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ABSTRACT 

HOW ARE INTERANNUAL VARIATIONS IN LAND SURFACE PHENOLOGY IN THE 

HIGHLAND PASTURES OF KYRGYZSTAN MODULATED BY TERRAIN, SNOW COVER 

SEASONALITY, AND CLIMATE OSCILLATIONS?  

AN INVESTIGATION USING MULTI-SOURCE REMOTE SENSING DATA 

MONIKA ANNA TOMASZEWSKA 

2019 

 

In the semiarid, continental climates of montane Central Asia, with its constant moisture 

deficit and low relative humidity, agropastoralism constitutes the foundation of the rural 

economy. In Kyrgyzstan, an impoverished, landlocked republic in Central Asia, herders of 

the highlands practice vertical transhumance—the annual movement of livestock to higher 

elevation pastures to take advantage of seasonally available forage resources. Dependency 

on pasture resource availability during the short mountain growing season makes herds and 

herders susceptible to changing weather and climate patterns. This dissertation focuses on 

using remote sensing observations over the highland pastures in Kyrgyzstan to address five 

interrelated topics: (i) changes in snow cover and its seasonality from 2002 through 2016; 

(ii) pasture phenology from the perspective of land surface phenology using multi-scale 

data from 2001 through 2017; (iii) relationships between snow cover seasonality and 

subsequent land surface phenology; (iv) terrain effects on the snow-phenology 

interrelations; and (v) the influence of atmospheric teleconnections on modulating the 

relationships between snow cover seasonality, growing season duration, and pasture 

phenology. 
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Results indicate that more territory has been experiencing earlier snow onset than earlier 

snowmelt, and around equivalent areas with longer and shorter duration of snow seasons. 

Significant shifts toward earlier snow onset (snowmelt) occurred in western and central 

(eastern) Kyrgyzstan, and significant duration of the snow season shortening (extension) 

across western and eastern (northern and southwestern) Kyrgyzstan. Below 3400 m, there 

was a general trend of significantly earlier snowmelt, and this area of earlier snowmelt was 

15 times greater in eastern than western rayons. In terms of land surface phenology, there 

was a predominant and significant trend of increasing peak greenness, and a significant 

positive relationship between snow covered dates and modeled peak greenness. While 

there were more negative correlations between snow cover onset and peak greenness, there 

were more positive correlations between snowmelt timing and peak greenness, meaning 

that a longer snow cover season increased the amplitude of peak greenness. The amount of 

thermal time (measured in accumulated growing degree-days) to reach peak greenness was 

significantly negatively correlated both with the number of snow covered dates and the 

snowmelt date. Thus, more snow covered dates translated into fewer growing degree-days 

accumulated to reach peak greenness in the subsequent growing season. Terrain features 

influenced the timing of snowmelt more strongly than the number of snow covered dates. 

Slope was more important than aspect, but the strongest effect appeared from the 

interaction of aspect and the steepest slopes. The influence of atmospheric teleconnection 

arising from climate oscillation modes was marginal at the spatial resolutions of this study. 

Thermal time accumulation could be largely explained with Partial Least Squares (PLS) 

regression models by elevation and snow cover metrics. However, explanation of peak 

greenness was less susceptible to terrain and snow cover variables. This research study 
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provides a comprehensive evaluation of the spatial variation of interannual phenology in 

the highland pastures that serve as the foundation of rural Kyrgyz economy. Finally, it 

contributes to a better understanding of recent environmental changes in remote highland 

Central Asia. 
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CHAPTER 1 

 INTRODUCTION 

1.1. Background 

Agropastoralism relates to a practice of both growing crops and keeping livestock as a 

livelihood strategy. In the semiarid, continental climate of montane Central Asia with its 

constant moisture deficit and low relative humidity, agropastoralism serves as the 

foundation of the rural economy. Specifically, in countries such as Kyrgyzstan, where 

rangelands constitute 87% of the agricultural land area (FAO, 2015), the extensive 

herbaceous grasslands form the basis for highlanders’ livelihood. A highly mountainous 

republic, Kyrgyzstan is located in the eastern part of Central Asia and shares borders with 

Kazakhstan, China, Tajikistan, and Uzbekistan. The total area is just shy of 200,000 km2 

(comparable with the USA states of Nebraska or South Dakota, or with Belarus—the 

largest landlocked country in Europe) of which 191,801 km2 is in land and 8,150 km2 is 

open water. In 2018, the population of Kyrgyzstan was approximately 6.3M. For 

comparison, the populations of Nebraska, South Dakota, and Belarus were 1.92M, 0.88M, 

and 9.45M, respectively. Kyrgyzstan is divided into in seven oblasts or provinces, of which 

only 36% of the population resides in urban areas with the largest city being the capital 

Bishkek (WorldBank, 2018). 

Mobile pastoralism has been embedded in the cultures of Central Asia for millennia: the 

first traces of pastoralism in the region are dated to at least 8,000 years ago. During the 

Soviet era, collectivization ended the traditional nomadic pastoralism in the region. In early 

1990s, a daily “home-pasture-home” system was introduced, with herds grazing in the 
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communal pastures near the settlements, as a replacement for remote grazing (Bekturova 

and Romanova, 2007; Kerven et al., 2011; Mirzabaev et al., 2016). 

Nevertheless, herders of the highlands continue to practice vertical transhumance—the 

annual movement of livestock to higher elevation pastures to take advantage of seasonally 

available forage resources (Schillhorn Van Veen, 1995). 

In Kyrgyzstan, pastures are classified by distance from the settlements into (i) near-village 

(winter use, ~23% of the total area of pasture land), (ii) intensive (spring and autumn use, 

~32%), or (iii) distant (summer use, ~45%) (SAEPF, 2007). Dependency on pasture 

resource availability during the short growing season in the mountains makes both herds 

and herders susceptible to changing weather patterns. In this semi-arid region, precipitation 

variability is a critical driver of pasture resource dynamics, thus the pastoral livelihoods 

are especially vulnerable to variability in environmental conditions, such as changes in 

precipitation that may shift forage availability, quantity, and quality (Hoppe et al., 2016; 

Vetter, 2005; Zhumanova et al., 2016). 

1.1.1. Climate projections and their effects in mountainous Central Asia 

The ability of global climate projections to capture the complex dynamics of mountainous 

environments is particularly limited (Reyer et al., 2017). Moreover, there remains a scarcity 

of climate change impact studies for Central Asia (Hijioka et al., 2014; Xenarios et al., 

2018), despite the region showing special sensitivity to climatic changes (Lioubimtseva 

and Henebry, 2009; Luo et al., 2018; Yu et al., 2018). 

Temperature increases are projected to be higher in summer and fall seasons (Hijioka et 

al., 2014; Lioubimtseva and Henebry, 2009), and lower in winter (Xu et al., 2017), with a 
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decrease in precipitation for late spring and summer (Hijioka et al., 2014; Yuan-An et al., 

2013), but strong increase in precipitation during winter and early spring (Luo et al., 2018; 

Yu et al., 2018). Increasing temperatures accelerate shrinkage of glacial ice and snow, and 

projected warming is expected to change significantly glacier and snow melt timing and 

magnitude (Luo et al., 2018; Wang et al., 2014). Melt characteristics are particularly 

important, since seasonal and longer-term water storage are critical ecosystem services 

provided by mountains, especially in drier climates. Meltwater from glaciers and snow in 

Tien Shan and Pamir mountains drive river flow and are the main water supply in the 

region.  Recent studies have shown a shift in precipitation from snow to rain, which 

decreases snowfall fraction and results in less accumulation of snow and glacial ice during 

the winter (Chen et al., 2016). Changes in snow cover and shrinkage of glaciers lead to 

alterations in the local water cycle and water storage (Bai et al., 2019; Dedieu et al., 2014) 

than may further affect vegetation dynamics. 

However, there is a substantial uncertainty in precipitation projections due to the scarcity 

of observational data coupled with the coarse spatial resolution of models that perform 

poorly over  mountainous terrain (Christensen et al., 2013; Reyer et al., 2017). There also 

remain shortcomings in the models’ handling of precipitation due to limited observational 

data for validation, interpolation methods that tend to smooth the climatological patterns, 

and comparisons using cross-scale data, e.g., model projections frequently have higher 

resolutions than the available observational data (Mannig et al., 2013; Rhoades et al., 2018; 

Stocker et al., 2013). 

While increased temperatures may result in an extended growing season that could benefit 

certain plant species and vegetation communities, enhanced variation in precipitation 
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timing and amount of water availability (Chen et al., 2016; Immerzeel et al., 2010), and 

increased incidence of drought may negatively affect vegetation phenology and pasture 

productivity (Marshall et al., 2019; Petersky et al., 2019). Snowfall dominates  the annual 

precipitation total in montane Central Asia (Aizen et al., 1995; Apel et al., 2018; Sorg et 

al., 2012); thus, changes in timing and/or magnitude could  be especially impactful, since 

snowmelt is the main contributor to early growing season soil moisture, and most of the 

seasonal biomass accumulation in pastures relies on this initial store of moisture. Variation 

in the duration of snow cover and snow depth may affect soil-vegetation interactions. 

Increased snow cover duration and/or depth could add soil moisture, slow down soil heat 

exchange, and affect soil heat and moisture preservation that might protect over-winter 

survival of vegetation from low air temperatures and desiccating winds. It may also 

influence soil microbial activity  and the transformation of soil organic matter and nutrient 

availability (Groffman et al., 2001; Qiao and Wang, 2019). Earlier snow cover could shield 

vegetation from lower temperatures by keeping the subniveal temperature at a favorable 

level and protecting the activity of the soil microorganisms during the winter, which could 

lead to increased vegetation growth during the following growing season (Qiao and Wang, 

2019). On the other hand, lack of snow cover or just a shallow snowpack may increase the 

frequency of soil freeze-thaw events and, consequently, alter soil nutrient cycling and 

aboveground productivity (Choler, 2015). 

Evaluation of past interactions between snow cover and pasture vegetation and the impacts 

of snow cover change on pasture dynamics will help to identify where in the Kyrgyz 

landscape of highland pastures that land surface phenology was sensitive to variable and 

changing environmental conditions. That knowledge may provide another perspective for 
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pasture sustainable management programs that address ecological and socioeconomic 

problems associated with environmental changes, especially in the light of the loss of 

pasture productivity due to high pasture degradation (Sabyrbekov, 2019). 

1.1.2. Remote sensing of snow cover seasonality and highland pasture phenology 

Due to the current paucity of ground level data and the fact that most weather stations are 

located in valleys far from the pastures of interest, satellite remote sensing provides the 

best avenue for spatially comprehensive observations, albeit at relatively coarse spatial 

resolutions.  Remote sensing products offer the ability to evaluate changes in snow cover 

extent, snow cover duration, snow cover timing, and land surface temperature, and to 

monitor land surface phenology that provides a window on vegetation phenology and 

productivity in highland pastures. 

Spatial, temporal, and elevational variations in snow seasonality in Central Asia have been 

detected and quantified at multiple spatial extents (Dietz et al., 2014, 2013; Liu et al., 2017; 

Tang et al., 2017; Zhou et al., 2013). Dietz et al. (2013) processed daily MODIS snow 

cover products between 2000 and 2011 to characterize interannual variation in snow cover 

across Central Asia with a view to estimating the water content in major regional 

catchments contributed by snowmelt.  They found high spatial and temporal variation in 

snow cover and no discernible trend in the start, end, or duration of the snow season at this 

broad scale of analysis. Zhou et al. (2013) used AVHRR (Advanced Very High Resolution 

Radiometer and MODIS (Moderate Resolution Imaging Spectroradiometer) data to study 

snow cover trends across the basin of the Amu Darya from 1986 to 2008. They found 

statistically significant negative trends in snow cover duration, date of snow cover onset, 

and date of snowmelt across most of the basin, except a significant trend of later snow 
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onset and a non-significant trend of snow melt in the Central Pamir, especially at elevations 

greater than 4,000 m. Tang et al. (2017) using simple linear regression to identify and 

characterize trends in the Tien Shan range using MODIS daily snow products, found 

decreases in the mean snow-covered area in each of four seasons in the Central Tien Shan 

ranging from a minimum of -8% in autumn to maximum of -14% in spring, but no trend 

was statistically significant at p<0.05. They also calculated a decrease of -12% in the 

duration of snow cover in the Central Tien Shan from 2001 to 2015, but it was also not 

significant. 

There are many methods to simulate the temporal variation of vegetation index time series 

so as to characterize land surface phenology, including threshold, derivative, smoothing 

algorithms, and model fit ( de Beurs and Henebry, 2010a). Those methods use one or more 

remotely sensed vegetation indices (VIs), such as the Normalized Difference Vegetation 

Index (NDVI), the most common remotely sensed vegetation index, which usesthe 

differential reflectance  at the visible and near infrared parts of the spectrum as a proxy for 

active green vegetation (Myneni et al., 1995; Tucker, 1979). Land surface phenology (LSP) 

metrics are many, but some of the most common are (i) onset of greening (start of growing 

season, SOS), (ii) end of greenness (end of growing season, EOS), (iii) timing of the 

growing season maximum, and (iv) growing season length (de Beurs and Henebry, 2010a). 

The simplest method to determine LSP metrics is based on threshold values: for SOS, the 

date of year when the NDVI crossed the specified threshold first time in upward direction, 

while EOS, when NDVI crossed the threshold values in downward direction. Threshold 

values can be set arbitrarily (Fischer, 1994; Lloyd, 1990; Myneni et al., 1997; Reed et al., 

2003; Zhou et al., 2003) or calculated based on long-term mean of NDVI (Karlsen et al., 
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2006; Piao et al., 2006), a baseline year (Shabanov et al., 2002), NDVI ratios (White et al., 

1997), or using another remote sensing index (Delbart et al., 2005). Other authors have 

been using derivatives of NDVI curves, and defined the SOS as the time of the greatest 

increase of NDVI, and the lowest negative derivative as EOS (Moulin et al., 1997; Tateishi 

and Ebata, 2004). Smoothing algorithms include using an autoregressive moving average 

function that  determines SOS and EOS as the dates, when a smoothed time series of VI 

crosses a curve established from moving average models (Archibald and Scholes, 2007; 

Reed et al., 1994). Another approach has been to apply Fourier analysis that approximates 

complex curves with a sum of sinusoidal waves of multiple frequencies (de Jong et al., 

2011; Jakubauskas et al., 2001; Moody and Johnson, 2001; Zhou et al., 2015).There are 

multiple approaches to model fitting, especially more commonly used the piecewise 

logistic curve (and its modification) (Zhang, 2015; Zhang et al., 2003). It has been widely 

utilized to generate global phenology products delivered from MODIS Collection 5 

(Ganguly et al., 2010), AVHRR dataset (Zhang et al., 2014) and NPP VIIRS (Zhang et al., 

2018) or used for a basis of other algorithms e.g. Landsat phenology algorithm (Melaas et 

al., 2013).However, there is an argument that the logistic curve seems to be better suited to 

woody vegetated landscapes (Ahl et al., 2006; Baumann et al., 2017; Nguyen et al., 2018; 

Zhang et al., 2003). For the more recent MODIS Collection 6 (Gray et al., 2019), the 

smoothing penalized cubic spline method has been used for phenological phase detection. 

This approach uses prescribed thresholds in the amplitude of variation in two-band 

Enhanced Vegetation Index (EVI2; Jiang et al., 2008) for each phenological cycle (Moon 

et al., 2019). 



8 

 

For modeling the LSP of herbaceous vegetation outside of the tropics, studies have shown 

that a good approximation of the temporal vegetation development, observed using the 

NDVI or the Enhanced Vegetation Index EVI (Huete et al., 2002), can be achieved using 

a downward-arching convex quadratic (CxQ) model that links the VI to accumulated 

growing degree-days (AGDD), which measure thermal time using either air temperature 

orland surface temperature (LST). Since spatially comprehensive remotely sensed LST 

products are available, they are preferable to interpolated air temperature because  growing 

season LST is highly correlated with insolation and it better approximates the thermal 

environment experienced by short-statured herbaceous vegetation (Henebry, 2013; Still et 

al., 2014). 

For modeling the LSP of herbaceous vegetation outside of the tropics, studies have shown 

that a good approximation of the temporal vegetation development, observed using the 

NDVI or the Enhanced Vegetation Index EVI (Huete et al., 2002), can be achieved using 

a downward-arching convex quadratic (CxQ) model that links the VI to accumulated 

growing degree-days (AGDD), which measure thermal time using either air temperature 

orland surface temperature (LST). Since spatially comprehensive remotely sensed LST 

products are available, they are preferable to interpolated air temperature because  growing 

season LST is highly correlated with insolation and it better approximates the thermal 

environment experienced by short-statured herbaceous vegetation (Henebry, 2013; Still et 

al., 2014). The CxQ model, that captures well the seasonal course of insolation and 

temperature, has been used successfully for analyzing LSP dynamics at various spatial 

extents and resolutions as well as temporal durations and resolutions across and within 

Central Asia (de Beurs et al., 2018; de Beurs and Henebry, 2008b, 2004; Henebry et al., 
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2005),  Eurasia (de Beurs et al., 2009; de Beurs and Henebry, 2008a, 2005), and North 

America (Henebry and de Beurs, 2013; Krehbiel et al., 2017; Krehbiel and Henebry, 2016; 

Nguyen et al., 2018; Walker et al., 2015). 

There are recent studies that analyze snow cover impact on pasture phenology using remote 

sensing products over specific regions in Central Asia and High Mountain Asia, although 

none of them is focusing specifically on Kyrgyzstan. Paudel and Andersen (2013) explored 

the response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalayas; 

whereas, Wan et al. (2014) explored relationships between changes in snow cover and its 

impact on alpine vegetation in Qinghai-Tibetan Plateau (QTP). More recently, Wang et al. 

(2018) studied snow cover effects on alpine vegetation growth dynamics over Tibetan 

Plateau. Relationships between winter snow cover dynamics, climate, and spring grassland 

phenology in Inner Mongolia (China) were analyzed by Qiao and Wang (2019). Each study 

found changes in snow cover affecting the length of the growing season and, especially, 

the start of the growing season, which also influences aboveground net primary production 

as viewed through NDVI. 

Since the interest here is on highland pastures, terrain characteristics cannot be neglected. 

Terrain complexity affects the pasture phenology dynamics and the relationship between 

snow seasonality and pasture phenology. In general, longer snow cover favors higher 

elevations, but terrain features can modify that relationship. Findings of An et al. (2018) 

over QTP indicate that in complex terrain at high elevations, the shaded locations differ 

from sun-exposed locations in terms of insolation and thus soil thereby strongly shaping 

the land surface phenology, with slope playing a key role in the vegetation development. 

They also showed that the magnitude of terrain modulation depends on vegetation 
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community characteristics. For example, green-up onset dates of meadow areas across QTP 

were later over shaded than sun-exposed slopes, while steppe areas did not show any 

significant aspect effect. Further, both meadow and steppe areas showed earlier dormancy 

onset dates over shaded slopes. 

In semi-arid to arid environments, vegetation dynamics are strongly dependent on weather 

patterns. Both temperature and precipitation are influenced in part by large-scale climate 

teleconnections. Previous studies have shown that fluctuations in land surface phenology 

over the northern hemisphere can be linked to the Northern Annular Mode through the 

North Atlantic Oscillation and the Arctic Oscillation indices (de Beurs and Henebry, 

2010b, 2008a). A more recent study (de Beurs et al., 2018) demonstrates that land surface 

phenology over Central Asia has been significantly affected by several climate oscillations, 

which makes the region a “climate change hotspot” (a region in which climate is specially 

responsive to global change and), where the teleconnections produce strong spatial 

variations in weather patterns (Bothe et al., 2012; Giorgi, 2006). For example, the winter 

Multivariate ENSO Index (MEI) is strongly linked to spring and summer precipitation in 

southeastern Central Asia: SE Kazakhstan, all of Kyrgyzstan, and eastern Tajikistan (de 

Beurs et al., 2018).  In addition, these teleconnections may partially explain why the 

CMIP5 models did not likely improve upon the precipitation projections from the previous 

model generation (Flato et al., 2013). 

All those environmental complex conditions lead to interannual variation in land surface 

phenology of highland pastures in Central Asia. Thus, in this study I focus on five 

interrelated topics that are describe climate-induced impacts on pasture phenology and its 

variation over 17 years, from 2001 to 2017 across the highlands of Kyrgyzstan. 
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1) analysis of trends in the seasonality of snow cover  

2) analysis of land surface phenology  

3) evaluation of relationships between snow cover seasonality and subsequent land 

surface phenology  

4) assessment of the modulation effect of terrain features on the snow cover 

relationship with land surface phenology  

5) investigation of the role of atmospheric teleconnections on modulating 

relationships between snow cover seasonality, growing season duration, and 

pasture phenology 

Analysis in Task 1 spans across whole area of Kyrgyzstan from 2002 through 2016; Tasks 

2-4 are limited to the pastureland areas of Kyrgyz Republic mapped based on updated 

Soviet maps (Asian Development Bank, 2010a, 2010b); and Task 5 focuses on  pastureland 

areas located in five districts (or rayons) important for livestock production: Chong-Alay, 

Alay, Kara-Kulja, At-Bashy, and Naryn. Study period of Tasks 2-5 extends from 2001 

through 2017. 

Let me clearly acknowledge and state that I do not account for human impacts on pasture 

phenology that may arise from stocking rates and herd management, pasture maintenance 

and control of invasive species. Each management issue may add to uncertainties that may 

potentially affect the generalizability of some findings of this study. I do not investigate 

the rangeland degradation issue; instead, my focus is on climate-induced impacts on 

pasture vegetation. Moreover, I have focused on the early season green-up dynamics when 

differential effects from grazing management are expected to be minimal. 
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1.2. Research studies 

I have divided this broad topic into three distinct complementary research studies: 

Research study #1  

In the research study #1, I analyzed various aspects of snow cover seasonality to detect 

whether significant changes had occurred in Kyrgyzstan during the early 21st century. 

Therefore, I asked two questions: 

(1.1) Where across Kyrgyzstan have there been significant changes in snow cover 

seasonality (onset, melt, and duration) from 2002 through 2016? 

(1.2) Where significant trends did occur, how were they associated to terrain features? 

The results were published in 2018: 

Tomaszewska, M.A., Henebry, G.M., 2018. Changing snow seasonality in the highlands 

of Kyrgyzstan. Environmental Research Letters 13, 065006. 

https://doi.org/10.1088/1748-9326/aabd6f 

Research study #2  

The second research study focused on land surface phenology of highland pastures and its 

relationships with snow cover seasonality by asking three questions: 

(2.1) How does snow cover seasonality relate to subsequent land surface phenology in 

highland pastures? 

(2.2) How does the mountainous terrain modulate snow cover effects? 

(2.3) What can recent changes in snow cover seasonality tell us about possible futures 

for highland pasture phenology and productivity? 
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These results are in a manuscript that has been reviewed by Remote Sensing of 

Environment. The manuscript is currently under revision (reviews received 07OCT2019, 

RSE-D-19-01373, with a revision deadline of 90 days): 

Tomaszewska M.A, Nguyen L.H., Henebry G.M., In revision following review. Land 

surface phenology in the highland pastures of montane Central Asia: Interactions with 

snow cover seasonality and terrain characteristics. Remote Sensing of Environment. 

(reviews received 07OCT19, RSE-D-19-01373). 

Research study #3  

In the third research study, I analyzed whether the impacts of oscillation anomalies are 

detectable and significant in the mountain pastures using LSP metrics based on fine spatial 

resolution data by asking a question: 

(3.1) How much more explanatory power information about oscillation modes might add 

to explain LSP in mountain pastures of Kyrgyzstan?  

These results are in a manuscript that was reviewed by International Journal of Applied 

Earth Observation and Geoinformation. The manuscript is currently under review 

following revision (revised manuscript submitted 25NOV2019). 

Tomaszewska M.A, Henebry, G.M., In review following revision. How much variation in 

land surface phenology can climate oscillations explain at the scale of mountain pastures 

in Kyrgyzstan? International Journal of Applied Earth Observation and Geoinformation 

(revision submitted 25NOV2019, JAG-2019-1051-R1). 
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1.3. Significance of the research 

My dissertation research provides an advancement of knowledge about 17 years of 

interannual variability in pasture phenology over the mountainous landscapes of 

Kyrgyzstan. It is a first study that exclusively focuses on montane pasture phenology in 

Kyrgyzstan at large scale using remote sensing data. Advanced technical approach, 

particularly, the use of more than 13K moderate (30 m) spatial resolution images over 17 

years for modeling land surface phenology provides uniquely detailed insight into highland 

pastures and the critical linkage with snow cover seasonality. The study also demonstrates 

that this large scale, conversely, may not be suitable for linking phenology changes with 

large and regional-scale atmospheric circulations, even if on the smaller scale they showed 

significant relationships. I hope this research study will find a use in sustainable mountain 

development programs by contributing to the explanation of complicated and contingent 

relationships between pasture, snow, and terrain, especially within the context of ongoing 

climatic changes in the region. 

1.4. Structure of the Dissertation 

The dissertation consists of five chapters, where this introduction belongs to chapter one. 

In the second chapter, I focus on the research study #1, where I analyzed snow cover 

seasonality to detect whether and where across Kyrgyzstan significant changes have 

occurred in snow cover onset and snowmelt dates, and snow cover duration. The third 

chapter (research study #2), which partially uses methods from Chapter Two, provides 

analyses of land surface phenology in highland pastures from 2001 through 2017 and the 

relationships between phenological metrics (phenometrics) and aspects of snow cover 

seasonality, as well as exploring how those relationships differ due to terrain 
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characteristics. In Chapter Four (research study #3), I focus on the explanatory and 

predictive power of seasonal climatic oscillation modes that influence weather patterns in 

the region, on land surface phenology in highland pastures in five rayons of  Kyrgyzstan  

between 2001 and 2017 to determine if the impacts of climatic oscillation modes are 

detectable at moderate spatial resolution scale. In the final chapter, I summarize the key 

findings of the research studies, present their conclusions, discuss the various study 

limitations, and provide recommendations for potential future studies. 
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CHAPTER 2  

CHANGING SNOW SEASONALITY IN THE HIGHLANDS OF KYRGYZSTAN 

Paper #1: 

Tomaszewska, M.A., Henebry, G.M., 2018. Changing snow seasonality in the highlands of 

Kyrgyzstan. Environmental Research Letters. 13, 065006. https://doi.org/10.1088/1748-

9326/aabd6f 

 

2.0. Abstract 

Few studies have examined changing snow seasonality in Central Asia. Here, we analyzed 

changes in the seasonality of snow cover across Kyrgyzstan (KGZ) over 14 years from 

2002/03 to 2015/16 using the recent version (v006) of MODIS Terra and Aqua 8-day snow 

cover composites (MOD10A2/MYD10A2). We focused on three metrics of snow 

seasonality—first date of snow (FDoS), last date of snow (LDoS), and duration of snow 

season (DoSS)—and used nonparametric trends tests to assess the significance and 

direction of trends. We evaluated trends at three administration scales and across elevation. 

We used two techniques to assure that our identification of significant trends were not 

resulting from random spatial variation. First, we report only significant trends (positive or 

negative) that are at least twice as prevalent as the converse trends. Second, we use a two-

stage analysis at the national scale to identify asymmetric directional changes in snow 

seasonality. Results show more territory has been experiencing earlier onset of the snow 

than earlier snowmelt, and roughly equivalent areas have been experiencing longer and 

shorter duration of snow seasons in the past 14 years. The changes are not uniform across 

KGZ, with significant shifts toward earlier snow arrival in western and central KGZ and 

significant shifts toward earlier snowmelt in eastern KGZ. Duration of snow season has 

https://doi.org/10.1088/1748-9326/aabd6f
https://doi.org/10.1088/1748-9326/aabd6f
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significantly shortened in western and eastern KGZ and significantly lengthened in north 

and southwestern KGZ. DoSS is significantly longer where the snow onset was 

significantly earlier or the snowmelt significantly later. There is general trend of 

significantly earlier snowmelt below 3,400 m and the area of earlier snowmelt is 15 times 

greater in eastern than western districts. Significant trends in Aqua product were less 

prevalent than in Terra product, but the general trend toward earlier snowmelt were also 

evident in Aqua data. 

2.1. Introduction 

Snow cover extent has been observed to be changing for more than three decades using 

both in-situ data (Groisman et al. 2006, Bulygina et al. 2010, 2011) and remote sensing 

products (Schanda et al. 1983, Hall et al. 2002, Brown and Robinson 2011). Remote 

sensing techniques for monitoring of snow cover extent have advanced substantially in the 

past three decades (Robinson et al. 1993, Armstrong and Brodzik 2001, Painter et al. 2009, 

Rittger et al. 2013, Morriss et al.. 2016). Much of the change analysis has focused on broad 

scales—from hemispheric to subcontinental—at coarse spatial resolution (Robinson and 

Dewey 1990, Groisman et al. 1994b, Brown 2000, Robinson and Frei 2000, Dye 2002, 

Déry and Brown 2007, Hori et al. 2017). 

Impacts of climate change are exacerbated in mountainous regions (Beniston 2003, 

Fischlin et al. 2007, Immerzeel et al. 2010, Rangwala and Miller 2012, Kohler et al. 2014). 

However, the ability of global climate projections to capture the complex dynamics of 

mountain climates is limited (Christensen et al. 2013), particularly over mountainous 

Central Asia (Hijioka et al. 2014, Reyer et al. 2017). 
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Studies in montane Central Asia are relatively few, especially at higher spatial resolutions, 

but they have all shown significant changes, whether in snow cover (Dietz et al. 2013, 

2014, Zhou et al. 2013, Tang et al. 2017), glacial extent (Aizen et al. 1995, Narama et al. 

2010), or meltwater runoff (Aizen et al. 1997, Chevallier et al. 2014). Still, there is a notable 

paucity of studies on the changing environment across montane Central Asia (Hijioka et 

al. 2014, Reyer et al. 2017). 

Here we evaluate trends in the seasonality of snow cover across Kyrgyzstan since 2002 

using the latest version of the MODIS (MODerate Resolution Imaging Spectrometer) snow 

cover composites. Our need to quantify changing snow cover seasonality arises from our 

interest in highland pasture conditions in rural Kyrgyzstan. Kyrgyz livelihoods based on 

montane agropastoralism are particularly vulnerable to changing environmental 

conditions, due to a reliance on the seasonal movement of livestock to higher elevation 

pastures, a practice also called vertical transhumance (Schillhorn Van Veen 1995). We 

assess at multiple scales whether and where the snow cover timing and duration have 

changed significantly in the recent past: at the scale of oblasts (provinces); in four rayons 

(districts); and at elevational bands within these selected rayons. We compare results from 

MODIS snow cover products generated from different overpass times (late morning and 

early afternoon), and two product versions. 

2.2. Study Area 

The study area is the territory of Kyrgyzstan (Kyrgyz Republic), a highly mountainous 

country in the eastern part of Central Asia. Kyrgyzstan shares borders with, moving 

clockwise from due north: Kazakhstan, China, Tajikistan, and Uzbekistan. The total area 

of the country is just shy of 200,000 km2, of which 191,801 km2 is in land and 8,150 km2 
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is in open water. In 2017, the population was approximately 5.8 million living in seven 

oblasts or provinces (Figure 2.1a), of which only 36% are in urban areas with the largest 

city being the capital Bishkek. 

Kyrgyzstan is among the poorer nations, with an estimated per capita gross domestic 

production in 2016 based on purchasing power parity of just US$3,551 (WorldBank 

2017a). Moreover, the country is heavily dependent on remittances from workers aboard; 

World Bank projects remittance inflows of US$2.5 billion for 2017 (WorldBank 2017b). 

Poverty, particularly rural poverty, limits adaptive capacity to respond to impacts on 

livelihoods arising with climate change (Lioubimtseva and Henebry 2009, Reyer et al. 

2017). 

More than 56% of the territory occurs above 2,500 m (Azykova 2002). Mountains ranges 

cover more than 90% of the land area. These ranges include parts of the Pamir and the 

Alatau, and a large portion of the Tien Shan that divides the country into two zones. The 

northern zone holds three oblasts—Talas, Chuy (including the capital Bishkek), and Issyk-

Kul—and the southern zone has four oblasts—Jalal-Abad, Naryn, Osh, and Batken (Asian 

Development Bank 2010). 

The climate of Kyrgyzstan is influenced by country’s inland location between temperate 

and sub-tropical zone, high elevation, the distance from oceans, and proximity to the 

deserts. It results in intense solar radiation, low precipitation, and a continental climate 

(Akimaliev et al. 2013). The mountain relief causes elevational climatic zonation of 

temperature and moisture. In the hot months of July and August, the mean air temperature 

over lowlands ranges between 17 to 40 °C and only ~4°C in the mountains. During winter 

months, the lowest temperatures are recorded in the mountain valleys and depressions 
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(Kulikov and Schickhoff 2017), but frost can occur in every oblast.  Annual precipitation 

varies from 144 mm in some parts of Issyk-Kul to 1,090 mm in the lowlands of the Fergana 

valley, but precipitation is unevenly distributed across the country. Vegetation types are 

scattered along distinct elevational zones, influenced by vertical gradients of climatic 

variables. Less than 10% of land area is appropriate for crops, forests cover ~5%, and more 

than 50% of the land is used as pastoral rangelands (Asian Development Bank 2010). 

2.3. Methods 

2.3.1. Satellite data 

To characterize snow seasonality, we used the most recent Version 6 of the MODIS Terra 

snow cover 8-day composites with a nominal spatial resolution of 500 m 

(MOD10A2/MYD10A2) for the period of 14 years starting in 2002. Both datasets (Terra 

and Aqua) report the maximum snow cover extent observed during an 8-day period by 

compositing 500 m observations from the MODIS daily snow cover products 

(MOD10A1/MYD10A1) generated by The National Snow and Ice Data Center 

(https://nsidc.org/). Snow cover information is derived from the Normalized Difference 

Snow Index (NDSI) (Hall et al. 2002). Snow cover typically has very high visible (VIS) 

reflectance and very low shortwave infrared (SWIR) reflectance. The algorithm uses a 

threshold test for spectral band ratios of a difference in VIS (band 4: 0.555 μm) and SWIR 

(band 6: 1.650 μm) reflectance. 

𝑁𝐷𝑆𝐼 =
(𝑅𝑣𝑖𝑠 − 𝑅𝑆𝑊𝐼𝑅 )

(𝑅𝑣𝑖𝑠 + 𝑅𝑆𝑊𝐼𝑅 )
         (Equation 2.1) 

NDSI > 0.0 indicates the presences of some snow within the pixel, while a pixel with NDSI 

< 0.0 indicates a snow-free land surface (Riggs and Hall 2015). 
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Although snow always has NDSI > 0.0, not all surface features with positive NDSI values 

are snow covered (i.e., salt pans or cloud contaminated pixels at cloud edges). Thus, 

additional screening procedures are required to reduce commission error.  In the MODIS 

products, a pixel will be mapped as snow if the NDSI > 0.4 and the MODIS band 2 (red) 

reflectance exceeds 0.11 to discriminate snow from water (Riggs and Hall 2015). These 

MODIS snow cover products (MOD10A1/MYD10A1) have undergone extensive peer-

review evaluation and validation processes (Hall et al. 2002; Riggs and Hall 2015), and no 

effort was made in this retrospective study to conduct additional product evaluations. We 

postprocessed the products by mosaicking two MODIS tiles (h23v04 and h23v05), 

reprojecting into WGS-1984, and extracting all pixels flagged as “snow”. There were 46 

composited images per year per product. We chose to work with the 8-day composited 

products instead of the daily products for two reasons: (1) so that the statistical power for 

the trend analyses would be constant across scales, and (2) because far fewer studies have 

worked with the composited data. 

For terrain information, we used the 15 arc-second (~450m) mean elevation product of 

Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) developed by the 

U.S. Geological Survey and the National Geospatial-Intelligence Agency. 

2.3.2. Trend Analysis 

To analyze changes in snow cover seasonality, we defined the observation season for each 

year to start on day of the year (DOY) 169—approximately the summer solstice—and 

extend to DOY 168 of the following year (DOY169year through DOY168year+1). Thus, 

we analyzed a 14-year time series starting in the middle of 2002 and ending in middle of 

2016. For each snow season, we tracked three snow cover variables: the First Date of Snow 
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(FDoS), the Last Date of Snow (LDoS), and the Duration of Snow Season (DoSS). FDoS 

was the composite date when the snow pixel is marked as 1 (snow on) first time for each 

snow season. LDoS was calculated inversely, the composite date of the last appearance of 

snow during the snow season. The DoSS was the simple difference between the LDoS and 

the FDoS. For each of snow variables, we calculated mean, standard deviation, and 

coefficient of variation for the series of 14 snow seasons from 2002/03 through 2015/16. 

Note that since we are interested in the potential impact of changes in snow seasonality on 

pastoralism, we have purposefully chosen to characterize the snow cover season by its 

temporal extremities: the first occurrence of snow appearing in a composite during the 

observation season (FDoS) and the last occurrence of snow appearing in a composite 

(LDoS). We understand that snowmelt can occur after FDoS and before LDoS, even 

multiple times. Were our purpose to evaluate snow cover duration to estimate the regional 

hydrological budget or the surface energy balance, then these outer bounds of snow 

occurrence could overestimate snow cover influence. However, our motivation in 

characterizing snow season timing is different. We are more interested in pasture dynamics 

than in high mountain snow processes. 

Simple linear regression has been used by remote sensing scientists to estimate trends (de 

Beurs and Henebry 2008). However, it is better to use non-parametric tests since they 

provide higher statistical power in case of nonnormality and are robust against outliers (de 

Beurs and Henebry 2004). To evaluate the change in snow season metrics, we applied the 

non-parametric Mann-Kendall trend test and the Theil-Sen linear trend estimator. The non-

parametric test is based on the rank correlation coefficient statistic τ (Kendall 1938) with 

modification (Mann 1945), which requires an observation series y and an accompanying 
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time vector x of length n to detect monotonic changes over time. The Mann-Kendall trend 

test calculates difference between later-measured data to all earlier-measured data, (yj – yi), 

where j > i are the jth and ith year in the time series, and assigns an integer value of 1, 0, 

or -1 (positive difference, no difference, and negative difference, respectively) (Meals et al 

2011). The Mann-Kendall score S is computed as the sum of the integer scores: 

   𝑆 =  ∑ ∑ {

1,      𝑖𝑓 𝑦𝑗 − 𝑦𝑖 > 0

0,      𝑖𝑓 𝑦𝑗 −  𝑦𝑖 = 0

−1,     𝑖𝑓 𝑦𝑗 −  𝑦𝑖 < 0  

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                   (Equation 2.2) 

Then the Mann-Kendall test statistic τ is measured by dividing S by the total of n×(n-1)/2 

possible pairs of data, where n is the total number of observations for trend direction and 

strength. Kendall’s τ ranges from -1.0 to 1.0, analogous to a correlation coefficient. 

We estimated the monotonic rate of change in the time series using the Theil-Sen slope, 

which computes the slope for all pairs of observations and selects the median value as the 

robust estimate of the trend’s slope (Hirsch et al. 1982): 

 𝛽1 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
)          (Equation 2.3) 

We calculated the area of Theil-Sen slope values associated at a significance level of 

p<0.05 for positive and negative trends for each of the seven oblasts of Kyrgyzstan and 

focused on four rayons (districts). To analyze elevational effects, we divided the area of 

the focal rayons into five classes: 1,400 ≤ x < 1,900 m; 1,900 ≤ x < 2,400 m; 2,400 ≤ x < 

2,900 m; 2,900 ≤ x < 3,400 m; and x ≥ 3,400 m. Note there are no elevations below 1,900 

m in At-Bashy and Chong-Alay rayons. Note also that Alay and Chong-Alay are adjacent 

rayons located in the southwest of the country and Naryn and At-Bashy are adjacent rayons 

in central Kyrgyzstan located to the east of the other pair of focal rayons. 
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 A negative (positive) trend in FDoS indicates earlier (later) onset of snow. A negative 

(positive) trend in LDoS indicates earlier (later) snowmelt. A negative (positive) trend in 

DoSS indicates a shorter (longer) snow season. 

To highlight areas of significant change and to attenuate the risk of finding a significant 

difference where none exists (i.e., a Type I inferential error), we calculated the ratio of area 

of significant negative trends to the area of the significant positive trends for each 

administrative unit. We interpreted a factor of >2.0 (or <0.5) in the ratio of significant 

trends to indicate the predominant direction of change over the study period. We report 

here only the significant trends showing the predominant direction of change at the level 

of administrative unit or elevation class. Pixel totals can vary among metrics due to 

exclusion of pixels exhibiting no variation in snow cover and thereby generating NaNs 

(i.e., Not a Number) in the trend analyses. 

Finally, at the national level only, we tracked the trend status (positive at p<0.05 or negative 

at p<0.05 or not significant at p≥0.05) of every pixel for the three metrics at two sequential 

stages yielding 32 combinations for each of the three metrics as follows: 

FDoS = {+ | - | ns} AND DoSS = {+ | - | ns} 

LDoS = {+ | - | ns} AND DoSS = {+ | - | ns} 

FDoS = {+ | - | ns} AND LDoS = {+ | - | ns} 

 

Random spatial variation should yield approximately equal proportion of positive and 

negative trends. Accordingly, deviations from equal proportions are particularly 

interesting, especially when the deviations occur in two sequential stages. 
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2.4. Results 

We first present the areal extent in each oblast associated with the predominant trend 

direction and compare the results from the most recent MODIS snow product from Terra 

(MOD10A2 v006) with the similar MODIS product from Aqua (MYD10A2 v006). Since 

these satellites have different equatorial daytime overpass times (10:30 and 13:30, 

respectively), we expect to see some areal differences. We then focus on the four rayons in 

the southern zone where we have conducted summer field work in pastures—Alay and 

Chong-Alay rayons in Osh oblast and At-Bashy and Naryn rayons in Naryn oblast—and 

compare the areal extent of the predominant trends by elevation class in the Terra product 

only. (Some tables appear in the supplementary materials.) 

For visual display only, we identified pixels from Terra with values of Theil-Sen slope that 

were significantly different from zero at three significance levels (p< 0.1, p<0.05, and 

p<0.01). The areal analyses are limited to those data significant at p<0.05.
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Figure 2.1. Study area and results: (a) map of Kyrgyzstan with oblast borders in black and the four 

focal rayons outlined in red over the GMTED2010 elevation map stratified by elevation class used 

in the analyses; and (b) First Date of Snow (FDoS), (c) Last Date of Snow (LDoS), and (d) Duration 

of Snow Season (DoSS) from the Terra MODIS snow cover product version 6 from 2002/03 to 

2015/16 at three significance levels (p≤0.01, p≤0.05, p≤0.1). Shades of brown (purple) indicate 

negative (positive) significant trends. 

Earlier snow arrival corresponds to a negative trend in the FDoS, and it appears prevalent 

across Kyrgyzstan (Figure 2.1b), particularly in the oblasts of Chuy (2,079 km2), Jalal-

Abad (1,534 km2) and Osh (2,021 km2), for almost 8,000 km2 in total (Table 2.1, column 

1). Only Issyk-Kul oblast does not exhibit a significant predominant trend of earlier snow 

arrival. Some patches of significant positive trends in FDoS (later snow arrival) are evident 

in eastern Kyrgyzstan (Figure 2.1a), but they are not predominant, resulting in no entry ("-

-") in Table 2.1. 

Earlier snowmelt corresponds to a negative trend in the LDoS, and it appears prevalent 

across Kyrgyzstan (Figure 2.1c), particularly in the oblasts of Naryn (2,227 km2) and Issyk-

Kul (1,376 km2), for almost 5,000 km2 in total (Table 2.1, column 3). Note, however, that 

neither Batken nor Osh oblast exhibits snowmelt that is either significantly earlier or 

significantly later. 

A shorter (longer) snow season corresponds to a negative (positive) trend in the DoSS, and 

the results are mixed across Kyrgyzstan (Figure 2.1d). A shorter snow season is apparent 

in Naryn (872 km2) and Issyk-Kul (884 km2) oblasts, totaling 1,757 km2 (Table 2.1, column 

5). In contrast, a longer snow season appears in parts of four oblasts to the west: Batken 

(325 km2), Chuy and Osh (each at 701 km2), and Talas (357 km2), totaling 2,084 km2 (Table 



36 

 

2.1, column 6). Only Jalal-Abad oblast exhibits no predominant change in areal extent of 

DoSS. 

Table 2.1. Area in predominant significant (p<0.05) trends from Terra and Aqua during 2002/03-

2015/16 by oblast for snow season metrics: First Date of Snow (FDoS), Last Date of Snow (LDoS), 

and Duration of Snow Season (DoSS). "--" indicates no prevalent trend. 

oblast 

Terra 

FDoS 

earlier 

(km2) 

Aqua 

FDoS  

earlier 

(km2) 

Terra 

LDoS  

earlier 

(km2) 

Aqua 

LDoS  

earlier 

(km2) 

Terra  

DoSS 

shorter 

(km2) 

Terra 

DoSS 

longer 

(km2) 

Batken 526 179 -- -- -- 325 

Chuy 2,079 682 401 375 -- 701 

Issyk-Kul -- -- 1,376 823 884 -- 

Jalal-Abad 1534 -- 759 645 -- -- 

Naryn 839 -- 2,227 1,242 872 -- 

Osh 2,021 648 -- -- -- 701 

Talas 972 -- 222 213 -- 357 

TOTAL 7,971 1,510 4,985 3,298 1,757 2,084 

Trend analysis with the Aqua product (MYD10A2) shows predominant trends in fewer 

oblasts and much smaller areas than in the Terra product (MOD10A2) (Table 2.1, columns 

2 and 4). There are no oblasts with predominant positive trends in FDoS, LDoS, or DoSS 

as well as no predominant negative trends in DoSS (Table 2.1). Earlier snow arrival is 

evident in just three oblasts in the Aqua product: Chuy (682 km2), Osh (648 km2), and 

Batken (179 km2) (Table 2.1, column 2). These areal extents are less than the corresponding 

areas in the Terra product by 67%, 68%, and 66%, respectively. Total area with earlier 

onset of snow is 1,510 km2 for Aqua versus 7,971 km2 for Terra, or a decrease of 81%. 

Earlier snowmelt (negative trend in LDoS) is evident in five of seven oblasts in the Aqua 

product, but the proportional decreases in area are less than seen with the FDoS: Chuy 

(6%), Issyk-Kul (40%), Jalal-Abad (15%), Naryn (44%), Talas (4%), and 34% overall 

(Table 2.1, column 4). 
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Based on the Terra data, elevational patterns are consistent across the four focal rayons for 

LDoS. In both Naryn and At-Bashy, earlier snowmelt occurs at every elevational stratum, 

with an increase area with increasing elevation most apparent in At-Bashy (Table 2.2, 

column 1-2). In Alay and Chong-Alay, there are predominant areas of later snowmelt only 

above 3,400 m, but earlier snowmelt below 3,400 m (Table 2.2, columns 3-4). The area of 

earlier snowmelt is greater in the eastern than the western rayons by a factor of 15. 

Table 2.2. Area in predominant significant trends from Terra for Last Date of Snow (LDoS) by 

elevation class in the four focal rayons. Bold entries indicate significant (p<0.05) negative trends 

at least twice as prevalent as significant positive trends. Italicized underlined entries indicate 

significant (p<0.05) positive trends at least twice as prevalent as significant negative trends. 

Negative (positive) trends in LDoS correspond to earlier (later) snowmelt. "nd" = no data as lowest 

elevation in rayon is >1,900 m. "--" indicates no prevalent trend. 

 

 

 

 

In contrast to the LDoS, the FDoS shows elevational variation across rayons. In Naryn, 

167 km2 show earlier snow onset and all of it occurs below 3,400 m (Table S2.1, column 

1). In the neighboring rayon of At-Bashy, there is both earlier snow onset and later snow 

onset, with the latter appearing between 2,900-3,400 m (Table S2.1, column 2). Alay 

exhibits earlier snow onset below 2,900 m and above 3,400 m (Table S2.1, column 3). 

Chong-Alay rayon, in contrast, shows earlier snow onset particularly between 2,900-3,400 

m, but not above 3,400 m (Table S2.1, column 4). 

elevation class 
Naryn 
(km2)  

At-Bashy  

(km2) 
Alay  

(km2) 
Chong-Alay  

(km2) 

1,400-1,900 m 2.6 nd 2.1 nd 

1,900-2,400 m 38.0 57.5 25.1 -- 

2,400-2,900 m 137.8 93.2 23.8 18.5 

2,900-3,400 m 182.0 441.8 47.7 -- 

> 3,400 m 47.2 720.0 49.2 18.7 

Total earlier 407.6 1,312.4 98.7 18.5 

Total later -- -- 49.2 18.7 
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The DoSS show both longitudinal and elevational patterns of significant change. The two 

eastern rayons (Naryn and At-Bashy) exhibit areas with shorter snow season duration, with 

a clear pattern of increasing area with increasing elevation above 2,400 m in At-Bashy, but 

only at the highest elevation class in Naryn (Table S2.2). The two western rayons (Alay 

and Chong-Alay) show areas of longer snow season duration, with Chong-Alay’s duration 

highest between 2,400-2,900 m but absent above 3,400 m (Table S2.2). 

We conducted the two-stage trend analyses only at the national scale and used only the 

Terra dataset, since it had larger areas of significant change. Varying amount of total pixels 

in the first stage metrics arises from exclusion of pixels exhibiting no variation in snow 

cover, which generated NaNs (Not a Number) in the trend analyses. 

Two-stage trend analysis for FDoS followed by DoSS shows substantially more area in 

significantly earlier FDoS than significantly later and, of those significantly earlier FDoS 

pixels, substantially more area (19.8%) exhibits significantly longer DoSS than shorter 

(Table 2.3, row 1). In contrast, there is substantially more area (60.1%) showing 

significantly shorter DoSS associated with pixels with significantly later FDoS (Table 2.3, 

row 2). No predominant trend in DoSS was evident in those pixels with no significant 

trends in FDoS (Table 2.3, row 3). 
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Table 2.3. Two-stage trend analysis for FDoS and DoSS. Bold entries indicate at least twice the 

area of the significant (p<0.05) pair.  

Trend of 1st 

metric: 

FDoS 

Area in 1st 

metric  

(%) 

Area in 1st 

metric  

(km2) 

Trend of 2nd 

metric: 

DoSS 

Area in 2nd 

metric 

(%) 

Area in 2nd 

metric 

(km2) 

 

FDoS earlier 
 

4.9 

 

8,555 

DoSS shorter    0.0           0 

DoSS longer  19.8     1,693 

DoSS ns  80.2     6,862 

 

FDoS later 

 

0.9 

 

1,635 

DoSS shorter  60.1        983 

DoSS longer    0.8          13 

DoSS ns  39.1        639 

 

FDoS ns 

 

94.2 

 

166,832 

DoSS shorter    1.1     1,878 

DoSS longer    0.8     1,307 

DoSS ns  98.1 163,197 

Two-stage trend analysis for LDoS following by DoSS shows substantially more area 

(3.2%) in significantly earlier LDoS than significantly later and, of those significantly 

earlier LDoS pixels, substantially more area (8.2%) exhibits significantly shorter DoSS 

than shorter (Table S2.3, row 1). In contrast, there is substantially more area (19.9%) 

showing significantly longer DoSS associated with pixels with significantly later LDoS 

(Table S2.3, row 2). No predominant trend in DoSS was evident in those pixels with no 

significant trends in LDoS (Table S2.3, row 3). 

Two-stage trend analysis of FDoS followed by LDoS shows substantially more area (4.8%) 

in significantly earlier FDoS than significantly later and, of those significantly earlier FDoS 

pixels, substantially more area (2.3%) exhibits significantly earlier LDoS than later (Table 

S2.4, row 1). Likewise, there is substantially more area showing significantly earlier LDoS 

associated with pixels with significantly later FDoS (0.9%) or no significant trend in FDoS 

(91.3%) (Table S2.4, rows 2-3). 
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2.5. Discussion 

Our results, based primarily on the most recent version of Terra MODIS snow cover 

composites, indicate that snow seasonality has been changing in recent years in each of the 

seven oblasts of the Kyrgyz Republic: specifically, more territory has been experiencing 

earlier onset of the snow than earlier snowmelt, and roughly equivalent areas have been 

experiencing longer and shorter duration of snow seasons in the past 14 years (Table 2.1). 

Significant trends apparent in the Aqua data were less prevalent (Table 2.1). This 

discrepancy between the Terra and Aqua results may arise from the early afternoon 

overpass of Aqua, when imaging geometry, cloudiness, and surface temperature may 

differ. However, the general trend toward earlier snowmelt seen in the Terra product was 

also evident in the Aqua product. 

Zooming into the rayon level and stratifying by broad elevational bands within the focal 

rayons revealed trend variation in snow cover metrics. We found elevational variation in 

each snow metric: (1) earlier onset of snow below 2,900 m in all four rayons, but 

divergence above 2,900 m, including later onset of snow in At-Bashy between 2,900 and 

3,400 m (Table S2.1); (2) earlier snowmelt below 3,400 m in all rayons except Chong-

Alay, but later snowmelt above 3,400 m in Alay and Chong-Alay (Table 2.2); and (3) 

occurrence of shorter snow seasons in At-Bashy above 2,400 m and longer snow seasons 

in Chong-Alay below 3,400 m (Table S2.2). 

At the national level, there are ~8,600 km2 with significantly earlier snow onset (Tables 

2.3, S2.4) and ~5,500 km2 with significantly earlier snowmelt (Table S2.3). Regardless of 

trend status in first date of snow, there is substantially more area in exhibiting significantly 

earlier snowmelt across Kyrgyzstan (Table S2.4). Snow season duration is significantly 
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longer across ~1,700 km2 where snow onset is significantly earlier (Table 2.3). However, 

snow season duration is significantly shorter across 980 km2 where snow onset is 

significantly later (Table 2.3). Snow season duration is significantly shorter across 452 km2 

where snowmelt is significantly earlier (Table S2.3). In contrast, snow season duration is 

significantly longer in 155 km2 where snowmelt is significantly later (Table S2.3). Each of 

these two-stage trends exhibits strong asymmetry in the area associated with the pair of 

significant trends, strengthening the interpretation that these trends are not a result of 

random spatial variation. 

Spatial, temporal, and elevational variations in snow seasonality in Central Asia have been 

detected and quantified in earlier studies at multiple spatial extents. (We summarize the 

results of the following studies and ours in Table S2.5) (Dietz et al. 2013) processed daily 

MODIS snow cover products between 2000 and 2011 to characterize interannual variation 

in snow cover across Central Asia with a view to estimating the water content in major 

regional catchments contributed by snowmelt. They found high spatial and temporal 

variation in snow cover and no discernable trend in the start, end, or duration of the snow 

season at this broad scale of analysis. 

In a follow-on study, Dietz et al. (2014) expanded the temporal scope of the analysis from 

1986 to 2014 by adding coarser spatial resolution AVHRR (Advanced Very High 

Resolution Radiometer) data to the MODIS data. They divided the snow cover duration 

into early (01SEP-15JAN) and later (16JAN-31AUG) seasons to detect trends within nine 

major catchments in Central Asia and by 100 m elevational increments across Central Asia. 

They found significant positive trends in early season snow cover duration for most 

catchments, but mixed results for later season snow cover duration, with five of the nine 
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catchments had no significant trend and the remaining four showed significant negative 

trends. A similar pattern was apparent in their elevational analysis: significant increasing 

snow cover duration in the early season at most elevations, but more than half the trends in 

the later season were not significant. Of those that were significant, there was decreasing 

later season snow duration between 2,500 m and 3,300 m (Dietz et al. 2014). This 

elevational range is significant: most of the highland pastures on which Kyrgyz 

agropastoralism depends fall into this band. However, the scale of their analysis was broad, 

encompassing all of Central Asia. 

Zhou et al. (2013) used AVHRR and MODIS data to study snow cover trends across the 

basin of the Amu Darya from 1986 to 2008. They found statistically significant negative 

trends in snow cover duration, date of snow cover onset, and date of snowmelt across most 

of the basin, except trends of earlier snow onset in the Central Pamir, especially at 

elevations greater than 4,000 m (Zhou et al. 2013). 

 Tang et al. (2017) found that maps of snow cover days based on cloud-screened MODIS 

daily snow products exhibited a high mean (> 85%) consistency with in-situ observations 

of snow cover days. Their analysis focused on the Tien Shan range divided into four regions 

of which the Central Tien Shan corresponds most closely to our study area. Using simple 

linear regression to identify and characterize trends, Tang et al. (2017) found in the mean 

snow-covered area in each of four seasons in the Central Tien Shan ranging from a 

minimum of -8% in autumn to maximum of -14% in spring, but no trend was statistically 

significant at p<0.05. They also calculated a decrease of -12% in the duration of snow cover 

in the Central Tien Shan from 2001 to 2015, but it was also not significant. 
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Despite substantial spatio-temporal variation within Kyrgyzstan and across the rest of 

Central Asia, significant trends in snow seasonality exist and these changes have the 

potential to disrupt herder livelihoods. We took along preliminary maps of the snow season 

analyses during a field campaign in Osh oblast during July 2017 to sample pastures. The 

longtime head of the pasture committee for Chong-Alay rayon studied our trend maps and 

commented that earlier onset of snow season had indeed become a serious problem for 

herders in recent years by limiting the use of the fall and winter pastures (Paizylad 

Maatkarimov, personal communication, July 25, 2017). Note that when we speak of trends, 

we are talking retrospectively about changes that have already occurred. We are not 

inferring changes to the local or regional climates using 14 years of data. However, there 

have been sufficient observations gathered through remote sensing to document significant 

trends in snow seasonality across large areas in Kyrgyzstan and elsewhere in montane 

Central Asia. 

Recent studies over the Central Asia region show a shift in precipitation from snow to rain. 

It causes a decrease in snowfall fraction, reducing snow and glacier accumulation during 

winter (Chen et al. 2016). Moreover, changes in snow cover and substantial shrinkage of 

glaciers induce alterations in the local water cycle, changing runoff and groundwater 

storage. Less precipitation in the form of snow leads to earlier melting of snow, which can 

eventually shift peak runoff and river flow toward earlier in the year instead during the 

summer when demand for water is highest (Barnett et al 2005, Tang et al. 2017). Higher 

increases of temperature are projected for summer and fall seasons, while lower increases 

during winter (Xu et al. 2017), and a significant decrease in precipitation in spring and 

summer (Hijioka et al. 2014, Yuan-An et al. 2013). However, these precipitation 
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projections are highly uncertain (Flato et al. 2013, Hijioka et al. 2014). The assessment of 

climate change effects on snow cover is particularly difficult (Tang et al. 2017) because 

those effects strongly vary with geographic context and elevation. Complex terrain 

generates many local microclimates with different feedbacks making them harder to 

compare. Sunshine duration, vapor pressure, wind velocity, and their interactions may also 

enhance spatial and temporal variation in snow cover. 

Snow cover affects surface climate, including subsequent vegetation growth (Groisman et 

al. 1994a, Dye and Tucker 2003). Changes in the timing of snow arrival and snowmelt may 

also have impacts on montane vegetation (Inouye 2000, 2008). Changes in vegetation 

community composition at higher elevations occur as cold-adapted species decrease in 

abundance while warm-adapted species increase in a process called thermophilization 

(Gottfried et al. 2012). Furthermore, pasture degradation, including the spread of weedy 

and unpalatable species, is already a concern in the highland pastures of Kyrgyzstan 

(Hoppe et al. 2016, Eddy et al. 2017). A logical next step is to link snow cover 

seasonality—timing of snow onset, snowmelt, and duration of snow season—with 

subsequent land surface phenology to detect moisture-induced vegetation stress in highland 

pastures. 

2.6. Conclusions 

Climate change impacts threaten the prospects for economic development across Central 

Asia, but especially rural livelihoods that depend on natural resources (Reyer et al. 2017). 

One possible consequence is increased rural to urban migration (Reyer et al. 2017). Yet, 

Central Asia in general and Kyrgyzstan in particular, are lagging in institutional preparation 

for climate change adaptation (Ford et al. 2015, Lesnikowski et al. 2015). 
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The Working Group II of the IPCC Fifth Assessment report noted that there are manifold 

knowledge gaps about the impacts of climate change in Central Asia (cf. Table 24-2 in 

Hijioka et al. 2014). This study attempts to help address some of these gaps at a scale finer 

than most of the literature to date. By using the most recent MODIS snow cover composited 

product at multiple scales relevant to herder livelihoods in Kyrgyzstan, we have identified 

areas where snow season timing and duration have already significantly changed in the 

past 14 years. 

Significant shifts toward earlier onset of snow have been identified in nearly 8,000 km2 in 

six of seven oblasts and significant shifts toward earlier onset of snowmelt in nearly 5,000 

km2 in five of seven oblasts. In the past 14 years, the duration of snow season has 

significantly shortened in two oblasts and significantly lengthened in four oblasts. At finer 

scales, changes in snow seasonality have varied by elevation and rayon, and the changes 

detected may impact the montane agropastoralism that forms the basis of the economy in 

much of rural Kyrgyzstan. The next step is an assessment of how these recent changes in 

snow seasonality have affected the highland pastures upon which rural livelihoods depend. 
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2.9. Supplementary materials 

Table S2.1. Area in predominant significant trends from Terra for First Date of Snow by elevation 

class in selected rayons. Bold entries indicate significant (p<0.05) negative trends at least twice as 

prevalent as significant positive trends. Italicized underlined entries indicate significant (p<0.05) 

positive trends at least twice as prevalent as significant negative trends. Negative (positive) trends 

in FDoS correspond to earlier (later) onset of snow cover. "nd" = no data as lowest elevation in 

rayon is >1,900 m. "--" indicates no prevalent trend. 

 

 

 

 

 

 

 

elevation class 
Naryn 
(km2)  

At-Bashy  

(km2) 
Alay  

(km2) 
Chong-Alay  

(km2) 

1,400-1,900 m 2.8 nd 13.1 nd 

1,900-2,400 m 58.0 45.5 45.5 1.7 

2,400-2,900 m 41.0 33.1 33.1 7.7 

2,900-3,400 m 64.8 116.6 -- 20.8 

> 3,400 m -- -- 109.7 -- 

Total earlier 166.6 78.6 201.4 30.3 

Total later -- 116.6 -- -- 
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Table S2.2. Area in predominant significant trends from Terra for Duration of Snow Season 

(DoSS) by elevation class in selected rayons. Bold entries indicate significant (p<0.05) negative 

trends at least twice as prevalent as significant positive trends. Italicized underlined entries indicate 

significant (p<0.05) positive trends at least twice as prevalent as significant negative trends. 

Negative (positive) trends in DoSS correspond to shorter (longer) snow season. "nd" = no data as 

lowest elevation in rayon is >1,900 m. "--" indicates no prevalent trend. 

 

 

 

 

Table S2.3. Two-stage trend analysis for LDoS and DoSS. Bold entries indicate at least twice the 

area of the significant (p<0.05) pair. 

Trend of 1st 

metric: 

LDoS 

Area in 1st 

metric  

(%) 

Area in 1st 

metric  

(km2) 

Trend of 2nd 

metric: 

DoSS 

Area in 2nd 

metric 

(%) 

Area in 2nd 

metric 

(km2) 

 

LDoS earlier 
 

3.2 

 

5,514 

DoSS shorter    8.2        452 

DoSS longer    0.1            8 

DoSS ns  91.7     5,054 

 

LDoS later 

 

0.4 

 

778 

DoSS shorter  <0.1          <1 

DoSS longer  19.9        155 

DoSS ns  80.1        623  

 

LDoS ns 

 

96.4 

 

168,131 

DoSS shorter    1.4     2,408 

DoSS longer    1.7     2,850 

DoSS ns  96.9 162,873 

Table S2.4. Two-stage trend analysis for FDoS and LDoS. Bold entries indicate at least twice the 

area of the significant (p<0.05) pair. 

Trend of 1st 

metric: 

FDoS 

Area in 1st 

metric  

(%) 

Area in 1st 

metric 

(km2) 

Trend of 2nd 

metric: 

LDoS 

Area in 2nd 

metric 

(%) 

Area in 2nd 

metric 

(km2) 

 

FDoS earlier 

 

 

4.8 

 

 

8,555 

 

LDoS earlier    2.3       196 

LDoS later    0.2          21 

LDoS ns  97.5     8,338 

elevation class 
Naryn 
(km2)  

At-Bashy  

(km2) 
Alay  

(km2) 
Chong-Alay  

(km2) 

1,400-1,900 m -- nd 4.3 nd 

1,900-2,400 m -- -- 15.7 5.4 

2,400-2,900 m -- 38.0 -- 57.1 

2,900-3,400 m -- 222.0 -- 38.6 

> 3,400 m 23.4 331.4 24.3 -- 

Total shorter 23.4 591.4   

Total longer -- -- 44.3 101.1 
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FDoS later 

 

0.9 

 

1,634 

LDoS earlier    3.2          54 

LDoS later    1.0          15 

LDoS ns  95.8     1,565 

 

FDoS ns 

 

91.3 

 

161,225 

LDoS earlier    3.3     5,264 

LDoS later    0.5        742 

LDoS ns  96.2 155,219 

Table S2.5. Summary of trend results from recent research studies. 

 

Dietz et al. 

(2013) 

Dietz et al. 

(2014) 

Zhou et al. 

(2013) 

Tang et al. 

(2017) 

Tomaszewska & 

Henebry (2018) 

Time  2000 – 2011 1986 – 2014 1986 – 2008 2001 – 2015 2002/03 – 2015/16 

Data  Daily snow 

cover 

Terra/Aqua 

MODIS at 500m 

 

Daily snow 

cover 

Terra/Aqua 

MODIS at 500 

m, and daily 

AVHRR at 1km 

Daily and 8-day 

snow cover 

composites 

Terra MODIS 

at 500m, and 

daily AVHRR 

at 1km 

Daily snow 

cover Terra 

MODIS at 

500m  

 

8-day snow cover 

composites 

Terra/Aqua MODIS 

at 500m 

Area  Central Asia Central Asia 

(results for Syr 

Darya upstream 

sub-catchment) 

Central Asia 

(Amu Darya 

catchment) 

Tien Shan 

Mountains 

Kyrgyzstan 

Snow 

Season 

Metrics  

Snow cover 

duration (SCD) 

Snow cover start 

(SCS) 

Snow cover melt 

(SCM) 

Snow cover 

index (SCI) 

Snow cover 

duration (SCD) 

Snow cover 

duration in early 

season (SCDES) 

Snow cover 

duration in later 

season (SCDLS) 

Snow covering 

days (SCD) 

Snow cover 

onset date 

(SCOD) 

Snow cover 

melting date 

(SCMD) 

Snow 

covered area 

(SCA) 

Snow 

covered 

days (SCD) 

First date of snow 

(FDoS) 

Last date of snow 

(LDoS) 

Duration of snow 

season (DoSS) 

R
es

u
lt

s 

S
n

o
w

 A
rr

iv
al

 

No discernable 

trend recognized 

 

Negative trend of 

snow arrival 

 

Negative trend 

of snow arrival 

(>3,000 m) 

 

Slightly 

positive trend > 

4,000 m in 

Central Pamirs 

Did not 

analyze 

snow arrival 

 

Negative trends of 

snow arrival in 

western and central 

KGZ  

S
n

o
w

 D
ep

ar
tu

re
 

No discernable 

trend 

recognized. 

 

Negative trend of  

snow departure 

 

Negative trend 

of snow 

departure (> 

3,000 m) 

No significant 

trend >4,000 m 

in Central 

Pamirs 

Did not 

analyze 

snow 

departure 

 

Negative trends of 

snow departure in 

eastern KGZ 
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S
n

o
w

 D
u

ra
ti

o
n

 

Positive trend 

increases with 

elevation 

Positive trend in 

early season 

increases with 

elevation 

 

Generally 

negative trends 

in later season, 

but varies with 

elevation: <1,800 

m positive; 

1,800–2,500 m 

not significant; 

and >2,500 m 

negative 

Did not analyze 

duration 

 

Negative 

trend in 

central and 

eastern Tien 

Shan 

Positive 

trend 

northern and 

western Tien 

Shan 

Negative trends in 

western and eastern 

KGZ 

 

Positive trends in 

north and 

southwestern KGZ  
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CHAPTER 3  

LAND SURFACE PHENOLOGY IN THE HIGHLAND PASTURES OF MONTANE 

CENTRAL ASIA: INTERACTIONS WITH SNOW COVER SEASONALITY AND 

TERRAIN CHARACTERISTICS 

Paper #2: 

Tomaszewska, M.A., Nguyen, L.N., Henebry, G.M., In revision following review. Land Surface 

Phenology in the Highland Pastures of Montane Central Asia: Interactions with Snow Cover 

Seasonality and Terrain Characteristics. Remote Sensing of Environment. (reviews received 

07OCT19, RSE-D-19-01373) 

 

3.0. Abstract 

Many studies have shown that high elevation environments are among very sensitive to 

climatic changes, and where impacts are exacerbated. Across Central Asia, the ability of 

global climate projections to capture the complex dynamics of mountainous environments 

is particularly limited. Agropastoralism constitutes the major portion of agriculture in 

montane Central Asia. Extensive herbaceous vegetation forms the basis of rural economies 

in Kyrgyzstan. Here we focus on snow cover seasonality and terrain effects on highland 

pasture phenology using remote sensing data for 2001-2017. First, we described the 

thermal regime of growing season using MODerate Resolution Imaging Spectrometer 

(MODIS) land surface temperature (LST) data, analyzing the modulation by elevation, 

slope, and aspect. We then characterized the phenology in highland pastures with metrics 

derived from modeling the land surface phenology using Landsat NDVI time series 

together with MODIS LST data. Next, using rank correlations, we analyzed the influence 

of four metrics of snow cover seasonality calculated from MODIS snow cover 

composites—first date of snow, late date of snow, duration of snow season, and the number 

snow covered dates—on metrics of land surface phenology, specifically, peak height (PH) 
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and thermal time to peak (TTP), in the subsequent growing season.  Then we evaluated the 

role of terrain features in shaping the relationships between snow cover and pasture 

phenology using exact multinomial tests for equivalence. Results revealed a positive 

relationship between snow covered dates (SCD) and PH occurred in over 1,664 km2 at p 

<0.01 and 5,793 km2 at p<0.05, which account for more than 8% of 68,881 km2 of 

pasturelands analyzed in Kyrgyzstan. Also, more negative than positive correlations were 

found between snow cover onset and PH, and more positive correlations were observed 

between snowmelt timing and PH.  Thus, a longer snow season can positively influence 

PH.  Significant negative correlations between TTP and SCD appeared in 1,840 km2 at 

p<0.01 and 6,208 km2 at p <0.05, and a comparable but smaller area showed negative 

correlations between TTP and snowmelt date (1,538 km2 at p<0.01 and 5,188 km2 at p 

<0.05). Furthermore, terrain had a stronger influence on the timing of snowmelt than on 

the number of snow covered dates, with slope being more important than aspect, and the 

strongest effect appearing from the interaction of aspect with steeper slopes.  In this study, 

we characterized the snow-phenology interactions in highland pastures and revealed strong 

dependencies of pasture phenology on timing of snowmelt and snow onset and snow cover 

duration and. Under changing climatic conditions toward earlier spring warming, 

decreased duration of snow cover may lead to lower pasture productivity threatening the 

sustainability of montane agropastoralism. 

3.1. Introduction 

Studies have shown that high elevation environments are among the most sensitive to 

climatic changes (Diaz et al., 2003; Pepin et al., 2015; Thompson, 2000), where impacts 

are exacerbated (Chen et al., 2016; Immerzeel et al., 2010). Over Central Asia, which is 
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especially vulnerable to climate changes, (Lioubimtseva and Henebry, 2009; Luo et al., 

2018; Yu et al., 2018) the ability of global climate projections to capture the complex 

dynamics of mountainous environments is particularly limited (Reyer et al., 2017). There 

remains a scarcity of climate change impact studies for Central Asia (Hijioka et al., 2014; 

Xenarios et al., 2018). 

In a semiarid, continental climate, agropastoralism constitutes the foundation of agriculture 

in montane Central Asia. According to FAO statistics from 2015, rangelands constitute 

87% of the agricultural land in Kyrgyzstan, the Central Asia country that is mostly 

mountainous (>90% of land area) (FAO, 2015). Extensive herbaceous vegetation lands 

form a basis of rural economies in Kyrgyzstan, which makes the foundation of highlanders’ 

livelihoods. For centuries, the herders of the highlands have been practicing vertical 

transhumance — the annual movement of livestock to higher elevation pastures to take 

advantage of seasonally available forage resources (Schillhorn Van Veen, 1995). 

Dependency on pasture resource availability during the short montane growing season 

makes herders susceptible to changes in climate and weather patterns. 

In Central Asia, the Syr Darya and the Amu Darya are the region’s major rivers that flow 

into the Aral Sea Basin (Bernauer and Siegfried, 2012). River flow is driven by meltwater 

from glaciers and snow cover in the Tien Shan and Pamir mountains as well as runoff from 

across the Basin (Sorg et al., 2012). Increasing temperatures trigger accelerated glacier 

massloss and snow cover extent shrinkage, and projected warming is expected to affect 

significantly melt timing and magnitude (Luo et al., 2018; Wang et al., 2014). Recent 

studies over the region have shown a shift in precipitation from snow to rain, which 

decreases snowfall fraction and results in less accumulation of snow and glacier ice during 
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the winter (Chen et al., 2016). Moreover, changes in snow cover and shrinkage of glaciers 

lead to alterations in the local water cycle and water storage (Bai et al., 2019; Dedieu et al., 

2014). Temperature increases are projected to be particularly high in summer and fall 

seasons but lower in winter (Xu et al., 2017), with a decrease in precipitation for late spring 

and summer (Hijioka et al., 2014; Yuan-An et al., 2013), but strong increase in winter and 

early spring (Luo et al., 2018; Yu et al., 2018). 

There is substantial uncertainty in precipitation projections due to the scarcity of 

observational data coupled with the coarse spatial resolution of models that cannot resolve 

the complex mountainous terrain (Christensen et al., 2013; Reyer et al., 2017). There 

remain shortcomings in models to simulate interacting dynamical influences on 

precipitation due to observational data limitation for validation, interpolation methods that 

tend to smooth the climatological patterns, and comparison using multiscale data (Mannig 

et al., 2013; Rhoades et al., 2018; Stocker et al., 2013). While increased temperatures may 

result in an extended growing season that could benefit certain vegetation types and 

communities, enhanced variation in precipitation timing and amount of water availability 

(Chen et al., 2016; Immerzeel et al., 2010), and increased incidence of drought may 

negatively affect vegetation phenology and pasture productivity (Marshall et al., 2019; 

Petersky et al., 2019). 

Here we address three open questions regarding snow cover seasonality and terrain effects 

on pasture phenology: 

1) How does snow cover seasonality relate to subsequent land surface phenology in 

highland pastures? 

2) How does mountainous terrain modulate snow cover effects? 
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3) What can recent changes in snow cover seasonality tell us about possible futures 

for highland pasture phenology and productivity? 

Why focus on snow cover instead of precipitation or soil moisture to describe the moisture 

regime? First, snow dominates in the annual precipitation totals in montane Central Asia 

(Aizen et al., 1995; Apel et al., 2018; Sorg et al., 2012). Second, snowmelt is the critical 

contributor to early growing season soil moisture, and most of the seasonal biomass 

accumulation in pastures relies on this initial store of moisture. Third, the spatial resolution 

of remote sensing snow cover products is significantly higher than what is available for 

either precipitation or soil moisture, and the higher spatial resolution is critical to capture 

the complex effects of terrain. 

There are recent studies that analyze snow cover impact on pasture phenology using remote 

sensing products over specific regions in Central Asia and High Mountain Asia. Paudel 

and Andersen (2013) explored the response of rangeland vegetation to snow cover 

dynamics in Nepal Trans Himalayas; whereas, Wan et al. (2014) explored relationships 

between changes in snow cover and its impact on alpine vegetation in Qinghai-Tibetan 

Plateau. More recently, Wang et al. (2018) studied snow cover effects on alpine vegetation 

growth dynamics over Tibetan Plateau. Relationships between winter snow cover 

dynamics, climate, and spring grassland phenology in Inner Mongolia, China was analyzed 

by Qiao and Wang (2019).  Each study found changes in snow cover affecting the length 

of the growing season and, especially, the start of the growing season, which also 

influences aboveground net primary production as viewed through the normalized 

difference vegetation index (NDVI). 
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Due to the scarcity of ground-level data, an inability to access much data from the Soviet 

era, and the fact that most weather stations are located in valleys far from the pastures of 

interest, we relied on remote sensing datasets for measurement and indicators of snow and 

pasture phenology. 

We framed this study using three key aspects of the highland environment (thermal regime, 

moisture regime, and terrain attributes) that drive and constrain the growth and 

development of pasture vegetation. The study period corresponds to the MODIS era: 2001-

2017, and the study area encompasses pastures across Kyrgyzstan. Here we describe the 

thermal regime of growing season using MODIS Land Surface Temperature (LST) dataset 

and analyze how it is modulated by mountainous terrain. The moisture regime and its 

changes have already been described using snow cover metrics and trends in snow cover 

seasonality (Tomaszewska and Henebry, 2018). 

First, we explored pasture phenology characteristics via modeling of land surface 

phenology (LSP) by combining Landsat surface NDVI and MODIS LST data. 

Phenological modeling has previously provided evidence of changes in land surface 

dynamics and phenology in Central Asia (Bohovic et al., 2016; de Beurs et al., 2015, 2018; 

de Beurs and Henebry, 2008a; Kariyeva and Van Leeuwen, 2011; Lu et al., 2014). Second, 

we analyzed the influence of snow cover seasonality on the phenological development in 

pastures using Spearman’s rank correlation and asymmetry analysis. Finally, we 

investigated the role of terrain features—elevation, slope, and aspect—in modulating the 

thermal regime and in shaping relations between snow cover and subsequent phenology 

and productivity in highland pastures. Each of those steps prepared us to address the bigger 

picture of pasture vegetation dynamics to identify where in the landscape of pastures the 
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phenology were more sensitive to variable and changing climatic conditions. Pastures are 

for grazing animals, but we did not explicitly address grazing dynamics in this synoptic 

study because (1) vertical transhumance is the key livestock management technique in 

these agropastoralist communities and (2) we were addressing all pasture areas across the 

country without regard to the seasonality of use. 

3.2. Study Area 

The study area falls within the territory of Kyrgyzstan (Kyrgyz Republic), a land-locked 

republic in Central Asia. A highly mountainous country, it is bordered on the north and 

northwest by Kazakhstan, on the east and southeast by China, on the southwest by 

Tajikistan, and on the west by Uzbekistan. With a population of about 6 million, the total 

area of Kyrgyzstan is 199,951 km2, of which nearly 96% is land with 8,150 km2 in lakes 

and reservoirs (WorldBank, 2018). More than 56% of the territory lies above 2,500 m, 

where mountains ranges of the Tien Shan, the Pamir, and the Alatau cover more than 90% 

of the total land area (Azykova, 2002). The country is divided into seven oblasts or 

provinces—Talas, Chuy (including the capital Bishkek), and  Issyk-Kul on the northern 

part of the country, and Jalal-Abad, Naryn, Osh, and Batken in the southern part—and 40 

rayons or districts (Asian Development Bank, 2010b). 

The climate of Kyrgyzstan is continental with low precipitation and intense solar radiation. 

Weather patterns are influenced by the high elevation, mountain ranges, distance from 

oceans, adjacency to the deserts, and the country’s inland location in the temperate and 

sub-tropical zone (Akimaliev et al., 2013). Due to the high relief of the terrain, there is 

significant variability in daily and seasonal averages of air temperature and moisture, which 

result in climatic zonation by elevation. During summer months (June through August) the 
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average air temperature can reach from 17 to 40 °C over lowlands, while dropping to -4 °C 

in the mountains. The lowest average air temperatures during winter are registered in the 

high mountain valleys; whereas, frost occurs over the entire country (Kulikov and 

Schickhoff, 2017). Precipitation is unequally distributed across the country, with the lowest 

annual precipitation of less than 150 mm in some areas of Issyk-Kul oblast in northeastern 

Kyrgyzstan to more than 1,000 mm over the lowlands of the Ferghana valley to the west. 

More than 50% of the land area is used as pastoral rangelands, which constitutes 87% 

(according to 2015 FAO statistics) of the agricultural lands in Kyrgyzstan. Less than 10% 

of the land is suitable for crops, while forests cover only about 5%. Our focal area are the 

pastures of Kyrgyzstan, and our study period extends from 2000/2001 to 2017 (Figure 3.1). 

 

Figure 3.1. Study area: pasture land use in Kyrgyzstan is displayed in light green from (Asian 

Development Bank, 2010a, 2010b) and draped over the SRTM 30 m DEM (Projected coordinate 

system: Albers Conic Equal Area). 
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3.3. Geospatial Data 

We used three remote sensing datasets: two MODIS Version 6 Products (i) Snow Cover at 

500 m, and (ii) Land Surface Temperature at 1 km; and 30 m surface reflectance products 

from the Landsat Collection 1 Tier 1. Other geospatial data included Digital Elevation 

Model (DEM) at 1 arc-second spatial resolution (NASA JPL, 2013),  the Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) mean product at 30 arc-seconds 

(Danielson and Gesch, 2011), and pasture land use information from a Soviet-era land use 

map that was updated in 2008 using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

images and MODIS datasets for the CACILM project ( Central Asian Countries Initiative 

for Land Management; Asian Development Bank, 2010a, 2010b). 

3.3.1. MODIS Snow Cover Product 

We used the most recent version of the MODIS Terra snow cover 8-day composites 

(MOD10A2 V006; Riggs and Hall, 2015) distributed by the National Snow and Ice Data 

Center (https://nsidc.org/). The nominal spatial resolution is 500 m, and the data are 

provided in a sinusoidal projection. MOD10A2 product reports the maximum snow cover 

extent observed during 8-day period by compositing observations from the MODIS/Terra 

Snow Cover Daily L3 Global 500 m Grid product (MOD10A1 V006), where the snow 

cover information is derived using the Normalized Difference Snow Index (NDSI) (Hall et 

al., 2002; Riggs and Hall, 2004). The annual dataset contains 46 8-day composites. We 

downloaded two MODIS tiles (h23v04 and h23v05) from 2000 to the end of 2017, merged 

them, then projected them into the Albers Conic Equal Area coordinate system with pixel 

resampling to 30 m using nearest neighbors. We then extracted in each composite all pixels 

flagged as “snow” (i.e., pixel value = "200"). 
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3.3.2. MODIS Land Surface Temperature Products 

We used the MODIS/Terra and MODIS/Aqua Land Surface Temperature/Emissivity 

products at 1 km spatial resolution (MOD11A2/MYD11A2 V006), which provide an 

average 8-day land surface temperature (LST) for all MOD11A1/MYD11A1 LST pixels 

collected within the 8-day time frame (Wan et al., 2015). We downloaded two MODIS 

tiles (h23v04 and h23v05) of MODIS/Terra from 2001 and MODIS/Aqua from 2002 

through the end of 2017. We filtered out invalid pixels using the quality bits in each 

product, converted temperature from Kelvin to °C, and projected the data into the Albers 

Conic Equal Area coordinate system with 30 m pixel resolution using bilinear resampling. 

We created a second dataset in which we reprojected data to the Albers Conic Equal Area 

coordinate system using the bilinear method, but left the spatial resolution at the nominal 

1 km. This second dataset was used to characterize the thermal regimes as a function of 

terrain (cf. sections 3.4.2, 3.5.2, and 3.6.2). In contrast, the first dataset was used for land 

surface phenology modeling (cf. sections 3.4.3, 3.5.3, and 3.6.3). 

3.3.3. Landsat Surface Reflectance Product 

We worked with the Landsat Collection 1 Tier 1 Level-1 Precision and Terrain (L1TP) 

corrected product from 2001 to the end of 2017. The Collection consists of Level-1 data 

products generated from Landsat 8 Operational Land Imager (OLI), Landsat 7 ETM+, and 

Landsat 5 Thematic Mapper (TM) (USGS EROS, 2017). Surface reflectance NDVI data 

were obtained by downloading 13,285 images in 33 unique tiles (WRS-2 Paths 147 to 155 

and Rows 30 to 33; Table S3.1) from the USGS Earth Resources Observation and Science 

(EROS) Center Science Processing Architecture (ESPA) On Demand Interface 

(https://espa.cr.usgs.gov/). We masked out invalid pixels (as cloud/snow or cloud shadows) 
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by applying pixel quality bits delivered with each product, and projected the data into the 

Albers Conic Equal Area coordinate system. The NDVI from Landsat 8 OLI surface 

reflectance data is greater, on average, than the NDVI from Landsat 7 ETM+ surface 

reflectance data (Roy et al., 2016). Thus, we also used an inter-calibration equation to 

adjust Landsat 7 ETM+ surface NDVI and Landsat 5 TM surface NDVI to the surface 

Landsat 8 OLI NDVI (Roy et al., 2016): 

NDVIOLI = 0.0235 + 0.9723 × {NDVITM|NDVIETM+}  (Equation 3.1) 

We used the equation [3.1] on both datasets since the differences between surface NDVI 

from Landsat 7 ETM+ and Landsat 5 TM are very small. Moreover, these datasets have 

been used together successfully in studies of land surface phenology (e.g., Fisher et al., 

2006; Melaas et al., 2013). 

In areas with terrain complexity, differential illumination remains a controlling factor on 

the radiometric properties of remotely sensed data. Slope surfaces directly oriented to the 

sun  receive more insolation than those surfaces without direct illumination. The difference 

of illumination and variation of the proportion of light reflected from the ground to the 

sensor may yield variable spectral responses even in homogeneous land covers (Allen, 

2000; Vázquez-Jiménez et al., 2017). We investigated different topographic correction 

methods to evaluate whether these corrections would significantly affect the NDVI data in 

our study area. Based on exploratory analysis (cf. Supplementary Materials 3.11.1), we 

concluded a topographic normalization method was not necessary, given our questions and 

the demonstrated ability of the NDVI to attenuate a large amount of the variation induced 

by changing sun angles, topography, clouds or shadows, and atmospheric conditions 

(Huete et al., 1999; Matsushita et al., 2007). 
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3.3.4. Other Geospatial Data 

For representation of the terrain, we used two digital elevation datasets. At the finer 

resolution, we used the SRTMGL1, the NASA Shuttle Radar Topography Mission Global 

1 arc-second (~30 m) V003 product. We downloaded 133 tiles from USGS Earth Explorer 

(https://earthexplorer.usgs.gov/). Then we merged them and projected into the Albers 

Conic Equal Area coordinate system using bilinear resampling technique to 30 m spatial 

resolution.  Further, we generated two layers—slope (in degrees) and aspect (in degrees)—

and reclassified them into groups for subsequent analysis: five slope classes (0-5°, 5-10°, 

10-15°, 15-30°, >30°), and nine aspect classes (N, NE, E, SE, S, SW, W, NW, and flat). 

The second was the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) 

mean product at 30 arc-seconds (~1 km) developed by the US Geological Survey and the 

National Geospatial-Intelligence Agency (Danielson and Gesch, 2011). We projected the 

data into the Albers Conic Equal Area coordinate system with pixel resampling to 1 km 

using bilinear resampling. We again created two layers—slope (in degrees) and aspect (in 

degrees)—and reclassified them into groups: four slope classes (0-5°, 5-10°, 10-15°, 15-

30°) and just two aspect classes for aspect: Northern (NE+N+NW) and Southern 

(SE+S+SW). Due to its coarser spatial resolution, there is no >30° slope class in the 

GMTED2010. 

3.4. Methods – data processing 

Figure 3.2 offers an overview of the study’s technical workflows to aid navigation of the 

multitude of data and multiple analysis steps. 
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Figure 3.2. Overview of technical workflows. 

3.4.1. Metrics of Snow Seasonality 

We described snow seasonality by generating four temporal metrics for each snow season. 

We defined our observation window to bound the snow cover season each year by starting 

on the day of year (DOY) 169 (approximately the summer solstice) and extending to DOY 

168 in the following year (DOY169year through DOY168year+1). This approach enabled us 

to identify the first and last appearances of snow cover during the cold season. We 

generated four snow cover metrics: First Date of Snow (FDoS), Last Date of Snow (LDoS), 

Duration of Snow Season (DoSS), and the number of Snow Covered Dates (SCD). FDoS 

is the composite date when the pixel is flagged as snow for the first time each snow cover 

season. LDoS is the composite date of the last composite with snow cover during the snow 

season. DoSS is the difference in composite dates between LDoS and FDoS multiplied by 

8 [(LDoS – FDoS+1)*8];  SCD is a number of composites with snow cover present between 

FDoS and LDoS, also multiplied by 8 (Tomaszewska and Henebry, 2018). The 
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multiplication by 8 enabled the scaling of dates across the calendar year and simplified 

interpretation of the metrics. Note, that we have purposefully chosen to characterize the 

snow cover season by its temporal extremities. Since we were interested in highland 

pastures, we characterized the snow cover season by the first and last detected snow cover 

event during the season, even though we realized that this approach could over-estimate 

the period of time that snow cover persisted. In terms of pasture access and grazing use, 

our definition of snow season is reasonable. However, we also look at the number of snow 

cover dates (SCD) as another way to characterize snow seasonality. 

We used 8-day composites rather than daily data to obtain consistent statistical power 

across trend analyses, a significant advantage over daily time series. 

Figure 3.3 illustrates the mean LDoS across 17 years of observations across those pasture 

areas with at least one year of successful LSP fitting. 

 

Figure 3.3. Mean values of Last Date of Snow (LDoS). Map draped over the SRTM 30 m DEM 

displays data only for pasture land use (Projected coordinate system: Albers Conic Equal Area). 
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The earlier mean LDoS during the snow season occurs mostly over western lowlands near 

the Ferghana Valley, in the interior at lower elevations, and around Issyk-Kul (the large 

lake of the endorheic basin in northeastern Kyrgyzstan). The latest snowmelt occurs at 

higher pastures in central Kyrgyzstan, and over the southern and southeastern parts of the 

Tien-Shan mountains. (Note how well mean LDoS corresponds with MODIS LST-derived 

mean annual AGDD shown in Figure 3.5) The average snow covered dates appear in Figure 

3.4. Higher values of SCD occur over the southern area of the country, close to the northern 

range of the Pamirs, and over the higher ridges of the Tien-Shan in central Kyrgyzstan. The 

least SCD occur at the edges of the Ferghana Valley, and along the lower elevated areas 

around Issyk-Kul. See Appendix for the maps of mean FDoS (Figure S.31) and mean DoSS 

(Figure S3.2). 

 

Figure 3.4. Mean values of Snow Cover Days (SCD). Map draped over the SRTM 30 m DEM 

displays data only for pasture land use (Projected coordinate system: Albers Conic Equal Area). 
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3.4.2. Metrics of Thermal Time 

We calculated accumulated growing degree-days (AGDD) to characterize the progression 

of thermal time during the year. Growing degree-days (GDD) can be interpreted as a proxy 

of insolation, potentially useful for growth and development of herbaceous vegetation in 

the temperate mid-latitudes (de Beurs and Henebry, 2010a; Henebry, 2003). We modified  

an algorithm developed by Krehbiel and Henebry (2016), and subsequently revised 

(Krehbiel et al., 2017; Nguyen et al., 2018) to calculate AGDD from MODIS LST time 

series. The transformation of two daytime and nighttime observations from Terra and Aqua 

into mean MODIS LST was based on equation [3.2], where the highest and the lowest LST 

values were selected to calculate the mean MODIS LST: 

mean MODIS LST = [max(LST1030, LST1330) + min(LST2230, LST0130)]/2 (Equation 3.2) 

For the year 2001 and part of 2002, we used only MODIS/Terra images. To fill gaps due 

to missing or excluded pixels by filtering, we used Seasonally Decomposed Missing Value 

Imputation (Moritz and Bartz-Beielstein, 2017), which first removed the seasonal 

component from the time series, was conducted using the weighted moving average with 

k = 4 (8 observations with 4 left, and 4 right), determined the exponential weighting based 

on the deseasonalized series, and then added back the seasonal component. We further 

filtered out mean MODIS LST below 0°C, and calculated the GDD [3.3] at composite 

period t as the maximum between mean LST and Tbase, which was set to 0 °C (Goodin and 

Henebry, 1997; Henebry 2013). Each of 46 GDD composites was then multiplied by 8 to 

account for the 8-day compositing time frame of the MODIS product and accumulated 

across the year [3.4].  AGDD0 was set to zero at the start of each year. 
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GDDt = max(mean MODIS LSTt − Tbase, 0)    (Equation 3.3) 

AGDDt = AGDDt-1 + (GDDt × 8)     (Equation 3.4)  

In total, we generated 17 years of time series of accumulated growing degree-days (AGDD 

in °C). Figure 3.5 illustrates the average annual AGDD across the pasture areas of 

Kyrgyzstan. Note the higher mean AGDD (in reds) occur over western lowlands near the 

Ferghana Valley in Uzbekistan, in the interior of the country at lower elevations, and 

around Issyk-Kul. The lowest average AGDD occur over southern Kyrgyzstan, which is 

higher in elevation. 

 

Figure 3.5. MODIS LST-derived (2001–2017) mean annual AGDD for pasture land use in 

Kyrgyzstan. Map draped over the SRTM 30 m DEM displays data only for pasture land use 

(Projected coordinate system: Albers Conic Equal Area). 
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3.4.3. Land Surface Phenology 

There are many methods to characterize land surface phenology (cf. de Beurs and Henebry, 

2010a). We used a downward-arching convex quadratic (CxQ) function to model LSP (de 

Beurs and Henebry, 2004; Henebry and de Beurs, 2013) as follows: 

NDVI = α + β × AGDD + γ × AGDD2     (Equation 3.5)  

where the fitted coefficient of the quadratic parameter (γ) was required to be negative. 

Landsat surface reflectance data served to calculate NDVI as a proxy for active green 

vegetation, and MODIS LST for AGDD as a proxy for insolation, since the land surface 

temperature in grasslands during the growing season is highly correlated with insolation 

(Henebry, 2003; Still et al., 2014). The CxQ model has been successfully used in analyses 

of LSP dynamics at various scales in Central Asia (de Beurs et al., 2018; de Beurs and 

Henebry, 2008b, 2004; Henebry et al., 2005) elsewhere in Eurasia (de Beurs et al., 2009; 

de Beurs and Henebry, 2008a, 2005)  and in North America (Henebry and de Beurs, 2013; 

Krehbiel et al., 2017; Walker et al., 2015). 

For each pixel in the study area, we used the fitted parameter coefficients—intercept (α), 

slope (β), and quadratic (γ)—to calculate four phenological metrics (phenometrics) for 

each year from 2001 to 2017. These phenometrics provide indications of pasture condition. 
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Table 3.1. Phenology metrics (phenometrics) used in the study. 

Phenometrics Equation Description 

Peak Height PH = α – (β2/4γ) the maximum modeled NDVI 

Thermal Time to Peak TTP = -β/2γ the quantity of AGDD required 

to reach PH; corresponds to 

duration of modeled green-up 

phase 

Half-Time Value HTV = α – (3β2)/(16γ) NDVI at half-TTP; corresponds 

to green-up rate 

Area Under the Curve up to 

PH and TTP 

AUC = Σi=1,t (NDVIt+NDVIt-

1)×(AGDDt-AGDDt-1) 

numerically integrating by 

trapezoidal method the NDVI 

time series as a function of 

thermal time, serves as a proxy 

of pasture productivity during 

the green-up phase 

It was necessary to process the pixel time series to reduce noise and spurious data prior to 

model fitting and then to evaluate the quality of each fit. For each period spanning the 8-

day AGDD composites, we used the corresponding Landsat observation with the highest 

NDVI value. We filtered out observations with NDVI<0.1 and AGDD<100 to avoid 

including non-vegetated pixels. In addition, to account for cloud contamination that might 

not have been eliminated through quality masking, we looked for unusual dips in the NDVI 

time series. We first calculated the simple average of NDVI observations on either side of 

the focal observation. We then calculated the percentage difference between the average 

NDVI and the focal observation, and then excluded observations that were greater than or 

equal to 15% than the average of the two neighboring observations. We further excluded 

pixels from model fitting where the number of Landsat observations in a particular year 

were fewer than seven. 
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For each pixel in each year, we fitted the filtered NDVI and associated AGDD time series 

to the downward-arching CxQ LSP model shown in [3.5]. We accepted the fitted model 

into further analysis only if it passed all six of the following criteria: 

1) the quadratic parameter (γ) was less than 0; 

2) the TTP greater than the AGDD of the first observation; 

3) the adjusted R2 greater than 0.7; 

4) the Root Mean Square Difference (RMSD) less than 0.08; 

5) the PH below 1.0; and 

6) at least three observations were distributed before and at least three after the PH. 

If any criterion was not fulfilled during the fitting, then the last observation was removed 

from the filtered dataset, and the model fitting was rerun over the newly filtered dataset. 

We repeated this fitting procedure to contract the length of the time series until either a 

fitted model that passed all criteria or the length of the time series was fewer than 7 

observations. In the latter case, the model fit for that pixel was labeled as a failure in that 

year and no phenometrics were calculated. Finally, for the successfully fit models, we 

calculated the AUC up to PH using a baseline of AGDD=100 and NDVI=0.10 using 

trapezoidal integration. Figure S3.3 shows the total number of observations over 17 years 

used for successful fits. 
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3.5. Methods – data analysis 

3.5.1. Pasture Availability Classes 

We summarized each annual fit with a binary variable (0=no fit, 1=fit) to generate a final 

map of the total number of years with successful fits for each pixel. Then we divided these 

results into three pasture availability classes: (i) Highly Persistent (HP) pastures with 11-

17 years of successful fits out of 17 years of observations, (ii) Persistent (P) pastures with 

5-10 years, and (iii) Rarely Available (RA) pastures with just 1-4 years of successful fits. 

We based all subsequent analyses only on those pixels in either the HP or P pasture 

availability classes, because these locations host the natural resources that provide the 

foundation of the pastoralist economy. 

3.5.2. Thermal Regime of Growing Season  

To understand thermal regime of the growing season over pasture areas over Kyrgyzstan, 

we fitted mean GDD values for 1000 randomly selected pixels as a quadratic function of 

AGDD (at 1 km spatial resolution) varying by elevation, slope gradient (in four classes: 0-

5°, 5-10°, 10-15°, 15-30°), and contrasting aspects (northern: NE+N+NW, southern: 

SE+S+SW). We used fitted parameter coefficients of quadratic curves from modeling and 

calculated PH for GDD and TTP for AGDD. 

3.5.3. Land Surface Phenology 

Based on the successful model fits, we calculated basic descriptive statistics (mean, 

standard deviation, and coefficient of variation) for each of the four phenometrics (viz., 

PH, TTP, HTV, and AUC) for the series of 17 seasons from 2001 through 2017. We also 

applied the non-parametric Mann-Kendall trend test and the Theil-Sen linear trend 
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estimator (Hirsch et al., 1982; Kendall, 1938)—the same approach as in Tomaszewska and 

Henebry (2018)—to detect directional changes in PH and TTP over the 17 year study 

period. 

3.5.4. Spearman’s Rank Correlation to Link Snow Cover Seasonality with 

Phenometrics  

To estimate the association of the metrics of snow cover seasonality with phenometrics 

from the subsequent growing season, we used Spearman’s rank correlations (Fieller et al., 

1957; Lehmann and D’Abrera, 2006), which assesses whether a monotonic relationship—

not necessarily linear—occurs between two variables. The method is robust against outliers 

and works for data exhibiting non-normality. We used rank correlations in two ways: (1) 

to evaluate the relationships among the four snow cover temporal metrics (viz., FDoS, 

LDoS, DoSS, and SCD); and (2) to evaluate the relationships between the four snow cover 

temporal metrics and four phenometrics (viz., TTP, PH, HTV, AUC) for the Highly 

Persistent (HP) and Persistent (P) pasture availability classes, separately. Note that we 

consider FDoS to precede the growing season; thus, we did not evaluate the relationship 

between the phenometrics and FDoS of the subsequent snow season, even though it may 

occur in the same calendar year.  We calculated the areal percentage of pixels exhibiting 

significant positive or negative correlations at p<0.01 and p<0.05. Finally, we calculated 

the ratio of pixels with positive correlations to pixels with negative correlations to identify 

the predominant direction of the detected significant relationships. We used threshold 

values of >2.0 to indicate a strong asymmetry favoring significant positive correlations and 

of <0.5 to indicate a strong asymmetry favoring significant negative correlations. 
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3.5.5. Exact Test for Multinomial Equivalence of Terrain Effects 

Statistical tests of the difference (inequality) are typically used in remote sensing studies 

to determine whether differences between groups are statistically significant (Foody, 

2009). Here we instead conducted a series of equivalence tests to evaluate the influence of 

terrain on the associations between snow seasonality and phenometrics, due to the very 

large sample size and non-negligible spatial autocorrelation (de Beurs et al., 2015; Foody, 

2009; Frey, 2009; Wellek, 2010).  Equivalence testing works through evaluating two one-

sided tests against the null hypothesis that the distributions are different in the sense that 

the distance between the distributions is greater than or equal to the specified value Δ: 

H0: d(p,p0) ≥ Δ against H1: d(p,p0) < Δ 

where d(p,p0) is the observed Euclidean distance between two probability densities 

(distributions), and the 95% upper bound for d(p,p0) corresponds to a p-value of 0.05. 

Posed another way: if the distance between the two distributions is less than Δ (viz., failing 

to reject both one-sided tests), then we conclude the distributions are equivalent. We used 

a conservative version of the exact multinomial test for equivalence since the sample sizes 

were large, and we selected Δ = 0.025 as the standard for equivalence (Frey, 2009). 

To investigate the influence of terrain on the linkage between snow cover seasonality and 

land surface phenology, we focused on nine hotspots in HP pastures where spatial clusters 

of significant correlations between particular snow cover temporal metrics and 

phenometrics were evident (Figure S3.4). We reasoned that the influence of terrain on the 

relationships would be more evident in HP pastures, where there are more years of 

successful fits. The null hypothesis for our equivalence testing is that terrain plays a major 
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role in shaping the relationship between snow cover seasonality and the phenometrics in 

the subsequent warm season in that hotspot. Rejecting H0 deems the two distributions as 

equivalent, indicating that no effect of the terrain feature is evident. 

For each hotspot, we calculated the proportions of pixels over the entire area hosting the 

hotspot in different terrain feature classes. These data were the “potential” distribution. We 

also calculated the proportion of pixels exhibiting significant correlations between the 

snow cover temporal metrics and the phenometrics in different terrain feature classes. This 

subset of pixels was the “observed” distribution. We tabulated proportions in aspect in nine 

classes, slope in five classes, and slope × aspect interactions, giving a total of eight terrain 

feature groups: aspect; slope; 0-5° × aspect; 5-10° × aspect; 10-15° × aspect; 15-30° x 

aspect; >30° × aspect; and slope × aspect. For each terrain feature group, we ran a separate 

exact multinomial test for equivalence. We generated “observed” distributions as follows: 

for positive correlations between SCD and PH for nine hotspots; positive correlations 

between LDoS and PH for hotspots 1-8; negative correlations between LDoS and PH for 

hotspot 9 only; and, for all nine hotspots, negative correlations between SCD and TTP, 

negative correlations between LDoS and TTP; and positive correlations between SCD and 

HTV. 

3.6. Results 

3.6.1. Pasture Availability Classes 

We generated 115,551,865 pixels (103,997 km2) with successful fits over pasture areas for 

the 17-year period. This area covers 52% of the country’s land area and 85% of the pasture 

land use area. Highly Persistent (HP) pastures covered 15,261 km2 or 12.5% of pasture 

land use area, Persistent (P) pastures covered 53,620 km2 or 43.8%, and Rarely Available 
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(RA) pastures covered 35,114 km2 or 28.7% of the area indicated as pasture land use 

(Figure 3.6). The total area of unsuccessful fits covered 18,412 km2 or 15% of pasture land 

use. Table 3.2 shows the distribution of pasture availability classes by elevation in areal 

percentage. Note, in Figure 3.6, the purple stripes that arise, in part, from data availability. 

While it is not possible to disentangle data availability from in situ pasture suitability, the 

segregation of the pixels into different temporal classes helps to focus the subsequent 

analyses of linkages between variables to locations with more data. 

 

Figure 3.6. Pasture Availability classes: Highly Persistent pastures (available during 11-17 years 

of the 17-year study period) in dark purple; Persistent pastures (5–10 years) in light yellow; and 

Rarely Available pastures (1–4 years) in orange. Map displays data only for pasture land use areas 

(Projected coordinate system: Albers Conic Equal Area). 
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Table 3.2. Total area in pasture availability class and percentage distribution by elevation class. 

Elevation  

Class 

(m) 

Pasture 

Area  

(km2) 

Highly 

Persistent 

(%) 

 

Persistent 

(%) 

Rarely 

Available  

(%) 

No  

Fit  

(%) 

< 1800 23,593 16.0 15.5 21.8 28.1 

1800–2400 25,487 27.2 25.0 18.9 7.0 

2400–2900 21,597 32.9 21.2 13.2 3.4 

2900–3400 27,221 21.7 26.8 22.1 9.7 

3400–4000 22,038 2.2 11.5 23.6 39.3 

> 4000 2,469 <0.01 <0.1 0.4 12.5 

Total 122,405 100.0 100.0 100.0 100.0 

Highly persistent pastures are prevalent from 1800-2400 m, with nearly one-third found 

between 2400 m and 2900 m and 27% from 1800 m to 2400 m. In contrast, there are more 

persistent pastures above 2900 m and roughly the same proportion below 2400 m: 43% in 

HP vs. 41% in P (Table 3.2) Rarely Available pastures occur at different elevations in 

comparable proportion, except in the  2400 – 2900 m elevation band, where there are many 

more HP pastures. Most unsuccessful fits occur at the lowest elevation range below 1800 

m (28%) and above 3400 (52%). We based our subsequent analyses only on the HP and P 

pasture availability classes. 

3.6.2. Thermal Regime of Growing Season 

The Thermal regimes in highland pastures can be summarized by the shape of GDD as a 

function of AGDD changes due to elevation (Figure 3.7).  It is clear from Figure 3.7 and 

from Table 3.3 that (1) the patterns of GDD as a function of AGDD during the warm season 

are well-approximated by the same kind of downward-arching parabolic shape used to 

model LSP, and (2) the seasonal amplitudes (PHGDD) and durations (TTPAGDD) change 

smoothly as a function of elevation. PHGDD and TTPAGDD are greater at the lower elevations 

(Table 3.3).  The annual variation represented by the error bars (± 2 SEM) across the 17 
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years of observation is much higher during beginning and end of the warm season than the 

seasonal peak at lower elevations; however, at higher elevations, variation is much larger 

just before peak values (Figure 3.7). Some asymmetries in the seasonal curves are evident 

and documented by the pattern of adjusted R2 values, which reach a relative low point in 

the 2400-2900 m elevation class (Table 3.3). 

 

Figure 3.7. Mean annual Growing Degree-Days (GDD) with ± 2 SEM (Standard Errors of Mean) 

vs. mean annual Accumulated Growing Degree-Days (AGDD) for 1000 randomly selected pixels 

within six elevation classes: (i) below 1800 m (brown), (ii) 1800–2400 m (orange) , (iii) 2400–

2900 m (golden), (iv) 2900–3400 m (rosy brown), (v) 3400–4000 m (gray), and (vi) above 4000 m 

(black). 
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Table 3.3. Modeled PH and TTP, adjusted R2 values on GDD – AGDD quadratic curve at different 

elevation ranges. 

Elevation Class (m) PHGDD TTPAGDD adjusted R2 

below 1800 29.5 2527 0.94 

1800-2400 23.1 1774 0.92 

2400-2900 18.8 1313 0.91 

2900-3400 15.3 937 0.92 

3400-4000 11.9 625 0.94 

above 4000 8.8 392 0.95 

Figure 3.8 shows the mean annual progression of thermal time during the warm season as 

a function of both slope and aspect for the six elevation classes. Four patterns are notable. 

First, at the beginning of the warm season there is very little distinction in the progression 

of thermal time among terrain features. As the season progresses, divergence among 

slope×aspect classes becomes more pronounced. Second, the divergences between 

contrasting aspects (northern vs. southern) are more pronounced in steeper slope classes. 

Third, interactions of slope and aspect result in virtually interchangeable thermal time 

profiles, especially at higher elevations, but these interactions can produce counter-

intuitive results. Two examples: (1) in the 2900-3400 m class, the southern aspect pixels 

on 15-30° slopes (open yellow) show a comparable seasonal profile to the northern aspect 

pixels on 0-5° slopes (solid black); and (2) in the 3400-4000 m class, the southern aspect 

pixels on 5-10° slopes (open magenta) track similarly to northern aspect pixels on 15-30° 

slopes (solid yellow). The patterns in PHGDD and TTPAGDD across elevations, slopes, and 

aspects are expected. Downward-arching quadratic curves fit well, with all adjusted R2 

values greater than 0.90; decreasing values of PHGDD and TTPAGDD as elevation increases; 

and increased differences between phenometrics by aspect as slopes increase (Table 3.4). 

Moreover, southern aspect slopes are proportionally warmer than northern aspect slopes 
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averaged across elevations, but the magnitudes of the differences increase as slopes become 

steeper, and TTPAGDD increases more quickly than PHGDD (Table 3.5). 
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Figure 3.8. Mean annual Growing Degree Days (GDD) vs. mean annual Accumulated Growing 

Degree Days for 1000 randomly selected pixels at six elevation ranges: (i) below 1800m, (ii) 1800 

– 2400m , (iii) 2400 – 2900 m, (iv) 2900 – 3400m, (v) 3400 – 4000m, and (vi) above 4000m, for 

northern (filled circle) and southern (open circle) aspects at four slope classes: (i) 0-5°, (ii) 5-10°, 

(iii) 10-15°, (iv) 15-30°. Note that the scaling of the y-axes varies between panels. 
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Table 3.4. PH, TTP, and adjusted R2 values from fitting quadratic thermal time patterns at different elevation classes as a function of slope (four 

classes) and two contrasting aspects (northern and southern). 

 
Slope 0 -5° Slope 5-10° Slope 10-15° Slope 15-30° 

Elevation 

Class (m) 

and aspect 

PHGDD TTPAGDD adj. 

R2
 

PHGDD TTPAGDD adj. 

R2 

PHGDD TTPAGDD adj. 

R2 

PHGDD TTPAGDD adj. 

R2 

below 1800 

N 

30.9 2665 0.94 28.3 2352 0.94 27.5 2216 0.93 27.2 2142 0.93 

below 1800 

S 

30.3 2661 0.94 28.5 2460 0.93 27.9 2384 0.93 27.9 2360 0.92 

1800-2400 

N 

24.3 1846 0.92 22.9 1725 0.92 22.0 1629 0.92 22.1 1617 0.92 

1800-2400 

S 

24.6 1884 0.92 23.5 1857 0.92 22.7 1807 0.92 22.7 1799 0.92 

2400-2900 

N 

20.1 1383 0.91 18.4 1261 0.91 17.8 1191 0.91 17.8 1179 0.92 

2400-2900 

S 

20.1 1439 0.91 19.3 1384 0.91 18.9 1364 0.91 18.8 1365 0.92 

2900-3400 

N 

16.5 1004 0.92 14.5 860 0.92 14.4 851 0.92 14.7 878 0.93 

2900-3400 

S 

16.3 1006 0.92 15.4 977 0.92 15.2 964 0.92 15.6 1030 0.92 

3400-4000 

N 

12.1 626 0.94 11.5 579 0.94 11.7 600 0.93 11.9 626 0.94 

3400-4000 

S 

12.6 669 0.94 12.0 632 0.93 12.5 694 0.93 12.7 743 0.93 

above 4000 

N 

8.7 376 0.94 8.6 371 0.94 8.6 385 0.94 7.8 347 0.94 

above 4000 

S 

9.0 391 0.95 9.1 411 0.94 9.4 445 0.94 9.0 438 0.94 



86 

 
Table 3.5. Percent differences, calculated as (southern-northern)/northern×100), in PH and TTP 

values for contrasting aspects averaged across elevation classes. 

Slope Class 

Aspect 

Difference 

in PHGDD 

(%) 

Aspect 

Difference 

in TTPAGDD 

(%) 

0<5° 0.94 2.84 

5<10° 4.10 9.26 

10<15° 5.42 12.93 

15<30° 6.52 16.57 

3.6.3. Land Surface Phenology 

We calculated averages (over 17 years) for the four phenometrics (PH, TTP, AUC, HTV) 

derived from the successful fits over the pasture land use areas. Figure 3.9 displays maps 

of the mean values of PH and TTP. Note that the strips apparent in Figure 3.6 are not 

evident in Figure 3.9 since the former shows the frequency, and the latter shows average 

fitted values. Higher PH values (in green) occur at higher elevations over western, northern, 

and central parts of Kyrgyzstan; whereas, lower PH (in brown) occurs in the central 

lowlands and over the drier higher elevations in southern Kyrgyzstan. West of Issyk-Kul 

PH values are low, while they are higher east of the lake. The pattern for TTP is different.  

In the west near the Ferghana Valley at lower elevations, the TTP mean values are high (in 

red), and TTP decreases as elevation increases. Over the lowlands in central Kyrgyzstan, 

where PH is low, TTP is high, and conversely, TTP is low where PH is high. The spatial 

pattern of mean HTV values closely track PH (data not shown). 

Figure S3.5 shows mean AUC values over the 17 years. Over western Kyrgyzstan, where 

PH and TTP values are high, AUC is also high (dark green). In contrast, over areas where 

PH is high but TTP is low at northern highlands, AUC values are lower. However, in the 

central highlands, where PH is high but TTP is low, mean AUC reaches high values. The 
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lowest AUC values occur over dry southern Kyrgyzstan. Mean TTP more closely follows 

an elevational gradient compared to PH, since air temperature and moisture exhibit lapse 

rates as a function of altitude, and land surface temperature is related to, but distinct from, 

air temperature. In contrast, since PH and AUC are driven by abiotic factors (climate, 

terrain, recent weather), biotic influences (vegetation community, grazing pressure, 

unpalatable species), and disturbance history (time since landslide, time since grazing, time 

since drought), they can interact with elevation in complicated ways. 
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Figure 3.9. (Upper) Mean values of Peak Height (PH), (Bottom) Mean values of Time To Peak 

(TTP). Maps draped over the SRTM 30 m DEM display data only for pasture land use (Projected 

coordinate system: Albers Conic Equal Area). Classes based on quintiles. 

Figure 3.10 shows the integrated coefficient of variation (CV) over 17 seasons for PH and 

TTP. We used the median value of CV for each metric (10% for PH and 12% for TTP) as 

the breakpoint between higher and lower levels of CV. Higher CV for PH and TTP occurs 

over centrally located lowlands where PH is low and TTP is high, and highlands along the 

southern border of Kyrgyzstan where PH and TTP are both low. In the western and northern 

highlands where mean PH is high, lower CV values occur for PH but higher for TTP. The 

pattern of higher CV for PH and lower CV for TTP occurs over the drier southern regions; 

whereas, lower CVs for both PH and TTP occur more in the central and northern parts of 

Kyrgyzstan. Spatial patterns of CV for AUC are muted (as might be expected with an 

integral measure) with high CV values appearing only in the central valleys (Figure S3.6). 
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Figure 3.10. Map of integrated Coefficient of Variation for Peak Height (PH) and Thermal Time 

to Peak (TTP). Median value used as a threshold for higher and lower values (10% for PH, 12% 

for TTP). In dark blue, higher values for both phenometrics; in light blue, higher CV of PH but 

lower for TTP; in dark green, lower CV of PH but higher of TTP; and in light green, lower CV for 

both phenometrics. Map draped over the SRTM 30 m DEM displays data only for pasture land use 

(Projected coordinate system: Albers Conic Equal Area). 

Figures 3.11 and 3.12 map the positive and negative trends of TTP and PH over pasture 

land use areas. Positive trends of TTP occur mostly over the southern (drier) part of the 

country and around Issyk-Kul Lake, whereas negative TTP trends appear mostly over 

central western regions (Figure 3.11). It can be observed that there are no dominant trends 

in TTP over the study region and the area in significant TTP trends does not exceed 4% of 

HP or P pastures (Table 3.6). A very different situation appears for PH.  The only negative 

trend occurs on the eastern coast of the Issyk-Kul Lake; whereas, over the remainder of the 

pasturelands, there are clear positive trends (Figure 3.12), up to 23% of the HP pastures 

area and 14% of the P pastures (Table 3.6). 
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Table 3.6. Areal extent (in km2) and percentage of phenometrics (TTP and PH) with significant 

positive or negative trends at p-value < 0.01 and p-value < 0.05 for highly persistent (HP) and 

persistent (P) pastures. 

 POSITIVE NEGATIVE 

p<0.01 p<0.05 p<0.01 p<0.05 

HP (11- 17 yrs) 

Area=15,261 km2 
km2 % km2 % km2 % km2 % 

TTP 22 0.15 234 1.53 43 0.28 179 1.17 

PH 1,188 7.78 3,527 23.11 11 0.07 51 0.33 

P (5-10 yrs) 
Area=53,620 km2 

km2 % km2 % km2 % km2 % 

TTP 41 0.08 476 0.89 68 0.13 535 1.00 

PH 1,628 3.04 7,291 13.60 10 0.00 86 0.16 

 

 

Figure 3.11. Map of significant positive (in red) and negative (in blue) trends of TTP at three 

significance levels (p<0.01, p<0.05, p<0.1). Map displays data only for pasture land use areas 

(Projected coordinate system: Albers Conic Equal Area). 
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Figure 3.12. Map of significant positive (in green) and negative (in purple) trends of PH at three 

significance levels (p<0.01, p<0.05, p<0.1). Map displays data only for pasture land use areas 

(Projected coordinate system: Albers Conic Equal Area). 

3.6.4. Linkages between Snow Cover and Land Surface Phenology 

3.6.4.1. Correlations among Snow Cover Temporal Metrics 

We evaluated the relationships among the snow cover temporal metrics by calculating the 

areas with significant Spearman correlations. Although both SCD and DoSS are related to 

FDoS and LDoS, the metrics show different relationships. SCD shows the strongest 

positive connection with DoSS over 53% of both HP area and P areas at p<0.05, and over 

31% of both areas at p<0.01 (Table 3.7). The significant positive correlation of SCD with 

LDoS occurs over a greater area at p<0.05 (HP: 38%, P: 36%) than the significant negative 

correlation of SCD with FDoS (HP: 29%, P: 31%). Note that the negative correlation of 

SCD with FDoS means earlier onset of snow cover, and the positive correlation of SCD 

with LDoS means later snowmelt.  In contrast with SCD, more than 90% of HP and P areas 
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show a significant negative correlation between DoSS and FDoS at both p-values. The area 

of significant positive correlation between DoSS and LDoS is just one-third at p<0.01 and 

over 50% at p<0.05 for HP and slightly lower for P pasture areas (Table 3.7). FDoS exhibits 

no significant correlation with LDoS (data not shown). Note that the areas of significant 

positive correlation between SCD and DoSS are nearly identical for HP and P pasture areas. 

Similar areal coverages over different pasture classes indicate no or, at most, very weak 

association between pasture availability classes and relationships among the snow cover 

metrics. 

Table 3.7. Areal percentage of snow cover temporal metrics with significant positive or negative 

correlations at p-value < 0.01 and p-value < 0.05 for highly persistent (HP) and persistent (P) 

pastures. 

 

 
HP (11- 17 yrs) 

Area=15,261 km2 

SCD DoSS 

p< 0.01 p< 0.05 p< 0.01 p< 0.05 

Pos Neg Pos Neg Pos Neg Pos Neg 

FDoS 0.01 13.07 0.12 29.31 <0.01 92.97 <0.01 97.6 

LDoS 18.44 <0.01 38.49 0.03 33.34 <0.01 56.66 0.01 

DoSS 31.93 <0.01 53.47 0.01 -- -- -- -- 

P (5-10 yrs) 
Area=53,620 km2 

Pos Neg Pos Neg Pos Neg Pos Neg 

FDoS 0.01 13.87 0.08 31.06 <0.01 94.34 <0.01 98.13 

LDoS 16.6 <0.01 36.22 0.03 30.46 <0.01 53.22 0.01 

DoSS 31.53 <0.01 53.17 0.02 -- -- -- -- 

3.6.4.2. Correlations between Snow Cover Metrics and Phenometrics 

We also used Spearman correlations to explore the relationships between snow cover 

temporal metrics and phenometrics. Across the 96 correlations (= 4 phenometrics × 4 snow 

cover temporal metrics × 2 pasture availability classes × 3 significance levels), we focus 
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here on three phenometrics—PH, TTP, and AUC—at p <0.01 and p< 0.05 (Tables 3.7-

3.9). Results for the HTV phenometric appear in Table S3.2. 

PH exhibits predominant positive correlations with SCD, LDoS, and DoSS and one 

predominant negative correlation with FDoS (Table 3.8). This pattern holds for HP and P 

pasture areas at both significance levels. However, spatial predominance is strongest in HP 

at p<0.01 (Table 3.8) and, in terms of elevation, the greatest asymmetry occurs for the 

2900-3400 m class. Over P pasture areas, the greatest asymmetry occurs at 3400-4000 m 

(Table 3.8). For both LDoS and DoSS, the greatest asymmetries occur at 3400-4000 m. In 

contrast, there is almost no difference between positive and negative correlations of PH 

with LDoS at the lowest elevation class (<1800 m). The negative relationship with FDoS 

dominates over the lowest elevation range over both pastures classes and p-values. 

However, at the highest elevation class (>4000 m) of P pasture areas, the relationship 

changes to positive; there are no HP pasture areas in the highest elevation class. 
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Table 3.8. Areal percentage of significant correlations between the snow cover temporal metrics and the phenometric PH and the ratio of positive 

% area to negative % area at six elevation classes: below 1800 m, 1800-2400 m, 2400-2900 m, 2900-3400 m, 3400-4000 m, above 4000 m, and over 

total area of each pasture class. In bold with grey background, pos%/neg% > 2.0; in bold italics, pos%/neg% < 0.5. 

 

 

  PH 

p<0.01 p<0.05 p<0.01 p<0.05 

HP (11-17 yrs) P (5-10 yrs) 

Pos Neg Ratio Pos Neg Ratio Pos Neg Ratio Pos Neg Ratio 

S
C

D
 

< 1800 m 1.56 0.12 13.07 6.45 0.62 10.38 1.32 0.34 3.90 5.00 1.30 3.86 

1800-2400 m 2.80 0.33 8.51 8.87 1.36 6.51 1.60 0.45 3.53 5.73 1.69 3.40 

2400-2900 m 4.12 0.21 20.10 13.27 0.86 15.47 2.10 0.37 5.65 7.53 1.39 5.40 

2900-3400 m 2.80 0.05 59.37 10.45 0.29 35.61 2.93 0.15 19.43 10.00 0.64 15.75 

3400-4000 m 2.40 0.06 37.88 8.99 0.32 28.29 3.53 0.09 37.88 12.13 0.38 32.17 

> 4000 m 0.00 0.00 NaN 0.00 0.00 NaN 0.72 0.56 1.30 2.87 2.18 1.32 

TOTAL 3.03 0.19 15.95 10.27 0.82 12.52 2.24 0.30 7.47 7.88 1.13 6.97 

L
D

o
S

 

< 1800 m 0.46 0.44 1.03 2.28 2.13 1.07 0.62 0.66 0.95 2.40 2.42 0.99 

1800-2400 m 1.20 0.31 3.91 4.89 1.45 3.37 0.96 0.56 1.72 3.65 2.12 1.72 

2400-2900 m 2.37 0.16 15.20 7.62 0.83 9.17 1.49 0.44 3.41 5.02 1.72 2.92 

2900-3400 m 1.29 0.16 8.19 5.00 0.85 5.90 1.84 0.27 6.71 6.16 1.19 5.18 

3400-4000 m 2.24 0.15 15.41 8.32 0.71 11.70 1.61 0.19 8.45 5.93 0.86 6.87 

> 4000 m 2.07 0.00 NaN 5.52 0.00 NaN  0.58 0.18 3.26 3.70 1.27 2.90 

TOTAL 1.51 0.24 6.29 5.47 1.21 4.52 1.33 0.43 3.09 4.68 1.69 2.77 
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D
o

S
S

 

< 1800m 1.49 0.18 8.36 5.90 0.91 6.51 1.26 0.44 2.88 4.68 1.70 2.76 

1800-2400 m 1.67 0.27 6.18 6.24 1.28 4.89 1.14 0.48 2.37 4.34 1.91 2.27 

2400-2900 m 1.63 0.22 7.25 6.17 1.10 5.60 1.21 0.47 2.57 4.48 1.93 2.32 

2900-3400 m 1.51 0.29 5.18 5.64 1.39 4.07 1.50 0.42 3.57 5.36 1.76 3.04 

3400-4000 m 1.66 0.17 9.96 6.43 0.86 7.46 1.45 0.40 3.59 5.26 1.60 3.29 

> 4000 m 0.00 0.00 NaN 0.00 1.38 <0.01 0.86 0.52 1.64 3.86 2.02 1.90 

TOTAL 1.59 0.24 6.63 6.04 1.17 5.16 1.31 0.45 2.91 4.80 1.81 2.65 

F
D

o
S

 

< 1800 m 0.14 2.48 0.06 0.71 8.51 0.08 0.39 1.87 0.21 1.42 6.24 0.23 

1800-2400 m 0.28 1.48 0.19 1.23 5.62 0.22 0.45 1.28 0.35 1.72 4.68 0.37 

2400-2900 m 0.33 1.04 0.32 1.51 4.44 0.34 0.54 1.02 0.53 2.12 3.90 0.54 

2900-3400 m 0.46 1.06 0.43 2.11 4.01 0.53 0.61 0.94 0.65 2.37 3.50 0.68 

3400-4000 m 0.24 0.80 0.30 1.29 3.42 0.38 0.57 0.96 0.59 2.16 3.46 0.62 

> 4000 m 0.00 0.00 NaN 1.38 0.00 NaN 0.80 0.31 2.61 3.16 1.48 2.14 

TOTAL 0.31 1.39 0.22 1.43 5.30 0.27 0.52 1.19 0.44 1.98 4.30 0.46 
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The pattern of asymmetries with the TTP phenometric show predominant negative 

correlations with SCD, LDoS, and DoSS, but no strong asymmetries between TTP and 

FDoS (Table 3.9). The negative relationship with SCD predominates at the higher elevation 

belts: 2900-3400 m and 3400-4000 m over both pasture classes and significance levels. 

The asymmetry of correlations between TTP and LDoS is similar level regardless of 

elevation at p <0.01, and the greatest at 2400-2900 m at p<0.05. Over P pastures, the 

greatest asymmetry occurs at 2400-2900 m (Table 3.9). The strength of correlation 

asymmetries between DoSS and TTP are comparable across elevation classes. However, 

at the highest elevation in HP pastures, there were no pixels at p<0.01, and only very few 

pixels exhibiting a significant negative relationship at p<0.05. In P pastures, the differences 

of relationship direction even out. Contrary to the relationship between FDoS and PH, there 

are no predominant asymmetries for TTP and FDoS, with the sole exception of a significant 

positive relationship at 3400-4000 m in P pasture areas (Table 3.9). 
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Table 3.9. Areal percentage of significant correlations between the snow cover temporal metrics and the phenometric TTP and the ratio of positive 

% area to negative % area at six elevation classes: below 1800 m, 1800-2400 m, 2400-2900 m, 2900-3400 m, 3400-4000 m, above 4000 m, and over 

total area of each pasture class. In bold with grey background, pos%/neg% > 2.0; in bold italics, pos%/neg% < 0.5. NaN means "Not a Number" 

and results from division by zero. 

  TTP 

p<0.01 p<0.05 p<0.01 p<0.05 

HP (11-17 yrs) P (5-10 yrs) 

Pos Neg Ratio Pos Neg Ratio Pos Neg Ratio Pos Neg Ratio 

S
C

D
 

< 1800 m 0.19 0.90 0.21 1.01 4.02 0.25 0.37 1.18 0.32 1.49 4.43 0.34 

1800-2400 m 0.15 2.05 0.07 0.84 7.32 0.11 0.25 1.57 0.16 1.05 5.77 0.18 

2400-2900 m 0.03 4.18 0.01 0.21 14.06 0.01 0.21 2.08 0.10 0.87 7.61 0.11 

2900-3400 m 0.01 6.50 <0.01 0.07 18.23 <0.01 0.15 3.49 0.04 0.58 11.52 0.05 

3400-4000 m 0.02 7.11 <0.01 0.12 18.92 0.01 0.12 3.85 0.03 0.48 12.51 0.04 

> 4000 m 0.00 4.14 <0.01 0.00 13.79 <0.01 0.25 2.04 0.12 0.88 6.84 0.13 

TOTAL 0.08 3.64 0.02 0.48 11.63 0.04 0.22 2.40 0.09 0.89 8.27 0.11 

L
D

o
S

 

< 1800 m 0.13 2.88 0.04 0.65 9.71 0.07 0.31 1.93 0.16 1.14 6.62 0.17 

1800-2400 m 0.10 3.18 0.03 0.57 10.03 0.06 0.26 2.00 0.13 1.03 6.85 0.15 

2400-2900 m 0.06 3.23 0.02 0.36 10.62 0.03 0.21 2.22 0.10 0.85 7.60 0.11 

2900-3400 m 0.11 2.65 0.04 0.62 8.71 0.07 0.25 2.16 0.12 1.01 7.35 0.14 

3400-4000 m 0.28 0.96 0.29 1.25 4.05 0.31 0.37 1.48 0.25 1.45 5.05 0.29 

> 4000 m 0.00 2.07 <0.01 1.38 7.59 0.18 0.26 0.59 0.44 1.36 3.60 0.38 

TOTAL 0.10 2.99 0.03 0.54 9.76 0.06 0.27 2.02 0.13 1.05 6.90 0.15 
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D
o

S
S

 

< 1800 m 0.24 1.32 0.18 1.21 5.02 0.24 0.46 1.22 0.38 1.80 4.55 0.40 

1800-2400 m 0.23 1.37 0.17 1.17 5.26 0.22 0.39 1.39 0.28 1.60 5.08 0.31 

2400-2900 m 0.22 1.49 0.15 1.09 5.63 0.19 0.38 1.45 0.26 1.55 5.27 0.29 

2900-3400 m 0.19 1.56 0.12 0.94 5.93 0.16 0.34 1.69 0.20 1.42 6.12 0.23 

3400-4000 m 0.22 0.91 0.24 1.16 3.92 0.29 0.40 1.37 0.29 1.60 5.02 0.32 

> 4000 m 0.00 1.38 <0.01 0.00 12.41 <0.01 0.80 0.66 1.20 3.20 2.77 1.16 

TOTAL 0.22 1.43 0.15 1.10 5.46 0.20 0.39 1.45 0.27 1.57 5.31 0.30 

F
D

o
S

 

< 1800 m 0.58 0.59 0.98 2.40 2.72 0.88 0.73 0.74 0.98 2.73 2.72 1.00 

1800-2400 m 0.60 0.50 1.21 2.63 2.16 1.22 0.84 0.60 1.41 3.14 2.32 1.35 

2400-2900 m 0.74 0.52 1.42 3.19 2.27 1.40 0.95 0.58 1.63 3.53 2.28 1.55 

2900-3400 m 0.78 0.55 1.42 3.34 2.29 1.46 1.14 0.59 1.95 4.14 2.17 1.91 

3400-4000 m 0.57 0.33 1.77 2.67 1.58 1.69 1.06 0.49 2.14 3.88 1.85 2.10 

> 4000 m 0.69 0.00 NaN 6.90 0.00 NaN 0.49 0.87 0.57 2.11 3.16 0.67 

TOTAL 0.68 0.53 1.28 2.93 2.30 1.27 0.95 0.60 1.58 3.51 2.28 1.54 
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Among the four phenometrics, the relationships between the snow cover temporal metrics 

and AUC are the weakest, with modest asymmetries for LDoS and FDoS in HP and only 

LDoS in P pastures. Therefore, we do not report asymmetries by elevation class, but instead 

over the total area for each pasture availability class (Table 3.10). Similarly, we only report 

results of HTV for the total area of each pasture availability class (Table S3.2). As 

expected, the pattern of HTV closely follows PH, but the linkages of HTV with SCD and 

FDoS exhibit even stronger asymmetries at each combination of pasture availability class 

and significance level (Table S3.2) 

Table 3.10. Areal percentage of significant correlations between the snow cover temporal metrics 

and the phenometric AUC and the ratio of positive % area to negative % area. In bold, pos%/neg% 

> 2.0; in bold italics, pos%/neg% < 0.5. 

AUC 

 p<0.01 p<0.05 

HP (11- 17 yrs) 

Area=15,261 km2 

Pos Neg Ratio Pos Neg Ratio 

SCD 0.32 0.52 0.62 1.75 2.42 0.72 

LDoS 0.28 1.04 0.27 1.35 4.45 0.30 

DoSS 0.56 0.51 1.10 2.58 2.33 1.11 

FDoS 0.31 0.87 0.36 1.52 3.80 0.40 

P (5 – 10 yrs) 

Area=53,620 km2 

Pos Neg Ratio Pos Neg Ratio 

SCD 0.57 0.66 0.86 2.29 2.56 0.89 

LDoS 0.42 1.05 0.40 1.67 4.00 0.42 

DoSS 0.60 0.78 0.77 2.39 3.09 0.77 

FDoS 0.64 0.80 0.80 2.46 3.06 0.80 
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3.6.4.3. Influence of Terrain on Relationships between Snow Cover Seasonality 

and Phenometrics 

We conducted eight exact multinomial tests for equivalence for the nine hotspots shown in 

Figure S3.4. Table 3.11 presents 95% upper bound for d(p,p0) of five sets of correlations 

with p-value < 0.05 at nine hotspots. We marked in bold those values below the specified 

Δ value of 0.025, indicating that H0 is rejected, thereby leading to the conclusion that there 

is no evidence of influence by terrain features on the relationship between the snow cover 

temporal metrics and the phenometrics at that hotspot. 

Of the eight equivalence tests, aspect alone and the interaction between aspect and the 5-

10° slope class show weaker influence with 13 and 12 instances of equivalence, 

respectively, out of the possible 45 (=5 correlations × 9 hotspots).  In contrast, the tests for 

slope alone, the interaction of aspect and the >30° slope class, and the overall interaction 

of aspect and slope each show only three out of 45 occasions of equivalence (Table 3.11). 

We can conclude, therefore, that within these hotspots, the primary influence of terrain is 

slope rather than aspect.  SCD exhibited equivalence in nearly 20% of the tests. LDoS, in 

contrast, had just over 8% equivalence, indicating that both are sensitive to terrain features, 

but LDoS is more sensitive than SCD (Table 3.11). While both PH and TTP have 

comparable levels of equivalence (13% and 11%, respectively), a full quarter of the HTV 

tests concluded with a finding of equivalence, indicating that HTV was much less sensitive 

to terrain features than PH or TTP (Table 3.11). 

Over all equivalence tests in the nine hotspots, more terrain sensitivity (fewer cases of 

equivalence) occurs in hotspots 1, 2, 5, and 9 and less terrain sensitivity in hotspots 4, 7, 
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and 8. Yet, these sensitivities are relative: each hotspot exhibits some degree of terrain 

sensitivity in the relationships between snow cover temporal metrics and phenometrics. 
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Table 3.11. Results of exact multinomial tests for equivalence: values of 95% upper bound for d(p,p0). In bold are values below Δ=0.025, meaning 

Ho is rejected and we conclude equivalence and no significant terrain effect. Note in hotspot 9, the significant negative correlation between PH and 

LDoS is highlighted in italics. In every other hotspot, the significant correlation between PH and LDoS was positive. 

Dataset Hotspot Aspect Slope 
0 - 5° × 

Aspect 

5 - 10° × 

Aspect 

10 -15° × 

Aspect 

15 -30° × 

Aspect 

>30° × 

Aspect 

Slope × 

Aspect 

PH SCD pos 

HS1 

0.025 0.021 0.033 0.021 0.050 0.047 0.064 0.022 

PH LDoS pos 0.025 0.091 0.058 0.031 0.045 0.039 0.050 0.091 

TTP SCD neg 0.055 0.096 0.027 0.062 0.080 0.058 0.043 0.096 

TTP LDoS neg 0.030 0.087 0.029 0.032 0.042 0.037 0.048 0.092 

HTV SCD pos 0.050 0.053 0.016 0.040 0.077 0.083 0.087 0.053 

PH SCD pos 

HS2 

0.037 0.100 0.043 0.025 0.027 0.054 0.051 0.101 

PH LDoS pos 0.024 0.053 0.042 0.033 0.033 0.032 0.043 0.056 

TTP SCD neg 0.023 0.084 0.045 0.051 0.050 0.042 0.070 0.086 

TTP LDoS neg 0.026 0.080 0.028 0.058 0.046 0.052 0.052 0.080 

HTV SCD pos 0.043 0.104 0.055 0.041 0.044 0.060 0.063 0.107 

PH SCD pos 

HS3 

0.014 0.038 0.023 0.018 0.013 0.026 0.032 0.040 

PH LDoS pos 0.037 0.100 0.034 0.046 0.030 0.020 0.066 0.102 

TTP SCD neg 0.035 0.089 0.033 0.035 0.079 0.064 0.096 0.094 

TTP LDoS neg 0.041 0.184 0.036 0.051 0.057 0.027 0.042 0.184 

HTV SCD pos 0.028 0.034 0.027 0.031 0.033 0.042 0.038 0.038 

PH SCD pos 

HS4 

0.017 0.028 0.007 0.016 0.032 0.028 0.032 0.030 

PH LDoS pos 0.045 0.050 0.023 0.034 0.050 0.072 0.100 0.050 

TTP SCD neg 0.027 0.067 0.021 0.043 0.070 0.057 0.045 0.069 

TTP LDoS neg 0.050 0.128 0.025 0.085 0.109 0.083 0.132 0.132 

HTV SCD pos 0.009 0.066 0.009 0.016 0.019 0.023 0.049 0.066 

PH SCD pos 
HS5 

0.028 0.067 0.050 0.034 0.020 0.032 0.047 0.067 

PH LDoS pos 0.031 0.033 0.044 0.024 0.045 0.027 0.060 0.033 
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TTP SCD neg 0.020 0.025 0.036 0.028 0.052 0.040 0.085 0.025 

TTP LDoS neg 0.040 0.099 0.082 0.037 0.050 0.035 0.087 0.105 

HTV SCD pos 0.055 0.044 0.039 0.025 0.043 0.087 0.088 0.044 

PH SCD pos 

HS6 

0.056 0.083 0.058 0.059 0.075 0.053 0.059 0.084 

PH LDoS pos 0.031 0.076 0.044 0.044 0.031 0.034 0.041 0.076 

TTP SCD neg 0.026 0.083 0.022 0.024 0.018 0.029 0.037 0.083 

TTP LDoS neg 0.046 0.096 0.021 0.024 0.025 0.052 0.056 0.106 

HTV SCD pos 0.055 0.043 0.049 0.050 0.059 0.068 0.055 0.061 

PH SCD pos 

HS7 

0.031 0.029 0.052 0.040 0.045 0.039 0.029 0.030 

PH LDoS pos 0.021 0.106 0.038 0.020 0.029 0.028 0.056 0.106 

TTP SCD neg 0.022 0.115 0.044 0.038 0.039 0.022 0.033 0.117 

TTP LDoS neg 0.032 0.015 0.032 0.034 0.042 0.035 0.043 0.027 

HTV SCD pos 0.016 0.020 0.069 0.041 0.026 0.018 0.022 0.022 

PH SCD pos 

HS8 

0.019 0.078 0.033 0.066 0.048 0.047 0.020 0.078 

PH LDoS pos 0.040 0.052 0.095 0.087 0.050 0.036 0.035 0.061 

TTP SCD neg 0.015 0.026 0.068 0.017 0.022 0.023 0.049 0.031 

TTP LDoS neg 0.024 0.040 0.078 0.031 0.020 0.027 0.042 0.040 

HTV SCD pos 0.017 0.072 0.051 0.051 0.023 0.008 0.024 0.072 

PH SCD pos 

HS9 

0.041 0.046 0.051 0.037 0.036 0.045 0.065 0.050 

PH LDoS neg 0.033 0.036 0.036 0.026 0.035 0.047 0.057 0.038 

TTP SCD neg 0.059 0.091 0.050 0.054 0.058 0.062 0.129 0.094 

TTP LDoS neg 0.026 0.060 0.026 0.018 0.026 0.033 0.041 0.060 

HTV SCD pos  0.052 0.098 0.045 0.036 0.038 0.054 0.094 0.100 
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3.7. Discussion 

In this study, we have sought to understand the impact of a variable and changing climate 

on land surface phenology in highland pastures, especially the effects of snow cover 

seasonality as constrained by terrain. Here we revisit the three research questions 

articulated in the introduction. 

3.7.1. How does snow cover seasonality relates to subsequent land surface phenology 

in highland pastures? 

Both PH and TTP showed strong and prevalent relationships with the snow cover metrics. 

Positive correlations of PH and SCD covered a greater areal extent than the negative 

correlations: significant (p<0.05) positive correlations in HP pastures covered 1,568 km2 

or 10.3% of total HP pasture area compared to 126 km2 or 0.8% in significant negative 

correlations, more than a twelve-fold difference. Similarly, in P pastures significant 

positive correlations covered 4,225 km2 or 7.9% of total P pasture area versus significant 

negative correlations over 607 km2 or 1.1%, nearly a seven-fold difference (Tables 3.8, 

3.12). More days with snow coverage resulted in greater PH in the following growing 

season, particularly at the higher elevation ranges: 2900-3400 m of HP and 3400-4000 m 

for P pastures (Tables 3.7, 3.11). A greater areal extent exhibited a significant (p<0.05) 

negative than positive correlations between SCD and TTP: in HP pastures, 1,774 km2 or 

11.6% of the total HP pasture areas compared to 73 km2 or 0.5%, more than a 24-fold 

difference; and in P pastures, 4,434 km2 or 8.3% of the total P pastures had significant 

negative correlations versus significant positive correlations in 477 km2 or 0.9%, more than 

a nine-fold difference (Tables 3.9, 3.12). More snow covered dates translated into fewer 
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growing degree-days accumulated to reach the thermal time to peak NDVI in the 

subsequent growing season. 

Figure 3.13 presents a false color composite (red=TTP; green=PH; blue=SCD) displaying 

these relationships averaged over 2001-2017.  Red shades indicate higher TTPs and lower 

values of other metrics and there are mostly located over lower elevations and in valleys. 

Green shades indicate higher PH values and lower TTP and SCD; whereas, shades of blue 

indicate more dates with snow cover, and lower values of both TTP and PH. The hues of 

yellow-orange indicate higher PH and TTP but lower SCD. Cyan shows higher PH and 

SCD but lower TTP. Purple displays lower PH, higher SCD, and higher TTP over the drier 

areas in southern Kyrgyzstan (Figure 3.13). 

 

Figure 3.13. False color composite of 2001-2017 average values of Thermal Time to Peak (Red), 

Peak Height (Green), and Snow Covered Dates (Blue). Map displays data only for pasture land use 

areas (Projected coordinate system: Albers Conic Equal Area). 
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Similar relationships occurred with DoSS, but the area of coverage was twice as small 

(Tables 3.9, 3.12), and the major portion occurs over lower elevation ranges: 1800-2400 m 

and 2400-2900 m. Later snowmelt also positively influences Peak Height and decreases 

Thermal Time to Peak, especially at higher elevations. A strong negative relationship was 

also observed of snowmelt timing and Area Under Curve. For PH, the relationship with 

FDoS (snow onset in preceding snow season) was negative: earlier snow cover increases 

Peak Height (Tables 3.9, 3.12), especially at lowest elevations below 1800 m; whereas, 

above 4000 m the relationship turned to positive in P pastures. This linkage relates to the 

necessarily positive correlation between the duration of snow cover season and number of 

snow covered dates within that season, since SCD ≤ DoSS, and SCD is typically fewer 

than DoSS. In the case of TTP and FDoS, there were no clear asymmetries since the areal 

coverages of both positive and negative correlations were similar, except for positive 

relationships evident only in Persistent pasture areas between 3400 m and 4000 m (Table 

3.9) over Persistent pastures. Early season AUC showed negative asymmetries with earlier 

snow onset, but only in HP areas (Table 3.10). In contrast, early season AUC showed 

negative asymmetries with earlier snowmelt in both HP and P areas (Table 3.10). 

The significant trends in PH and TTP showed contrasting spatial patterns. PH showed 

widespread patches of positive trends (Figure 3.12), which may be related to the 

lengthening of snow cover duration in some areas (Dietz et al., 2013; Tomaszewska and 

Henebry, 2018). TTP showed no strong patchiness at the national scale (Figure 3.11) with 

minimal area affected (not exceeding 4% in HP and P) with no evident directional bias.  

This result may arise, in part, from the coarser spatial resolution of MODIS LST data 

relative to the Landsat NDVI data. 
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Figure 3.14 presents a time-series of mean PH values with 2± SEM (Standard 

Errors of Mean) calculated from the randomly selected 200 pixels over HP pastures that 

showed a significant (p<0.01) positive trend. In contrast, time-series of the mean TTP 

values corresponding to the PH values show no evidence of a trend (Figure 3.14b). Mean 

PH and TTP values of 2001-2003 show high standard error values, which might be due to 

the lower number of successful fits (low number of pixels from selection) resulted from a 

limited observations from Landsat 7 ETM+ (cf. Table S3.1). The outlier year is 2003, 

which has the lowest mean PH and the highest TTP, due to dry and hot weather conditions. 

However, the very high SEM comes from the very low number of successful pixels, which 

mostly results from the lowest number of possible observations of all 17 years (cf. Table 

S3.1). The strength of the PH trend is visible from 2009, when PH increases and the number 

of observations available for fitting started to increase, producing a higher number of 

successful fits (cf. Table S3.1). Over the same period, however, TTP shows no predominant 

trend direction but rather a quasi-sinusoidal pattern. The increasing PH trend without a 

concomitant TTP trend suggests that the PH trend does not arise from weather conditions 

but rather pasture conditions. 
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Figure 3.14. Green displays the time-series of mean Peak Height (PH) with ± 2 SEM (Standard 

Errors of Mean) from 2001-2017 for 200 randomly selected pixels from Highly Persistent (HP) 

pastures that show a significant positive trend (p-value < 0.01). No significant trend is evident in 

the time-series of mean Thermal Time to Peak (TTP) values (magenta) that correspond to the PH 

values. 
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Table 3.12. Areal extent (km2) of significant correlations between metrics of snow cover seasonality and phenometrics from the following growing 

season. TTP is Thermal Time to Peak; PH is Peak Height; SCD is Snow-Covered Dates; LDoS is Last Date of Snow cover; DoSS is Duration of 

Snow Season; FDoS is First Date of Snow cover; HP indicates highly persistent and P indicates persistent pasture areas. Positive correlations on 

grey background; negative correlations on white background. 

 

  TTP PH 

  p<0.01 p<0.05 p<0.01 p<0.05 

   HP P HP P HP P HP P 

SCD 

< 1800m 22 99 99 368 38 110 158 416 

1800-2400m 85 211 304 774 116 215 368 769 

2400-2900m 210 236 706 861 207 238 666 852 

2900-3400m 215 501 603 1,656 93 422 346 1,437 

3400-4000m 24 238 63 773 8 218 30 750 

> 4000m <0.01 <0.5 <0.01 2 -- <0.5 -- <1 

TOTAL 556 1,284 1,774 4,434 462 1,202 1,568 4,225 

LDoS 

< 1800m 71 161 238 550 11 52 56 200 

1800-2400m 132 268 416 919 50 128 203 489 

2400-2900m 162 251 533 860 119 168 383 568 

2900-3400m 88 310 288 1,056 43 265 166 885 

3400-4000m 3 91 13 312 7 100 27 366 

> 4000m <0.01 <0.5 <0.01 1 <0.01 <0.5 <0.01 <1 

TOTAL 456 1,082 1,489 3,699 230 713 835 2,508 
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DoSS 

< 1800m 32 101 123 378 37 105 145 389 

1800-2400m 57 186 218 681 69 153 259 582 

2400-2900m 75 164 283 596 82 136 310 507 

2900-3400m 52 243 196 880 50 216 187 770 

3400-4000m 3 85 13 310 5 90 21 325 

> 4000m <0.01 <0.5 <0.5 1 0 <0.5 0 <1 

TOTAL 219 779 833 2,847 243 700 921 2,574 

FDoS 

< 1800m 14 61 59 227 61 156 209 518 

1800-2400m 25 113 109 421 61 172 233 628 

2400-2900m 37 107 160 400 52 115 223 442 

2900-3400m 26 164 111 594 35 135 133 504 

3400-4000m 2 65 9 240 3 59 11 214 

> 4000m <0.01 <0.5 <0.01 <0.5 0 <0.1 0 <0.5 

TOTAL 104 510 447 1,883 212 637 809 2,306 
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How do these findings relate to other studies concerning the influence of snow cover on 

phenology?  

Most studies have focused specific dates, e.g., the beginning (SOS), end (EOS), and length 

(LOS) of the growing season. Our approach uses model phenometrics and, thus, is not 

directly comparable with the other studies. Moreover, we discuss here the influence of 

snow cover on vegetation dynamics. 

In a study on the QTP (Qinghai-Tibetan Plateau), Wang et al. (2018) used MODIS 500m 

NDVI dataset and combined 500 m MODIS daily snow products with IMS (National Snow 

and Ice Data Center's Interactive Multisensor Snow and Ice Mapping System). The Ice 

Mapping System provides daily snow and ice cover maps for the Northern Hemisphere 

from February 1997 to the present at three coarse spatial resolutions: 1 km, 4 km, and 24 

km. The IMS products are derived from a variety of data products including satellite 

imagery (MODIS Terra & Aqua, DMSP, GEOS series, NOAA series, RADARSAT, 

SUOMI-NPP) and in situ data (cf. https://nsidc.org/data/g02156). Their results varied 

strongly by region, biome, and thermal and moisture regime, although they are presented 

in a way that allows for comparison with our results. 

In the eastern QTP, snow cover duration (number of days with snow cover occurrence 

within a hydrological year) that corresponds to our SCD, showed a positive correlation 

with start of growing season (SOS), but it was negatively correlated with length of growing 

season (LOS), suggesting that longer snow cover delays the spring onset date, thereby 

reducing the duration of the growing season in this very high elevation environment. 
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In our study, TTP served to indicate the length of green-up period, and we found a 

substantially greater area of negative than positive relationship of TTP with the number of 

snow covered dates (SCD) over the study area. Counterintuitively, across the most of the 

QTP, a longer snow cover duration advanced the SOS and extended the LOS the following 

year. Alpine steppe communities showed a strong negative correlation between SOS and 

snow cover duration and a positive correlation between LOS and snow cover duration, 

from which Wang et al. (2018) concluded that longer snow cover duration led to an earlier 

SOS and longer growing season. 

In terms of the snow cover melting dates, they detected two opposed relationships with 

SOS: a positive correlation between snow cover melting date and SOS occurred in  most 

areas—except alpine steppe—but a negative correlation appeared over warmer, drier areas 

where snow melted too early for the vegetation to take advantage of the meltwater (Wang 

et al. 2018). Further, the loss of insulating effect of the snow cover due to earlier snowmelt 

may increase the risk of soil exposure to freezing events and decrease soil moisture through 

evaporative loss. Snow cover melting date was positively correlated with LOS in the 

eastern and southwestern part of QTP, while negative correlations were observed over 

much of the central Plateau. 

If we consider our LDoS metric as functionally equivalent to their snow cover melting date, 

a predominantly negative relationship between LDoS and TTP was also evident in our 

results. Finally, they found the maximum NDVI showed positive correlation with snow 

cover duration and snow cover melt date, which are findings similar to ours: where we 

found that PH was been positively correlated with SCD, DoSS, and LDoS, and negatively 
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correlated with FDoS, meaning that when snow occurred earlier and lasted longer on the 

ground, the NDVI was higher in the subsequent growing season. 

Qiao and Wang (2019) explored relationships between winter snow cover dynamics, 

climate and spring grassland vegetation phenology in Inner Mongolia, China using 

AVHRR-NDVI dataset at ~5 km spatial resolution and meteorological station data for 

precipitation and temperature. 

In general, Qiao and Wang (2019) found positive relationships of the start of the growing 

season with snow cover duration and with snow cover melt date. However, variation in the 

duration of snow cover and snow depth may affect soil-vegetation interactions. Increased 

snow cover duration and/or depth could add soil moisture, slow down soil heat exchange, 

and have crucial effects on soil heat and moisture preservation that might protect over-

winter survival of vegetation from low air temperatures and wind damage. It may also 

affect the activity of soil microbes and the transformation of soil organic matter and 

nutrients (Groffman et al., 2001; Qiao and Wang, 2019). Deeper snow depths may lead to 

later SOS dates, which in turn might not be beneficial for soil respiration over winter or 

the accumulation of heat needed to unfold leaves in spring (Monson et al., 2006; Schimel 

et al., 2004). However, Welker et al., (2005) showed  that deeper snow could alter carbon-

to-nitrogen (C:N ratios) leading to increased N in leaves that may result in higher crude 

protein content in forage.  On the other hand, lack of snow cover or just a shallow snowpack 

may increase the frequency of soil freeze-thaw events and, consequently, alter soil nutrient 

cycling and aboveground productivity (Choler, 2015). Earlier snow cover could shield 

vegetation from lower temperatures by keeping the subniveal temperature at a favorable 
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level and protecting the activity of the soil microorganisms during the winter, which could 

lead to increased vegetation growth during the following growing season. 

While we found a negative relationship between FDoS and PH, meaning earlier FDoS 

positively influenced PH,, Qiao and Wang (2019) found a negative relationship between 

snow cover onset date and the start of the growing season,. Variable influence of snow 

cover depth on SOS was reported by Yu et al. (2013) in the study over China, where 

increasing snow depth could advance or delay the SOS, depending on elevation, vegetation 

type, and climatic zone. 

Paudel and Andersen (2013) explored responses of rangeland vegetation to snow cover 

dynamics in Nepal Trans Himalayas using MODIS NDVI data at 250m and MODIS snow 

cover product at 500 m resolution over the 2000-2009 period. They observed significant 

positive correlations between SOS and the last snow-free date in drier areas at higher 

elevations (above 4000 m), while negative or no significant correlations were observed at 

lower elevations (3000-4000 m). To evaluate the relationship between snow cover duration 

and vegetation production, they used pre-monsoon NDVI time-integrated from April to 

June in four elevational belts (<3000 m, 3000-4000 m, 4000-4500 m, and >4500 m), while 

we used an early season AUC metric, which could be considered comparable to their time-

integrated NDVI. They observed strong positive relationships between snow cover 

duration and the time-integrated NDVI at the driest location over elevation above 3000 m, 

and the strengthening of that relationship toward higher elevation (p< 0.01). In contrast, 

there was a negative linear relationship at the wetter site in every elevation class (p<0.05). 

They concluded, the declining length of the growing season in the drier eco-zones 

corresponded with delayed SOS and declining trend of annual snow cover duration in these 
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regions over their 2000-2009 study period (Paudel and Andersen, 2011). The lengthening 

of the growing season in the wetter southern regions was attributed to both earlier start and 

delayed end dates of the growing season. The delayed SOS was attributed to unusual late 

season snowfall that had occurred in March and early April instead of January and February 

in nearly every snow season during the second half of the decade they studied (2000-2009). 

Thus, a delayed SOS might arise from a lag in the responsiveness of NDVI to precipitation, 

and so they presumed a similar lag effect of the timing of snowmelt (and the duration of 

snow cover) on the vegetation response. Hence, during years with late snowfall, seeds may 

not be able to germinate until the soil receives enough moisture from meltwater and, thus, 

a delay in SOS leads to a delay in the timing of peak NDVI. 

In contrast, over relatively wetter study areas, where the soil received sufficient moisture 

from meltwater and rainfall during the post-winter or early pre-monsoon, the SOS had 

advanced during the decade they studied. Over these wetter areas, snowmelt was associated 

with warming conditions and, thus, earlier snowmelt could lead to earlier SOS. The 

significant influence of elevation on relationship strength observed by Paudel and 

Andersen (2013) points to strong terrain effects (and related thermal-moisture conditions) 

on snow cover-vegetation relationships, which we found in our study (cf. section 3.6.4.3). 

We found the correlations of early season AUC with the snow cover metrics to be the 

weakest in terms of areal extent among the four phenometrics. Moreover, only three 

correlations exhibited substantial asymmetries, where the ratio of areal extent of positive 

to negative correlations was lower than our threshold of 0.5 meaning a much greater area 

of significant negative correlations (cf. section 3.6.4.2). This situation appeared in HP 
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pastures for correlations between AUC and LDoS and AUC and FDoS, but in P pastures 

only between AUC with LDoS (Table 3.10). 

Paudel and Andersen (2013) observed a strong negative relationship of time-integrated 

NDVI and snow cover duration over rather relatively wetter areas of study sites, but 

positive over drier regions. In contrast, we found a slightly greater area of the negative 

correlation between AUC and SCD (pos%/neg% = 0.62 for HP and 0.86 for P pastures at 

p<0.01). However, as those asymmetries did not cross our threshold of 0.5, the distributions 

were deemed not to be substantially different. Further, we integrated NDVI by GDD only 

up to the fitted PH, thus affecting linkages with the snow cover metrics. Furthermore, the 

interannual variation of AUC may also have been affected by local factors such as grazing 

and pasture management practices and disturbance history (e.g., landslides and mudflows). 

Finally, the threshold values for AGDD (100) and NDVI (0.1) we used for the AUC 

calculation may have affected the strength of the relationships. 

Overall, our study and the others all agreed on the strong influence of snow cover on 

shaping growing season dynamics, although the patterns differed due to elevation, 

vegetation community, and climatic characteristics. 

3.7.2. How does mountainous terrain modulate snow cover effects? 

Highland pasture phenology depends on the thermal regime of growing season. Over 

mountains, the growing season is shaped by terrain features. Elevation, aspect, and slope 

all play crucial roles (An et al., 2018), and can have strong effects on vegetation species 

richness, productivity, and nutrient dynamics (Gong et al., 2008). 
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Our results show that the longest growing season occurred at the lowest elevations (below 

1800 m) showing similar low variability over the years, while with the increasing elevation, 

the growing season length decreased and interannual variation increased, especially during 

summer. However, when we divided the data into contrasting aspects, we found greater 

differences in the length of thermal time on northern aspects than in southern aspects, 

which might arise from higher variation in soil moisture on steeper slopes. The soil 

moisture-slope-aspect interaction influences species composition and productivity due to 

water availability (Armesto and Martinez, 1978; Badano et al., 2005; Måren et al., 2015; 

Sternberg and Shoshany, 2001). The difference between growing seasons on different 

slopes increased at higher elevations and became more significant and more pronounced 

on steeper slopes (Table 3.5). Erosion processes may limit vegetation growth and 

development on steeper slopes. In addition, soil weathering can be accelerated on south-

facing slopes resulting in different soil properties (e.g., changes in organic soil layer) in 

northern versus southern aspects (Gong et al., 2008; Xue et al., 2018). The aspect of the 

slope can lead to local environmental conditions unfavorable for plant growth, e.g., where 

sun exposure might be longer over southern aspects leading to the lower soil moisture and 

soil nutrient levels. In the recent study in alpine meadows on the QTP, Liu et al. (2019) 

observed that plant leaves have better growing conditions, the higher moisture content, and 

the lower dry matter content in the leaves over northern aspects due to higher soil moisture 

and soil nutrient levels (Sternberg and Shoshany, 2001). On the other hand, the edpahic 

factors on southern aspects could help to maintain more stress-tolerant and light-

demanding flora (Bennie et al., 2006; Liu et al., 2019). 
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An et al. (2018) explored terrain effects on LSP across the QTP using Landsat data. They 

found that green-up onset dates were later, but dormancy onset dates were earlier on shaded 

slopes than on sun-exposed slopes in meadow areas; whereas, in steppe areas where the 

climate is drier, the green-up onset dates did not show any significant aspect effect. 

Dormancy onset dates showed a similar response to aspect in steppe and meadow areas. 

When considering slope steepness across meadow areas, green-up dates were significantly 

delayed, while dormancy onset dates significantly advanced with the increase of slope on 

both north and south slopes. The pattern of slope in steppe areas was the opposite: earlier 

green-up and later dormancy onset. Findings of An et al. (2018) indicate that in complex 

terrain at high elevation, the temperature-moisture combinations strongly shapes the land 

surface phenology with slope playing a key role in the vegetation development. Those 

results are in correspondence with our findings from the exact multinomial tests, which 

clearly pointed to stronger influence from slope than aspect. 

Terrain complexity affects the relationship between snow seasonality and pasture 

phenology. In general, longer snow cover favors higher peak height, but terrain features 

can modify that relationship. Results of the Xie et al. (2017) showed the role of snow cover 

greatly varies due to elevation, vegetation type, and climate. A higher positive correlation 

between duration and SOS, and higher negative between duration and LOS on slopes 

facing north or west than on south or east slopes. When considering the influence of 

elevation, they found that the correlations between duration and LSP varied over low 

elevation (<1000 m) and mid-elevation (1000-2000 m), while with increasing elevation 

they weaken and eventually disappear toward the highest elevations. Less than 10% of 

study sites showed a weak correlation between last snow day and LSP metrics. In our study, 
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we found different results: the strength of significant correlation asymmetries between 

snow cover temporal metrics and LSP increased with elevation, for the most part. Also, a 

greater area of those relationships were reported at higher elevation ranges (Tables 3.8, 3.9, 

3.12). This finding indicates a higher sensitivity of vegetation to changes in weather 

patterns at higher elevations.  The exception was the relationship between FDoS and PH, 

where the area of negative relationship decreased with increasing elevation and became 

positive relationship above 4000 m, although the areal extent was very small (cf. section 

3.6.4.2, Table 3.8). 

Results from the exact multinomial tests for equivalence (Table 3.11) point to the 

predominant role of slope in shaping interactions between snow seasonality metrics and 

phenometrics. Slope alone, the interaction of aspect with the >30° slope class, and the 

overall interaction of slope and aspect show the lowest number of equivalence occurrences 

(just three null hypotheses rejected out 45 tests). In contrast, aspect alone show had 29% 

(13/45) of null hypotheses rejected. Moreover, relationships with LDoS showed overall 

fewer conclusions of equivalence than relationships with SCD (11 vs. 41, Table 3.11), 

which may indicate the more sensitive relationship between the timing of the end of snow 

season and phenology over more complex terrain, and the higher instability of LDoS (cf. 

section 3.7.3).  

Terrain effects and elevation gradients may differentially affect vegetation productivity and 

susceptibility to disturbance. In a study across the Great Basin region  in the western United 

States over Sierra Nevada, Ruby, and Wasatch/Uinta mountain ranges where elevation 

reaches above 4300 m, Petersky et al. (2019) showed that vegetation types used to have a 

consistent seasonal snow cover in their historical record were likely to have lower 
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resilience under a new hydrologic regime resulting from warming trends that generated 

rain on snow events.  This new hydrological regime was supposed to have earlier and more 

intermittent snowmelt causing a longer but drier growing season. However, the 

implications of the changes in snow cover persistency and vegetation expected sensitivity 

varied locally due to elevation and topographic complexity. In addition, those 

consequences depended on groundwater availability and potential physiological adaptation 

by the vegetation communities. 

3.7.3. What can recent changes in snow cover seasonality tell us about possible 

futures for highland pasture phenology and productivity? 

Snow cover can experience multiple melting episodes over the snow season in the highland 

pastures of Kyrgyzstan. 

The positive correlation between SCD and DoSS was significant but relatively low: just 

over 30% of each pasture availability class at p< 0.01 and up to 53% at p< 0.05. Annual 

high variation of snow cover duration, especially in southeastern Kyrgyzstan, has also been 

reported by Dedieu et al. (2014) based on MOD10 snow products. DoSS showed more than 

90% of area negatively correlated with FDoS at both significance levels, and only 30% to 

50% of positive correlation with LDoS. That higher correlation of DoSS and FDoS than 

DoSS with LDoS, would suggest a greater dependence of snow cover duration on the snow 

onset date than on end date. However, the much smaller area of negative correlation 

between SCD and FDoS, and positive relationship between SCD and LDoS means high 

variation of snow cover over the season, especially at a beginning of snow cover season 

when the depth is still small and snowmelt can easily occur. Of the four snow metrics, SCD 

played a leading role in influencing pasture phenology, and a similar conclusion reached 
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by Xie et al. (2018) in their study of alpine LSP. The negative relationship between TTP 

and snow metrics may mean more days for pasture vegetation to grow. The connection of 

soil moisture and growth rate could also be explained by the large area of positive 

correlation between of SCD and PH more days with snow cover may add moisture to soil, 

and have crucial effects on soil heat and moisture preservation due to the insulating 

properties of the snowpack (Groffman et al., 2001; Qiao and Wang, 2019). HTV, which 

occurs earlier in the season, follows the correlation patterns of PH, and also shows positive 

relationships with SCD and DoSS. As Chapter 2 reproduces a published article, it would 

not be appropriate to edit its content. Since SCD, which was not examined in Chapter 2, 

showed the strongest relationship with the LSP metrics, we ran trend analysis for the SCD 

metric to compare with the other snow cover seasonality metrics (Figure 3.15). 

 

Figure 3.15. Map of significant negative (in orange) and positive (in purple) trends of SCD at three 

significance levels (p<0.01, p<0.05, p<0.1). Map displays data only for pasture land use areas with 

successful LSP fits (Projected coordinate system: Albers Conic Equal Area). 
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Negative trends in SCD predominated over positive trends across the pastures of 

Kyrgyzstan, especially in the central and southern parts of the country. Since PH showed 

a positive relationship with SCD and the retrospective SCD trend analysis showed 

decreasing SCD, a potential decrease in PH might be expected, arising from lower moisture 

availability due to fewer SCD. 

The most important consequence of the shifts in the snow cover seasonality for 

mountainous vegetation is the alteration of the timing and rates of water availability and 

snow-insulation benefits. Shifts in vegetation structure and composition in response to new 

thermal and hydrological regimes (Telwala et al., 2013; Xie et al., 2018) in semiarid 

regions are likely to have cascading implications on large‐scale water, carbon budgets, and 

susceptibility to disturbance (Petersky et al., 2019). 

Here, we found the strongest response of LSP metrics to changes in snow cover temporal 

metrics occurred at higher elevations. A study over the Himalayas (Telwala et al., 2013) 

showed, that over higher elevations the stronger warming-driven range shift of vegetation 

distribution  was evident and vegetation composition richness had been declining. They 

concluded that the continued trend of warming was likely to result in ongoing shifts in 

elevational range distributions and, eventually, species extinctions, particularly at 

mountaintops due to compression of suitable habitat. In study over the Alps in France, 

where  mean elevation was about 2600, and  ranged between 1000-4000 m, (Choler, 2015) 

showed that the length of the snow-free period was the primary determinant at productivity 

in temperate montane grasslands, and later snowmelt dates had a strong negative impact 

on the grassland productivity. We found a greater area of significant negative correlation 

between LDoS and AUC, meaning a later snowmelt translated into a lower AUC. 
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3.7.4. Limitations, uncertainties, and paths forward 

Remote sensing studies of snow effects on vegetation are limited by the relatively short 

duration of most sensor archives and by the rather coarse spatial resolution of pixels 

relative to the spatial heterogeneity encountered in mountainous terrain. Within the area of 

a 500 m pixel it is not possible to state snow spatial distribution or its condition, while the 

use of higher spatial resolution data (i.e., ≤30 m) may deliver more detailed information, 

especially in terms of the spatial distribution of snow cover. However, the temporal 

resolution of most sensors does not allow for observations at a tempo to characterize well 

the changes in a melting snowfield. Thus, while remote sensing datasets may be well suited 

for landscape scale research, they may be not appropriate for local field studies where the 

objects of interest are particular species or plant communities. In addition, frequent 

cloudiness lowers the number of clear observations and generates uncertainty in the 

differentiation of snow from clouds (Ackerman et al., 2008; Crane and Anderson, 1984). 

Our use of 8-day snow cover composites may introduce some temporal imprecision into 

the study, but the use of composites also provides consistent statistical power for trend 

analyses. In the 8-day composites, the maximum snow extent occurs where snow was 

observed on at least one day during the 8-day period. Therefore, a pixel may be marked as 

snow in two consecutive composites, but there might be no actual snow coverage on the 

land between the beginning of the first period and the end of the second period. This 

situation may lead to uncertainty in the determination of snow cover duration. However, 

these products have undergone extensive evaluation and validation, with additional 

screening in V006, so we concluded it was a suitable product for our study despite its 

limitations. Although we used the snow cover product from Terra satellite (MOD10A2) 
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because of longer data archive, a comparable snow cover product is available from the 

MODIS on the Aqua satellite as MYD10A2 dataset starting in 2002. In our previous study 

(Tomaszewska and Henebry, 2018; cf. Chapter 2), we used both 8-day snow cover products 

(MOD10A2, MYD10A2) for snow cover metrics trends comparison, and found that 

significant trends apparent in the Aqua data were less prevalent, indicating a discrepancy 

between those products. We speculated that this discrepancy may have resulted arise from 

the early afternoon overpass of Aqua, when imaging geometry, cloudiness, terrain shadows, 

and surface temperatures may differ from  late morning overpass of Terra. The discrepancy is 

important as it may extend into the future since the presumptive sensor for post-MODIS snow 

cover continuity products is the Visible Infrared Imaging Radiometer Suite (VIIRS; Justice 

et al., 2013), currently in an early afternoon orbit on the Suomi National Polar-orbiting 

Partnership (S-NPP; https://www.jpss.noaa.gov/mission_and_instruments.html) satellite. 

Small differences may be caused by differences in bands, viewing geometry, and spatial 

resolution (VIIRS 375m, MODIS 500m). Larger differences may be caused by use of 

different cloud-mapping algorithms, and actual cloud differences due to time of 

acquisition; although, the snow detection algorithms and data products are designed to be 

as similar as possible (Riggs et al., 2017). 

One potential option for longer-term observations could the ESA DUE (European Space 

Agency Data User Element) Global Snow Monitoring for Climate Research (GlobSnow) 

product (Luojus et al., 2010), which provides information on snow coverage retrieved from 

ERS‐2 ATSR‐2 and Envisat AATSR from 1995 until the present. There are three temporal 

resolutions (daily, weekly aggregated, and monthly aggregated). However, the spatial 

resolution is approximately 1 km, which is substantially coarser than in the case of MOD10 
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products, and there are discontinuities in the archive, different product versions for specific 

periods, and known issues of missing swaths (Luojus et al., 2010). The relatively new Theia 

snow collection is a high-resolution operational snow cover mapping system based on 

Sentinel-2 and Landsat-8 datasets (Gascoin et al., 2019) at 20 m spatial resolution, which 

may offer new possibilities for snow-vegetation interaction studies at local scales moving 

forward. Studies of the influence of snow cover on phenology are complicated by local 

interactions between terrain, vegetation, and microclimate; thus, synergistic analysis with  

higher spatial resolution image time series from digital cameras (Liu et al., 2017; Melaas 

et al., 2016; Rossi et al., 2019; Watson et al., 2019; Yan et al., 2019) might provide an 

avenue for balancing spatial and temporal resolutions (Julitta et al., 2014; Westergaard-

Nielsen et al., 2017). 

Our study is built around using the CxQ model to filter the NDVI time series. Despite using 

a great many Landsat images (viz., 13,285), data limitations remain in our analysis, as can 

be seen in the map of successful fits (Figure S3.1) where the evident stripes indicate greater 

numbers of observations. With the advent of the Sentinel-2 data streams in the late 2010s, 

the combination with Landsat observations into a harmonized surface reflectance product 

offers a much richer source of observations for moving forward (Claverie et al., 2018), but 

does not necessarily produce better characterization of LSPs (Nguyen and Henebry, 2019). 

We based our quantitative analyses on pasture classes related to the number of successful 

fits over 17 years. However, successful LSP fitting is strongly related to a sufficient number 

of high quality observations (Zhang et al., 2017). We did not run correlation analyses over 

the Rarely Available pasture class since only up to four years of successful fits were 

available. Using our specified conditions for fitting and additional filtering of observations 
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surely reduced the number of available pixels for subsequent analyses. That data reduction 

potentially introduces additional uncertainties into the analysis of pasture phenologies, e.g., 

by influencing the shape of the parabola. However, a similar analytical approach has been 

used successfully in the study of LSP across Central Asia, albeit at a coarser spatial 

resolution (de Beurs et al., 2018). 

We are aware, that the data inhomogeneity and an uneven distribution of clear observations 

over a year may well affect modeling results. Furthermore, an uneven distribution of 

successful fits over years in time-series may affect the interpretation of trend analyses in 

PH (Figure 3.14) and TTP, especially over Persistent pastures with lower number of 

successful fits.  

Finally, we did not account for human impacts on pasture phenology that can arise from 

stocking rates, herd management, pasture maintenance, and control of invasive species, 

each of which may add to uncertainties that may affect some findings of this study (Eddy 

et al., 2017; Karnieli et al., 2013; Zhumanova et al., 2018, 2016). However, our study 

focused primarily on the early season green-up dynamics when differential effects from 

grazing management are expected to be minimal. 

3.8. Conclusion 

We investigated the effects of snow cover timing and duration on the land surface 

phenology during the following growing season across the highland pastures of 

Kyrgyzstan. Our results show strong interactions between snow cover timing and metrics 

of land surface phenology and these interactions differ due to location, elevation, and 

terrain characteristics. We found a positive relationship between the number of composite 

dates with snow cover (SCD) and the amplitude of the fitted phenological curve (PH). We 



127 

 

also found that later timing of snowmelt (LDoS) also increased the amplitude of the fitted 

phenological curve. On the other hand, a negative correlation was found between the onset 

of snow cover (FDoS) and the amplitude of the fitted phenological curve. Relationships of 

the snow cover temporal metrics with the amount of thermal time needed to reach the peak 

amplitude of the fitted curve were negative, with the strongest relationship between the 

number of snow covered composites (SCD) and the amount of thermal time needed to 

reach the peak amplitude (TTP). 

We further demonstrated that the mountainous terrain affected linkages between snow 

cover and pasture phenology. The most pronounced effects were on the timing of snowmelt 

(LDoS) with slope being more influential than aspect, and the strongest interaction being 

aspect on steeper slopes.  Over the highest elevations, the interplay of steep slopes and 

aspects strongly decreased growing season duration. We also observed a slight increase in 

areal extent asymmetries of positive and negative correlations between snow cover 

temporal metrics and LSP toward higher elevations (up to 4000 m). 

While this paper has focused on establishing linkages between snow cover seasonality and 

metrics of land surface phenology in highland pastures, there is a need to zoom out from 

the landscape to see the broader biospheric context. One direction for future research is to 

explore how the modes of climate oscillations affect local weather patterns and, thus, 

potentially snow cover seasonality and LSP (Alemu and Henebry, 2013; de Beurs et al., 

2018; de Beurs and Henebry, 2010b; Gonsamo and Chen, 2016; Pervez and Henebry, 2015; 

Viña and Henebry, 2005; Wright et al., 2014; Yeo et al., 2017). There is also need to 

analyze both snow cover seasonality and pasture phenology over particular colder/drier 

and warmer/wetter years to describe in detail how the phenometrics behave under different 
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weather sequences, and if the behaviors vary due to the terrain features. Eventually, the 

introduction of additional datasets with higher spatial and temporal resolutions could 

improve the precision and accuracy of the analyses, especially over the challenging terrain 

of montane Central Asia. 
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3.11. Supplementary materials 

3.11.1. Exploratory Analysis of Topographic Corrections on NDVI Data with 

the Study Area 

We used two Landsat-8 OLI tiles from Collection 1 Tier 1 Level-1 Precision and Terrain 

(L1TP) corrected product acquired on 07 July 2017 (Path 150 Row 030) and on 30 July 

2017 (Path 152 Row 032), to which we applied seven topographic correction methods 

(Goslee, 2011). There are two families of topographic correction methods. The first is 

Lambertian method, which assumes that the reflectance of all wavelengths is constant and 

independent of viewing angle, and for which the correction factor is identical for all bands. 

In addition, only the direct part of the irradiance is modeled. The second family is 

composed of the non-Lambertian methods that consider surface roughness, which means 

the interaction of incident and view angles influences the observed radiance (Riaño et al., 

2003). 
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At two locations where the topography corrections were performed, the results of four 

Lambertian methods—Cosine, Improved Cosine, Gamma, and Sun-Canopy-Sensor 

(SCS)—showed that the difference between the NDVI calculated from the original and 

corrected bands was minimal, regardless of terrain. The higher differences were generated 

using the three non-Lambertian methods (Minnaert, Minnaert + Slope, and C-Correction), 

which showed that differences reached up to 4% over the steepest slopes (>30°) when the 

NDVI values were lower (~0.2-0.3). At the peak summer, when the Landsat data were 

collected, NDVI values of 0.2 to 0.3 would indicate sparse vegetation than values typical 

of pasture at that time of year. We concluded that topographic corrections were 

unnecessary for our study because the magnitude of the correction to the NDVI was so 

much smaller than the seasonal NDVI signal. Moreira et al. (2016) also concluded that the 

NDVI was robust to topographic effects. 
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Table S3.1. Landsat tiles for each sensor and year. Paths from 147 to 155, rows from 30 to 33. 

 
LT5 LE7 LC8 

 

 
Unique Total Unique Total Unique Total 

 

2001 5 18 33 312 - - 
 

2002 3 3 33 286 - - 
 

2003 0 0 33 273 - - 
 

2004 0 0 33 432 - - 
 

2005 0 0 33 457 - - 
 

2006 11 44 33 451 - - 
 

2007 9 54 33 512 - - 
 

2008 32 228 32 488 - - 
 

2009 33 533 33 455 - - 
 

2010 33 451 33 425 - - 
 

2011 33 406 33 433 - - 
 

2012 0 0 33 581 - - 
 

2013 - - 33 621 33 518 
 

2014 - - 33 633 33 685 
 

2015 - - 33 643 33 678 
 

2016 - - 33 622 33 682 
 

2017 - - 33 653 33 708 
 

TOTAL 
 

1,737 
 

8,277 
 

3,271 13,285 
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Table S3.2. Areal percentage of significant correlations between snow cover temporal metrics and 

the phenometric HTV and the ratio of positive % area to negative % area. In bold, pos%/neg% > 

2.0; in bold italics, pos%/neg% < 0.5. 

HTV 

 p< 0.01 p< 0.05 

HP (11- 17 yrs) 

Area=15,261 km2 

Pos Neg Ratio Pos Neg Ratio 

SCD 2.87 0.11 26.09 10.63 0.51 20.84 

LDoS 1.36 0.22 6.18 5.30 1.12 4.73 

DoSS 1.71 0.22 7.77 6.37 1.07 5.95 

FDoS 0.27 1.47 0.18 1.30 5.60 0.23 

P (5 – 10 yrs) 

Area=53,620 km2 

Pos Neg Ratio Pos Neg Ratio 

SCD 2.45 0.25 9.80 8.46 0.97 8.72 

LDoS 1.25 0.43 2.91 4.38 1.76 2.49 

DoSS 1.40 0.42 3.33 5.05 1.71 2.95 

FDoS 0.47 1.30 0.36 1.81 4.65 0.39 

 

 

Figure S3.1. Mean values of First Day of Snow (FDoS). Map draped over the SRTM 30 m DEM 

display data only for pasture land use (Projected coordinate system: Albers Conic Equal Area). 
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Figure S3.2. Mean values of Duration of Snow Season (DoSS). Map draped over the SRTM 30 m 

DEM display data only for pasture land use (Projected coordinate system: Albers Conic Equal 

Area). 

 

Figure S3.3. Total number of data observations used for successful LSP fits over pasturelands. 

Classes based on quintiles. Map displays data only for pasture land use (Projected coordinate 

system: Albers Conic Equal Area). 
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Figure S3.4. Nine hotspot areas (in purple) selected based on Spearman’s rank correlation results 

draped over the SRTM 30 m DEM (Projected coordinate system: Albers Conic Equal Area). 

 

Figure S3.5. Mean values of Area Under the Curve (AUC) for pasture land use areas draped over 

the SRTM 30 m DEM (Projected coordinate system: Albers Conic Equal Area). Classes based on 

quintiles. 
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Figure S3.6. Mean Coefficient of Variation (%) of Area Under the Curve (AUC) for pasture land 

use areas  draped over the SRTM 30 m DEM (Projected coordinate system: Albers Conic Equal 

Area). Classes based on quintiles. 
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CHAPTER 4  

HOW MUCH VARIATION IN LAND SURFACE PHENOLOGY CAN CLIMATE 

OSCILLATION MODES EXPLAIN AT THE SCALE OF MOUNTAIN PASTURES IN 

KYRGYZSTAN? 

Paper #3: 

Tomaszewska, M.A., Henebry, G.M., In review following revision. How much variation in 

land surface phenology can climate oscillations explain at the scale of mountain pastures 

in Kyrgyzstan? International Journal of Applied Earth Observation and Geoinformation 

(revision submitted 25NOV2019, JAG-2019-1051-R1). 

 

4.0. Abstract 

Climate oscillation modes can shape weather across the globe due to atmospheric 

teleconnections. We built on the findings of a recent study to assess whether the impacts 

of teleconnections are detectable and significant in the early season dynamics of highland 

pastures across five rayons in Kyrgyzstan. Specifically, since land surface phenology (LSP) 

has already shown to be influenced by snow cover seasonality and terrain, we investigated 

here how much more explanatory and predictive power information about climatic 

oscillation modes might add to explain variation in LSP. We focused on seasonal values of 

five climate oscillation indices that influence vegetation dynamics in Central Asia. We 

characterized the phenology in highland pastures with metrics derived from LSP modeling 

using Landsat NDVI time series together with MODIS land surface temperature (LST) 

data: Peak Height (PH), the maximum modeled NDVI and Thermal Time to Peak (TTP), 

the quantity of accumulated growing degree-days based on LST required to reach PH. 

Next, we calculated two metrics of snow cover seasonality from MODIS snow cover 

composites: last date of snow (LDoS), and the number of snow covered dates (SCD). For 

terrain features, we derived elevation, slope, and TRASP index as linearization of aspect. 
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First, we used Spearman’s rank correlation to assess the geographical differentiation of 

land surface phenology metrics responses to environmental variables. PH showed weak 

correlations with TTP (positive in western but negative in eastern rayons), and moderate 

relationships with LDoS and SCD only in one northeastern rayon. Slope was weakly 

related to PH, while TRASP showed a consistent moderate negative correlation with PH. 

A significant but weak negative correlation was found between PH and SCAND JJA, and 

a significant weak positive correlation with MEI MAM. TTP showed consistently strong 

negative relationships with LDoS, SCD, and elevation. Very weak positive correlations 

with TTP were found for EAWR DJF, AMO DJF, and MEI DJF in western rayons only. 

Second, we used Partial Least Squares regression to investigate the role of oscillation 

modes altogether. PLS modelling of TTP showed that thermal time accumulation could be 

explained mostly by elevation and snow cover metrics, leading to reduced models 

explaining  55 to 70% of observed variation in TTP. Variable selection indicated that NAO 

JJA, AMO JJA and SCAND MAM had significant relationships with TTP, but  their input 

of predictive power was neglible. PLS models were able to explain up to 29% of variability 

in PH. SCAND JJA and MEI MAM were shown to be significant predictors, but adding 

them into models did not influence modeling performance. The impacts of climate 

oscillation anomalies were not detectable or significant in mountain pastures using LSP 

metrics at fine spatial resolution. Rather, at a 30 m resolution, the indirect effects of 

seasonal climatic oscillations are overridden by terrain influences (mostly elevation) and 

snow cover timing. Whether climate oscillation mode indices can provide some new and 

useful information about growing season conditions remains a provocative question, 
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particularly in light of the multiple environmental challenges facing the agropastoralism 

livelihood in  montane Central Asia. 

4.1. Introduction 

Kyrgyzstan (aka the Kyrgyz Republic) spans multiple climatic regimes, from arid/semi-

arid deserts to hot, humid continental climates (Peel et al., 2007). Strong spatial variation 

in precipitation and temperature exists due to orography (Böhner, 2006; Bothe et al., 2012), 

as the mountain ranges of Tien Shan, Pamir, and Alatau cover more than 90% of the 

country’s land area (Azykova, 2002). Moreover, Central Asia (Kazakhstan, Kyrgyzstan, 

Tajikistan, Turkmenistan, and Uzbekistan) has been identified as a “climate change hot-

spot”, a region where climate is especially responsive to global change (Bothe et al., 2012; 

Giorgi, 2006). This ”hot-spot” might arise from regional and local feedbacks (e.g., snow-

ice albedo feedback and/or soil moisture-precipitation feedback) or to changes in intrinsic 

variability of atmospheric circulation patterns and oscillation modes (Giorgi, 2006). 

Interaction of atmosphere and oceans plays an essential role in shaping climate and its 

variability, including naturally-occurring dynamical modes (Wang et al., 2004; Wang and 

Schimel, 2003), which may also be changing as a result of global warming (Yeh et al., 

2018). Large-scale climatic variability is often dominated by a few modes resulting in 

teleconnections—correlated weather patterns between remote locations (Horel and 

Wallace, 1981). Teleconnections can play significant roles in determining seasonal weather 

anomalies, whether warm and dry or wet and cold (Casanueva et al., 2014). The most well-

known mode of interannual climatic variability is ENSO (El Niño-Southern Oscillation; 

(Wang et al., 2004)), which is generated through coupled interactions between the ocean 

and atmosphere in the tropical Pacific and alternates between anomalously warm (El Niño) 
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and cold (La Niña) sea surface temperature (SST) conditions (Bjerksen, 1969). Over the 

Northern Hemisphere during wintertime, the most influential mode is the North Atlantic 

Oscillation (NAO) (Hurrell, 1995; Hurrell et al., 2003; Rodwell et al., 1999). 

Over Central Asia, there are many studies describing the linkages between weather patterns 

anomalies and climatic oscillations (Barlow et al., 2002; Bothe et al., 2012; Gerlitz et al., 

2018). For example, Syed et al., (2006) showed that a positive precipitation anomaly over 

southwestern Central Asia had been triggered by warm ENSO phase and positive phase of 

North Atlantic Oscillation. Yin et al., (2014) highlighted the effects of the polar–Eurasian 

(POL/EUR), and East Atlantic–Western Russia (EAWR) patterns on Central Asian winter 

climate, which enhanced moisture fluxes. In addition, the EA mode has been shown to be 

strongly related to ENSO, which makes the investigation of its nature and the independence 

of its influence more complex (Gerlitz et al., 2018; Iglesias et al., 2014). Li et al., (2008) 

indicated that the warm phase of the Atlantic Multidecadal Oscillation (AMO) could 

significantly affect the Indian monsoon rainfall, which could, in turn, affect southern 

Central Asia (de Beurs et al., 2018). 

The agropastoralism, which is the basis of the economy in montane Central Asia, depends 

critically on precipitation. Herders of the highlands have been practising vertical 

transhumance—the annual cycle of livestock movement to higher elevation pastures 

(Schillhorn Van Veen, 1995)—to take advantage of seasonally available forage resources. 

Dependency on pasture resource availability during the short montane growing season 

makes pastoral livelihoods especially vulnerable to variation and change in environmental 

conditions and weather patterns. In this semi-arid region where most of the precipitation 

falls outside of the growing season, changes in precipitation patterns may shift forage 
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availability and shorten growing season (Hoppe et al., 2016; Vetter, 2005; Zhumanova et 

al., 2018, 2016). 

Assessment of changes in local to regional environmental conditions in the highlands of 

Kyrgyzstan are impeded due to the remoteness of much of the area, a paucity of ground-

level data, and the siting of most weather stations in inhabited valleys far from the pasture 

zones of interest. One solution is to use satellite remote sensing as a source of information. 

Pasture phenology has often been tracked through modelling of land surface phenology 

(LSP), which describes the temporal pattern of the vegetated land surface as observed using 

remote sensing (de Beurs and Henebry, 2004, 2010; Henebry and de Beurs, 2013). A 

commonly used indicator of green vegetation, the Normalized Difference Vegetation Index 

(NDVI) is the difference between near-infrared and red reflectance divided (or normalized) 

by the sum of the reflectances: [NIR−Red]/[NIR+Red] (Buermann et al., 2003; Myneni et 

al., 1995; Tucker, 1979). 

Variability in the timing of LSP and the seasonal amplitude of the NDVI has been linked 

to changes in weather and climate within Central Asia (Bohovic et al., 2016; de Beurs et 

al., 2015, 2018; de Beurs and Henebry, 2008; Jiang et al., 2017; Kariyeva et al., 2012; 

Kariyeva and van Leeuwen, 2011; Lu et al., 2014). Studies have shown that fluctuations in 

LSP can be related to large scale climate oscillations at various extents over Central Asia 

and other regions (Buermann et al., 2003; Cook et al., 2005; de Beurs et al., 2009; Gong 

and Shi, 2003; Li et al., 2016; Menzel et al., 2005; Viña and Henebry, 2005; Wright et al., 

2014). de Beurs and Henebry (2008) showed the Arctic Oscillation (AO) appears to affect 

the NDVI peak (modelled seasonal maximum of the NDVI index) over the Asian part of 

northern Eurasia more strongly than the NAO. Wright et al., (2014) found that early season 
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vegetation productivity measured using NDVI over the Eurasian wheat belt is linked to 

both the winter (December–February) and early summer (April–June) phases of the NAO. 

Their results have shown that land surface anomalies preceding the Russian heatwave in 

2010 were consistent with highly negative anomalies of NAO. More recently, de Beurs et 

al., (2018) analyzed the importance of five climate modes (NAO, EAWR, AMO, 

Scandinavian [SCAND], and ENSO), both together and separately, on precipitation, 

temperature, and land surface phenology to discover where each climate index had more 

influence across the Central Asian region. They used a downward-arching convex 

quadratic (CxQ) function to model the observed land surface phenology and to derive, as 

a phenological metric, the Peak Height (PH) – the maximum modelled NDVI. Then, they 

linked this phenometric with seasonal (winter, spring, and summer) values of five 

oscillation indices. As a result, they reported a percentage of land area in Central Asia that 

exhibited a significant correlation between each seasonal mode index and PH over at least 

10% of the study area. Their maps that show multivariate climate oscillation impacts on 

land surface phenology and weather (seasonal temperature and precipitation). Across 

Kyrgyzstan, they reported a significant R2 around 0.4. 

While de Beurs et al. (2018) found indications of significant teleconnected influence on 

precipitation in montane Central Asia, the scale of analysis was spatially coarse. The 

precipitation and temperature data they used were gridded to 0.5° and the NDVI data were 

nominally 100 times finer (0.05°) in area. Here, we aim to test whether the linkages 

identified in de Beurs et al. (2018) as important for explaining observed temperature and 

precipitation anomalies at the regional scale translated to the scale of mountain pastures 

using finer resolution remote sensing data and, thus, might be able to inform decision-
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making by herders and pasture committees. Specifically, our question is whether the 

impacts of oscillation anomalies are detectable and significant in the mountain pastures 

using LSP metrics based on much finer spatial resolution data. We have already shown that 

land surface phenology is influenced by snow cover seasonality and terrain (Tomaszewska 

et al., 2019). Thus, we investigate here how much more explanatory power some 

information about oscillation modes might add to explain LSP in mountain pastures of 

Kyrgyzstan. The time frame of this study extends from 2000/01 to 2017. 

4.2. Study Area 

The area of the study focuses on pasturelands spanning over five districts (called rayons): 

Chong-Alay (4,850 km2), Alay (7,554 km2), Kara-Kulja (5,739 km2), At-Bashy (19,030 

km2), and Naryn (7,872 km2) in the highlands of Kyrgyzstan  in montane Central Asia. We 

selected these rayons because they represent a range of climatic conditions due to 

geographic location and elevation (cf. Figure 4.1). According to the Köppen-Geiger climate 

classification system (Peel et al., 2007): Chong-Alay and Alay are under the cold desert 

climate (BWk), while the eastern part of Alay is also impacted by cold semi-arid climate 

(BSk) and warm continental/humid continental climate (Dfa). Most of Kara-Kulja lies 

under warm continental climate (Dsa). The large extent of At-Bashy includes temperate 

continental climate/Mediterranean continental climate (Dsb), temperate continental/humid 

continental climate (Dfb), cold semi-arid climate (BSk) and, at the very southern part, cold 

desert climate (BWk). Naryn is a mixture of temperate continental/humid continental 

climate (Dfb) and cold semi-arid climate (BSk). 

In addition, we visited four of these rayons during two field campaigns: Naryn and At-

Bashy in July 2016, and Chong-Alay and Alay in July 2017. Information about the extent 
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of pasture land use was acquired from Soviet-era land use map that had been updated in 

2008 within the CACILM project (Asian Development Bank, 2010a, 2010b) using remote 

sensing data from Landsat 7 ETM+ and MODIS. 

 

Figure 4.1. The study area is the pasture land use area in Kyrgyzstan; it is displayed in light green 

(from Asian Development Bank, 2010a, 2010b) and draped over the SRTM 30 m DEM (Projected 

coordinate system: Albers Conic Equal Area). Selected rayons of interest (ROI) are labelled and 

marked in light pink. 

4.3. Data 

We used multiple geospatial datasets and climate oscillation mode information. 

4.3.1. Geospatial data 

Metrics of land surface phenology, snow seasonality, and terrain information were supplied 

by the previous work (Tomaszewska et al., 2019; Tomaszewska and Henebry, 2018, cf. 

Chapter 2 & 3). 
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Metrics of snow seasonality were generated using 500m MODIS (MOD10A2) Terra snow 

cover 8-day composites (Riggs and Hall, 2015) distributed by the National Snow and Ice 

Data Center (https://nsidc.org/). Using the Normalized Difference Snow Index (NDSI) 

(Hall et al., 2002; Riggs and Hall, 2004), the MOD10A2 product reports the maximum 

snow cover extent observed during 8-day period by compositing observations from the 

MODIS/Terra Snow Cover Daily L3 Global 500 m Grid product (MOD10A1 V006). We 

downloaded two MODIS tiles (h23v04 and h23v05) from the middle of 2000 to the end of 

2017, where each annual dataset consisted of 46 8-day composites. After tile merging, we 

projected them into the Albers Conic Equal Area coordinate system to 30 m pixel 

resolution using nearest neighbor resampling. We then extracted in each composite all 

pixels flagged as “snow” (i.e., pixel value = "200"). 

To generate the metrics of land surface phenology, we used two groups of products: (1) 

MODIS Land Surface Temperature, and (2) Landsat Surface Reflectance.  

MODIS/Terra and MODIS/Aqua Land Surface Temperature/Emissivity 

(MOD11A2/MYD11A2 V006) products at 1 km spatial resolution provided an average 8-

day land surface temperature (LST) from all MOD11A1/MYD11A1 LST pixels collected 

within the 8-day period (Wan et al., 2015). We downloaded two MODIS tiles (h23v04 and 

h23v05) from 2001 for MODIS/Terra and from 2002 for MODIS/Aqua through the end of 

2017. After merging, we removed poor quality pixels using the quality bits provided in 

each product, converted land surface temperature from Kelvin to °C, and projected the data 

into the Albers Conic Equal Area coordinate system with 30 m pixel resolution using 

bilinear resampling. 
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We used the Landsat Collection 1 Tier 1 Level-1 Precision and Terrain (L1TP) corrected 

product from 2001 to the end of 2017. The Collection contains Level-1 data products 

generated from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) (USGS EROS, 2017). Surface 

reflectance NDVI data were obtained by downloading 13,285 images in 33 unique tiles 

(WRS-2 Paths 147 to 155 and Rows 30 to 33) from the USGS Earth Resources Observation 

and Science (EROS) Center Science Processing Architecture (ESPA) On Demand 

Interface (https://espa.cr.usgs.gov/). After masking out poor quality pixels using quality 

bits delivered with each product, we projected the data into the Albers Conic Equal Area 

coordinate system. Further, to adjust Landsat 5 TM surface NDVI and Landsat 7 ETM+ 

surface NDVI to the surface Landsat 8 OLI NDVI, which showed to have higher surface 

reflectance values, we applied the inter-calibration equation from Roy et al., (2016) to both 

surface NDVI from Landsat 5 TM and Landsat 7 ETM+ scenes. The same equation was 

used with both datasets because differences between those data were very small (Fisher et 

al., 2006; Melaas et al., 2013). 

For the terrain representation, we downloaded 133 tiles of SRTMGL1, the NASA Shuttle 

Radar Topography Mission Global 1 arc second (~30 m) V003 product (NASA JPL, 2013) 

from USGS Earth Explorer (https://earthexplorer.usgs.gov/). Tiles were merged and 

projected into the Albers Conic Equal Area coordinate system using bilinear resampling to 

30 m spatial resolution. Further, we generated two layers of terrain features: slope (in 

degrees) and aspect (in degrees). Because aspect is a circular measure, we used a linear 

transformation to get a continuous measure from 0 to 1, where ‘0’ is assigned to the aspect  

facing a north-northeast direction—typically, the coolest and wettest orientation in this 
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landscape—and a value of ‘1’ for the hotter, drier south-southwesterly slopes [4.1]. That 

measure, called Topographic Solar Radiation Aspect Index (TRASP) (Roberts and Cooper, 

1989), is calculated: 

TRASP = [1 – cos((π/180) × (a – 30))]/2    (Equation 4.1) 

where a is aspect in degrees. If there was no aspect (flat area = ‘-1’), then the value of 

TRASP was set to 0.5. In addition, we reclassified elevation into six classes (<1800 m, 

1800–2400 m, 2400–2900 m, 2900–3400 m, 3400–4000 m, and >4000 m). 

4.3.2. Oscillation data 

Following de Beurs et al. (2018), we examined standardized anomaly time series of five 

climate oscillation indices to capture two regional (SCAND, EAWR) and three global 

(NAO, AMO, MEI) patterns that were found important in Central Asia. 

SCAND The Scandinavia (SCAND) regional pattern, also known as Eurasia-1 

(Barnston and Livezey, 1987), consists of a primary circulation center over Scandinavia 

with weaker centers of the opposite sign over western Europe and eastern Russia/western 

Mongolia. The positive phase of SCAND is associated with positive 500-hPa geopotential 

height anomalies sometimes reflecting anticyclones (a weather system with high 

atmospheric pressure in the center) over Scandinavia and western Russia. Geopotential 

heights approximate the actual height of a pressure surface above mean sea-level. Colder 

air masses have lower heights; warmer air masses have higher heights. Positive phase of 

SCAND is linked to below-average temperatures across central Russia and western 

Europe, and also associated with above-average precipitation across central and southern 
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Europe, but below-average precipitation across Scandinavia (Barnston and Livezey, 1987; 

CPC-NOAA, 2019; Liu et al., 2014). 

EAWR The East Atlantic/West Russia (EAWR) pattern aka Eurasia-2 (Barnston 

and Livezey, 1987) consists of four main anomaly centers. The positive phase is associated 

with positive 500-hPa geopotential height anomalies located over Europe and northern 

China, and negative 500-hPa geopotential height anomalies located over central North 

Atlantic and north of the Caspian Sea (40°-50°N, 50°-60°E). The positive phase of EAWR 

exhibits above-average temperatures over eastern Asia and below-average temperatures 

over large portions of western Russia and northeastern Africa, as well as above-average 

precipitation in eastern China and below-average precipitation across central Europe 

(Barnston and Livezey, 1987; CPC-NOAA, 2019; Liu et al., 2014). 

NAO The North Atlantic Oscillation (NAO) consists of a north-south dipole of 

anomalies, with one center located over Greenland and the other center of opposite sign 

spanning the central latitudes of the North Atlantic between 35°N and 40°N (centered on 

the Azores). The positive phase of the NAO indicates below-average 500-hPa geopotential 

height and surface pressure across the high latitudes of the North Atlantic and above-

average heights and pressure over the central North Atlantic, eastern United States, and 

western Europe. Together they generate a larger-than-average meridional pressure 

gradient, causing stronger-than-average midlatitude surface westerlies across the Atlantic 

onto Europe (Wang et al., 2004). Strong positive phases of the NAO tend to produce above-

average temperatures in the eastern United States and across northern Europe, and below-

average temperatures in Greenland as well as across southern Europe and the Middle East. 

They are also associated with above-average precipitation over northern Europe and 
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Scandinavia during the winter, and below-average precipitation over southern and central 

Europe (Hurrell et al., 2003; National Weather Service, 2019; Wang et al., 2004). 

AMO The Atlantic Multi-Decadal Oscillation (AMO) is a series of long-duration changes 

in the sea surface temperature of the North Atlantic, composed of alternating cool and 

warm phases that may last for 20-40 years at a time. In general, during positive AMO 

phases, sea surface temperature (SST) is anomalously warm over most of the North 

Atlantic ocean, low pressure extends over the Atlantic between 20°S-50°N, wind speeds 

are reduced over the tropical Atlantic, and precipitation is enhanced in the eastern tropical 

Atlantic (Alexander et al., 2014; Kerr, 2000). 

MEI Multivariate ENSO Index (MEI) describes the status of the El Niño/Southern 

Oscillation. It combines five oceanic and atmospheric variables: sea level pressure (SLP), 

sea surface temperature (SST), zonal and meridional components of surface winds, and 

outgoing longwave radiation (OLR) over the tropical Pacific basin (30°S-30°N, 100°E-

70°W). Anomalously positive MEI events (El Niño) include (1) anomalously warm SSTs 

across the east-central equatorial Pacific, (2) anomalously high SLP over Indonesia and the 

western tropical Pacific and low SLP over the eastern tropical Pacific, (3) reduction or even 

reversal of tropical Pacific easterly winds (trade winds), (4) suppressed tropical convection 

(positive OLR anomalies) over Indonesia and Western Pacific and enhanced convection 

(negative OLR anomalies) over the central Pacific (ERL-NOAA, 2019; Kobayashi et al., 

2015; Wolter and Timlin, 2011, 1993). During anomalously negative phases (La Niña), 

roughly opposite conditions occur. 

From the National Oceanographic and Atmospheric Administration (NOAA) Climate 

Prediction Center (https://www.cpc.ncep.noaa.gov/data/teledoc/teleindcalc.shtml), we 
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obtained monthly values of SCAND, EAWR, and NAO from 2000 through 2017. From 

the NOAA Earth Research Laboratory, we downloaded for 2000 through 2017, monthly 

AMO values (https://www.esrl.noaa.gov/psd/data/timeseries/AMO/) and bimonthly MEI 

values (https://www.esrl.noaa.gov/psd/enso/mei.old/table.html). Each index was then 

summarized into seasonal average value of standardized anomaly for winter (DJF), spring 

(MAM), and summer (JJA). In our study, we did not include the autumn season (SON), 

following de Beurs et al. (2018). Based on Tables 3 and 4 in de Beurs et al. (2018), we 

selected those nine of 15 seasonal indices (five oscillation indices × three seasons) that 

exhibited significant (p-value< 0.1) Spearman correlations with the Peak Height 

phenometric or seasonal (spring or summer) precipitation or temperature across at least 

10% of Central Asia (Table 4.1). Figure 4.2 presents seasonal oscillation annual values of 

these selected indices. 

Table 4.1. Oscillation indices shown in de Beurs et al. (2018) to be significant at p-value < 0.1 

across at least 10% of Central Asia area, and the direction of their Spearman correlations with the 

Peak Height phenometric and with spring or summer precipitation or temperature. Pos is positive, 

Neg is negative, ns is not significant, and — is not selected.  

Index Season PH 
Precipitation Temperature 

MAM JJA MAM JJA 

SCAND DJF neg neg ns ns ns 

SCAND MAM pos pos pos ns neg 

SCAND JJA neg — neg — ns 

EAWR DJF pos ns ns ns neg 

AMO DJF pos pos pos ns ns 

AMO JJA neg — ns — pos 

NAO JJA pos — neg — neg 

MEI DJF pos pos pos ns ns 

MEI MAM pos pos ns ns ns 
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Figure 4.2. Annual seasonal values of selected indices. Upper left: December to February; upper 

right: March to May; bottom: June to August. Values reflect standardized anomalies of variables 

used for indices calculation; values between -1 to 1 on grey background. Positive values indicate a 

positive phase; negative values indicate a negative phase. 



161 

 

4.4. Methods 

The approaches to generate land surface phenology metrics and snow cover seasonality 

metrics has been detailed elsewhere (Tomaszewska et al., 2019; Tomaszewska and 

Henebry, 2018; cf. Chapter 2 & 3). Here, we provide a general but concise description of 

those techniques. 

4.4.1. Snow cover seasonality metrics 

We defined the snow observation period from day of year (DOY) 169—approximately the 

summer solstice and aligns with MODIS composite dates—and extends to DOY 168 in the 

following year (i.e., DOY169year through DOY168year+1). For each snow observation 

period, we calculated four temporal metrics: the First Date of Snow (FDoS) as the first 

composite during the snow observation period in which snow cover is detected; the Last 

Date of Snow (LDoS) as the last composite during the snow observation period in which 

snow cover is detected; the Duration of Snow Season (DoSS) as the timespan between the  

FDoS and LDoS; and the number of Snow-Covered Dates (SCD) as the number of times 

snow cover was detected within the snow season. Further, we multiplied the number of 

composites with snow detected by 8 since the compositing period is composed of 8 days, 

although we realize that this count may be an overestimate. For this study, we have focused 

only on SCD and LDoS since they have shown stronger relationships with the 

phenometrics (Tomaszewska et al., 2019; cf. Chapter 3). 

4.4.2. Land Surface Phenology 

To characterize land surface phenology, we used a downward-arching convex quadratic 

(CxQ) function (de Beurs and Henebry, 2004; Henebry and de Beurs, 2013) that captures 
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well the seasonal course of insolation at the middle to higher latitudes (de Beurs and 

Henebry, 2004; Henebry and de Beurs, 2013; Krehbiel et al., 2017; Krehbiel and Henebry, 

2016; Nguyen et al., 2018). The model used Landsat surface reflectance data to calculate 

the NDVI as a proxy for active green vegetation and MODIS LST to calculate accumulated 

growing degree-days (AGDD) as a proxy for insolation. Land surface temperature during 

the growing season is highly correlated with insolation in extratropical regions, and 

grassland plants experience the thermal environment close to the ground (Henebry, 2013; 

Still et al., 2014). First, we calculated the mean MODIS LST of two daytime and nighttime 

observations from Terra and Aqua into mean MODIS LST based on [4.2]: 

mean LST = [max(LST@1030, LST@1330) + min(LST@2230, LST@0130)]/2 (Equation 4.2) 

We further filtered out mean MODIS LST below 0°C and calculated the growing degree-

days GDD [4.3] at compositing period t as the maximum of mean LST and Tbase, which 

was set to 0 °C (Goodin and Henebry, 1997; Henebry and de Beurs, 2013). Next, we 

multiplied by 8 each of 46 GDD composites to account for the 8-day compositing period 

of the MODIS product and accumulated them across the year [4.4]. AGDD was set to zero 

at the start of each year. These steps generated 17 annual time series of AGDD in °C. 

GDDt = max((mean LSTt − Tbase), 0)     (Equation 4.3) 

AGDDt = AGDDt-1 + (GDDt × 8)     (Equation 4.4) 

Having prepared the AGDD and NDVI, we proceeded to model LSP at each pixel and for 

each year from 2001 to 2017 as a quadratic function shown in [4.5]:  

NDVI = α + β × AGDD + γ × AGDD2    (Equation 4.5) 
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For each pixel in the study area, we used the fitted parameter coefficients—intercept (α), 

slope (β), and quadratic (γ)—to calculate two LSP metrics (or phenometrics): Peak Height 

[PH = α – (β2/4γ)], the maximum modeled NDVI; and Thermal Time to Peak [TTP = –

β/2γ], the quantity of AGDD required to reach PH, corresponds to duration of modeled 

green–up phase In the model fitting process, we used set of quality criteria and iterative 

data filtering to obtain optimal model fits (Tomaszewska et al., 2019). We accepted the 

fitted model only when it passed all six of the following criteria: (i) the quadratic parameter 

(γ) was less than 0; (ii) the TTP greater than the AGDD of the first observation; (iii) the 

adjusted R2 greater than 0.7; (iv) the Root Mean Square Difference (RMSD) less than 0.08; 

(v) the PH below 1.0; and (vi) at least three observations were distributed before and at 

least three after the PH. 

If any criterion was not fulfilled during the fitting, then the last observation was removed 

from the dataset, and the model fitting was rerun over the filtered dataset. We then 

summarized each annual fit by a binary variable (i.e., 0=no fit, 1=fit) to generate a final 

map of the total number of years with successful fits for each pixel. We then arbitrarily 

divided the modeling results into three groups based on the data distribution: (i) Highly 

Persistent (HP) pastures with 11-17 years of successful fits out of 17 years of observations, 

(ii) Persistent (P) pastures with 5-10 years, and (iii) Rarely Available (RA) pastures with 

just 1-4 years of successful fits. Here, we focused only on Highly Persistent (HP) and 

Persistent (P) pastures (Figure 4.3, Table 4.2). 
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 Figure 4.3. Study area: all pasturelands in Kyrgyzstan displayed in light green (from Asian 

Development Bank, 2010a, 2010b), selected rayons of interest (ROI) are labelled, and marked in 

light pink. In dark purple are pixels from Highly Persistent (HP) pastures, in yellow Persistent (P) 

pastures. Other pasture classes and land uses within the ROIs not shown. 

Table 4.2. Combined area of HP and P pastures (km2) within each rayon. 

HP + P  

Elevation Class  
Chong-Alay Alay Kara-Kulja At-Bashy Naryn TOTAL 

< 1800 m − 100 241 − 4 345 

1800-2400 m 45 605 845 381 628 2,504 

2400-2900 m 522 529 968 898 1,352 4,269 

2900-3400 m 743 1,166 844 2,743 1,548 7,044 

3400-4000 m 354 839 212 2,505 230 4,140 

> 4000 m 9 4 <1 5 − 18 

TOTAL 1,674 3,243 3,108 6,532 3,763 18,320 

Because of the limited or absent area of pastures below 1800 m and above 4000 m in some 

rayons, we restricted our focus to pixels located in the four elevation classes between 1800 

m and 4000 m, which constitutes more than 98% (17,957km2) of the pasture area pixels 

across the five rayons. 
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4.4.3. Spearman’s Rank Correlation Analysis 

We analyzed the connections between variables using the non-parametric Spearman’s 

correlation coefficients to assess the geographical differentiation of land surface phenology 

metrics in response to environmental variables. Spearman‘s rank correlation method 

assesses whether a monotonic relationship exists, it works for data showing non-normality, 

and is robust against outliers (Fieller et al., 1957; Lehmann and D’Abrera, 2006). 

4.4.4. Partial Least Squares Regression Modeling 

4.4.4.1. Partial Least Squares Regression 

To analyze how much of variation in land surface phenology metrics can be added to its 

explanation by the climate oscillation patterns at the scale of mountain pastures, we used 

the Partial Least Squares (PLS) regression model (Wold, 1966). PLS aims to predict Y 

variables—in our case, the phenometrics PH and TTP—from X variables (snow cover 

seasonality metrics, climate oscillation mode standardized anomalies, and terrain 

variables) and describe their common structure (Geladi and Kowalski, 1986; Wold et al., 

2001). It is a technique that generalizes and combines features from principal component 

analysis (PCA) and multiple linear regression (MLR) (Abdi, 2003). Multiple linear 

regression aims to minimize sample response prediction error by seeking a linear function 

of the X variables that explains the variation in response Y; it works well when the X 

variables are relatively few and mutually uncorrelated. To eliminate the problem of high 

intercorrelation between variables X (multicollinearity), one of many approaches is a 

principal component regression, which performs PCA on the X matrix. This statistical 

procedure uses an orthogonal transformation to find new variables, called principal 

components, that are linear functions of those in the original dataset, which successively 
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maximize variance and are uncorrelated with each other (Jolliffe and Cadima, 2016; Wold, 

1987). Further, PCA approach uses the principal components of X as predictors on 

response Y. However, this method does not solve the problem of finding an optimal subset 

of predictors X, because they are chosen to explain X rather than Y. Hence, it does not 

assure that the principal components that “explain” X are relevant for Y (Abdi, 2003). 

Therefore, a combination of MLR and PCA seeks to solve that problem. 

PLS regression finds components from X that are also relevant for Y. Because correlation 

has been shown to exist between seasonal oscillations (de Beurs et al., 2018) and between 

snow metrics—since SCD is determined based on LDoS (Tomaszewska et al., 2019; 

Tomaszewska and Henebry, 2018), we decided that PLS regression would be a beneficial 

approach. Specifically, PLS searches for a set of components (also called latent vectors) 

that performs a simultaneous decomposition of X and Y with the constraint that these 

components explain as much of the covariance between X and Y as possible (Abdi, 2003). 

That step generalizes the PCA approach and is followed by a regression step where the 

decomposition of X is used to predict Y (Abdi, 2003; Wold et al., 2001). However, PLS 

has no implementation for variable selection, since it aims to find a relevant linear subspace 

of the predictor variables X, not the variables themselves (Mehmood et al., 2012). In other 

words, when the dominant source of variation is not related to Y, the maximization of the 

explained X variance is likely to bring irrelevant information into the PLS model (Tran et 

al., 2014). 

Variable selection methods help to select a small set of highly relevant predictor variables 

X that are correlated to the response variable Y. Hence, variable selection can improve the 

estimation accuracy by effectively identifying the subset of important predictors and can 
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enhance the model interpretability (Farrés et al., 2015). Here, we based our study on three 

widely used methods for variable selection to investigate which of the X variables (snow 

cover seasonality metrics, standardized anomalies of climate oscillation modes, and terrain 

features) have more significant impact on predicting the phenometrics PH and TTP. 

4.4.4.2. Variable Selection Methods for PLS Modeling 

The first variable selection method is called “variable influence on projection” or “variable 

importance in projection” (Wold et al., 1993) usually abbreviated as VIP. The VIP score is 

a combined measure of how much a variable X contributes to describe the two sets of data: 

the response variable Y and the predictor variables X. It reflects not only the covariance 

between X and Y variables but also describes how important that information is for the 

model of the X variables. The average of the square VIP scores equals to unity, so that 

value is generally accepted as a threshold value (Andersen and Bro, 2010; Chong and Jun, 

2005; Farrés et al., 2015; Mehmood et al., 2012; Rajalahti et al., 2009a; Tran et al., 2014), 

and we used it here as well. 

The second method called the “Selectivity Ratio” (SR) is calculated as the ratio of 

explained variance to residual variance of X variables on the Y target-projected component. 

In other words, the method ranks the X variables in relation to their explanation of Y 

variance. An F-test has been proposed to define the threshold value (Rajalahti et al., 

2009b). In order to determine which variable has a high discriminatory ability and to reject 

the null hypothesis (that explained and residual variances are the same), the calculated F 

value (Fcalc), which is equal to SR of variable, has to exceed the critical value for the F 

distribution, (Fcrit) = F( 1-α, N-2, N-3), where α is the significance level, and N is sample 

size. The number of degrees of freedom for the numerator (i.e., explained variance) is equal 
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to sample size N minus two degrees of freedom, one because of the calculation of the 

variable's mean and one because of the introduction of the target-projected component. For 

the denominator (i.e., residual variance), one additional degree of freedom is lost when the 

explained variance is subtracted from the original variance of the variable (Farrés et al., 

2015; Rajalahti et al., 2009b). Another approach is to set a limit based on explained 

variance, e.g., for 75% of explained variance, the cut-off value is 3, i.e., 75% of explained 

to 25% of unexplained variance (Rajalahti et al., 2009a). 

The third method of variable selection is to use the classical technique of statistical 

significance testing that aims to eliminate variables for which the regression coefficient (β) 

(a single measure of association between each variable X and the response Y) is not 

significant. To determine significant coefficients, bootstrapping or jackknifing methods 

(Efron and Tibshirani, 1993; Faber, 2002) are often used (Andersen and Bro, 2010; 

Mehmood et al., 2012). Based on that method, variables that are not significant at a chosen 

significance level might be excluded from the model. Additionally, Rajalahti et al. (2009a) 

propose to use a rule of ±2 standard deviations calculated from the spread of all regression 

coefficients (if the X variables have the same units). Variables that are within this range 

can be also excluded. 

We employed all three variable selection methods because each of them conveys a bit 

different information about the variables and the model, and so those methods are expected 

to yield slightly different results due to the data characteristics (Farrés et al., 2015). 

To conduct PLS regression and variable selection, we used mdatool package v. 0.9.6 in R 

(Kucheryavski, 2019). 
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4.4.4.3. Sampling and Variables Preparation for PLS Modeling 

First, we merged HP and P pasture masks into one, and cropped it based on the area of each 

rayon. For each rayon, we randomly selected 400 pixels for each of the four elevation 

classes (1600 pixels in total) to create a new elevation-based mask. Using each elevational-

based mask, we extracted pixels from PH, TTP, LDoS, and SCD for each year (17 in total). 

Further, we removed pixels with unsuccessful CxQ fits (that yielded no values for PH and 

TTP), to create a complete dataset. We repeated that procedure four times, once for each 

elevation class. Then, we divided the datasets into modelling (70%) and testing (30%) 

subsets (Table 4.3). Finally, we combined each elevational-based modelling and testing 

datasets to construct the final datasets, so elevation would serve as a variable X for 

prediction. 

Table 4.3. Number of pixels for modelling and testing (split 70:30) over 17 years within each of 

five studied rayons based on elevation class. In bold, number of pixels used for modeling. 

Elevation  

class 
Chong-Alay Alay Kara-Kulja At-Bashy Naryn 

 Model Test Model Test Model Test Model Test Model Test 

1800 – 2400 m 2,508 836 2,960 986 2,734 911 2,899 966 2,608 869 

2400 – 2900 m 2,526 842 2,489 829 2,962 987 3,006 1,002 2,848 949 

2900 – 3400 m 2,453 817 2,647 882 2,691 897 2,196 732 2,524 841 

3400 – 4000 m 2,301 766 2,457 819 2,322 774 1,968 656 2,064 688 

TOTAL 9,788 3,261 10,553 3,516 10,709 3569 10,069 3,356 10,044 3,347 

We used 14 metrics as predictor variables X: elevation (m), slope (in degrees), TRASP 

index (linearized  aspect), LDoS, SCD, and the z-scores for each of the following seasonal 

climate oscillation modes, SCAND DJF, SCAND MAM, SCAND JJA, EAWR DJF, AMO 

DJF, AMO JJA, NAO JJA, MEI DJF, and MEI MAM. 
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The PLS regression models were run on standardized data using auto-scaling approach: (1) 

each variable is scaled to unit variance by dividing them by their standard deviations, and 

(2) centered by subtracting their averages (Wold et al., 2001), although the final estimated 

regression coefficients are provided in the original values (Table S4.1-S4.2). We modeled 

the PH and TTP response variables separately. 

Prior to run PLS regression modelling, for each rayon separately, we estimated the 

association of variables Y and X using Spearman’s rank correlation method. 

4.4.4.4. PLS Regression Sequence  

The modeling for each phenometric was carried out in four steps: (1) build the initial model 

using all variables, (2) select fewer but significantly important variables, (3) build three 

reduced models based on the different variables selected, and (4) compare the results. This 

procedure was run separately for the two phenometrics in each of five rayons. 

It was essential to determine in step one of modeling, the appropriate model complexity to 

avoid ”over-fitting” that would limit generality. The cross-validation (CV) method is a 

standard procedure to determine a number of significant components (Wold, 1982; Wold 

et al., 2001, 1984). During CV part, after developing a model, differences between actual 

and predicted Y-values are calculated for the withheld data. The sum of squares of these 

differences is computed and collected from all the parallel models to form the predictive 

residual sum of squares (PRESS), which estimates the predictive ability of the model 

(Bulut and Alma, 2012; Wold et al., 2001). Then, we applied Wold’s R criterion to find 

the optimal number of significant components based on the specific threshold (0.95) for 
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the ratio of PRESS values between two consecutive components (Abdi, 2003; Bulut and 

Alma, 2012; Tenenhaus, 1998; Wold et al., 1993). 

We used three variable selectors: VIP score with ‘1’ as the threshold; Selectivity Ratio 

(SR) with ‘1.5’ as threshold (ratio of 60% variance explained to 40% of unexplained 

variance), and ‘regression coefficients’ method using p-value < 0.05 obtained from jack-

knifing and plus or minus one standard deviation—from the mean of all standardized (using 

auto-scaling) regression coefficients—a slightly less conservative approach compared to 

Rajalahti et al., (2009a) in the case of cut-offs for the Selectivity Ratio and standard 

deviation. 

4.5. Results 

4.5.1. Spearman’s Rank Correlation 

Figures 4.4, 4.5, and S4.1-S4.3 show a matrix of Spearman’s rho coefficients for the X 

variables (PH and TTP) and the Y variables (two snow cover seasonality metrics, three 

terrain characteristics, and nine seasonal oscillations) calculated based on the final training 

(model) dataset for each rayon across elevation classes. Figure 4 shows the matrix for 

Chong-Alay, the most southwestern of the five rayons and Figure 5 shows the correlation 

matrix for Naryn, the most northeastern rayon (Alay, Kara-Kulja, and At-Bashy appear as 

Figures S1-S3, respectively). 

Peak Height (PH) was effectively decoupled from Thermal Time to Peak (TTP), exhibiting 

weakly positive correlation in Chong-Alay (Figure 4.4), Alay (Figure S4.1), and At-Bashy 

(Figure S4.3), weakly negative in Kara-Kulja (Figure S4.2), and modestly negative in 

Naryn (Figure 4.5). In Naryn rayon, PH showed a moderate positive relationship with both 
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LDoS and SCD (Figure 4.5), but not in any other rayon. PH also exhibited moderate 

negative relationships with elevation, except in Naryn, where it was moderately positive. 

Slope was weakly related to PH, except in Alay where it showed a moderate positive 

relationship (Figure S4.1). The pattern between PH and TRASP provided a consistent 

signal across rayons: weak to moderate negative correlation, meaning higher PH on 

northern and eastern slopes. With respect to the seasonal oscillation indices, there were two 

patterns consistent across the rayons: weak negative correlation with SCAND JJA and 

weak positive correlation with MEI MAM. TTP showed consistently strong to very strong 

negative relationships with LDoS, SCD, and elevation The relationship of TTP with slope 

was moderately negative except in Alay, where it was weakly positive. TTP showed weak 

positive correlations with EAWR DJF, AMO DJF, and MEI DJF in the western rayons. 
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Figure 4.4. Spearman’s rho coefficient of correlation for Chong–Alay rayon. Significant level at 

p-value < 0.05 Correlation coefficients with p > 0.05 are crossed out. In reds, negative values of 

rho; in blues, positive values. 

 

Figure 4.5. Spearman’s rho coefficient of correlation for Naryn rayon. Significant level at p-value 

< 0.05 Correlation coefficients with p > 0.05 are crossed out. In reds, negative values of rho; in 

blues, positive values. 

The snow cover seasonality metrics were positively correlated, as expected given that 

LDoS was used in the determination of SCD. Both snow cover metrics also showed strong 

positive relationships with elevation and moderate positive relationships with slope (except 

in Alay, where slope is weakly negative). Relationships with TRASP were weakly negative 

with SCD (except in At-Bashy were it was not significant) meaning that snow cover stayed 
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longer on northern aspects. For the seasonal climatic oscillation indices, there were weakly 

negative relationships for both LDoS and SCD with SCAND MAM and AMO DJF (except 

in At-Bashy and Kara-Kulja) and with SCD only for SCAND JJA in the western rayons of 

Chong-Alay and Alay. 

An interesting feature of each of the correlation matrices was the prevalence of moderately 

strong to strong positive and negative correlations between the seasonal oscillation mode 

values. While some of these correlations were not surprising, such as between subsequent 

seasons of the same oscillation mode index, there were also strong connections—both 

positive and negative—across different oscillation modes, and their values were not 

identical across rayons. Note that what is displayed in the correlation matrices constitutes 

random sample of those pixels that were successful fitted by the CxQ LSP model for some 

number of years. Thus, each rayon sample was a spatially and temporally random subset 

of those pixels within the population of pasture land use that were successfully fitted by 

with the LSP models. In other words, the correlations between seasonal oscillation modes 

have been “filtered” by a biased spatio-temporal sample within each rayon based on the 

pixels showing years of good pasture growth. 

Table 4.4 displays the effects of this filtering. The reference correlations are those reported 

in Table 1 of de Beurs et al. (2018). There was some slight variation in correlation strength 

across rayons, but all these correlations were significant, even when the reference 

correlation is not, e.g., SCAND DJF and MEI DJF. Indeed, an effect of the filtering 

appeared to enhance the signal to noise ratio between the oscillation mode pairs. 
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Table 4.4. Spearman correlations between selected pairs of seasonal oscillation modes. The 

reference correlation is from de Beurs et al. (2018). Rayon specific correlations are extracted from 

Figures 4.4, 4.5, and S4.1-S4.3. Superscripts after reference correlations: ns= p>0.10;  = p<0.10; 

* = p<0.05. All rayon specific correlations are significant at p<0.05. 

Oscillation Mode Pair 
Reference 

Correlation 

Chong- 

Alay 
Alay Kara-Kulja At-Bashy Naryn 

SCAND DJF + EAWR DJF -0.43 -0.58 -0.58 -0.56 -0.54 -0.53 

SCAND DJF + AMO DJF -0.59* -0.61 -0.56 -0.55 -0.55 -0.51 

SCAND DJF + MEI DJF -0.20ns -0.38 -0.32 -0.32 -0.34 -0.29 

SCAND DJF + MEI MAM -0.27ns -0.40 -0.42 -0.39 -0.38 -0.38 

SCAND JJA + MEI MAM -0.46 -0.67 -0.69 -0.68 -0.69 -0.70 

EAWR DJF + AMO DJF +0.36ns +0.65 +0.57 +0.57 +0.61 +0.60 

4.5.2. Partial Least Squares Regression 

Table 4.5 shows the results of PLS modelling of TTP using R2 and RMSE based on the 

testing datasets (30% of the randomly selected pixels and not used for modeling), and the 

number of components used in the PLS model. In general, the differences between models 

were small, R2 ranged from 0.56 to 0.71 across rayons using the initial model. When 

variable selection methods were applied, it resulted in marginal decreases in R2 and 

increases in RMSE. In two instances the variable selection methods yielded the same 

model: in Alay, SR and RC generated the same model; while in Kara-Kulja, all three 

variable selection methods resulted in the same outcome. The number of components 

varied between one and two depending on the rayon. The number of components changed 

in Alay and At-Bashy after application of variable selection. 

Table 4.6 shows standardized regression coefficients of final models based on three 

different variable selection methods. Note that values are in decreasing order of coefficient 

strength. The strongest, elevation was the strongest negative effect on TTP over all methods 

and rayons, except in Kara-Kulja, where rank order of components is SCD, then LDoS and 
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elevation, all with nearly the same coefficient values. The second coefficient in the other 

rayons was SCD, generally followed by LDoS. The selectivity ratio method yielded no 

model with a climatic oscillation index showing any significant impact on TTP. While the 

RC selection approach indicated moderate to weak positive relationship with NAO JJA in 

Chong-Alay, At-Bashy, and Naryn. The VIP score pulled in a negligible weak correlation 

with AMO JJA in Alay and weak negative correlations with SCAND MAM in At-Bashy 

and Naryn. 

Table 4.5. Comparison of TTP modelling performance using value of R2 and Root Mean Square 

Error (RMSE) based on initial model without variable selection (“Initial”), and three models using 

different variable selection methods: VIP score (“VIP”),  Selectivity Ratio (“SR”), and Regression 

Coefficients (“RC”). Same models in bold. 

TTP by 

Rayon 

R2 RMSE No. of components 

Initial VIP SR RC Initial VIP SR RC Initial VIP SR RC 

Chong-Alay 0.57 0.56 0.55 0.57 252.4 257.1 259 252 2 2 2 2 

Alay 0.66 0.64 0.64 0.64 190.6 197.4 197.9 197.9 2 1 1 1 

Kara-Kulja 0.56 0.55 0.55 0.55 206.3 208.6 208.6 208.6 1 1 1 1 

At-Bashy 0.71 0.70 0.70 0.67 202.6 206.5 205.5 214.7 2 2 2 1 

Naryn 0.66 0.66 0.66 0.66 208.8 209.9 210.5 210.7 2 2 2 2 
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Table 4.6. Standardized (using auto-scaling) regression coefficients for TTP modelling for each 

rayon based on different variable selection methods. Same models in bold. Positive values in 

underlined italics. 

VS Chong-Alay Alay Kara-Kulja At-Bashy Naryn 

V
IP

 s
co

re
 Elev 

SCD 

Slope 

LDoS 

-0.49 

-0.23 
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-0.30 

-0.26 

-0.01 

SCD 
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-0.26 

Elev 

SCD 

LDoS 

SCAND 

MAM 

-0.49 

-0.24 

-0.21 

-0.16 

Elev 

SCD 
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-0.43 
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-0.22 

-0.12 
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Elev 

SCD 

LDoS 

-0.53 

-0.22 

-0.08 

Elev 

SCD 

LDoS  

-.030 

-0.29 

-0.26 

SCD 

LDoS 

Elev 

-0.28 

-0.26 

-0.26 

Elev 

SCD 

LDoS 

-0.59 

-0.19 

-0.14 

Elev 

SCD 

LDoS 

-0.53 

-0.22 

-0.15 
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C
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SCD 

NAO 

JJA 

LDoS 

-0.42 

-0.24 

0.22 

  

-0.17 

Elev 

SCD 

LDoS 

-0.30 

-0.29 

-0.26 

SCD 

LDoS 

Elev 

-0.28 

-0.26 

-0.26 

Elev 

SCD 

NAO 

JJA 

-0.49 

-0.41    

0.02 

Elev 

SCD 

LDoS 

NAO 

JJA 

-0.45 

-0.25 

-0.19  

0.13 

For the PLS modeling of PH, Table 4.7 shows the performance results. In general, R2 was 

very low not exceeding 0.2 except in Alay, where the initial model has R2=0.34 and 

R2=0.29 for reduced models using either VIP or RC for variable selection. Over the four 

rayons other than Naryn, the SR method did not indicate any variable to be significant; 

thus, no model was built. Differences in RMSE between initial and reduced models were 

negligible. Higher R2 in Alay is related to the higher number of components selected (four 

components rather than one or two for other rayons) for the initial model. Although in the 

case of TTP modelling, a higher number of components did not really improve R2, for PH 

in Alay and At-Bashy where there were two components used (after variable selection), 

the R2 was much higher than in Chong-Alay, Kaka-Kulja and slightly higher in Naryn 

where only one component was selected. 
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Table 4.7. Comparison of PH modelling performance using value of R2 and Root Mean Square 

Error (RMSE) based on: initial model without variable selection (“Initial”), and three models using 

different variable selection methods: VIP score (“VIP”),  Selectivity Ratio (“SR”), and Regression 

Coefficients (“RC”), “—“ no model built. 

PH by 

Rayon 

R2 RMSE No. of components 

Initial VIP SR RC Initial VIP SR RC Initial VIP SR RC 

Chong-Alay 0.12 0.12 — 0.13 0.157 0.157 — 0.156 1 1 — 1 

Alay 0.34 0.29 — 0.29 0.142 0.148 — 0.148 4 2 — 2 

Kara-Kulja 0.16 0.12 — 0.14 0.149 0.153 — 0.151 2 1 — 1 

At-Bashy 0.18 0.20 — 0.20 0.17 0.167 — 0.168 2 2 — 2 

Naryn 0.17 0.16 0.16 0.17 0.149 0.150 0.150 0.149 1 1 2 1 

Table 4.8 provides the standardized regression coefficients for the PH modelling. Across 

rayons, the strongest effects are elevation interchanging with SCD, except in Kara-Kulja 

where TRASP has a negative effect. Elevation negatively affects PH, except in Naryn 

where its value is positive; whereas, SCD (and LDoS, where selected) shows a positive 

influence. Slope does not appear in any reduced model. The VIP score method resulted 

models with negative influence of SCAND JJA in three rayons (Chong-Alay, Kara-Kulja, 

and At-Bashy) and positive influence of MEI MAM in Chong-Alay and in Kara-Kulja. The 

SR method selected significant variables only in Naryn: the two snow cover metrics. Note, 

that using only those two variables, the R2 is comparable to other models for Naryn; 

moreover, the RMSE is slightly lower than in case of VIP score or RC models. 
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Table 4.8. Standardized (using auto-scaling) regression coefficients for PH modelling for each 

rayon based on different variable selection methods. Positive values in underlined italics. 

VS Chong-Alay Alay Kara-Kulja At-Bashy Naryn 
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4.6. Discussion 

In this study, we sought to confirm the findings of de Beurs et al. (2018) regarding linkages 

between seasonal climate oscillation modes, regional weather, and land surface phenology 

in Central Asia. Specifically, we focused on the explanatory and predictive power of 

seasonal climatic oscillations on land surface phenology in highland pastures in Kyrgyzstan 

from 2001 to 2017. Our question was whether the impacts of oscillation anomalies are 

detectable and significant in these mountain pastures using LSP metrics based on much 

finer spatial resolution data. In order to build models that could describe PH and TTP, we 

included both snow cover seasonality metrics and terrain characteristics, which have 

already shown to influence on the land surface phenology of highland pastures 

(Tomaszewska et al., 2019; Chapter 3). 

The very weak correlations of PH with TTP and PH with snow cover metrics may result in 

part from calculating the correlations by rayons and across elevation classes. Pasture area 
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in Kyrgyzstan is characterized by complex mountainous terrain that has led to spatially 

heterogeneous soils and vegetation communities blending into each other (Zhumanova et 

al., 2018). Thus, at different elevations belts, pasture vegetation types may vary in their 

NDVI response and their response to snow cover seasonality. For example, the southern 

part of Alay rayon is an extensive and flat valley bottom traversed by tributaries of the 

Kyzyl-Suu River, while the northern part is a combination of mountain ridges and 

intervening valleys along the Gulcha River. Furthermore, given the coarse (1 km) spatial 

resolution of MODIS LST product relative to the terrain, as a result, any effects of aspect 

and slope that may be evident at 30m were blurred across the complex topography at 1 km. 

The southwestern rayons of Chong-Alay and Alay showed weak positive relationships 

between TTP and winter values of EAWR and AMO, but these relationships dissipate 

moving eastward. 

Figure 4.6 visualizes the mutual relationships among PH, TTP, and SCD by elevation class 

for Naryn rayon, and Table 4.9 reports the R2 values of the simple linear fits illustrated in 

Figure 4.6 for each elevation class alone and considering all classes together. The amount 

of scatter within each elevation class is substantial, and the effects of elevation on TTP and 

SCD are clear from Figures 4.6B and 4.6C, respectively. The relatively tight negative 

relationship between TTP and SCD is not unexpected (Figure 4.6C), but note that the slope 

of the relationship across elevation classes is much steeper than the roughly parallel slopes 

for the four elevation classes.  The relationships between PH and SCD are also notable in 

that the elevation classes between 2400 m and 3400 m exhibit similar steeper slopes; 

whereas, the other two classes 1800-2400 m and 3400-4000 m have similar shallower 

slopes (Figure 4.6B). The overall slope splits the difference, but the elevations between 
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2400 m and 3400 m comprise more than 77% of the pasture land use areas with successful 

LSP model fits (cf. Table 4.2). The relationships of PH and TTP show an unexpected 

positive relationship between 1800 m and 2400 m, but negative relationships at higher 

elevations. The overall slope is also negative with a slope comparable to 2400 m to 2900 

m, but shallower than at the higher elevations (Figure 4.6A). The negative relationship 

between TTP and the number of snow cover days can be understood in terms of higher 

albedo associated with snow cover reducing the net radiation at the surface and limiting 

sensible heat flux. The positive relationship of PH with snow cover days arises from the 

dependence of the pastures on precipitation that falls outside of the growing season. Most 

of the annual precipitation falls during the winter and the meltwater from the accumulated 

snow provides the moisture for the beginning of the growing season. Also, the snowpack 

insulates the soil surface and retains moisture; thus, having a later snowmelt date, 

suggesting a larger snowpack, provides more soil moisture enabling greater plant growth 

(Groffman et al., 2001; Qiao and Wang, 2019). 
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Figure 4.6. Randomly sampled 1000 pixels from modeling dataset over Naryn rayon. (A) PH vs 

TTP, (B) PH vs SCD, (C) TTP vs SCD. Colored circles and corresponding lines of slope show 

different elevation classes: in green 1800 – 2400 m, in orange 2400 – 2900 m, in magenta 2900 – 

3400 m, in black 3400 – 4000 m. The cyan line show the slope across all pixels without stratification 

by elevation class. 

Table 4.9. R2 values of linear fits based on 1000 randomly sampled pixels that compose the 

modeling dataset for Naryn rayon. 

Elevation class  PH x TTP PH x SCD TTP x SCD 

1800-2400 m 0.006 0.061 0.075 

2400-2900 m 0.039 0.201 0.139 

2900-3400 m 0.146 0.211 0.332 

3400-4000 m 0.018 0.051 0.281 

1800-4000 m 0.067 0.138 0.517 

Given these results, it would be fair to inquire why not model the phenometrics by elevation 

class. We had three reasons for the approach we took. First, any division of elevation into 

classes is arbitrary and we wanted to avoid developing “optimized classifications” for each 

rayon and, thus, increase the possibility of overfitting the data. Second, since terrain 

complexity is very high in each rayon resulting in variation in phenometrics (sometimes in 

counterintuitive ways) and so we expected to improve model performance by including a 

broad range of conditions, especially as TTP follows an elevational gradient. Third, our 

primary interest was to evaluate the impact of the climate oscillation indices on potentially 

increasing both explanatory and predictive power. 

The PLS modeling of TTP showed that thermal time accumulation was modulated by 

elevation and snow cover metrics. Those variables alone produced models using SR 

variable selection that explained 55-70% of the observed variation in TTP (Table 6). 

Overall, variable selection brought almost no change in modeling performance; thus, the 
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reduction in variables eliminated those variables that had marginal explanatory and 

prediction power at the scale of mountainous pastures. VIP score and RC methods showed 

that specific seasonal oscillation indices could add to model performance, but the 

differences in R2 and RMSE were negligible. Recall the VIP score reflects both the 

covariance between X and Y variables and the importance of each X variable for predicting 

Y. Therefore, while a variable may add explanatory power of the model itself, it does not 

necessarily improve the predictive power of the model. 

VIP scores indicated that AMO JJA and SCAND MAM had significant negative 

relationships with TTP in Alay and in the two eastern rayons, respectively. According to 

de Beurs et al. (2018) AMO JJA showed positive Spearman’s correlation with summer 

temperature. However, the standardized AMO JJA regression coefficient is minimal, and 

so that impact might be potentially overlooked in the modelling. In our findings SCAND 

MAM showed a stronger negative relationship with TTP, while in the reference paper, 

SCAND MAM exhibited a positive relationship with spring and summer precipitation and 

negative relationship with spring temperature. We may speculate that since high SCAND 

MAM values were associated with positive precipitation anomalies and negative 

temperature decreases during spring season (de Beurs et al., 2018), the TTP would decrease 

during these years with wetter springs. 

The RC variable selection methods indicated only NAO JJA to be significant and have a 

positive regression coefficient with TTP (cf. Table 4.6); whereas, de Beurs et al., (2018) 

found a negative relationship with summer temperature (cf. Table 4.1). It is important to 

keep in mind that de Beurs et al. (2018) analyzed all five countries of Central Asia, and so 
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our findings for selected rayons in Kyrgyzstan might not have been captured in the broader 

scale analysis. 

In terms of PH, the PLS models after variable selection were able to explain up to 29% of 

variability in PH. The SR approach, which emphasizes explaining variability in Y, 

indicated no significant variables X in every rayon other than Naryn where only snow cover 

metrics were significant. Using VIP score and RC, in the three western rayons, terrain 

features drove PH; whereas, in the two eastern rayons (At-Bashy and Naryn), the stronger 

effect appeared from snow cover metrics. It should be mentioned that PH may be 

influenced by abiotic factors (climate, terrain, recent weather), biotic influences (vegetation 

community, grazing pressure, unpalatable species), and disturbance history (time since 

landslide, time since grazing, time since drought) (Henebry, 2019, 2013). Thus, modeling 

PH is not as straightforward as TTP, which is influenced by temperature and moisture lapse 

rates. 

Again, only two seasonal oscillations were selected as significant: SCAND JJA and MEI 

MAM. SCAND JJA, according to de Beurs et al. (2018), showed negative correlation with 

summer precipitation, meaning that more negative values of the index are associated with 

increased precipitation. In our results, SCAND JJA was shown to have a negative 

relationship with PH as well, meaning more precipitation would be linked with higher PH, 

likely resulting from more soil moisture. However, that effect may be only evident at 

particular elevation belts, since in alpine and subalpine areas, precipitation may not 

correlate with NDVI, probably because vegetation activity is limited by low temperatures 

(Zhumanova et al., 2018). MEI MAM was shown in de Beurs et al. (2018) to have a 

positive relationship with summer precipitation. Here we found a positive relationship 
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between MEI MAM with PH: higher MEI MAM index was linked to more summer 

precipitation and higher PH. Moreover, we can speculate that this increased summer 

precipitation could yield additional later season forage. Finally, SCAND JJA and MEI 

MAM were shown to be significantly negatively correlated (Table 4.4), which may explain 

why they were selected through different methods as significant influences on PH. 

We also ran PLS modelling across all five rayons at two elevation classes: 2400-2900 m 

and 2900–3400 m. The results yielded that R2 of TTP modelling dropped to ~0.27 and 

~0.31 respectively (data not shown). The only significant variables, regardless of variable 

selection method, were snow cover metrics and slope. No seasonal oscillation index value 

appeared significant. In terms of PH, R2 values were ~0.21 and ~0.27 for 2400-2900 m and 

2900-3400 m, respectively (data not shown). For PH, snow cover metrics and terrain 

features (both slope and TRASP) were significant, but no climate oscillation index. 

We posed in the introduction the question of whether the impacts of oscillation anomalies 

are detectable and significant in the mountain pastures using LSP metrics based on much 

finer spatial resolution data. Our results point to an answer of “no”: at a finer spatial scale, 

the indirect effects of seasonal climatic oscillations are evidently overridden by terrain 

influences (mostly elevation) and snow cover timing. Although, while it is beyond the 

scope of this study, we note that changes in vegetation communities characteristics 

(Zhumanova et al., 2018) can result in high interannual variability in phenometrics, that in 

turn, may impede modeling of the linkages with oscillation modes. Moreover, the specific 

approach to phenometrics calculation might have introduced additional uncertainties in the 

analysis  (Tomaszewska et al., 2019). Nevertheless, while at the fine spatial resolution of 

30m, we have not detected the indirect impacts of climate oscillations, our results do not 
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mean that climatic teleconnections have no influence on shaping weather patterns in the 

region. 

4.7. Conclusion 

Although studies on much coarser scale show links between NDVI and climatic oscillation 

modes, and their strong influence on regional biomes (Dahlin and Ault, 2018), we did not 

find a significant effect at the local scale. Using much finer spatial resolution and limited 

spatial extent, we found overriding effects of terrain complexity, and snow cover metrics 

upon land surface phenology. Differences between coarser and finer spatial resolution 

observations increase over heterogeneous areas, and so that scale effect plays a significant 

role in modeling process (Liu et al., 2017; Zhang et al., 2017). Within the highland pasture 

land use areas of Kyrgyzstan, the heterogeneity of plant communities can be very high 

(Zhumanova et al., 2018) but appear homogeneous at the scale of even 30 m, which may 

influence land surface phenology in subtle ways. For instance, de Beurs et al., (2009) ran 

trend analyses of NDVI retrieved from two MODIS products at ~5.6 km and 500 m over 

Kazakhstan, and found that coarser scale analysis was relevant to atmospheric boundary 

layer processes, while the finer scale data revealed trends that were more relevant to human 

decision-making and regional economics. Similar cross-scale trend findings were reported 

using NDVI and EVI in the vegetated land surfaces of the Western Hemisphere (Heck et 

al., 2019). 

We conclude the potential role of climatic oscillation indices informing outlooks for 

favorable pasture conditions in Kyrgyzstan is not feasible. One alternative approach might 

include focusing on those years with extreme climate oscillation values and analyze 

seasonal weather conditions over region to determine if those anomalies were transmitted 
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into the phenometrics. A second alternative would be to focus on those pixels that failed  

LSP modelling to investigate whether those failed fits resulted from unfavorable 

environmental conditions and climatic anomalies. 

Whether climate oscillation mode indices can provide some new and useful information 

about growing season conditions remains a provocative question, particularly in light of 

the multiple environmental challenges facing the agropastoralism livelihood in montane 

Central Asia. 
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4.10. Supplementary materials 

 

Figure S4.1. Spearman’s rho coefficient of correlation for Alay rayon. Significant level at p-value 

< 0.05 Correlation coefficients with p > 0.05 are crossed out. In reds, negative values of rho; in 

blues, positive values. 
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Figure S4.2. Spearman’s rho coefficient of correlation for Kara-Kulja rayon. Significant level at 

p-value < 0.05 Correlation coefficients with p > 0.05 are crossed out. In reds, negative values of 

rho; in blues, positive values. 
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Figure S4.3. Spearman’s rho coefficient of correlation for At-Bashy rayon. Significant level at p-

value < 0.05 Correlation coefficients with p > 0.05 are crossed out. In reds, negative values of rho; 

in blues, positive values. 
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Table S4.1. Final TTP models based on different variable selection (VS) methods. The same models in bold; positive values in italics. 

TTP VS method Final model 

Chong Alay VIP 3211.4 - 0.39 × Elevation - 2.15 × SCD - 3.03 × Slope - 0.93 × LDoS 

SR 3335.5 - 0.42 × Elevation - 2.08 × SCD - 1.21 × LDoS 

RC 3590.3 - 0.34 × Elevation - 2.19 × SCD + 108.5 × NAO JJA - 2.51 × LDoS 

Alay VIP 3114.7 - 0.17 × Elevation - 2.21 × SCD - 3.07 × LDoS -6.07 ×  AMO JJA 

SR 3103.9 - 0.17 × Elevation - 2.20 × SCD - 3.06 × LDoS 

RC 3103.9 - 0.17 × Elevation - 2.20 × SCD - 3.06 × LDoS 

Kara-Kulja VIP 2874.3 - 1.86 × SCD - 2.98 × LDoS - 0.15 × Elev 

SR 2874.3 - 1.86 × SCD - 2.98 × LDoS - 0.15 × Elev 

RC 2874.3 - 1.86 × SCD - 2.98 × LDoS - 0.15 × Elev 

At-Bashy VIP 3412.9 - 0.35 × Elevation -1.92 ×  SCD - 2.96 × LDoS - 153.6 × SCAND 

MAM 

SR 3306.2 - 0.42 × Elevation - 1.52 ×  SCD - 1.99 × LDoS 

RC 2779.1 - 0.36 × Elevation - 3.24 × SCD + 15.33 × NAO JJA 

Naryn VIP 3226.3 - 0.33 × Elevation - 1.83 × SCD - 2.69 × LDoS - 120.25 × SCAND 

MAM 

SR 3180.9 - 0.41 × Elevation - 1.56 × SCD - 1.83 × LDoS 

RC 3267.2 - 0.35 × Elevation - 1.74 × SCD - 2.4 × LDoS + 70.4 × NAO JJA 
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Table S4.2. Final PH models based on different variable selection (VS) methods. “—“ = no model built. Positive values in italics. 

PH VS method Final model 

Chong-Alay 

VIP 0.50 - 6.0 × 10-5 × Elevation + 0.0006 × SCD - 0.07 × TRASP - 0.03 × 

SCAND JJA + 0.02 × MEI MAM 

SR — 

RC 
0.54 - 7.0 × 10-5 × Elevation + 0.0008 × SCD - 0.09 × TRASP -0.03 × 

SCAND JJA 

Alay 

VIP 0.62 - 2.5 × 10-4 × Elevation + 0.001 × LDoS + 0.001 × SCD 

SR — 

RC 0.86 - 2.4 × 10-4 × Elev + 0.002 × SCD 

Kara-Kulja 

VIP 
0.79 - 0.1 × TRASP - 4.0 × 10-5 × Elevation - 0.04 × SCAND JJA + 0.02 × 

MEI MAM 

SR — 

RC 
0.82 - 0.13 × TRASP - 6.0 × 10-5 × Elevation + 0.03 × MEI MAM + 0.0001 

× SCD 

At-Bashy 

VIP 
0.71 + 0.001 × SCD -1.0 × 10-4 × Elevation -0.11 × TRASP - 0.02 × 

SCAND JJA 

SR — 

RC 0.72 + 0.001 × SCD - 1.0 × 10-4 × Elevation - 0.12 × TRASP 

Naryn 

VIP 
0.12 + 0.0005 × SCD + 0.0007 × LDoS + 3.0 × 10-5 × Elevation - 0.04 × 

TRASP 

SR 0.32 + 0.0012 × SCD + 0.00007 × LDoS 

RC 0.12 + 0.0005 × SCD + 0.0007 × LDoS + 3.0 × 10-5 × Elevation - 0.04 × 

TRASP - 0.24 × SCAND JJA 



201 

 

CHAPTER 5  

RESEARCH SUMMARY AND RECOMMENDATIONS 

 

5.1. Research summary and key findings 

Remote sensing investigations of variability in montane pastures phenology and the 

impacts of snow cover in Central Asia have been frequently carried out (i) on regional base 

i.e. across Central Asia, with no specific focus on Kyrgyzstan, (ii) by using rather coarse 

spatial resolution datasets (at least 500m), or (iii) if using higher spatial resolution datasets, 

the focal areas have been limited to specific parts of the Kyrgyzstan as case studies. 

Therefore, in the light of lacking extensive spatial and temporal studies over Kyrgyzstan, I 

recognized the need for a comprehensive approach that would aim to evaluate the temporal 

phenology variability of pasturelands, which serve as the basis of the economy and 

livelihoods in rural Kyrgyzstan. 

In this study, first, I analyzed changes in snow cover seasonality metrics across Kyrgyzstan 

over 2002-2016. Then, I described changes in land surface phenology (LSP) metrics of 

highland pastures across Kyrgyz Republic between 2001 to 2017. Further, I investigated 

the impact of snow cover seasonality on LSP of pastures, and how that influence differs 

depending on the terrain characteristic. Finally, I analyzed whether the large and regional 

scale climate oscillation mode influences can be detectable and captured by changes in LSP 

at large scale. Those five aspects have been addressed in three research studies and 

translated into three peer-reviewed manuscripts submitted to scientific journals, of which 

one is already published in Environmental Research Letters, the second is in revision 
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following review at Remote Sensing of Environment, and the third in review following 

revision at the International Journal of Applied Earth Observation and Geoinformation. 

I summarize the key findings of my research as follows. 

Chapter 2, Research Study #1: In this study, my goal was to analyze various aspects of 

snow cover seasonality to detect where significant changes had occurred in Kyrgyzstan 

over 2002-2016 and, if they occurred, how were they linked to terrain features. I used 500m 

MODIS 8-day snow cover composites to calculate snow cover seasonality metrics: First 

Date of Snow (FDoS) and snowmelt (Last Date of Snow, LDoS), and duration of snow 

cover season (DoSS). I found that (i) more territory has been experiencing earlier onset of 

snow than earlier snowmelt, and around equivalent areas have been experiencing longer 

and shorter duration of snow seasons; (ii) significant shifts toward earlier snow onset that 

occurred in western and central Kyrgyzstan, while significant shifts toward earlier snow 

departure appeared in eastern part; (iii) a significant duration of the snow season shortening 

across western and eastern Kyrgyzstan and a significant extension over northern and 

southwestern parts. Moreover, duration was significantly longer where the snow onset 

occurred significantly earlier or the snowmelt significantly later; (iv) a general trend of 

significantly earlier snowmelt below 3400m, and the area of earlier snowmelt was 15 times 

greater in eastern than western rayons. 

Chapter 3, Research Study #2: In this study, I focused on land surface phenology of 

highland pastures and its interactions with snow cover seasonality from 2001 through 2017; 

namely, to characterize how snow cover seasonality relates to subsequent land surface 

phenology, and how much mountainous terrain shapes those relationships. Using more 

than 13K Landsat images at 30 m to model land surface phenology as a function of thermal 
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time based on from 1 km MODIS 8-day Land Surface Temperature (LST) products, and 

500m MODIS 8-day snow cover composites for snow cover seasonality metrics, viz., the 

same three (FDoS, LDoS, DoSS) as in research study #1 and one additional metric: the 

number of snow covered dates (SCD). Analysis of the data revealed the following patterns: 

(i) predominant trends of increasing peak NDVI in highland pastures; (ii) positive 

relationships between snow covered dates and modeled peak NDVI (PH) over more than 

8% of the 68,881 km2 of analyzed pasturelands; (iii) more negative correlations between 

snow cover onset and PH, and more positive correlations between snowmelt timing and 

PH, thereby producing a longer snow season, which can positively influence PH; (iv) 

significant negative correlations between Thermal Time to Peak (TTP) and SCD over more 

than 11% of analyzed pasturelands, and a comparable but smaller area of negative 

correlations between TTP and snowmelt date and, thus, more snow covered dates translated 

into fewer growing degree-days accumulated to reach the thermal time to peak NDVI in 

the subsequent growing season; and (v) stronger influence of terrain on the timing of 

snowmelt than on the number of snow covered dates, wherein slope was more important 

than aspect, and the strongest effect appeared from the interaction of aspect and the steepest 

slopes. 

Chapter 4, Research Study #3: In this study, I followed up the findings of de Beurs et al., 

(2018), who found significant correlations of land surface phenology metrics and climate 

oscillation modes over Central Asia using coarse spatial resolution datasets (~5km MODIS 

NDVI and ~50km for precipitation and temperature). Here I re-used many datasets from 

research study #2: (i) two LSP metrics of the Peak Height (PH) and the Thermal Time to 

Peak (TTP); (ii) two snow cover seasonality metrics of the Last Date of Snow (LDoS) and 
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the number of Snow Cover Dates (SCD); and (iii) three terrain features based on the 30 m 

DEM. I found that: (i) thermal time accumulation could be explained mostly by elevation 

and snow cover metrics, leading to reduced models via Partial Least Squares (PLS) 

regression, explaining 55 to 70% of observed variation in TTP; (ii) significant relationships 

of spring SCAND and summer NAO and AMO with TTP, but their respective 

contributions to predictive power were negligible; (iii) only up to 29% of PH variability 

was captured by any PLS model; (iv) spring MEI and summer SCAND were significant 

predictors for PH, but they had no influence on modeling performance; (v) indirect effects 

of seasonal climate oscillations were overridden by terrain influences (primarily elevation) 

and snow cover timing. In short, climate oscillation modes did not manifest significant 

impacts in mountain pastures using LSP metrics when observed at fine spatial resolution. 

Rather, terrain and snow cover effects predominated. 

5.2. Recommendations and future directions 

Although, in this study I concentrated strictly on environmental and climate-induced 

impacts on pasture vegetation, human activities play a role in influencing pasture 

phenology, primarily through grazing management, which can lead to increased pasture 

degradation. According to official data, about 70% of natural pastures may be degraded 

(Sabyrbekov, 2019) due to environmental and anthropogenic factors—through 

encroachment of invasive and unpalatable species that, in turn, could affect pasture 

phenology. Studies have shown that unpalatable vegetation can increase vegetation indices 

(Eddy et al., 2017; Karnieli et al., 2013; Zhumanova et al., 2018). This situation may lead 

to uncertainties since I used NDVI time series as proxies for pasture productivity. To 

alleviate this issue, I focused on the early season green-up phase, when environmental 
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effects are most evident and management effects are minimal. However, results from 

Research Study #2 (c.f. Chapter 3, Tomaszewska et al., 2019) show significant increasing 

trends of peak NDVI over pasture areas, which might be interpreted as a result of vegetation 

degradation rather than improvement. Zhumanova et al. (2018) suggested that usage of 

enhanced vegetation index (EVI; Huete et al., 2002) would allow for better capturing semi 

desert pastures phenology. EVI is more NIR sensitive and responsive to canopy structural 

variations and canopy type, in contrast to NDVI that is more sensitive to chlorophyll and 

responds more strongly to variation in the red band. Comparison of different vegetation 

indices performance would be a reasonable step in the future studies of pasture phenology 

dynamics. Using a combination of Sentinel-2 and Landsat observations would enrich the 

number of observations and, potentially, decrease the number of unsuccessful fits. 

However, a recent study has shown in a simpler agricultural settings, using multiple sensors 

does not necessarily produce better characterization of the LSP metrics (Nguyen and 

Henebry, 2019). Moreover, a thorough investigation of the pixels in which the model fitting 

failed due to unfavorable environmental conditions or weather anomalies could be an 

alternative approach to link pasture phenology to climate oscillation modes. A further 

approach might focus on those years with extreme climate oscillation index values and 

analyze seasonal weather conditions over region to determine if the anomalous conditions 

were detectable through the phenometrics. Another option would be to  extend the study in 

Chapter 4 to explore the potential roles of the Siberian High (Yihui, 1990) and the Indian 

Ocean dipole (Saji et al., 2006), on influencing regional weather patterns in Kyrgyzstan. 

Further, the selection of specific years, e.g., colder/drier and warmer/wetter, would allow 

describing in detail: (i) how the phenometrics behave under different weather sequences; 
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(ii) if the behaviors vary due to the terrain features; and (iii) whether interactions between 

snow cover seasonality and pasture phenology diverges or converge. 

In this research, I have focused only on optical and thermal data. An interesting 

complementary approach for snow-phenology studies would be to use  microwave data, 

which could allow retrieval of other snow parameters such as snow depth and density or 

snow water equivalent (water content obtained from melting snow). Wang et al. (2018) 

using 8 km Global Inventory Modeling and Mapping Studies (GIMMS) NDVI from 1981 

through 2011 and daily snow water equivalent (SWE) observations at 25 km for the 1982–

2011 from GlobSnow SWE product, showed that winter snow accumulation can strongly 

affect vegetation productivity, but increased winter snow accumulation did not 

proportionally translate into delayed snowmelt. Thus, vegetation may take advantage of 

the greater snow accumulation during winter season, which may not always be reflected in 

the snowmelt timing, through increased soil moisture conditions in growing season. 

Moreover, in some regions, Wang et al., (2018) found that spring onset dates were not 

always synchronized with snowmelt date (due to insufficient heat accumulation after 

snowmelt and light limitation). 

Eventually, the introduction of additional datasets with higher spatial, temporal resolutions 

could improve the precision and accuracy of the analyses, especially over the challenging 

terrain of montane Kyrgyzstan and beyond. 

5.3. References 

de Beurs, K.M., Henebry, G.M., Owsley, B.C., Sokolik, I.N., 2018. Large scale climate 

oscillation impacts on temperature, precipitation and land surface phenology in 

Central Asia. Environ. Res. Lett. 13, 065018. https://doi.org/10.1088/1748-

9326/aac4d0 



207 

 

Eddy, I.M.S., Gergel, S.E., Coops, N.C., Henebry, G.M., Levine, J., Zerriffi, H., Shibkov, 

E., 2017. Integrating remote sensing and local ecological knowledge to monitor 

rangeland dynamics. Ecol. Indic. 82, 106–116. 

https://doi.org/10.1016/J.ECOLIND.2017.06.033 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview 

of the radiometric and biophysical performance of the MODIS vegetation indices. 

Remote Sens. Environ. 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-

2 

Karnieli, A., Bayarjargal, Y., Bayasgalan, M., Mandakh, B., Dugarjav, C., Burgheimer, J., 

Khudulmur, S., Bazha, S.N., Gunin, P.D., 2013. Do vegetation indices provide a 

reliable indication of vegetation degradation? A case study in the Mongolian pastures. 

Int. J. Remote Sens. 34, 6243–6262. https://doi.org/10.1080/01431161.2013.793865 

Nguyen, L.H., Henebry, G.M., 2019. Characterizing Land Use/Land Cover Using Multi-

Sensor Time Series from the Perspective of Land Surface Phenology. Remote Sens. 

11, 1677. https://doi.org/10.3390/rs11141677 

Sabyrbekov, R., 2019. Income diversification strategies among pastoralists in Central Asia: 

Findings from Kyrgyzstan. Pastoralism 9. https://doi.org/10.1186/s13570-019-0152-

x 

Saji, N.H., Xie, S.-P., Yamagata, T., 2006. Tropical Indian Ocean Variability in the IPCC 

Twentieth-Century Climate Simulations. J. Clim. 19, 4397–4417. 

https://doi.org/10.1175/JCLI3847.1 

Tomaszewska, M.A., Nguyen, L.N., Henebry, G.M., 2019. Land surface phenology in the 

highland pastures of montane Central Asia: Interactions with snow cover seasonality 

and terrain characteristics. Remote Sens. Environ. In revision following review. 

Wang, X., Wang, T., Guo, H., Liu, D., Zhao, Y., Zhang, T., Liu, Q., Piao, S., 2018. 

Disentangling the mechanisms behind winter snow impact on vegetation activity in 

northern ecosystems. Glob. Chang. Biol. 24, 1651–1662. 

https://doi.org/10.1111/gcb.13930 

Yihui, D., 1990. Build-up, air mass transformation and propagation of Siberian high and 

its relations to cold surge in East Asia. Meteorol. Atmos. Phys. 44, 281–292. 

https://doi.org/10.1007/BF01026822 

Zhumanova, M., Mönnig, C., Hergarten, C., Darr, D., Wrage-Mönnig, N., 2018. 

Assessment of vegetation degradation in mountainous pastures of the Western Tien-

Shan, Kyrgyzstan, using eMODIS NDVI. Ecol. Indic. 95, 527–543. 

https://doi.org/10.1016/j.ecolind.2018.07.060 

 


	How are Interannual Variations of Land Surface Phenology in the Highland Pastures of Kyrgyzstan Modulated by Terrain, Snow Cover Seasonality, and Climate Oscillations? An Investigation Using Multi-Source Remote Sensing Data
	Recommended Citation

	tmp.1576003337.pdf.cAUED

