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ABSTRACT
WINTER SNOW DEPTH IN ARCTIC ALASKA RESULTS IN COMPLEX CHANGES

IN CARIBOU FORAGE QUALITY

JESSICA C. RICHERT

2019

Caribou (Rangifer tarandus) rely on the short growing season for much of their
annual nutrition, making them susceptible to even small changes in forage quantity and
quality. Body condition in the summer and fall is linked to winter survival rates and
fecundity in cows, critical factors in the robustness of caribou populations. Due to a
warmer, wetter climate, snowfall is predicted to increase over Alaska’s North Slope in
the next several decades. Deeper snow results in higher soil temperatures, allowing
microbial mineralization of nitrogen to continue throughout the winter and increasing the
availability of nitrogen for plants in spring and summer; however, deeper snow can also
delay the onset of spring and initial plant growth. These biophysical changes may impact
the quantity, quality, and seasonality of caribou forage. | used a 20+ year snow
manipulation to evaluate how a set of winter climate change scenarios may affect tussock
tundra vegetation community composition and forage quality in northern Alaska. |
sampled leaf tissue of six plant species (Salix pulchra, Betula nana, Rhododendron
tomentosum, Vaccinium vitis-idaea, Carex bigelowii, and Eriophorum vaginatum)
weekly between leaf-out and senescence in two consecutive years in areas of ambient,
reduced, and added snow. Leaf tissue was analyzed for %N, dry matter digestibility, and
digestible protein to quantify temporal changes in nutrition as well as differences between

species and among functional groups (deciduous shrubs, evergreen dwarf shrubs, and



Vi

graminoids). Deeper snow increased leaf %N and digestible protein in the two deciduous
shrubs and graminoids, but not the evergreen shrubs. Dry matter digestibility varied
between species with small differences associated with divergent winter snow depths.
Deeper snow also increased the duration of higher-protein forage by as much as 25 days
in S. pulchra and 6-9 days in B. nana and C. bigelowii. Consequently, predicted increases
in winter snow over the North Slope by the end of the century may enhance both summer
and autumn forage quality and availability for caribou. Through multiplier effects of
increased nutrition on body condition, survivorship, and fecundity, better forage

conditions may improve the health and welfare of caribou in northern Alaska.



CHAPTER 1: INTRODUCTION

Caribou and reindeer (Rangifer tarandus) populations in the circumpolar Arctic
face many challenges (Osborne et al. 2018). Forage availability, forage quality, predation,
insect harassment, increasing human development, and extreme weather events have all
been implicated as possible reasons for the declines of caribou and reindeer populations
around the world in recent decades (Morschel and Klein 1997, Vors and Boyce 2009,
Festa-Bianchet et al. 2011, Fauchald et al. 2017). Though caribou and reindeer are highly
susceptible to abiotic stochastic effects (Jefferies et al. 1994, Tyler 2010, Hansen et al.
2014) and populations are prone to decadal fluctuations in size (Gunn 2003), the near-
synchronous decline of global populations is cause for concern and suggests a widespread

driver like climate change may be partially responsible.

Changes in the Arctic’s weather patterns and overall climate present additional
challenges to caribou and reindeer populations. Over the past 60 years, the mean annual
temperature has risen almost twice as fast in the Arctic as the rest of the world (ACIA
2004), with temperatures already rising by almost 2°C since the early 1900s (Osborne et
al. 2018). Temperatures are predicted to continue rising by another 2-9°C by the end of
the century (IPCC 2013). This increase in air temperature may worsen already existing
stressors in caribou and reindeer as well as introduce new ones (Mallory and Boyce
2017). Caribou begin exhibiting signs of heat stress at temperatures above 22°C
(Thompson and Barboza 2014), decreasing forage intake and reducing activity (Maérschel
and Klein 1997). Insect harassment from mosquitoes and flies also increases with
temperature (Morschel and Klein 1997, Bali et al. 2013) with severe harassment affecting

forage intake and large-scale movement patterns observed in air temperatures over



13.5°C (White et al. 1975). Higher temperatures also increase the frequency and risk of
extreme weather events like rain on snow and icing of pastures (Rennert et al. 2009),
which can lead to starvation and mortality as animals are cut off from important winter
forage (Hansen et al. 2014, Mallory and Boyce 2017), though significant die-offs during
such extreme events may also be due in part to density-dependent factors, that is the
density of caribou or reindeer exceeds the necessary forage resources to support the herd

(Tyler 2010, Hansen et al. 2019).

Warmer weather during the growing season may also decrease forage quality and
contribute to phenological mismatches between migratory caribou and their food sources
at a nutritionally critical part of year (Walsh et al. 1997, Fauchald et al. 2017). Warming
reduces leaf-level nitrogen (N) concentrations and increases anti-herbivory compounds
such as digestibility-reducing tannins (Jonasson et al. 1986, Turunen et al. 2009, Zamin et
al. 2017a) while simultaneously promoting growth of deciduous shrubs like Alnus and
Betula spp. These shrubs are naturally higher in anti-herbivory compounds than
graminoids, potentially decreasing forage quality even as forage availability increases
(Fauchald et al. 2017). Warmer temperatures may also shift the growing season earlier
into the spring, potentially decoupling annual caribou physiological stages from both the
timing and seasonality of critical nutrients on the landscape. While spring forage quality
and availability may not be as important to capital breeders like caribou that rely more on
winter body reserves for calf production and survival (Veiberg et al. 2017), phenological
mismatches in the summer and fall have the potential to severely impact both individuals

and populations due to the influence of even small changes in forage intake and weight



gain on growth rates and fecundity (White 1983, Cebrian et al. 2008, Proffitt et al. 2016,

Gustine et al. 2017).

Effects of higher temperatures on caribou may not always be negative, however.
Warmer air temperatures cause warmer springs, earlier snowmelt, and consequently,
longer growing seasons (Linderholm 2006). Plant communities are already responding to
these changes. Preferred summer forages like deciduous shrubs and graminoids (White et
al. 1975, Thompson and McCourt 1981, Denryter et al. 2017) are thriving at the expense
of less palatable evergreen shrubs and nonvascular plants (Sturm et al. 2001b, Wahren et
al. 2005, Tape et al. 2006, Hobbie et al. 2017, Carlson et al. 2018), although important
winter forage like lichens is also declining (Wahren et al. 2005, Hobbie et al. 2017).
Asynchronous green-up of forage due to differences in snow melt-off dates between areas
of shallow and deep snow in response to warmer springs may also benefit caribou by
creating spatial heterogeneity of high-quality forage across the landscape and extending

the length of time that such forage is available (Searle et al. 2015, Veiberg et al. 2017).

Winter precipitation patterns over the Arctic are also expected to shift along with
higher air temperatures. Projections for the central Arctic region of Alaska call for an
increase in winter precipitation of 13-48% by mid-century and an increase of 36-77% by
the end of the century, mostly in the form of snow (Martin et al. 2009), though
predictions for the entire Arctic are variable (Callaghan et al. 2011). As snow is a
defining feature of Arctic ecosystems for up to nine months of the year, changes in snow
cover and duration may have a greater effect on northern plant communities than a
warmer growing season (Rieley et al. 1995, Jones et al. 1998, Wahren et al. 2005, Fu et

al. 2014). Snow cover plays a vital role in insulating the ground from harsh winter



conditions, with even moderate increases in snow depth raising the soil surface
temperature by as much as 15°C (Walker et al. 1999, Schimel et al. 2004, Pattison and
Welker 2014). Higher soil temperatures allow microbial mineralization of soil nitrogen to
continue throughout the winter and increases active layer thaw depths in the summer
(Johansson et al. 2013) while also increasing available nitrogen pools in the soil that

plants can utilize (Schimel et al. 2004, Welker et al. 2005).

Changes in winter precipitation also alter the timing of snow melt and subsequent
green-up, potentially shortening or lengthening the growing season in areas. Even though
the Alaskan Arctic is predicted to have more winter precipitation, the overall duration of
snow cover is expected to decrease (Callaghan et al. 2011). The timing of melt-off is
critical to the onset of new growth in plants as photosynthesis begins and soils thaw
enough for nutrient uptake (Walsh et al. 1997, Borner et al. 2008). Deep snow
accumulations may delay green-up by as much as 3-4 weeks, reducing an already short
growing season and potentially reducing both productivity and overall biomass (Wipf and
Rixen 2010), though this may be mitigated in some cases by a corresponding increase in
photosynthesis from higher leaf N concentrations (Leffler and Welker 2013, Bosio et al.

2014).

Moderate increases in snow depth also favor deciduous shrub growth (Wahren et
al. 2005, Tape et al. 2006, Berner et al. 2018). Taller shrubs trap snow around
themselves, creating deeper drifts in winter and forming a positive feedback loop wherein
climate-induced increases in snowfall increases shrub growth which in turn further
increases local snow depth (Sturm et al. 2001a, 2005, Jespersen et al. 2018). This loop

eventually shifts vegetation communities from graminoid and ericaceous shrub-



dominated to those dominated by deciduous Alnus, Betula, and Salix species (Tape et al.

2006, 2012).

The highest nutritional demands on caribou and reindeer occur during the summer
and autumn when animals are recovering from winter deprivations, cows are lactating,
and calves are growing rapidly (Denryter et al. 2017, Gustine et al. 2017, Veiberg et al.
2017). Plants with higher leaf-level N concentrations, like deciduous shrubs, provide
more protein to caribou and are preferentially selected during foraging (White and
Trudell 1980, Denryter et al. 2017), especially early in the season when leaf N

concentration is maximal (Klein 1990).

Both deciduous shrub biomass and leaf-level N increase with snow depth (Walker
et al. 1999, Welker et al. 2005, Borner et al. 2008, Leffler and Welker 2013), potentially
mitigating any dilution of nitrogen due to increased growth and providing caribou with an
abundance of high-protein forage (Turunen et al. 2009, Zamin et al. 2017a). In addition,
higher soil nitrogen can decrease the carbon-based secondary compounds, including
condensed tannins and other phenolics, commonly found in arctic shrubs (De Long et al.
2016). Tannins and other phenolic compounds reduce the digestibility and available
protein of plants either through binding directly to proteins in forage or by interfering
with digestive enzymes in an animal’s stomach (Robbins et al. 1987b, 1987a, Lambers et
al. 2008). Fertilization treatments have decreased total phenolic content at multiple arctic
and alpine sites (Bryant et al. 1983, Coley et al. 1985, Graglia et al. 2001, De Long et al.
2016), though effects of snow and fertilization on the actual protein-precipitating capacity

of plants is less known.



This study builds on decades of research from the same site, providing a
continued examination of long-term trends in leaf-level nutrients after 25 years of snow
manipulation as well as short-term temporal changes during the growing season. While
multiple studies have examined the effects of warming, snow, and higher c0, on
vegetation composition and leaf-level nutrients, few have specifically examined how
such responses relate to caribou nutrition. This study seeks to fill in that gap and
determine what effects changes in winter snow depth associated with projected climate
change have on the availability and quality of forage for caribou on Alaska’s North

Slope.



CHAPTER 2: WINTER SNOW DEPTH IN ARCTIC ALASKA RESULTS IN

COMPLEX CHANGES IN CARIBOU FORAGE QUALITY
Introduction

Due to Arctic amplification, northern latitudes are warming nearly twice as fast as
the rest of the world (Martin et al. 2009), and temperatures are projected to continue
rising throughout this century (IPCC 2013). Precipitation patterns are also shifting over
much of the Arctic, with significant increases in winter precipitation expected over the
next few decades (though model projections are variable), particularly in the form of
increased snow fall (Callaghan et al. 2011). In particular, Alaska’s North Slope, home to
the Central Arctic Herd of caribou (Rangifer tarandus granti), is predicted to see a 35-
70% increase in winter precipitation over portions of the herd’s home range by the end of

the century (Scenarios Network for Alaska and Arctic Planning 2011).

Snow cover is a defining feature of Arctic ecosystems for up to nine months of
the year and changes in extent, depth, and duration may have a greater effect on northern
plant communities than warming growing season temperatures (Wahren et al. 2005, Fu et
al. 2014). Snow cover plays a vital role in insulating the soil from harsh winter
conditions. Deeper snow results in higher soil temperatures in winter (Walker et al. 1999,
Schimel et al. 2004) because snow decouples the soil from the frigid arctic air. These less
cold soils lead to a deeper active layer depth in summer (Johansson et al. 2013, Pattison
and Welker 2014) and facilitate microbial mineralization of organic nitrogen throughout
the entire winter, increasing the soil nitrogen available for plants in the early spring
(Bilbrough et al. 2000, Schimel et al. 2003, 2004, Sturm et al. 2005, Welker et al. 2005)

and thus, higher leaf N all summer long.



Secondary compounds are a critical attribute of tundra plants as related to
herbivory and digestibility. These compounds, including tannins and other similar
phenolic anti-herbivory compounds that reduce digestible protein of plants may change in
response to environmental conditions (Pefiuelas et al. 1997, Nybakken et al. 2013). For
instance, tannin content of leaves may decrease with higher soil nutrients in Arctic and
alpine sites (Bryant et al. 1983, Coley et al. 1985, Graglia et al. 2001, Schimel et al. 2004,
De Long et al. 2016). There are few experimental studies that quantify whether warmer
summers or changes in winter snow affect secondary compounds in tundra plants,
however, an attribute that may be critical to determine as we seek to understand how

climate changes will affect forage nutrition for caribou in Alaska and globally.

One of the most important facets of understanding how tundra systems will adapt
as weather and climate changes is woven into the individualistic nature of plant species
and functional group responses to change (Chapin I11 and Shaver 1985). This foundation
of tundra ecology is still apparent today, as given uniform changes in environmental
conditions, not all species and not all traits (i.e. flowering, leaf out, leaf-level nutrition,
leaf physiology, etc) behave in a uniform manner (Arft et al. 1999). Recent changes
across the Arctic are a mixture of responses with potential community and ecosystem
consequences such as a strong growth response of some shrub species to warmer
summers and/or deeper snow (Elmendorf et al. 2011, Tape et al. 2012). This perspective
is especially important as related to caribou forage as individualistic changes in
abundance in combination with changes in both magnitude and duration of higher-quality

forage in spring or autumn may have large consequences for the carrying capacity of the



landscape for caribou as well as the ability to support early season or prolonged nutrition

during critical physiological stages of this keystone ungulate.

The primary question that this study addresses, then, is: how do various winter
climate scenarios (deeper or shallower snow) affect the availability and quality of forage
in tussock tundra for caribou? To address forage availability, | asked: does snow depth
affect vegetation community composition and biomass? To address forage quality, |
asked: does snow depth affect nutritional factors like digestibility and protein content in
common tussock tundra plan species. Based on previous snow manipulation, warming,
and fertilization experiments that demonstrates the effect of snow on vegetation
community composition and nitrogen content, | hypothesized that: (1) enhanced growth
due to warmer soil temperatures and enhanced microbial activity under deep snow would
benefit deciduous shrubs over other functional groups due to deeper roots and higher
phenological plasticity, leading to higher biomass; and (2) due to increased availability of
nitrogen in warmer winter soils and a decrease in phenolic content in plants with
experimental fertilization, measures of caribou forage quality like leaf N, digestibility,
and digestible protein would be highest in areas of deeper snow, with the greatest impact

on deciduous shrubs.

Materials and Methods

Study Site

This research was conducted from 2017 to 2018 in moist-acidic tussock tundra
near Toolik Field Station (68°38° N 149°38W) in the foothills of the Brooks Range,

Alaska, USA. The mean annual temperature is -8°C, with mean summer temperatures of
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10-12°C and winter temperatures averaging -20°C (Hobbie and Kling 2014;
Environmental Data Center Team 2019). Mean precipitation is 250-350 mm, with 40-
45% falling as snow (Schimel et al. 2004). In winter, snow depths reach 30-80 cm on
average, but can drift much deeper in response to winds and topography. The ground
freezes to the depth of permafrost during winter, with maximum active layer depths in the
summer averaging 30-50 cm (Jones et al. 1998; Hobbie and Kling 2014). The site is
located within the home range of the Central Arctic Herd of caribou (Rangifer tarandus
granti) on Alaska’s North Slope and is dominated by the tussock-forming sedge,
Eriophorum vaginatum, with deciduous shrubs, evergreen dwarf shrubs, mosses, lichens,
and other non-tussock forming graminoids intermixed throughout the inter-tussock areas
(Whalen 2002). A wooden snow fence (3 x 60 m) was erected on the moist-acidic tussock
tundra site in 1994 to artificially increase snow depth, with snow drifts reaching a
maximum depth of 3m directly behind the snow fence and declining to ambient snow
depths (0.5-1 m) 50-60 m from the fence (Jones et al. 1998, Walker et al. 1999, Welker et

al. 2000).

Field Sampling

To test whether winter snow depth affects summer forage quality, I collected
samples of six common plant species present in moist-acidic tussock tundra. These
species represented three functional groups: deciduous shrubs, evergreen dwarf shrubs,
and sedges. Samples of two species from each functional group were collected on a
weekly basis from 19 June-7 August 2017 and 22 June-25 August 2018. The species
collected were the deciduous shrubs Salix pulchra and Betula nana, the evergreen dwarf

shrubs Rhododendron tomentosum (formerly Ledum palustre) and Vaccinium vitis-idaea,
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and the sedges Carex bigelowii and Eriophorum vaginatum. Sampling methods
mimicked caribou browsing, with leaves of deciduous shrubs stripped by hand and
evergreen dwarf shrubs and sedges clipped at ground level. Five leaf tissue samples of
each species were collected in each of three snow depth zones: + snow (1-2 m snow), -
snow (0.5 m snow), and ambient (0.5-1 m snow; control), for a total of 90 samples a
week over a 10-12 week period throughout the growing season. After collection, all
samples were dried in a forced-air oven at 70°C for 72 hours. These samples were
analyzed for C and N content and dry matter digestibility. An additional five samples of
S. pulchra and B. nana were collected every other week during the 2018 growing season
and immediately frozen for later chemical analysis of protein-precipitating capacity
(PPC), a measure of the reduction in protein digestibility in forages due to anti-herbivory

compounds (Robbins et al. 1987a).

To test whether snow depth affects forage availability by altering plant
community composition and abundance, |1 sampled biomass at three locations within each
snow depth zone at peak growing season biomass of both years (13 July and 29 July,
respectively) for a total of six plots per snow zone. Biomass for S. pulchra and B. nana
was harvested in 1 m? quadrats, while biomass of all other species was harvested in three
20 cm? quadrats nested within the larger 1 m? plot. All samples were sorted to species,
then dried in a forced-air oven at 70°C for 72 hours before being weighed to obtain the

total biomass per species. Species were combined into functional groups for analysis.

In addition to forage and biomass samples, | measured snow depth during the
winter of 2018-2019 and active layer depth during the summer of 2018. | measured snow

depth along 12 transects perpendicular to the snow fence. Snow depths were recorded at
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2-5 m intervals from the snow fence to 80 m north of the fence using a combination of a
MagnaProbe (Snow-Hydro, Fairbanks, Alaska, USA) in snow to 1-m depth and an
avalanche probe in areas of deeper snow. I also recorded active layer depth on a weekly
basis during the 2018 growing season by inserting a probe to the freeze boundary at 5 m
intervals along a 50 m transect in each snow zone. Due to late snowmelt, the + snow
treatment zone was separated into two active layer depth transects, one along the
shallower end of the snow drift and one along the deeper end. Measurements for these

two transects began at their respective melt-off dates.

Laboratory Analyses

| quantified forage quality by measuring neutral detergent fiber (NDF), acid
detergent fiber (ADF), acid detergent lignin (ADL), dry matter digestibility (DMD),
percent nitrogen (N), crude protein (CP), and digestible protein (DP) in each sample (ca.
1600). Protein precipitation capacity was determined on the additional 2018 deciduous
shrub samples (ca. 200 samples) collected for this purpose. Prior to chemical analysis, all
samples were ground to 1-mm particle size using a Wiley mill (Thomas Scientific,

Swedesboro, New Jersey, USA).

Sequential fiber analysis (determination of NDF, ADF, and ADL- See Appendix
2) was conducted on all samples using the ANKOM Technology method (ANKOM
Technology 2003a, b, 2011) and an ANKOM fiber analyzer (model 200, ANKOM
Technology, Macedon, New York, USA). Forages were first extracted in a neutral
detergent solution with agitation at 100°C to obtain the easily digested, or solubilized,
fraction (neutral detergent solubles, NDS) and insoluble fraction (NDF). NDF residues

were then extracted with an acid detergent solution to yield ADF (a measure of the least
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digestible plant components like cellulose and lignin). The ADF residue was digested
with 72% sulfuric acid to determine ADL, then ashed in a muffle furnace at 500°C for 5
hours to determine the total proportion of non-digestible lignin-cutin and inorganic
matter. Percent N was analyzed via combustion at 1800°C in tin capsules using an
elemental analyzer (ECS 4010, Costech Analytical Technologies Inc., Valencia,

California, USA).

| assessed the protein-precipitating capacity of tannins in the deciduous shrubs, S.
pulchra and B. nana, using bovine serum albumin (BSA) according to the methods
developed by McArt et al. (2006). Samples were freeze-dried and ground to 1 mm
particle size before the tannins were extracted in agueous methanol using an accelerated
solvent extractor (Dionex ASE-200, ASE-350, Thomas Scientific, Swedesboro, New
Jersey, USA). Extracts were then serially diluted with a standard solution of BSA and an
acetate buffer solution before the precipitate and 50 pl of solution was filtered into an
optically clear microplate. Bradford Protein Reagent (Fisher Scientific, Pittsburgh,
Pennsylvania, USA) was added, and the resulting solution was incubated at room
temperature for six minutes before | read the absorbance at 595 nm on a UV-Vis
microplate spectrometer (Synergy HT Multi-Mode Microplate Reader, BioTek

Instruments Inc., Winooski, Vermont, USA).

DMD and DP of each sample were calculated using the following digestibility

equations developed by Robbins et al. (1987) and Spalinger et al. (2010) for cervids:
DMD = (92.31e 0041HO*NDF) + (0.831*NDS — 6.97) eq. (1)

DP =-3.97 + 0.9283*CP — 11.82*PPC eq. (2)
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where LIG is the lignin/cutin fraction calculated from sequential fiber analysis (See

Appendix 2).

Statistical Analyses

Snow depth at the snow fence was calculated using a second order polynomial
local area regression to interpolate between transect readings. Mean snow depth of each
snow zone was then extracted from the area sampled. To examine the effect of snow
depth on forage availability I ran a one-way ANOVA using the statistical computing
language R (R Core Team 2018) on the biomass of each functional group and used
Ismeans to determine where specific differences among the snow zones occurred. In this

analysis differences among snow zones were considered significant at p < 0.05.

| examined the effect of snow depth on forage quality of each species using the
nlme package (Pinheiro et al. 2018) to perform a linear mixed-effects analysis of the
relationship of leaf-level N (Table 1) and dry matter digestibility (Table 2) of each
species as well as the protein-precipitating capacity of the deciduous shrubs (Table 3) to
the snow treatment zones. The base model included day of year as an independent
variable, with plot and year as random effects to account for repeated sampling
throughout the growing season and sampling in different years. Dependent variables were
percent nitrogen content, percent dry matter digestibility, and protein-precipitating
capacity (expressed as mg BSA precipitated/mg dry matter (DM)). This base model was
compared to additional models that include additive and multiplicative interactions
between snow depth treatments and day of year as well as a quadratic day of year term to
account for rapid changes in the response variable during leaf expansion and senescence

and slower changes during mid-summer. All proportionate data were arcsine square-root
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transformed prior to analysis, and | selected the top model for each independent variable
using AIC (Burnham and Anderson 2002). The top model was used to calculate predicted

means and 95% confidence intervals for each variable over the sample period.

For all species except the deciduous shrubs, digestible protein was calculated
directly from eq. 2 with the assumption that PPC=0. Since digestible protein is directly
related to leaf N (through the crude protein variable in eq. (2)), the top N model was used
with the calculated digestible protein values to obtain the predicted means and confidence
intervals over the sampling period. For the shrubs, S. pulchra and B. nana, the top N and
PPC models for both species (including snow zone where significant) were used to obtain
daily crude protein and PPC estimates and standard errors of the estimates. | then
randomly sampled from a normal distribution for each daily estimate of crude protein and
PPC and calculated digestible protein using eg. (2). This procedure was repeated 1000
times for each day, producing a daily estimate and 95% confidence interval of digestible
protein for both shrubs throughout the sampling period that accounts for the error of both

crude protein and PPC trends.

Results

Snow and Active Layer Depth

My designated snow treatment zones matched snow depth collected in March
2019 (Fig. 1). Snow depth in the Ambient zone was 39 + 11 cm, while snow depth in the

- snow and + snow zones was 20 + 3.4 cm and 147 + 18 cm respectively.

Active layer depths increased rapidly throughout the growing season until DOY

217-220, when they approached maximum depth (See Appendix 1). Depths at the
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beginning of the growing season (DOY 173) were only 8 + 1 cm in the shallow end of
the + snow treatment, 17 + 6 cm in the - snow treatment, and 14 + 5 cm in ambient
conditions. Half of the + snow treatment zone was still covered by a snow drift that was
38 + 11 cm deep. By the end of the growing season (DOY 237), active layer depths in all
zones were 45-60 cm, with the snow-covered area of the + snow treatment increasing
from an initial depth of 10 + 1 cm at DOY 180 to 61 + 10 cm at DOY 237. The ambient
zone depth increased to similar levels at 60 + 9 cm, and the - snow treatment and shallow

end of the + snow treatment reached depths of 51 + 10 cm and 49 + 7 cm respectively.
Forage Availability

Overall biomass was not significantly different among the three snow zones, with
828.60 + 106.31 g/m? in the ambient plots, 748.24 + 35.26 g/m? in the — snow treatment
plots, and 764.62 + 106.30 g/m? in the + snow treatment plots. Broken down by
functional group though, the - snow and + snow treatments differed from ambient
conditions in a few key ways. Both treatments had a higher biomass of deciduous shrubs
than ambient (Fig. 2), with a statistically significant (F2,15 = 5.027, p < 0.05) higher
biomass of deciduous shrubs occurring in the - snow treatment at 165.36 + 14.38 g/m?
(compared to 135.82 + 14.79 g/m? in the + snow treatment). The - snow treatment also
had the highest biomass of evergreen dwarf shrubs (138.56 + 43.17 g/m?), while the +
snow treatment had the lowest (59.45 + 13.38 g/m?). Both the - snow and + snow
treatments had significantly (F215 = 11.8, p < 0.001) lower lichen biomass (2.43 + 1.80
and 8.51 + 4.10 g/m? respectively) compared to ambient (50.68 + 12.47 g/m?). For all
treatments, total biomass of lichens and forbs was small compared to other functional

groups, while all snow zones had similarly high biomass of both moss and graminoids. In
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almost all functional groups, however, there was considerable spatial variation with each

snow zone, resulting in high variation between individual plots.

Nitrogen Content

Snow depth affected N content of all sampled species except V. vitis-idaea, with
all top models including either an additive or multiplicative interaction with snow and the
quadratic day of year term (Table 1). Increased snow depth had the strongest effect on the
deciduous shrub and graminoid functional groups. For both, N content was significantly
greater in the + snow treatment, while there was little to no difference between the - snow
treatment and ambient conditions (Fig. 3). This difference in N content among the snow
zones remained relatively constant throughout the growing season. For S. pulchra, deep
snow resulted in 11.4% greater N at the beginning of the growing season (DOY 173)
compared to the ambient plots. The difference among the treatments remained relatively
constant even as overall N levels declined during the season, leading to plants in the +
snow plots having 90.0% higher leaf N when leaf senescence began (DOY 237). B. nana
followed a similar pattern, although with a lesser increase in N content of 8.35% in +
snow plots compared to ambient areas at the beginning of the growing season and 25.3%

by the end.

Both sedges, C. bigelowii and E. vaginatum, demonstrated different patterns of N
content throughout the growing season (Fig. 3). C. bigelowii followed much the same
pattern as the shrubs, with highest N levels at the beginning of season and in the + snow
treatment, declining steadily over time. While the - snow treatment and ambient plots
maintained similar N levels through most of the growing season, N content of plants in

ambient conditions declined sharply with the onset of senescence, resulting in 107%
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higher N levels in the + snow treatment by the end of the growing season. E. vaginatum
did not follow the same temporal pattern of N content as C. bigelowii or the deciduous
shrubs. Instead, N content was low (~2%) over the course of the entire growing season.
Plants in the + snow zone still had higher leaf N, especially near the end of the season,

with a 30.4% increase over ambient.

For the evergreen dwarf shrubs, N content remained low throughout the entire
growing season, with few samples ever rising above 2%. For V. vitis-idaea, snow depth
did not have an effect on leaf N, while for R. tomentosum N was highest in the - snow
treatment over the first few weeks of the growing season before falling below + snow
levels by mid-season and rising again in the last weeks of August when N content in the

+ snow treatment began to decrease.

Dry Matter Digestibility

Snow depth affected dry matter digestibility less than N content for all species,
with only a slight increase in digestibility of B. nana in the + snow treatment (Fig. 4).
Even then, the increase was modest, with the highest digestibility occurring mid-season
with an increase of 6.82% over ambient. By senescence, the gap among the three snow
zones closed as digestibility in both the ambient and — snow plots increased slightly to

match that of the + snow plots.

Few clear patterns emerged in dry matter digestibility of other sample species
despite often including a snow term in the top models (Table 2). There was no effect of
snow depth on the evergreen dwarf shrub, V. vitis-idaea, and the sedge, C. bigelowii,

although both species showed different temporal patterns. Digestibility of C. bigelowii
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(~70%) changed little throughout time, while digestibility of V. vitis-idaea showed a
curvilinear trend over the growing season, with a lower overall digestibility of ~50-60%.
For the deciduous shrub, S. pulchra, the + snow treatment showed higher digestibility at
the beginning of the growing season. By mid-season, digestibility fell to the same level as
the — snow treatment, both of which were below ambient levels. All three snow zones,
however, differed by only a few percentage points throughout the entire growing season.
Both the dwarf shrub, R. tomentosum, and the sedge, E. vaginatum, showed curvilinear
trends through time as well as a slight effect of snow depth. Plants in all three snow zones
exhibited similar digestibility at the beginning of the season (~45-50% in R. tomentosum

and ~60-70% in E. vaginatum) only to diverge in the latter half (Fig. 4).

Protein-precipitating Capacity and Digestible Protein

Since digestible protein is directly correlated with the amount of nitrogen in a
forage while also accounting for the protein loss due to anti-herbivory compounds in
certain plants, digestible protein shows the same temporal patterns as the N content of
each species (Fig 6). In the deciduous shrubs, however, anti-herbivory compounds like
tannins bind to proteins in the plant and lower the total digestible protein an animal can
obtain from them, decreasing overall forage quality (Robbins et al. 1987a). For B. nana,
the top model for protein-precipitating capacity included snow depth (Table 3), with
estimated PPC highest in the + snow treatment in the middle of the growing season at
0.276 + 0.014 mg BSA precipitated/mg DM (Fig. 5). Both the + snow and ambient zones
were similar however, and temporal variation was high, resulting in substantial overlap of
confidence intervals between the two zones. For S. pulchra, there was no effect of snow

on PPC, but PPC did increase throughout the growing season from an estimated low of
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0.226 + 0.027 mg BSA precipitated/mg DM at the beginning to a high of 0.357 + 0.015
mg BSA precipitated/mg DM by DOY 217 before declining to 0.334 + 0.023 mg BSA

precipitated/mg DM by senescence (Fig. 5).

Caribou need a minimum of 7-8 g DP/100g DM in their diet to maintain body
condition (red line in Fig. 6) (Thompson and Barboza 2017). Even with the additional
protein-precipitating capacity of anti-herbivory in the deciduous shrubs, digestible protein
levels of both S. pulchra and B. nana remained above maintenance levels well into the
growing season, especially in the + snow treatment (Fig. 6), with values as high as 20-25
g/100g DM. The evergreen dwarf shrubs remained a poor source of protein through the
entire season, never rising above the maintenance threshold, and in the case of V. vitis-
idaea, remaining at ca. 2 g/100g DM throughout the sample period. Digestible protein in
C. bigelowii mirrored the same pattern as the deciduous shrubs, beginning the season at
15-20 g/100g DM and declining steadily with time until falling below maintenance levels
near senescence. E. vaginatum, while not high in digestible protein, remained above the
maintenance threshold for most of the growing season in all snow zones, and plants in the
+ snow treatment stayed just over the minimum protein requirement during the entire

sampling period.

Discussion

My results demonstrate that increased snow depth affects both the availability and
quality of forage species important to caribou on Alaska’s North Slope. Deep snow areas
had higher biomass of preferred functional groups over ambient snow areas as well as a
decrease in the proportion of unpalatable evergreen dwarf shrubs. Deep snow also

increased leaf-level N and digestible protein in both deciduous shrubs and graminoids,
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despite increasing the protein-precipitating capacity of anti-herbivory compounds in B.
nana. While changes to forage digestibility due to snow were mixed, overall digestibility
in preferred forages was high over the entire growing season. Increases in snow depth,

then, may enhance both forage quantity and quality for caribou.
Effects of Snow Depth on Forage Availability

The most obvious changes in biomass among the three snow zones occurred in
the deciduous shrub, evergreen dwarf shrub, and lichen functional groups, though only
significantly so for deciduous shrubs and lichens. The deep snow area had the lowest
evergreen shrub biomass, which is consistent with previous snow manipulation and
fertilization studies (Chapin 11l et al. 1995, Demarco et al. 2014, Zamin et al. 2014).
Many studies have also found a concomitant increase in biomass (Wipf and Rixen 2010)
and/or percent cover (Wahren et al. 2005, Johansson et al. 2013, Leffler et al. 2016) of
deciduous shrubs in areas with deeper snow, yet my results show the opposite, with the
highest biomass of deciduous shrubs found in the reduced snow area, although both the

reduced snow and deeper snow areas have higher shrub biomass than ambient conditions.

One plausible explanation for the discrepancy is that small-scale vegetation
communities within the boundaries of the snow fence vary considerably, making
differences due to snow depth difficult to quantify without a larger sample size than the
six 1-m? plots used in this study. Another possible explanation is that several previous
studies included additional treatments such as summer warming or additional N through
fertilization combined with winter snow depth and the deciduous shrub response was
greatest when deep winter snow interacted with these other treatments (Demarco et al.

2014, Leffler et al. 2016). Additionally, the snow depth in the deeper snow area may now
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be too deep, with the snow fence amplifying natural increases in snow fall in the two
decades since the fence was erected. Some studies have found decreased shrub cover in
areas with deep snow (> 2 m) as opposed to areas with more moderate snow cover (1-2
m) (Wahren et al. 2005, Borner et al. 2008, Johansson et al. 2013) suggesting there is a
maximum snow load a shrub-dominated community can tolerate. The number of growing
degree days needed for onset of green-up at northern latitudes has a positive correlation
with the amount of winter precipitation (Fu et al. 2014). With an already short growing
season, snow depths that regularly delay green-up by more than two weeks may reduce
productivity and eventually deplete energy reserves in plants, inducing mortality and
reducing the abundance of certain species like deciduous shrubs and Eriophorum spp.
(Walker et al. 1999, Borner et al. 2008, Wipf and Rixen 2010). In either case, the
availability of important summer forage species like S. pulchra should increase with
moderately more snow. The same cannot be said for important winter forages, including
lichens and evergreen dwarf shrubs (Boertje 1984, Ophof et al. 2013), both of which

decrease with more snow in this and other studies.

Effects of Snow Depth on Forage Quality

Additional snow increased leaf N in both the deciduous shrubs and sedges (Fig.
3), as has been found in previous studies across multiple arctic and alpine sites (Walker et
al. 1999, Van der Wal et al. 2000, Welker et al. 2005, Leffler and Welker 2013).
Increased snow depth had the greatest impact on N content in S. pulchra, but B. nana and
the sedge C. bigelowii exhibited similar increases. This partially supports my hypothesis
of snow having the greatest impact on the quality of deciduous shrubs due to deeper roots

that can take advantage of higher soil nitrogen as well as greater phenological plasticity
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in the face of environmental changes (Bret-Harte et al. 2001, Sullivan et al. 2007, Wipf
and Rixen 2010). The impact of deep snow on N content of C. bigelowii is curious,
though, as leaf N in E. vaginatum, another sedge, does not respond similarly to deeper

snow, remaining low overall throughout the study period.

There are a few possible explanations for the difference seen in N content over the
growing season between the two sedges. First, E. vaginatum replaces its roots annually
(Chapin 111 1986, Sullivan and Welker 2005) and it may not be able to take advantage of
the transient increase in nutrients in the soil as early in the growing season as C.
bigelowii, though that does not fully explain the low N levels in E. vaginatum throughout
the entire growing season. Furthermore, E. vaginatum and C. bigelowii preferentially
uptake different forms of nitrogen, with E. vaginatum using primarily ammonium and C.
bigelowii using primarily nitrate (McKane et al. 2002). Deep snow increases availability
of both forms of nitrogen in the soil, especially in intertussock areas (Schimel et al. 2004,
Semenchuk et al. 2015) where C. bigelowii tends to be located (pers. obs.). Because
nitrate levels are so low in arctic soils, there is more competition among plants for
ammonium (McKane et al. 2002). Even as snow increases both forms of nitrogen, then,
C. bigelowii may be better positioned to take advantage of the timing, location, and form

of soil nitrogen than E. vaginatum.

Snow depth also influenced N concentrations in R. tomentosum (Fig. 3), with
changes in N reflecting a phenological shift rather than a change in mean. As an
evergreen, R. tomentosum normally produces new vegetative growth from mid-late July
under ambient conditions (Murray and Miller 1982). I observed high N concentrations

earlier in the growing season in the low snow area, which was snow free earliest in the
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season. Leaves of R. tomentosum in the deep snow area exhibited similar N
concentrations several weeks later, following later snow melt of the deeper snow drift.
Hence, deeper snow shifted leaf production and subsequent peak leaf N in this species

later in the growing season.

Interestingly, leaf N was higher for most species in the deeper snow area despite
having the shallowest active layer depth over half the + snow zone (See Appendix 1).
This suggests that higher nitrogen uptake by plants may rely more on snow insulating the
soil enough for enhanced microbial activity during the winter than on the release of new
nutrients as soils thaw deeper during the growing season (Schimel et al. 2004). While
active layer depth is generally correlated with snow depth (Johansson et al. 2013), other
factors such as soil moisture content, albedo and insulating properties of the vegetation

types covering the soil surface cannot be discounted (Loranty et al. 2011).

Snow depth did not have as great an impact on leaf dry matter digestibility as leaf
N, results similar to previous studies examining the effects of various environmental
factors like shading, air temperature, and precipitation on forage quality (Lenart et al.
2002). Individual species within each functional group responded differently from one
another, ranging from phenological shifts to no significant effects, and overall changes in
dry matter digestibility trends, whether through time or with snow depth, usually spanned
only a few percentage points. Even small changes in digestibility, however, can
significantly impact dry matter intake of caribou (White 1983) and subsequent deposition
of both body fat and protein (Chan-McLeod et al. 1994). As maternal winter body mass

and body fat correlate strongly with animal survival and calf production (Parker et al.
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2009, Proffitt et al. 2016, Veiberg et al. 2017), changes in summer forage digestibility

and energy intake can propagate from the individual to the population level.

The protein-precipitating capacity of the deciduous shrubs did not respond to the
winter climate change scenarios the way | initially expected. PPC of S. pulchra was
unaffected by snow depth; however, PPC increased with snow depth in B. nana, albeit
only slightly. Previous studies in tussock tundra in the Toolik Lake area found that
concentrations of phenolics in B. nana increased with N fertilization treatments (Graglia
et al. 2001), while other studies found a more generalized increase in carbon-based
secondary compounds (including phenolics and tannins) with N fertilization (Lavola and
Julkunen-Tiito 1994, De Long et al. 2016). With the increase in available soil nutrients
with deep snow cover, one might expect to see lower PPC as plants use available nitrogen
to shunt carbon tied up in secondary compounds into new growth rather than defense

(Chapin 111 1989). The results presented here show just the opposite, however.

Protein-precipitating capacity of B. nana was highest in the deeper snow area and
lowest in the reduced snow area, although there was substantial variation among sample
dates. The seasonal variation may be due in part to a phenological shift with later melt-off
of the deeper snow area, as values of PPC in leaf tissue of plants in deeper snow followed
roughly the same pattern as those in the ambient snow area, just offset by two weeks. One
explanation for the seemingly opposite results of studies in tussock tundra surrounding
Toolik Lake arises from different assays used to quantify various secondary compounds.
Most studies measure total phenolic content as opposed to protein-precipitating capacity
(Graglia et al. 2001, Zamin et al. 2017a), though some have measured both (De Long et

al. 2016) and found a similar decrease in PPC when N is added as a fertilizer to tundra.
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These fertilization responses may be sensitive to timing, however, as most measurements
of both phenolic content and PPC were taken near the end of July. B. nana in this
experiment exhibit a similar lower PPC in deeper snow areas at about the same time as
prior studies; however, | observed considerable variation when analyzing trends over the
entire growing season. Responses of both phenolic content and PPC to fertilization may
also be specific to certain secondary compounds that use different biosynthetic pathways
that may or may not compete with the synthesis of proteins necessary for plant growth

(Chapin 111 1989, Haukioja et al. 1998).

Despite the dampening effect of PPC on digestible protein content in the
deciduous shrubs, deeper snow increased the amount of digestible protein in certain
forage species (primarily through enhancing overall N content) while also increasing the
length of time that digestible protein content is above the minimum maintenance levels
required by caribou during the summer. The largest impact is on the value of deciduous
shrubs and sedges as a protein source. For example, deep snow resulted in ~25 additional
days of digestible protein above the maintenance threshold in S. pulchra compared to low
snow and ambient conditions. This doubles the length of time that caribou can gain
sufficient protein to recover body condition and sustain weight gain in ambient snow
conditions and mimics the increased duration of protein observed along latitudinal
gradients (Barboza et al. 2018). The duration of time that digestible protein in B. nana
and C. bigelowii remained above maintenance levels was also extended, albeit more
modestly at 6 and 9 days respectively. In addition, while the digestible protein content of
E. vaginatum was lower overall than other species for most of the growing season, levels

in the deeper snow area did not fall below the maintenance threshold during the sampling



27

period, suggesting that E. vaginatum may remain a useful protein source throughout

much of the year (Klein 1990, Ophof et al. 2013) with deeper snow.

Limitations

There are a few limitations with this study that must be addressed. First, this study
took place at a single snow fence located in moist acidic tussock tundra. There are strong
regional variations in responses of tundra to warming and fertilization experiments (Wipf
and Rixen 2010, EImendorf et al. 2011), suggesting that complex interactions among
climate, geology, and hydrology also determine how specific vegetation communities
respond to change. However, my largest observed responses to deeper snow (i.e. higher
N in S. pulchra and B. nana) are broadly consistent with several studies in different
locations (Walsh et al. 1997, Schimel et al. 2004, Welker et al. 2005, Leffler and Welker
2013, Semenchuk et al. 2015). It should also be noted that the deepest snow drifts created
by the snow fence in this experiment are deeper than even the most extreme predictions
of increased winter precipitation in the region (Scenarios Network for Alaska and Arctic
Planning 2011). More moderate increases in snow, though, may actually result in greater
long-term changes to plant communities than exceptionally deep snow associated with
snow fence studies (Borner et al. 2008, Wipf and Rixen 2010). For assessing forage
quality, I also make a few assumptions. Since | only analyzed protein-precipitating
capacity for the deciduous shrubs, | assumed the PPC for all other species was 0 when
calculating digestible protein. While graminoids are low in phenolic compounds that bind
protein, evergreen dwarf shrubs have high concentrations of secondary compounds that
make them relatively unpalatable (Bryant et al. 1983). While the PPC of the evergreen

shrubs remains unaccounted for in this study, the calculated digestible protein values are
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already well below the maintenance threshold, so their value as summer forage remains
unchanged. Although the results of this study may not apply to tundra ecosystems as a
whole, it still provides one of the few examples of how long-term changes in snow depth
affect certain tundra plants and what that means for both the quantity and quality of

forage for large arctic herbivores now and in the future.

Conclusions

Because tundra ecosystems are so nutrient-limited (Bryant et al. 1983), small
changes in both availability and quality of forage containing essential nutrients like
protein can have outsize impacts at both the individual and population levels (White
1983). Larger quantities of high-quality plants increase forage intake by caribou, which
increases the rate and amount of weight gained during the short growing season (White
and Trudell 1980). Only a few kilograms of weight gain can increase the chance of
conception by as much as 60% (White 1983, Proffitt et al. 2016). As capital breeders,
caribou rely on body stores of fat and protein to support pregnancy and early lactation
during the winter and early spring (Barboza et al. 2018). An increase in summer forage
quality reduces the time needed to recover body reserves from both winter deprivations
and the nutritional demand of lactation while increasing calf weight gain and growth rates
(White et al. 1975, Veiberg et al. 2017). A small positive change in future forage
nutrition from the increased snow predicted by climate models and observed over the past
20+ years, may potentially mitigate declines in forage quality due to higher temperatures
(Jonasson et al. 1986, Turunen et al. 2009, Fauchald et al. 2017, Zamin et al. 2017a) and

lead to higher survival, recruitment, and population growth rates of caribou in N Alaska.
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Table 1. Model selection results for nitrogen content of each species

Model
S. pulchra

SNOW*DOY*DOY?
SNOW + DOY*DOY?
DOY*DOY?

DOY + DOY?
DOY
B. nana

SNOW + DOY*DOY?
SNOW*DOY*DOY?
DOY*DOY?

DOY + DOY?
DOY
L. palustre

SNOW*DOY*DOY?
SNOW + DOY*DOY?
DOY*DOY?
DOY + DOY?
DOY

V.vitis-idaea
DOY
SNOW + DOY*DOY?
DOY + DOY?
DOY*DOY?

SNOW*DQY*DOY?
C. bigelowii

SNOW*DOY*DOY?
SNOW + DOY*DOY?
DOY*DOY?

DOY + DOY?
DOY
E. vaginatum

SNOW* DOY*DOY?
SNOW + DOY*DOY?
DOY*DOY?

DOY + DOY?
DOY

logLik

869.63
861.12
742.27

727.04
725.91

840.98
845.71
808.27

756.96
751.51

980.25
968.63
962.00

654.51
950.75

968.84
972.45
968.90
969.30
977.24

861.93
843.04
815.11

795.53
793.40

861.04
853.83
832.92

831.19
820.93

AIC,

-1707.23
-1703.49
-1470.08

-1441.75
-1441.58

-1663.23
-1659.41
-1602.09

-1501.58
-1492.77

-1928.56
-1918.55
-1909.55

-1896.69
-1891.26

-1927.45
-1926.21
-1925.47
-1924.17
-1922.58

-1691.93
-1667.37
-1615.79

-1578.74
-1576.57

-1690.19
-1688.97
-1651.42

-1650.07
-1631.64

AAIC,

0.00
3.74
237.14

265.48
265.65

0.00
3.82
61.14

161.66
170.46

0.00
10.01
19.01

31.87
37.30

0.00
1.24
1.98
3.28
4.87

0.00
24.56
76.14

113.19
115.36

0.00
1.23
38.77

40.13
58.55

df

U oY N O

15

15

U o N O

U o N L

weight

0.87
0.13
0.00

0.00
0.00

0.87
0.13
0.00

0.00
0.00

0.99
0.01
0.00

0.00
0.00

0.46
0.25
0.17
0.09
0.04

1.00
0.00
0.00

0.00
0.00

0.65
0.35
0.00

0.00
0.00

29



Table 2. Model selection for dry matter digestibility of each species

Model
S. pulchra

SNOW*DOY*DOY?
SNOW + DOY*DOY?
DOY*DOY?

DOY + DOY?
DOY
B. nana

SNOW*DOY*DOY?
SNOW + DOY*DOY?
DOY + DOY?

DOY*DOY?
DOY
L. palustre

SNOW*DOY*DOY?
SNOW + DOY*DOY?
DOY*DOY?
DOY + DOY?
DOY

V.vitis-idaea
DOY*DOY?
SNOW + DOY*DOY?

SNOW*DOY*DOY?
DOY

DOY + DOY?
C. bigelowii
DOY

DOY + DOY?
DOY*DOY?
SNOW + DOY*DOY?

SNOW*DOY*DOY?
E. vaginatum

SNOW*DOY*DOY?
DOY*DOY?

SNOW + DOY*DOY?
DOY

DOY + DOY?

logLik

710.34
686.75
682.45

679.38
664.83

624.33
607.62
535.26

535.51
530.52

581.01
572.15
566.10

543.41
526.78

594.41
595.81

601.14
569.53

569.74

291.43
292.36
292.52
295.56
297.52

253.19
244.35

244,51
232.26

232.27

AIC,

-1388.64
-1354.76
-1350.45

-1346.42
-1319.42

-1216.64
-1196.49
-1058.17

-1056.56
-1050.8

-1130.12
-1125.6
-1117.76

-1074.49
-1043.34

-1174.4
-1172.92

-1170.37
-1128.83

-1127.17

-572.63
-572.4

-570.59
-566.41
-563.12

-474.5
-474.27

-470.34
-454.3

-452.21

AAIC,

0.00
33.89
38.20

42.23
69.22

0.00
20.15
158.47

160.08
165.84

0.00
4.52
12.36

55.63
86.79

0.00
1.48

4.03
45.56

47.23

0.00
0.23
2.04
6.22
9.51

0.00
0.23

4.16
20.21

22.29

15

)]

O N o U

weight

1.00
0.00
0.00

0.00
0.00

1.00
0.00
0.00

0.00
0.00

0.90
0.09
0.00

0.00
0.00

0.62
0.30

0.08
0.00

0.00

0.43
0.39
0.16
0.02
0.00

0.50
0.44

0.06
0.00

0.00
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Table 3. Model selection results for protein-precipitating capacity of S. pulchra and B. nana

Model
S. pulchra

DOY + DOY?

DOY*DOY?
DOY

SNOW + DOY*DOY?

SNOW*DOY*DOY?
B. nana

SNOW + DOY*DOY?

DOY*DOY?

DOY + DOY?

SNOW*DOY*DOY?

DOY

logLik

83.39

83.60
80.94

84.46
91.72

127.56
123.20
121.17

131.91
117.39

AIC,

-156.07

-154.20
-153.41

-151.16
-149.91

-237.34
-233.40
-231.63

-230.22
-226.31

AAIC,

0.00

1.87
2.66

4.92
6.16

0.00
3.94
5.71

7.11
11.02

df

o O U

(e)]

14

weight

0.56

0.22
0.15

0.05
0.03

0.81
0.11
0.05

0.02
0.00
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Figure 3. Leaf tissue N concentration by species throughout the growing season. Points
indicate individual measurements, while trend lines are the predicted median + 95%
confidence intervals in shaded polygons. Pre-leaf emergence values for S. pulchra and B.
nana are not included in the model. Note that y-axis range differs among functional
groups.

34



PR RO

40
—A— - Snow
—& - Ambient

30 -| S pulchra B. nana <:@-+ + Snow

60 —

55 -

35

30 — R. tomentosum V. vitis-idaea

80

70 -

30 - C. bigelowii E. vaginatum

T T T I T T I T T T T 1 I T
170 180 190 200 210 220 230 170 180 190 200 210 220 230

DOY DOY

Figure 4. Leaf tissue dry matter digestibility by species throughout the growing season.
Points indicate individual measurements while trend lines are the predicted median + 95%
confidence intervals in shaded polygons. Pre-leaf emergence values for S. pulchra and B.
nana are not included in the model. Note that y-axis range differs among functional
groups.

35



o o
o o))
| \

o
KN
\

o
(V)
|

PPC (mg BSA precipitated/mg DM)
o
\

S.pulchra

o
o

o
w
\
\

o o
w IS
I I

PPC (mg BSA precipitated/mg DM)
(@]
N
|

0.1
—&— - Snow
Ambient
0.0 B.nana O+ SNOW
\ | \ | \ |
180 190 200 210 220 230
DOY

Figure 5. Protein-precipitating capacity by species through the growing season.

Points indicate individual measurements, while trend lines are the predicted
median + 95% confidence intervals in shaded polygons. Pre-leaf emergence
values were not included in the model.

36



37

25 ~ 25
| — -Snow
Ambient

20 - L +Snow |- 20

15 — 15

10 ~ 10

5 -5

0~ S. pulchra h L0

10 ~ 10
—_— —_
()] o
3 3
— 8 -8 —
= ~
2 2
C c
D 6 — 6 ‘D
-— -t
o 2
o 4 L4 o
o Q
2 e
7] ®
o 27 KR
D D
=) "y o

0~ R. tomentosum V. vitis-idaea L0

25 - 25

20 1 ~ 20

15 ~ 15

10 — 10

5 - -5

o - C. bigelowii E. vaginatum 0

\ T 1 T T T \ \ T 1 1 T T T
170 180 190 200 210 220 230 170 180 190 200 210 220 230
DOY DOY

Figure 6. Leaf tissue digestible protein. Trend lines are the predicted median + 95% confidence
intervals in shaded polygons. The maintenance level protein required by caribou (7-8 g/100g DM)
is highlighted in red. Note that y-axis range differs among functional groups.



38

CHAPTER 3: CONCLUSIONS

Results of this research indicate that projected increases in winter precipitation
over Alaska’s North Slope may indirectly increase the quality of caribou forage. Deeper
snow insulates the soil and allows microbial mineralization to continue throughout the
winter, increasing soil nitrogen available for plant uptake in early spring. Snow depth
may not have as large an impact on dry matter digestibility as leaf-level nutrients, but
even the small increases seen in this study may influence forage intake, with subsequent
multiplier effects on survival and fecundity. Direct changes in N availability and indirect
changes in vegetation community structure, though, may have a stronger influence on
overall caribou nutrition in the Arctic than species-specific changes in forage

digestibility.

Caribou and reindeer populations around the Arctic face many challenges:
extreme weather, predation, insect harassment, the encroachment of human development
(Morschel and Klein 1997, Vors and Boyce 2009, Festa-Bianchet et al. 2011), but climate
change presents a new challenge, bringing increased temperatures, shifting precipitation
patterns, and altering forage availability and quality (Callaghan et al. 2011, Fauchald et
al. 2017, Mallory and Boyce 2018). While warmer growing season temperatures are
associated with declines in forage quality due to increased vegetative growth and nutrient
dilution (Turunen et al. 2009, Fauchald et al. 2017, Zamin et al. 2017b), increases in
winter snow may mitigate the magnitude of such declines. Additionally, the availability
of preferred forages like deciduous shrubs is expected to continue increasing as the Arctic
becomes shrubbier, though certain species, like B. nana (which is less preferred than

Salix spp.), may spread more rapidly (Bret-Harte et al. 2001, Sturm et al. 2001b, 2005,
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Tape et al. 2006). Arctic herbivores may adjust to the increase in available forage and
potentially curb the trend towards shrubification (Gough et al. 2007, Zamin and Grogan
2013, Kaarlejérvi 2014, Kaarlejarvi et al. 2017), though perhaps only in the short term
due to the strong influence of abiotic stochasticity on both plant and animal populations
in such extreme environments (Jefferies et al. 1994, Loe et al. 2016). Warmer
temperatures and increased shrub cover may also decrease important winter forages such
as lichens and evergreen dwarf shrubs (Wahren et al. 2005, Hobbie et al. 2017), so it is
difficult to say whether the net effect of changes in temperature and precipitation in the
Arctic will be positive or negative for caribou. This question of the net effect, as a
balance of positive feedback and feedforward, has been of interest for several decades

now in the Arctic (Welker et al. 1997).

One of the major discussions as of late has been the seasonality of caribou forage
as a critical component of meeting animal metabolic needs during the autumn rut and pre-
winter preparation and its importance to subsequent winter survival and herd fecundity
(Gustine et al. 2017, Veiberg et al. 2017, Barboza et al. 2018). My data support the
prediction that one of the major consequences of deeper snow in winter is that caribou
available protein (CAP), delivered primarily by Salix, will be greatly extended through
the short growing season by as much as three weeks. This higher level of CAP during a
hyper-critical season may be especially important to sustaining the health and welfare of

caribou in northern Alaska.
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