

ORGDP

OAK RIDGE GASEOUS DIFFUSION PLANT

OPERATED BY UNION CARBIDE CORPORATION FOR THE UNITED STATES DEPARTMENT OF ENERGY GJBX-238 '80 GEOLOGY

> K/UR-35 Part 3

HYDROGEOCHEMICAL AND STREAM SEDIMENT DETAILED GEOCHEMICAL SURVEY FOR THOMAS RANGE-WASATCH, UTAH

COTTONWOOD PROJECT AREA

GEOLOGICAL SURVEY OF WYOMING

T. R. Butz, C. S. Bard, D. A. Witt, R. N. Helgerson, J. G. Grimes, and P. M. Pritz Uranium Resource Evaluation Project

CAUTION .

This is a time release report. De not release any part of this publication before

August 31, 1980

metadc958444

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A computer readable magnetic tape containing measurement, analysis, and location data may be purchased from the GJOIS Project, UCC-ND Computer Applications Dept., 4500 North Building, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830.

Date of Issue: August 31, 1980

Report Number: K/UR-35 Part 3

Subject Category: UC-51, Nuclear Raw Materials

HYDROGEOCHEMICAL AND STREAM SEDIMENT DETAILED GEOCHEMICAL SURVEY FOR THOMAS RANGE-WASATCH, UTAH

COTTONWOOD PROJECT AREA

T. R. Butz, C. S. Bard, D. A. Witt, R. N. Helgerson, J. G. Grimes, and P. M. Pritz Uranium Resource Evaluation Project

Union Carbide Corporation, Nuclear Division Oak Ridge Gaseous Diffusion Plant Oak Ridge, Tennessee

Prepared for the U. S. Department of Energy Assistant Secretary for Resource Applicatons Grand Junction Office, Colorado under U. S. Government Contract W-7405 eng 26 Uranium Resource Evaluation Project J. W. Arendt, Project Manager T. R. Butz, Assistant Project Manager

Geology and Geochemistry T. R. Butz, Project Geologist/Geochemist P. M. Pritz, Field Geology Program Director D. A. Witt, Field Geology Supervisor

C. L. Albright, J. A. Harmon, D. S. Hawkins, L. H. Hawkins, P. A. Hoehne, K. E. Kerdolff, E. A. Solek, D. J. Tieman, and J. L. Vreeland, Field Geologists

Analytical Chemistry, Detailed Survey Geochemistry, and Report Preparation J. D. Joyner, Data Management and Information Processing R. N. Helgerson, Analytical Chemistry C. S. Bard and J. G. Grimes, Detailed Geochemical Reporting

> Uranium Resource Evaluation Project Oak Ridge Gaseous Diffusion Plant P. O. Box P, Mail Stop 246 Oak Ridge, Tennessee 37830 Telephone: (615) 574-8882 FTS 624-8882

CONTENTS

	<u>Page</u>
ABSTRACT	9
INTRODUCTION	11 12 12
GEOLOGY	15 15 21 22 23
SAMPLE COLLECTION	23 23 23 24
CHEMICAL ANALYSIS	24
QUALITY CONTROL	26 26 26
GEOCHEMICAL RESULTS	26 29 29 32 33 33 35 35 36
BIBLIOGRAPHY	39
APPENDIX A. GROUNDWATER	A-1
APPENDIX B. STREAM SEDIMENT	B-1
APPENDIX C. FIELD FORM AND COMPUTER CODE LIST	C-1
APPENDIX D. MICROFICHE OF FIELD AND LABORATORY DATA	D-1

LIST OF TABLES

No.	Title	Page
1	Detection Limits of Variables Determined in Water and Sediment Samples	25
2	Summary of the Measurements Control Results Obtained With Groundwater Samples From the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	27
3	Summary of the Measurements Control Results Obtained With Sediment Samples From the Cotton- wood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	28
4	Distribution of Samples by Geologic Unit From the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	31

LIST OF FIGURES

No.	Title	Page
1	Index Map Showing the Map Boundaries of the Cotton- wood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	13
2	Generalized Geologic Map of Utah with Location of the Thomas Range-Wasatch Detailed Geochemical Survey, Utah	14
3	Generalized Geologic Map of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	19
4	Producing Horizon Map for Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	30

LIST OF PLATES

(In Back Pocket)

No.	Title
1	Cottonwood Project Area, Thomas Range-Wasatch Detailed Geo- chemical Survey, Groundwater Sample Location Map
2	Cottonwood Project Area, Thomas Range-Wasatch Detailed Geo- chemical Survey, Groundwater, Concentration Map, Uranium
3	Cottonwood Project Area, Thomas Range-Wasatch Detailed Geo- chemical Survey, Groundwater, Concentration Map, Specific Conductance
4	Cottonwood Project Area, Thomas Range-Wasatch Detailed Geo- chemical Survey, Stream Sediment Sample Location and Drainage Basin Map
5	Cottonwood Project Area, Thomas Range-Wasatch Detailed Geo- chemical Survey, Stream Sediment, Symbol Plot, Uranium Fluorometric
6	Cottonwood Detailed Geochemical Survey, Stream Sediment, Symbol Plot, Thorium
7	Generalized Geologic Map of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah
8	Cottonwood Project Area, Thomas Range-Wasatch Detailed Geo- chemical Survey, Radiometric Sample Location Map

ABSTRACT

Results of the Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 15 groundwater samples, 79 stream sediment samples, and 85 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed.

Uranium concentrations in groundwater range from 0.25 to 3.89 ppb. The highest concentrations are from groundwaters from the Little Cottonwood and Ferguson Stocks. Variables that appear to be associated with uranium in groundwater include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent, molybdenum and strontium. This association is attributed to the Monzonitic Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes, and known sulfide deposits.

Soluble uranium concentrations (U-FL) in stream sediments range from 0.31 to 72.64 ppm. Total uranium concentrations (U-NT) range from 1.80 to 75.20 ppm. Thorium concentrations range from <2 to 48 ppm. Anomalous values for uranium and thorium are concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks. Variables which are areally associated with high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock are barium, copper, molybdenum, and zinc. High concentrations of these variables are located near sulfide deposits within the Little Cottonwood Stock.

HYDROGEOCHEMICAL AND STREAM SEDIMENT DETAILED GEOCHEMICAL SURVEY FOR THE COTTONWOOD PROJECT AREA OF THOMAS RANGE-WASATCH, UTAH

INTRODUCTION

The National Uranium Resource Evaluation (NURE) Program was established by the U. S. Atomic Energy Commission, now the U. S. Department of Energy (DOE), in the spring of 1973 to assess uranium resources and to identify favorable areas for detailed uranium exploration throughout the United States. The principal objectives of the NURE Program are: (1) to provide a comprehensive in-depth assessment of the nation's uranium resources for national energy planning, and (2) to identify areas favorable for uranium resources. A NURE Program report covering uranium resource assessment in 116 National Topographic Map Series (NTMS) 1° x 2° quadrangles, which contain 100% of the currently estimated uranium resources, is targeted for 1980. The complete resource assessment of the 272 highest-priority quadrangles is scheduled for completion in 1985, and the first comprehensive assessment report of the entire United States is scheduled for completion in 1988. This program, which is being administered by DOE, is expected to increase the activity of commercial exploration for uranium in the United States.

The NURE Program consists of five parts:

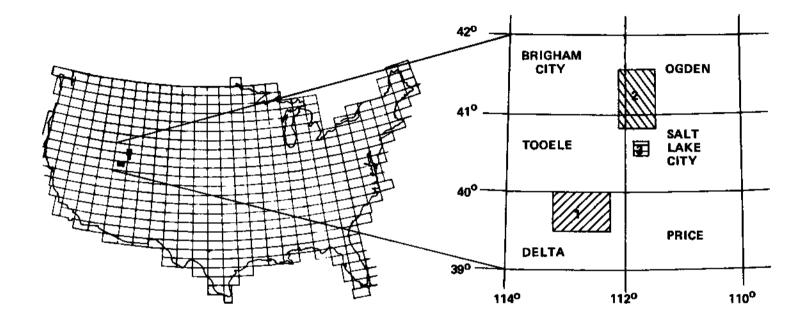
- Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program,
- 2. Aerial Radiometric and Magnetic Survey,
- 3. Surface Geologic Investigations,
- 4. Drilling for Geologic Information, and
- 5. Geophysical Technology Development.

The objective of the HSSR Program is to provide information to be used in accomplishing the overall NURE Program objectives. This is accomplished by a reconnaissance of surface water, groundwater, stream sediment, and lake sediment. The survey is being conducted by three Government-owned laboratories. Union Carbide Corporation, Nuclear Division (UCC-ND), under contract with DOE, is conducting its survey in 154 NTMS 1° x 2° quadrangles which cover approximately 2,500,000 km² (1,000,000 mi²) of the Central United States. This area includes most of the states of Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Indiana, Illinois, and Iowa, as well as parts of Arkansas, Missouri, New Mexico, and Ohio.

As a part of the HSSR Program, detailed geochemical surveys were initiated in the fall of 1978 to supply comprehensive detailed geochemical data from specific areas. These surveys are designed to characterize the hydrogeochemistry, stream sediment geochemistry, and/or radiometric patterns of known or potential uranium occurrences. The information can be used to interpret data from the $1^{\circ} \times 2^{\circ}$ NTMS quadrangle basic data surveys. This report on the Cottonwood project area represents the third volume of geochemical data which describe three select areas in the Thomas Range-Wasatch region, Utah (Figure 1).

LOCATION AND PHYSIOGRAPHY

The Cottonwood project area covers approximately 260 km^2 (100 mi^2) of surface area between lat. $40^{\circ}30'30"$ to $40^{\circ}41'00"$ N. and long. $111^{\circ}38'00"$ to $111^{\circ}50'00"$ W. The area sampled includes parts of Sugar House, Mount Aire, Draper, and Dromedary Peak 7-1/2-minute Quadrangles in southeastern Salt Lake and northern Utah Counties, Utah (Figure 2).


The Cottonwood project area includes Big and Little Cottonwood Canyons which extend eastward from Salt Lake Valley, on the western boundary at an elevation of approximately 1,400 m (4,500 ft) to approximately 2,300 m (7,600 ft) and 2,600 m (8,600 ft) in Big and Little Cottonwood Canyons, respectively, on the eastern boundary of the project area. The southern boundary of the project area is a ridge, which forms the county line between Utah and Salt Lake Counties and averages over 3,350 m (11,000 ft) in elevation. The ridge dividing Big and Little Cottonwood Canyons also averages an elevation of over 3,350 m (11,000 ft) while the elevation of the divide between Big Cottonwood and Neffs Canyons at the northern boundary of the project area averages between 2,950 m (9,700 ft) and 3,050 m (10,000 ft).

A geomorphic difference exists between Big and Little Cottonwood Canyons. Little Cottonwood Canyon is a broad, straight, U-shaped valley which has been glaciated with many of the tributary streams flowing from hanging valleys along its entire length. In contrast, Big Cottonwood Canyon is narrow with a v-shaped valley in its lower reaches. Only the head of the canyon was occupied by glaciers.

The Cottonwood project area lies at the junction of four major physiographic provinces. To the west of the Wasatch Front is the Basin and Range Province. To the east are the Uinta Mountains which separate the Wyoming Basin to the north from the Colorado Plateau to the south.

CLIMATE

The Thomas Range-Wasatch detailed geochemical survey area is located in two climatological regions. The Thomas Range-Sheeprock Mountain project area is located in the north central region of Utah, a region which includes the Great Salt Lake and is typified by Basin and Range topography. The mean annual temperature of this region is $10^{\circ}C$ ($50^{\circ}F$) and varies from $-3^{\circ}C$ ($26.6^{\circ}F$) in January to $22.8^{\circ}C$ ($73.0^{\circ}F$) in August. The annual precipitation is 38.71 cm (15.24 in.) which occurs predominantly as snowfall during the winter and early spring months. The Cottonwood

INDEX MAP SHOWING THE MAP BOUNDARIES OF THE COTTONWOOD PROJECT AREA, (3) THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

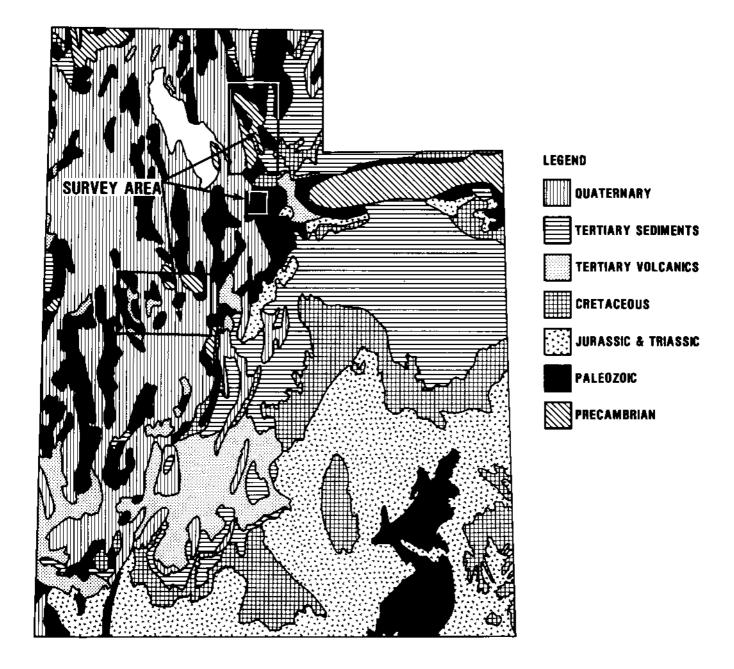


Figure 2

GENERALIZED GEOLOGIC MAP OF UTAH WITH LOCATION OF THE THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH (AFTER KING, ET AL, 1974) and Farmington project areas lie within the northern mountains climatological region which includes the Wasatch and Uinta Mountain Ranges. The mean annual temperature of this region is $5.7^{\circ}C$ (42.3°F) and varies from -6.5°C (20.3°F) in January to 18.3°C (65.0°F) in July. The annual precipitation is 49.07 cm (19.32 in.) which also predominantly occurs as snowfall during the winter and early spring months (National Oceanic and Atmospheric Administration, 1974).

GEOLOGY

STRATIGRAPHY

The oldest stratigraphic unit found in the Cottonwood project area is the Little Willow Formation (XLW) located just north of the mouth of Little Cottonwood Canyon. The formation was originally named the Little Willow series and was described as a sequence of strongly folded gneissic quartzites, quartz-mica schists, and stretched-pebble schists, intruded by basic igneous rocks now altered to amphibolites and chlorite-amphibole schists, (Crittenden, et al, 1952). Recent work has added more detail to the basic description and it has been suggested that, although most of the Little Willow Formation is of sedimentary origin, sericite schist units present may have formed from volcanic ash beds (James, 1979). The age of the Little Willow Formation is uncertain because attempts to date it radiometrically have only produced erroneous 27 to 29 million year ages from the nearby Tertiary intrusives (King, 1976).

The Little Willow Formation has been compared to the Farmington Canyon Complex located approximately 24 km (15 mi) north of the Cottonwood project area. Recent dating of the Farmington Canyon Complex migmatites by rubidium/strontium methods have given Precambrian W ages (Bryant, 1980). The Little Willow Formation is less deformed, is lower in metamorphic grade, contains more abundant rocks of basic igneous origin, and contains no injected granite or pegmatite in contrast to the Farmington Canyon Complex (James, 1979). The U.S. Geological Survey (USGS) has assigned the Little Willow Formation to Precambrian X (Crittenden, et al, 1972).

Unconformably overlying the Little Willow Formation is the Big Cottonwood Formation (YBC) consisting of approximately 4,900 m (16,000 ft) of supracrustal interbedded quartzites and shales. Only slight dynamothermal metamorphism has altered the Big Cottonwood Formation shales to slate and phyllite (James, 1979). The general strike of the Big Cottonwood Formation and all younger strata in the project area is northwesterly in contrast to the northeasterly strike of the underlying Little Willow Formation (Crittenden, 1965a, b, c, and d; James, 1978). Ripple marks, cross bedding and mudflake conglomerates indicating deposition in shallow water are common (King, 1976). During Precambrian Y (Middle Proterozoic) time, the area now occupied by the Uinta Mountains of northeastern Utah was an east trending embayment branching off of the north-south trending Beltian Geosyncline (Erickson, 1974; Burke and Dewey, 1973). The Cottonwood project area lies at the junction between these two zones. Sediments of the Big Cottonwood Formation represent a deltaic environment at the continental margin and transport was from the east. Equivalent sediments of the Uinta Group east of the project area are lithologically different, the environment of deposition being more fluvial in the Uinta Embayment. Sources of the fluvial sediments were from the north and northeast (Crittenden and Wallace, 1973).

Overlying the irregularly eroded surface of the Big Cottonwood Formation is the Upper Precambrian Y (Upper Proterozoic) Mineral Fork Tillite (YMFT) consisting of a diamictite or massive graywacke with embedded clasts of all sizes up to boulders. It also contains interbedded layers of quartzite and laminated argillite. The clasts are composed of Precambrian crystalline basement rocks. The Mineral Fork Tillite thins and thickens over the eroded Big Cottonwood surface and reaches more than 900 m (3,000 ft) in the Mineral Fork drainage which is a tributary of Big Cottonwood Creek. Sediment of the Mineral Fork Tillite are thin or absent due to erosion along its strike (King, 1976). Several geologists have proposed a glacial origin for this unit (Crittenden, et al, in Marsell, 1952; King, 1976; Condie, 1967; Ojakangas and Matsch, 1976). Subaqueous mudflows and turbidites were suggested as the origin of the Mineral Fork Tillite by Condie. Mudflows and turbidites can be manifestations of a glacial episode. Regional occurrences of Mineral Fork Tillite and correlative diamictites in the eastern Great Basin are known, and a glacial origin for the unit seems likely (Crittenden, et al, 1972).

Unconformably overlying the Mineral Fork Tillite are the red-purple quartzites and red to green shales of the Mutual Formation (ZMI). This unit represents a return of a depositional environment equivalent to that of the Big Cottonwood Formation. Except for the color difference and the intervening tillite, it would be difficult to distinguish between the two formations (Crittenden, et al, 1952).

The basal Lower Cambrian is represented by the Tintic Quartzite (CTQ) which rests with a slight angular unconformity on the underlying Mutual Formation or Mineral Fork Tillite. Basal beds of Tintic Quartzite are composed of up to about 1 m of pebble to small-cobble conglomerate. Above the basal conglomeratic beds, the Tintic Quartzite is composed of white or pinkish, rusty-weathering quartzite. As much as 240 m (800 ft) of Tintic Quartzite is present in the Cottonwood project area (Crittenden, et al, 1952).

The lower olive-green micaceous shale member of the Ophir Formation (COS) interfingers with the uppermost Tintic Quartzite beds. This lower shale of the Ophir Formation is the first unit with identifiable Cambrian fossil fragments. The lower shale is approximately 76 m (250 ft)

thick. The middle member is a blue-gray to white limestone showing prominent wavy or crinkly brown laminae and reaches a thickness of about 24 m (80 ft). The upper member of the Ophir Formation is composed of approximately 21 m (70 ft) of yellow-brown weathering limy shale with a characteristic blockly fracture (Crittenden, et al, 1952). For the purposes of this project, the Tintic Quartzite (CTQ) and the Ophir Formation (COS) are shown on the geologic map as one unit (CTQ) (Plate 7 and Figure 3).

The Maxfield Limestone (CML) of Middle Cambrian age is a three-member dolomite to dolomitic limestone which conformably overlies the Ophir Formation. Maximum thickness of the Maxfield Limestone is about 305 m (1,000 ft) although the formation is entirely absent due to erosion in much of the Cottonwood project area (Crittenden, et al, 1952).

Unconformably overlying the Maxfield Limestone or Ophir Formation is a thick carbonate sequence of Mississipian to Pennsylvanian in age. This sequence (PLSU) which incorporates the Cambrian Maxfield Limestone, includes the Mississippian Fitchville Formation, Gardison Limestone, Deseret Limestone, Humbug Formation, and Doughnut Formation, and the Pennsylvanian Round Valley Limestone. This sequence has a combined thickness of approximately 700 m (2,300 ft) and is composed of dolomites and limestones with minor amounts of sandstone, shale, and cherty carbonate. Many of the units are highly fossiliferous (Crittenden, et al, 1952; Crittenden, 1965a, b, c, and d; and James, 1979).

Conformably overlying the Round Valley Limestone is 370 m (1,200 ft) to approximately 460 m (1,500 ft) of Pennsylvanian Weber Quartzite (PWQ) consisting of quartzite and calcareous sandstone which weathers to a pale gray to tan, with some interbedded gray to white limestone and dolomite (James, 1979). The resistant quartzite forms abundant talus which masks the interbedded calcareous zones in the Webster Quartzite making them appear subordinate (Crittenden, et al, 1952).

The Park City Formation (PPC) is an approximate 180 m (600 ft) thick, three-member formation which is conformable with the underlying Weber Quartzite. The lower member which has been assigned a Pennsylvanian age is a breccia of quartzitic sandstone fragments. The middle and upper members are Permian in age. The middle member consists of a limy shale, in part phosphatic, and the upper member consists of gray-weathering fossiliferous and cherty limestone.

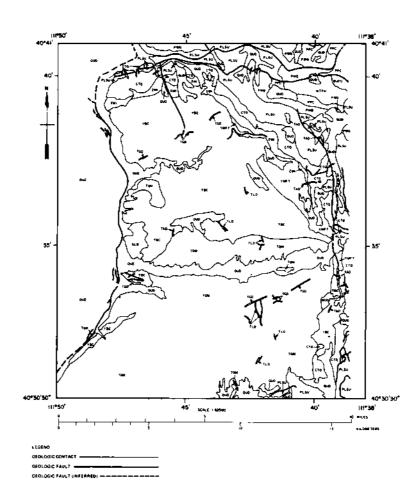
Overlying the Park City Formation in the extreme northeastern portion of the project area are minor amounts of Triassic and Jurassic formations. For the purposes of this report, the Triassic formations are undivided and mapped as MTFU because of their very limited exposure in the project area. Triassic units include the Woodside Shale, Thaynes Formation, and Ankareh Formation which are basically "red bed" shales, siltstones, sandstones, and include minor calcareous units. The Woodside Shale and

STRATIGRAPHIC COLUMN FOR THE COTTONWOOD PROJECT AREA

ERA	SYSTEM	SERIES	MAP	FIELD	GEOLOGIC UNIT
CENOZOIC	QUATERNARY			QAL	
			aud	ατι	TALUS, COLLUVIUM, AND LANDSLIDE DEPOSITS
				OPLB	LAKE BONNEVILLE DEPOSITS
L				QPGM	GLACIAL MORAINE
Í	TERTIARY OR		TGD	TGD	GRANODIORITIC TO GRANITIC
	CRETACEOUS		TAD	TAD	DIORITES OF ARGENTA INTRUSIVE COMPLEX AND INTERMEDIATE DIKES
			TLD	TLD	LAMPROPHYE INTRUSIVE DIKES
			ТОМ	ТОМ	QUARTZ MONZONITE OF LITTLE COTTONWOOD AND FERGUSON CANYON
MESOZOIC	JURASSIC		MJFU	MJFU	JURASSIC UNITS, UNDIVIDED INCLUDES: MORRISON FORMATION PREUSS FORMATION TWIN CREEK LIMESTONE NUGGET SANDSTONE
	TRIASSIC		MTFU	MTFU	TRIASSIC UNITS, UNDIVIDED INCLUDES: ANKAREH FORMATION THAYNES FORMATION WOODSIDE SHALE
PALEOZOIC	PERMIAN		PPC	PPC	PARK CITY FORMATION
Γ	PENNSYLVANIAN	UPPER PENNSYLVANIAN	PWQ	PWQ	WEBER QUARTZITE
1		LOWER PENNSYLVANIAN		PRV	ROUND VALLEY LIMESTONE
	MISSISSIPPIAN	UPPER MISSISSIPPIAN		MDS	DOUGHNUT FORMATION
				MHF	HUMBUG FORMATION
		LOWER	PLSU	MDL	DESERET LIMESTONE
1		MISSISSIPPIAN		MGL	GARDISON LIMESTONE
-		·		MÊD	FITCHVILLE FORMATION
	CAMBRIAN	MIDDLE CAMBRIAN		CML	MAXFIELD LIMESTONE
			ста	<u>cos</u>	OPHIB FORMATION
				сто	
PRECAMBRIAN	Z		<u>ZMI</u>	<u>ZMI</u>	
l				YMFT	MINERAL FORK TILLITE
Ĺ	Y		YBC	YBC	BIG COTTONWOOD FORMATION
	X	<u> </u>	XLW	XLW	LITTLE WILLOW FORMATION

SOURCES:

1. CRITTENDEN, MAX D., JR.; GEOLOGY OF DRAPER QUADRANGLE, U.S.G.S. MAP GQ-377 (1965a).


2. _____; GEOLOGY OF DROMEDARY PEAK QUADRANGLE, U.S.G.S. MAP 6Q-378 (1965 b).

3. _____; GEOLOGY OF MOUNT AIRE QUADRANGLE, U.S.G.S. MAP 9Q-379 (1965c).

4. _____; GEOLOGY OF SUGAR HOUSE QUADRANGLE, U.S.G.S. MAP GO-380 (1965d).

5. JAMES, L. P.; GEOLOGY, ORE DEPOSITS, AND HISTORY OF THE BIG COTTONWOOD MINING DISTRICT (1979).

LEGEND FOR FIGURE 3

GENERALIZED GEOLOGIC MAP OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

the lower part of the Ankareh Formation are equivalent to the Moenkopi Formation and the middle and upper member of the Ankareh Formation are equivalent to the Shinarump and Chinle Formation of southeastern Utah (Crittenden, et al, 1952).

The overlying Jurassic units (MJFU) include the Nugget Sandstone, Twin Creek Limestone, Preuss Formation, and Morrison Formation, and consist of resistant crossbedded sandstones, silty limestones, red shale and sandstone, and white algal limestone, respectively (James, 1979). In southeastern Utah, the Nugget Sandstone is the equivalent of the Navajo Sandstone (Crittenden, et al, 1952).

During Late Cretaceous and Tertiary time, the Central Wasatch Range was intruded by several igneous stocks. In the Cottonwood project area, these intrusives are represented by the diorites of the Argenta Intrusive Complex (TAD), the Little Cottonwood and Ferguson Canyon Stocks (TQM), and dikes of lamprophyric (TLD), intermediate (TAD), and granitic (TGD) composition.

The Argenta Intrusive Complex includes as many as 40 individual intrusions with somewhat differing textures occurring as dikes and sills and some larger intrusive bodies. In general, they are hornblende-biotite quartz diorite in composition (Crittenden, 1965a, b, c, and d; James, 1979). Radiometric dating of the Argenta diorites have given them an age of 72.4 \pm 4 million years (James, 1979).

The Little Cottonwood Stock (TQM) occupies approximately 40% of the Cottonwood project area. It occurs generally in the area from just south of the divide between Big and Little Cottonwood Canyons to the southern boundary of the project area, and from the Wasatch Front on the west to about long. 111°40' on the east. Rocks of the Little Cottonwood Stock and related Ferguson Stock, located just south of the mouth of Big Cottonwood Canyon, are mainly granodiorite to quartz monzonite in composition. Age of the Little Cottonwood Stock is 24 to 31 million years (James, 1979).

Xenoliths of dioritic rocks possibly from the older Argenta Complex have been found in the Little Cottonwood Stock (James, 1979). There is also a zone of intense alteration and pyritization east of the White Pine Fork. The Little Cottonwood Stock in this area contains anomalous concentrations of molybdenite (James, 1979; Crittenden, 1965a, b, c, and d).

Associated with the larger intrusive rocks are intrusive dike rocks of lamprophyric (TLD), intermediate (TAD), and granitic (TGD) composition. These dikes are of limited aerial extent and are scattered throughout the project area (Crittenden, 1965a, b, c, and d).

Surficial deposits (QUD) found in the Cottonwood project area include abundant glacial moraine deposits in Little Cottonwood and Bells Canyons

and also in the upper portion of Big Cottonwood Canyon and several of its major tributaries. Other glacial moraines are found in cirques surrounding the high mountain peaks of the project area. Along the base of the Wasatch Front, terrace deposits from the highest stage of Glacial Lake Bonneville extend from the Salt Lake Valley floor approximately 1,270 m (4,200 ft) to an elevation of approximately 1,500 m (5,200 ft) (Crittenden, 1965a, b, c, and d).

Nonglacial surficial deposits, also mapped as QUD, include talus, colluvium, and landslide deposits found in steep valleys and on the flanks of the mountain peaks. Recent alluvium is present in many of the streams of the project area (Crittenden, 1965a, b, c, and d).

Structure

The dominant structural features of the Cottonwood project area include intensely folded and faulted sediments which dip predominantly away from a central core of Tertiary quartz monzonite (the Little Cottonwood Stock), major east-west and north-south trending thrust faults (the Upper Strand Mt. Raymond, Strand Mt. Raymond, and Alta Thrust Faults), and major north-south trending normal faults (the Superior and Silver Fork normal faults and the Wasatch Fault zone). In addition to these features the project area lies on the economically important lineament known as the Uinta-Gold Hill Trend or simply the Uinta Trend (Erickson, 1974).

The Cottonwood project area lies within the Central Wasatch Mountains. It is located at the junction of three regional tectonic environments: the Basin and Range Province to the west, the Colorado Plateau to the southeast and the Green River Basin to the northeast. The Uinta-Gold Hill Trend (Uinta Trend) (Erickson, 1974), now represented by the Unita Mountains, seperates the Colorado Plateau from the Green River Basin and may represent a failed-arm of a Precambrian triple junction which lay at the continental margin approximately 1,200 million years ago (Burke and Dewey, 1973). [The Uinta Arch, which is the western extension of the anticline which forms the Uinta Mountains proper, is represented in the project area by an east-west trending anticline whose axis is located north of Little Cottonwood Canyon, at approximately lat. 40°39' N. (Crittenden, 1964).] This lineament together with the east northeastwest southwest trending Towanta Lineament (Ritzma, 1974) may be related to the Mullen Creek-Nash Fork shear of southeastern Wyoming. Basement rocks in northern Utah located north of this projected trend are important in terms of uranium exploration. Units of the Wyoming Precambrian Province located north of the Mullen Creek-Nash Fork shear, include Archean rocks (>2.5 billion years) which are similar to those in the Slave Province in Canada. In the region north of the Mullen Creek-Nash Fork Shear, lower and middle Proterozoic sequences unconformably overlie the older Archean rocks. These Proterozoic sequences are similar to the Huronian Supergroup of Canada which contains the Elliot Lake-Blind River deposits. Basement rocks of this type are represented

in the Cottonwood project area by the Little Willow Formation [Precambrian X in age (King, 1976)].

Between 1.6 and 1.8 billion years ago, the Hudsonian Orogeny resulted in metamorphism of the flanks of the Wyoming Precambrian Province and of the Little Willow Formation to amphibolite grade. Two major geosynclinal episodes followed the Hudsonian Orogeny and are represented by Precambrian Y sedimentary rocks [the Big Cottonwood Formation (YBC) and the Mineral Fork Tillite (YMFT)] of the Beltian Geosyncline and by Late Precambrian Z to Jurassic sedimentary rocks of the Cordilleran Geosyncline (Crittenden and Wallace, 1973).

Starting approximately 100 million years ago and lasting until about 40 million years ago, the Laramide Orogeny resulted in thin layers of sediments being moved slowly eastward in series of thin, wrinkled sheets (Crittenden, 1964). This orogeny began with simple folding and developed into a period of extensive thrust faulting represented in the project area by the Upper Strand Mt. Raymond, Strand Mt. Raymond, and Alta Thrust Faults. The Strand Mt. Raymond Thrust Faults are located at approximately lat. $40^{\circ}40'30''$ N., parallel each other, and extend eastwest almost the width of the project area. The Alta Thrust Fault, which is slightly older than the Strand Mt. Raymond Thrust Faults is located approximately from lat. $40^{\circ}35'00''$ to about $39^{\circ}00'00''$ N. and long. $111^{\circ}37'30''$ to about $43^{\circ}00'00''$ W.

These major thrust faults were cut and offset by numerous normal faults in Tertiary time. Normal faulting began approximately 20 million years ago and is best represented in the project area by the major Superior and Silver Fork Faults. The Superior Fault is a north-south trending normal fault located approximately at lat. $40^{\circ}35'$ to $40^{\circ}39'$ N. and long. $111^{\circ}39'$ to $111^{\circ}40'$ W. The Silver Fork Fault is also a north-south trending normal fault and parallels the Superior Fault. It is located at the eastern margin of the project area. The Wasatch Fault Zone is located at the western edge of the project area and represents the youngest major structural element in the area. Displacement along the zone averages 910 m (3,000 ft) (James, 1979), but may reach a maximum of 4,570 m (15,000 ft) (Crittenden, 1964). Fault scarps along the Wasatch Front cut Quaternary gravel and several earthquakes have been recorded along the zone in recent history indicating the zone is still tectonically active.

HYDROLOGY

Water resources of the Cottonwood project area are limited to direct runoff and numerous springs which generally occur between elevations of 1,700 to 2,600 m (5,600 to 8,600 ft), although some over 3,050 m (10,000 ft) also exist. The springs achieve peak flow rates in the spring when recharge by snow melt and rain is at a maximum. The major producing units include fractured Precambrian-Cambrian metamorphosed clastics (quartzite, tillite), Paleozoic carbonates, jointed Tertiary intrusives

(quartz monzonite), unconsolidated alluvium, colluvium, and glacial moraine deposits. Considerable water infiltrates into the consolidated bedrock of the Wasatch Mountains along fractures, faults, bedding planes, solution channels, or lithologically porous zones and may eventually reappear in springs at lower elevations or discharge into the adjoining Jordan Valley water table aquifer without surfacing (Jensen, High water yields are obtained along or in close proximity to, 1969). major structural features such as overthrusts in the consolidated units and along the boundary between consolidated bedrock and overlying unconsolidated Quaternary sediments. The chemical composition of selected springs in the area as determined by Mundorff (1971) is generally of the calcium bicarbonate type with the dissolved solids content ranging from 200 to 430 ppm. In some areas (especially in the higher elevations) the distance between the recharge and discharge zones is small, and hence, the water chemistry may not accurately reflect the geochemistry of the host rock through which it passes.

URANIUM OCCURRENCES

No uranium mines, prospects, or occurrences of uranium are known in the Cottonwood project area.

Geochemical analysis of five rocks samples from the Big Cottonwood mining district gave values for $U_3 O_8$ from <1.0 to 2.0 ppm. James (1979) states that uranium was measured only in a few samples, and was found to occur at very low levels when compared to uranium-bearing rocks of other regions. Examination of many samples with a scintillation counter failed to show anomalous radioactivity.

An areal gamma ray and magnetic survey conducted by EG&G Geometrics (1980) detected a 6.0 ppm eU anomaly associated with the Tertiary Little Cottonwood Stock (quartz monzonite) approximately located at lat. $40^{\circ}35'$ N. and long. $111^{\circ}45'$ W.

SAMPLE COLLECTION

CHRONOLOGY OF THE SURVEY

The Cottonwood detailed geochemical survey area was sampled by UCC-ND personnel from late October to late November 1979. Laboratory analysis, as well as compilation and verification of all field and laboratory data, was completed in April 1980. The final field and laboratory data base used to prepare the statistical and areal distribution of uranium and other related variables for this report was completed in April 1980.

FIELD PROCEDURES

A total of 15 groundwater and 79 stream sediment samples were collected during the detailed sampling of the Cottonwood project area. Plates 1 and 4 show sample locations for groundwater and stream sediment sites, respectively. Radiometric sample locations are shown on Plate 8. A total of 85 radiometric readings were taken.

Detailed information regarding techniques in sample collection, recording site data, field equipment, and field measurements may be found in the following reports: "Hydrogeochemical and Stream Sediment Reconnaissance Procedures for the Uranium Resource Evaluation Project" (Arendt, et al, December 1979); "Procedures Manual for Groundwater Reconnaissance Sampling" (Uranium Resource Evaluation Project, March 1978); and "Procedures Manual for Stream Sediment Reconnaissance Sampling" (Uranium Resource Evaluation Project, March observations were recorded on the field form shown in Table C-2 and are included in the microfiche in Appendix D.

Scintrex BGS-1SL scintillometers were used in the area to determine general radioactive backgrounds and to locate areas of possible interest. The GR410 Exploranium Geometrics Gamma-Ray Spectrometer was used as follow-up in the areas of possible anomalous radioactivity to obtain more precise radiometric data. These readings were used in directing sampling towards geologic units of positive radioactive anomalies.

CONTAMINATION

Precautions were taken to avoid the possibility of collecting contaminated samples. Sediment samples were collected upstream from road crossings and railroad tracks, except where this was not feasible. Visible signs of possible contamination were noted on the field form. Special care was taken to avoid streams which were connected upstream to irrigation ditches in the agricultural areas.

CHEMICAL ANALYSIS

All samples collected in the Cottonwood project area were returned to the URE Project laboratory in Oak Ridge, Tennessee for preparation and analysis. The elements determined and the analytical techniques used along with the appropriate detection limits are given in Table 1. These detection limits are considered the best average during normal operation; however, some variables have values reported below these limits. All water samples were received in 250-ml polyethylene bottles and were filtered through 0.45-µm cellulose acetate paper. Stream sediment samples were dried overnight at 85°C and sieved to collect the <150-µm fraction. Part of the sediment sample was dissolved in 10 ml of 1:1 nitric-hydrofluoric acid. The analytical procedures which were used have been described by Cagle (1977) and Arendt, et al (December 1979). All observed data from all samples are included in the microfiche in Appendix D.

Table l

DETECTION LIMITS OF VARIABLES DETERMINED IN WATER AND SEDIMENT SAMPLES

			<u>n Limits</u>
/ariable	Method	Sediment (ppm)	Water (ppb)
U-FL	Fluorometry	0.25	0.2
U-MS	Mass Spectrometry-Isotope Dilution		0.02
U-NT	Neutron Activation-Delayed Neutron Count	0.02	
As	Atomic Absorption	0.1	0.5
Se	Atomic Absorption	0.1	0.2
Ag	Plasma Source Emission Spectrometry	2	2
AĬ	Plasma Source Emission Spectrometry	$\bar{0.05}(a)$	10
В	Plasma Source Emission Spectrometry	10	
Ba	Plasma Source Emission Spectrometry	2	4 2
Be	Plasma Source Emission Spectrometry	ī	1
Ca	Plasma Source Emission Spectrometry	0.05(a)	0.1(b
Ce	Plasma Source Emission Spectrometry	10	30
Co	Plasma Source Emission Spectrometry	4	2
Cr	Plasma Source Emission Spectrometry	1	4
Ču	Plasma Source Emission Spectrometry	2	4 2
Fe	Plasma Source Emission Spectrometry	0.05(a)	10
Нf	Plasma Source Emission Spectrometry	15	
К	Plasma Source Emission Spectrometry	0.05(a)	0.1(b
La	Plasma Source Emission Spectrometry	2	
Li	Plasma Source Emission Spectrometry	1	2
Mg	Plasma Source Emission Spectrometry	0.05(a)	0.1(b
Mn	Plasma Source Emission Spectrometry	4	2
Mo	Plasma Source Emission Spectrometry	4	4
Na	Plasma Source Emission Spectrometry	0.05(a)	0.1(b
Nb	Plasma Source Emission Spectrometry	4	
Ni	Plasma Source Emission Spectrometry	2	4
P	Plasma Source Emission Spectrometry	5	40
Pb	Plasma Source Emission Spectrometry	10	
Sc	Plasma Source Emission Spectrometry	ĩ	1.
Si	Plasma Source Emission Spectrometry		0.1(b
Sr	Plasma Source Emission Spectrometry	1	2
Th	Plasma Source Emission Spectrometry	2	
Ti	Plasma Source Emission Spectrometry	10	2
V	Plasma Source Emission Spectrometry	2	2 4
Y	Plasma Source Emission Spectrometry	1	1
Zn	Plasma Source Emission Spectrometry		4
Zr	Plasma Source Emission Spectrometry	2 2	2 5(b)
S04	Spectrophotometry		5(b)
C1	Spectrophotometry		10(b)
	on limits expressed in percent.		
<u>u/Hetect1</u>	DA LIMITS EXDRESSED IN DERCENT.		

QUALITY CONTROL

MEASUREMENTS CONTROL

The procedures used to analyze URE Project samples require that calibration standards, check samples, and blanks be analyzed along with normal samples to ensure the validity of the reported results. A measurements control program provides information concerning precision and reliability of these measurements. Control samples of two water batches and three sediment batches are submitted anonymously along with routine samples on a daily basis. A statistical summary of results reported on control samples, which were analyzed along with the samples included in this survey, is given in Tables 2 and 3. Results of uranium analysis of water and sediment control samples obtained from the Ames Laboratory as part of the Multilaboratory Analytical Quality Control for the HSSR Program are reported by D'Silva, et al (1980).

PRINCIPAL COMPONENT ERROR ANALYSIS

A principal component analysis of data from groundwater and stream sediment samples was used to produce an ordered list of samples using the eigenvalue statistics as described by Kane, et al (1977), where the the most extreme samples were listed first. Additional samples were identified if single-element measurements were outside a three standard deviation confidence interval around the mean. The laboratory and field data from the samples identified by this procedure were reviewed. Four stream sediment samples (908928, 909300, 909326, and 909335) were submitted for reanalysis. The original results were compared to the results from reanalysis. Of the more than 100 individual analyses that were compared, the only results which were considered to be in error in the original analysis and thus require corrections were arsenic and selenium values for Sample 909335 and multielement values for Sample 909300. This low error rate indicates a high level of reliability for the laboratory measurements.

GEOCHEMICAL RESULTS

Statistical summaries of geochemical variables determined and correlation matrices of select variables for groundwater and stream sediment samples collected in the Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are presented in Appendixes A and B, respectively. Areal distribution maps (concentration maps for groundwater data, symbol maps for sediment data), log frequency, lognormal probability, percentile plots, and tabular data listings for select variables are also included. All field and laboratory data for all samples may be found on microfiche in Appendix D. Details of all sampling, analytical, and statistical procedures are discussed in Report K/UR-100 (Arendt, et al, December 1979).

Table 2

		<u> </u>	Ba	atch L-4		Batch H-4				
Element	<u>Method</u>	No. of Samples	Mean (ppb)	Standard Deviation (ppb)	Coefficient of <u>Variation</u>	No. of <u>Samples</u>	Mean (ppb)	Standard Deviation (ppb)	Coefficient Of Variation	
U	FL(a)	17	0.75	0.351	0.47]]	10.87	0.897	0.08	
AS	дд (b)	20	3.3	1.11	0.33	17	0.6	0.31	0.55	
SE	AA	20	1.2	0.31	0.26	17	0.8	0.24	0.29	
AL	PS(C)	13	92.0	20.2	0.22	18	330.0	25.0	0.08	
В	PS	13	1,570.0	62.2	0.04	19	69.0	4.6	0.07	
BA	PS	12	140.0	3.3	0.02	19	31.0	1.4	0.05	
CA	PS	14	10,000.0	850.0	0.08	18	91,400.0	6,190.0	0.07	
C0	PS	14	20.0	4.1	0.20	17	90.0	2.9	0.03	
CR	PS	14	93.0	5.6	0.06	18	18.0	1.8	0.10	
CU	PS	8	45.0	1.8	0.04	18	202.0	23.3	0.11	
FE	PS	13	103.0	7.2	0.07	18	960.0	50.7	0.05	
К	PS	14	1,800.0	229.0	0.13	17	19,490.0	937.0	0.05	
LI	PS	14	16.0	1.1	0.07	18	100.0	5.6	0.06	
MG	PS	14	9,200.0	420.0	0.05	18	67,900.0	2,710.0	0.04	
MN	PS	14	20.0	2.3	0.11	16	96.0	4.1	0.04	
MO	PS	13	24.0	10.1	0.41	13	11.0	6.3	0.57	
NA	PS	14	1,600.0	150.0	0.10	18	43,800.0	2,120.0	0.05	
NI	PS	13	195.0	10.7	0.05	18	37.0	6.2	0.16	
Р	PS	13	90.0	23.8	0.26	17	4,498.0	134.3	0.03	
SC	PS	13	63.0	2.8	0.04	17	11.0	0.5	0.05	
SI	PS	14	870.0	164.0	0.19	18	7,940.0	371.0	0.05	
SR	PS	14	56.29	2.644	0.05	18	5,012.55	170.85	0.03	
ΤI	PS	13	118.0	8.2	0.07	18	38.0	4.4	0.11	
٧	PS	12	9.0	1.5	0.15	18	41.0	3.5	0.08	
Ŷ	PS	14	9.0	1.4	0.14	18	45.0	2.4	0.05	
ZN	PS	14	498.0	42.7	0.09	18	45.0	24.3	0.54	

SUMMARY OF THE MEASUREMENTS CONTROL RESULTS OBTAINED WITH GROUNDWATER SAMPLES FROM THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

(a)Fluorometric analysis.
(b)Atomic absorption.
(c)Plasma source emission spectroscopy.

Iable 3	Ta	Ы	e	3
---------	----	---	---	---

SUMMARY OF THE MEASUREMENTS CONTROL RESULTS OBTAINED WITH STREAM SEDIMENT SAMPLES FROM THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

			В	atch Q-1		Batch R-3				Batch S-3			
Element	Method	No. of Samples	Mean (ppm)	Standard Deviation (ppm)	Coefficient of Variation	No. of <u>Samples</u>	Mean (ppm)	Standard Deviation (ppm)	Coefficient of Variation	No. of Samples	Mean (opm)	Standard Deviation (ppm)	Coefficien of Variation
U	FL(a)	40	0.79	0.268	Q.34	37	4.26	0.469	0.11	38	28.52	2.674	0.09
U	NT(b)	39	0.67	0.160	0.24	50	4.91	0.102	0.02	35	26.25	0.797	0.03
AS	AA(c)	17	1.8	0.25	0.14	27	3.6	0.64	0.18	19	25.4	3.11	0.12
SE	AA	12	0.5	0.31	0.57	28	0.2	0.43	2.02	20	1.4	0.62	0.45
AL	_p5(d)	36	9,700.0	490.0	0.05	39	34,100.0	2,730.0	0.08	30	48,700.0	3,430.0	0.07
В	P\$	38	7.0	3.5	0.46	34	20.0	7.1	0.34	30	61.0	10.3	0.17
BA	PS	38	130.0	14.6	0.11	3 9	454.0	51.0	0.11	32	314.0	31.1	0.10
BE	PS	37	<1.0			40	<1.0			32	2.0	4.0	1.74
CA	PS	38	1,200.0	100.0	0.08	40	3,100.0	300.0	0.10	31	16,900.0	80.0	0.06
CΣ	PS	37	19.08	3.677	0.19	39	68.82	7.196	0.10	29	55.59	4.968	0.09
CO	PS	38	4.0	2.7	0.59	40	10.0	2.2	0.20	31	33.0	3.1	0.09
CR	PS	38	14.0	2.1	0.14	39	28.0	3.2	0.11	32	65.0	6.6	0.10
CU	P\$	35	3.0	0.8	0,22	38	20.0	1.5	0.97	30	69.0	2.9	0.04
FE	P\$	37	9,700.0	390.0	0.04	40	18,000.0	1,070.0	0.06	30	40,800.0	2,070.0	0.05
ĸ	PS	37	1,900.0	190.0	0.10	38	9,900.0	930.0	0.09	31	17,200.0	2,000.0	0.12
LI	P\$	37	9.0	0.8	0.08	39	23.0	1.8	0.08	32	35.0	3.6	0.10
MG	PS	38	1,100.0	50.0	0.05	39	2,200.0	110.0	0.05	32	5,600.0	260.0	0.05
MN	PS	37	317.0	9.9	0.03	40	1,909.0	97.8	0.05	30	404.0	15.9	0.04
MO	PS	1	0.0	0.0	0.0	40	2.0	0.9	0.41	29	43.0	3.7	0.08
NA	PS	1	0.0	0.0	0.0	40	1,600.0	190.0	0.13	31	1,600.0	220.0	0.14
NB	PS	37	2.0	0.7	0.32	41	8.0	4.3	0.49	33	2.0	1.6	0.58
NI	PS	37	6.0	1.0	0.16	41	20.0	3.1	0.15	30	108.0	6.3	0.06
P	PS	36	70.0	5.0	0.09	35	2,149.0	217.3	0.10	28	1,441.0	83.8	0.06
PB	PS	28	5.0	3.0	0.50	27	38.0	5.6	0.14	28	21.0	3.6	0.16
SC	PS	38	1.0	0.5	0.31	41	5.0	0.8	0.15	32	10.0	0.8	0.08
SR	P5	36	19.17	1.320	0.07	39	55.33	4.054	0.07	32	85.56	6.133	0.07
TH	PS	38	2.0	1.7	0.74	41	8.0	2.8	0.34	33	8.0	2.5	0.30
Τİ	PS	38	572.0	54.8	0.10	39	3,321.0	369.9	0.11	32	2,123.0	174.9	0.08
۷	PS	35	20.0	0.9	0.04	38	55.0	4.4	0.08	30	166.0	6.7	0.04
Y	PS	37	4.0	0.3	0.08	39	20.0	1.7	0.08	30	33.0	1.6	0.05
ZN	PS	36	13.0	2.1	0.16	35	93.0	7.5	0.08	29	185.0	12.0	0.06
ZR	PS	38	30.0	2.9	0.10	38	136.0	10.9	0.08	31	83.0	6.0	0.07
HF	PS	27	2.11	1.577	0.75	27	3.83	2.685	0.70	28	1.95	1.455	0.75
LA.	PS	28	20.89	3.023	0.14	27	78.00	15.056	0.19	28-	90.61	4.787	0.05

{b]Neutron activation delayed neutron count. {c]Atomic absorption. {d]Plasma source emission spectroscopy.

For discussion purposes, the 16th and 84th percentile concentrations are contoured on the areal distribution maps for all elements in Appendix B, to indicate areas of low and high concentrations. This represents values of approximately one standard deviation below and above the mean for a normally distributed population. For more careful evaluation of the data presented, concentration levels considered to be anomalous should be determined separately for each geologic unit within the project area.

GEOCHEMICAL DISTRIBUTIONS IN GROUNDWATER

Sample site locations for groundwater samples collected in the Cottonwood project area are shown on Plate 1. Concentrations of the variables uranium and specific conductance are presented in Plates 2 and 3, and Figures A-lb and A-2b, respectively. Figure 4 presents the geologic units from which the springs produce. The number of samples from each of the major geologic and lithologic units in the project area is presented in Table 4. A correlation matrix has been supplied (Table A-2), but due to the small number of samples (15), interpretation of the table is minimized. Observed data for uranium, specific conductance, cobalt, iron, potassium, manganese, nickel, sulfate, molybdenum, and strontium are given in Table A-3. Concentration maps, log frequency, lognormal probability, and percentile plots for these same variables are presented in Appendix A.

Uranium

Uranium concentrations in groundwater from the Cottonwood project area range from 0.25 to 3.89 ppb (Plate 1 and Figures A-la, A-lb). Three samples which represent the upper 20th percentile of the data (908938, 908915, and 908930) have uranium concentrations of 3.89, 3.63, and 2.80 ppb, respectively. These samples produce from and represent groundwater within the quartz monzonite of Little Cottonwood and Ferguson Canyons, and the Little Water Stock (TQM). They are located at lat. $40^{\circ}32'53''$ N., long. 111°41'31'' W. (for Sample 908938); lat. $40^{\circ}33'25''$ N., long. 111°40'41'' W. (for Sample 908930).

Specific Conductance

Specific conductance values (Plate 2 and Figure A-2b) for the samples with highest uranium concentrations are within the 40th to 65th percentile grouping for all specific conductance values observed. Sample 908938 has a specific conductance value of 448 μ mhos/cm (64th percentile or 9th highest sample); Sample 908915 has a specific conductance value of 428 μ mhos/cm (50th percentile or 8th highest sample), and Sample 908930 has a specific conductance value of 412 μ mhos/cm (43rd percentile or 6th highest sample). The samples with the highest specific conductance values, which are the upper 20th percentile of the data, are 908906 (728 μ mhos/cm, located at lat. 40°35'24" N., long. 111°39'14"

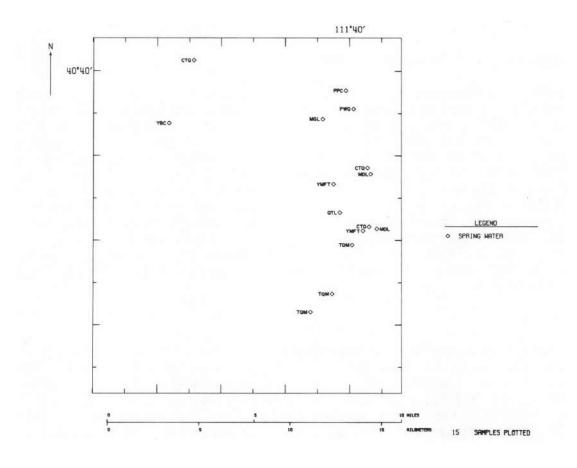


Figure 4

PRODUCING HORIZON MAP FOR GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

Table 4

Geologic Code (a)	No. of Groundwater Samples	No. of Sediment Samples	No. of Radiometric Readings
QUD	-	2	-
QAL	-	6	-
QTL	1	9	-
QPGM	-	6	-
TAD	-	-	3
TLD	-	-	2
том	3	20	22
MTFU	-	2	-
PPC	1	-	1
PWQ	1	2	-
PRV	-	-	2
PLSU	-	-	-
MDS	-	-	1
MDL	2	2	2
MGL	1	2	-
COS	-	2	3
СТQ	3	-	5
ZMI	-	1	5
YMFT	2	1	9
YBC	1	21	22
XLW		3	8
Total	15	79	85

DISTRIBUTION OF SAMPLES BY GEOLOGIC CODE FROM THE COTTONWOOD PROJECT AREA

(a) See Figure 3 for unit names.

W.), 908539 (542 μ mhos/cm, located at lat. 40°37'58" N., long. 111°39'11" W.), and 909315 (486 μ mhos/cm, located at lat. 40°40'19" N., long. 111°46'05" W.). Samples 908906 and 909315 produce from the Ophir Formation or Tintic Quartzite (CTQ). Sample 908539 produces from the Deseret Limestone (MDL).

Related Variables

Variables with concentrations positively associated with the high concentrations of uranium in the samples include cobalt (Figure A-3b), iron (Figure A-4b), potassium (Figure A-5b), manganese (Figure A-6b), nickel (Figure A-8b), and sulfate (Figure A-10b). Sample 908930 also has relatively high concentrations of molybdenum (Figure A-7b) and strontium (Figure A-9b). Strontium, iron, and rarely manganese are present in limited amounts in alkali feldspars (Deer, et al, 1971) which are abundant within the Little Cottonwood Stock (TQM). At approximately lat. $32^{\circ}33'00''$ to $32^{\circ}34'00''$ N. and long. $111^{\circ}40'00''$ to $111^{\circ}42''30''$ W., sulfide deposits occur within the Little Cottonwood Stock (TQM) near a dike complex (TGD and TLD) of granodioritic to granitic and lamprophyric composition. The anomalous concentrations of cobalt, iron, manganese, nickel, and molybdenum may be associated with these dikes and with the sulfide occurrences since these elements are often geochemically associated with each other and with sulfides.

This same association of variables; cobalt, iron, potassium, manganese, nickel, and sulfate also occurs in anomalous concentrations in Samples 908538 and 909333. These samples produce from the Ophir Formation or Tintic Quartzite (CTQ) and the Mineral Fork Tillite (YMFT), respectively. Sulfide deposits associated with the Superior Fault Zone (a normal fault located at approximately lat. 40°35' to 40°39' N. and long. 111°39' to 111°40' W.) are located near Sample 908538. No known sulfide deposits occur near Sample 909333, however, dikes of intermediate composition are found near the sample location. The uranium concentrations for these samples are 0.25 and 0.75 ppb, respectively, anomalously low values for the region.

Summary of Groundwater Data

In the Cottonwood project area, uranium concentrations are highest in groundwaters producing from the quartz monzonite of Little Cottonwood and Ferguson Canyons. Specific conductance values for these samples are relatively moderate for the area. Variables that appear associated with the uranium include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent molybdenum and strontium. This association may be attributable to the presence of the Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes and sulfide deposits located near the sample locations.

GEOCHEMICAL DISTRIBUTIONS IN STREAM SEDIMENTS

Sample site locations and the outline of drainage basins from which stream sediment samples were collected in the Cottonwood project area are shown on Plate 4. Areal distribution maps for hot-acid-soluble uranium (U-FL) as determined by fluorometric analysis and thorium are presented on Plates 5 and 6 and Figures B-lb and B-4b, respectively. The number of stream sediment samples which were collected from each of the major geologic and lithologic units of the survey area is presented Stream sediment data used to generate the tables and in Table 4. figures in Appendix B include all sediment samples collected within the Cottonwood project area. Observed data for hot-acid-soluble uranium as determined by fluorometric analysis (U-FL), total uranium as determined by neutron activation (U-NT), the U-FL:U-NT ratio, thorium, barium, cerium, copper, molybdenum, phosphorus, strontium, and zinc are given in Table B-3. Areal distribution maps, log frequency, lognormal probability, and percentile plots for these same variables plus sodium, niobium, and titanium are presented in Appendix B.

Uranium

The areal distribution map of U-FL concentrations (Plate 5 and Figure B-lb) indicates that values ≥ 84 th percentile (15.34 ppm), with the exception of three samples (908530, 909099, and 908540) occur within the Little Cottonwood drainage basin where the basin cuts into the Little Cottonwood Stock (TQM). The Little Cottonwood drainage basin is an east-west trending basin with the main stream, Little Cottonwood Creek, being located approximately between lat. 40°34'00" and 40°35'00" N. and extending east-west almost the entire width of the project area. Samples 908530, 909099, and 908540 also, in part, represent sediment derived from the Little Cottonwood or Ferguson Stocks (TQM).

The percentile plot, (Figure B-la) confirms that the highest concentrations of U-FL are from sediments derived from the Little Cottonwood and Ferguson Stocks (TQM). The 84th percentile for these units is 31.19 ppm. The highest U-FL concentration determined was 72.64 ppm from Sample 908928 (located in the southeastern corner of the project area, lat. $40^{\circ}33'18''$ N., and long. $111^{\circ}40'48'' W.$).

The correlation matrix (Table B-2) indicates a significant positive Spearman and Pearson correlation (\geqq 0.30) between the natural logs of U-FL and U-NT, thorium, sodium, strontium, barium, phosphorus, cerium, niobium, yttrium, aluminum, titanium, vanadium, iron, and the U-FL:U-NT (extractable to total uranium) ratio. A significant negative Spearman and Pearson correlation (\leqq -0.30) is indicated between the natural logs of U-FL and nickel and the thorium:U-NT ratio. A significant positive Spearman correlation (\geqq 0.30) is indicated for U-FL with scandium.

The areal distribution map of uranium as determined by neutron activation (U-NT) delineates those sediment samples which contain ≧84th percentile concentrations (17.21 ppm) of total uranium. The area of anomalously high concentrations of U-NT is approximately the same as that described for U-FL. Two additional samples outside of the Little Cottonwood drainage basin are included with the \geq 84th percentile grouping; they are 908537 (located in the southwestern corner of the project area, lat. 40°33'32" N. and long. 111°47'42" W.) and 908701 (also located in the southwestern corner of the project area, lat. 40°32'13" N. and long. 111°48'58" W.). These samples also represent sediment derived primarily from the Little Cottonwood Stock (TQM).

The percentile plot (Figure B-2a) confirms that the highest concentrations of U-NT are from sediments derived from the Little Cottonwood and Ferguson Stocks (TQM). The 84th percentile for these units is 30.54 ppm. The highest U-NT concentration determined was 75.20 ppm from Sample 908928 (previously described).

The correlation matrix (Table B-2) indicates a significant positive Spearman and Pearson correlation (≥ 0.30) between the natural logs of U-NT and U-FL, thorium, sodium, strontium, barium, phosphorus, cerium, niobium, yttrium, aluminum, titanium, vanadium, iron, potassium, and the U-FL:U-NT (extractable to total uranium) ratio. A significant negative Spearman and Pearson correlation (≤ -0.30) is indicated between the natural logs of U-NT and nickel and the thorium:U-NT ratio. A significant positive Spearman correlation (≥ 0.30) is indicated between U-NT and scandium. A significant negative Pearson correlation (≤ -0.30) is indicated between U-NT and arsenic.

The U-FL:U-NT ratio indicates the percentage of total uranium in sediments which is present in hot-acid-soluble form. A sample with a high U-FL:U-NT value and a high U-NT value indicates anomalous accumulations of uranium in a hot-acid-soluble form. Low U-FL:U-NT values in samples with high U-NT values indicates that the uranium present is probably within relatively insoluble (resistate) minerals [i.e. zircon, allanite, pyrochlore, monazite, and xenotime (Levinson, 1980)].

The areal distribution map (Figure B-3b) indicates that of the thirteen samples which contain \geqq 84th percentile concentrations of U-NT (\geqq 30.54 ppm), six have U-FL:U-NT values \geqq 0.97. Almost all of the uranium present in these six samples is, therefore, in a hot-acid-soluble form. These samples are 908920, 908706, 908933, 908940, 908942, and 909099. Sample 908942 is located at the mouth of Little Cottonwood Canyon and incorporates sediments representing the entire Little Cottonwood Canyon basin. The location of Sample 909099 has been described previously. The remaining four samples are located within the Little Cottonwood Stock, and where the granodioritic, granitic, and lamprophyric dike complexes (TGD, TLD) described in the groundwater section occur. Samples 908918 and 908705 are also located in the same general area as these four samples, and also have a U-FL:U-NT ratio value \geqq 0.97. The U-NT values for these samples are slightly less than the 84th percentile for U-NT

but are relatively high for the project area, being 15.60 and 13.00 ppm, respectively. Samples 909300, 909321, and 908948 also have U-FL:U-NT values ≥ 0.97 but the U-FL and U-NT values for these samples are <84th percentile for those variables.

The correlation matrix (Table B-2) indicates a significant positive Spearman and Pearson correlation (≥ 0.30) between the natural logs of the U-FL:U-NT ratio (shown as LUTU on matrix) and U-FL, U-NT, sodium, strontium, phosphorus, yttrium, and calcium. A significant positive Spearman correlation is indicated between the U-FL:U-NT ratio and cerium and titanium.

Thorium

The areal distribution map of thorium (Plate 6 and Figure B-4b) indicates that values \geq 84th percentile (19 ppm) occur predominantly north and south of, but adjacent to, the Little Cottonwood Canyon drainage basin. However, three samples within the Little Cottonwood Canyon basin also have concentrations \geq 84th percentile. These three samples (908920, 908918, and 908706) are included in the six samples with anomalous U-NT, U-FL, and U-FL:U-NT ratios discussed previously.

The percentile plot (Figure B-4a) indicates that high concentrations of thorium are from sediments derived from the Little Cottonwood Stock (TQM) and from Quaternary sediments (QPGM, QTL, QAL, and QUD). The 84th percentile for these groups are 19.00 and 19.64 ppm, respectively. The highest thorium concentration determined for the area was 48 ppm from Sample 909099 (whose location has been described) which represents sediments derived from the Little Cottonwood Stock (TQM).

The correlation matrix (Table B-2) indicates a significant positive Spearman and Pearson correlation (\geqq 0.30) between the natural logs of thorium and U-FL, U-NT, sodium, strontium, barium, phosphorus, cerium, niobium, yttrium, aluminum, scandium, titanium, vanadium, and iron. A significant positive Spearman correlation is indicated between thorium and potassium.

Related Variables

In addition to U-FL, U-NT, the U-FL:U-NT ratio and thorium, other variables which may be useful in understanding areas of potential uranium mineralization include barium, cerium, copper, molybdenum, sodium, niobium, phosphorus, strontium, titanium, and zinc.

Variables which are areally associated with U-FL, U-NT, and thorium include cerium, sodium, niobium, phosphorus, strontium, and titanium. The percentile plots and areal distribution maps for these variables (Figures B-6a, b; B-9a, b; B-10a, b; B-11a, b; B-12a, b; and B-13a, b; respectively) indicate that values ≥84th percentile (110.72 ppm, 1.40%, 16 ppm, 1,697 ppm, 297.16 ppm, and 4,256 ppm, respectively) occur predominantly within the area of outcrop of the Little Cottonwood and/or Ferguson Stocks (TOM). All of these lithophile elements are common in granitic rocks. Sodium, and to a lesser extent strontium, is commonly present in alkali feldspars (Deer, et al, 1971), a main constituent of Cerium and niobium, as well as uranium and thorium do not granites. readily substitute for the major elements in the essential minerals of igneous rocks and thus remain in solution to be enriched in residual liquid of magmatic crystallization (Mason and Berry, 1968) and are therefore concentrated in aplitic or pegmatitic rocks. In Siegel (1974) average concentrations of cerium and niobium are given for granitic and svenitic rocks. The ratio of these elements (Ce:Nb) is approximately 4 to 5. Since cerium can substitute for calcium in CaF_2 (fluorite) in igneous rocks (Hurlbut, 1971) samples with high concentrations of cerium with a Ce:Nb ratio of greater than 5 may indicate favorable areas for uranium mineralization in igneous rocks. Phosphorus, related to silicate rocks, is most often concentrated in the minerals apatite and monazite, common trace minerals in granites which do not weather easily and may therefore be concentrated in sediments derived from granitic The anomalous concentrations of titanium are probably due to rocks. that element's presence in iron-titanium oxides and/or ferromagnesium minerals which are also commonly present in minor or trace amounts in granites.

The areal association of the above elements with uranium and thorium is probably due to the association of all of these elements to the Little Cottonwood and/or Ferguson Stocks (TQM). In addition to those related variables discussed, high values for uranium, thorium, and the U-FL:U-NT ratio are also areally associated with barium, copper, molybdenum, and zinc in the area within the Little Cottonwood Stock which is intruded by the dike complex (TLD, TGD) and has sulfide mineralization. These variables are shown in Figures B-5b, B-7b, B-8b, and B-14b. Uranium in this area may be related to this sulfide mineralization. Uranium is spatially associated with copper-zinc sulfides and fluorite in the Sheeprock Mountain area and the Marysvale district (Cohenour, 1959). A similar association may exist in the Cottonwood project area, although no fluorite has been observed.

Summary of Stream Sediment Data

Anomalous values for U-FL, U-NT, and thorium are areally concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks (TQM). Of the samples with high U-FL and U-NT values, the U-FL:U-NT ratio indicates that those samples located near granitic to granodioritic, and lamprophyric dikes, and sulfide mineralization (approximately lat. $32^{\circ}33'00"$ to $32^{\circ}34'00"$ N. and long. $111^{\circ}40'00"$ to $111^{\circ}42'30"$ W.) have anomalous concentrations of uranium in a hot-acid-soluble form. Variables which are areally associated with uranium and thorium and the Little Cottonwood Stock include cerium, sodium, niobium, phosphorus, strontium, and titanium. Variables which are areally associated with

high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock include barium, copper, molybdenum, and zinc, suggesting an association of uranium with sulfide mineralization an association observed at both the Marysvale District and Sheeprock Mountain area, Utah.

BIBLIOGRAPHY

- Arendt, J. W., Butz, T. R., Cagle, G. W., Kane, V. E., and Nichols, C. E., Hydrogeochemical and Stream Sediment Reconnaissance Procedures of the Uranium Resource Evaluation Project, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-100 (December 1979).
- Burke, C. and Dewey, J. F., "Plume-Generated Triple Junctions: Key Indicators in Applying Plate Tectonics to Old Rocks," *Journal of Geology*, Vol. 81, No. 4, pp. 406-433 (1973).
- 3. Bryant, B., U.S. Geological Survey, Denver, Colorado, Private Communication (1980).
- Cagle, G. W., "The Oak Ridge Analytical Program," Symposium on Hydrogeochemical and Stream Sediment Reconnaissance for Uranium in the United States, March 16 and 17, 1977, United States Energy Research and Development Administration, Grand Junction, Colorado, pp. 133-156 [GJBX-77(77)] (October 1977).
- 5. Cohenour, R. E., *Sheeprock Mountains*, *Tool and Juab Counties*, Utah Geological and Mineralogical Survey, Bulletin 63 (1959).
- Condie, K. C., "Petrology of the Late Precambrian Tillite Association," Geological Society of America Bulletin, Vol. 78, No. 11, pp. 1317-1343 (1967).
- Crittenden, M. D., Jr., "General Geology of Salt Lake County," Geology of Salt Lake County, Utah Geological and Mineralogical Survey, Bulletin 69, pp. 11-48 (1964).
- 8. Crittenden, M. J., Jr., *Geology of the Draper Quadrangle Utah*, U.S. Geological Survey, Map GQ-377 (1965a).
- 9. Crittenden, M. J., Jr., Geology of the Dromedary Peak Quadrangle Utah, U.S. Geological Survey, Map GQ-378 (1965b).
- 10. Crittenden, M. J., Jr., Geology of the Mount Aire Quadrangle, Salt Lake County, Utah, U.S. Geological Survey, Map GQ-379 (1965c).
- Crittenden, M. J., Jr., Geology of the Sugar House Quadrangle, Salt Lake County, Utah, U.S. Geological Survey, Map GQ-380 (1965d).
- Crittenden, M. J., Jr., Sharp, B. J., and Calkins, F. C., "Geology of the Wasatch Mountains East of Salt Lake City, Parleys Canyon to Traverse Range," in Marsell, R. E., Guidebook to the Geology of Utah, Utah Geological and Mineralogical Survey, pp. 1-37 (1952).

- Crittenden, M. D., Jr., Stewart, J. H., and Wallace, C. A., "Regional Correlation of Upper Precambrian Strata in Western North America," *International Geological Congress 24th (Canada, Sec. 1)*, pp. 334-361 (1972).
- 14. Crittenden, M. D., Jr. and Wallace, C. A., "Possible Equivalents of the Belt Supergroup in Utah," *Belt Symposium*, Vol. 1, Idaho Bureau of Mines and Geology, pp. 116-138 (1973).
- 15. Deer, W. A., Howie, R. A., and Zussman, J., An Introduction to the Rock-Forming Minerals, John Wiley and Sons, Inc., New York (1971).
- 16. D'Silva, A. P., Grabau, F., and Haas, W. J., Jr., Multilaboratory Analytical Quality Control Program for the Hydrogeochemical and Stream Sediment Reconnaissance, Ames Laboratory, Iowa State University, Ames, Iowa, IS-4736 (April 1980) (Available from National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161).
- 17. EG&G Geometrics, Aerial Gamma Ray and Magnetic Survey, Idaho Project, Ogden Quadrangle, Utah and Wyoming, Grand Junction Operations, Grand Junction, Colorado, GJBX-71(80) (1980).
- 18. Erickson, A. J., Jr., "The Uinta Gold Hill Trend: An Economically Important Lineament," Proceedings of the First International Conference on the New Basement Tectonics, Salt Lake City, Utah, June 3-7, 1974, Utah Geological Association Publications No. 5 (1974).
- 19. Hem, J. D., Study and Interpretation of the Chemical Characteristics of Natural Water, U.S. Geological Survey, Water Supply Paper 1473, p. 155 (1970).
- 20. Hurlbut, C. S., *Dana's Manual of Mineralogy*, John Wiley and Sons, Inc., New York (1971).
- 2]. James, L. P., *Geology of Big Cottonwood Mining District*, Utah Geological and Mineralogical Survey (1978).
- 22. James, L. P., Geology, Ore Deposits, and History of the Big Cottonwood Mining District, Salt Lake County, Utah, Utah Geological and Mineralogical Survey, Bulletin 114 (January 1979).
- 23. Jensen, M. L., *Guidebook of Northern Utah*, Utah Geological and Mineralogical Survey (May 1969).
- 24. Kane, V. E., Baer, T., and Begovich, C. L., Principal Component Testing for Outliers, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-7 (July 1977). United States Department of Energy, Grand Junction, Colorado [GJBX-71(77)].
- 25. King, P. B., Precambrian Geology of the United States; An Explanatory Text to Accompany the Geologic Map of the United States, U.S. Geological Survey, Professional Paper 920 (1976).

- 26. King, P. B., Beikman, H. M., and Edmonston, G. J., *Geologic Map of the United States*, U.S. Geological Survey (1974).
- 27. Levinson, A. A., Introduction to Exploration Geochemistry, Second Edition, Applied Publishing Ltd., Alberta, Canada (1980).
- 28. Mason, B. and Berry, L. G., *Elements of Mineralogy*, W. H. Freeman and Company, San Francisco (1968).
- 29. Mundorff, J. C., *Nonthermal Springs of Utah*, Utah Geological and Mineralogical Survey, Water Resources Bulletin 16 (August 1971).
- 30. National Oceanic and Atmospheric Administration, *Climates of the States*, Vol. II Western States, U.S. Department of Commerce (1974).
- 31. Ojakangas, R. W. and Matsch, C. L., "The Upper Precambrian Mineral Fork Tillite, Utah, A Glacial and Glaciomarine Sequence," *Geological* Society of America Abstracts, p. 1035 (1976).
- 32. Ritzma, H. R., "Towanta Lineament, Northern Utah," Proceedings of the First International Conference on the New Basement Tectonics, Salt Lake City, Utah, June 3-7, 1974, Utah Geological Association Publications No. 5 (1974).
- 33. Siegel, F. R., *Applied Geochemistry*, John Wiley and Sons, Inc., New York (1974).
- 34. Uranium Resource Evaluation Project, Procedures Manual for Groundwater Reconnaissance Sampling, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-12 (March 1978). United States Department of Energy, Grand Junction, Colorado [GJBX-62(78)].
- 35. Uranium Resource Evaluation Project, Procedures Manual for Stream Sediment Reconnaissance Sampling, Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee, K/UR-13 (May 1978). United States Department of Energy, Grand Junction, Colorado [GJBX-84(78)].

APPENDIX A

GROUNDWATER

*Where probability, frequency, and/or percentile plots are not present, they are unavailable because of the small number of samples.

APPENDIX A

GROUNDWATER

LIST OF TABLES

No.	Title	Page
A-1	Statistical Summary for Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-7
A-2	Correlation Matrix for Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-8
A-3	Partial Data Listing for Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-30

LIST OF FIGURES

No.	Title	Page
A-la	Probability, Frequency, and Percentile Plots for Uranium (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-10
A-16	Geochemical Distribution of Uranium (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-11
A-2a	Probability, Frequency, and Percentile Plots for Specific Conductance (µmhos/cm) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-12
A-26	Geochemical Distribution of Specific Conductance (umhos/cm) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-13

A-4

LIST OF FIGURES, Continued

<u>No.</u>	Title	Page
A-3a	Percentile Plot for Cobalt (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-14
A-3b	Geochemical Distribution of Cobalt (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-15
A-4a	Percentile Plot for Iron (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-16
A-4b	Geochemical Distribution of Iron (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-17
A-5a	Probability, Frequency, and Percentile Plots for Potassium (ppm) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-18
A-5b	Geochemical Distribution of Potassium (ppm) in Groundwater of the Cottonwood Project Area, Thomas Range-Wastach Detailed Geochemical Survey, Utah	A-19
A-6a	Percentile Plot for Manganese (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-20
A-6b	Geochemical Distribution of Manganese (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-21
A-7a	Percentile Plot for Molybdenum (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-22
A-7b	Geochemical Distribution of Molybdenum (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-23

A-5

LIST OF FIGURES, Continued

No.	Title	Page
A-8a	Percentile Plot for Nickel (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-24
A-8b	Geochemical Distribution of Nickel (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-25
A-9a	Probability, Frequency, and Percentile Plots for Strontium (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-26
А-9Ь	Geochemical Distribution of Strontium (ppb) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-27
A-10a	Probability, Frequency, and Percentile Plots for Sulfate (ppm) in Groundwater of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	A-28
A-10b	Geochemical Distribution of Sulfate (ppm) in Groundwater of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	A-29

Table A-1

STATISTICAL SUMMARY FOR GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

P	U. SAMPLES	BELOW								COFFEIGLENT				
4	LASURADLE		DETECTION	MINIMUM	MAYTMEM				STANDARD	CDEFFICIENT OF		LN_IKANS		
	VALUES	LIMIT	LIMIT	VALUE	VALUE	MEAN	MEDIAN	MUDE		VARIATION	MEAN	S. D.	MEAN	S. D.
U														
SP	15			0.25	3.89	1.39	0.88				0.01	0.84		
/SP	15			110	728	384	420	466	164.7	0.4	5.84	0.51		
U/B	15			0.53	10.29	4.36	3.32		3.402	and the second	1.07	1.02		
/50	15			7.35	279.23	146.38	38.03	89.31	144.385		4.46	1.15		
AG	10	5	<2	<2	17	9	51.77 5		78.097		4.02	1.03		
AL	7	8	<10	<10	29	20		<2	4.0	0.4	2.16	0.44		
AS	9	6	<0.5	<0.5	4.3	1.3	<10	<10	7.3	0.4	2.93	0.39		
B	15	6	(0.5	5	34	13	10	0.8	1.21	0.94	0.01	0.65		
BA	15			2	97	32	21		7.8	0.6	2.46	0.51		
BE	0	15	<1	<1	<1	32		24	28.0	0.9	2.99	1.16		
CA	15	15	~1	9.1		74.0	<1	<1		1 122	2			
co	7	8	10		61.2	36.8	30.3	60.4	17.78	0.48	3.47	0.58		
CR	0	15	<2	<2	10	4	<2	<2	3.3	0.7	1.39	0.65		
	-		<4	<4	<4		<4	<4	1.					
CU	1	14	<2	<2	4	4	<2	<2	0.0	0.0	1.39	0.0		
FE	15			13	22	12	11	11	3.5	0.3	2.53	0.23		
ĸ	15			0.1	1.6	0.9	0.9	1.1	0.41	9.40	-0.26	0.69		
LI	12	3	<2	<2	7	2	<2	<2	1.5	0.5	0.96	0.39		
MG	15			0.9	26.2	11.3	8.1	4.6	8.09	3.71	2.12	0.91		
MN	5	10	<2	<2	738	267	<2	<2	286.1	1 • 1	4.77	1.85		
MO	3	12	<4	<4	18	12	<4	<4	4.7	0.4	2.50	0.36		
NA	15			1.3	16.0	4.7	2.5	3.9	4.98	1.07	1 - 14	0.86		
NI	6	9	<4	<4	14	10	<4	<4	4.4	0.4	2.25	0.53		
P	0	15	<40	< 40	<40		<40	<40						
SC	0	15	<1	<1	<1		<1	<1						
SE	1	14	<0.2	<0.2	0.6	0.6	<0.2	<0.2	0.0	0.0	-0.51	0.0		
SI	15			0.3	8.7	3.0	3.1	3.1	2.13	2.59	1.07	0.80		
SR	15	87520	2.0820	20	1006	157	90	1004	239.5	1.5	4.60	0.86		
TI	0	15	<2	<2	<2		<2	<2						
v	0	15	<4	<4	<4		<4	<4						
Y	2	13	<1	<1	1	1	<1		0.0	0.0	0.0	0.0		
ZN	13	2	<4	<4	380	81	15	9	107.3	1.3	3.58	1.38		
ZR	4	11	<2	<2	6	4	<2	<2	1.0	0.2	1.54	0.20		
- AK	15			20	234	100	72	180	68.3	0.7	4.38	0.73		
-AK	15			22	236	100	71	87	69.5	0.7	4.38	0.72		
-AK	15			0	80	6	0	0	20.7	3.4				
CL	0	15	<10	<10	<10		<10	<10						
A/C	15			0.26	3.20	0.93	0.51	0.77			-0.47	0.86		
PH	15			5.9	8.9	6.9	6.6	7.8	0.89	0.13				
S04	15			6	90	24	13	12	24.0	1.0	2.90	0.75		

NOTE: Refer to Table 1, Page 25 and Table C-1, Page C-4 for concentration units and symbol definitions.

Table A-2

	L-U			COTTONWO	OD PROJEC	T AREA,			
L-U	1.00 TH	OMAS RANG	E-WASATCH	DETAILE	D GEOCHEM	IICAL SURV	/EY, UTAH		
		LU/B							
	0.92***								
LU/B	0.90***	1.00							
	(15)	(15)							
			LUSP						
	0.86***	0.73***							
LUSP	0.83***	0.69***	1.00						
	(157	(15/	(15)	LUSO					
	0.70***	0.56**	0. 60***	2030					
LUSO	0.66***	0.54**	. 80***	1.00					
	(15)	(15)	(15)	(15)					
					L-SP				
	-0.08	0.04	-0.57**	-0.44*					
L-SP	-0.23	-0.11	-0.63**	-0.45*	1.00				
	(15)	(15)	(15)	(15)	(15)	L-ZN			
	-0.048	0.180	-0.360	-0.520	0.612	L-24			
L-ZN	-0.012	0.228	-0.338	-0.490	0.522	1.00			
17 . T (1)	(13)	(13)	(13)	(13)	(13)	(13)			
							LSO4		
	0.16	0.26	-0.13	-0.60**	0.52**	0.592			
LSO4	0.08	0.22	-0.17	-0.61**	0.39	0.610	1.00		
	(15)	(15)	(15)	(15)	(15)	(13)	(15)		
	0.24	0.06	0.30	0.25	-0.20	-0.040	-0.07	L-BA	
L-BA	0.17	0.09	0.27	0.34	-0.15	-0.050	-0.18	1.00	
	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	
									PH
	0.29	0.39	0.20	0.10	0.07	-0.280	0.18	-0.49*	
PH	0.38	0.38	0.21	0.11	0.17	-0.220	0.06	-0.33	1.00
	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	(15)
	0.08	0.02	0.15	0.02	-0.16	-0.410	0.07	0.33	0.13
LTAK	0.19	0.05	0.23	0.09	-0.06	-0.490	-0-11	0.30	0.39
E I AN	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	(15)
	-0.30	-0.62**	-0-12	-0.00	-0.24	-0.430	-0.33	0.12	-0.3¢
L-NA	-0.14	-0.47*	0.07	0.10	-0.36	-0.492	-0.28	0.20	-0.25
	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	(15)
	-0.30	-0.62**	-0.12	-0.00	-0.24	-0.430	-0.33	0.12	-0.36
LN/C	-0.14	-0.47*	0.07	0.10	-0.36	-0.490	-0.28	0.20	-0.29
	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	(15)
4777.04	-0.42	-0.75***				- 0.492	-0.33	0.26	-0-41
L-8	-0.38	-0.72***	and the second	-0.07	-0.23	-0.52a (13)	-0.34	0.22	-0.31
	(15)	(15)	(15)	(15/	(15)	(15)	(15)	(15/	(15)
	0.26	0.51*	0.12	-0.02	0.19	0.622	0.32	-0.15	-0.08
L-K	0.21	0.46*	-0.03	-0.11	0.31	0.770	0.51*	0.08	-0.21
	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	(15)
	-0.10	-0.40	0.01	-0.11	-0.19	-0.430	0.04	0.40	-0.12
L-CA	-0.04	-0.40	-0.00	-0.11	-0.10	-0.320	-0.10	0.17	0.07
	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	(15)
	-0.31	-0.57**	-0.10	-0.12	-0.31	- 0. 468	-0.18	0.40	-0.29
L-MG	-0.32		-0.09	-0.13	-0.07	-0.430	-0.22		-0.07
280 C 280	(15)		(15)				(15)		
	0.05	-0.21	0.17	0.02		-0.370	0.02	-0.00	-0.24
L-SI		-0.21	0.20		-0.32	-0.270			
	(15)	(15)	(15)	(15)	(15)	(13)	(15)	(15)	(15)
	0.15	-0.10	0.18	-0.13	-0.11	-0.360	0.35	0.30	-0.14
L-SR		-0.29		-0.09	-0.31	-0.310		0.20	-0.14
-		(15)	(15)		(15)	(13)	(15)		(15)

- NOTE: (1) Pearson correlation/Spearman correlation/(sample size). If either element has a concentration below the laboratory detection limits, it is omitted from the pairwise computations. (2) Significance levels: *-10%, **-5%, ***-1%.

LTAK

	~																		
1.	.00																		
	15)																		
		L-8																	
-0	16		a calo																
	0.3	1.	00																
	15)	117-55	15)																
		A.7 (2)		LNZ	c														
- 0.	16	1.	00***		-														
-0.	.03	1.	.008	1.	00														
(15)	(15)	6	15)														
						L-	- 8												
0.	09	0.	92***	0.	92***														
0.	18	0.	85***	0.	89***	1.	00												
(151	(15)	(151		15)												
								L-	ĸ										
-0.		3 -0.64** -0.64**				73***													
-0.			57**		57 **		63**		00										
(15)	4	15)	6	151	(15)	(15)										
						22.0		-	1000000000	L-C	•								
5.57	50*		57**		57**		74***		55**										
1.5.2	31		64***		64 * **		77***		65***		00								
(15)	(15)	6	15)	(15)	4	15)	(15)		22						
					200							L-N	G						
	.53**		.51*		51*		77***		57**		84***								
	.33	1.	45*	1000	45*		74***		60**		73***		00						
(15)	(15)	(15)	(15)	(15)	(15)	(15)						
-							-							L-S	1				
	12							0.55**					0.20		0.18				
	.19	0.15	.90***	2.25	90 ***		68***	-0.			49*		21		.00				
4	15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)				
				794-117	MARCH CONTRACT	1000	- BARGHIM		-		and the second		-			L-S	R		
	.23	107537	48*	10003	48*		48*	-0.	·	0.66***		0.35		0.58**			~~		
	20		71***		71 ***		71 ***	-0.		7.07	77***	10.00	42		71***	100	00		
(15)	(15)	(15)		15)	(15)	(15)	(15)	(15)	•	15)		

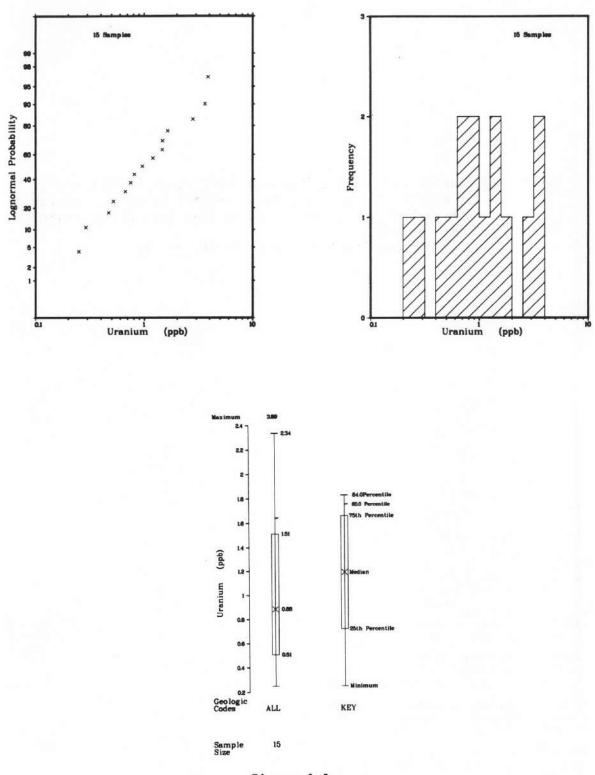


Figure A-la

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR URANIUM (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

A-10

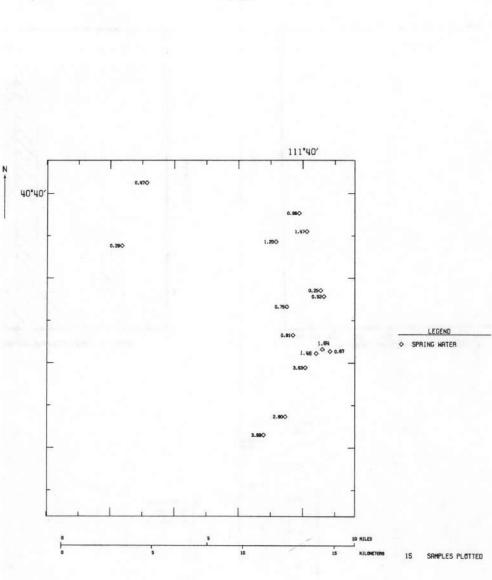


Figure A-1b

GEOCHEMICAL DISTRIBUTION OF URANIUM (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

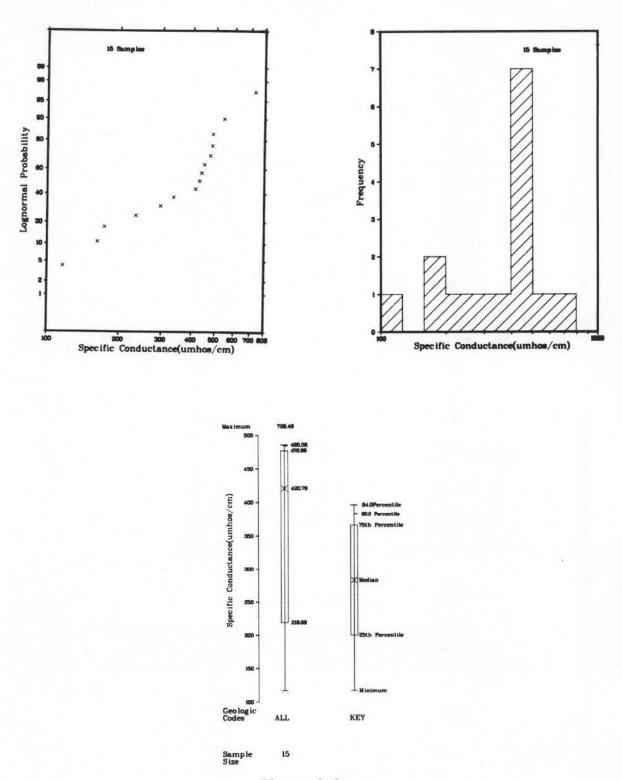
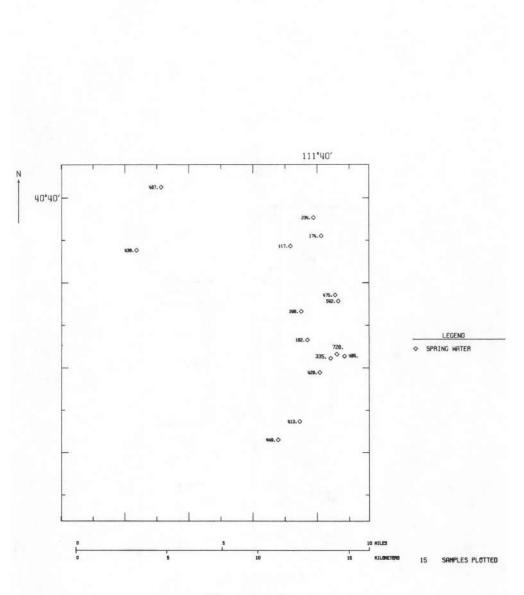
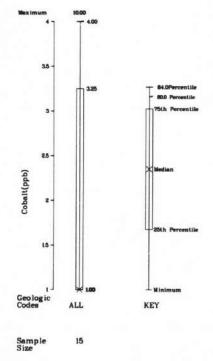
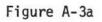



Figure A-2a


PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SPECIFIC CONDUCTANCE (µMHOS/CM) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH


A-12

GEOCHEMICAL DISTRIBUTION OF SPECIFIC CONDUCTANCE (µMHOS/CM) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PERCENTILE PLOT FOR COBALT (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

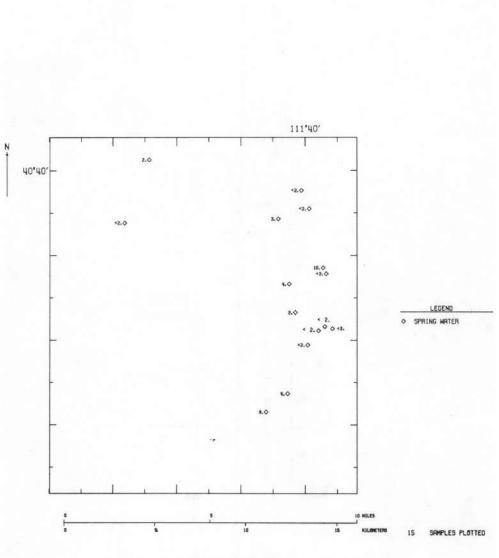


Figure A-3b

GEOCHEMICAL DISTRIBUTION OF COBALT (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

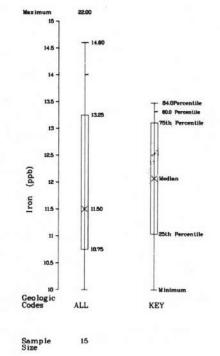


Figure B-4a

PERCENTILE PLOT FOR IRON (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

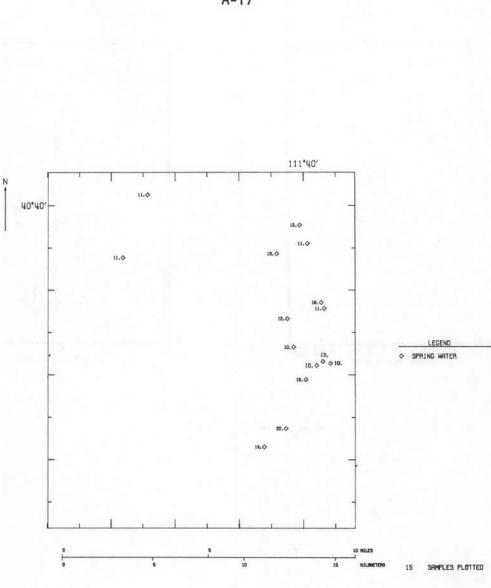


Figure A-4b

GEOCHEMICAL DISTRIBUTION OF IRON (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

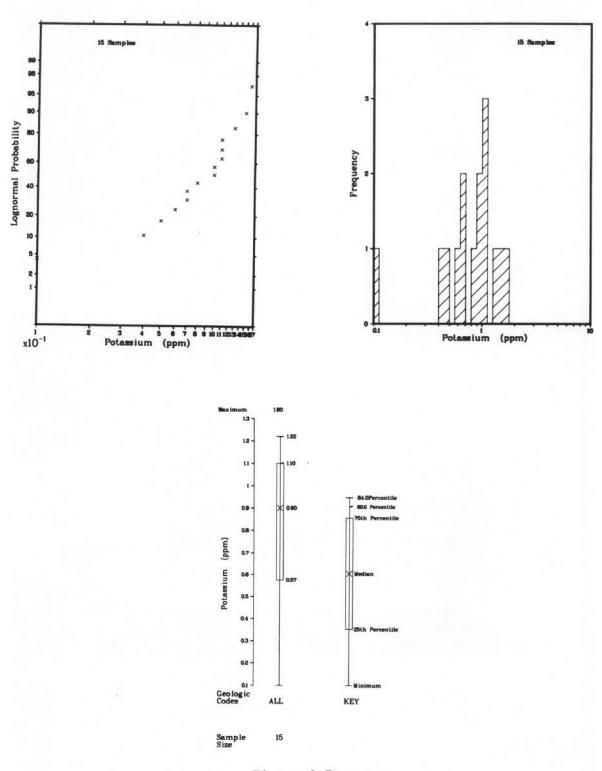


Figure A-5a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR POTASSIUM (PPM) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

A-18

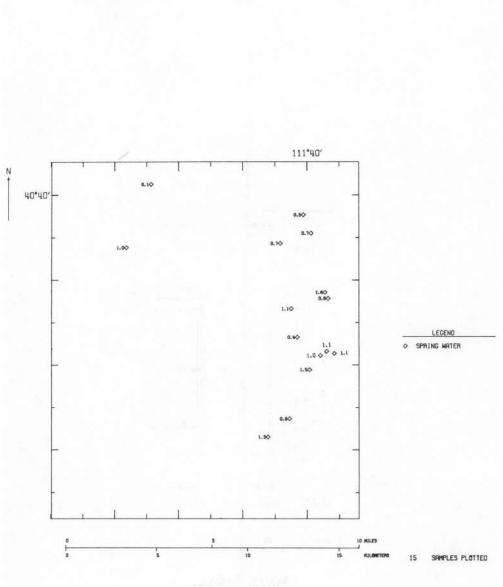
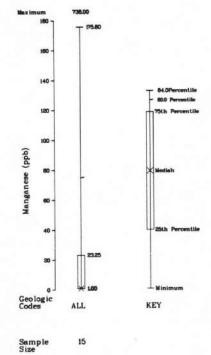



Figure A-5b

GEOCHEMICAL DISTRIBUTION OF POTASSIUM (PPM) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PERCENTILE PLOT FOR MANGANESE (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

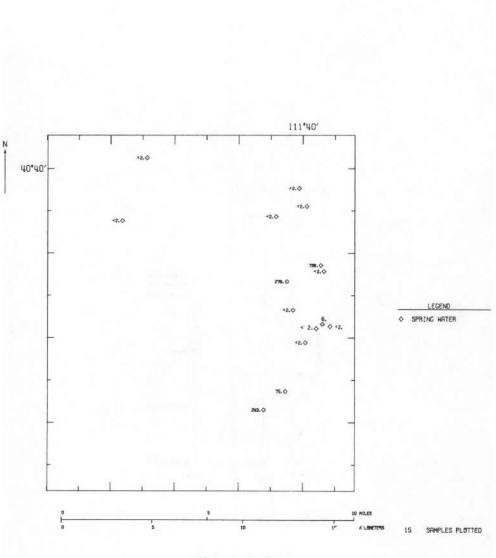


Figure A-6b

GEOCHEMICAL DISTRIBUTION OF MANGANESE (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

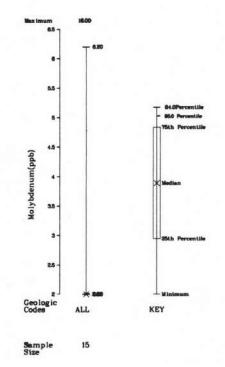


Figure A-7a

PERCENTILE PLOT FOR MOLYBDENUM (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

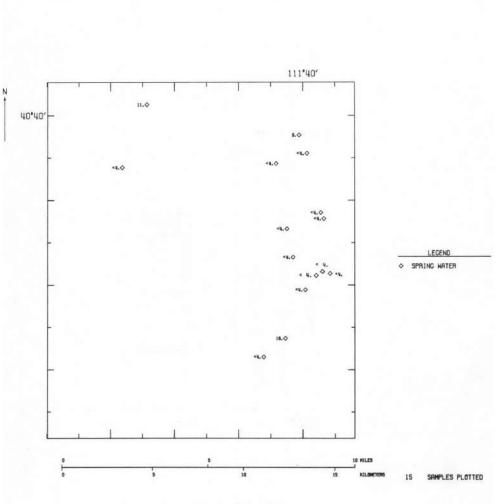


Figure A-7b

GEOCHEMICAL DISTRIBUTION OF MOLYBDENUM (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

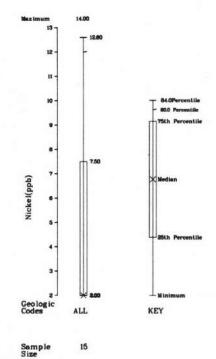
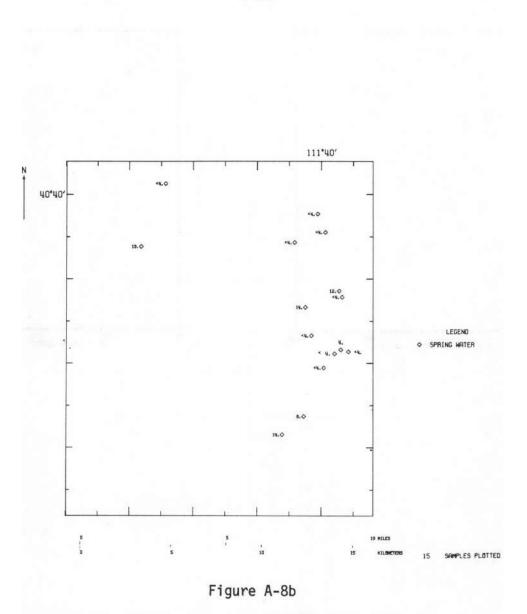



Figure A-8a

PERCENTILE PLOT FOR NICKEL (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

GEOCHEMICAL DISTRIBUTION OF NICKEL (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

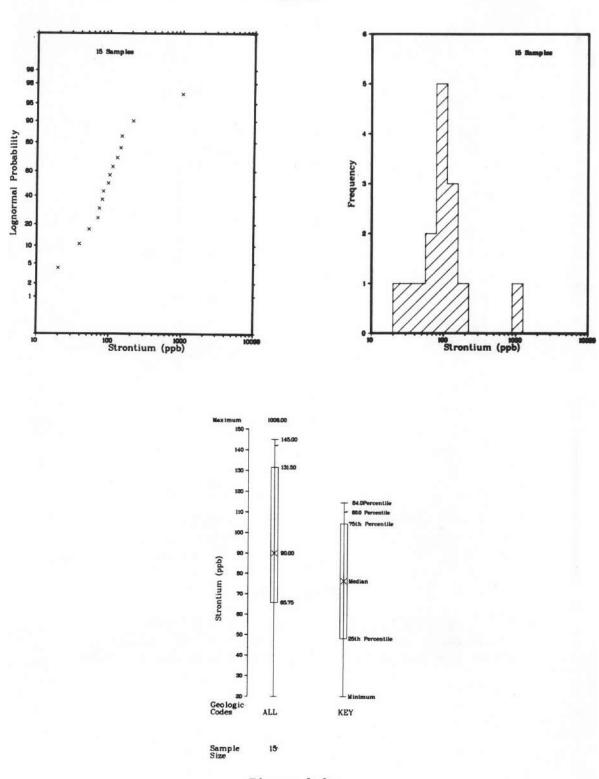


Figure A-9a

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR STRONTIUM (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

A-26

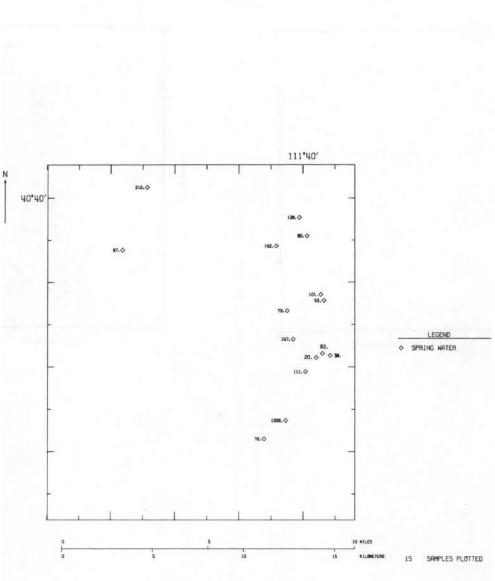
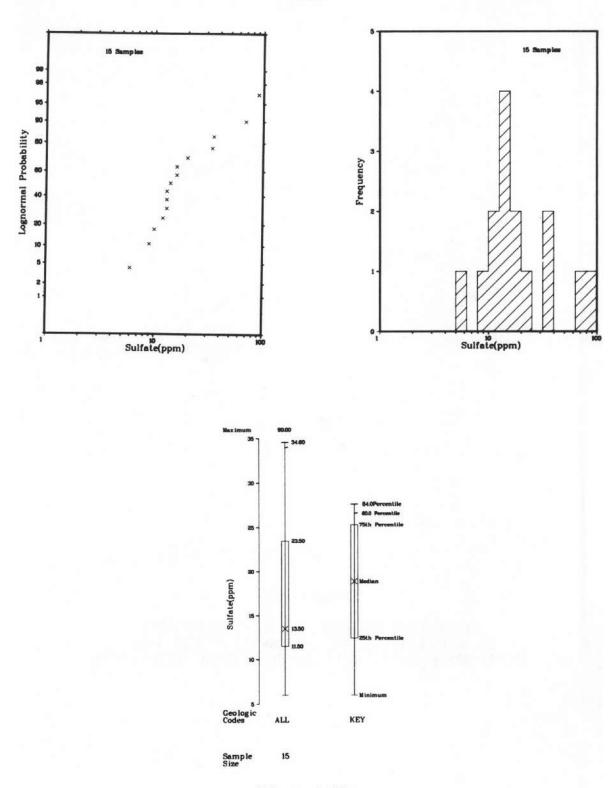
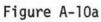




Figure A-9b

GEOCHEMICAL DISTRIBUTION OF STRONTIUM (PPB) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SULFATE (PPM) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

A-28

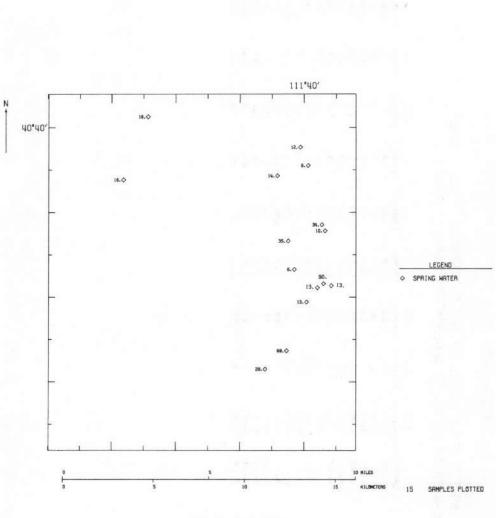


Figure A-10b

GEOCHEMICAL DISTRIBUTION OF SULFATE (PPM) IN GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

Table A-3

PARTIAL DATA LISTING FOR GROUNDWATER OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

DR SAMP	LE D. O.	E. SAMPLE	NUMBER	U	SP	CO	FE	ĸ	MN	NI	504	MO	SR
NJMBER	ST LAT	LONG	L TY REP	(PP8)	UMHOS/CM	(PPB)	(PPB)	(PPN)	(PP8)	(PPB)	(PPM)	(PP8)	(PPB)
908526	18-40.657	-111.669	-3-01-	0.96	230	<2	12	0.5	<2	<4	12	9	130
908527	18-40-648	-111.664	-3-01-	1.5	170	<2	11	0.7	<2	<4	9	<*	80
908528	18-40.643	-111.684	-3-01-	1.2	120	3	13	0.7	<2	<4	14	<4	140
905538	18-40.619	-111.655	-3-01-	0.25	470	10	19	1.6	740	12	34	<4	100
908539	18-40-616	-111.653	-3-01-	0.52	540	<2	11	0.6	<2	<4	10	<4	53
908904	18-40.589	-111.649	-3-01-	0.67	480	<2	10	1.1	<2	<4	13	<4	39
908905	18-40.588	-111.658	-3-01-	1.5	340	<2	10	1.0	<2	<4	13	<4	20
908906	18-40.590	-111.654	-3-01-	1.6	730	<2	13	1.1	6	4	90	<4	83
908915	18-40.581	-111.665	-3-01-	3.6	430	<2	15	1.5	<2	<4	13	<4	110
908930	18-40-557	-111.678	-3-01-	2.8	410	4	22	0.8	75	6	69	18	1000
908938	18-40-548	-111.692	-3-01-	3.9	450	9	14	1.3	240	14	20	<4	70
909312	18-40.641	-111.784	-3-01-	0.29	440	<2	11	1.0	<2	13	16	<4	97
909315	18-40-672	-111.768	-3-01-	0.47	490	2	11	0.1	<2	<4	16	11	210
909331	18-40.597	-111.673	-3-01-	0.81	160	2	10	0.4	<2	<4	6	<4	150
909333	18-40.611	-111.677	-3-01-	0.75	300		12	1.1	280	14	35	<4	73

APPENDIX B

STREAM SEDIMENT

APPENDIX B

STREAM SEDIMENT

LIST OF TABLES

No.	Title	Page
B-1	Statistical Summary for Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-7
B-2	Correlation Matrix for Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-8
B-3	Partial Data Listing for Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-38

LIST OF FIGURES

No.	Title	Page
B-1a	Probability, Frequency, and Percentile Plots for Soluble Uranium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-10
B-1b	Geochemical Distribution of Soluble Uranium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-11
B-2a	Probability, Frequency, and Percentile Plots for Uranium by Neutron Activation in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-12
B-2b	Geochemical Distribution of Uranium by Neutron Activation in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-13

LIST OF FIGURES, Continued

No.	Title	<u>Page</u>
B-3a	Probability, Frequency, and Percentile Plots for Uranium Fluorometric/Uranium Neutron Activation in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-14
B-3b	Geochemical Distribution of Uranium Fluorometric/ Uranium Neutron Activation in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-15
B-4a	Probability, Frequency, and Percentile Plots for Thorium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-16
В-46	Geochemical Distribution of Uranium Fluorometric/ Uranium Neutron Activation in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-17
B-5a	Probability, Frequency, and Percentile Plots for Barium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-18
B-5b	Geochemical Distribution of Barium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-19
B-6a	Probability, Frequency, and Percentile Plots for Cerium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-20
B-6b	Geochemical Distribution of Cerium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-21
B-7a	Probability, Frequency, and Percentile Plots for Copper (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-22

LIST OF FIGURES, Continued

No.	Title	Page
8-7b	Geochemical Distribution of Copper (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-23
B-8a	Probability, Frequency, and Percentile Plots for Molybdenum (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-24
B-8b	Geochemical Distribution of Molybdenum (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-25
B-9a	Probability, Frequency, and Percentile Plots for Sodium (%) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-26
B-9b	Geochemical Distribution of Sodium (%) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-27
B-10a	Probability, Frequency, and Percentile Plots for Niobium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-28
B-10b	Geochemical Distribution of Niobium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-29
B-11a	Probability, Frequency, and Percentile Plots for Phosphorus (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range~ Wasatch Detailed Geochemical Survey, Utah	B-30
B-11b	Geochemical Distribution of Phosphorus (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B~31

LIST OF FIGURES, Continued

No.	Title	<u>Page</u>
B-12a	Probability, Frequency, and Percentile Plots for Strontium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-32
В-12Ъ	Geochemical Distribution of Strontium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-33
B-13a	Probability, Frequency, and Percentile Plots for Titanium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-34
B-13b	Geochemical Distribution of Titanium (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-35
B-14a	Probability, Frequency, and Percentile Plots for Zinc (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range- Wasatch Detailed Geochemical Survey, Utah	B-36
B-14b	Geochemical Distribution of Zinc (ppm) in Stream Sediment of the Cottonwood Project Area, Thomas Range-Wasatch Detailed Geochemical Survey, Utah	B-37

Table B-1

STATISTICAL SUMMARY FOR STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

		BELOW								COEFFICIENT		LN TRAN	SEORMATIO	N.
		DETECTION	DETECTION		MAXIMUN				STANDARD	OF			ROB	UST
ELEMENT	VALUES	LIMIT	LIMIT	VALUE	VALUE	MEAN	MEDIAN	NODE	DEVIATION	VARIATION	MEAN	S. D.	MEAN	S. D.
J-FL	77			0.31	72.64	8.73	3.69	2.44	12.247		1.57	1.03	1.55	1.01
1- N T	78	100	100	1.80	75.20	10.17	4.90	3.33			1.90	0.83	1.86	0.84
TH	74	3	<2	<2	48	12	11	7	9.0	0.7	2.33	0.69	2.29	0.8
1/10	77			0.07	1.15	0.75	0.74	0.96	0.213		-0.34	0.39	-0.31	0.3
TH/U	77			0.23	6.00	1.80	1.53	2.10	1.252	0.696	0.33	0.77	0.35	0.80
AG	17	60	<2	<2	24	5	<2	<2	7.2	1.3	1.27	0.86		
AL	77			2.37	8.51	5.58	5.67	6.74	1.427	0.256	1.68	0.29	1.70	0.3
AS	77			1.0	295.4	23.4	11.5	8.2	42.59	1.82	2.53	1.00	2.51	1.04
8	55	22	<10	<10	228	31	22	<10	29.1	0.9	3.28	0.53	3.01	0.70
BA	77			270	1354	728	663	675	249.2	0.3	6.53	0.35	6.54	0.31
BE	77			1	5	2	2	2	0.8	0.4	0.69	0.40	0.69	0.40
CA	77			0.25	13.17	2.30	1.27	1.95	2.743	1.190	0.38	0.91	0.36	0.97
CE	77			12	247	74	62	45	44.6	0.6	4-16	0.57	4.16	0.5
00	76	1	<4	<4	175	15	10	10	20.8	1.4	2.44	0.61	2.39	0.73
CR	77			17	114	45	40	38	17.9	0.4	3.74	0.35	3.74	0.37
CU	77			14	1767	116	49	23	232.4	2.0	4.08	0.99	4.02	0.99
FE	77			1.18	13.45	3.61	3.37	2.34	1.805	0.501	1.18	0.44	1.18	0.43
ĸ	77			0.53	2.48	1.56	1.54	1.55	0.393	0.252	0.41	0.27	0.42	0.21
LI	77			17	81	36	34	45	13.5	0.4	3.54	0.36	3.53	0.37
MG	77			0.33	6.55	1.40	0.86	0.76	1.339	0.960	0.05	0.68	0.02	0.75
MN	77			210	5228	909	730	706	669.6	0.7	6.66	0.52	6.65	0.54
MO	22	55	<4	<4	147	23	<4	<4	35 .8	1.5	2.42	1.12		
NA	77			0.13	2.78	0. 31	0.63	0.41	0.595	0.735	-0.48	0.75	-0.47	0.79
NB	63	14	<4	<4	72	12	7	<4	10.9	0.8	2.32	0.65	2.07	0.8
NI	77			9	178	30	22	23	27.6	0.9	3.22	0.59	3.18	0.51
P	77			380	5407	1207	978	856	869.2	0.7	6.92	0.56	6.90	0.51
SC	77			3	18	7	7	7	3.0	0.4	1.98	0.39	1.98	0.4
SE	75	2	<0.1	<0-1	5.9	1.3	1.0	0.6	1.03	0.77	0.05	0.71	0.02	0.74
ŞR	77			40	589	184	142	111	111.6	0.6	5.05	0.57	5.05	0.54
TI	77			796	9729	2905	2565	2966	1562.7	0.5	7.86	0.48	7.85	0.4
v	77			27	160	74	70	70	26.7	0.4	4.25	0.35	4.25	0.4
Y	77			5	74	18	15	13	11.4	0.6	2.76	0.50	2.75	0.5
ZN	77			36	5214	406	131	98	755.2	1.9	5.23	1.07	5.18	1.1
ZR	77			14	81	35	31	22	16.6	0.5	3.47	0.44	3.47	0.4

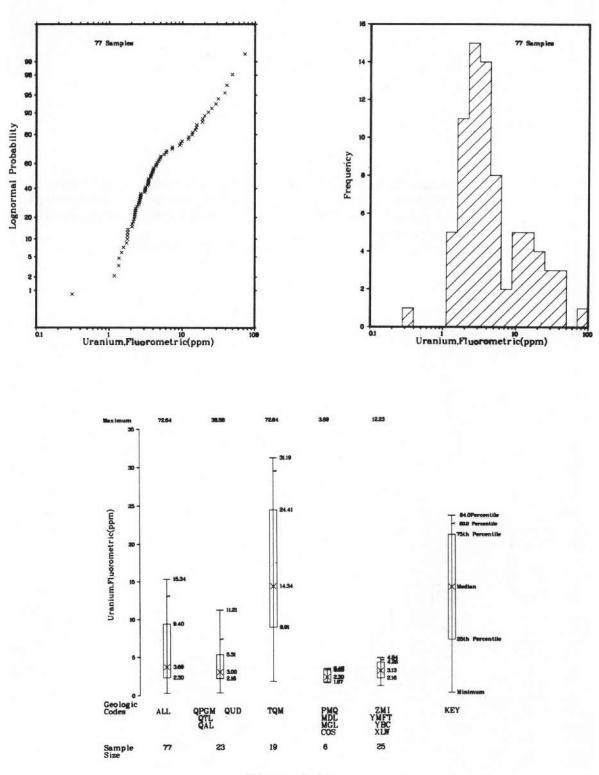

NOTE: Refer to Table 1, Page 25 and Table C-1, Page C-4 for concentration units and symbol definitions.

Table B-2

CORRELATION MATRIX FOR STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA. THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH L-U L-U 1.00 LUNT 0. 93*** 0. 90*** (77) 1.00 LUNT L-TH 0.52000 0.58*** 0.60*** (74) L-TH 1.00 L-NA 0.69444 0 - 70*** 0 - 69*** (77) 0.49*** 0.54*** (74) L-NA 1.00 L-SR 0.63000 0.63*** 0.34000 0.79848 L-SA 1+00 L-BA 0.51 *** 0.57*** (77) 0.49000 0.73000 0.67000 (77) 0.60*** L-3A 0.62888 0.71*** 1.00 L-P 0.59*** 0.55000 0.49880 (77) 0.39*** 0.43*** (74) 0+69*** 0-63*** (77) 0.62*** 0.60*** (77) 0.63*** 0.67*** (77) 1.00 L-P L-CE 0.67*** 0.79*** (77) 0.69*** 0.76*** (77) 0.64*** 0.78*** 0.81*** (77) 0+68*** 0+68*** (77) 0.72*** 0.69*** 0.65*** (77) L-CE 1.00 L-MB 0.55*** 0.61*** (63) 0.57*** 0.62*** (63) 0.77*** 0.76*** (63) 0.53*** 0.49*** (62) 0.74000 0.62*** 0.46*** 0.53*** 1.00 L-NB L-Y 0.52*** 0.64*** (77) 0.45*** 0.33*** 0.31*** (7*) 0.67*** 0.47*** 0.45*** 0.63*** 0.69*** (77) 0.69*** 0.70*** (77) 0.68*** L-Y 1.00 0.38*** 0.47*** 0.57*** (77) 0.43*** 0.68*** 0.42*** 0.39*** 0.50*** (63) 0.39*** 0.50*** 0.75*** 0.33*** L-AL 0.70*** 0.30*** 0.62000 1.00 L-SC 0.48*** 0.47*** (77) 0.20* 0.31*** (77) 0.31*** 0.54*** 0-22* 0-21* (77) 0.47*** 0.40*** (77) 0.46*** 0.48*** (63) 0.54000 0.18 0.30*** (77) 0.33*** 0.74*** L-SC 1.00 0.25** 0.69** L-TI 0.57*** 0.61*** 0.67*** (77) 0.63*** 0.85*** 0.84*** (77) 0.78*** 0.77*** (63) 0.58*** 0.60*** (74) 0.84000 0.58*** 0.61*** (77) 0.70*** 0.70*** 0.75** 0.77*** L-11 1-00 L-V 0.38000 0.44000 0.48*** 0.58*** (74) 0.74*** 0.46*** 0.67000 0.53*** 0.48*** (77) 0.67*** 0.60*** 0.01*** (63) 0.53*** 0.80*** 0.84*** 0.88*** . - V 1.00 0.37*** 0.47*** (77) 0-41*** 0-51*** (77) 0.54** 0.55** (77) 0.43*** 0.45*** (77) 0.51*** 0.58*** (77) 0.71*** 0.8400 0.41*** 0.49*** (74) 0.55*** 0.55*** (77) 0.41*** 0.64*** 0.6444 0.23** 0.28** (77) 0.49000 L-FE 0.75*** 0.72*** (77) 0.23** 0.29** (77) 0.47*** 0.42*** (77) 0.47*** 0.44*** (77) 0.44*** 0.35*** 0.28** 0.32*** (74) 0.36*** 0-14 0-16 (77) 0.56*** 0-12 0-10 (77) 0.09 0.14 (63) 0.22* 0.21* (77) 0.43*** L-6 0+28** 0-24** (77) 0+27** 0-23** (77) 0.09 0.09 (77) 0.20* 0.45*** 0.14 0.18 (77) 0.19* 0+11 0+17 (77) 0+05 0+08 (77) 0.04 0.06 (74) 0.15 0.19 (77) 0.14 0.22* (77) -0.17 -0.12 (63) 0.38000 0.35000 (77) L-LI -0.10 0.04 (77) 0.07 0.06 (77) 0-04 0-09 (77) -0.10 -0.05 (77) 0-10 0-11 (77) -0.15 -0.11 (63) 0.190 0.25** 0.23** 0.05 -0.05 -0.10 (77) -0+16 -0+02 (77) -0.15 -0.17 (74) 0.06 0.01 (77) L-ZR -0.07 -0.13 (75) -0.07 -0.06 (75) -0.25** -0.25** (75) -0.17 -0.19 (75) -0.26** -0.30** (75) -0.20* -0.23* (75) -0.33*** -0.31*** (75) -0.38** -0.36** (75) -0.29** -0.10 -0.13 (75) -0.10 -0.05 (61) -0.19 -0.11 (75) -0.17 -0.07 (75) -0-11 -0-20+ (73) L-SE 0.32*** 0.34*** -0.09 0.09 (77) 0.15 0.2700 (77) 0.02 0.10 (77) -0.06 -0.01 (74) 0.16 0.34000 (77) 0.11 0.03 (77) 0.14 0.25** (77) 0.23* 0.32000 (63) 0.38*** -0.35** -0.11 (77) -0.20* -0.02 (77) 0.05 0.22* (77) L-CA 0.07 0.15 (77) 0.09 0.14 (77 -0+11 0+05 (77) -0.25** -0.14 (77) -0+14 -0+10 (74) -0.06 0.00 (77) -0.30*** -0.18 (77) 0.09 0.25** (77) 0.08 0.05 (63) -0.35000 -0.13 (77) -0.12 0.15 (77) -0.08 0.07 (77) 0.07 0.10 0.30*** (77) L-MG 0.05 0.64*** 0.32000 0.34000 (77) 0.13 0.25** (74) 0.34*** 0.51*** (77) 0.30*** 0.43*** (77) 0.06 0.2400 (77) 0+39*** 0-56*** (77) 0.27** 0.44*** (77) 0.18 0.29** (63) 0.40000 0.50000 (77) 0.01 0.05 0.210 0.33000 (77) 0.07 LUTU 0.07 0.14 (77) -0.01 0.03 (77) -0.06 -0.04 (77) 0+02 0+08 (77) -0.06 -0.02 (77) 0+13 0-210 (77) 0.14 0.10 (77) 0.05 0.15 (77) 0.09 0.11 (77) 9.12 0.01 0.16 -0.01 -0.17 0.03 L-NN 0+22** 0.02 -0.12 0.190 0.12 0.01 (77) -3.10 0.35 (77 0.03 0.05 (77) -0.13 -0.06 (77) -0.13 -0.13 (77) -0.10 -0.04 (77) 0.06 0.20* (77) -0.19* -0.02 (77) -0.25*4 -0.05 -0.11 (77) -0-04 -0-01 (74) 0.03 -0.01 -0.234 L-ZH 0.02 -0-19 (63) 0.04 -0.09 (77) 0.02 -0.09 (77) -0.01 -0.01 (74) -0.05 -0.10 (77) -0.03 -0.10 (77) 0.07 0.09 (77) 0.02 0.15 (77) -0.11 -0.13 (77) -0.18 -0.17 (63) -0.10 -0.13 (77) 0.02 0.02 (77) -0.16 -0.15 (77) -0.15 -0.11 (77) 0.03 L-CU -0.29** -0.28** (77) -0.31*** -0.28** (77) -0-19 -0-15 (74) -0.33*** -0.30*** (77) -0.21+ -0.13 (77) -0.26** -0.21* (77) -0.15 -0.10 (77) -0.30*** -0.30*** (77) -0.28** -0.25* (63) -0.28** -0.26** (77) -0.23** -0.19* (77) -0.20+ -0.19+ 8 77) -0+30*** -0+28** (77) -0.2444 L-45 0 - 2500 0-38*** -0.16 -0.08 (76) 0.11 0.08 (73) -0.05 -0.06 (76) -0.33*** -0.24** (76) 0.13 0.18 (76) -0.11 -0.07 (76) -0.05 -0.00 (76) -0.11 -0.12 (76) 0.37000 0.30000 (76) 0.43000 0.18 0.22* (76) -0.18 -0.14 (76) -0.18 -0.17 (62) L-00 -0.37000 -0.35000 (77) -0.47** -0.46** 1 77) -0.21* -0.22* (77) -0.29** -0.28** (77) -0+36*** -0+40*** [63] 0.19* 0.15 (77) 0.3800 0.3500 (77) -0.34 -0.04 (77) 0 • 20* 0• 18 (77) -0.37*** -0.32*** (77) -0.28** -0.31** (77) -0.06 -0.06 (77) -0.05 -0.13 (74) -0.18 -0.19 (77) L-NI -0.2500 -0.19 (77) 0.01 -0.02 (77) 0.5600 0.22* 0.13 (77) 0-46*** -0.2500 -0.18 (77) 0.00 -0.03 -0.10 (77) -0.30** -0.24** (77) 0.04 0.01 (77) -0.01 -0.07 (77) -0-14 -0-22* (63) -0+01 -0+08 (77) 0.310++ 0.15 (77) L-CR 0.04 -0.00 (77) 0-12 0-14 (77) -0.45000 -0.37000 (77) -0.13 -0.19* (77) -0.2500 -0.04 -0.08 (77) -0.13 -0.12 (77) 0.00 -0.06 (77) -0.15 -0.20 (63) -0.03 -0.15 (77) 0.04 0.06 (77) 0.2644 0.30** 0.40000 LTUN -0.40000

- NOTE: (1) Pearson correlation/Spearman correlation/(sample size). If either element has a concentration below the laboratory detection limits, it is omitted from the pairwise computations. (2) Significance levels: *-10%, **-5%, ***-1%.

L-FE															
1.00															
0.42*** 0.39*** (77)	L-K 1.00 (77)														
0.14 0.12 (77)	0.35*** 0.32*** (77)	1.00 (77)													
-0.19* -0.20* (77)	0.24** 0.23** (77)	0.64*** 0.67*** (77)	1.00 (77)												
-0.37*** -0.35*** (75)	-0+11 -0+05 (75)	0.28** 0.34*** (75)	0.35*** 0.33*** (75)	L-SE 1.00 (75)											
-0.14 0.34 (77)	-0.34*** -0.23** (77)	-0.16 -0.11 (77)	-0.15 -0.17 (77)	-0.14 -0.19 (75)	1.00 (77)										
-0.02 0.22* (77)	-0.29** -0.19 (77)	-0.08 0.03 (77)	-0.10 -0.11 4 77)	-0.17 -0.14 (75)	0.84500	L-NG 1.00 (77)	LUTU								
0.00 0.19 (77)	-0.13 -0.05 (77)	0-18 0-27** (77)	0+08 0+09 (77)	-0.02 -0.15 (75)	0.35*** 0.40*** (77)	0.2400 0.2500 (77)	1.00								
0.44*** 0.39*** (77)	0.13 0.11 (77)	0.30*** 0.30*** (77)	0.04 0.01 (77)	-0 +1 7 -0 +1 7 (75)	0.17 0.15 (77)	0.36*** 0.36*** (77)	0.10 0.16 (77)	1.00 (77)							
0.22* 0.34*** (77)	0.02 0.02 (77)	0.03 0.13 (77)	-0.15 -0.10 (77)	-0.22* -0.22* (75)	0+34### 0+25## (773	0.54*** 0.53*** (77)	0.19+ 0.250+ (77)	0.75*** 0.72*** (77)	L-ZN 1.00 (77)	L-CV					
0.35*** 0.30*** (77)	0.04 0.00 (77)	0.08 0.10 (77)	-0.22* -0.21* (77)	-0.27** -0.17 (75)	0.03 -0.04 (77)	0.14 0.05 (77)	0.07 0.03 (77)	0.57*** 0.5**** (77)	0.69***	1.00					
0.02 -0.09 (77)	-0.05 -0.08 (77)	0.12 0.14 (77)	0.04 0.06 (77)	0.19* 0.22* (75)	0-11 0.02 (77)	0.32000 0.220 (77)	-0.11 -0.13 (77)	0.52000 0.45000 (77)	0.63888 0.50888 (77)	0.43*** 0.42*** (77)	L-AS				
0+63*** 0-55*** (76)	0.30*** 0.34*** (763	0.21* 0.22* (76)	-0.03 0.02 (76)	-0.15 -0.14 (74)	-0.42000 -0.2900 (76)	-0+05 0+10 (76)	-0.15 -0.14 (76)	0.55*** 0.45*** (76)	0-33000 0-61000 (76)	0.42*** 0.51*** (76)	0.26** 0.17 (76)	10	1		
0.41*** 0.28** (77)	0-13 0-16 (77)	0-22* 0-26** (77)	-0.03 0.10 (77)	-0.04 0.00 (75)	-0.34*** -0.30*** (77)	0-03 0-11 (77)	-0.200 -0.2500 (77)	0.45000 0.37000 (77)	0.2300 0.2900 (77)	0.32*** 0.38*** (77)	0.2600 0.18 (77)	0.64000 0.63000 (76)	1-00 (77)		
0-41*** 0-40*** (77)	0-190 0-09 (77)	0-17 0-219 (77)	0.00 0.05 (77)	-0.04 0.00 (75)	-0.2700 -0.220 (77)	0.02 0.16 (77)	-0+13 -0+220 (77)	0.04 0.05 (77)	-0.04 0.08 (77)	0.01 0.07 (77)	0.01 -0.03 (77)	0.50000 0.52000 (76)	0.65*** 0.58*** (77)	L-CR 1.00 (77)	12121
0+07 0+08 (77)	0+03 -0+01 (77)	0+14 0+19 (77)	0.18 0.19 (77)	-0.09 -0.10 (75)	-0.05 -0.16 (77)	0.17 0.12 (77)	-0+17 -0+15 (77)	0+16 0-13 (77)	0.04 0.13 (77)	-8.06 9.01 (77)	0.14 0.190 (77)	0.34000 0.40000 (76)	0.34666 0.38666 (77)	0.37000 6.39000 (77)	1.00 (77)

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SOLUBLE URANIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

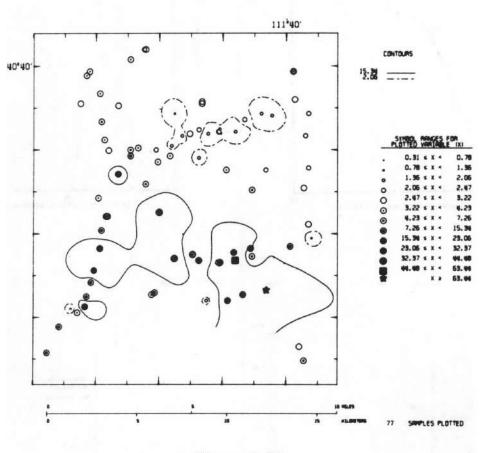
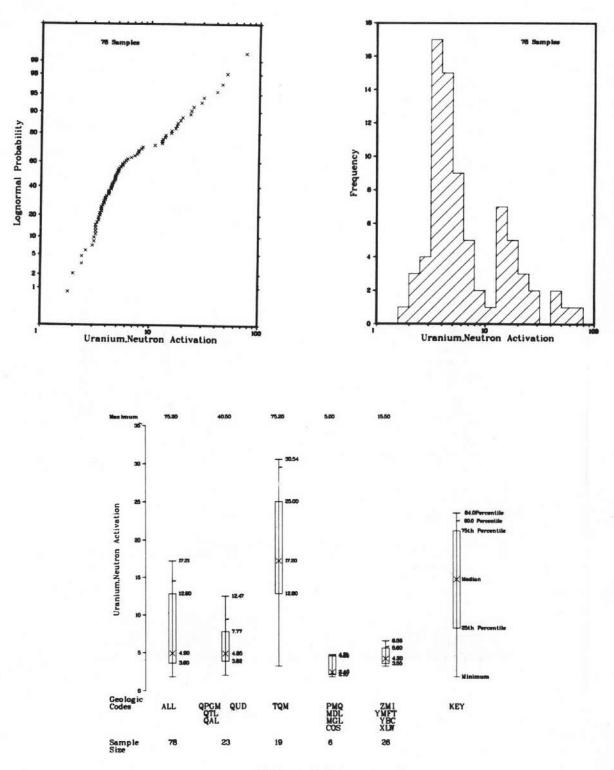
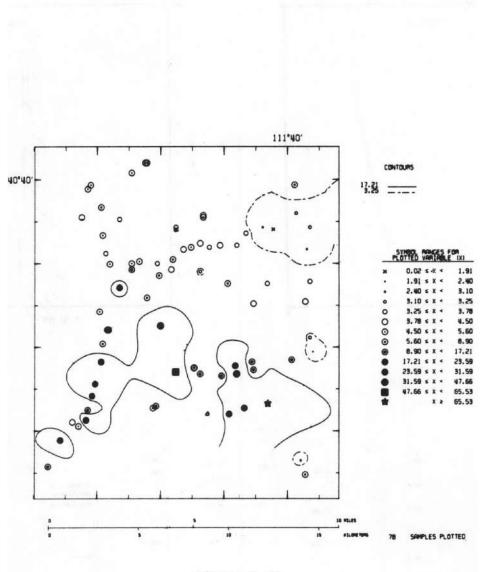
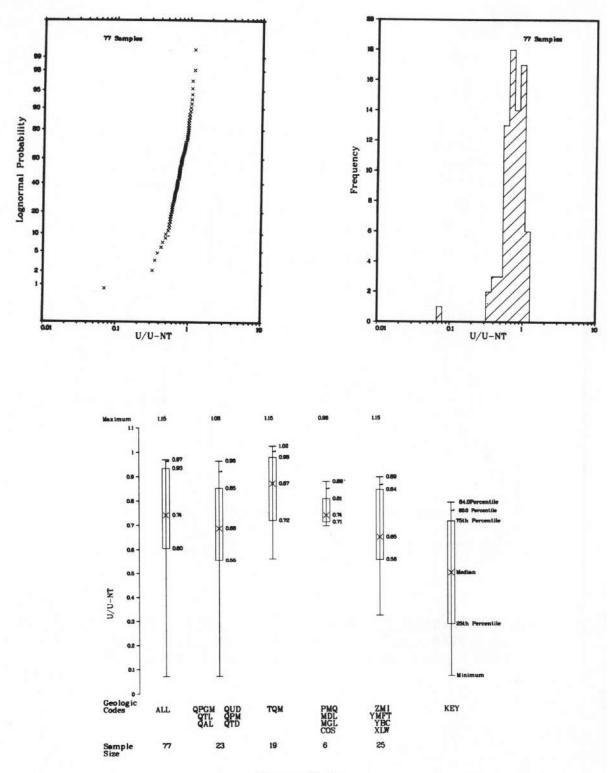
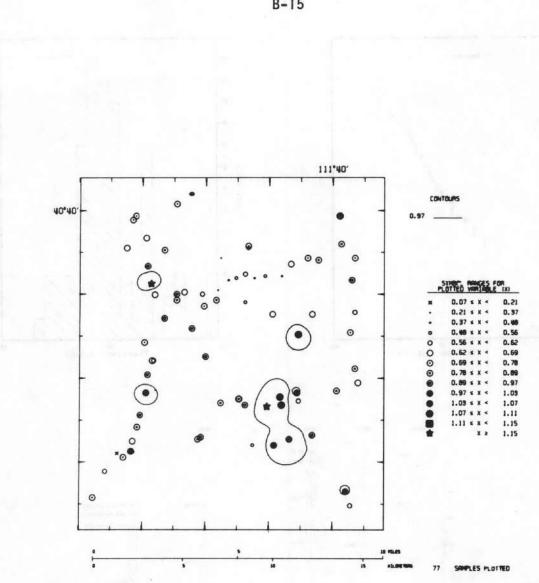



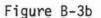
Figure B-1b

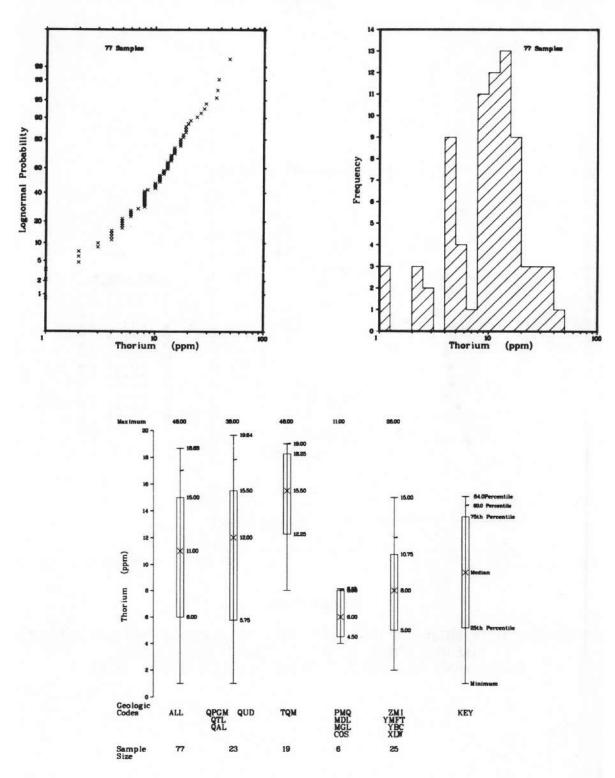
GEOCHEMICAL DISTRIBUTION OF SOLUBLE URANIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR URANIUM BY NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH


Figure B-2b


GEOCHEMICAL DISTRIBUTION OF URANIUM BY NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH



PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR URANIUM FLUOROMETRIC/ URANIUM NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

GEOCHEMICAL DISTRIBUTION OF URANIUM FLUOROMETRIC/URANIUM NEUTRON ACTIVATION IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR THORIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

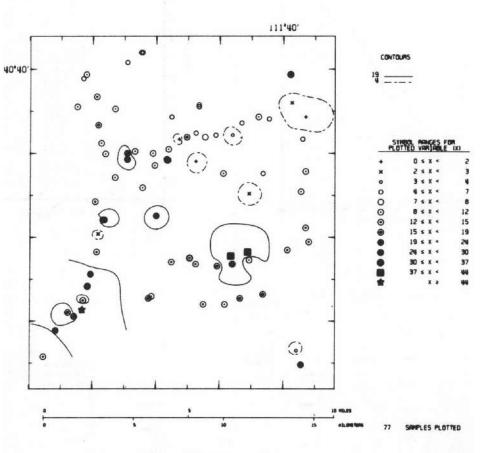
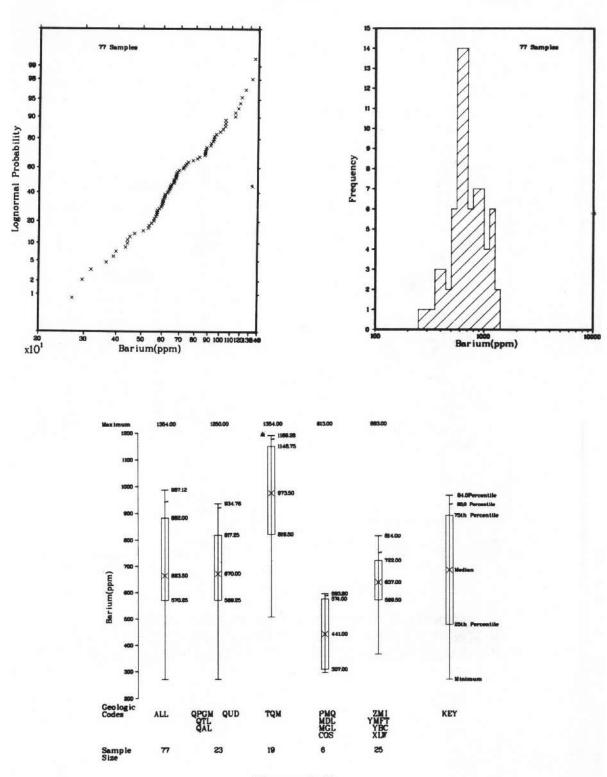



Figure B-4b

GEOCHEMICAL DISTRIBUTION OF THORIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR BARIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

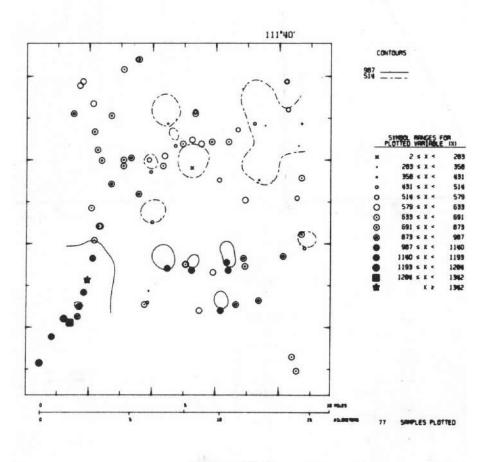
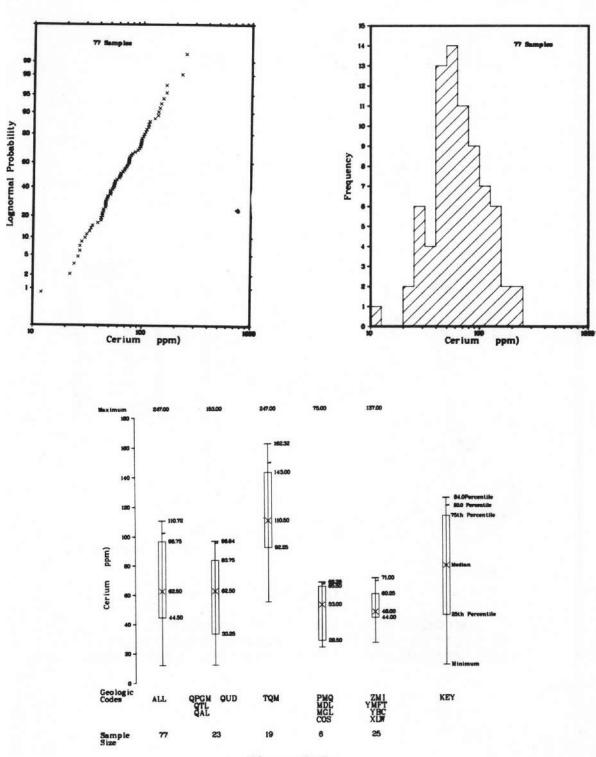



Figure B-5b

GEOCHEMICAL DISTRIBUTION OF BARIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR CERIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

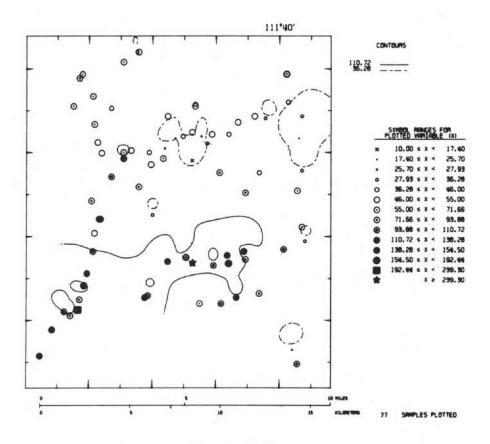
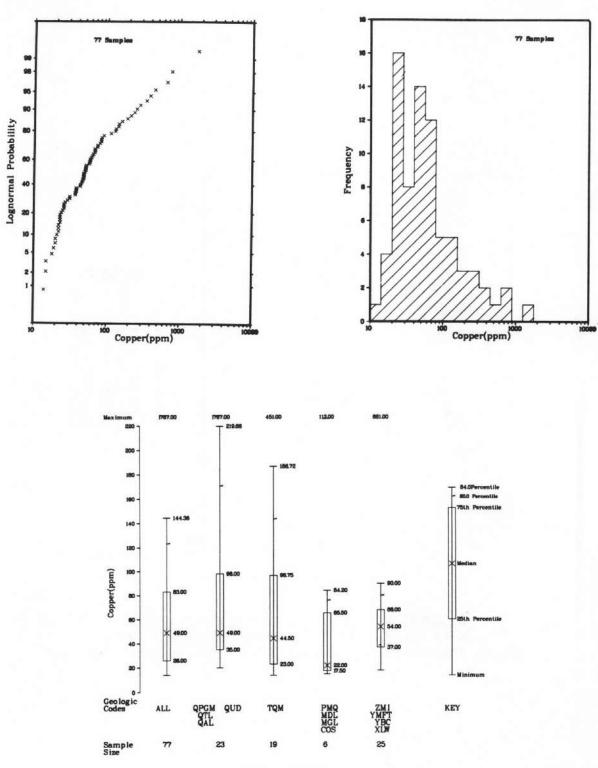



Figure B-6b

GEOCHEMICAL DISTRIBUTION OF CERIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR COPPER (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

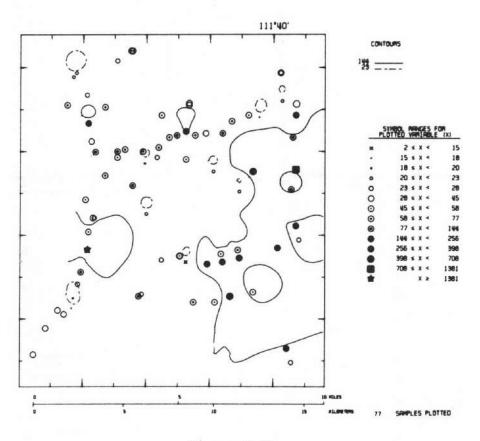
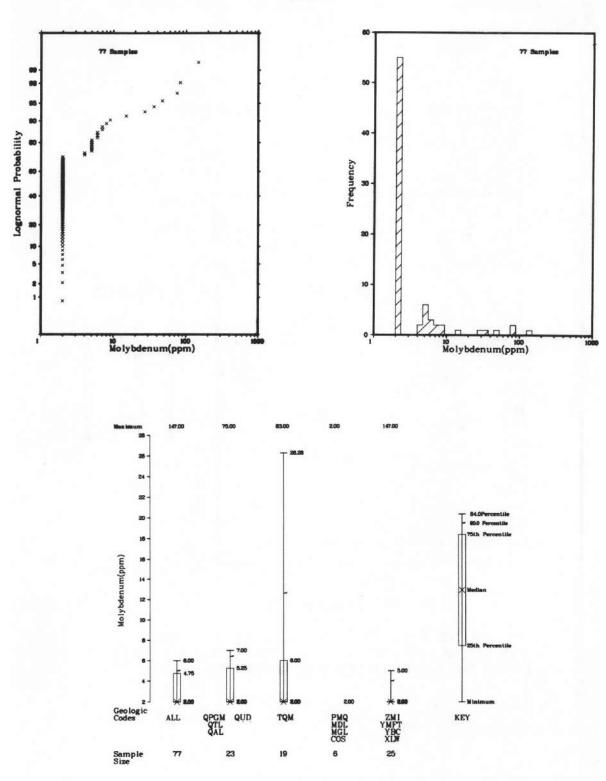



Figure B-7b

GEOCHEMICAL DISTRIBUTION OF COPPER (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR MOLYBDENUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

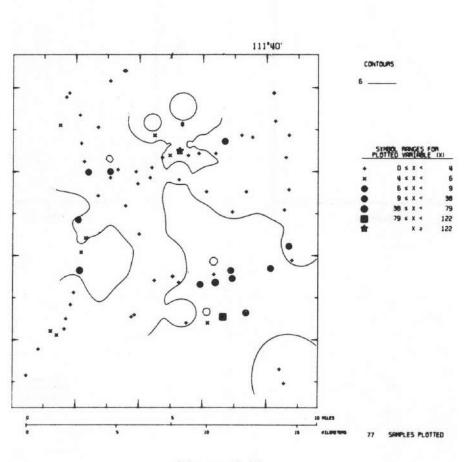
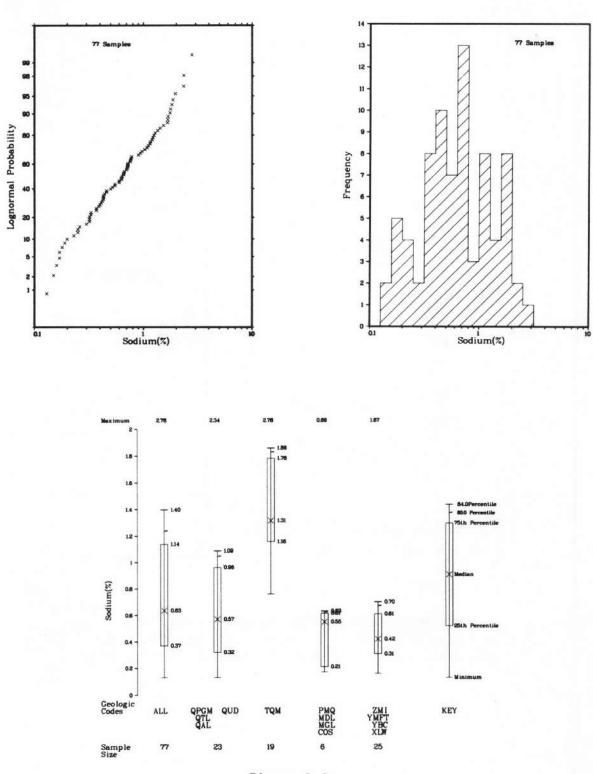



Figure B-8b

GEOCHEMICAL DISTRIBUTION OF MOLYBDENUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR SODIUM (%) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

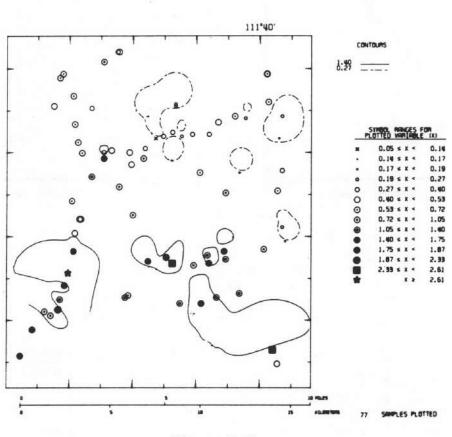
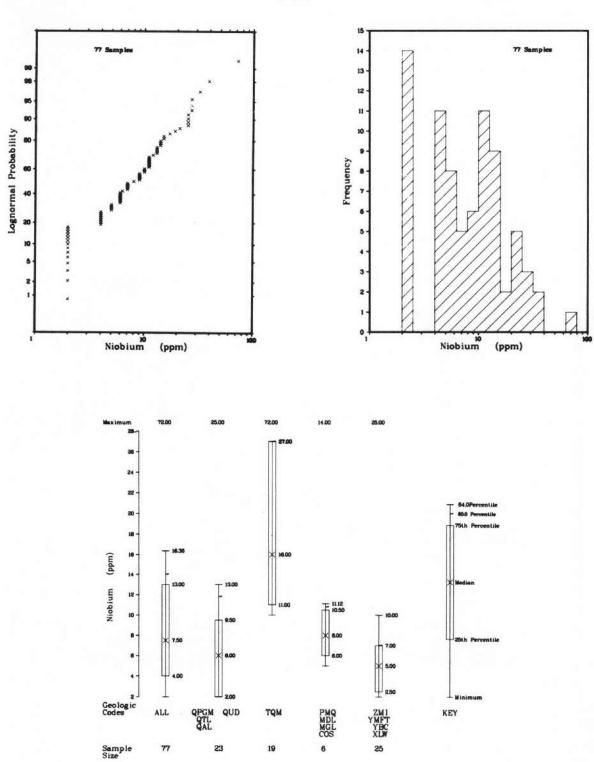
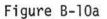
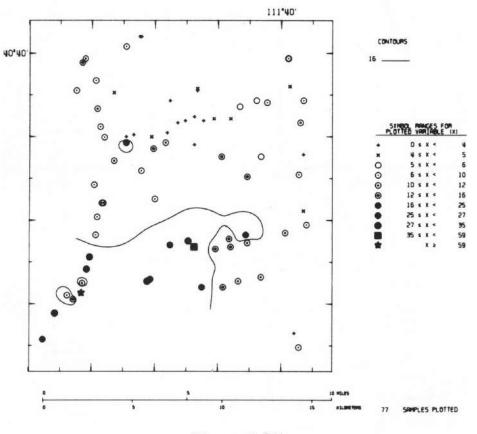
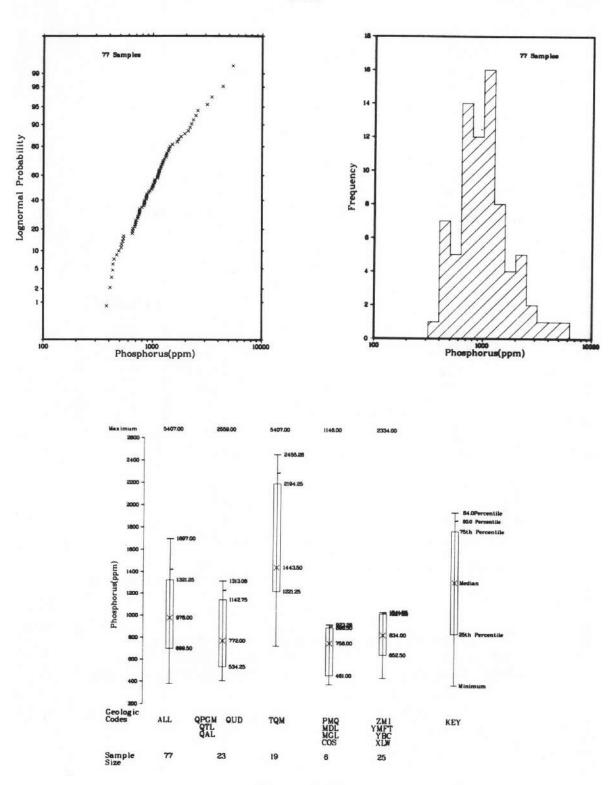
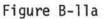
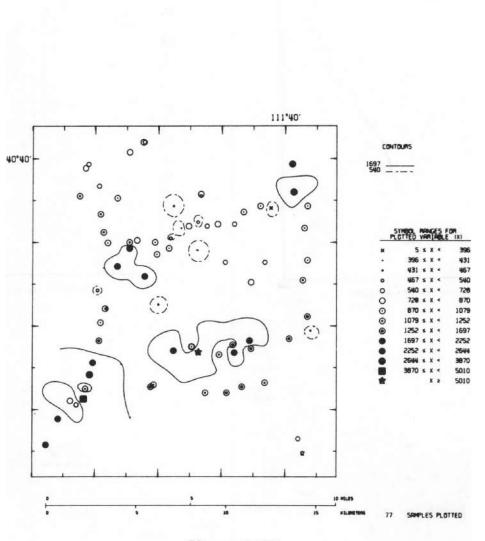




Figure B-9b

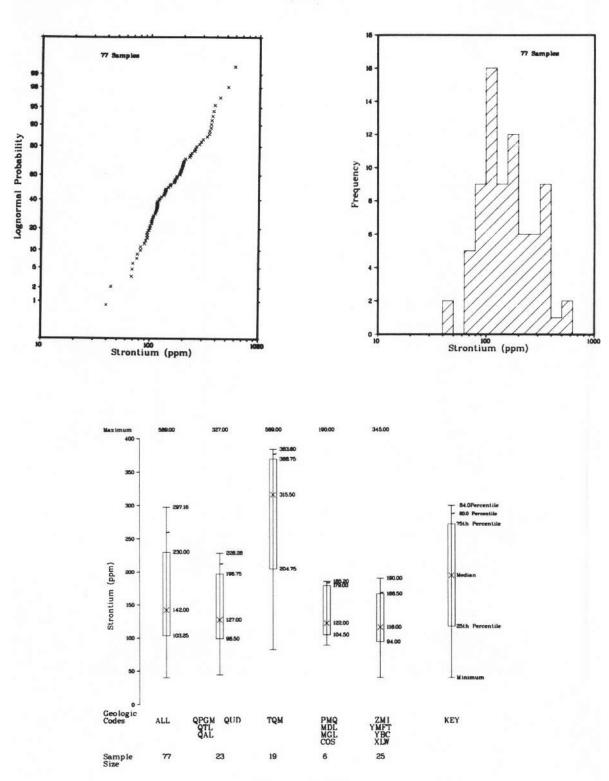
GEOCHEMICAL DISTRIBUTION OF SODIUM (%) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

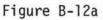
PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR NIOBIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

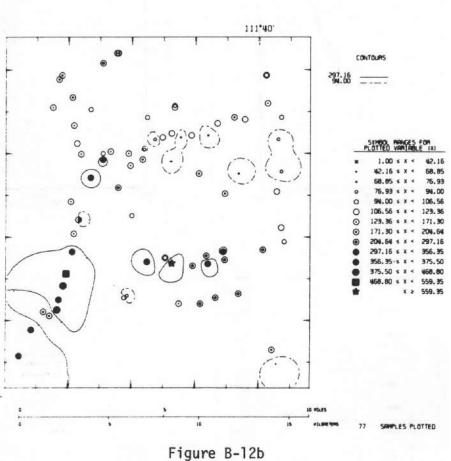





Figure B-10b

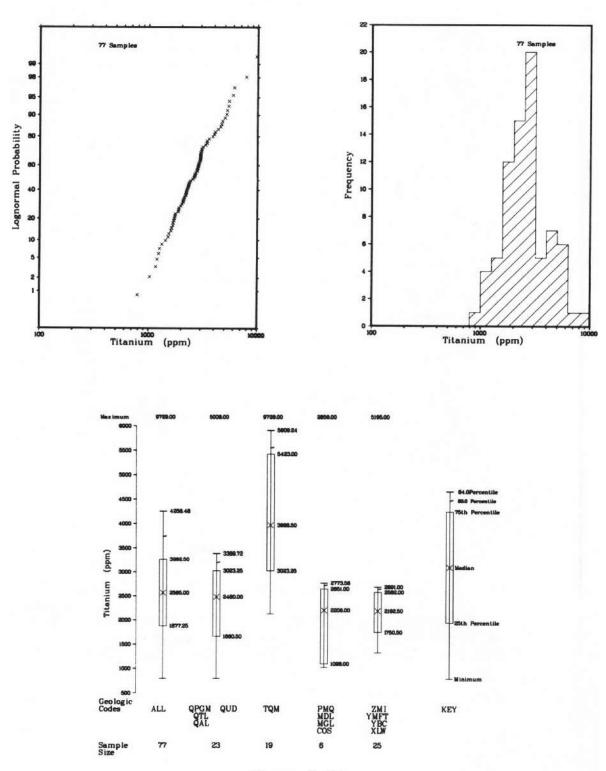
GEOCHEMICAL DISTRIBUTION OF NIOBIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH



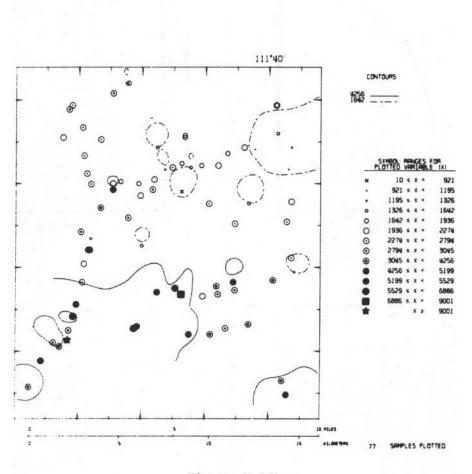

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR PHOSPHORUS (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH


Figure B-11b

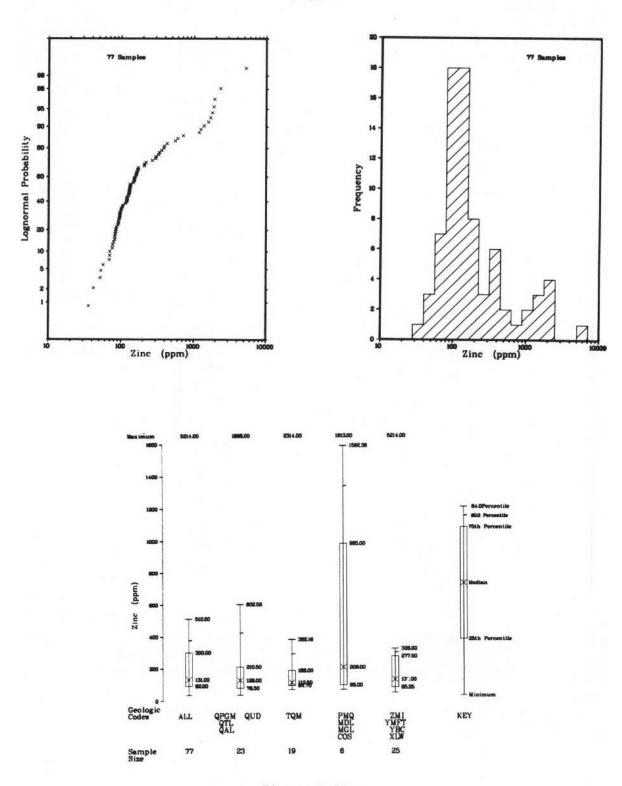
GEOCHEMICAL DISTRIBUTION OF PHOSPHORUS (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

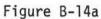


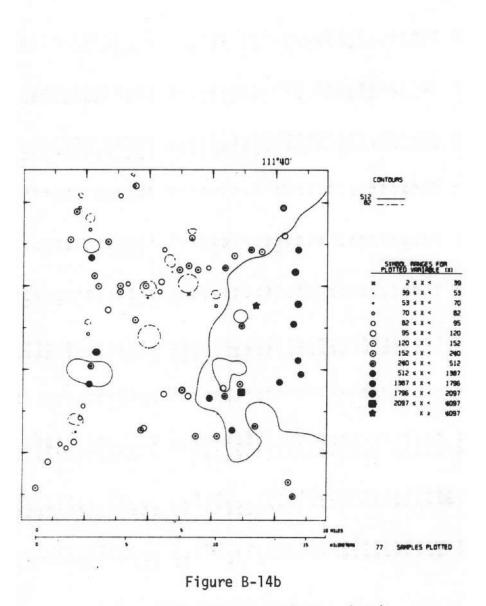
PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR STRONTIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH



GEOCHEMICAL DISTRIBUTION OF STRONTIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH




PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR TITANIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH



GEOCHEMICAL DISTRIBUTION OF TITANIUM (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

PROBABILITY, FREQUENCY, AND PERCENTILE PLOTS FOR ZINC (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

GEOCHEMICAL DISTRIBUTION OF ZINC (PPM) IN STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

Table B-3

PARTIAL DATA LISTING FOR STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

JR SANP	LE D. D. E. SAMPLE	NUMBER	U-FL (PPH)	U-NT (PPH)	UTJ	TH (PPN)	BA (PPN)	CE (PPN)	CU (PPN)	NO (PPN)	(PPN)	SR (PPN)	ZN (PPN)
905500	18-40-627 -111-742		1.8	5.6	0.32		630	27	68	<4	520	91	97
908502	18-40-643 -111.740	-3-15-	1.2	3.4	0.35		370	46	51		440	94	85
998503	18-40.642 -111.740	-3-15-		3.2									
908504	18-40.632 -111.735	-3-15-	1.7	3.9	0.44	<2	470	26	68	<4	420	82	52
908505	18-40-633 -111-718	-3-12-	1.4	3.6	0.35	7	600	27	63	<4	660	76	170
903505	18-40.633 -111.730	-3-12-	2.5	5.2	0.48	17	680	42	83	5	790	110	170
903507	18-40.635 -111.724	-3-12-	2.3	3.9	0.59	6	580	51	350	150	470	120	220
908538	13-40-634 -111-711	-3-12-	2.1	3.8	0.54	4	690	46	37	<4	760	110	82
908509	18-40-634 -111.700	-3-12-	1.5	3.5	0.42	3	670	42	80	<4	700	70	300
903510	18-40.640 -111.694	-3-15-	2.1	3.3	0.55	5	570	46	59	6	990	120	130
933511	18-40.643 -111.683		1.8	2.4	0.74	8	440	53	48	<4	910	170	390
908512	18-40.642 -111.676		1.6	1.8	0.87	4	300	33	15	<4	380	120	130
938513	18-40.650 -111.661		2.7	3.1	0.87	2	570	43	22	<4	3400	1.30	120
908514	18-40.648 -111.722		2.7	5.1	0.53	5	720	51	37	<4	530	120	53
908515	18-40.649 -111.722		3.2	4.2	0.75	5	530	43	38	<*	840	94	130
908517	18-40-564 -111-662		4.0	3.8	1.0	8	540	55	31	<&	1100	110	130
908518	18-40.664 -111.662		2.2	3.0	0.74	15	570	56	26	<4	1400	100	92
908519	18-40.632 -111.654		2.3	2.4	0.96	5	320	24	110	<4	880	89	1900
20852 0	18-40.643 -111.652		2.4	3.1	0.78	<2	400	28	150	<4	930	97	1 800
905529	18-40.501 -111.790		3.3	4.8	0.69	13	680	78	45	7	520	140	79
908530	18-40-613 -111.777		19.	20.	0.97	10	950	97	65	<4	2200	340	120
908536	18-40-552 -111-798		9.5	14.	0.69	14	1100	75	19	<+	1200	360	69
903537	18-40.559 -111.795		14.	17.	0.78	36	1200	160	23	<&	3100	430	92
903540	18-40.594 -111.750	-3-12-	39.	41 .	0.95	21	430	35	20	<4	440	100	42
908541	18-40.608 -111.759		6.0	6.7	0.39	8	880	85	1 30	<4	2100	250	130
905542	18-40.625 -111.752	-3-15-	2.2	3.7	0.60	8	530	44	68	<&	1000	140	120
935543	18-40.625 -411.783	-3-15-	3.1	4.8	0.65	8	81 0	51	90	6	1000	170	150
933701	18-40.537 -111.816	-3-15-	14.	23.	0.59	19	1000	140	29	<4	2200	360	95
908702	18-40-571 -111-740	-3-12-	41.	50.	0.81	14	1200	130	23	<*	2500	370	100
908703	18-40.570 -111.744												
903704	18-40.570 -111.724	-3-12-	16.	17.	0.93	13	1100	250	14	<4	5400	590	97
908705	18-40.569 -111.710		15.	13.	1.2	17	600	110	280	27	1200	210	1700
908706	18-40.570 -111.700	-3-12-	49.	46.	1.1	29	1000	160	190	47	1900	370	390
903907	18-40.588 -111.652		2.6	3.2	0.82	13	740	66	210	6	1300	120	1400
903914	18-40.581 -111.650		1.3	2.0	0.57	12	450	34	23	<4	430	94	550
908915	18-40.577 -111.664	-3-12-	9.2	11.	0.83	14	920	95	240	15	1400	240	710
905918	18-40.576 -111.690		16.	16.	0.99	37	920	150	61	8	2600	300	150
903920	18-40.574 -411.701	-3-15-	20.	19.	1.1	38	1000	110	51	<4	1700	230	100
908921	18-40.573 -111.728		6.1	7.6	0.80	11	600	74	50	<4	1000	110	130
908922	18-40-573 -111-728		4.7	6.2	0.76	12	640	80	43	<&	840	100	120
908924	18-40-572 -111-689	-3-12-	7.2	13.	0.55	10	870	90	390	36	1 300	260	2300
908928	18-40.555 -111.680	-3-12-	73.	75.	0.97	17	870	76	52	9	1200	280	270
903933	18-40.550 -111.705	-3-12-	19.	18.	1 - 1	10	1000	110	51	5	1500	290	150
908940	18-40-553 -111-695	-3-12-	31.	31 .	1.0	18	940	110	450	83	1400	260	1200
908942	18-40.576 -111.789	-3-12-	25.	25.	1.0	13	1000	98	1800	75	1300	330	1200
908943	18-40-585 -111-788		7.3	7.8	0.94	2	640	48	57	5	1000	1.30	360
908945	18-40.592 -111.785		4.8	7.8	0.52	15	670	58	48	5	880	140	300
908946	18-40.592 -111.784	-3-15-	5-0	8.5	0.59	28	630	97	24	<4	490	40	330
908947	18-40-520 -111-655	-3-15-	5.0	8.3	0.51	19	650	100	26	<4	540	44	340
908948	18-40-527 -111-658	-3-15-	2.5	2.6	0.98	3	660	22	250	<4	700	200	160
908949	18-40.554 -111.753	-3-12-	12.	13.	0.94	8	510	100	25	<4	1100	82	110
908950	18-40-553 -111-755	-3-12-	5.6	7.2	0.78	17	660	140	85	<4	1300	99	160
908951	18-40.565 -111.793	-3-12-	23.	24.	0.97	19	1400	150	130	<4	1 800	510	94
909095	18-40.524 -111.824	-3-12-	9.9	14.	0.73	14	1200	120	38	<4	1700	350	120
909097	18-40.546 -111.808	-3-15-	0.31	4.4	0.07	15	1300	96	38	5	840	190	90

Table B-3, Continued

PARTIAL DATA LISTING FOR STREAM SEDIMENT OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED GEOCHEMICAL SURVEY, UTAH

									.,	•			
909300 909302 909302 909303 909306 909308 909308 909308 909310 909311 909316 909316 909317 909319 909320 909321 909323 909323 909324 909325 909325	ST LAT LONG 18-40.544 -111.804 LONG 18-40.547 -111.779 18-40.630 -111.778 18-40.637 -111.778 18-40.653 -111.778 18-40.653 -111.778 18-40.653 -111.778 18-40.653 -111.778 18-40.653 -111.778 18-40.665 -111.778 18-40.665 -111.779 18-40.665 -111.798 18-40.665 -111.799 18-40.675 -111.799 18-40.675 -111.759 18-40.675 -111.759 18-40.675 -111.759 18-40.665 -111.751 18-40.665 -111.751 18-40.665 -111.769 18-40.615 -111.769 18-40.615 -111.769 18-40.615 -111.769 18-40.622 -111.769 18-40.625 -111.769 18-40.625 -111.769 18-40.625 -111.769 </th <th>L TY REP -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-12- -3-15- -3-12- -3-</th> <th>U-FL (PPM) 3.4 29. 4.0 3.1 4.3 3.5 4.4 4.0 3.7 3.4 2.7 3.7 2.6 2.2 3.9 3.4 4.5 3.8 1.8 1.2 1.8 1.2 1.3 0</th> <th>U-NT (PPM) 4.6 29. 3.5 4.5 4.5 5.0 4.2 5.1 4.8 5.6 4.2 5.1 4.8 5.6 4.2 5.1 4.8 5.6 4.2 5.1 4.8 5.6 4.2 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6</th> <th>U/TU 0.74 0.99 1.2 0.86 0.64 0.68 0.68 0.74 0.68 0.73 0.54 0.54 0.54 0.54 0.54 0.59 0.55 1.1 0.65 0.96 1.2 0.68 0.73 0.54 0.55 0.5</th> <th>TH (PPN) 18 48 8 10 15 8 24 12 6 8 11 5 5 4 8 20 2 11 5 5 8 20 2 11 5 8 20 2 11 5 8 8 20 2 11 5 8 8 20 2 11 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th> <th>8A (PPN) 1300 950 750 830 880 750 610 610 610 610 610 690 780 560 440 660 600 570 270 870 640</th> <th>CE (PPM) 93 230 54 44 71 48 63 69 75 68 69 75 68 69 75 68 62 47 30 46 61 75 72 12 140 31</th> <th>CU (PPM) 31 15 43 59 160 58 140 26 22 20 74 23 48 47 18 27 23 48 47 18 27 22 21 48 46 760</th> <th>MO (PPN) 5 <6 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4</th> <th>P (PPM) 730 4400 1100 1200 830 1100 650 750 650 750 870 970 750 870 970 730 680 410 2300</th> <th>SR (PPM) 200 380 120 110 170 170 190 190 190 150 230 170 150 140 200 68 350</th> <th>ZN (PPM) 84 100 210 600 83 150 76 210 70 130 82 96 77 757 86 430 70 36 130</th>	L TY REP -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-15- -3-12- -3-15- -3-12- -3-	U-FL (PPM) 3.4 29. 4.0 3.1 4.3 3.5 4.4 4.0 3.7 3.4 2.7 3.7 2.6 2.2 3.9 3.4 4.5 3.8 1.8 1.2 1.8 1.2 1.3 0	U-NT (PPM) 4.6 29. 3.5 4.5 4.5 5.0 4.2 5.1 4.8 5.6 4.2 5.1 4.8 5.6 4.2 5.1 4.8 5.6 4.2 5.1 4.8 5.6 4.2 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	U/TU 0.74 0.99 1.2 0.86 0.64 0.68 0.68 0.74 0.68 0.73 0.54 0.54 0.54 0.54 0.54 0.59 0.55 1.1 0.65 0.96 1.2 0.68 0.73 0.54 0.55 0.5	TH (PPN) 18 48 8 10 15 8 24 12 6 8 11 5 5 4 8 20 2 11 5 5 8 20 2 11 5 8 20 2 11 5 8 8 20 2 11 5 8 8 20 2 11 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8A (PPN) 1300 950 750 830 880 750 610 610 610 610 610 690 780 560 440 660 600 570 270 870 640	CE (PPM) 93 230 54 44 71 48 63 69 75 68 69 75 68 69 75 68 62 47 30 46 61 75 72 12 140 31	CU (PPM) 31 15 43 59 160 58 140 26 22 20 74 23 48 47 18 27 23 48 47 18 27 22 21 48 46 760	MO (PPN) 5 <6 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	P (PPM) 730 4400 1100 1200 830 1100 650 750 650 750 870 970 750 870 970 730 680 410 2300	SR (PPM) 200 380 120 110 170 170 190 190 190 150 230 170 150 140 200 68 350	ZN (PPM) 84 100 210 600 83 150 76 210 70 130 82 96 77 757 86 430 70 36 130
909335	8-40.506 -111.655 18-40.615 -111.680 18-40.550 -111.719	-3-12-	3.0 2.3 1.8	3.6 4.4 3.4 3.2	0.57 0.69 0.55 0.55	8 11 5 13	640 560 390 610	31 63 39 55		<6 <6 <6 <4	2300 870 1100 700 1100	350 77 120 69 150	130 1900 1600 5200 160

APPENDIX C

FIELD FORM AND COMPUTER CODE LIST

C-3

APPENDIX C

FIELD FORM AND COMPUTER CODE LIST

LIST OF TABLES

No.	Title	Page
C-1	Computer Code List of Geochemical Variables	C-4
C-2	Oak Ridge Geochemical Sampling Form Showing Field Data Recorded on Microfiche	D-5

Table C-1

Variable(a) Code		Variable(a)	Code
Uranium Measured by	V-FL	Scandium	SC
Fluorometry(b)		Silicon	SI
Uranium Measured by Mass Spectrometry(b)	U-MS	Strontium	SR
Uranium Measured by	U-NT	Thorium	тн
Neutron Activation		Titanium	ΤI
Arsenic	AS	Vanadium	۷
Selenium	SE	Yttrium	Y
Silver	AG	Zinc	ZN
Aluminum	AL	Zirconium	ZR
Boron	В	Sulfate (ppm)	50 ₄
Barium	BA	Chloride (ppm)	CL
Beryllium	BE	Conductivity from Lab (umhos/cm)	CT-L
Calcium	СА	Conductivity from Field (umhos/cm)	CT-F
Cerium	CE	Dissolved Oxygen (ppm)	D0
Cobalt	CO	Air Temperature (°C)	ATEM
Chromium	CR	Water Temperature (°C)	WTEM
Copper	CU	рH	РН
Iron	FE	pH Measured by Lo Ion Paper	PH-P
Hafnium	HF	Total Alkalinity (ppm)	T-AK
Potassium	К	M-Alkalinity (ppm)	M-AK
Lanthanum	LA	P-Alkalinity (ppm)	P-AK
Lithium	LI	Carbonate (ppm) ^(c)	CB
Mangesium	MG	Bicarbonate (ppm)(c)	BC
Manganese	MN	Undissociated Carbonic Acid (ppm)(c)	CAB
Molybdenum	MO	U-NT/U-FL	τυ/υ
Sodium	NA	U-FL/U-NT	U/TU
Niobium	NB	TH/U-NT	דא/ט
Nickel	NI	1,000-U/SP	U/SP
Phosphorus	Р	1,000+U/B	U/B
Lead	PB	1,000.U/SO	U/SO
Platinum	ΡT		

COMPUTER CODE LIST OF GEOCHEMICAL VARIABLES

(a) If natural logarithm of variable is used, L or L- precedes the variable code.

(b) If method is not specified for waters, U-FL is used, except where value is below laboratory detection limit in which case U-MS is substituted if it is available.

(c)These variables were approximated using cubic spline functions to fit the curves in Hem (1970), p. 155.

OAK RIDGE GEOCHEMICAL SAMPLING FORM SHOWING FIELD DATA RECORDED ON MICROFICHE

٦

	Type of Vegetation (Within 1 Km Upstream)	Sample Color (Except Plants)
1 Card Number	C Conifer	72 72 74 75 70
	& Conifer & Deciduous	
Constant to Annothing the second s	D Deciduous	
GENERAL SITE DATA	8 Brush	VVLt PKPink LLight RDRed
Attach Identical	G Grass	M Medium GN Green
Sample Number Here	M Moss	D Dark BU Blue
	G Other	RN Brown
	0 Other	CL Clear GY Gray
	Density of Vegetation	WH White BK Black
	56 (Within 1 Km Upstreem)	YL Yellow GT Other
8 9 10 11	B Berren	A STATE OF THE REPORT OF THE
Site Number	S Sparse	27 Odor of Sampled Material
	M Moderate	S H ₂ S
12 13 14 18 16 17	D Dense	0 Other
- Map Code	V Very Dense	
Sand Sand		7.8 Results Request
Sample Type	Local Relief	R (Use Remarks)
10	57 (Within 1 Km Upstream)	
M Stream Sediment	F Fiat (<2m)	
H Lake Sediment	L Low (2–15m)	
S Streem Water	G Gentle (15-60m)	2 Card Number
W Well Water	M Moderate (60-300m)	the second se
P Spring Water	H High (>300m)	PLANT SAMPLE
L Lake Water	0 Other	18 19 Number of Plants Sampled
A Bog Water		(Number of grabs for moss)
-	Weather	
Part and a second	50 60	20 21 22 Trunk Diameter (m)
F Soil (Use Remarks) G Rock	C - Calm C Clear P Lt Wind L Pt Cldv	(1 m above ground)
the second se	P Lt Wind L Pt Cldy V Windy W Overcst	
0 Other 1	R V. Windy V Rainy	23 24 25 Plant Height (m)
	S Gale G Snowy	
10	Sale GI Showy	(Average of Plants Sampled)
Replicate Letter (A-Z)	Classes of Contaminants	Name of Tree, Deciduous
		26 28
Hour Day Month Year	N None	R Alto Verde U Locust
20 21 22 23 24 26 26 27	M Mining (Use Remarks)	A Ash P Maple
	A Agriculture	B Beech M Mesquite
the state of the s	F Oil Field	I Birch K Oak, Other
26 29 30	I Industry	D Box Elder V Olive
Collector's Initials	S Sewage	F Cherry Y Poplar
	P Power Plant	N Cottonwood S Sycamore
31	U Urban	E Elm T Seit Cedar
Phase (P, 1, 2, or G)	@ Other +	H Hackberry G Welnut
	Average Stream Velocity (m/sec)	C Hickory X Willow W Huisache Ø Other
32 Field Sheet Status	1 52 63	W Huisache Ø Other
0 Original	N = No Visible Movement	
C Correction	P = Stagnant Pool	Name of Tree, Conifer
V Voiding		A N. Wh. Cedar L Larch
	64 65 66	A N. Wh. Cedar L Larch C Cedar, Other P Pine
33 Control Semple	Water Width (m)	F Fir S Spruce
A Sediment, High U		H Hemlock Q Other
B Sediment, LowU	67 68 69	J Juniper
C Water, High U		
D Water, Low U	Average Depth (m)	Name of Bush
0 Other	March 1	28 28
	Water Level	A Alder W Witch Hazel
34 36 36 37	D Dry N Normal	B Blueberry Y Yew
Air Temperature (^O C)		P Pussy Willow Q Other
	P Pools H High L Low F Flood	Name of Many
		Name of Mose
Location	Dominant Bed Material	20 P Peat
Latitude Longitude		S Sphagnum (live)
Deg. Min. Sec. Deg. Min. Sec.	8 Boulder	Ø Other
38 39 40 41 42 43 44 48 48 47 48 48 50	C Cobble	
	P Pebble	Algee
	S Sand	30
81 52 53 64	T Silt	G Blue-Green
Surface Geologic	Y Ciay	8 Brown
	N None (Use Remarks)	

Table C-2, Continued

OAK RIDGE GEOCHEMICAL SAMPLING FORM SHOWING FIELD DATA RECORDED ON MICROFICHE

٦

EAM OR LAKE SEDIMENT	74 76 77 198 177 Identification of Producing Harist (Geologic Unit Code)	ton Use of Well
ample Condition	(Geologic Unit Code)	M Municipel
31	Contidence of Producing Horizon Identification	H Household
D Dry W Wet		S Stock
	H High Degree	I Irrigition
ample Trestment	R Probable S Passible	A All of above X H and S
32 N None	Source of Producing Harizon Identification	Y Hand I
5 Sieved		Z S and I
0 Other	P Publication	N Nome
22 24	W Owner U Ueer	0 Other
Number of Grabs	G Geologic Inference	Frequency of Pumping
	0 Other	C Constant (hourly)
35 38		F Frequent (daily)
% Organic Material (Field Estimate)		R Rere (no recent use)
ERAL WATER SAMPLES	3 Card Number	Depth to top of Producing Horizon
latar Sample Treatment	WELL WATER	24 25 36 31
37	WELL WATER Type of Well	(Meters)
N None	10	Confidence of Producing Depth
F Filtenud Only C Acidified Only	D Drilled	32
A Acidified and Filtered	P Drive Point G Dug	H High R Probable
g Other	U Unknown	S Possible
epth of Visibility (m)	Other Other	Burnes of Burney and State
28 28 40	Power Classification	Source of Producing Depth Information
C = Clear	A Artesian Flow	P Publication
11 42 43 44 48 Canductivity	E Electric	W Owner
(undroa.fsm)	G Gesoline	G Geologic Inference
	W Wind H Hend	0 Other
Dissolved O: (ppm)	O Other	
Dissorves Of (ppm)	Casing	Total Well Depth
48 80 81	N None (Below Water Table)	34 36 36 37
Temperature (°C)	5 Steel	(Meters)
52 52 54	G Gelvenized	Confidence of Total Depth
e pH	P Plastic U Unknown	38
11	G Other	H High
P pH by Le-Ion Paper	Pipe Composition	R Probable S Possible
54 57 58 55	F Steel	Testandarman d
Total Alkalisity (ppm)	Z Gelvenized	Source of Total Depth Information
	C Copper P Plastic	P Publications
80 81 82 83	P Plastic U Unknown	W Owner
P Atkatinity (ppm)	g Other	U User
84 88 88 87	Sample Location	G Geologic Inference G Other
M Alkalinity (ppm)	22 23 24	
ppearance of Weter	Heters from Well Head H = Holding Tank (Use Remarks)	
C Clear		EE]
Clear M Murky	Where Sample Taken With Respect To Pressure Tank	N Netural
A Algel	28	M Menmede
g Other	B Before	Lake Area
TT 870 811 828 824	A After N No Pressure Tank	606260100
Discharge (liters/min)	F From Pressure Tank (Use Remarks)	(sq km)
EMARKS (Card 4)		0.
and the second se		the second s
	and the second	

Table C-2, Continued

OAK RIDGE GEOCHEMICAL SAMPLING FORM SHOWING FIELD DATA RECORDED ON MICROFICHE

Sequence Number						
1						
Procedure Number						
Results for Procedure 31						
	ma - Scintillometer (counts/minut	*)			
Results for Procedures 34-41						
16 17 18 18 20 Variables a	and Procedures					
e are listed t	ANOW .					
Results for Precedure 32 Gemm	Spectrometer					
10 17 10 10 20						
TOTAL C	DUNTS (CPM)					
• • POTAS	SIUM (%)					
AN A	JM (CPM)					
34 39 34 37 34						
	UM (ppm)					
40 47 40 50 50	A (CPM)					
	UM (ppm)					
	(CPM)					
Note To Sampler: Blocks 16-2 Should Be Marked Out.	0 Not Used					
	DO M	OT KEYPUN	ICH			C. Martine
	Readings made in	Counts per _				
Procedures 34-41		READ	CPM	BACKG	CPM	RESULTS
34 Uranium (ppb)	VARIABLE	ACTUAL	U.M.	AUTOAL	U.M.	
34 Uranium (ppb) 35 Fluoride (ppm)	TOTAL	ACTUAL				
34 Uranium (ppb) 35 Fluoride (ppm) 36 Nitrate (ppm) 37 Sulphate (ppm)		ACTUAL				
34 Uranium (ppb) 35 Fluoride (ppm) 36 Nitrate (ppm) 37 Sulphate (ppm) 38 Phosphate (ppm)	TOTAL	ACTUAL				
34 Uranium (ppb) 35 Fluoride (ppm) 36 Nitrate (ppm) 37 Sulphate (ppm)	TOTAL COUNTS	ACTUAL				

APPENDIX D

MICROFICHE OF FIELD AND LABORATORY DATA

APPENDIX D

MICROFICHE OF FIELD AND LABORATORY DATA

CONTENTS

Laboratory Data	Page
Well Water (W) & Radiometric	1-6
Stream Sediment (M)	7-13
Field Data	
Page 1	14-59

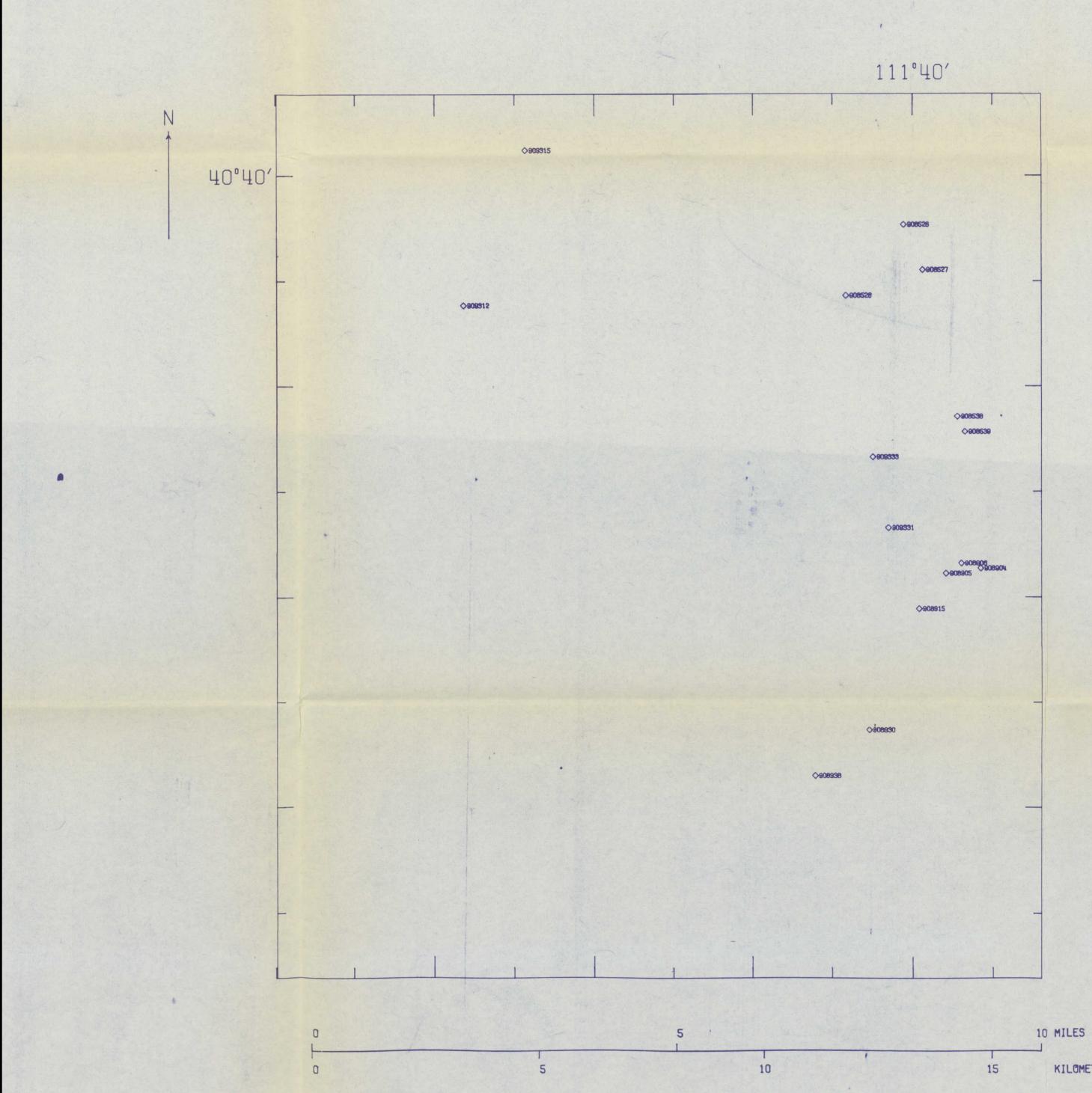
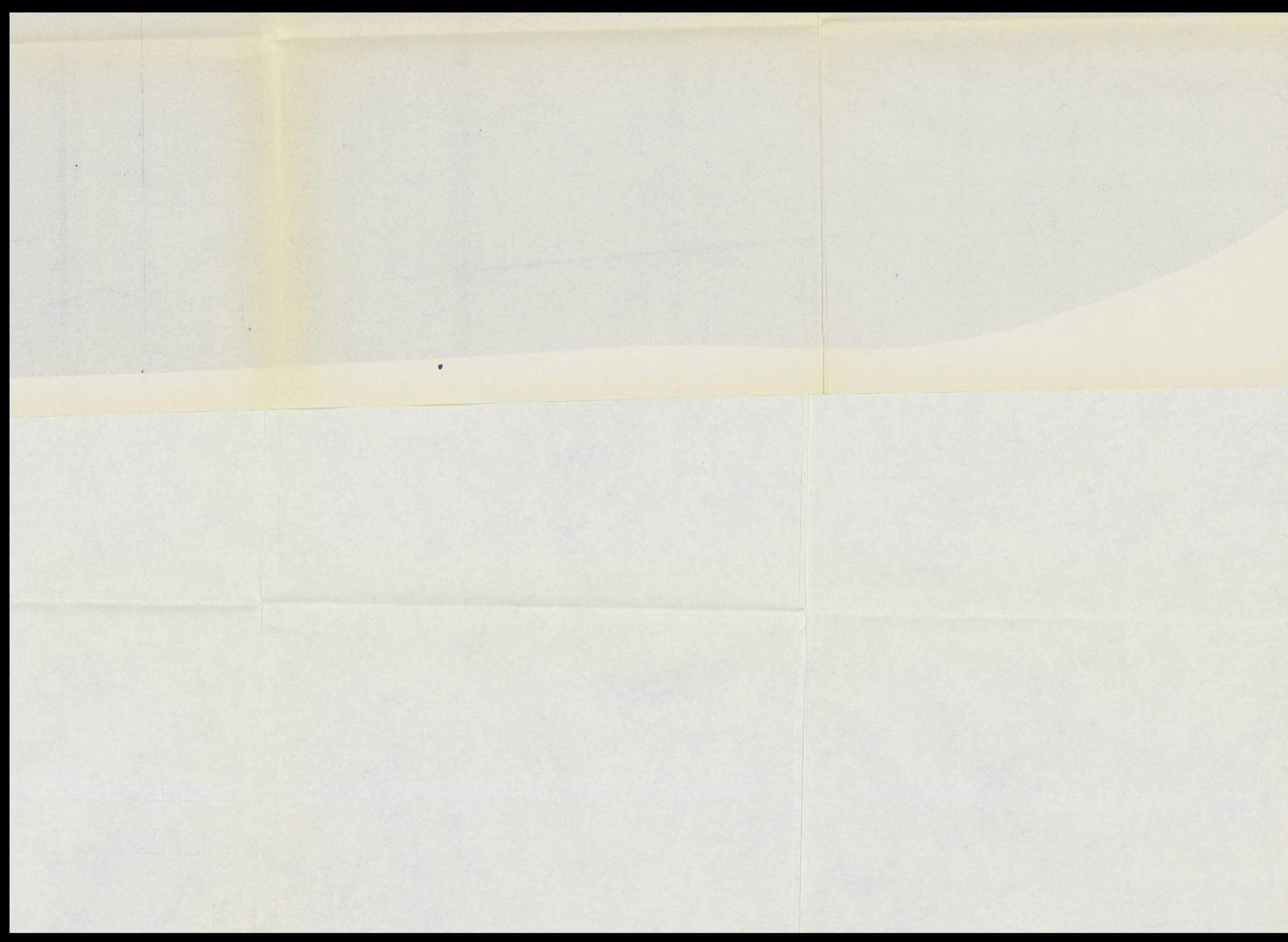
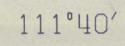


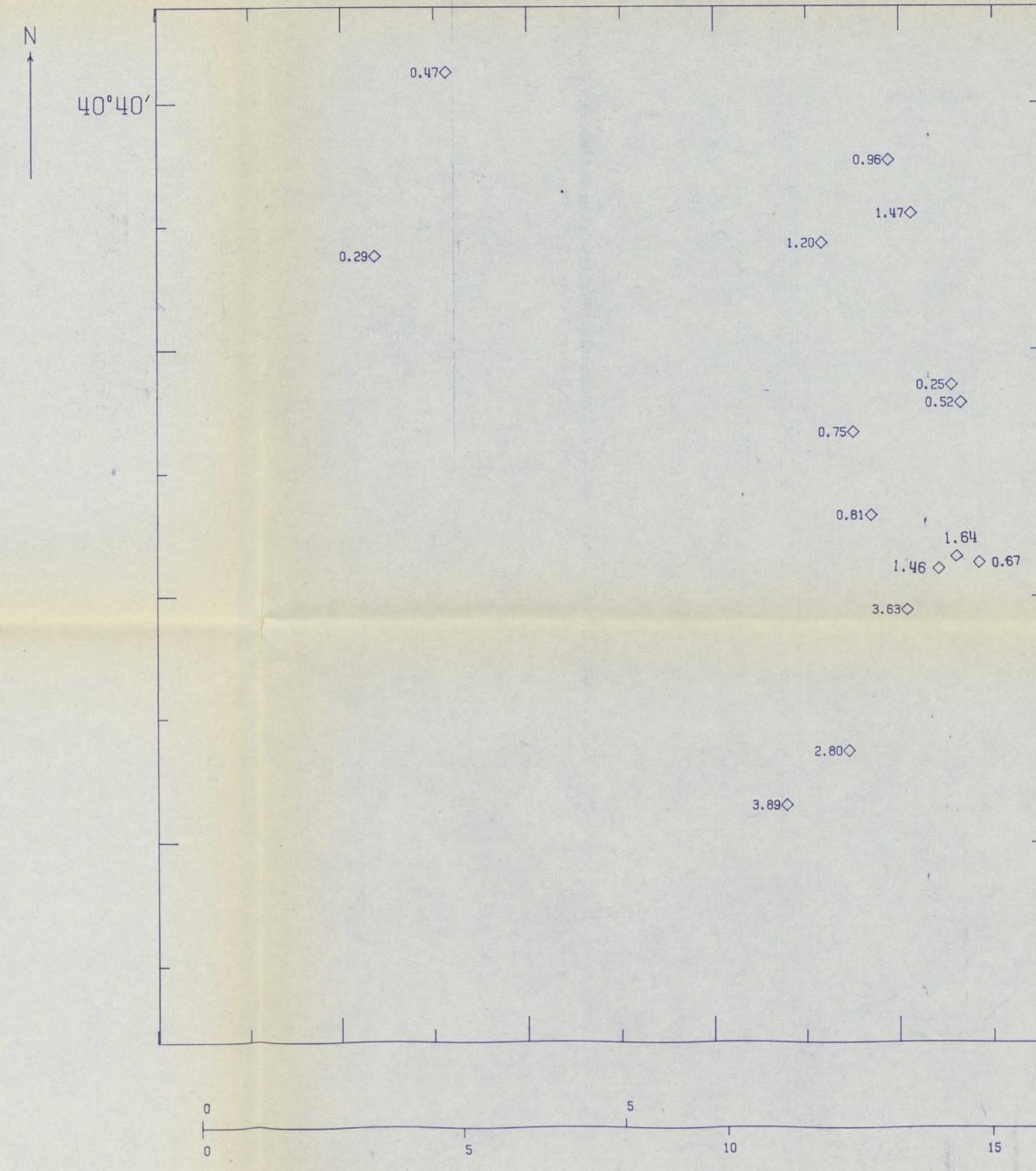
PLATE COTTONWOOD PROJECT AREA THOMAS RANGE-WASATCH GEOCHEMICAL SURVEY FU H SAMPLE LOCATION MAP

-


SCALE 1: 62500 15 SAMPLES PLOTTED

LEGEND


♦ SPRING WATER

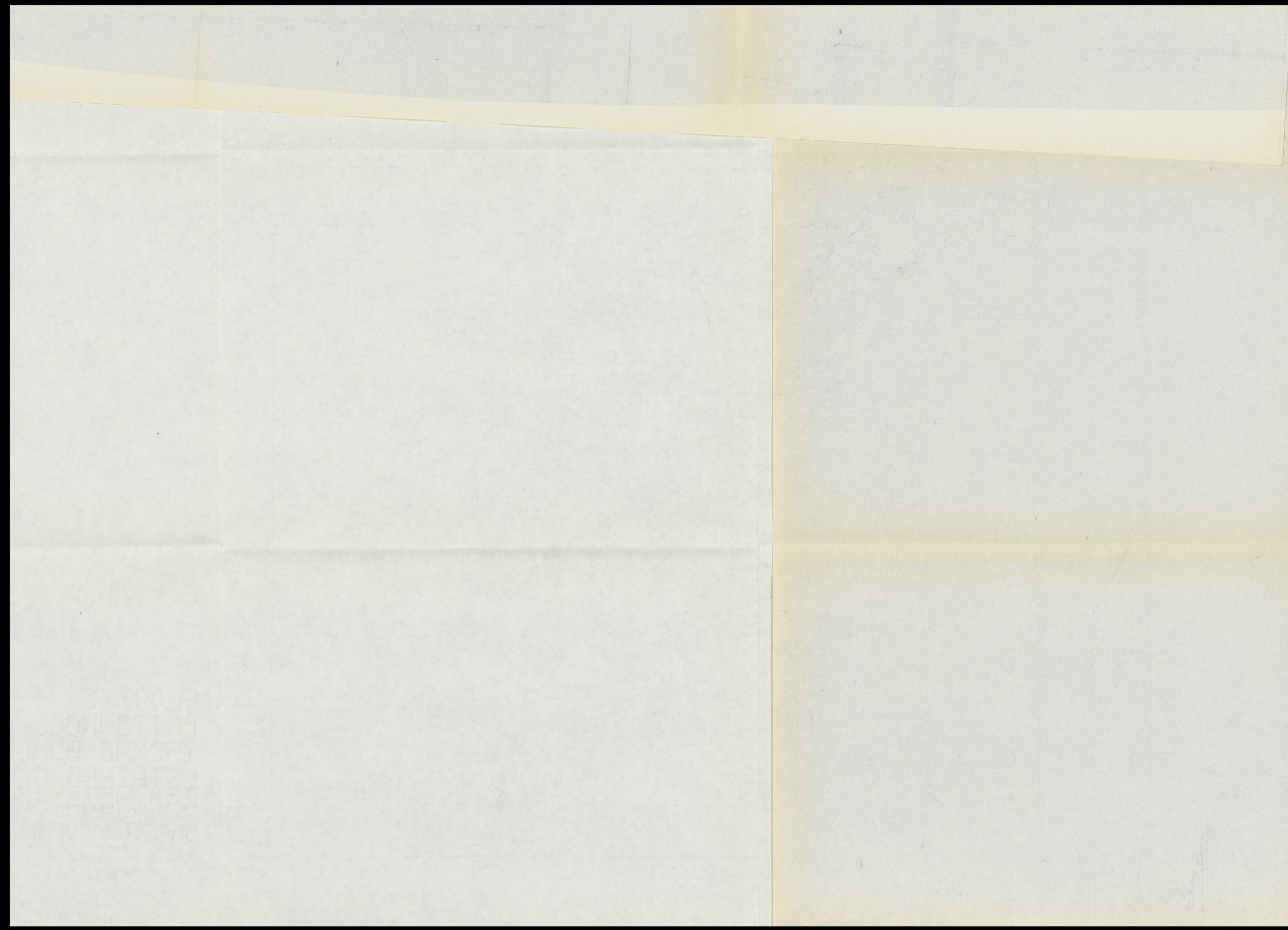

KILOMETERS

LEGEND

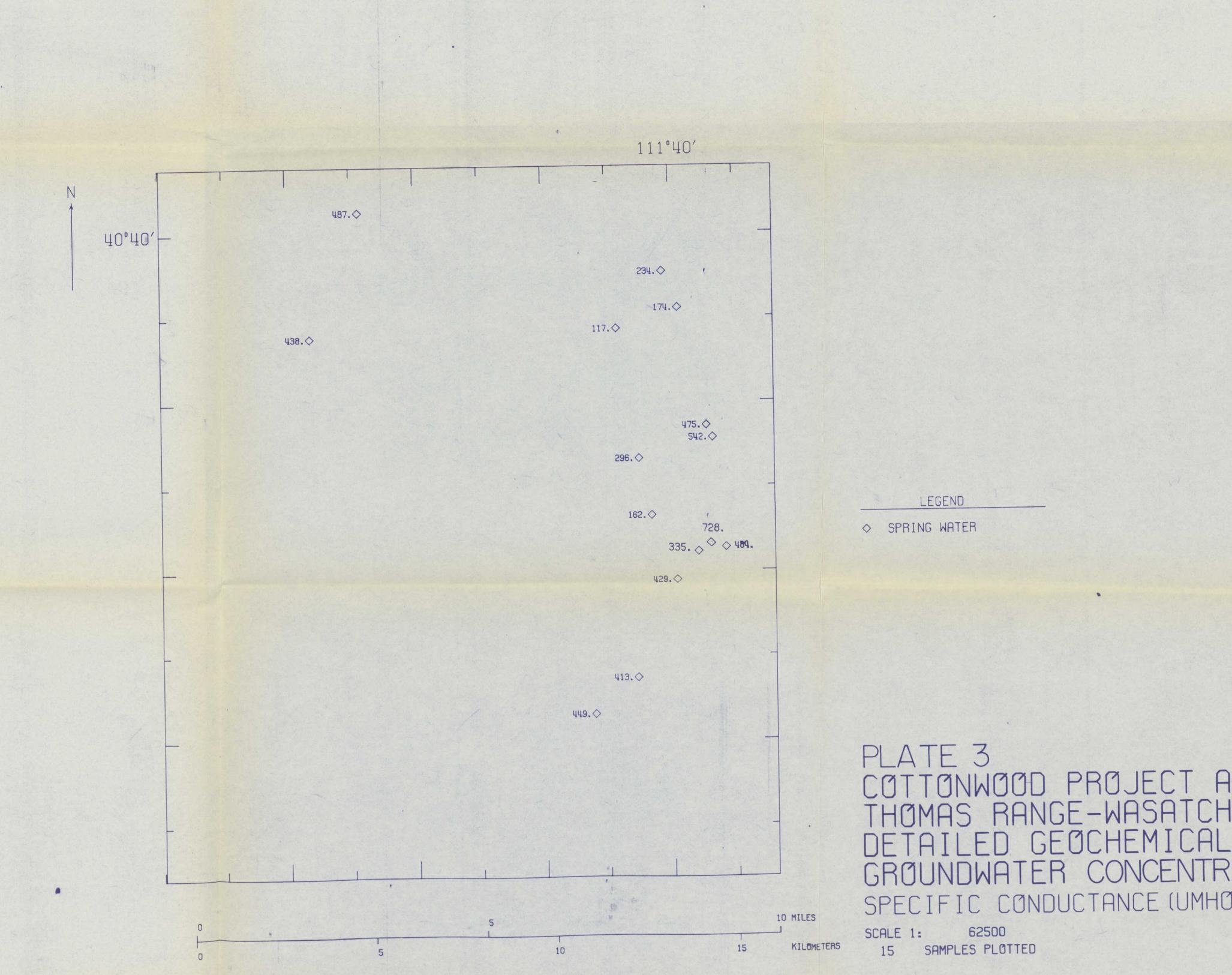
♦ SPRING WATER

PLATE 2 COTTONWOOD PROJECT AREA THOMAS RANGE-WASATCH GEOCHEMICAL SURVEY A -11GROUNDWATER MAP CONCENTRATION URANIUM (PPB)

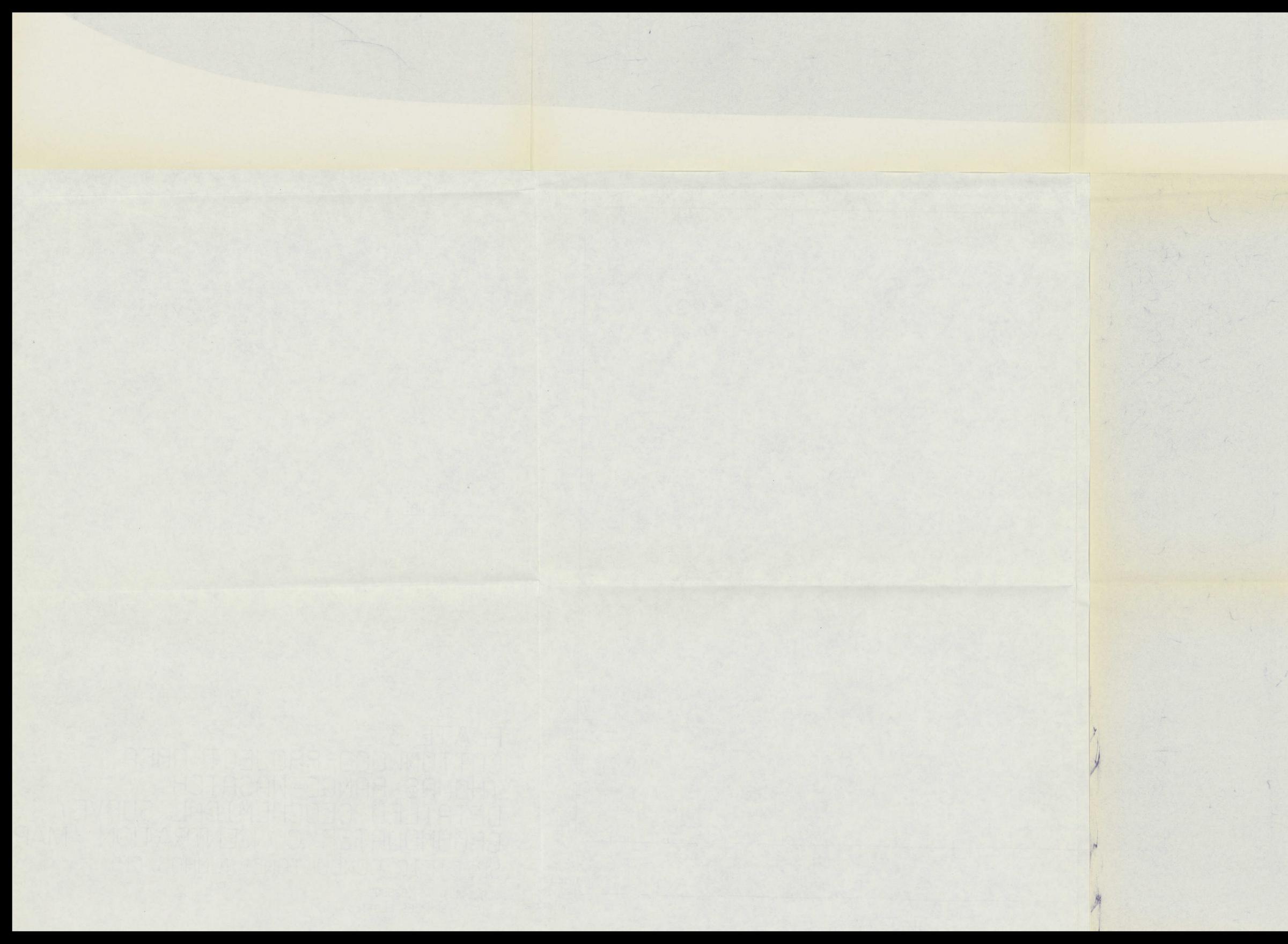
.


62500 SCALE 1: SAMPLES PLOTTED 15

10 MILES


15

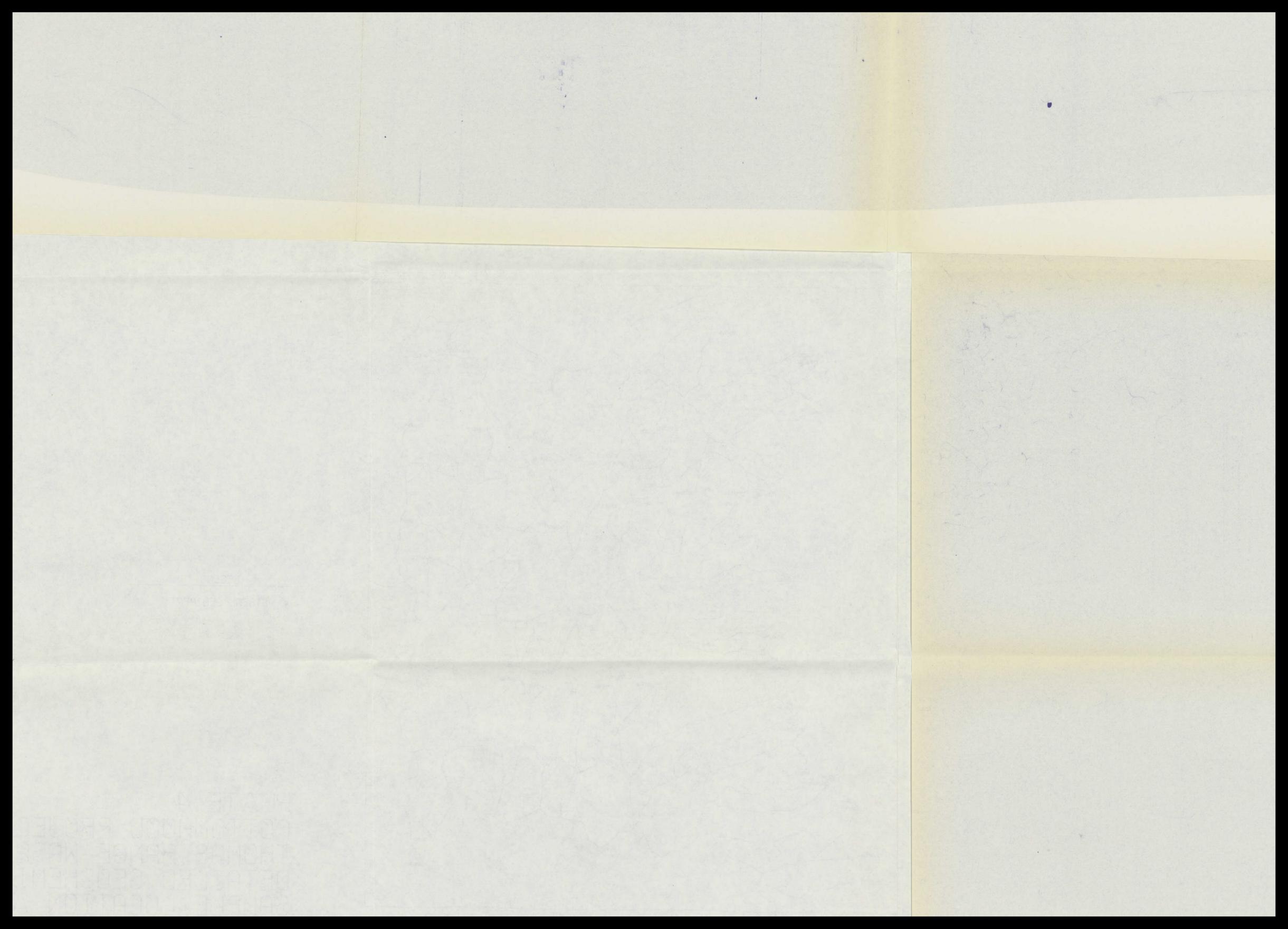
KILOMETERS

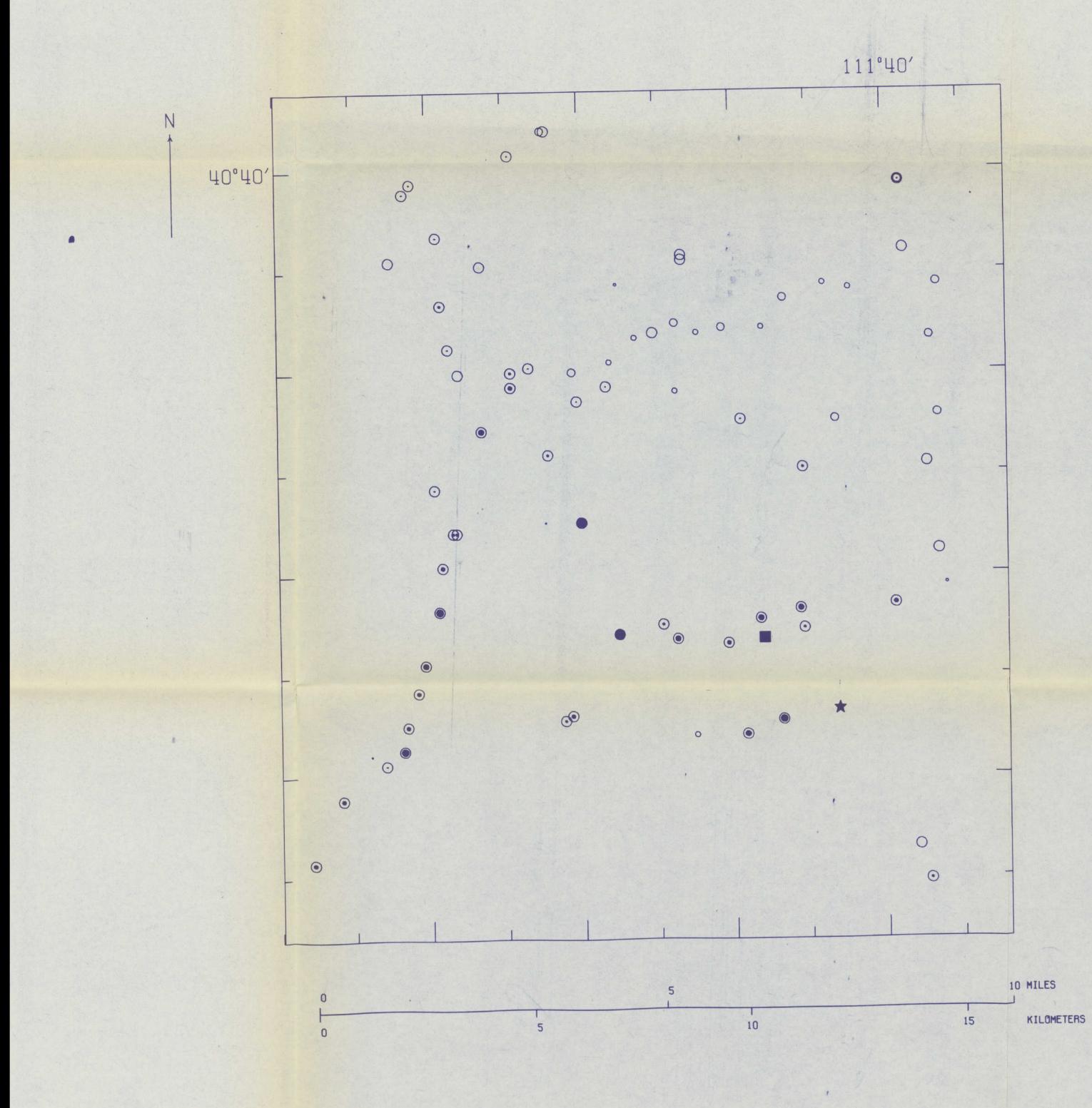




NWOOD PROJECT AREA RANGE-WASATCH OCHEMICAL SURVEY MAP CONCENTRATION CONDUCTANCE (UMHOS/CM)

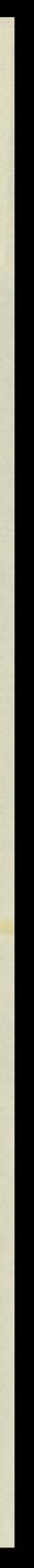
10 MILES KILOMETERS


PLATE 4 COTTONWOOD PROJECT AREA THOMAS RANGE-WASATCH GEOCHEMICAL SURVEY H F SAMPLE LOCATION AND DRAINAGE BASIN MAP


SCALE 1: 62500 79 SAMPLES PLOTTED

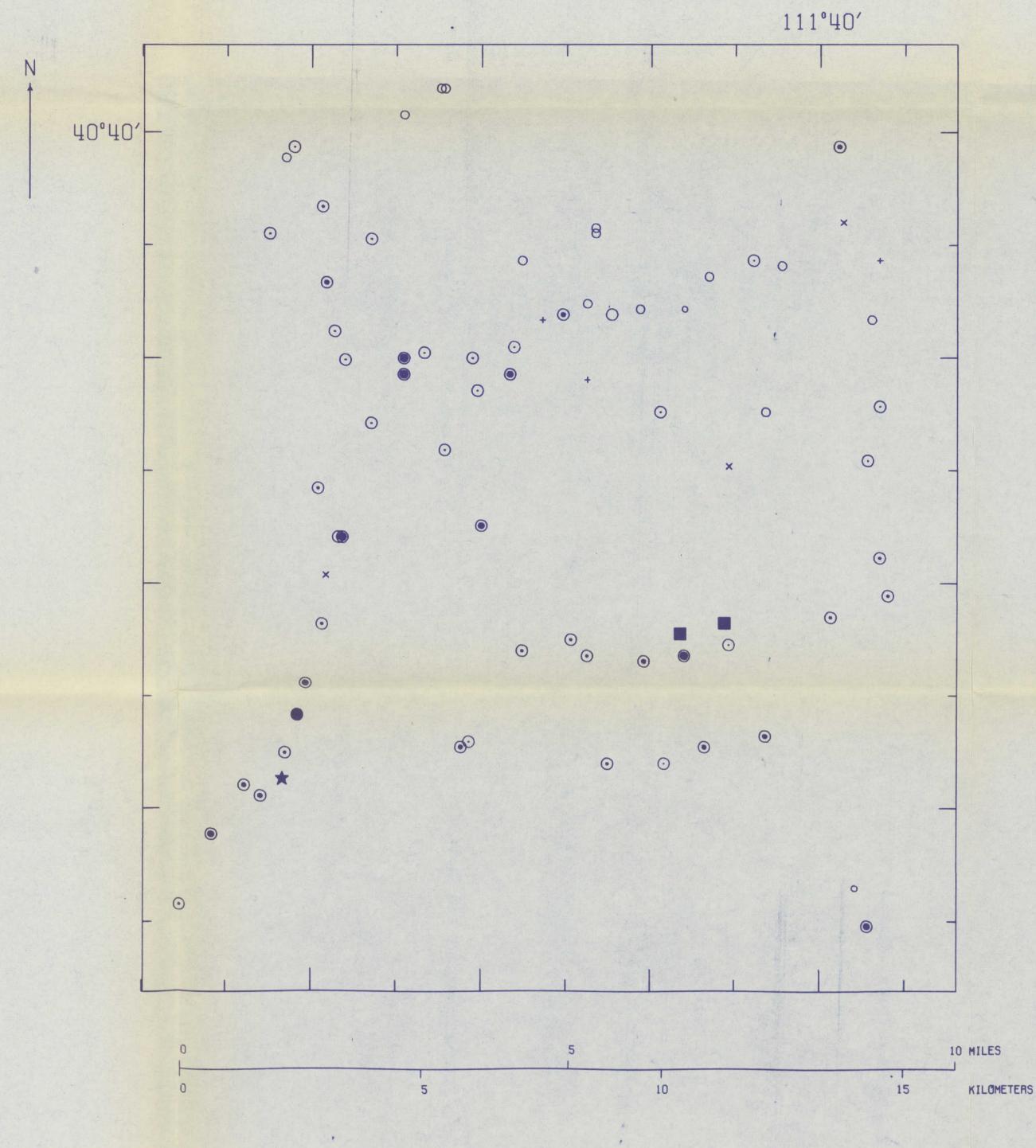
LEGEND

STREAM SEDIMENT

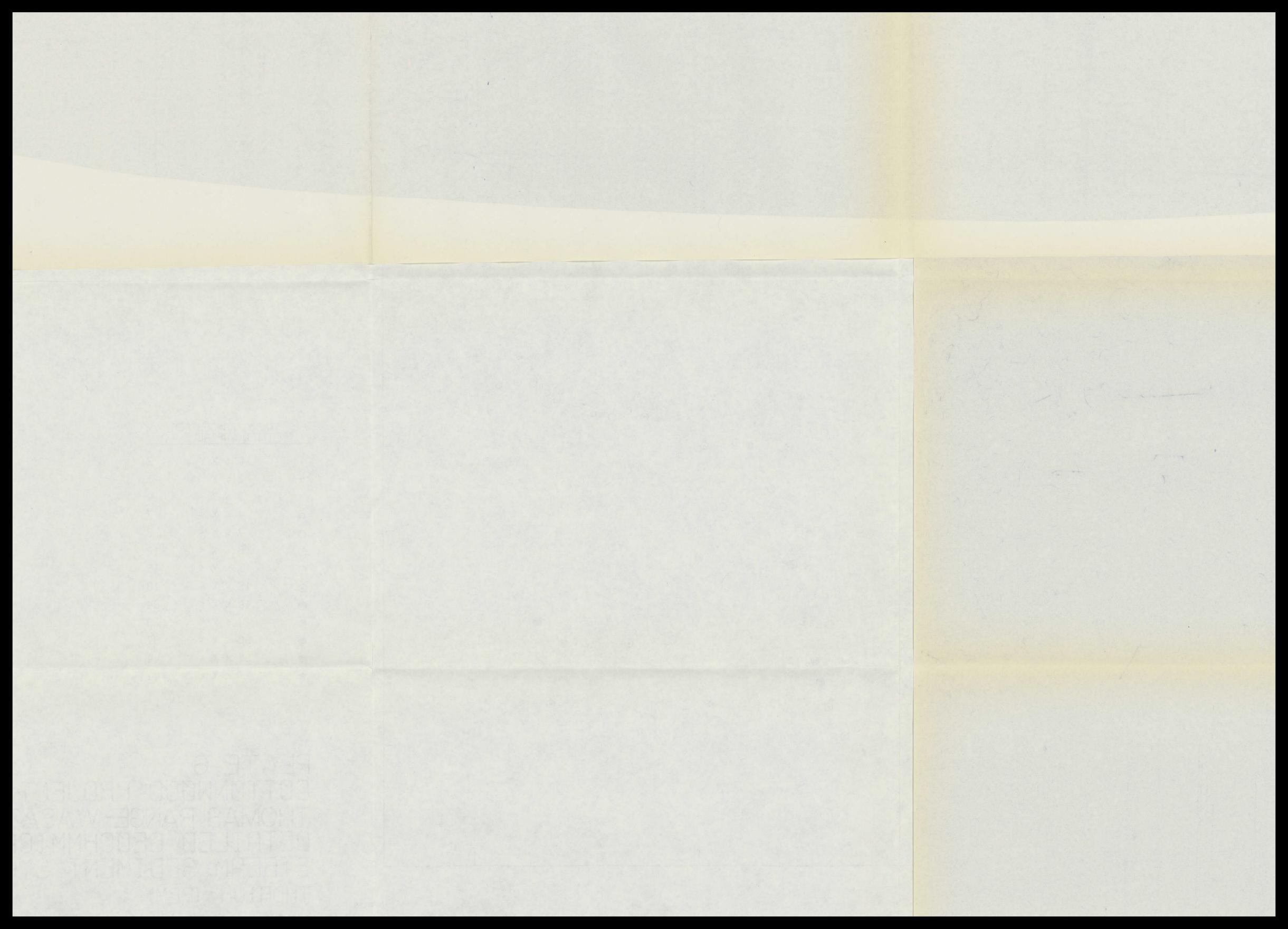


The state	SYMBOL PLOTTED V				
	0.31	<	x	<	0.78
0	0.78	≤	X	<	1.36
0	1.36	5	X	<	2.06
	2.06	5	X	<	2.47
5	2.47	\$	X	<	3.22
- -	3.22	\$	X	<	4.23
•	4.23	5	X	<	7.26
	7.26	1	X	<	15.34
	15.34	5	X	<	23.06
	23.06	≤	X	<	32.37
	32.37	5	X	<	44.48
	44.48	≤	X	<	63.44
*			X	2	63.44

PLATE 5 COTTONWOOD PROJECT AREA THOMAS RANGE-WASATCH DETAILED GEOCHMMICAL SURVEY STREAM SEDIMENT SYMBOL PLOT URANIUM, FLUOROMETRIC (PPM)


*

SCALE 1: 62500 77 · SAMPLES PLOTTED


1

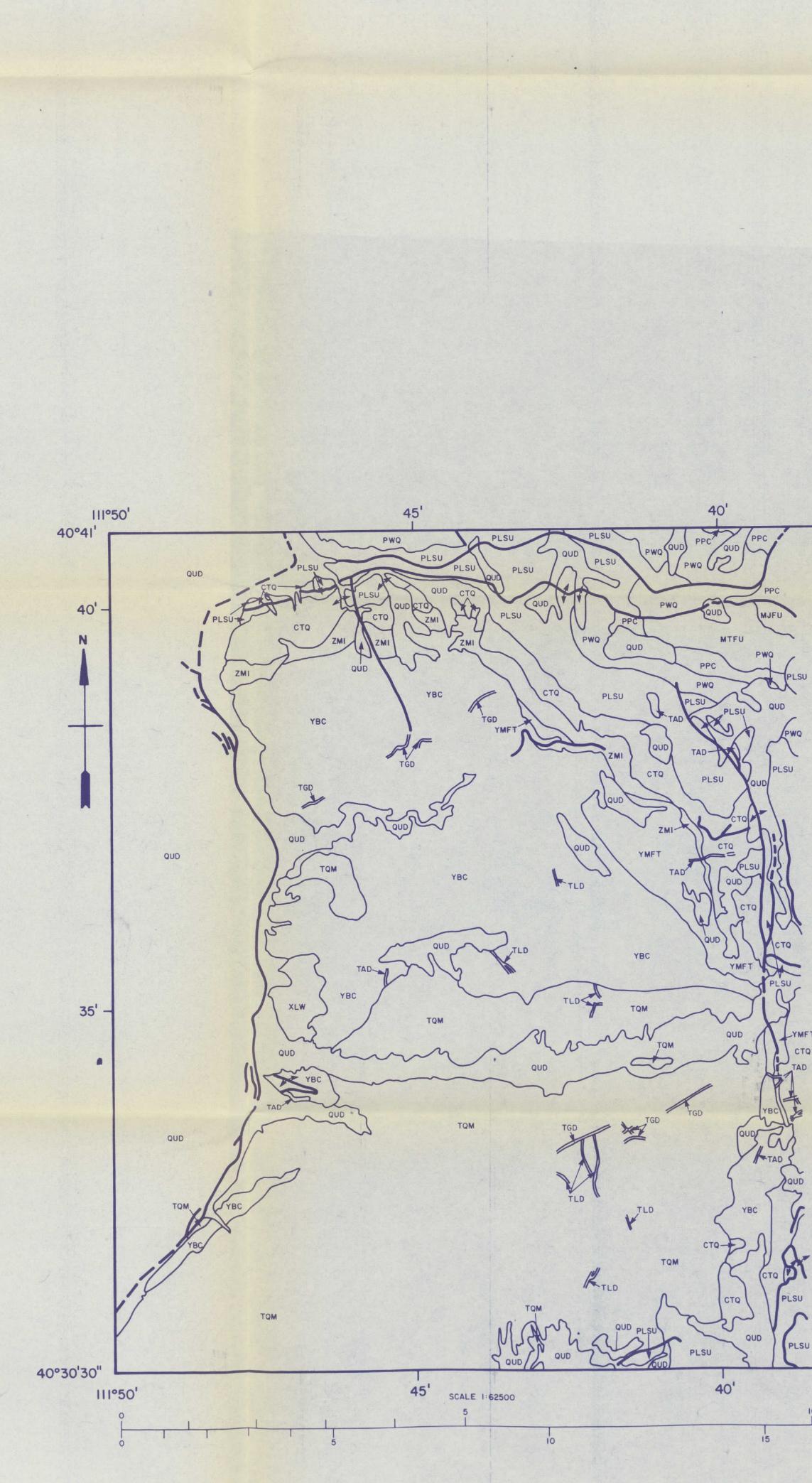

	SYMBOL PLOTTED					
1	TLOTILD		11			
+	0	≤	Х	<		5
×	5	≤	Х	<		3
0	3	≤	X	<		4
0	4	≤	X	<		7
0	7	≤	X	<		8
\odot	8	≤	X	<		12
\odot	12	5	X	<		15
•	15	\$	X	<		19
	19	≤	x	<	ć	24
	24	≤	X	<	:	30
•	30	5	X	<	:	37
	37	5	X	<	L	44
*			X	2	L	44

PLATE 6 COTTONWOOD PROJECT AREA THOMAS RANGE-WASATCH GEOCHMMICAL SURVEY DETAILED STREAM SEDIMENT SYMBOL PLOT THORIUM (PPM) SCALE 1: 62500

77 SAMPLES PLOTTED

STRATIGRAPHIC COLUMN FOR THE COTTONWOOD PROJECT AREA

	SLOWN FOR THE COTTO		NURE CO MAP	FIELD	GEOLOGIC UNIT
ERA	SYSTEM	SERIES	MAP		
CENOZOIC	QUATERNARY		QUD	QAL QTL	ALLUVIUM TALUS, COLLUVIUM, AND LANDSLIDE DEPOSITS
		stratisticalist		QPLB	LAKE BONNEVILLE DEPOSITS
				QPGM	GLACIAL MORAINE
F	TERTIARY OR		TGD	TGD	GRANODIORITIC TO GRANITIC INTRUSIVE DIKES
	CRETACEOUS		TAD	TAD	DIORITES OF ARGENTA INTRUSIVE COMPLEX AND INTERMEDIATE DIKES
REAL PRIME	District of the second	Trained in 2019 Mainteen	TLD	TLD	LAMPROPHYE INTRUSIVE DIKES
			TQM	ΤΩΜ	QUARTZ MONZONITE OF LITTLE COTTONWOOD AND FERGUSON CANYON
MESOZOIC	JURASSIC		MJFU	MJFU	JURASSIC UNITS, UNDIVIDED INCLUDES: MORRISON FORMATIO PREUSS FORMATION TWIN CREEK LIMESTON NUGGET SANDSTONE
	TRIASSIC		MTFU	MTFU	TRIASSIC UNITS, UNDIVIDED INCLUDES: ANKAREH FORMATIO THAYNES FORMATION WOODSIDE SHALE
PALEOZOIC	PERMIAN		PPC	PPC	PARK CITY FORMATION
	PENNSYLVANIAN	UPPER PENNSYLVANIAN	PWQ	PWQ	WEBER QUARTZITE
		LOWER PENNSYLVANIAN		PRV	ROUND VALLEY LIMESTONE
	MISSISSIPPIAN	UPPER MISSISSIPPIAN		MDS	DOUGHNUT FORMATION
		A SALE AND	and the second	MHF	HUMBUG FORMATION
al and a		LOWER	PLSU	MDL	DESERET LIMESTONE
		MISSISSIPPIAN		MGL	GARDISON LIMESTONE
			-	MFD	FITCHVILLE FORMATION
	CAMBRIAN	MIDDLE		CML	MAXFIELD LIMESTONE
		LOWER	сто		OPHIR FORMATION
		CAMBRIAN		сто	TINTIC QUARTZITE
PRECAMBRIAN	Z		ZMI		MUTUAL FORMATION
	Z OR Y		YMFT	YMFT	MINERAL FORK TILLITE
	Y		YBC	YBC	BIG COTTONWOOD FORMATION
	X	The second second	XLW	XLW	LITTLE WILLOW FORMATION

SOURCES:

CRITTENDEN, MAX D., JR.; GEOLOGY OF DRAPER QUADRANGLE, U.S.G.S. MAP CQ-377 (1965) 1.

MAP CQ-378 (1965). GEOLOGY OF DROMEDARY PEAK QUADRANGL

MAP CQ-379 (1965)

QUADRANGLE, U.S.G.S. MAP CQ-380 (1965). GEOLOG JAMES, L. P.; GEOLOGY, ORE DEPOSITS, AND HISTORY OF THE BIG COTTONWOOD MINING DISTRICT (1979).

LEGEND

5.

GEOLOGIC CONTACT -GEOLOGIC FAULT -

PLATE 7

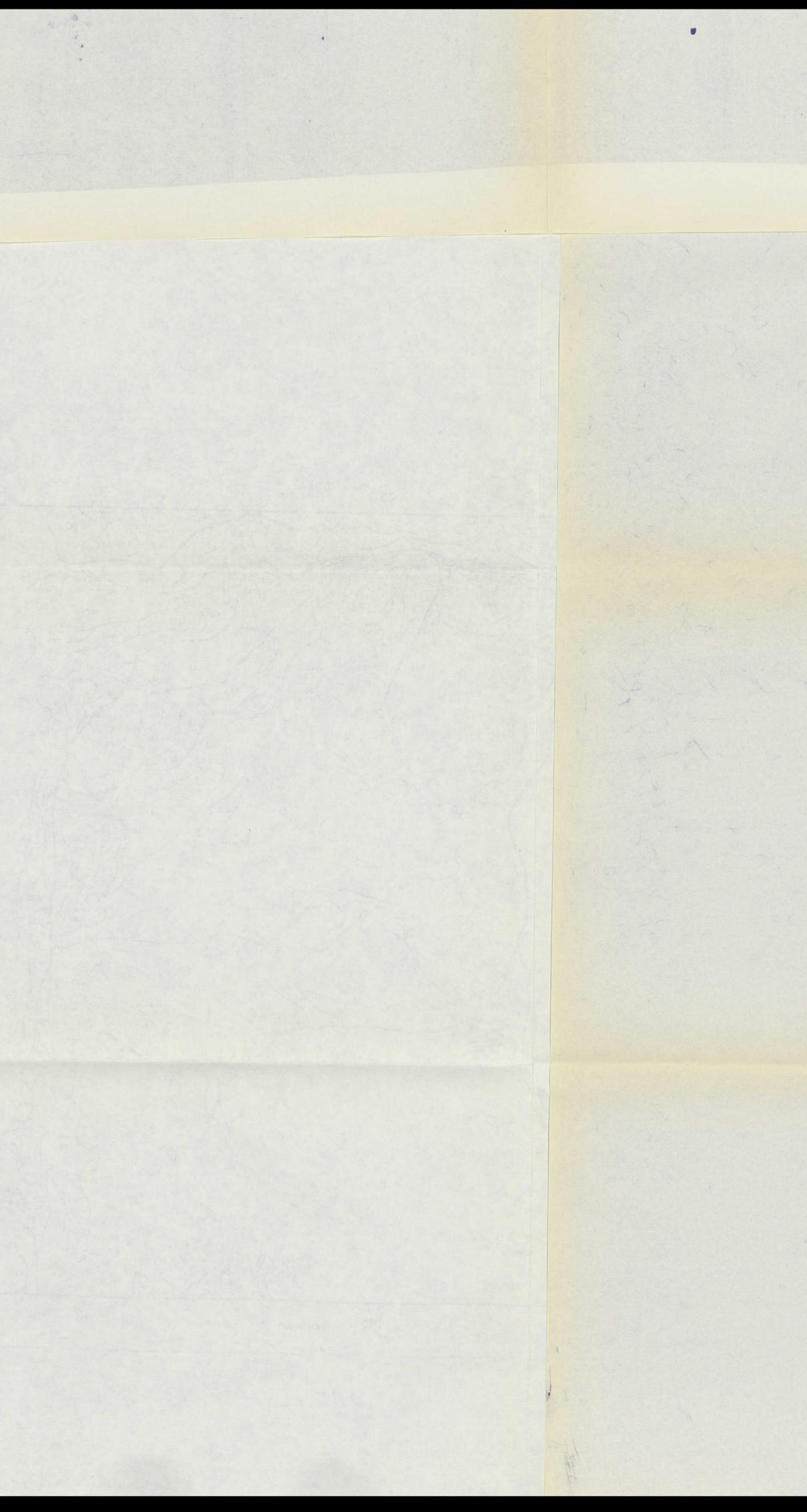
GEOLOGIC FAULT (INFERRED)

GENERALIZED GEOLOGIC MAP OF THE COTTONWOOD PROJECT AREA, THOMAS RANGE-WASATCH DETAILED 40°30'30" GEOCHEMICAL SURVEY, UTAH

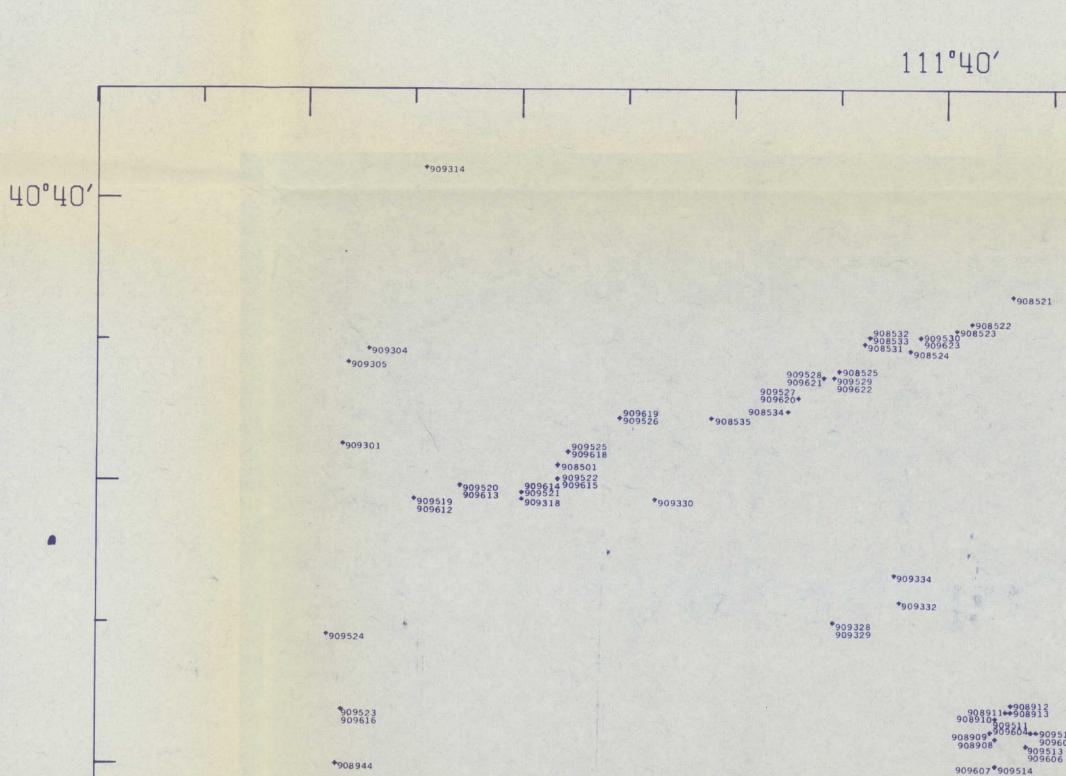
III°38' IO MILES

KILOMETERS

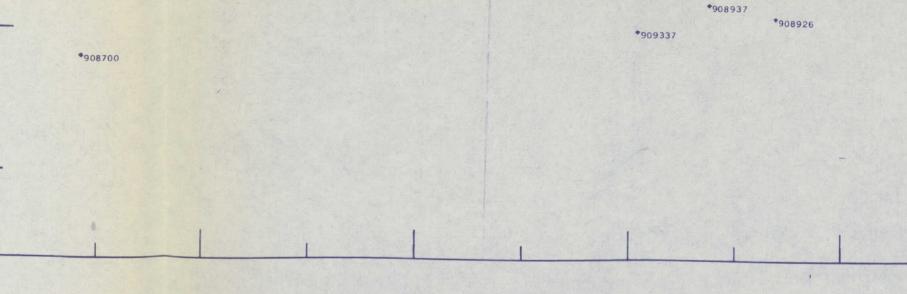
111°38'

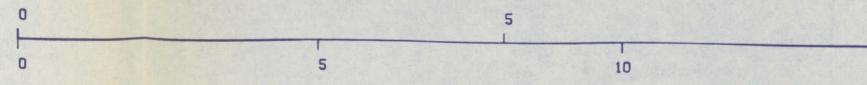

40°41'

- 40'


- 35'

HARLY THE STATISTICS IN THIS





Ν

.

909608 909515 909518 909517 909611 909610 \$908917 *908919 **908923** •909609 •909516 *908941 *908932 908925* *909338 *908931 \$908929 908934* ^{*}908936 ^{*}908939 *908935 \$908927

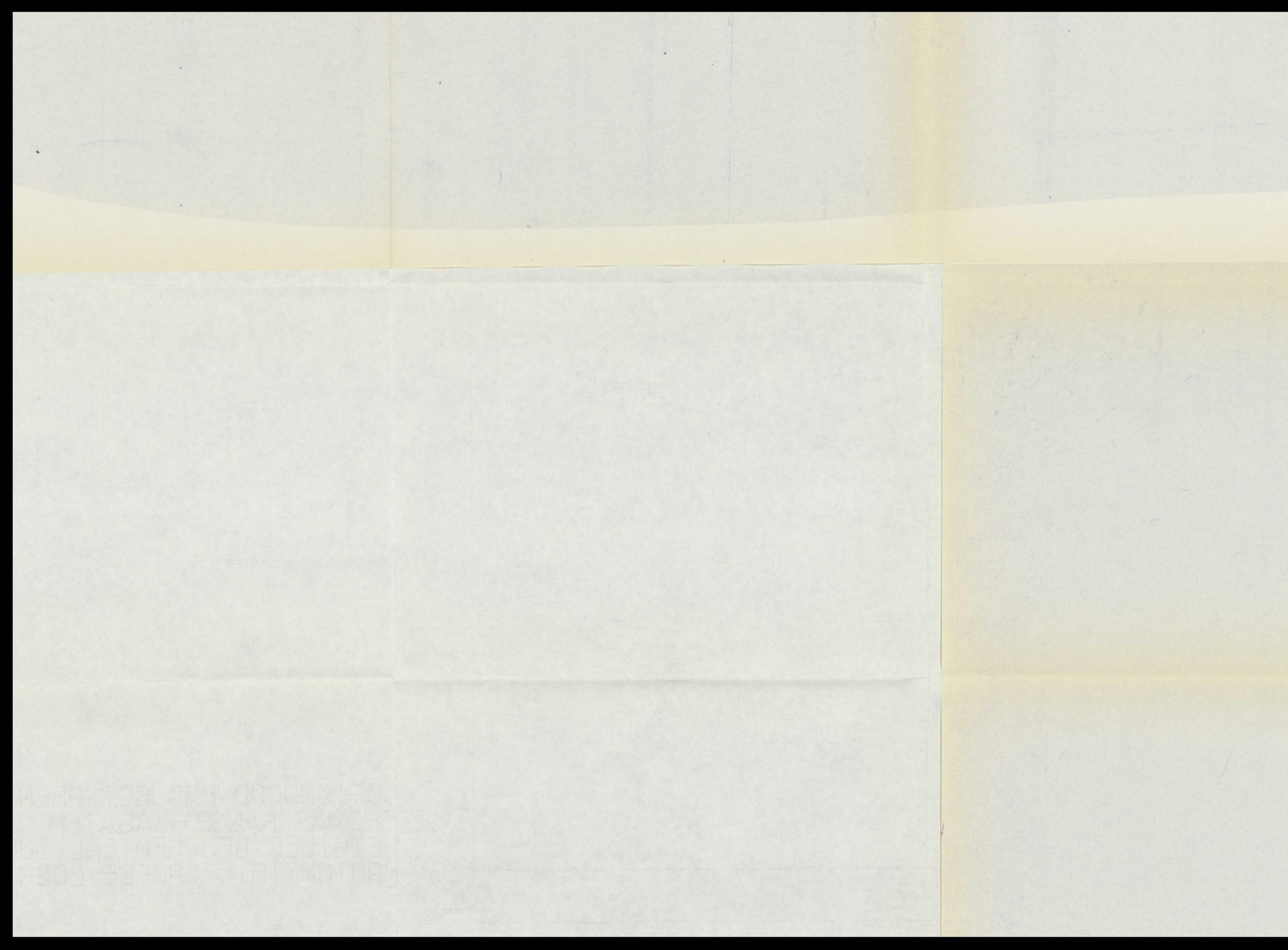
10 MILES

15

KILOMETERS

LEGEND

+ SOIL, ROCK, AND OTHER


PLATE 8 COTTONWOOD PROJECT AREA THOMAS RANGE-WASATCH GEOCHEMICAL SURVEY FAILED DET RADIOMETRIC SAMPLE LOCATION MAP

.

.

SCALE 1: 62500 85 SAMPLES PLOTTED

