 

techniques. Isolating sorbents from sample solution usually require centrifugation. In case 

of sorbent-free extraction, filtration can be used in place of centrifugation. A filter vial d-

SPE concept may be adopted for sorbent-free extraction. Despite these limitations, 

automated d-SPE is desirable when a large number of extractions are performed in short 

time. Some commercial automated d-SPE available in market can handle several 

extractions simultaneously at high efficiency. Another way to selectivity is to add a 

cartridge of sorbents downstream of existing extraction systems such as ASE. 

4.1.2 In-Cell Cleanup during Accelerated Solvent Extraction  

The versatility of accelerated solvent extraction can be extended by inserting a 

compartment of adsorbents for cleanup.7 Options are available to couple the extraction 

cell with simple adapters loaded with adsorbents. But often the extraction cell can be 

segmented for sample and adsorbents to achieve simultaneous extraction and in-cell 

cleanup or fractionation. This would reduce the solvent usage, labor, and extraction cost, 

and at the same time increase the quality of the analysis. As the extract obtained is ready 

for instrumental analysis, this more automated method falls in line with the current trend 

in green analytical chemistry.98  

Emon et al. developed a selective pressurized liquid extraction (SPLE) procedure 

to effectively extract pesticides from complex indoor house dust without post-extraction 
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cleanup.99 The extraction was performed using dichloromethane in a Dionex ASE-200 

system at 120 ºC and 2000 psi. Acidic and neutral silica were used as the adsorbents. The 

ASE extraction cell was segmented and packed with dispersant, sample and adsorbents. 

Among the different ratios of sample to adsorbents tested, a maximum of 85% recovery 

was obtained for 1:0.8:8 sample, acidic silica and neutral silica ratio. It was also reported 

that silica gives best recovery compared to florisil and alumina. The sample throughput of 

SPLE is estimated to be 50% higher than the step-wise extraction and cleanup procedure. 

This higher efficiency can be translated to reduction in overall analytical cost, and this 

robust method can be considered for routine laboratory analysis for large numbers of 

samples. 

Kim et al. call it a one-step PLE procedure.100 They used Na4EDTA as the 

adsorbent for cleanup during ASE extraction of polycyclic aromatic hydrocarbons 

(PAHs) from sediments. The extraction cell was loaded with a cellulose filter, sea sand, 

anhydrous Na2SO4, sample and adsorbent. Among different ratios tested, a maximum 

recovery was obtained for 1:0.05 sample to adsorbent ratio. A 4% increase in recovery, 

along with an improved precision, and reduction in solvent usage and manual handling 

was reported.100  

Also found in several articles101-103 that the efficiency of an adsorbent varies with 

different sample. An adsorbent ideal for interacting with one functional group may not do 

well with other functional groups. Thus, a survey of different adsorbents could be a 

suitable start for developing a new extraction procedure. Liao et al. examined the 

performance of different adsorbents such as sand, florisil, alumina, graphitized carbon 

and diatomaceous earth in cleaning up of ethyl carbamate extracted from fermented solid 
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food.101 When dichloromethane was used as the solvent, florisil is the front-runner 

adsorbent for retaining co-extracts and producing 85% recovery of ethyl carbamate. On 

the other hand, alumina is the prominent adsorbent with 80% recovery when methanol 

was the solvent. These results bring in the notable effect of solvent on choosing the 

suitable adsorbent for a particular extraction.  

Effect of temperature is another major factor that affects the sample-solvent-

adsorbent interaction. It is difficult to correlate the temperature to the efficiency of an 

adsorbent, when several other factors are involved. A common practice is to identify the 

appropriate temperature for each combination of sample-solvent-absorbent. Pintado et al. 

reported the influence of temperature in the extraction of organic pollutants from costal 

sediments. Upon testing alumina as the adsorbent for five different solvents at three 

different temperatures, no common trend was identified among the recoveries of different 

organic pollutants. For instance the maximum recoveries of octocrylene and homosalate 

were obtained at 70 ºC, the maximum recoveries of celestolide and tris-p-tolylphosphate 

were obtained at 100 ºC, and the maximum recoveries of other pollutants such as ethion, 

deltamethrin, and anthracene were obtained at the higher temperature of 130 ºC.102  

To our knowledge the efficiency of adsorbents for simultaneous ASE extraction 

and in-cell cleanup for soybean oil has not been studied. The aim of this study is to 

develop a simple analytical method for comparing the oil adsorption efficiency of a few 

common adsorbents. This can be done by assessing the percent of oil adsorbed by the 

different adsorbents, at different temperature and different concentration of adsorbents. 

The adsorbents used in this study are listed below. 
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Silica or silica gel is an amorphous form of silicon dioxide (SiO2), and is one of 

the most commonly used adsorbents in chromatography. It is a polymer in which the 

silicon atom is covalently bonded to four oxygen atoms in a tetrahedral geometry. The 

terminal hydroxide groups in silica enables it to form hydrogen bonding with polar 

compounds. Silica gel possessing average pore size greater than about 60 Å is used to 

adsorb phospholipids and soap in the process of oil purification and bleaching.104-105 

Florisil is a commercially prepared magnesium silicate (MgO3Si). The common 

applications are as column packing material in column chromatography, as an adsorbent 

in gas chromatography with electron capture detector (GC/ECD), and in clean-up 

procedures in GC-MS. The average particle size of the florisil we used in this study is 

149-250 µm, and the average pore size is 4-8nm.106 It is used as adsorbent for separation 

of lipids. 107 

Activated charcoal is a highly porous adsorbent material traditionally used to 

remove toxic substances from plants and natural produce. Powdered activated charcoal or 

activated carbon has particle size synthesized to 25 µm. The average pore diameter of the 

activated carbon varies widely in nanometer scale.108-109  This enables the external 

surface for adsorption of lipids and pigments in vegetable oil. 110-111 

Alumina or aluminum oxide (Al2O3) is a mesoporous adsorbent material. The 

average particle size is 5-6 µm and the pore size 3.8 nm.112 Alumina is used to adsorb 

phospholipids during the post extraction process of vegetable oil.112-114  

Diatomaceous earth or Celite® (SiO2) is a soft silica sediment that is natural 

occurring. Because of its high porosity this half-white powdery substance has very low 
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density. The typical particle size of commercially available diatomaceous earth range 

from 10 to 100 nm, and the pore size is varies widely from 244 – 11000 Å.115-116 
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4.2 Experimental Methods 

4.2.1 Materials and Reagents 

Silica gel (DavisilTM, grade 7.10) was purchased from Aldrich. The mesh size is 

4-20 µ, and the pore diameter is about 60 Å. Florisil (mesh size is 60-100 µ), activated 

carbon (Darco® G-60), and alumina (aluminum oxide anhydrous) were purchased from 

Fisher Chemicals.  Diatomaceous earth was purchased from Dionex. Before used for 

adsorption study, all adsorbents were placed in oven at about 100 ºC for 24 hrs to remove 

moisture. Then they were cooled to room temperature and stored in dry containers.   

n-hexane was purchased from Thermo-Fischer Scientific. Purified soybean oil 

(Nutrioli®) was purchased from a local supermarket. Extractions were performed using 

the pressurized fluid extraction instrument Dionex™ ASE-350 (Thermo-Fisher, 

Sunnyvale, CA), and the prototype automated extraction system named Energized 

Dispersive Guided Extractor (EDGE) from CEM Corporation (Matthews, NC). 

4.2.2 Oil Adsorption Study in ASE 

Dry adsorbents were weighted with no or minimal exposure to moisture and 

transferred into a 33-mL stainless steel ASE extraction cell containing a 30 mm Whatman 

cellulose filter. Density of the soybean oil was calculated by measuring its weight and 

volume. The amount of soybean oil used in this study was chosen to be close to the 

amount of oil extracted form 1 g of ground soybean (as seen in Section 2.3.8). Based on 

the desired adsorbent to oil ratio given in Table 4.1 and Table 4.2, a measured amount of 

soybean oil was added on top of the adsorbents. Void space was filled with glass beads, 

and the cell was sealed with the end cap as show in Figure 4.1. The extraction vessel was 

placed into the ASE system and the extraction was conducted using n-hexane. The 
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pressure was maintained at 1500 psi, and the desired temperature was set for each run. 

Triplicate extractions were performed for each experiment, and the results were studied 

gravimetrically. Then solvent recovery was done in a rotatory evaporator or distillation 

under low pressure. After the distillation of solvent, the extracted oil was dried under 

nitrogen flushing.  The nitrogen drying and weighing process were repeated until two 

consecutive weights consistent to within ±0.0009 grams were obtained.  

 

Figure 4.1 Schematic image shows the sample and adsorbent packing in ASE extraction 
cell. 

The mass obtained from the triplicate were plotted. After each experiment, the 

extraction cells were thoroughly washed, rinsed with acetone, and dried before using for 

next experiment.  

Table 4.1 Amount of Adsorbent and Oil used for Initial Study of selectivity of adsorbents 

Adsorbents Ratio of 
adsorbent to oil 

Mass of 
soybean oil (g) 

 Mass of 
adsorbent (g) 

Silica 10:1 0.5 5 
Florisil 10:1 0.5 5 

Activated carbon 10:1 0.5 5 
Diatomaceous earth 10:1 0.5 5 

Alumina 10:1 0.5 5 
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Table 4.2 Amount of adsorbents and oil used to study the effect of temperature and the 
effect of adsorbent’s concentration on adsorption efficiency.  

Adsorbent Adsorbent  
to oil ratio 

Mass of 
adsorbent  

(g) 

Mass of 
soybean oil 

(g) 

Volume of 
solvent 
(mL) 

Extraction 
Temperature 

(ºC)  
Silica 1:5 1.25 0.25 30 50 
Silica 1:5 1.25 0.25 30 75 
Silica 1:5 1.25 0.25 30 100 
Silica 1:5 1.25 0.25 30 150 
Florisil 1:5 1.25 0.25 30 50 
Florisil 1:5 1.25 0.25 30 75 
Florisil 1:5 1.25 0.25 30 100 
Florisil 1:5 1.25 0.25 30 150 
Activated carbon 1:5 1.25 0.25 30 50 
Activated carbon 1:5 1.25 0.25 30 75 
Activated carbon 1:5 1.25 0.25 30 100 
Activated carbon 1:5 1.25 0.25 30 150 
Silica 1:15 3.75 0.25 30 50 
Silica 1:15 3.75 0.25 30 75 
Silica 1:15 3.75 0.25 30 100 
Silica 1:15 3.75 0.25 30 150 
Florisil 1:15 3.75 0.25 30 50 
Florisil 1:15 3.75 0.25 30 75 
Florisil 1:15 3.75 0.25 30 100 
Florisil 1:15 3.75 0.25 30 150 
Activated carbon 1:15 3.75 0.25 30 50 
Activated carbon 1:15 3.75 0.25 30 75 
Activated carbon 1:15 3.75 0.25 30 100 
Activated carbon 1:15 3.75 0.25 30 150 
Silica 1:20 5 0.25 30 50 
Silica 1:20 5 0.25 30 75 
Silica 1:20 5 0.25 30 100 
Silica 1:20 5 0.25 30 150 
Florisil 1:20 5 0.25 30 50 
Florisil 1:20 5 0.25 30 75 
Florisil 1:20 5 0.25 30 100 
Florisil 1:20 5 0.25 30 150 
Activated carbon 1:20 5 0.25 30 50 
Activated carbon 1:20 5 0.25 30 75 
Activated carbon 1:20 5 0.25 30 100 
Activated carbon 1:20 5 0.25 30 150 
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4.2.3 Oil Adsorption Study in CEM Prototype Extractor  

In a cellulose thimble, an accurately weighed amount of adsorbents and soybean 

oil were added as give in Table 4.1. Care was taken not to expose the adsorbent to 

moisture atmosphere. The thimble was then placed into an extraction chamber that can be 

sealed and lowered into a heating block using the linear actuator switch. The temperature 

was maintained at 100 ºC and the pressure at 6 psi. The extraction was conducted with 30 

mL of n-hexane. This prototype extractor can handle only one extraction at a time. Each 

run was triplicated. Once the extraction was completed, the extracts were collected in a 

pre-weighed glass vial. Then solvent recovery was done in rotatory evaporator or 

distillation under low pressure. After the distillation of solvent, the extracted oil was 

dried under nitrogen flushing.  The nitrogen drying and weighing process were repeated 

until two consecutive weights consistent to within ±0.0009 grams were obtained. The 

mass obtained from the triplicate were plotted.   
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4.3 Results and Discussion 

As adsorption is a complex phenomenon, and meticulous studies are required to 

understand its mechanism. Experiments are limited to only compare oil adsorption 

efficiency of five adsorbents. During the adsorption of vegetable oil by silica, florisil, 

activated carbon, diatomaceous earth, and alumina, both physical and chemical 

adsorption play a part. Chemical adsorption requires a close interaction and is generally 

responsible for a single layer of adsorbed molecule. Physical adsorption force can be 

exerted from the first layer to attract further layers. Thus with multilayers physical 

adsorption is more common than chemisorption especially at a low temperature and high 

pressure. But both types of adsorption depend on the nature of the adsorbents, the 

components of the oil, the relative concentration of adsorbent and oil, and the condition 

of their contact. Some combinations of these factors work to give a predictable 

adsorption, but some would conflict to give unpredictable results.117  

Temperature and concentration of adsorbent are the two significant parameters 

that affect adsorption. In order to find the best adsorbents for these triglycerides, we 

tested three adsorbents at three different concentrations and four different temperatures. 

Thus a 3 × 3 × 4 multifactor experimental design was used in this study. n-Hexane was 

used as the solvent for all adsorption studies.  

   

4.3.1 Efficiency of Different Adsorbents in ASE Extraction 

ASE extraction was used to compare the oil adsorption efficiency of five common 

adsorbent such as silica, florisil, activated carbon, diatomaceous earth, and alumina. The 

results shown below in Figure 4.2 indicate how much each adsorbent retained the pure 
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soybean oil during the ASE extraction at 100 ºC.  Major fatty acid triglycerides in 

soybean oil don’t possess a strong hydrogen bond donor character (refer Figure 2.11), 

but they all have a long hydrocarbon chain that can exert non-polar interaction. This hints 

that a physical adsorption could predominantly take place between triglycerides and the 

surface of adsorbents. The results show that the polarity of adsorbents did not have much 

impact on the adsorption capacity. Silica and alumina are both highly polar, but they 

demonstrated notably different oil adsorption capacity in this study.  

 

Figure 4.2 Adsorption of soybean oil by different adsorbents during ASE extraction (at 
100 °C) using n-hexane.   

Silica retained 51.83±3.07% of soybean oil, while alumina retained only 

3.59±0.26%.  Performance of activated carbon is slightly higher than silica with 

54.55±3.29% that makes it the best adsorbent for oils in ASE extraction. Next to 
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activated carbon and silica, the third rank performer is florisil with 41.55±1.50% oil 

retained. Oil adsorption capacity of diatomaceous earth is only 3.34±0.31%. 

Although the limited study we conducted could not establish a proper justification 

for the poor performance of alumina and diatomaceous earth, a viable reason may be the 

smaller pore size and pore volume in these adsorbent materials are insufficient to retain 

triglycerides. Also, since the experiments were performed in an elevated temperature 

(100 ºC) and pressure (1500 psi), the solubility of oil in n-hexane could have outplayed 

the adsorption capacity of the adsorbents. The adsorbent to oil ratio used in this initial 

study was 10:1 (5 g to 0.5 g), and the volume of n-hexane solvent is 30 mL. 

4.3.2 Efficiency of Different Adsorbents in CEM Extraction 

As an affirmation for the previous results from ASE extraction, the efficiency of 

adsorbents was tested in the CEM prototype extractor. Except the pressure in CEM (6 

psi) all extraction conditions were kept same. The CEM results, only with a slight 

deviation, verified that alumina and diatomaceous earth are the poor adsorbents with 

3.17±0.19% and 17.05±3.15% oil retention, respectively. The results also endorsed the 

high adsorption efficiency of silica, activated carbon and florisil. The performance of 

silica leaped from ~50% in ASE to 95.64±2.79% in the prototype extractor. Roughly the 

same trend was observed for the other adsorbents except for alumina. As the precise 

reason for the increased adsorption efficiency is not obvious, the solvent flow design that 

makes ASE a more complete extraction may also retard solute adsorption. 
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Figure 4.3 Adsorption efficiency of five different adsorbents during the CEM extraction. 

4.3.3 Effect of Temperature on the Performance of Adsorbents 

The adsorption of triglyceride contents of soybean oil on silica, florisil, and 

activated carbon was studied at different temperatures using n-hexane in ASE. These 

three adsorbents were chosen based on their performance in the initial ASE and CEM 

extractions at 100 ºC. A multifactor design was used to investigate the influence of 

temperature on the performance of different adsorbents at different concentration. In this 

study, our aim is to compare the oil adsorption capacity of the three popular adsorbents at 

different temperatures. To fully understand the mechanism and thermodynamics of the 

soybean oil adsorption, a detailed investigation would be required. 

Generally, an increase in temperature would decrease the adsorption, due to the 

increased kinetic energy of solute molecules which may overcome the binding energy 
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with the adsorbents. The effect of temperature is not universal, but greatly depend on the 

structure of adsorbents.86 Because several factors affect the adsorption efficiency, it 

would be hard to distinguish between the influence of temperature on activating the 

adoption sites and the influence of temperature on the solubility of sample in solvent. As 

the balance between these two independent and conflicting influences cannot be easily 

predicted, a trial of different temperatures were studied for different adsorbents. As 

linoleic acid is the major component of soybean oil, and the structural alteration of this 

polyunsaturated fatty acid would likely occur at about 160 ºC, our experiments were 

carried out below that temperature.  

The following results show one common trend for all three adsorbents. The oil 

adsorption capacity of silica, florisil, and activated carbon decreases with increase in 

temperature. This indicates that the influence of temperature on the solvation and 

diffusion of soybean oil into n-hexane solvent is more predominant than activating the 

adsorption sites in the adsorbents. Also as the temperature rises, van der Waals forces 

between oil and adsorbent are increasingly disrupted and that contributes to a decreased 

adsorption.   

For all different concentration of adsorbents, the adsorption efficiency of silica, 

florisil, and activated carbon decreased invariably with the increase in temperature. 

Figure 4.4 shows that the % oil retained by silica (at 5:1, 15:1, and 20:1 adsorbent-oil 

ratio) gradually decreased as the temperature increased through 50, 75, 100, and 150 ºC. 

A steeper slope was observed between 75 and 100 ºC. Figure 4.5, and Figure 4.6 show a 

similar trend for florisil and activated carbon. Also, it is adsorbed that the influence of 
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temperature is more prominent in florisil, where about 30% of retention dropped between 

50 ºC and 150 ºC for all florisil concentrations.  

As the results show the important role of temperature in achieving overall oil 

adsorption efficiency of these adsorbents, care should be taken to adjust the temperature 

during the purification step. If the target adsorbate compound is a triglycerides, a higher 

concentration of adsorbent and a lower temperature are preferred for a better retention. 

   

Figure 4.4 Effect of temperature on the performance of silica in adsorbing soybean oil 
during ASE extraction as a function of adsorbent:oil.  
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Figure 4.5 Effect of temperature on the performance of florisil in adsorbing soybean oil 
during ASE extraction as a function of adsorbent:oil . 
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Figure 4.6 Effect of temperature on the performance of activated carbon in adsorbing 
soybean oil during ASE extraction as a function of adsorbent:oil.  

4.3.4 Effect of Adsorbent Concentration on the Performance of Adsorbents 

The general understanding is that use of more adsorbents aid a better separation. 

But this depends on the affinity of the sample to the surface of the adsorbent, and the 

sample solubility in the solvent. Adding more adsorbent may or may not be useful. Also, 

the increased concentration of adsorbents would retain not only more interfering 

substances, but also the useful extracts. This would significantly lower the percent 

recovery. In order to identify how much adsorbent is ideal for a given purification 

process, different concentrations of adsorbents need to be tested. As our study targets the 

adsorbents for triglycerides of fatty acids in soybean oil, we tested different weight ratios 

of adsorbents to a constant oil weight.  

The results show that % oil retention increases with the increase in adsorbent 

concentration. This implies an increase in collision frequency occur between the 

molecules of oil and adsorbent with an increase in concentration of adsorbents. A 

maximum of 91.95±1.90% oil retention was observed for the activated carbon at 20:1 

adsorbent to oil weight ratio at 50 ºC (Figure 4.9). A gentle slope connecting the 

performance of adsorbents at 5:1 and 15:1 adsorbent to oil indicates that no sudden 

change in adsorption mechanism, but the increased surface area of adsorbents opens up 

more adsorbing sites for the oil content. Except a few deviations, the concentration effect 

follows a similar trend for all adsorbents. The peak performance of silica (78.76±0.66%) 

and florisil (87.60±0.54%) were observed for 20:1 adsorbent:oil ratio at 50 ºC. 
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Figure 4.7 Effect of oil to adsorbent weight ratio on the performance of silica at different 
temperatures. 

 

Figure 4.8 Effect of oil to adsorbent weight ratio on the performance of florisil at 
different temperatures. 
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 Figure 4.9 Effect of oil to adsorbent weight ratio on the performance of activated carbon 
at different temperatures. 
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Table 4.3 ASE extraction results for different adsorbents 

Oil to 
adsorbent 

ratio 
Adsorbent Temperature 

(ºC) 

Average Oil 
retained 

per 0.25 g 
of oil (g) 

Percent 
Oil 

retained 
(%) 

Standard 
Deviation 

(n=3)      
(%) 

1:5 Silica 50 0.0457 18.28 1.32 

1:5 Silica 75 0.0333 13.32 2.75 

1:5 Silica 100 0.0177 7.08 0.66 

1:5 Silica 150 0.0090 3.61 1.00 

1:5 Florisil 50 0.0766 30.64 0.96 

1:5 Florisil 75 0.0433 17.33 0.54 

1:5 Florisil 100 0.0238 9.52 2.16 

1:5 Florisil 150 0.0155 6.20 1.91 

1:5 Activated carbon 50 0.0759 30.36 1.73 

1:5 Activated carbon 75 0.0713 28.52 2.47 

1:5 Activated carbon 100 0.0493 19.72 1.38 

1:5 Activated carbon 150 0.0375 15.00 1.25 

1:15 Silica 50 0.1139 45.56 1.03 

1:15 Silica 75 0.1065 42.59 0.87 

1:15 Silica 100 0.0864 34.56 4.22 

1:15 Silica 150 0.0707 28.28 1.74 

1:15 Florisil 50 0.1621 64.84 0.15 

1:15 Florisil 75 0.1164 46.56 1.17 

1:15 Florisil 100 0.0841 33.64 0.66 

1:15 Florisil 150 0.0784 31.36 1.14 

1:15 Activated carbon 50 0.1442 57.68 1.88 

1:15 Activated carbon 75 0.0989 39.57 0.74 

1:15 Activated carbon 100 0.0819 32.76 1.20 

1:15 Activated carbon 150 0.0795 31.80 3.53 

1:20 Silica 50 0.1969 78.76 0.50 

1:20 Silica 75 0.1887 75.48 4.36 

1:20 Silica 100 0.1605 64.20 5.12 

1:20 Silica 150 0.1262 50.48 0.38 

1:20 Florisil 50 0.2190 87.60 0.21 

1:20 Florisil 75 0.1732 69.28 3.06 

1:20 Florisil 100 0.1496 59.83 1.15 

1:20 Florisil 150 0.1309 52.36 0.50 

1:20 Activated carbon 50 0.2299 91.95 3.75 

1:20 Activated carbon 75 0.2001 80.04 1.08 

1:20 Activated carbon 100 0.1636 65.43 2.28 

1:20 Activated carbon 150 0.1477 59.08 0.12 



151 

4.4 Summary and Conclusions 

Oil-adsorption efficiency of five adsorbents, silica, florisil, activated carbon, 

alumina, and diatomaceous earth, were investigated. An initial study using ASE and 

CEM prototype extractor indicated that silica, florisil, and activated carbon were the top 

performers in terms of % oil retention. Further investigation with various temperatures 

signified that the adsorption efficiency of these three adsorbents notably decreased with 

an increase in temperature. Temperature promoted solubility of oil in hexane could be a 

reason for this drop in oil retention percent. An increase in concentration of adsorbent 

displayed an increase in oil retention capacity, which may be due to the opening of new 

adsorbing sites, and an overall increase in pore volume. A highest oil retention percent 

(91.95±1.73%) was observed for activated carbon at 50 ºC at 20:1 adsorbent to oil (w/w) 

ratio. At the same temperature and concentration, florisil showed an 87.60±0.54% and 

silica showed a 78.76±0.66%.  

Since the refining and purification of seed oil becomes a large-scale operation in 

recent years, comparison of oil-adsorption efficiency of common adsorbents was chosen 

for study. It should be noted that the adsorption efficiency of an adsorbent may vary 

considerably from one oil to another. Thus developing a simple method for assessing 

adsorption efficiency was deemed to be necessary prior to choosing an adsorbent. The 

method reported in this work imitates the recently evolved ASE in-cell cleanup process. 

This study on adsorption efficiency during ASE extraction align with the current trends in 

green analytical chemistry and a step towards an automated post-extraction cleanup. This 

development of integration of techniques could offer advantages such as simplicity, 

reduced cost, and low solvent consumption.101 



152 

5 CONCLUSION AND FUTURE WORK 

The primary focus of this dissertation is to propose and validate an efficient green 

solvent extraction method for soybean oil. Five solvents (2-MeTHF, alpha-pinene, 

CPME, ethyl lactate, and TBME) were identified via literature survey as green 

alternatives to the commonly used petroleum-based extraction solvent, n-hexane. Based 

on a solvent indexing system, the relative impact of the solvents on waste, health, 

environment, fire hazard, reactivity, and lifecycle were assessed. Then, the ability of 

these solvent to dissolve triglycerides of soybean was theoretically predicted with the aid 

of a computer program. The solubility of triglycerides in these green solvents was 

predicted to be high, except for ethyl acetate. Then, the experimental study on viscosity 

of the green solvents at different temperature indicated that, except ethyl lactate (0.9 cP at 

100 ºC) and alpha-pinene (0.7 cP at 100 ºC), the majority of green solvent have low 

viscosity (~0.5 cP), which is close to that of n-hexane.  

On the other side, soybean samples were prepared and the effect of particle size 

on the percent oil recovery was studied in ASE extraction using the reference solvent n-

hexane. Results showed that the percent recovery increases as the particle size decreases. 

To be exact, a maximum of 0.2 g of oil was extracted from one gram of 513-µm particles, 

whereas only 0.1 g was extracted from one gram of 1200 µm particles.  

As a main focus of the dissertation, the results of ASE extraction of soybean oil 

using green solvents were validated using the hot-ball model and the extraction 

efficiencies were compared. All five green solvents showed fit to the hot-ball model, 

despite of the irregular shape of the soybean particles. The initial steep extraction curve, 

followed by a flat region at around the reduced time, tᵣ = 0.5, validated the experimental 
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data of ASE extraction to be reliable. The extrapolation of the linear portion of the curves 

of all solvents gave y-intercepts less than -0.5, which indicates that 513-µm soybean 

particles were nonspherical and irregular shapes. Then the experimental results were 

quantitatively analyzed to calculate the diffusion coefficient and the time required for 

maximum extraction. 

Based on the results, this dissertation proposes CPME, 2-MeTHF, ethyl lactate, 

and TBME as potential green alternatives to n-hexane for soybean oil extraction. 

Cyclopentyl methyl ether (CPME) demonstrated an excellent overall performance in both 

the solubility-controlled and diffusion-controlled extraction regions. Remarkably, the 

diffusion coefficient of CPME (5.1 x 10-8 cm2s-1) is almost ten times greater than that of 

the petroleum-based solvent n-hexane (5.9 x 10-9 cm2s-1). The time required to recover 

99% of the soybean oil, was calculated to be 30 min for CPME. The next high efficient 

alternate solvents were 2-MeTHF with 112 min, TBME with 244 min, and ethyl acetate 

with 447 min time required for 99% oil recovery. The time required for n-hexane for 99% 

soybean oil recovery is 531 min. alpha-Pinene takes 920 min for that, hence it is less 

efficient than n-hexane. 

A knowledge of diffusion coefficient and thus the extraction efficiency of a 

solute-solvent system would definitely add weight to the quantitative analytical approach 

in designing both economic and environmentally friendly extraction methods. The 

exponential behavior of the green solvent extraction can be extrapolated to obtain 

quantitative analytical information within a brief extraction duration that can be applied 

for a large-scale extraction.  
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This dissertation furthers the research area (green solvent extraction of vegetable 

oils) by examining the method, validating the results, and measuring the efficiency. The 

experiments were designed with an emphasis on comparing the efficiency of green 

solvents based on their diffusion coefficient and the time required for maximum oil 

extraction. The experimental design proposed in this dissertation can be adapted to other 

green solvents, samples, and extraction techniques. Also, this dissertation opens up an 

avenue for future works; (i) indexing green solvents based on their performance and 

behavior during extraction, (ii) developing methods to identify sample-solvent systems 

for high extraction efficiency, (iii) predicting extraction time and conditions for enhanced 

recovery.  

The second part of this dissertation aimed to test a prototype green extraction 

technique. The automated Soxhlet type extractor from CEM uses much less solvent than 

the conventional Soxhlet extraction, and a rapid extraction is promoted by the heat 

assisted dispersion of analytes. It uses a membrane to filter the extract from solid sample 

matrix. The pressure setting in this extractor (6 psi) is much less than pressure in ASE 

(1500 psi). The results indicate that the automatic Soxhlet type extraction system from 

CEM is 25% less efficient than ASE in terms of amount of oil extracted from soybean 

during 5 – 30 min. Nevertheless, the extraction results fit in the hot-ball model, and the 

operating cost, solvent consumption, and extraction time are less than traditional solid-

liquid extraction techniques. This examination of new extraction techniques line up with 

the intention of green analytical chemistry, and future work could focus on developing 

schemes to compare and highlight the greenness of wide range of extraction techniques.  
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In-cell cleanup in ASE extraction is a promising strategy to reduce solvent 

consumption, energy, labor, cost, and time in post extraction procedures. In the last part 

of this dissertation, oil adsorption efficiency of five different adsorbents was tested at 

different concentration and temperature. Among the various adsorbents, silica, florisil, 

activated carbon, alumina and diatomaceous earth, the best performance was observed for 

activated carbons in terms of % oil retention. Also, the results show that the adsorption 

ability of these adsorbents decreased with an increase in temperature, which may be 

attributed to the promoted solubility of oil in hexane at high temperature. The effect of 

adsorbent concentration suggests that the opening of new adsorbing sites and an overall 

increase in pore volume would increase the oil retention. Future work in this area may 

further diversify the use of adsorbents in other extraction techniques. In comparison to 

the current post-extraction clean-up procedures, the single-step in-cell cleanup method 

would give more selective extraction free of interfering substances. Developing and 

documenting adsorbents profiles for various sample-solvent systems could expand the 

application to large scale.  
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