
Cardiopulmonary Health Effects of Airborne Particulate Matter: 
Correlating Animal Toxicology to Human Epidemiology

Kent E. Pinkerton1, Chao-Yin Chen2, Savannah M. Mack1, Priya Upadhyay1, Ching-Wen 
Wu1, Wanjun Yuan1,3

1Center for Health and the Environment, University of California, Davis, Davis, California

2Department of Pharmacology, University of California, Davis, Davis, California

3College of Environmental & Resource Sciences, Shanxi University, Taiyuan, Shanxi, China

Abstract

The effects of particulate matter (PM) on cardiopulmonary health have been studied extensively 

over the past three decades. PM is the primary criteria air pollutant most commonly associated 

with adverse health effects on the cardiovascular and respiratory systems. The mechanisms by 

which PM exerts its effects are thought to be due to a variety of factors which may include, but are 

not limited to, concentration, duration of exposure, and age of exposed persons. Adverse effects of 

PM are strongly driven by their physicochemical properties, sites of deposition, and interactions 

with cells of the respiratory and cardiovascular systems. The direct translocation of particles, as 

well as neural and local inflammatory events, are primary drivers for the observed 

cardiopulmonary health effects. In this review, toxicological studies in animals, and clinical and 

epidemiological studies in humans are examined to demonstrate the importance of using all three 

approaches to better define potential mechanisms driving health outcomes upon exposure to 

airborne PM of diverse physicochemical compositions.
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INTRODUCTION

The health impacts of exposure to particulate matter (PM) are well established. According to 

the World Health Organization data (2019), nine out of ten people breathe polluted air — 

this exposure kills seven million people every year.1 Even at concentrations below current 

United States (US) and European Union regulatory standards, community death rates rise 

and fall with pollution levels.2 Exposure to PM manifests in a diverse number of ways. 

Complications can be as simple as eye, nose, and throat irritation, coughing, and wheezing, 
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or as severe as irregularities in cardiac function. Of greatest concern are those effects on the 

heart and the lungs. Within federal pollution limits, ~60,000 cases of respiratory problems/

heart attacks can be attributed to air pollution exposure in the US.1

There are three general study types for evaluating health effects of environmental exposure 

to PM. These include 1) toxicological, 2) human clinical, and 3) epidemiological 

methodologies, each of which have advantages and disadvantages.

Toxicological studies are controlled experiments using animals or cells. The advantages of 

toxicological studies are controlled exposure conditions, readily measured outcomes, and the 

ability to explore mechanisms by observing cellular and molecular changes. Compared to 

epidemiology studies, toxicological studies are limited in animal sample size, as well as a 

general inability to study susceptible subgroups reflective of the human population. In 

addition, inter-species differences in anatomy and physiology must be taken into 

consideration when extrapolating to humans. For example, mice and rats do not have 

respiratory bronchioles as do dogs, monkeys, and humans. Mice and rats also take 100-125 

breaths/minute, while humans only take 12-14 breaths/minute. These anatomical and 

physiological factors affect the dose and thus the damage to exposed lungs.

Human clinical studies involve experiments in environmentally controlled situations or, as is 

often the case for inhalation studies, in isolated chambers. These studies enable the 

measurement of effects in humans exposed to known PM concentrations. The disadvantages 

of human clinical studies are typically related to the greater investments (e.g. time, money) 

required relative to animal studies. Such costs impose limitations in 1) the number of 

subjects for any given study, 2) the duration of exposure which general only allows for the 

measurement of acute effects, and 3) the reproducibility of environmental PM compositions 

and exposure conditions.

Epidemiological studies involve large cohorts of humans in real-world situations. The 

inclusion of a wide range of exposures to mixed pollutants presents an advantage and a 

disadvantage. Confounding factors such as differing populations or geographical areas could 

affect the study outcome, but also includes susceptible subgroups (e.g. the elderly and 

children) which offers the ability to capture a more complete range of human response 

patterns. Variability between subgroups may present challenges, particularly with respect to 

detecting statistically significant relationships. Fortunately, there are sophisticated statistical 

techniques to control for confounding factors to enhance more accurate exposure 

assessments.

Our intent in this review is to demonstrate the importance of using all three approaches of 

toxicological, human clinical, and epidemiological studies to better define and elucidate the 

potential causes for cardiopulmonary disease, based on airborne particulate matter of diverse 

chemical and physical composition. Such differences can affect both the interpretation of the 

pathobiology as well as the toxicology seen in human and animal studies.

Although not comprehensive, this review provides examples of a series of studies which 

demonstrate how epidemiological studies in humans can be interfaced with toxicological 

studies in animals to provide greater insights for potential biological mechanisms of effect.
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PM AND HEART RATE VARIABILITY

Epidemiological studies have shown that there can be an increase in cardiovascular 

morbidity and mortality following short-term exposure to PM associated with air pollution.
3,4 Long-term exposure to particulate air pollution has also been associated with 

cardiovascular events leading to reduced life expectancy.5 While there appears to be little 

doubt that PM exposure poses a significant cardiovascular health risk, the underlying causes 

are poorly understood. The decreased heart rate variability (HRV) associated with PM 

exposure has gained considerable attention as a potential cause.4 HRV is the variation 

among time intervals between successive heartbeats. When measured on an 

electrocardiogram (ECG), this between-beat interval is called an R-R interval. Decreased 

HRV has been shown to be an index of decreased cardiac autonomic function and is 

associated with increased susceptibility to ventricular arrhythmias and risk for 

cardiovascular-related sudden death.6-13

Epidemiological studies show significant associations between exposure to PM with 

particles of aerodynamic diameter of ≤ 2.5 μm (PM2.5) and cardiovascular-related morbidity.
14-17 These epidemiological studies have been validated in human clinical studies. In a study 

by Vallejo et. al. (2006), 40 young healthy adults from the Mexico City were assessed to 

determine the association between PM2.5 and HRV.18 All individuals underwent 13 hours of 

Holter electrocardiographic and PM2.5 personal exposure monitoring. The standard 

deviation of normal RR intervals (SDNN) and the percent difference between adjacent 

normal RR intervals larger than 50 milliseconds (pNN50) were used for the evaluation of 

HRV. Results showed a statistically significant negative association between pNN50 and 

cumulative exposure to PM2.5, such that the former decreased by 0.08% (p=0.01) when there 

was a 30 μg/m3 increase in PM2.5 in the 2 hours prior to the measurement. This study 

demonstrated acute HRV effects of environmental exposure to PM2.5 in young healthy 

adults. However, due to a number of limitations in human studies, those mechanisms 

mediating reduced HRV by PM can be better addressed in animal studies.

As previously stated, an advantage of animal toxicological studies is the ability to explore 

mechanisms through the observation of cellular and molecular changes. Pham et.al. (2009) 

hypothesized that PM2.5 exposure decreases the excitability of cardiac vagal neurons in the 

nucleus ambiguus to decrease HRV.19 Mice were exposed for 3 days to laboratory-generated 

PM2.5 (soot only or iron-soot). HRV was measured over a 24-hour period as ECG telemetry 

recordings. Cardiac vagal neurons were retrogradely labeled with fluorescent dye to 

determine the intrinsic properties of these neurons in the nucleus ambiguus. Following 

PM2.5 exposure, a reduction in neuronal excitability in cardiac vagal neurons was observed. 

Additional studies have also shown similar changes in HRV due to exposure to PM.20-23

Cardiovascular effects associated with PM exposure need to be explored further. The 

findings of these toxicological studies show that decreased excitability of cardiac vagal 

neurons might be a potential cause for the cardiovascular effects observed in humans.
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IMPAIRED NEONATAL LUNG GROWTH

Many epidemiological, clinical, and toxicological studies have demonstrated exposure to 

PM during development has a detrimental effect on children’s respiratory health.24-32 

Symptoms range from increased incidence of respiratory infection, decreased lung function, 

asthma exacerbation, and in some cases, impaired lung development. One of the most cited 

studies on the relationship between air pollutants and respiratory health is the Southern 

California Children’s Health Study (CHS).33 This cohort was established in 1992 and has 

since involved more than 12,000 school-aged children.29,34,35 It is well studied and 

understood that human and animal lungs continue to develop postnatally. In the human, the 

lung will not be fully developed until approximately 21 years of age. This fact opens the 

hypothesis that there is a developmental window in which a child may be more susceptible 

to the detrimental effects of PM than an adult.

In a report focusing on 10-18 year-old youth from the CHS cohort, Gauderman et al. (2004) 

measured the lung function of over 1700 school-aged children on an annual basis for eight 

years.36,37 This age-range was designed to capture a critical period of lung development. In 

children exposed to several pollutants including, but not limited to, PM2.5 and elemental 

carbon statistically significant deficits were observed in the forced expiratory volume in one 

second (FEV1; the maximum amount of air that can be forcefully exhaled in one second). 

These results were consistent across males and females with and without pre-existing 

respiratory conditions, and worsened slightly for those who spent significantly more time 

outdoors. Forced vital capacity (FVC; the amount of air that can be forcibly exhaled from 

the lungs after taking the deepest breath possible), FEV1, and maximal mid-expiratory flow 

(MMEF; the peak expiratory flow taken from the flow-volume curve mid-spirometry) are 

measures which can reflect lung volume. The youth in this study were in a specific 

developmental time window when alveoli are still growing, suggesting impaired lung 

function in children could be related to changes in lung growth.38

Effects of PM on the developing lung have been studied and debated in the literature. The 

precise mechanism for these effects is complex and still being elucidated. In a study by 

Pinkerton et al. (2004), the respiratory effects of acute exposure to combustion-generated 

particles were examined in neonatal rats.38 Neonatal rats undergo a rapid growth stage in 

their first three weeks of life, creating a perfect model to study this window of postnatal 

development. Ten-day old rats were exposed by whole-body inhalation 6 hours/day for 3 

consecutive days to laboratory-generated particles < 0.1 μm in diameter, at a concentration 

of 250 μg/m3. Two hours prior to necropsy, they were injected with bromodeoxyuridine 

(BrdU), a nucleotide analog used to identify cells undergoing DNA synthesis, to enable the 

analysis of lung development and cell proliferation.

Developmental changes in the lung parenchyma, the terminal bronchioles, and the proximal 

alveolar region were examined (Figure 1). These changes were quantified by BrdU 

expression, as well as the appearance of new alveoli, observed through the presence of 

secondary alveolar septa (Figure 2). No significant changes in the terminal bronchioles or 

lung parenchyma were observed between the filtered air (FA) and PM-exposed animals. In 

contrast, within the proximal alveolar region, there were significantly less BrdU-labelled 

cells in animals exposed to PM versus FA. These findings suggested a significant 
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impairment of cellular growth in a critical region which could plausibly produce a dramatic 

decrease in the formation of new alveoli during postnatal lung development.

REGIONAL PM COMPOSITION AND HEALTH OUTCOMES – FRESNO, CA.

Recent epidemiologic studies have suggested a strong correlation between particle-induced 

health effects and particle size for the fine (< 2.5 μm) and ultrafine (< 0.1 μm) size fractions 

of PM.39,40 These size-fractions can be readily deposited deep in the lung to irritate the lung 

parenchyma, and translocate into the blood stream.41 Particle mass, composition, size, and 

number have all been implicated in PM toxicity in animal and human studies.

California’s Central Valley has some of the highest ambient PM concentrations found in the 

US. The valley encompasses rich farming area and extensive urban development creating a 

unique setting for exposure to both geo- and anthropo-genic PM.42 Agriculture, fires, wind-

blown dust, diesel and gasoline engine exhaust, power plant emissions, and home heating all 

contribute to atmospheric PM in the Central Valley.43 Since ambient particles come from 

different sources, they comprise a large number of compounds including organic, inorganic, 

and elemental carbon, crustal components, and metals.44 The specific constituents or 

properties responsible for biological effects on the respiratory system have not been fully 

determined.

A study by Smith et at. (2003) found concentrated ambient particles (CAPs), composed of 

PM2.5 from the Central Valley, produced respiratory changes in healthy adult rats.45 In their 

study, Sprague-Dawley rats were exposed in three separate experiments to filtered air or 

PM2.5 during the fall of 2000 in Fresno, California. Exposures were for 4 hr/day for three 

consecutive days. The three-day mean mass concentration of particles ranged from just 

under 200 to over 800 μg/m3. Particle mass and elemental composition were determined 

over the course of each experiment. Following exposure, bronchoalveolar lavage (BAL) was 

collected to determine cell viability, total cell number, and cell differentials.

Physicochemical analysis of CAP samples from fall 2000 demonstrated PM enriched with 

ammonium nitrate, organic and elemental carbon (OC and EC, respectively), and metals. 

Nitrate and OC were the predominant PM constituents, accounting for 80% of the total CAP 

mass (Figure 3). BAL cell permeability is an indicator of decreased membrane integrity. 

Permeable (nonviable) BAL cells from rats exposed to filtered air ranged from 6% to almost 

11%. In contrast, CAP exposure significantly increased the proportion of nonviable BAL 

cells over control animals (Figure 4). In addition, significant increases were also noted in the 

number of macrophages and neutrophils following PM exposure (p<0.05).45 These 

observations strongly suggest exposure to elevated concentrations of PM2.5 in Fresno is 

associated with mild, but statistically significant, cellular effects in the lungs of healthy adult 

rats.

An inquiry arising in both toxicological and epidemiological studies is the specific chemical 

components leading to observed health effects. As noted in Figure 3, the dominant chemical 

components of the Fresno PM were nitrates and carbon. Therefore, we asked the question 

whether aerosolized nitrate and carbon particles alone are sufficient to cause enhanced 

cellular permeability and cell death. Under laboratory conditions, ammonium nitrate and 
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elemental carbon were aerosolized to a respirable size fraction of PM to observe whether an 

acute three-day exposure (6 hours/day) similar to that conducted in Fresno would lead to 

injury in the lungs of healthy adult rats.

To measure the effect of cell viability and injury, our laboratory used a three-dimensional 

imaging technique described by Postlethwait and colleagues (2000) to examine airway cell 

permeability.46 One day following the end of this three-day exposure, animals were deeply 

anesthetized and the lungs were perfused via the airways with ethidium homodimer I 

(EthD-1) solution which has a high binding affinity to DNA. Microdissection of the airways 

was done, followed by incubation with a second nuclear dye, YOPRO-1. The airways were 

subsequently examined by confocal microscopy to determine the presence of EthD-1-

positive (injured) cells (Figure 5). In contrast to filtered-air controls, numerous cells at 

airway bifurcations demonstrated increased permeability (EthD-1-positive cells), suggesting 

significant toxicity of ammonium nitrate and carbon black PM exposure.

LUNG PATHOLOGY OF FRESNO CORONER CASE STUDIES

Fresno has among the highest inhalable particle concentrations in the US.47 Individuals 

residing in this region are at increased risk of consistently high exposure to ambient PM.45 

Pinkerton et al. (2000) examined the lungs of 40 deceased Hispanic males, with a median 

age of 33 years who had lived an average of 16 years in Fresno County.48 Most of the 

subjects were farmworkers or in other blue-collar occupations. These individuals had been 

healthy and died of non-respiratory causes.

Lung autopsy specimens were collected from the Fresno County Coroner’s Office. Two 

distinct airway paths into the apico-posterior and apico-anterior portions of the left upper 

lung lobe (Figure 6) were followed to examine the relationship between the retained 

carbonaceous and mineral dust in the lungs and remodeling of the airways. Parenchymal 

tissues and associated terminal and respiratory bronchioles of each airway path were 

analyzed. Pathological changes in the human lung were assessed by semiquantitative 

evaluation.

Results demonstrated little evidence of visible particle accumulation in the larger conducting 

airways with the exception of bronchus-associated lymphoid tissues and peri-bronchial 

connective tissues. The relative absence of particles in the larger conducting airways likely 

reflected more rapid clearance of particles deposited in these regions (Figure 6).

In contrast, terminal and respiratory bronchioles arising from each pathway revealed varying 

degrees of wall thickening and remodeling (Figure 7A). Walls with marked thickening 

contained moderate to heavy amounts of carbonaceous and mineral dusts (Figure 7B). Wall 

thickening was also associated with increases in collagen and interstitial inflammatory cells, 

including dust-laden macrophages. These changes were analyzed and scored in order of 

respiratory bronchiole generation (Figure 8). A highly significant (p<0.001) difference was 

noted in the degree of histologic changes for all features, including fibrosis, interstitial wall 

inflammation, amount of carbonaceous pigment, and amount of birefringent dust pigment 

found by respiratory bronchiole generation. First-generation respiratory bronchioles 

demonstrated the greatest changes, compared to second generation respiratory bronchioles, 
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while second generation respiratory bronchioles demonstrated greater changes compared to 

third-generation respiratory bronchioles (p<0.001).

In summary, cases from the Fresno Medical Examiner’s office demonstrated terminal 

bronchioles and first-generation respiratory bronchioles to be the principal sites of 

deposition for ambient particles and associated tissue remodeling. This transitional 

respiratory zone of the lungs has unique anatomical and physiological features that can lead 

to enhanced particle deposition and possible retention. All medical examiner cases exhibited 

tissue remodeling associated with the presence of carbon black and birefringent particles. 

The association between fibrotic lesions and particle deposition/retention also strongly 

suggested that inhalation of ambient PM can lead to long-term structural changes in the 

lungs.

CONCLUSION

Multiple studies have shown exposure to PM can exert adverse effects on the heart and lungs 

in both animals and humans. This review demonstrates that the combined use of 

toxicological and epidemiological studies can serve to better elucidate those mechanisms by 

which PM causes injury. However, there continues to exist important data gaps that need to 

be addressed to more fully identify and understand the cardiopulmonary health effects of 

PM. For example, the identification of specific sources of PM by chemical composition 

derived from traffic, agriculture, wood-smoke or other unique sources, could allow us to 

better understand those components which are most toxic. A greater implementation of 

personal monitoring devices could also aid in the elucidation of specific sources that 

exacerbate disease. New toxicological and human clinical studies could be subsequently 

designed based on the acquisition of data from such studies.

Definitive evidence of PM toxicity enables intervention, regulation and policy-making that 

could minimize exposure, especially for susceptible individuals. Studies that investigate 

susceptible populations such as children and elderly individuals could be further developed. 

While epidemiological studies can identify susceptible populations, toxicological studies 

could aid in the development of therapeutics. Together, these approaches could assist in 

establishing regulatory interventions to better protect the health of susceptible populations.

To address the current knowledge gaps of PM toxicity requires studies in toxicological, 

epidemiological as well as human clinical studies. The power of their combined use in 

research provides a greater ability to define biological plausibility and to seek out solutions 

to protect public health.
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Figure 1. 
Light micrographs of the terminal bronchiole (TB) and proximal alveolar region (PAR) in 

the neonatal rat lung exposed to filtered air (A) or to soot and iron particles (B). The lines 

delineate the alveolar ducts arising from the terminal bronchiole comprising the PAR. 

Secondary alveolar septa (arrows) are typical in rapidly developing lungs. Alveolar 

outpocketings (*) show newly formed alveoli. Reproduced with permission from Pinkerton 

et al. (2004).38
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Figure 2. 
Lung tissue sections stained immunohistochemically for the detection of bromodeoxyuridine 

(BrdU) from an animal exposed to filtered air (A) and an animal exposed to soot and iron 

particles (B). Cell nuclei incorporating BrdU are darkly stained (arrows). The nucleus of 

cells not undergoing DNA synthesis have a lighter appearance in these micrographs. 

Reproduced with permission from Pinkerton et al. (2004).38
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Figure 3. 
Chemical composition of CAPs during fall 2000 exposures. The mass concentration (μg/m3) 

is shown for each species measured over the 3-day period of exposure. The unexplained 

fraction (Unexpl) represents that portion of the total particle mass not accounted for by 

chemical analysis. Modified from Smith et al. (2003).45
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Figure 4. 
Percentage of nonviable (membrane permeable) cells in BAL fluid during the 3 weeks of fall 

2000 exposures in Fresno. Error bars indicate SE. *p < 0.05, compared with filtered air. 

Modified from Smith et al. (2003).45
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Figure 5. 
3-D image of airway bifurcations following exposure to filtered air (A) and particles (B). 

Epithelial cell permeability is indicated by EthD-1 positive cells (in red).
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Figure 6. 
Airway dissection of the left human lung. Anatomically distinct airway paths beginning at 

the left mainstem bronchus are followed to the apical regions of the left upper lobe. 

Modified from Pinkerton et al. (2000).48
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Figure 7. 
(A) Contiguous first-, second-, and third-generation respiratory bronchioles in longitudinal 

profile from the lung of a Fresno County resident. Minor postmortem filling of some alveoli 

with edema fluid is noted (arrows) with no other pathological changes. (B) First- and 

second-generation respiratory bronchioles from a Fresno County resident, showing severe 

grades of pathologic change in the respiratory bronchioles. Specifically, there are increases 

in collagen, smooth muscle, and visible pigment. Also note that the changes are maximal in 

the first-generation respiratory bronchiole, with a progressive decrease in these tissue 

responses in more distal generations. Modified from Pinkerton et al. (2000).48
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Figure 8. 
Bar graph showing the relationship between the severity scores for first-, second-, and third-

generation respiratory bronchioles. *For all features, severity scores were significantly 

greater (p < 0.001) in first-generation respiratory bronchioles compared to the second and 

third generations. **All scores for second-generation respiratory bronchioles were 

significantly greater (p < 0.001) than scores for the third-generation respiratory bronchioles. 

Adapted from Pinkerton et al. (2000).48
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