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Abstract. In this paper, we present an architectural framework to per-
form Internet traffic classification in Satellite Communications for QoS
management. Such a framework is based on Machine Learning tech-
niques. We propose the elements that the framework should include,
as well as an implementation proposal. We define and validate some of
its elements by evaluating an Internet dataset generated on an emulated
Satellite Architecture. We also outline some discussions and future works
that should be addressed to have an accurate Internet classification sys-
tem.

Keywords: Internet traffic classification - Machine Learning - Satellite
Communications - Deep packet inspection.

1 Introduction

Internet traffic classification is a group of strategies that aims at classifying the
Internet traffic into predefined categories, such as normal or abnormal traffic,
the type of application (streaming, web browsing, VoIP, etc.) or the name of the
application (YouTube, Netflix, Facebook, etc.). Network traffic classification is
important in Satellite communication principally to manage bandwidth resources
and to ensure Quality of Service (QoS) requirements.

Traffic classification is widely implemented by Deep Parquet Inspection(DPI)
solutions. Most of the commercial solutions use this technology for traffic man-
agement. DPI performs matching between the packet payload and a set of stored
signatures to classify network traffic. However, DPI fails when privacy policies
and laws prevent accessing the packet content, as well as the case of protocol ob-
fuscation or encapsulation. To overcome the previous issues, Machine Learning
(ML) emerged as a suitable solution, not only for the traffic classification task
but also for prediction and new knowledge discovery. In this context, statistical
features of IP flows are commonly extracted and stored from network traces to
generate historical data. In this way, different ML models can be trained with
this historical data, and new incoming flows can be analyzed with such models.
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In satellite networks, Internet traffic management is a key task due to it allows
improving the QoS. Commonly, traffic data is captured from satellite Internet
Service Providers (ISPs). The works in this area aim to classify and to analyze
Internet traffic in large networks [6,14,12]. The principle is to deploy passive
monitoring points to perform traffic classification. These monitoring points can
be at routers [6] or points of presence (PoPs) [12] of large ISP networks. Another
emerging approach is the use of Software-defined networks(SDNs) in satellite-
terrestrial networks. In SDNs, traffic classification can be easily deployed in the
SDN’ master controllers as it is exposed in [8, 1].

The authors outlined the complete process to achieve Internet traffic classifi-
cation in the survey paper [10]. Therefore, this approach focuses its attention on
developing a framework that can be deployed in a Satellite architecture. Such a
framework comprises all the necessary elements to achieve the goal, as well as
additional components that should be integrated to assure a robust classification
tool. We propose a hierarchical classification system based on ML, which treats
encryption and flow patterns differently. We deploy the solution in a low-level
language that allows having an efficient and fast classification output. We also
compare our approach with a well-known DPI solution called nDPI [2]. Finally,
we set discussions about some important components that are in development;
for instance, the treatment of tunneled connections and the evolution of the
Internet network.

2 QoS management in Satellite Communications

At this point, we start by introducing the general reference model to provide
Satellite Communications. This model will serve us as guidance to find the re-
quirements to integrate ML in such architecture. A typical reference model of a
multi-gateway Satellite architecture is shown in Figure 1 [3]. This model is di-
vided into two main blocks: Satellite access network and Satellite core network.
On the one hand, in the Satellite access network, a variety of network topolo-
gies can be used to the connectivity of the elements; these included the Satellite
gateways and terminals. On the other hand, in the Satellite core network, an ag-
gregate network allows interconnecting with other operators, corporations, and
Internet Service Providers (ISPs) through Points of Presence (PoPs).
Two main components of such model are described below:

— Satellite Terminal (ST): its function is to deliver broadband access to end-
user equipment through IP routers and/or Ethernet switches.

— Satellite Gateway (GW): this component is in charge of deploying user plane
functions such as packet routing and forwarding, interconnection to the data
network, policy enforcement, and data buffering. These functionalities are co-
ordinated by the control and management systems of the Satellite network.
The GW is composed of forwarding and returning link (FL and RL) subsys-
tems, and a set of network functions. These network functions include the
Performance Enhancing Proxy (PEP), switching and routing interfaces for
the interconnection with the Satellite core network.
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Fig. 1: Reference model of a multi-gateway Satellite network architecture.

One of the main objectives of this architecture is to provide a reliable com-
munication system between different entities. However, improving the Quality
of Service (QoS) and Quality of Experience (QoE) of their users is of paramount
importance for network administrators. In principle, these last objectives can
be achieved by manipulating the network functions. More specifically, a Policy
Based Network (PBN) Architecture is deployed at this stage to perform traffic
management [7]. To improve the QoS, one of the most common and accepted
actions is to fulfill a set of requirements that can be executed by profiling Inter-
net traffic [5, 13]. This idea parts from the assumption that some Internet traffic
is more sensitive to information loss and delay, such as Internet calling or video
conference. In contrast, Internet browsing or file downloads are less pruned to
be affected by these error conditions.

Following this idea, the main goal of our proposal is to correctly profile
the Internet communications, to later transmit this information to a PBN that
will take the necessary actions for QoS management. Hence, in Figure 2, we
add two new elements to allow Internet traffic classification: Monitoring and
Classification system. The resulting classification is forwarded to the PBN. In
the figure above, we also show three essential components in the PBN: PDP,
Resource allocation PEP, and QoS server. Briefly speaking, traffic classification
is signaled to the PDP that will define what QoS policy should be applied to
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a flow or set of flows. The QoS policy is then sent to the Policy Enforcement
Functions (PEFs) such as the QoS servers and Resource allocation PEP. The
QoS server applies the QoS rules on the equipment that handles the traffic
(GW, ST), and the Resource allocation PEP provides the resource when needed
to the User Terminal. To instantiate the resource allocation toward the terminal,
the Resource allocation PEP is composed of other functional elements that are
omitted due to they do not affect the modeling of our approach. In particular,
what will be of paramount importance is correctly handling the traffic monitored
and signaling the classification to the PBN.

3 Architecture design

Making an abstraction of the elements in a real Satellite network distribution, the
primary steps to achieve Internet traffic classification in a Satellite Architecture
are:

1. Intercept Internet traffic in the GW and ST through the Passive monitoring
points.

2. Perform feature extraction over the Internet flows.

3. Send the extracted features to the Classification System and mark the flows
with their QoS classes.

4. Forward the classification to the PDP that will take decisions in order to
improve the QoS. Then the Resource allocation PEP and the QoS servers
will execute those decisions.

In order to formally define the requirements of the system, we follow the
Model-Based System Engineering methodology proposed by ARCADIA and the
open-source methodology tool named Capella 3. Capella follows ARCADIA prin-
ciples to provide methodological guidance, intuitive model editing, and viewing
capabilities for Systems, Software and Hardware Architects. In Capella, the Op-
erational analysis and System analysis help finding and defining the requirements
of the system. Whereas, the Logical and Physical architectures aim at develop-
ing the solution. Figure 2 shows a System Analysis viewpoint, focused on the
GW actor, developing the requirement: Provide Internet traffic classification in
Satellite Communications for QoS management. We will discuss as follows the
functions associated to this system analysis.

3 https://www.polarsys.org/capella/
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Fig. 2: System Analysis in the GW.

3.1 Classification system

Particularly, this system proposes an automatic and logic process to analyze
traffic hierarchically. The classification system is displayed in Figure 3. Briefly
speaking, the process starts performing the Offline configuration process to ini-
tialize the whole classification system (training process). In an online manner,
the flow features pass through a Flow discriminator 1 (D1) that will be in charge
of disjointing the non-encrypted/Encrypted flows from the tunneled flows. This
separation will allow us to treat each technology differently. For instance, for the
non-encrypted /Encrypted streams, classical ML models or DPI solutions (de-
noted as CI1) can label the flows. Whereas, the tunneled flows will pass through
another Flow discriminator 2 (D2) that separates the unitary (only one applica-
tion within the tunnel) and the multiple (several applications at the same time
in the tunnel). Finally, once the classifiers are actively working the Online con-
figuration component is receiving information that can induce to change or to
add models in the Model repository.

3.2 Monitoring system

Internet packets are captured to be organized into flows F'. The construction of
the flow is given in Figure 4. In principle, all the flows are built matching the
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Fig. 3: Classification framework

packet’s headers, source (src) and destination (dst) IPs and ports. However, when
D1 detected a multiplexed connection, the flow is broken into chunks of flows
within a time interval, as seen in Figure 4. Then, statistical-based features are
computed for each flow to describe the communications. In brief, the properties
computed are listed in Table 1. The authors studied the passive monitoring and
feature extraction processes in [11,9]. The categorization of the packets (A, B, C,
D, E, and F) in Table 1 is obtained by studying the packet length distributions
per class in the dataset.

Aggregated flows Multiplexed flows
~ ~ t t+ ‘At t+ 2|Ar
Lo A [DEQDDDQDDDDD
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1= : v, 0000 !
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Fig. 4: Flow reconstruction.
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Feature Metric Additional Information | Flow direction |Total
pktlen_[m] |[m] of the packet lengths “m” refers to the metric|F,Fs.. and Fys| 12
Mean, Std, Min and Max
iat_[m] [m] of the inter-arrival time(iat)|- F,Fsrc and Fase| 12
pktlen_[cat]_[m]|[m] of the packet lengths per|“cat” refers to the type|F,Fisy. and Fye| 72
[cat] of packet®
iat_[cat]_[m] |[m] of the iat per [cat] F,Fy.c and Fas¢| T2
bytes_[At] |bytes per [At] “At” is the time win-|F,Fsyc and Fuse| 3
dows
pkt_[At]  |packets counts per [At] - F,Forc and Fus| 3
Total 174

¢ A: pktlen <= 170, B: pktlen > 170 and pktlen <= 902, C: pktlen > 902 and pktlen <= 1314,D:
pktlen > 1314 and pktlen <= 1426,E: pktlen > 1426 and pktlen <= 1500, F: pktlen > 1500

Table 1: Result of the feature extraction process

3.3 Classification Management

This component implements the offline and online reconfiguration. Regarding the
Online reconfiguration component, this element will be in charge of evaluating
the predictions performed by the classifiers. This is deployed to cope with the
evolution of the network. Therefore, in an online manner, this component will
evaluate if the traffic observed belongs to an existing QoS class; if so the classifier
will “evolve” to offer more accurate predictions. This approach can be translated
to a retraining process when new data is generated. Nonetheless, there are other
approaches based on clustering that could detect class evolution.

As a final note, the current investigation does not treat the Online configu-
ration and Multiplexed treatment due to they involve more complex tasks that
will be presented in future works.

4 Implementation design

The implementation proposal is presented in Figure 5, with the operational and
physical architecture in the same viewpoint. The subsystems proposed in Figure
5 will define how the components of the QoS management system work. For
instance, the Offline configuration will be developed by the Training process
and Historical data manager components, the Online configuration by the Model
manager and the Incremental Learning Model(ILM) manager components. In
addition to this, we define two new physical components that will be necessary
for the implementation: A GW server that will be in charge of taking the Internet
traffic for its further classification, and a Management Server that will handle
offline and online configurations.

It is worth mentioning that the functions of the GW server and the Manage-
ment Server can be comprised in the GW entity. This is modifiable according to
the resources available in the real Satellite Architecture. On the other hand, all
the functions concerning the Classification system are comprised in Framework:
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which in turn is a library developed for this aim. For what concerns the sniffer,
we use existing solutions such as Libcap * for performing the sniffing. Then, we
add the Flow reconstruction and Feature Extraction behaviors. The ML models
D1, Cl1, D2 and CI2 will be selected in the experimental section.

§) g
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Fig.5: System Analysis in the GW.

As an additional comment, the reader can notice that the proposed imple-
mentation can be easily replicated in the ST component, as well as in different
network components where packet monitoring is feasible.

* https://www.tcpdump.org/
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5 Emulated Satellite Internet Traffic

This data set is a private dataset called SAT data. The model of a multi-gateway
Satellite network in Figure 6 with one ST and one GW was set over Open-
SAND °, which is a platform to emulate Satellite Communications. In addition
to this, a VPN configuration is disposed between the ST and the GW, to emulate
tunneled communications. Several applications were launched and captured by
OpenBACH 6. The user behavior was mimicked by using Selenium 7, which is a
tool to test web applications.

SAT

S — Do

veN
client

Internet User

Fig. 6: Traffic emulation platform proposed in a Satellite Architecture.

The applications are launched in three main scenarios on the platform: i)
Internet traffic without the tunnel ii) Unitary scenarios with the VPN: only
one application at a time is launched, and ii) Multiple scenarios with the VPN:
several applications are launched at the same time. Additionally, some network
configurations were imposed on OpenSand. For each scenario, the data collection
process was performed in the GW and ST, before and after the VPN. In this
sense, all the possible transformations that the data perceived is recorded. The
labeling process is performed per file and the application launched. However, for
the VPN tunnel, a particular treatment was performed: for each packet getting
into the tunnel, a flag was used to mark the application launched. Therefore,

® http://opensand.org/
5 https://www.openbach.org/
" https://www.seleniumhgq.org/
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the multiplexed connections are correctly labeled. This dataset is still in devel-
opment. In this particular work, we used only the data captured in the GW with
the applications in Table 2. These applications were launched differently to get a
heterogeneous dataset; for instance, different codecs and websites were used for
the VoIP and browsing applications, respectively. In Table 2, we show the flows
captured per application and the number of packets with and without the VPN.
It is important to mention that the duration varies from 5min up to 15min. In
addition to this, the experiments over the VPN were carried out using UDP as
the transport protocol.

without VPN with VPN

QoS class Application Flows| Packets |Packets: Unitary|Packets: Multiple
facebook_voip 302 | 227997 74904 522275
VoIP skype_voip 565 | 315281 60764 673780
twinkle_voip 69 | 141663 26144 276995
Video skype_video 579 | 925391 318335 2235781
facebook_video 357 | 558880 162822 1000071
Streaming|youtube_video_streaming| 760 | 158177 19619 486141
Browsing web_browsing 6852 | 749979 91705 1824852

Unknown unknown 58 2860 1080 2334

Table 2: Class, packet and flow distribution of the SAT data in the GW.

6 Experimental evaluation

The training process was deployed by dividing the data as in Table 3. The
complete data is used to build D1, while for the rest of classifiers, the data is
adapted according to their objectives. First of all, to create Ci2, we evaluate
different time windows At to find the most adequate. Afterward, we build the
rest of the classifiers with different ML approaches. The best approaches are
selected, and their average response time and accuracy are compared with nDPI.

Classifier All data
D1 Without VPN With VPN
Cl1 Unencrypted ‘ Encrypted
D2 unitary|multiple
Cl2 unitary
MT multiple

Table 3: Data settings for building the classifiers.



Title Suppressed Due to Excessive Length 11

6.1 Classification system results

Table 4 shows the results after evaluating different time windows for the unitary
tunneled connections. The accuracy increase as At does; therefore, we compare
the average number of packets assessed for each application in Figure 7. We can
notice that for 5ms and 10ms, the amount of packets is very low. To avoid this,
the new window will be adjustable in the sense that At = 10ms, but we wait
until we have at least 20 packets to process.

254 App

= facebook_voip
facebook_video
youtube_video_streaming

204 skype_video
web_browsing
twinkle_veip

mmm skype_voip

,_.
&

H
S

avg counts of packets

At |Num. flow| CI2 *]

5ms | 167097 |0.8982 I

10ms | 120395 [0.9647 D—J; I l; -
100ms| 26634 |0.9673 5 § 5

Table 4: Accuracy re- Fig.7: Average counts of packets for
sults for CI2 varying At each At

On the other hand, the results in Table 5 show a comparison between sev-
eral classifiers: Decision Tree (DT), Random Forest (RF), K Nearest Neighbors
(KNN), Ada Boost, Voting and Extra Trees (ETs). The best performance is
standing up in bold. We picked DTs for the flow discrimination tasks, while RF
for the traffic classification task.

DT RF | KNN |AdaBoost|Voting| ETs
D1]0.9999| 0.9999 [0.9999| 0.9999 |0.9999(0.9999
Cl1| 0.8876 |0.9186(0.8617| 0.7986 |0.8941|0.8938
D2 0.9588 |0.9646|0.9526| 0.9584 |0.9636|0.9638
CI2{0.9321 {0.9401(0.9209| 0.8333 |0.9358|0.9304

Table 5: Accuracy scores of several ML classifiers.

Following, the complete framework was implemented in C. The tree-based
models are built in scikit-learn ® and parsed to C for faster Internet classifica-

® https://scikit-learn.org
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tions, inspired by the work in [4]. These tests were performed on a PC with an
i7-6700HQ CPU and 32Gb RAM. The response time and accuracy are measured
over the test set. We also evaluate nDPI for traffic classification.

In Table 6, we can notice that the C implemented models maintain their ac-
curacy. In the unencrypted case, ML outperforms nDPI; while, for the encrypted
example, nDPT is unable to detect the class of an unitary session as Cl12 does.
Regarding the response time of the classifiers, in Table 7, we can notice that fast
Internet classifications are possible. It is important to mention that the model
response time differs for each entry depending on how deep they go into the
tree’s branches until a leaf is reached. In addition to this, the packet processing
and flow metering response time varies from 5ms to 15ms.

Acc Time(us)
ML |nDPI ML | nDPI
D1]0.9999| 1 D1|2.867| 1
Unenerypted| oy 10 9186/0.5830 Unenerypted| a5 |6 6460
D21]0.9588| X D2|2.717] X
Enerypted |opol0 9401 X Eneypted Jepl 5 | X
Table 6: Accuracy (Acc) evalu- Table 7: Average response time
ating the test data in pus

6.2 About the multiplexed connections

We were able to divide the multiplexed connections between unitary and non-
unitary scenarios. We saw that classical ML approaches could classify the unitary
scenarios. The scenario with multiple applications within a tunnel is a challenge
in this field. To illustrate the problem, we take the unitary tunneled flows of
Skype, YouTube, and Browsing; and its equivalent mixed tunneled flow. We
represent them as a combination of types of packets (A: E from the source and
1:5 from the destination, using the packet lengths described in Table 1). We
count the average number of packets for each combination within a time window
of 100ms and plot it into a heatmap. For instance, the flow “AAB1CAA” has
AA:2, AB:1, B1:1 and CA:1. This representation is in Figure 8 . We can notice
that the unitary tunneled connections have distinctively sequences of patterns
that are merged in the mixed tunneled flow. It is important to say that the Skype
pattern is maintained and might be identified. This illustration gives us an idea
of how to decrypt the behavior within the tunneled connections by looking at
the packet’s patterns. However, the complexity grows when more than three
applications are multiplexed in the tunnel.
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Fig. 8: Heatmap representation of the flows with At = 100ms.

6.3 About the evolution of Internet traffic

Most of the publicly available datasets do not comprise all the existing applica-
tions on the Internet; besides, the data collection process is tedious and expensive
as remarked in [10]. One of the primary deficiencies of ML in this field is handling
with the evolution of Internet traffic applications. If we consider some critical
QoS classes such as YouTube, NetFlix, Skype, or Facebook video; as new in-
coming behavior, the classification accuracy might decrease considerably. Our
architectural proposal comprises a component that should schedule retraining of
the models when the network administrators demand it. But also, an automatic
approach can be set to continuously modify the trees of the RFs in the Model
repository component. Such an approach can be based on unsupervised methods
for detecting Internet evolution.

6.4 About the QoS management

As we previously mentioned, it suffices to place the classification system over
a network appliance that permits traffic monitoring. For instance, in the GW
component, the classification output is forwarded to the PDP to perform the
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QoS management task. Depending on the classification output, QoS rules will
be applied to trigger actions that will manage the Satellite resources. If a QoS
rule is satisfied, the traffic will be shaped as follows:

— Aggregate flows: the QoS rule is applied over all the incoming packets sharing
the same tuple (I Pgy., I Pist, portspe, portgst, proto).

— Unitary tunneled flows: all the incoming packets of the unitary tunneled
communications will be prioritized. However, this may be updated when the
classification prediction of D2 or CI2 changes in At.

— Multiplexed tunneled flows: we can think about prioritizing the tunnel as the
unitary case. Nevertheless, in parallel, other, less sensitive applications will
also be benefited from this action. To avoid this, a classification per packet
task should be designed.

In addition to this, we need to be sure that the QoS requirements are satisfied
on time. For instance, according to [5], VoIP and Interactive video applications
are susceptible to delivery delays, to be specific they can tolerate around 100ms;
whereas, another critical class such as Video streaming no more than 10s. We no-
tice that the classification task can be achieved in around 15ms, giving sufficient
time to treat those sensitive classes.

7 Conclusion

This work presented an ML system that can be integrated into Internet traffic
architectures, being the Satellite Architecture of our primary interest. The pro-
posal can be comparable with an existing DPI solution, which offers a portable
software solution for Internet traffic inspection. We tested our approach in the
GW component, with data captured from an emulated Satellite platform. This
approach outperformed in accuracy and time a well-known DPI solution. We
displayed the needs of having components that can deal with the evolution of
the Internet network and the multiplexed connections; these last aspects are
in development. Future works also include implementing the approach in the
emulated Satellite platform and tuning the framework proposed given different
network conditions.
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