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Level-biases in estimated breeding values 
due to the use of different SNP panels over time 
in ssGBLUP
Øyvind Nordbø1,2* , Arne B. Gjuvsland1,2, Leiv Sigbjørn Eikje1 and Theo Meuwissen3

Abstract 

Background: The main aim of single-step genomic predictions was to facilitate optimal selection in populations 
consisting of both genotyped and non-genotyped individuals. However, in spite of intensive research, biases still 
occur, which make it difficult to perform optimal selection across groups of animals. The objective of this study was 
to investigate whether incomplete genotype datasets with errors could be a potential source of level-bias between 
genotyped and non-genotyped animals and between animals genotyped on different single nucleotide polymor-
phism (SNP) panels in single-step genomic predictions.

Results: Incomplete and erroneous genotypes of young animals caused biases in breeding values between groups 
of animals. Systematic noise or missing data for less than 1% of the SNPs in the genotype data had substantial effects 
on the differences in breeding values between genotyped and non-genotyped animals, and between animals 
genotyped on different chips. The breeding values of young genotyped individuals were biased upward, and the 
magnitude was up to 0.8 genetic standard deviations, compared with breeding values of non-genotyped individuals. 
Similarly, the magnitude of a small value added to the diagonal of the genomic relationship matrix affected the level 
of average breeding values between groups of genotyped and non-genotyped animals. Cross-validation accuracies 
and regression coefficients were not sensitive to these factors.

Conclusions: Because, historically, different SNP chips have been used for genotyping different parts of a population, 
fine-tuning of imputation within and across SNP chips and handling of missing genotypes are crucial for reducing 
bias. Although all the SNPs used for estimating breeding values are present on the chip used for genotyping young 
animals, incompleteness and some genotype errors might lead to level-biases in breeding values.

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Bias in single-step genomic predictions for dairy cat-
tle has been debated within scientific communities for 
several years [1–3], and these biases have hindered 
the breeding organisations from adopting single-step 
genomic best linear unbiased prediction (GBLUP) 
approaches. Bias is a general term, and for practical use 
in breeding programmes, it is useful to differentiate 
between at least two types of bias: (1) inflation of genomic 

breeding values, which causes an enhanced spread of the 
breeding value estimates; and (2) level-bias of breed-
ing values, which influences the predicted genetic levels 
for groups of animals (e.g. overprediction of genotyped 
animals vs. non-genotyped animals). Since many dairy 
breeding organisations tend to use only young bulls with-
out daughter information in their breeding program, the 
importance of the inflation becomes less problematic for 
genetic progress. On the contrary, a prominent level-bias 
can have important effects for two reasons: (1) pre-selec-
tion (selection of the calves that should be genotyped) is 
based on the mid-parent mean, and a prominent level-
bias would affect the selection based on the genotype 
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status of the mother; (2) if the herd consists of both geno-
typed and ungenotyped animals, level-bias would affect 
the selection accuracy within the herd.

In single-step genomic predictions (ssGBLUP), 
breeding values for the selection of both genotyped 
and non-genotyped animals are calculated simulta-
neously with all the information included [4, 5]. This 
makes it possible to perform all the selection within 
the breeding program based on one set of breeding 
values. To perform an optimal selection, it is crucial 
that predicted breeding values are on the same scale 
whether the animal is genotyped or not.

Often, selection of young animals to be genotyped 
(before the final selection into the artificial insemina-
tion (AI) and embryo transfer programs) is based on 
the parent-mean estimated breeding value (EBV) of 
all the calves in the entire population. Most AI bulls 
are genotyped; however, the cow population consists 
of both genotyped and non-genotyped animals. In the 
presence of level-bias, where genotyped cows that on 
average have higher breeding values than non-geno-
typed cows, sons and daughters of genotyped cows will 
mainly have higher parent average EBV than descend-
ants of non-genotyped cows, and this leads to incor-
rect ranking and reduced genetic progress.

In 2012, genomic predictions for all traits were 
implemented for the pre-selection of Norwegian Red 
young bulls using a SNP-BLUP method [6]. Selec-
tion candidates were genotyped on the same SNP 
panel as most of the reference population. In 2016, 
SNP-BLUP was replaced by single-step GBLUP [4, 5] 
because of the higher accuracy of EBV. This was fol-
lowed by intensive genotyping of cows, using another 
SNP panel. All the SNPs used for genomic predic-
tions were present on the new panel, and no imputa-
tion was performed when new genotypes from the new 
chip were added. After some months in operation, it 
was observed that breeding values of different groups 
of animals tended to drift. Young genotyped animals 
received on average higher EBV than before genotyp-
ing, and in addition, animals genotyped on one chip 
were predicted to have a higher genetic level than ani-
mals genotyped on other SNP chips, and this deviation 
was larger than that explained by genetic trend.

In this study, we investigated several potential 
sources of the aforementioned biases. We investigated 
whether incomplete imputation of missing SNPs or 
erroneous SNP-data could be sources of bias between 
genotyped and non-genotyped animals and between 
animals genotyped on different SNP panels in ssG-
BLUP. We also examined how the addition of a small 
value to the diagonal of the genomic relationship 
matrix, which was previously often used to make it 

non-singular, affects level-bias between genotyped and 
non-genotyped animals.

Methods
Population
Norwegian Red (NR) is a synthetic dairy breed, which 
has been selected for a broad breeding objective. Histori-
cally, it was based on a cross between traditional Norwe-
gian breeds, in combination with imported genetics mainly 
from Finnish Ayrshire and Swedish Red (from 1960 to 
present), but also some Holstein/Friesian in the 1960s 
and 1970s. Currently, about 5% of the NR originates from 
Holstein (Morten Svendsen, personal communication). 
Back in the 1950s and 1960s, Norwegian Reds were mainly 
selected for production and functionality. Later, other traits 
were included in the breeding goal, i.e. fertility in the early 
1970s and health in the late 1970s. Currently, health and 
fertility traits constitute one third of the breeding goal and 
the rest is divided between functional traits (1/3), which 
include both conformation traits, milkability, tempera-
ment and polledness, and production traits (1/3), which 
include both milk and beef production). The population 
includes ~ 210,000 dairy cows, with an effective population 
size of about 240 [7].

Phenotypes and statistical model
Phenotypes on 305-day lactation yields for kg of milk 
were taken from the routine evaluations consisting 
of 7,519,418 records from the 1st to 3rd lactation on 
3,647,173 Norwegian Red cows, with lactation data from 
1979 and onwards. The pedigree was traced back to 25 
generations and comprised 4,650,339 animals. Miss-
ing pedigree data were grouped by year of birth and by 
the following classes: the missing parent is the miss-
ing AI sire, or the missing farm bull or the missing dam. 
This resulted in 114 groups. The dataset was analysed in 
MiX99 [8] by a single-trait repeatability animal model 
with a heritability, h2 equal to 0.26, and a value of repeat-
ability equal to 0.52, which are the values used in routine 
evaluations:

where y is the vector of estimated accumulated 305 days 
yields/lactation produced by the cow; µ is the intercept; 
m is a vector of fixed month × year effects with the design 
matrix T ; a is a vector of fixed age × lactation number 
effects with the design matrix F , (age was measured in 
months); d is a vector of fixed effects of days open × lac-
tation number with the design matrix K , (days open is 
grouped into 10-days intervals up till 159 days); h is a vec-
tor of random herd × year effects with the design matrix 
X ; ĝ is the vector of genetic group regression effects with 
the design matrix Q of genetic group contributions; p 

y = µ+ Tm + Fa + Kd + Xh + ZQĝ + Pp+ Zû + e,
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is a vector of random permanent environmental effects 
with the design matrix P ; û is a vector of random animal 
effects with the design matrix Z ; and e is a vector of ran-
dom errors. All random effects are assumed to be inde-
pendently distributed, with the exception of û which has 
variance Var(u) = Hσ 2

u , where H denotes the combined 
genomic and pedigree-based relationship matrix that is 
varied as described in the next section. Genetic groups 
were included in the model as fixed regressions where 
the genetic group contributions of each animal in Q were 
calculated first with RelaX2 [9]. Then, after solving the 
mixed model equations in MiX99, the regression coeffi-
cients ĝ , were multiplied with the genetic group matrix Q 
(which included all the animals in the pedigree) and then 
added to the animal effects ( ̂u ) to give the final breeding 
values: GEBV = û +Qĝ.

Genotype data and genomic relationships
Genomic data consisted of 40,174 Norwegian Red ani-
mals, genotyped on different platforms: a customized 
Affymetrix 55  k SNP chip (Affymetrix, Santa Clara) 
(31,947 samples), Illumina 54  k v1, BovineSNP50 Bead-
Chip (Illumina, San Diego) (726 samples), Illumina 54 k 
v2, BovineSNP50 BeadChip (Illumina, San Diego) (4943 
samples), Illumina 777  k, BovineHD Genotyping Bead-
Chip (Illumina, San Diego) (1487 samples) and Affy-
metrix 25  k (Affymetrix, Santa Clara), (1071 samples). 
Most progeny-tested bulls are genotyped on the Illumina 
chips and the Affymetrix 25  k chip, whereas in the last 
few years most of the cows and selection candidates have 
been genotyped on the Affymetrix 55 k SNP chip (Fig. 1).

The following parameters were used to filter the SNPs 
within a chip before imputation: a minor allele frequency 
(MAF) higher than 0.01, a SNP call rate ≥ 0.9, and a 
Hardy–Weinberg equilibrium exact test p value > 1e–7. 
In order to reduce the biases observed in the routine 
breeding value estimations described in the "Background" 
section, genotype data were imputed with Flmpute [10] 
to a subset of the Illumina 777 k chip for which all SNPs 
segregated in the population with few Mendelian incon-
sistencies. To make the selection of SNPs for genomic 
predictions as uniform as possible across the genome, 
we performed linkage disequilibrium (LD) pruning by 
using the PLINK software [11, 12]. A 50-SNP window 
size was set, and five SNPs was used to shift the win-
dow at each step. Pairs of variants in the current window 
with a squared correlation greater than the r2 threshold 
of 0.5 were pruned from the window until no such pairs 
remained. After this step, 109  k SNPs remained for the 
genomic predictions.

SNP data were used to calculate genomic relationships 
and to build the combined inverse pedigree and genomic 
relationship matrix H−1 [4, 5] using the HGINV program 
[13]:

where A22 is the sub-matrix of the pedigree-based rela-
tionship matrix ( A ) for genotyped animals. Since Norwe-
gian Reds’ are an open population, estimation of the base 
allele frequencies is not straightforward. To overcome 
this problem and to avoid that imported genetics 
appeared extremely inbred, we used equal allele 

H−1 =
[
0 0

0 G−1
w − A−1

22

]
+ A−1,
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frequencies (0.5) for all SNPs in the construction of the 
genomic relationship matrix G [14]. G was then scaled by 
multiplying a parameter to all matrix elements to make 
the average diagonal elements equal to 1 [15]. Let M 
denote the ( m ∗ n ) marker matrix, with m individuals and 
n markers containing elements equal to − 1, 0 and 1 for 
the homozygote, heterozygote and the other homozy-
gote, respectively. Using Method 1 from [16] with allele 
frequencies of 0.5 and scaling the matrix to have average 
diagonal elements equal to 1, the scaled genomic rela-
tionship matrix can be written as G = m

trace
(
MMT

)MMT . 
Then, the additive pedigree relationship matrix was 
weighted by 10% to account for genetic effects that are 
not captured by the SNPs. In addition, we also investi-
gated the effect of adding a small value ( Diag ) to the diag-
onal of the raw G matrix [13, 17], which became 
Gw = 0.9 ∗

(
G+ I ∗ Diag

)
+ 0.1 ∗ A22. The effect of 

changing the Diag parameter was investigated for the 
alternative scenarios D-2 to D-4 in Table 1, while for the 
other scenarios, this parameter was set to zero.

To investigate various aspects of imputation of missing 
data and discrepancy between SNP panels, we made some 
permutations of the SNP data to mimic different scenarios 
before running the HGINV program with the same param-
eters as mentioned above. In raw genotype data, noise or 
missing data occur for nearly 1% of the SNPs, and here 1000 
of the 109  k SNPs were permuted. The HGINV program 
imputes missing genotypes by inserting the most common 
genotype. Scenario 1 was motivated by the situation where 
there is a proportion of the genotypes that are not imputed 
before going into HGINV, but there is no systematic miss-
ingness among the SNPs (Table 1). This was performed by 
setting 1000 random SNPs for each animal genotyped on the 
Affymetrix 55 k SNP chip to missing (a different set of 1000 
SNPs for each of the animals). To study the effect of system-
atic missingness among SNPs for non-imputed genotypes, 
we created Scenario 2, in which, 1000 common random 

SNPs were set to missing for all animals genotyped on the 
Affymetrix 55 k chip (‘common’ denotes that the set of SNPs 
was the same for all these animals). Scenario 3 was motivated 
by our experience that some systematic genotyping errors 
exist. Some SNPs work well on one chip and poorly on oth-
ers. This was modelled by removing data on a set of 1000 
common random SNPs for all the animals genotyped on the 
Affymetrix 55 k chip and inserting random genotypes from 
a uniform multinomial distribution on those 1000 SNPs 
instead (equal probability of inserting 0, 1 or 2). Finally, we 
developed Scenario 4, to investigate alternative handling of 
missing data. In this scenario, the genotypes of the common 
1000 random SNPs among the animals genotyped on the 
Affymetrix 55 k chip were removed and replaced by one of 
the three possible genotypes according to the distribution of 
their probabilities (based on Hardy–Weinberg equilibrium 
frequencies, which were estimated based on the animals 
genotyped on the other SNP chips).

To investigate how sensitive the predictions are to the set 
of random values used for creating missingness and errors, 
each of the scenarios 1 to 4 was replicated ten times and 
standard errors for the different measures were calculated 
based on these replicates.

Measurement of level‑bias
To quantify level-bias between genotyped and non-gen-
otyped animals for the different scenarios, we masked the 
genotypes of 2000 young animals without progeny or phe-
notypes, genotyped with the Affymetrix 55  k chip. Then, 
we ran single-step genomic prediction and compared the 
breeding values of these animals ( GEBVout ) with those 
when their genotypes were included ( GEBVin ). The average 
change in breeding value of these animals divided by the 
genetic standard deviation of the trait, σg , quantified level-
bias in the model.

Table 1 Description of the scenarios used to mimic different types of genotype errors and parameters set

a Parameter added to the diagonal of the genomic relationship matrix to make it invertible
b Animal genotyped on the customized Affymetrix 55 k SNP chip

Scenario Diaga Further description

1 0 1000 missing random SNPs for each  Affyb animal

2 0 1000 common random missing SNPs for Affy animals

3 0 1000 common random SNP genotypes randomly changed for Affy animals, equal probability for all genotypes

4 0 1000 common random SNP genotypes randomly changed for Affy animals, probability based on Hardy–Wein-
berg genotype frequency

BaseLine 0

D-2 10−2

D-3 10−3

D-4 10−4
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To measure level-bias between animals genotyped on 
the Affymetrix 55  k chip vs. the other panels, we ana-
lysed only the genotyped animals that were born between 
31.12.2013 and 01.01.2017. The reason is that we wanted 
to remove the effect of genetic trend from the dataset. 
We then investigated the mean level of the breeding val-
ues from the different scenarios and compared them with 
those from pedigree-based BLUP.

Measurement of accuracy and inflation
To estimate the accuracy and inflation of genomic esti-
mated breeding values (GEBV), we removed the pheno-
types of the 4000 youngest genotyped cows with milk 
records and all the data on their descendants. Then, 
we estimated the breeding values and correlated them 
against the yield deviations (YD) on the same 4000 ani-
mals. The yield deviations were calculated as the sum of 
GEBV plus the residual connected to each record from 
the full dataset from MiX99 [8]. Since some of the valida-
tion cows had more than one lactation record, the num-
ber of YD (6285) was a little larger than the number of 
animals (4000). Animals with more than one record had 
their GEBV repeated in the dataset before estimating the 
correlation and performing a linear regression. Accuracy 
r was then measured as:

Inflation was estimated as the regression coefficient β 
from the linear regression with YD as a response variable 
and the GEBV as an explanatory variable.

Results
Level-biases for the 2000 young animals in the different 
scenarios are in Table 2, which shows that the magnitude 
of level-bias depends on the noise in the genotype data 
and, to some extent, on the parameter added to the diag-
onal. The accuracy and inflation (regression coefficient) 
are much less sensitive to these permutations.

For all scenarios, the predicted GEBV for animals born 
after 2013 and genotyped on the Affymetrix 55  k chip 
were higher than those predicted with BLUP (Fig.  2a). 
The BLUP-EBV of the group of animals genotyped on 
the Affymetrix 55  k chip were slightly lower than those 
for the animals genotyped on other SNP panels. In con-
trast, for some of the other scenarios (particularly, Sce-
narios 2 and 3), this relationship was reverted. The only 
scenario, for which the GEBV between animals geno-
typed on the Affymetrix 55 k chip vs. other SNP panels 

LevelBias =
mean(GEBVin − GEBVout)

σg
.

r =
cor(GEBV ,YD)

√
h2

.

reached the same values as with BLUP, was Scenario D-2. 
However, in this scenario, both groups of genotyped ani-
mals (on the Affymetrix 55  k chip and other SNP pan-
els) had increased GEBV compared to the BLUP-EBV. 
Comparison of the breeding values for all genotyped 
animals (Fig. 2b) showed that the breeding values for ani-
mals genotyped on the Affymetrix 55 chip are on average 
higher than those for animals genotyped on other SNP 
chips.

Discussion
In this study, we demonstrated how genotyping errors 
and missing values in genotype data affect level-bias 
in single-step genomic predictions. Noise or missing 
data for nearly 1% of the SNPs in the genotype data are 
in the same range of those observed with raw genotype 
data, and they affected both the level of breeding val-
ues between genotyped and non-genotyped animals, 
and between genotyped animals genotyped on different 
chips.

Scenarios 2 and 3 gave the highest level-bias (Table 2). 
These scenarios have in common that the introduced 
genotype missingness/errors resulted in systematic 
differences in allele frequencies between genotypes 
obtained with Affymetrix 55 k and the other SNP chips 
and seemed to cause bias between genotyped vs. non-
genotyped animals as well as between animals genotyped 
on different SNP panels (Fig. 2a). On the one hand, the 
animals belonging to the group genotyped with the other 
SNP panels mainly consist of progeny-tested bulls born 
over a period from 1980 to 2014. On the other hand, the 
Affymetrix genotype data consist mostly of cows, heif-
ers, calves and selection candidates that were born within 

Table 2 Accuracy and  regression coefficients of  genomic 
predictions as  well as  a  measure of  level-bias 
between genotyped vs. non-genotyped animals

For Scenarios 1 to 4, the standard errors due to the random sampling effect of 
SNPs are in parentheses
a Scenarios described in Table 1
b Regression coefficient β from the linear regression with YD as a response 
variable and the GEBV as an explanatory variable
c Level-bias is measured in genetic standard deviations

Scenarioa Accuracy Regression  coefficientb Level‑biasc

1 0.871 (0.000) 1.135 (0.000) 0.151 (0.002)

2 0.869 (0.000) 1.127 (0.001) 0.768 (0.002)

3 0.864 (0.000) 1.120 (0.001) 0.812 (0.002)

4 0.870 (0.000) 1.128 (0.001) 0.172 (0.002)

BaseLine 0.873 1.130 0.086

D-2 0.872 1.096 0.193

D-3 0.873 1.128 0.104

D-4 0.873 1.130 0.096
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the last 5  years and have a higher average genetic level 
than the animals belonging to the group of animals gen-
otyped on other SNP panels (Fig.  2b). When allele fre-
quency is changed due to missingness and errors in the 
raw genotype data, these SNPs will become erroneously 
associated with the genetic improvement that occurred 
between these two groups of animals. New animals with 
added raw-genotypes will receive biased breeding values 
because their genotype will carry some of the same miss-
ingness and noisy SNPs as the other animals genotyped 
on the same chip. This shows that filtering within chips 
(based on Hardy–Weinberg equilibrium and missing-
ness), in addition to imputation in routine single-step 
genomic evaluations, is crucial to reduce level-bias.

If routine imputation is not possible due to compu-
tational costs, inserting the most common genotype 
or a uniformly random genotype is an extremely poor 
choice. Instead, picking a random genotype based on 
the observed allele frequencies is better, as illustrated in 
Scenario 4. Another approach is to use genotype prob-
abilities instead of poorly imputed genotypes, but the 
software for building genomic relationship matrices that 
were developed for large-scale genotype datasets are gen-
erally not able to handle genotype probabilities (such as 
[13, 17]).

The value of the parameter added to the diagonal of 
the G matrix also influenced level-bias, but to a much 
smaller extent than the permutations mentioned above. 
The permutations in the diag-parameter mainly affected 
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Fig. 2 Box plot of breeding values of a genotyped animals born between 2013 and 2017 and b all genotyped animals in the different scenarios



Page 7 of 8Nordbø et al. Genet Sel Evol           (2019) 51:76 

level-bias between genotyped and non-genotyped ani-
mals. A value of 0.01 (such as in e.g. [18]) added to the 
diagonal elements of the genomic relationship matrix 
more than doubled level-bias between genotyped and 
non-genotyped animals, compared with the BaseLine 
scenario (see Table  2). Instead of adding values to the 
diagonal values, a better idea is to put some weight on the 
A-matrix which makes the genomic relationship matrix 
invertible [4], and also, results in improved prediction 
accuracy [19].

In addition, the scenarios with non-systematic ran-
dom missing values among the animals genotyped on 
the Affymetrix 55 k chip (Scenario 1), and the scenario in 
which systematic missingness was replaced by a random 
number drawn from the observed Hardy–Weinberg gen-
otype distribution (Scenario 4), gave the same level-bias 
between genotyped and non-genotyped animals. These 
two scenarios do not necessarily create systematic differ-
ences in allele frequencies between genotypes obtained 
with Affymetrix 55  k and other SNP chips. Thus, they 
do not affect level-bias between the groups of animals 
genotyped on the Affymetrix 55  k chip vs. other SNP 
chips. These scenarios resulted in values of level-bias that 
were similar to those obtained when adding a relatively 
large number to the diagonal of the genomic relationship 
matrix.

Cross-validation of different models is a valuable tool 
to optimize a methodology, but not necessarily the best 
tool to uncover level-bias. Many studies quantify the 
performance of a model by measuring the accuracy and 
regression coefficients only, but these measures are rel-
atively insensitive to the values of the input parameters 
[1, 19]. Normally a validation set is selected to be a set of 
genotyped animals born within a brief time interval, but 
such validations do not capture the level-bias described 
in this paper. Level-bias seems to be much more sensi-
tive to changes in parameters than regression coefficients 
and accuracy, which are mainly measured when compar-
ing models. Since level-bias affects the average level of 
EBV for groups of animals, the average ranking within 
the group might be correct, but the average level across 
the groups might be wrong. To quantify level-bias, vali-
dation sets should contain enough animals from the rel-
evant groups. Alternatively, one could do comparisons as 
shown here, by removing some of the animals and com-
paring the average change in their estimated breeding 
values when including their genotype data.

Several attempts have been done to reduce both bias 
and inflation by introducing and optimizing parameters 
with more or less biological meaning [20] and by intro-
ducing variables that could represent the selection his-
tory [1, 2]. In practice with noisy genotype data, a lot of 
the observed bias in single-step genomic predictions 

could be reduced without inserting any new parameters 
or variables. However, since single-step genomic predic-
tions depend on many assumptions and parameters and 
determining which parameters should be tuned to get 
rid of the bias is not straightforward. Because histori-
cally different SNP chips have been used for genotyping 
different parts of the population, fine-tuning of imputa-
tion across SNP chips and handling of missing genotypes 
is crucial. This does not mean that the work performed 
to harmonize A and G and account for selection history 
[1–3] is not important. In a subsequent paper, we shall 
investigate how such methods could further reduce level-
bias in our data.

Contrary to other studies [19, 21, 22], the GEBV of 
production traits do not seem to be inflated, but rather 
show too little variance compared to yield deviations. 
This could be due to an underestimated genetic vari-
ance. Legarra [23] showed that genetic variance estimates 
depend on the base population assumed when estimat-
ing the relationship matrix. The genetic variance in the 
current population is Dkσ

2
g  , where Dk equals the average 

of the self-relationships minus the average of all the ele-
ments of the relationship matrix. In our case, Dk = 0.63 
and the genetic variance was not estimated using this 
relationship matrix, which may explain why we effec-
tively used a genetic variance that was too small.

The level-bias that we obtained in the ssGBLUP evalu-
ations for Norwegian Red was probably due to a com-
bination of various sources: lack of imputation of new 
genotypes, which led to partly systematic and partly 
random missingness among young genotyped animals, 
and in addition, erroneous genotypes. In addition, a diag 
parameter equal to 0.01 also contributed to level-bias. A 
lot of effort was done to harmonize the genomic and the 
pedigree part of the H−1 matrix [3, 4, 14], without suc-
cess. However, removal of SNPs with a large amount of 
Mendelian inconsistencies across SNP chips, thorough 
imputation and decrease of the diag parameter, removed 
the most severe source of bias.

Conclusions
We showed that incomplete handling of erroneous/miss-
ing genotypes of young animals resulted in high level-bias 
in breeding values in ssGBLUP. Both the level of breeding 
values between genotyped and non-genotyped animals 
and between animals genotyped on different SNP chips 
were affected. Similarly, the magnitude of a small value 
added to the diagonal of the genomic relationship matrix, 
to make it invertible, affected the level of breeding val-
ues between genotyped and non-genotyped animals. 
The accuracy and regression coefficient from standard 
cross-validations were not sensitive to erroneous/missing 
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genotype data. Hence, we suggest that the average change 
in breeding value after the animals are genotyped, should 
be included as a standard quality measure of ssGBLUP 
models.
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