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ABSTRACT

From social networks to biological networks, graphs are a natural way to represent

a diverse set of real-world data. This research presents attributed graph convolu-

tional neural network with a pooling layer (AGCP for short), a novel end-to-end deep

neural network model which captures the higher-order latent attributes of weighted,

labeled, undirected, attributed graphs of arbitrary size. The architecture of AGCP

is an efficient variant of convolutional neural network (CNN) and has a linear filter

function that convolves over the fixed topological structure of a graph to learn local

and global attributes of the graph. Convolution is followed by a pooling layer that

coarsens the graph while preserving the global structure of the original input graph

using information gain. On the other hand, advances in high throughput technologies

for next-generation sequencing have enabled machine learning research to acquire and

extract knowledge from biological networks. We apply AGCP on three bioinformatics

networks, ENZYMES, D&D, and GINA a graph dataset of gene interaction networks

with genomic mutation attributes as the attributes of the vertices. In several experi-

ments on these datasets, we demonstrate that AGCP yields better results in terms of

classification accuracy relative to the previously proposed models by a considerable

margin.

Keywords: Graph Convolutional Neural Networks, Deep Neural Network, Gene

Interaction Network, Gleason Score prediction.
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Chapter 1

Introduction

Pairwise connections among entities play a crucial role in a wide variety of com-

putational applications. Many examples of real-life data have entities that share a

relationship associated with a weight. In most of the cases, these entities have at-

tributes associated with them. A graph or network represents these relationships

efficiently. Examples of real-life data described in the form of a network include so-

cial networks, biological networks, chemical networks, citation networks, and research

networks, among others. The analysis of data represented in the form of graphs is

recent and is gaining a lot of traction due to the composite representation of graph

structure and associated attributes (Gross & Yellen 2004). It is thus essential to focus

on applying highly powerful machine learning algorithms to understand the complex

structure of the graphs. Deep learning, which is a subfield of machine learning, has

revolutionized fields such as video processing, speech recognition, and natural lan-

guage understanding (Deng & Yu 2014). The complexity of graph data has imposed

significant challenges on existing deep learning algorithms. Recently, many studies

have emerged on extending deep learning approaches for graph data (Wu et al. 2019).

We consider the problem of classifying graphs in this thesis, framed as a graph-based

supervised classification. This research presents attributed graph convolutional neu-

ral network with a pooling layer (AGCP for short), a novel end-to-end deep neural

network model which takes as input a weighted, attributed graph and predicts the

class label of that graph.

In this chapter, we define graphs, weighted graphs, and attributed graphs followed

by descriptions and examples of graph data generated by real-time industrial appli-

1



1. INTRODUCTION

cations. Further, we describe different ways in which we can analyze the graph data

using machine learning. We then describe the objective of our research, followed by

problem definition. We then introduce the graph convolutional network (GCN) and

formulate the research objective. The later sections of this chapter present the thesis

motivation, thesis statement, followed by thesis contributions and thesis organization.

1.1 Graphs

Graphs are a universal language for describing a set of complex systems (Zhang

et al. 2018). There are complex systems all around us; society is a collection of over

seven billion individuals, communication systems link electronic devices, information

and knowledge are organized and linked, whereas the interaction among thousands

of genes and proteins regulate life, human thoughts are hidden in the connections

between billions of neurons in our brain (Gross & Yellen 2004). All of these complex

systems have a graph structure. The rapidly decreasing costs of high throughput

sequencing and mass spectrometry, development of massively parallel technologies,

and new sensor technologies have enabled the generation of data that describe these

complex systems on multiple dimensions. Understanding and modeling these complex

systems will have a massive impact on the betterment of society (Gross & Yellen 2004).

Our research focuses on analyzing these complex graph-structured systems. We work

on weighted, attributed, undirected graphs without self-loops.

A graph contains a set of vertices and a collection of edges that each connect a pair

of vertices. Figure 1 shows an example of a graph with four vertices and four edges

connecting the vertices, where V = {v1, v2, v3, v4} and E = {e12, e24, e34, e13}.

Definition 1 (Graph) A graph is defined as G= (V, E), where V is the finite set

of vertices and E is the finite set of edges (Zhang et al. 2018). Also, |V | = n, where

n is the number of vertices. |E| = m, where m is the number of edges.

2



1. INTRODUCTION

v1

v2

v3

v4

e12

e24

e13

e34

Figure 1: Example of a graph with four vertices and four edges connecting the
vertices.

Definition 2 (Adjacency matrix) The adjacency matrix of graph G is defined as

A = [aij] ∈ Rn×n (Li, Han & Wu 2018), and represent the relationship between edges

connecting the n vertices of a finite graph (Zhang et al. 2018).

In this thesis, we consider a non-negative, symmetric adjacency matrix. The elements

in the adjacency matrix are 1 or 0 in position according to whether two vertices are

adjacent or not. In a graph G = (V,E), let vi, vj ∈ V denote two distinct vertices,

and eij ∈ E denote an edge between the vertices vi and vj. Each element aij of the

adjacency matrix is denoted by a variable with two subscripts i and j. For example,

aij, represents element at the ith row and jth column of the matrix. We define aij = 1

if eij ∈ E and aij = 0 if eij /∈ E. The adjacency matrix A of the graph shown in

Figure 1 is given below:

A=



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


Element aii = 0 as there is no self-loop in the graph. Likewise, a24 = 1 as there exists

an edge between the vertices v2 and v4. As our research focuses on undirected graphs

3



1. INTRODUCTION

without self-loops, the adjacency matrix will always be symmetric as is the case for

all undirected graphs (Elspas & Turner 1970) (Fiedler 1973).

Definition 3 (k-order proximity) Given a vertex v ∈ V , the k-order proximity of

v is defined as the set of q vertices at an edge distance less than or equal to k from v

and is denoted by Nk(v) (Ying et al. 2018).

It is also known as neighborhood of radius k or k-hop neighborhood or or k-order

neighborhood.

Definition 4 (Subgraph) Given a set of vertices S ⊆ V , the subgraph created by S

is a graph that has S as its set of vertices, and it contains every edge of a graph G

whose endpoints are in S.

Definition 5 (Neighborhood subgraph) The neighborhood subgraph of radius k

of the target vertex v ∈ V is the subgraph induced by the neighborhood of radius k of

v, and v itself and is denoted by Skv .

Figure 2 shows the target vertex marked in red and the neighbors of the target vertex

in the k-hop neighborhood within k = 1, 2, and 3. As shown in the Figure 2, the

subgraph S1
v is the graph with the target node shown in red color and its 1-hop

neighbors shown in grey color; and the edges connecting them.

4



1. INTRODUCTION

k = 0

k = 1

k = 2

Figure 2: k-order proximity of target vertex marked in red and the neighbors of the
target vertex in the k-hop neighborhood within k = 1, 2, and 3.

1.1.1 Weighted Graph

In a weighted graph, each edge is assigned a numeric label referred to as a weight

(Porfiri & Stilwell 2007). The weight represents how strongly the two vertices are

connected. An example of a weighted graph with four vertices and five edges is

shown in Figure 3, where V = {v1, v2, v3, v4} and E = {e12 = 2, e24 = 2.6, e34 =

3, e13 = 1, e32 = 1.9}, vertices v1 and v2 are connected with edge e12 = 2.

5



1. INTRODUCTION

v1

v2

v3

v4

2

2.6

1.9

1

3

Figure 3: Example of a weighted graph with four vertices and five edges connecting
the vertices. The edges have weights associated with them; these weights represent

how strongly the vertices are connected.

Definition 6 (Weighted graph) A weighted graph is defined as G = (V,E,W),

where W = [wij] ∈ Rn×n (Porfiri & Stilwell 2007) a graph with weights assocciated

with each edge of the graph.

Given a graph G, let there be a real number weight associated with each edge eij

represented by wij. Then the graph together with the weights on its edges is called a

weighted graph.

Definition 7 (Adjacency matrix of a weighted graph) Given a weighted graph

G, the adjacency matrix of a weighted graph is defined as W = [wij], and represents

the weights of the edges connecting the n vertices of a finite graph (Fiedler 1973).

In a weighted graph G = (V,E,W), let vi, vj ∈ V denote two distinct vertices, and

eij ∈ E denote an edge between the vertices vi and vj. In this thesis we consider

positive weights only, thus wij > 0 if eij ∈ E and wij = 0 if eij /∈ E. The adjacency

matrix W of the graph shown in Figure 3 is:
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W=



0 2 1 0

2 0 1.9 2.6

1 1.9 0 3

0 2.6 3 0


1.1.2 Attributed graph

Real-life graphs have attributes associated with the vertices in the form of an attribute

matrix given by X. These attributes describe the properties of the vertices and are

generally represented by a vector xv. Recent work on graph-structured data has

primarily focused on modeling the structure of graphs without attributes (Zhang

et al. 2018). There are no significant works done on graph-structured data with real-

world structural properties and correlated attributes. This research in deep learning

focuses on an approach to exploit correlations among the attributes of linked vertices

to predict graph characteristics with greater accuracy. Figure 4 shows an example

of an attributed, weighted graph. The figure shows four vertices and five edges.

Each vertex is associated with an attribute vector. For example, the second vertex

of the graph v2 has the attributes shown in the second row of the attribute matrix

[x21, x22, x23, · · · , x2d].
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v1

v2

v3

v4

[
x11, x12, x13, · · · , x1d

]

[
x21, x22, x23, · · · , x2d

]

[
x31, x32, x33, · · · , x3d

]

[
x41, x42, x43,· · · , x4d

]

2

2.6

1.9

1

3

Figure 4: Example of an attributed graph with four vertices and five edges
connecting the vertices. Each vertex of the graph contains d dimensional attribute

vector.

Definition 8 (Attributed Graph) An attributed, weighted graph is defined as G =

(V,E,W,X), where X ∈ Rn×d is the attribute matrix associated with the vertices of

the graph, where d is the total number of attributes.

An example of an attribute matrix X is shown below. Each row in the attribute

matrix represents the corresponding attribute vector of a graph’s vertex. For example,

third row of the attribute matrix [x31, x32, x33, · · · , x3d] is the attribute vector of the

third vertex v3 in the attributed graph.

X=



x11 x12 x13 · · · x1d

x21 x22 x23 · · · x2d

... . . . . . . . . . ...

xn1 xn2 xn3 · · · xnd


1.2 Graph Data

Graphs represent real-life data from different domains, such as social networks, re-

search networks, and biological networks. To illustrate the diversity of graph data
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domains, we begin by introducing several examples of graph data in this section. We

can use machine learning algorithms on these graph-structured to do graph classifi-

cation, prediction, and recommendation.

1.2.1 Social Networks

In a social network, the entity is the users, and users build their network by connecting

with other users who are friends or followers. The users act as the vertices, and

the type of connection between two users is the edge of the social network. Each

user has their own set of properties associated with them, such as the images they

have uploaded and their user profile information. An example of a social network is

Facebook (Ugander et al. 2011). Figure 5 shows an example of a social network with

users acting as the vertices, and the connection between them represents the edge of

the network. Using machine learning algorithms, we can potentially recommend new

friends to a user based on their connections and properties such as age, interests, and

school or work.

Figure 5: Example of a social network with users acting as the vertices and the
connection among them representing the edges of the network.
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1.2.2 Research Networks

In a research network, the entity is the researchers, and researchers build their net-

work by connecting with other researchers who are colleagues, research students,

collaborators, and followers. The researchers act as the vertices, and the type of re-

search connection between two researchers is the edge of the research network. Each

researcher has their own set of properties associated such as the project, research

papers, articles that they share, datasets, patents, research proposals, and their user

profile information. An example of a research network is ResearchGate (Yu et al.

2016). Figure 6 contains the research network and connections of a professor, stu-

dents working in the professor’s lab, and collaborators. Here professor, students,

and collaborators act as the vertices of the network and connections among them

represents the edges of the network. Using machine learning algorithms, we can po-

tentially recommend a new research student to a professor, based on the research and

collaboration information of the professor and student’s research interests.

Figure 6: Example of a research network with the researchers acting as the vertices
of the network and the connection among them representing the edges of the

network.

1.2.3 Citation Networks

In a citation network, the research papers and the authors of research papers are

the entities. Authors build their network by following other researchers and also by

citing other research papers. Authors and research papers act as the vertices, and
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the citation, authorship, and co-authorship of that research paper act as the edges of

the citation network. Each research paper is associated with its own set of attributes,

such as the text, date of publication, and keywords. An example of a citation network

is the CiteSeerX network (Kodakateri Pudhiyaveetil et al. 2009). Figure 7 shows an

example of a citation network. The researchers and research papers act as the vertices

of the network, and the connections among the researchers and their publications serve

as the edges of the network. Using machine learning, we can potentially categorize

the research papers into different communities based on the content of the research

papers.

Figure 7: Example of a citation network with the research papers and users
represented as the vertices of the network and the connections among the authors

and research papers represent the edges of the network.

1.2.4 Chemical Networks

In a chemical network, the molecules and the atoms are the entities. Atoms and

molecules interact with one another to form the chemical network. Atoms and

molecules, along with their properties such as chemical formulas, act as the vertices,

and interactions and bonds among them represent the edges of the network. Fig-

ure 8 shows an example of a chemical network, which represents L-Lysin, a chemical

molecule with corresponding SMILES string representations of molecules (Gómez-

Bombarelli et al. 2018). The vertices represent atoms such as Amino radical and
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Hydroxide. The edges represent the chemical bonds among them. Deep learning can

be potentially used to generate novel chemical compounds with desirable chemical

and pharmacological properties from scratch (Li, Vinyals, Dyer, Pascanu & Battaglia

2018).

Figure 8: Example of a chemical network representing L-Lysin with the chemical
element represented as the vertices and the chemical reactions among the chemical
elements represent the edges of the network. The figure has been created using

Brenda the comprehensive enzyme information system (Brenda 2019) and
(Schomburg et al. 2004).

1.2.5 Biological Networks

In a biological network, genes, and proteins are the entities. Biotic interactions at

many levels of detail, from the atomic interactions in a folded protein to the relation-

ship of organisms in a population or ecosystem, can be modeled as networks. Exam-

ples of biological networks are protein-protein interaction networks, gene interaction

networks, genomic regulatory networks, metabolic networks, signaling networks, neu-

ronal networks, food webs, and species interaction networks. In this thesis, we focus

on the study of biological networks such as gene interaction networks, protein struc-

tures, and tertiary protein structures. We define a gene interaction network as a

set of vertices representing the genes and a set of edges representing the interaction

between the genes (Warde-Farley et al. 2010). The co-expression created by the two

genes or other functional associations are the interactions between them. The weight

of the edge between two genes represents how strongly two genes are connected. We
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are especially interested in the physical interactions between two gene products. The

attributes of the gene interaction network are the genomic attributes of genetic mu-

tations.

Figure 9 shows an example of gene interaction network. The vertices of this figure

are genes of patients diagnosed with prostate cancer such as SYNE3, SUN1, SUN2,

and SYNE1. The purple edges show the physical interactions between the genes (Szk-

larczyk et al. 2014). Using machine learning, we can analyze the topological features

of a gene interaction network and perform gene ontology enrichment depending on

their functional characteristics. For example, gene SYNE1 is categorized as being a

receptor involved in chemical signaling between nerve cells and located on the mem-

brane of Purkinje cells to the actin cytoskeleton. Seven genetic mutations were found

in the SYNE1 gene that causes acinar adenocarcinoma, a type of prostate cancer.

The mutations are caused by a premature stop signal in the instructions for making

the SYNE-1 protein, resulting in a short protein with impaired functions. This type

of mutation is commonly known as a nonsense mutation (Özgür et al. 2008).

Figure 9: Example of a gene interaction network. The vertices of gene intetaction
network are genes and the edges are the interactions between them. The figure has
been created using the String protein-protein interaction database (String 2018) and

(Szklarczyk et al. 2014).
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1.3 Ways to Analyze Graphs using Machine Learn-

ing

Machine Learning is a scientific way of using computers and algorithms to build

analytical models to help computers learn from data without using explicit instruc-

tions (Langley 1996). Machine learning has a wide variety of applications such as

prediction, classification, and recommendation, clustering, language understanding,

language generation, image analysis. Machine learning algorithms build a mathemat-

ical model based on sample data, known as “training data” to make predictions of

“class labels” without being explicitly programmed to perform such a task. The ma-

chine learning task can be classified as supervised, unsupervised, or semi-supervised

(Langley 1996).

In supervised machine learning tasks, the machine tries to learn a function that

maps the input data to output labels by analyzing the input-label pairs from the

training data. A good supervised machine learning algorithm will allow determining

the class labels for unseen input data accurately (Langley 1996). In unsupervised

machine learning tasks, the machine tries to learn a function that maps the input

data to output labels using the training dataset without pre-existing labels (Langley

1996). The semi-supervised machine learning task is a hybrid approach where only a

few input-label data are available in the training dataset (Langley 1996).

In this thesis, we present a supervised learning approach, where labeled data

is available. On the other hand, advancement in technology has allowed us access

to large datasets in the form of graphs. There are many ways in which we can use

machine learning on graph datasets. We discuss vertex classification, edge prediction,

community detection, and graph classification below. In this thesis, we focus on graph

classification of weighted attributed graphs. In graph classification, the objective is to

train a model on the training dataset with class labels and to classify unseen graphs

to the corresponding graph labels.

1. Vertex Classification: Given a graph for which the labels of some vertices are

known, and others are unknown, machine learning can be used to predict the
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unknown labels ((Kipf & Welling 2016) and (Bruna et al. 2013)). Figure 10

shows an input graph with two known class labels: red and yellow. The machine

learning task is to predict the unknown labels of the vertices marked in grey.

? ?

?

?

Machine Learning

Figure 10: Example of vertex classification. Left: an input graph with two known
class labels red and yellow, and unknown vertices marked in grey. Right: using
machine learning, the unknown vertices are classified as either red or yellow.

2. Edge Prediction: Given a graph for which the edges between some vertices

are known, machine learning can be used to predict whether an edge exists

between two given vertices ((Duvenaud et al. 2015) and (Monti et al. 2017)).

Figure 11 shows an input graph with some edges known and others unknown.

The unknown edges in Figure 11 are marked with question marks. The machine

learning task is to predict if an edge exists between the vertices or not.

Machine Learning

?
?

?

3

7

3

Figure 11: Example of edge prediction. Left: an input graph with some of the edges
known and some unknown; unknown edges are marked with question marks. Right:
machine learning is used to predict the existence of an edge between two vertices.

3. Community Detection: Community detection is a fundamental and widely stud-
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ied problem that finds all densely-connected groups of vertices that separate

them well from others in a graph. Given a graph that represents a dense com-

munity of vertices, machine learning can be used to predict the community

of unknown vertices ((Hamilton et al. 2017), (Grover & Leskovec 2016), and

(Fortunato & Hric 2016)). Figure 12 shows a graph with three communities:

red, green, grey, and yellow. For example, A3, B3, C3, D3, and E3 represents the

distinct vertices of a dense community colored green.

A1 B1
C1

D1 E1

A2 B2

C2

D2
E2

A3

B3C3

D3
E3

A4

C4

D4 E4

Figure 12: Example of community detection.

4. Graph Classification: Consider a labeled dataset of undirected graphs that may

or may not be weighted or attributed. The machine learning task is to predict

the label of the graph for which the labels are unknown (Zhang et al. 2018).

Figure 13 shows an input dataset of graphs for which the graph labels are known.

We use this input to learn a function that can classify the graphs for which the

labels are unknown.
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Figure 13: Given a dataset of a weighted, attributed graph with labels. The
machine learning task to learn a function f that takes in as input a graph with

unknown labels and predicts the class label of the graph.

We are interested in the supervised graph classification problem on weighted at-

tributed graphs as most of the real-world graph data is weighted and attributed.

Research in this field has a lot of applications in healthcare and life science, social

networks, aerospace, communications and media, and other industries.

1.4 Problem Formulation

In this research, we consider the problem of classifying an input dataset of weighted,

attributed graphs where labels are only available for a small subset of graphs. Our

objective is to assign the input graph data with unknown labels to the corresponding

class labels. We frame this problem as graph-based supervised learning. The objective

of our method is to reduce the classification error. Formally, we can define this

problem as follows. Given a weighted, attributed graph G = (V,E,W,X) and xvi

is the attribute vector associated with the vertex vi ∈ V , where V is a finite set

of vertices in the given graph G. Let Y = {y1, y2, y3 · · · yl} be the set of l labels.

The training dataset is defined by St = {(G1, yi), (G2, yi), · · · (Gt, yt)}, where t is the
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total number of training samples. The objective is to learn a function f : G 7→ yi,

which predicts the class label yi of a given graph G. The classification function f

is computed by minimizing the cross-entropy error (Creswell et al. 2017). The error

between the predicted score and the expected label for binary classification is given

by Equation (1):

L(yi, ŷi) = −yi log(ŷi) + (1− yi) log(1− ŷi) , (1)

where ŷi is the probability score of predicted label and yi is the true label. As

per Equation (1), the cross-entropy error increases as the predicted label probability

diverges from the actual label. The error between the predicted score and the expected

label for l labels in multi-class classification is given by Equation (2):

L(yi, ŷi) = −
l∑
l=1

yi,l log(ŷi,l) . (2)

1.5 Applications

In this thesis, we apply the proposed method to solve three labe; classification prob-

lems in the weighted, attributed graph-structured dataset. We use three bioinfor-

matics datasets, which are ENZYMES, GINA, and D&D. All these datasets have

complex graph structures, which are difficult to analyze using traditional machine

learning algorithms. The classification problems are described as follows:

1. We use attributed ENZYME dataset (Schomburg et al. 2004) generated using

(Brenda 2019) to classify the tertiary protein graph structures to one of the six

enzyme commission numbers.

2. We use attributed D&D dataset (Kersting et al. 2016) to classify the protein

graph structures as enzyme or non-enzyme type.

3. To classify the cancer types to either aggressive or non-aggressive based on the

Gleason score of the patient, we generated a graph dataset called GINA. GINA
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has been created using the GeneMANIA Cytoscape plugin(Warde-Farley et al.

2010) and cBioPortal (cBioPortal 2012). GINA is a dataset of gene interaction

networks of patients diagnosed with prostate cancer. The genetic attributes in

terms of mutations are the vertices of this network.

The objective is to train an algorithm such that the model learns to encode a

new representation of the input graph using attributes and label information present

on the graph. We use these representations to determine a function that takes an

unseen weighted, attributed graph as input and predicts its class label accurately.

With traditional machine learning algorithms accomplishing this task is difficult (Wu

et al. 2019); we use robust deep learning algorithms to achieve the desired results.

The deep learning algorithms that work well with graph data are called graph neural

networks (Zhang et al. 2018).

1.5.1 Deep Learning on Graphs

Deep Learning algorithms are strong machine learning algorithms capable of under-

standing the complex latent attributes of data from any domain without the need

to perform explicit attribute engineering (Grover & Leskovec 2016). Deep learning

has revolutionized challenging tasks from natural language generation ((Dai et al.

2015), (Le & Mikolov 2014), (Devlin et al. 2018) and (Jackson & Moulinier 2007)),

to image recognition (Hjelmås & Low 2001). The input data of these tasks have a

fixed grid-like structure and are generated from the Euclidean domain. For example,

images have a two-dimensional grid structure, while text data has a one-dimensional

structure. Due to the significant amount of data being generated from non-Euclidean

domains (Zhang et al. 2018), researchers have focused on understanding data with a

complex structure such as three-dimensional images and data networks. The extant

algorithms are not powerful enough to handle these complex data structures. As a

result, researchers are borrowing ideas from CNN (Krizhevsky et al. 2012), recurrent

neural networks (Schuster & Paliwal 1997), and deep autoencoders (Vincent et al.

2010) to design the architecture of graph neural networks. This thesis focuses on ex-
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tending deep learning approaches, especially CNNs, to weighted, attributed graphs.

This class of algorithms is generally known as graph convolutional neural networks

(GCN).

1.5.2 Graph Convolutional Neural Networks

In deep learning, Graph Convolutional Neural Networks (GCNs) are a class of neural

networks, explicitly designed for in-depth analysis of graph-structured data (Bruna

et al. 2013). As the name indicates, the architecture of a GCN is an efficient variation

of the architecture of CNN, which works efficiently for analyzing visual imagery. The

convolution and pooling operations in CNN that work well on grid-structured data are

generalized in GCN that has graph-structure. Existing GCNs follow two approaches

for convolution operation: spectral-based and spatial-based approaches (Wu et al.

2019). Spectral-based GCNs has a convolution operation defined by filters inspired

by graph signal processing. These models are capable of learning spectral filters that

are defined by eigendecomposition of the Laplacian matrix (Kipf & Welling 2016),

(Defferrard et al. 2016), (Bruna et al. 2013). In spatial-based approaches, the attribute

representation of a vertex is updated in each layer of neural network architecture by

aggregating the attributes of neighboring vertices (Hamilton et al. 2017). While GCNs

operate on the vertex-level, graph pooling modules can be interleaved with the GCN

layer to coarsen graphs into high-level sub-structures. Most of the existing graph

neural network architectures work well on vertex classification. Little research has

been done on graph classification on weighted, attributed graphs.

In this thesis, we present a novel deep neural network architecture inspired by

CNN, called AGCP. AGCP takes as input highly complex weighted, attributed graph-

structured data and predicts the label for unseen graphs. We are interested in bio-

logical networks.
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1.6 Thesis Motivation

With a more in-depth analysis of graphs, we discovered that vertices that are con-

nected strongly by edges have similar attributes and have the same class label (Zhang

et al. 2018). Rather than studying the whole structure of the graph, it is crucial to

find a new graph substructure that captures the high-level attributes by analyzing

the attributes of a vertex and its neighbors. Powerful machine learning algorithms

such as CNNs are good at capturing and representing the data by aggregating the at-

tributes of its neighbors. CNNs work effectively on fixed grid-structured data such as

images, which have a well-defined spatial ordering. Graphs, on the other hand, have

an arbitrary size and complex topological structure, no fixed node ordering, or point

of reference. Graphs are often dynamic and have multimodal attributes (Hamilton

et al. 2017). It is a big challenge to replicate the architecture of a CNN that works

well with fixed grid-structured data to graph-structured data because of the complex

nature of graph-structured data. Reproducing a significant graph pooling algorithm,

which is as efficient as max-pooling or average-pooling in CNNs, is also a considerable

challenge. Our motivation for this thesis is to tackle the difficult problem of treating

graph-structured data like fixed grid-structured data.

We also consider the problem of grading the tumor by predicting the aggressiveness

of cancer to either aggressive or non-aggressive cancer type. Cancer is a genetic

disease caused by mutations of genes. Cancer is characterized by the development of

abnormal cells that divide uncontrollably and can infiltrate and destroy healthy body

tissue (Futreal et al. 2004). A mutation is any change that occurs in DNA, either due

to mistakes when DNA is replicated or as the result of environmental factors such

as UV light or cigarette smoke. Prostate cancer is a leading cause of cancer-related

mortality worldwide. Among men in Canada, prostate cancer is the most commonly

occurring cancer and is a leading cause of cancer-related deaths (Alkhateeb et al.

2019) and (Hamzeh et al. 2017). The Gleason grading system remains the most potent

prognostic predictor for patients with prostate cancer since the 1960s (Alkhateeb et al.

2019). Its application requires highly-trained pathologists, is tedious and, suffers from
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limited inter-pathologist reproducibility, especially for the intermediate Gleason score

7. Automated annotation models in machine learning constitute a viable solution to

remedy these limitations (Albertsen et al. 1998). We empirically found that our

proposed model, AGCP, could be applied to GINA to predict the aggressiveness of

cancer to help pathologists in the diagnosis of prostate cancer.

Types of Mutations: In this work, we consider the following types of muta-

tions missense, nonsense, insertion, deletion, duplication, frameshift, and intron. A

missense mutation is a change in a DNA base pair, which results in the substitution

of amino acid for another one in the protein made by a gene interaction. A nonsense

mutation is a change in one DNA base pair; in the altered DNA sequence, signals

the cell to stop synthesizing the protein prematurely. A nonsense mutation results

in a shortened protein that functions improperly. An insertion mutation is a change

in the number of DNA bases in a gene by inserting a piece of DNA. As a result, the

protein(s) made by the affected gene may not function properly. A deletion muta-

tion changes the number of DNA bases by removing a few base pairs within a gene

or several genes in the neighborhood. The deleted DNA alters the function of the

resulting protein(s). A duplication mutation occurs when a piece of DNA is copied

one or several times, resulting in improper functioning of protein(s). A frameshift

mutation occurs whenever there is an addition or loss of DNA bases, which in turn

changes a gene’s reading frame. A reading frame consists of groups of three bases,

each encoding for one amino acid. The resulting protein is usually nonfunctional.

1.7 Thesis Statement

In this thesis, we present:

1. A deep neural network architecture, AGCP, that:

• Takes arbitrary sized, weighted, undirected, labeled, and attributed graphs

as input.
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• Learns a function to encode the label and attribute information of input

graphs to solve classification and prediction problems on unseen graphs.

2. We propose a statistically significant pooling layer based on the principles of

attribute selection approaches for classification. The pooling layer eliminates

vertices to coarsen the graph based on the information gain of the attributes

present on each vertex.

3. The proposed model is applied to GINA, a dataset of gene interaction network

with genomic attributes in terms of mutations as attributes of the vertices to

classify the aggressiveness of prostate cancer and two other benchmark bioin-

formatics datasets. We applied AGCP on ENZYME dataset to correctly assign

each enzyme to one of the 6 EC top-level labels and D&D dataset to classify if

a protein is an enzyme or a non-enzyme.

4. We compare the performance in terms of classification accuracy and AUC/ROC

with two other state-of-the-art models for graph classification. We experimen-

tally demonstrate that our model outperforms previously proposed methods by

a considerable margin.

1.8 Thesis Contributions

1. A new paradigm for graph classification. We present AGCP, an end-to-

end deep attributed graph convolutional neural network with a pooling layer

which statistically downsamples the graph. AGCP is a novel supervised learning

model that works on attributed, weighted, graph-structured data for graph

classification based on the aggregation of attribute and label information of

neighboring vertices.

2. Better pooling strategy. We propose a pooling layer thath uses information

gain as a strategy to coarsen the graph while preserving the global structure of

the original input graph.
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3. Application of a novel strategy for dimensionality reduction in graph-

structured data. We applied AGCP on:

(a) GINA dataset: We generated a dataset of attributed, weighted graphs

called GINA, which is a dataset of gene interaction networks with genomic

attributes in terms of mutations as attributes of the vertices to classify the

aggressiveness of the prostate cancer.

(b) ENZYME dataset: ENZYME is a dataset of tertiary protein structures.

The classification problem is to assign each enzyme to one of the six EC

top-level classes accurately.

(c) D&D dataset: D&D is a dataset of protein structures. The classification

problem is to classify the graph structures to either enzyme or non-enzyme.

1.9 Thesis Organization

The organization of the thesis is as follows. In Chapter 2, we discuss the background of

artificial neural networks, deep neural networks, and the motivation behind the tech-

nique used in our thesis, which is CNNs. In Chapter 3, we provide a literature review

of some existing works in graph classification using deep learning. We discuss spatial-

based convolutions, spectral-based convolutions, and graph representation learning.

In Chapter 4, we describe our proposed methodology in detail. In Chapter 5, we

present several experiments on benchmark bioinformatics datasets along with their

results. We provide a comprehensive result analysis and some insights we acquired

from the experiments performed in the later sections of this chapter. Finally, in

Chapter 6, we discuss some future research directions and the conclusions of our

work.
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Chapter 2

Convolutional Neural Networks

This chapter presents the motivation of technique used in our thesis, CNNs. Before we

describe the working of the complex architecture of the CNN model, we first introduce

an artificial neural network (ANN), the elements of ANN followed by a deep neural

network (DNN).

2.1 Artificial Neural Networks

An artificial neural network (ANN) or simply neural network is an algorithmic model

run in software on a digital computer that is designed to mimic the way in which the

human nervous system performs a particular task or function (LeCun et al. 2015).

Both the human nervous system and neural networks can be viewed as three-stage

systems, as shown in Figures 14 and 15, respectively. In the human nervous system,

the receptors receive a stimulus from the external environment and convert it into

electrical impulses that pass information to the brain. The effectors convert the

electrical impulses generated by the brain into a response to the stimulus. There

is a double-headed arrow in Figure 14 to show forward pass, forward passing of

information-carrying signals through the brain and backward pass, indicating the

presence of the back-propagation of the feedback. The feedback helps the brain to

learn the response to stimulus more accurately.

Stimulus Receptors Brain Effectors Response

Figure 14: Block diagram of the brain.
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A neural network takes an input, passes it through multiple layers of hidden

neurons, and then outputs a prediction representing the combined input of all neurons

in the network. Figure 15 shows a schematic view of an artificial neural network with

an input layer, a hidden layer, and an output layer. The input to the neural network

is a dataset with images of either cats or dogs. Each neuron in the output layer

predicts the probability of the image belonging to its respective class label (cat or

dog).

Input Layer Hidden Layer Output Layer

x1

x2

h1

h2

h3

h4

y1

y2

Dog

Cat

Figure 15: Example of an artificial neural network with an input layer, a hidden
layer, and output layer. The input to the neural network is a dataset with images of
either cats or dogs. The output layer is the probability of each of the possible labels.

Similar to the receptors in the human nervous system, the input layer shown

in Figure 15 provides information from the dataset to the hidden layer of the neural

network. The input layer consists of one or more input neurons, which are information

processing units that are fundamental to the operation of a neural network.

The brain and hidden layers are central to their respective systems. Both the brain

and the hidden layer continually receive information, process it, and make appropriate

decisions. The hidden layer is shown in Figure 15 receives the input from the input

layer, processes the information, performs the computation, and finally passes the
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prediction to the output layer. This process is called forward propagation. The

hidden layer consists of one or more hidden neurons (Goodfellow et al. 2016).

The output layer, as shown in Figure 15 is responsible for analyzing the weighted

sum of all neurons in the hidden layer and then calculating the probability of the

image belonging to each of the possible class labels similar to the effectors in the

brain. The number of output neurons is equivalent to the number of known classes

in the input data. For a binary classification problem, there are two output neu-

rons. In a supervised learning approach, the predicted probability of a class label is

compared to the actual class label to calculate the error in classification. This error

is then backpropagated to adjust the calculations and values in subsequent forward

propagations.

2.1.1 Neural Network Element - Artificial Neuron

An artificial neuron is a mathematical function that takes a group of weighted inputs,

applies an adder function, followed by the activation function, and then returns their

activated weighted sum as an output (Goodfellow et al. 2016). Figure 16 shows a

model of an artificial neuron k with a set of inputs {x1, x2 · · · xm} and their corre-

sponding weights {w1, w2 · · ·wm}, an adder function σ, an activation function φ(.),

and the output of the neuron k given by yk.
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Figure 16: A model of an artificial neuron k with a set of inputs {x1, x2 · · ·xm} and
their corresponding weights {w1, w2 · · ·wm} , an adder function

∑
, an activation

function φ(.), and the output yk.

Here, we identify the four basic elements of an artificial neuron:

1. A set of inputs, each of which is associated with a weight, w. As shown in

Figure 16, a signal xm at the input m connected to neuron k is multiplied by the

weight wkm. The first subscript in wkm refers to the neuron, and the second subscript

refers to the input end to which the weight refers. The weight of an artificial neuron

belongs to the set of real numbers and can have a negative or positive value. A higher

weight indicates a stronger activation of the neuron; likewise, a lower weight indicates

that the neuron is not very active.

2. An adder is used for summing the weighted input signals.

3. Bias is an additional parameter in the neural network that is used to adjust

the weighted sum of the neuron inputs to specific desired values allowing the model

to achieve a better fit for the given data.

4. An activation function is applied to the output of the adder for limiting the

amplitude of the output of a neuron ((Goodfellow et al. 2016) and (Karlik & Olgac

2011)). The activation function limits the acceptable amplitude range of the output

signal to some finite value.
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In mathematical terms, we can describe the neuron k depicted in Figure 16 by

the following equations:

uk =
m∑
j=1

wkjxj , (1)

and

yk = ϕ(uk + bk) , (2)

where x1, x2, · · ·xm arem input signals, wk1, wk2, · · ·wkm are the corresponding weights

of the neuron k, uk (not shown in Figure 16) is the linear adder, bk is the bias, ϕ(.)

is the activation function, and yk is the output of the neuron. The effect of the bias

on the linear adder function can be seen as follows:

vk = (uk + bk) . (3)

During the training phase of the ANN, the neural network learns the weights and

bias, also known as the state of the neural network that can produce optimal output

probability. The predicted probability is then compared to the actual probabilities

to calculate the error or loss or cost. The error is then backpropagated through the

network to update the current state of the neural network.

2.1.2 Loss Function

The loss function, also known as cost function or error function, is a measure of the

capacity of a neural network to approximate the true function that produces the

desired output from input data. In supervised learning, the desired output is the

ground truth labels or classes yi of each sample in the dataset. In a single forward

pass, the neural network takes as inputs the states of the neural network given by

weights, biases, and examples from the training set and predicts the labels ŷi for each

sample. The difference between the predicted labels and the ground truth labels yi

are calculated, which is the total loss of the network. Although many loss functions

exist, all of them essentially penalize on the difference or error between the predicted

ŷi for a given sample and its actual label yi. In this thesis, we use cross-entropy error,
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given by:

L(yi, ŷi) = (ŷi log(yi) + (1− ŷi) log(1− yi)) . (4)

From Equation (4), we can decipher that cross-entropy loss increases as the predicted

probability diverges from the actual label. The objective of the neural network is to

reduce the loss function to a minimum. With the help of optimization techniques

such as stochastic gradient descent, the loss function learns to reduce the error in

prediction gradually.

2.1.3 Types of Activation Functions

The activation function is crucial in the training of an ANN. Their primary purpose

is to convert an input signal of a node in an ANN to an output signal. There are three

commonly used activation functions sigmoid, tanh, and ReLU. We briefly discuss each

of these functions below.

Sigmoid: The sigmoid function, whose graph is “S”-shaped as shown in Figure 17,

is the most common activation function used in the construction of neural networks.

The sigmoid function is a strictly increasing function and exhibits a graceful balance

between linear and non-linear behavior. The sigmoid non-linearity function has the

following mathematical form (Han & Moraga 1995):

Sigmoid(x) =
1

1 + e−x
. (5)
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Sigmoid(x) = 1
1+e−x .

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

x

y

Figure 17: Sigmoid activation function.

The sigmoid function takes as input a real value and limits the amplitude range

to between 0.0 and 1.0 so that the range of values do not become too large or too low.

However, the downside of the sigmoid activation function is the vanishing gradient

(Karlik & Olgac 2011). If the activation of the neuron is too large at either of the

two axes, the network becomes saturated at higher values. Thus, the gradient at

these regions approaches zero. The second issue with the sigmoid activation function

is that it is not zero centered, which makes the gradient updates go too far in all

possible directions. With the output having a value between zero and one, it makes

optimization more difficult to achieve. The hyperbolic tangent function overcomes

this downside.

Tanh: Mathematically, a hyperbolic tangent function is defined as follows:

Tanh(x) =
ex − e−x

ex + e−x
. (6)

The tanh function takes a real value as input and limits it between -1 and 1 (Xiao et al.

2005). Its output is zero-centered, and hence the optimization is easier. However,

even this activation function suffers from the “vanishing gradient” problem in the

positive and negative domains similar to the sigmoid function. Figure 18 shows a
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graph of the hyperbolic tangent activation function.

Tanh(x) = ex−e−x

ex+e−x .
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Figure 18: Hyperbolic Tangent activation function.

The issue with a vanishing gradient can be overcome using a ReLU activation

function.

ReLU: The rectified linear unit activation function has gained a lot of popularity

these days because it avoids the vanishing gradient problem in the positive axis (Li

& Yuan 2017). The ReLU function takes a real value as input and limits it between

0 and +∞. The ReLU has the following mathematical form:

ReLU(x) = max(0, x) , (7)

where x is the input to the neuron. Figure 19 shows a graph of the rectified linear

unit activation function.
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Figure 19: Rectified Linear Unit activation function.

Softmax: The softmax activation function is an efficient variant of the sigmoid

activation function for multi-class classification. Softmax is typically used as the

output of classifier, to represent probability distribution over n classes. Softmax

compresses values to positive values between 0.0 and 1.0. The softmax function has

the following mathematical form:

Softmax(x) =
exp(xi)∑
j exp(xj)

. (8)

Figure 20 shows a graph of the softmax activation function.
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Softmax(x) =

exp(xi)∑
j exp(xj)
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Figure 20: Softmax activation function.

2.1.4 Deep Neural Networks

A deep neural network or DNN is an artificial neural network with multiple hidden

layers (Goodfellow et al. 2016). Figure 21 shows an example of deep neural network

architecture with two hidden layers for the ease of representation. It has two hidden

layers: h1 and h2, each hidden layer has four neurons, which is represented by hij,

indicating the jth neuron in the ith hidden layer. For example, in Figure 21, h23

represents the third neuron in the second hidden layer. The input data is passed to

each of the four neurons in the hidden layer h1 by the input layer x1. The neurons do

the mathematical calculations to identify the low-level attributes of the input data.

Each neuron in the hidden layer has an activation after computation, and the neurons

pass these activations to the next layer h2. The neurons in h2 perform mathematical

calculations to identify the high-level attributes of the input data and then outputs

a value yi, which is the probability of the input data belonging to one of the two or

more class labels. Figure 21 takes, as input, a dataset with images of either dogs or

cats. The output layer gives the probability of the labels cat and dog.
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Figure 21: Example of a deep neural network with an input layer, multiple hidden
layers, and an output layer. The input to the neural network is a dataset with

images of either cats or dogs. The output layer gives the probability of the labels
cat and dog.

Deep learning is the study and application of deep neural networks to solve a

particular task. These tasks include classification, prediction, representation learning,

recommendation, and dimensionality reduction. Deep neural networks are mainly

used to analyze complex data such as text and images.

2.2 Convolutional Neural Networks

CNN (LeCun et al. 1989) is very similar to an ANN and is designed to perform

on fixed grid-structured data. They contain neurons that have learnable weights

and biases. The CNN architecture is inspired by the biology of human vision and

is most commonly applied to analyzing visual imagery. Each neuron receives an

input, performs a dot product, and optionally applies non-linearity, also known as

an activation function. There are three main types of layers used to build CNN

architectures: the convolutional layer, the pooling layer, and the fully-connected layer.

These layers are interleaved to form the full CNN architecture (Krizhevsky et al.

2012), as shown in Figure 22.
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Figure 22: Architecture of a convolutional neural network (Mathworks 2019).

Each neuron in the input layer takes an image pixel as the input and passes it

to the corresponding neurons in the next layer. The image region covered by these

neurons is called the activation map or feature map. Each neuron in the hidden layer

takes an activation map from the previous layer as input and transforms it into many

different representations by applying convolution and pooling filters. Filters are two-

dimensional matrices of weights, which are analogous to the weight parameters of the

traditional DNN described in the previous section.

2.2.1 Convolutional Layer

The convolutional layer is the most significant layer in the CNN model and performs

most of the computations. The parameter of the convolutional layer is a (w× h× d)

learnable filter vector, where w is the filter pixel width, h is the height, and d is the

filter depth. For example, a typical filter is a (5×5×3), representing five-pixel width

and height and three-pixel depth for three color channels. Typically, a CNN model

uses multiple filters to capture multiple features of the input image. During forward

propagation, each filter slides over the width and height of the input volume and

calculates the sum of the dot products between the entries of the filter and the input

at each position. As the filter slides over the width and height of the input volume,

a two-dimensional activation map is produced. The activation map encapsulates the

representation of low-level features present in the input volume, such as an edge or

blotch of color. This activation map is passed on to the subsequent layers to capture
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the high-level features of the input volume, such as the wheels or headlights of a car.

The convolutional layer is followed by a non-linear activation function ReLU. Figure

23 shows an example of a convolutional layer in action. The 3×3 filter convolves over

the 5× 5 input volume. The convolutions start from the top left corner of the input

volume and end at the bottom right corner and cover the whole image. The top-left

pixel is called the target pixel, and by performing convolution operation, we generate

new representations of that target pixel. The top-left pixel of the activation map

is calculated by element-wise matrix multiplication and summation of overlapping

pixels from both the input and the filter.

1x1 1x0 1x1 0 0

0x0 1x1 1x0 1 0

0x1 0x0 1x0 1 1

0 0 1 1 0

0 1 1 0 0

3

Convolves

Figure 23: Example of the convolutional layer: filter/kernel convolves through the
entire depth of the input grid, an activation map is created by element-wise matrix
multiplication and summation of the results. Left: the input image volume with a

3× 3 filter convolving over the image. Right: An activation map formed as a result
of convolution.

2.2.2 Pooling Layer

The pooling layer performs a downsampling operation of the input volume along the

spatial dimensions width and height, resulting in a lower-dimensional representation

of the features in the activation map. There are multiple pooling strategies, such as

max-pooling and average-pooling. Figure 24 shows an example of max-pooling applied

on CNN. In max-pooling, the activation map is formed by taking the maximum value

from each pooling window. Pooling window is an integer or tuple/list of 2 integers:

pool height and pool width, and stride is an integer, specifying the strides of the

pooling operation. For example, in Figure 24, after max-pooling, the 4 × 4 input
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activation map is downsampled to a 2 × 2 activation map. The pooling operation

takes as input the parameters such as the window size 2 × 2 and stride of size 2.

The algorithm takes the maximum value from the specified window size and slides

2 pixels over to find the next value. In the first pooling window, 6 is the maximum

pixel value. We eliminate all other values and form an activation map with just the

maximum pixel values from the image volume.

1 3 4 6

6 2 8 9

4 3 2 1

2 3 4 5

6 9

4 5
Downsamples

Figure 24: Example of the max-pooling layer, which downsamples the activation
map by taking the maximum value in each pooling window. Left: Input volume
with a pooling window size of 2× 2, the maximum pixel value of input volume

within the pooling window is used to form the activation map. Right: Downsampled
activation map after pooling.

2.2.3 Fully-Connected Layer

The fully-connected layer is a feedforward neural network that receives the activation

map from the pooling layer as input and converts the three-dimensional volume to

one-dimensional vectors to be passed to the softmax activation function, which gives

the probability of the possible class labels.

The CNN is a powerful model that has been proven to work well on image

datasets (Krizhevsky et al. 2012). Randomly initialized CNN models have given

high-performance on benchmark datasets such as MNIST (Van der Maaten 2009).

CNNs are capable of extracting highly meaningful statistical patterns in large-scale

and high-dimensional datasets, which has led to breakthroughs in image, video, text,

and sound recognition tasks (Krizhevsky et al. 2012). We intend to provide a gen-

eralization of the convolution operation that works on data from regular domains

such as images, to data originating from an irregular domain such as graphs. The
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next section describes the challenge of applying the convolution operation on graph

datasets.

2.2.4 Why the Convolution Operation on Graphs is Challeng-

ing

GCNs are a class of graph neural networks that use the convolution operation, which

is the core operation in the CNN model, to extract meaningful statistical patterns

from graph-structured data. The convolution operation allows a model to leverage

the structural information of graph data and capture the attribute representations

to make accurate class label predictions. The convolution operation is easier on

grid-structured image data. Applying this operation on graph-structured data is

challenging, because graphs have highly complex topological structure, arbitrary size,

and are also dynamic (Hamilton et al. 2017). We have overcome this challenge by

proposing a GCN that uses a robust variant of the convolution operation.

The convolution operation tries to generate new attribute representations of each

pixel in an input image by aggregating the attributes of neighboring pixels by con-

volving a filter across the height, width, and depth of the image. Here attributes

mean the intensity of the pixels in the images. The pixel for which we try to find

new representation by aggregating attributes of neighbors is called target pixel. The

convolution is possible because the pixels of an image has a grid-like structure. The

pixels are located adjacent to each other.

GCNs, in general target, to find a new representation of each vertex of the graph

by aggregating the attributes of its neighbors. Our method considers each node

in a graph as a pixel in an image. We aggregate the attributes of the target and

neighboring vertices by aggregating the vertices in k-order proximity. For example,

if k = 2, we aggregate the attributes of nodes in the second-order proximity of the

target node. The right side of Figure 25 shows the target vertex marked in red. If

k = 1, we aggregate the attributes in first-order proximity or immediate neighbors of

the target vertex.
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Figure 25: Analogous to CNN for images, AGCP considers each vertex as a pixel
and aggregates the features of the target vertex and the neighbors of the target

vertex.

The aggregation technique mentioned above is the central idea of the convolution

operation in AGCP. We present a deep neural network architecture that leverages

this idea to perform convolutions on graph data. We discuss the architecture of our

proposed deep neural network in Chapter 4.
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Chapter 3

Related Work

With the recent advancements in deep learning, many researchers are interested in ex-

ploring the application of deep learning on graph-structured data. Graph-structured

data are generated from the non-Euclidean domain and have highly complex struc-

tural properties (Zhang et al. 2018). With an increase in real-world graph-structured

data, it has become crucial to apply machine learning models that can take graph-

structured data as input and then understand both the underlying features and the

complex relationships represented in the graph in order to generate outputs such as

predictions, classifications, regression, representation learning, clustering or recom-

mendations.

Steered by the success of deep learning, researchers are trying to apply efficient

neural network architectures such as convolutional networks, recurrent networks, and

deep autoencoders in order to design a suitable neural network architecture that

works well on graph-structured data. A significant amount of research is being done

on node classification, edge prediction, graph classification, and label prediction for

graphs using these deep learning architectures (Zhang et al. 2018).

In this research, we are interested in applying convolutional networks to graph-

structured data. This class of neural networks is commonly known as a graph convo-

lutional network or GCN. GCNs are inspired by the architecture of CNNs, which can

exploit the shift-invariance, local connectivity, and compositionality of image data

(Krizhevsky et al. 2012). As a result, CNNs can extract meaningful local attributes.

The convolution operation is a critical operation in CNN, imitating this operation in

a GCN is challenging owing to the complex structural representation of a graph.
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In this chapter, we discuss some of the most recent works done by researchers in

graph-structured data. The design of the convolution operation in GCNs falls into

two major categories: spectral-based and spatial-based. Section 3.1 discusses the

spectral-based, followed by the spatial-based approaches in Section 3.2, which is then

followed by a brief introduction into structure-aware convolutional neural networks

in Section 3.3. This chapter ends with a table that briefs all major researches done

on GCNs.

3.1 Spectral-based Convolutions

The spectral-based approaches define graph convolutions by using filters from graph

signal processing, where the function of the graph convolution operation is to remove

noise from graph signals (Bruna et al. 2013). In spectral-based approaches, concepts

from spectral graph theory are used to define convolutions in the context of graphs

with Fourier analysis (Wu et al. 2019). Spectral graph theory defines the properties of

a graph in relationship to the eigenvectors and eigenvalues of matrices associated with

graphs. Here, we consider Laplacian and adjacency matrix. The adjacency matrix for

both weighted and unweighted graphs has been defined in Chapter 1. The Laplacian

matrix of graph is determined by L = D − A, where D is the degree matrix of a

graph G. Graph theory also provides graph clustering techniques to formulate the

downsampling of graphs.

Spectral CNN exploits the concepts in spectral graph theory to define the convo-

lution operation by taking the normalized graph Laplacian matrix, defined as,

L = I − D−1/2AD−1/2, where I is the identity matrix, D is a diagonal matrix of

degrees (constructed of the degrees of each node), A is the adjacency matrix of undi-

rected graph, and Dii =
∑

j(aij) where Dii is the value at the ith column of the ith

row of the degree matrix. As graph Laplacians are real positive semidefinite (Hermi-

tian matrix whose Eigenvalues are non-negative) (Bruna et al. 2013), we can refactor

L as L = UλUT, where U = [u0,u1 . . .un] is the matrix of eigenvectors ordered by

eigenvalues and λ is the diagonal matrix of eigenvalues.
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In graph signal processing, the signal or attribute or features on the vertex of an

attributed graph is given by vector x ∈ Rd where d is the number of attributes. The

Fourier transform of a signal x on a graph G = (V,E) is defined as F (x) = UTx.

The inverse of the graph Fourier transform is defined as F−1(x̂) = Ux̂, where x̂

represents the resulting vertex signal after applying the Fourier transform. Thus, the

graph convolution of the input signal x with a filter g ∈ Rd is defined as:

x ∗G g = U
(

(UTx)� (UTg)

)
, (1)

where � denotes the Hadamard product, and ∗G represents the convolution op-

eration on the graph. Equation (1) represents the Hadamard product of the signal

and the filter (Defferrard et al. 2016). Spectral-based graph convolutions all follow

the definition where a graph convolution is simplified as gθ = diag(UTg). The key

difference is in the choice of the filter.

The first spectral CNN was proposed by (Bruna et al. 2013). They assumed that

the filter is a learnable parameter. Their definition of a graph convolution layer is

given by the following equation:

Xl+1 = θ ∗Xl = Udiag(θ)UTXl , (2)

where Xl+1 and Xl are the node attributes at layers l + 1 and l, respectively.

We present some important research done in spectral convolutions in the follow-

ing sections. We discuss the aim, contributions, techniques proposed, experiments,

results, and conclusions for each work.

3.1.1 Convolutional Neural Networks on Graphs with Fast Lo-

calized Spectral Filtering

Aim: The main aim of research done by (Defferrard et al. 2016) is to generalize the

convolution and pooling operations in grid-like data to graph-like data.

Contribution: The authors proposed strictly localized spectral filters in their re-
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search paper. They also presented an effective pooling strategy that arranges the

vertices as a binary tree based on a Graclus multilevel clustering algorithm in the

graph coarsening phase. In this research, the authors tried to overcome two signifi-

cant shortcomings of filters defined in the spectral domain, which are:

1. It is not naturally localized, and

2. Convolutions are costly with a time complexity of O(n2), where n is the number

of nodes in the input graph for the multiplication operation.

Proposed Technique: The authors proposed the following technique in their work:

1. Spectral filtering of graph signals: The definition of the convolution operation in

the attribute domain is difficult. This research defined a convolution operation

in the Fourier domain, denoted by ∗G as per Equation (1).

2. Polynomial parametrization for localized filters: The authors proposed a pa-

rameterized polynomial filter to make convolutions easier on a graph.

3. Graph Coarsening using fast pooling: Graph coarsening is a technique that

consists of clustering the vertices of a graph that has similar attributes. The

authors solved the multi-layer coarsening algorithm, where each layer of the neu-

ral network produces a coarsened graph using the Graclus multilevel clustering

algorithm. The Graclus’ algorithm is a greedy rule which consists, at each coars-

ening level, in marking an unmarked vertex i and matching it with one of its

unmarked neighbors j that maximizes the local normalized cutWij(1/di+1/dj),

where Wij is the edge weight between the vertices vi and vj and 1/di and 1/dj

is the degree of vi and vj respectively.

Experiments and results: The authors applied the proposed graph neural network

to data from both Euclidean and non-Euclidean spaces. They applied the model on

the following datasets:

1. MNIST dataset: MNIST dataset has 70,000 digits represented on a 2D grid of

size 28∗28. They compared the proposed model with classic CNN and observed
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that the performance of the proposed model is par with classic CNN, and the

slight accuracy drop can be accounted for by the isotropic nature of the spectral

filters.

2. 20NEWS dataset: 20NEWS dataset is used for the text categorization task. The

authors constructed a graph with n = |V | = 10, 000 nodes and |E| = 132, 834

edges from the unstructured text dataset. The authors observed that while the

experiment results did not outperform the multinomial naive Bayes classifier on

this small dataset, it does defeat fully connected networks.

Conclusions: The authors were able to reduce the computational complexity to

O(n) based on the number of nodes in the graph. They also found that the quality

of the graph data is vital for the classification task. The authors stated that as part

of future work, they would like to explore the possibility of applying their model to

graph-structured data rather than grid-structured data.

3.1.2 Semi-Supervised ClassificationWith Graph Convolutional

Networks (GCN)

Aim: In the research done by (Kipf & Welling 2016), the authors tried to accomplish

vertex classification on graphs with some vertex labels known and some unknown

using spectral approaches. This problem is a semi-supervised learning task on a graph

with labeled nodes. The motivation of the convolution operation in this research is a

first-order approximation of spectral graph convolutions.

Contribution: This research contributed to graph convolutional neural networks by

proposing a first-order approximation in the Fourier-domain to obtain an efficient

linear-time graph. The contributions made by authors are given below:

1. Firstly, the authors introduced a simple layer-wise propagation rule for the

graph neural network models, which is motivated from a first-order approxima-

tion of spectral graph convolutions.

2. Secondly, the authors demonstrate how the graph-based neural network model is
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used for faster semi-supervised classification of nodes with a much more scalable

proposed model.

Proposed Technique: The authors proposed the following technique in their re-

search paper.

1. Attributed graph: The input to this model is a dataset of attributed graphs

defined in Section 1.1.2.

2. Propagation rule: The propagation rule computes the attribute representa-

tion of a node as an aggregate of the attribute representations of its neigh-

bors. Every neural network layer can then be written as a non-linear function,

H l+1 = f(H l, A) and f(H l, A) = σ(D̂
−1/2

ÂD̂
−1/2

H(l)W(l)), where f(H l, A)

represents a hidden layer at level one, Â = A + I is the symmetric adjacency

matrix A, σ is the activation function (ReLU in this case), W is the weight

matrix, and I is the identity matrix. The degree matrix D̂ is the degree matrix

of Â and is normalized to prevent exploding or vanishing gradients. The output

Z of the model (forward propagation ) is thus given by:

Z = f(X, A) = softmax

(
ǍReLU(ǍXW(l))W(l+1)

)
, (3)

where Ǎ = D̂
−1/2

ÂD̂
−1/2

and Wl and W(l+1) are the weights of a neural

network at the lth and (l + 1)th levels respectively.

Experiments: The authors applied the proposed GCN to graph data from different

domains. They applied the model on Citeseer, Cora, Pubmed (Sen et al. 2008), and

NELL (Carlson et al. 2010).

1. Network architecture: The authors trained a two-layer as well as ten-layer GCN

on a graph data set of 1,000 examples, out of which 500 were labeled. They

trained the neural network using a dropout rate for all layers, L2 regularization

factor for the first GCN layer, and a number of hidden layers. The model was

trained for 200 epochs using the Adam optimizer (Kingma & Ba 2014) with a
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learning rate of 0.01, and early stopping with a window size of ten units. The

model was applied to the data to obtain results and was compared with the

state-of-the-art baseline models.

2. Baseline: The authors compared the proposed model with six other previously

proposed methods in graph neural networks: ManiReg (Manifold Regulariza-

tion) (Belkin et al. 2006), SemiEmb (Semi-supervised embedding) (Weston et al.

2012), LP (Label Propagation) (Zhu et al. 2003), DeepWalk (Perozzi et al.

2014), ICA (iterative classification algorithm) (Lu & Getoor 2003), and Plan-

etoid (Yang et al. 2016). The classification accuracy was compared, and the

results showed that the proposed model (Kipf & Welling 2016) performed bet-

ter.

Conclusions: The authors experimentally proved that the propagation of feature in-

formation from neighboring nodes in every layer improves classification performance.

We leverage this finding in our approach.

3.2 Spatial-based Convolutions

Borrowing the idea of the convolution operation of a CNN on an image, spatial-

based methods define graph convolutions based on a node’s spatial relations. In

the convolution operation, a node’s attributes are represented by aggregating the

attributes of that node as well as it’s neighbors. Graph pooling modules can be stacked

with the GCN layer, to coarsen the graphs into high-level sub-graphs which capture

the attributes of the original input graph. These models are generally embedding the

node attributes to a higher-dimensional space where the nodes with similar attributes

are projected to close proximity; this is called node embedding.

3.2.1 Inductive Representation Learning on Large Graphs

Aim: In the research done by (Hamilton et al. 2017), the authors tried to generate the

representation of nodes attributes by aggregating the features of neighboring nodes.
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They proposed GraphSAGE, which is an inductive framework that generates the node

embeddings for graphs that are unseen during the time of training.

Contribution: The research done by the authors is an important contribution in

spatial-based graph convolutional neural networks as the research proposed a generic

inductive framework. The significant contributions made by the authors are the

following:

1. Firstly, the authors introduced GraphSAGE, a learning algorithm that incor-

porates the node attributes as well as the topology of the nodes (e.g., node

degrees) to form the embedding of the nodes.

2. Secondly, the authors introduced a new mechanism for graph training; instead

of training the network to find the embedding of the node, the model is trained

to find the aggregator function. An aggregator function samples the features of

the node’s k-hop neighborhood. The model uses the aggregated node feature

to make the final predictions and to calculate the backpropagation error.

Proposed Technique: The authors proposed the following techniques in their re-

search.

1. Embedding generation (forward propagation) algorithm: The inputs to these

models are attributed graphs, which were mentioned in Section 1.1.2. Suppose

that there is a target node vi, the aim here is to either predict the node’s class

label or to find the embedding of the target node. To achieve this aim, the

authors are not just using the features of the target node, but also the features

of the neighboring nodes. This is achieved by aggregating the node features and

transforming the aggregated features to the target node. The obtained target

representation of each node is then passed on to the next level, as follows:

hk+1
P = ReLU

(
W k hkP ,

∑
n∈N(P )

(
ReLU (Qk h(k)n )

))
, (4)

where hk+1
P is the (k+1)th level feature of node P . ReLU is the non-linear activa-

tion function, explained in Section 2.1.3, W khkP represents the transform of P ’s
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own features from level k.
∑

(.) is the aggregator function and (ReLU (Qk h
(k)
n ))

represents the transform and aggregate functions of the n neighbors of node P .

The authors used three aggregator functions, namely mean aggregator, LSTM

aggregator, and pooling aggregator. The mean aggregator function computes

the elementwise mean of the vector in each level. The LSTM aggregator uses an

LSTM architecture to find the aggregation of the node attributes. In the pool-

ing aggregator, each neighbor’s attribute vector is independently fed through

a fully-connected neural network; following this, an elementwise max-pooling

operation is applied to aggregate information across the neighbor set.

2. Learning the parameters of GraphSAGE: The authors use stochastic gradient

descent (Bottou 2010) to learn predictive representations. The weight matrix

W is tuned by applying the graph-based loss functions such as unsupervised

loss, neighborhood sampling, and minibatch optimization (Li et al. 2014).

Experiments:

1. Network architecture: The authors did a fair implementation of the baseline

models; all models share an identical implementation of minibatch iterators, a

loss function, and a neighborhood sampler.

2. Baseline: The authors proposed three variants of GraphSAGE: a mean aggre-

gator, an LSTM aggregator, and a pooling aggregator. They also proposed an

extended inductive version of GraphSAGE with a semi-supervised GCN (Kipf

& Welling 2016) termed as GraphSAGE-GCN. These models were compared

to DeepWalk (Perozzi et al. 2014), a logistic regression feature-based classifier

that ignores graph structure, and a random classifier. The authors used evolv-

ing graphs, which constantly add unseen data to the growing graphs. They

implemented the models on Reddit to perform community detection on and

citation data derived from Thomson Reuters Web of Science Core Collection.

Conclusions: The authors introduced a novel inductive approach to generate the

embedding of a graph efficiently. This method outperforms the baseline models by a

significant margin.
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3.2.2 An End-to-End Deep Learning Architecture for Graph

Classification (DGCN)

Aim: In the research done by (Zhang et al. 2018), the authors proposed a GCN that

imitates the classic end-to-end CNN architecture for fixed graph-structured data. The

input is graph-structured data that is used to perform graph classification.

Contribution: This research proposed a novel neural network architecture that

works very well on graph-structured data. The contributions are given below:

1. Firstly, the authors are trying to solve the difficult problem of extracting the

hidden feature information from the graph for classification problems by intro-

ducing the localized graph convolutions.

2. Secondly, the authors introduced a novel SortPooling layer which sorts graph

vertices in a logical order so that traditional neural networks can be trained on

the graphs.

Proposed Technique: The authors proposed the following technique in this re-

search.

1. Graph convolution layers: The inputs to these models are undirected graphs.

The graph convolution operations are similar to those given in Equation (1)

(Kipf & Welling 2016) and are divided into four major steps:

(a) First, a linear feature transformation is applied to the node information

matrix by mapping the c feature channels to ć channels in the next layer

by applying spectral filters with first-order approximations.

(b) In the second step, the propagation of node information of the neighboring

nodes and the node itself.

(c) The third step is to multiply the propagated features with the normalized

degree matrix of the adjacency matrix.

(d) The fourth step is to apply a non-linear activation function to obtain the

output.
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2. Graph SortPooling: The primary function of the SortPooling layer is to sort the

feature descriptors, each of which represents a vertex, in a logical order before

feeding them into the traditional 1-D convolutional and dense layers.

Experiments:

1. Dataset: The datasets are: MUTAG, PTC, NCI1, PROTEINS, and D&D from

(Kersting et al. 2016).

2. Network architecture: The architecture of DGCN has 16 output channels fol-

lowed by a pooling layer. The second 1-D convolutional layer has 32 output

channels. The hidden layer has 128 hidden units with a dropout rate of .50

and is followed by the softmax output layer. The activation function used

is the Tanh function for the convolution layer and ReLU for all other layers.

Stochastic gradient descent (SGD) with the Adam updating rule is used for the

optimization.

3. Baseline: The authors compared DGCN with four other graph kernel algo-

rithms. The graphlet kernel (GK) (Shervashidze et al. 2009), the random

walk kernel (RW) (Vishwanathan et al. 2010), the propagation kernel (PK)

(Neumann et al. 2016), and the Weisfeiler-Lehman subtree kernel (WL) (Sher-

vashidze et al. 2011).

The authors were able to achieve highly competitive results in comparison to

graph kernels, achieving the highest accuracies on the MUTAG, PROTEINS,

and D&D datasets indicting that DGCN can utilize the node and structural

information efficiently. For the NCI1 dataset, DGCN falls behind WL-kernel,

and for the PTC dataset, DGCN falls behind the propagation kernel.

Conclusions:

1. DGCN accepts graph-structured data as input without the need to first trans-

form the data to tensors, making gradient-based training efficient.

2. DGCN proposed a novel SortPooling layer which enables learning from input

graph topology by sorting vertex features instead of summing them.
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3. This model achieves better performance than existing methods on datasets as

discussed above.

3.3 Structure-Aware Convolutional Neural Networks

Structure-Aware convolutional neural networks are a class of neural network archi-

tecture that works on both Euclidean or grid-structured (e.g., images), and with

non-Euclidean or graph-structured (e.g., social networks) data. The convolution op-

eration of these neural networks is designed such that it can work with data with

diverse topological structures. In (Chang et al. 2018), the authors modeled the lo-

cal structure information into the generalized filters to achieve the structure-aware

convolutions.

In Table 1, we summarize the contributions made by other researchers in the

application of deep learning to graph-structured data.

Table 1: Summary of previous works

Year Paper Title Authors Major Contribution

2011 Weisfeiler-

Lehman graph

kernels. Jour-

nal of Machine

Learning Re-

search (Sher-

vashidze et al.

2011)

Nino Sher-

vashidze, Pascal

Schweitzer,

Erik Jan van,

Leeuwen Kurt,

Mehlhorn

Karsten M.

Borgwardt

This paper makes kernel ma-

chines such as SVMs feasible for

graph classification by comput-

ing graph similarity measures.

Dataset used: MUTAG, PTC,

NCI1, PROTEIN, and D&D.

52



3. RELATED WORK

2018 Graph Capsule

Convolutional

Neural Networks

(Verma & Zhang

2018)

Saurabh Verma

& Zhi-Li Zhang

This paper proposed graph cap-

sules, which encapsulate more in-

formation about nodes in a local

neighborhood in a small vector in

place of scalar output. Datasets

used: PTC, PROTEINS, NCI1,

NCI109, D&D, and ENZYMES.

2018 An End-to-End

Deep Learning

Architecture for

Graph Classifi-

cation (Zhang

et al. 2018)

Muhan Zhang,

Zhicheng Cui,

Marion Neu-

mann & Yixin

Chen

This research proposed:

1. Localized Graph kernels to

perform convolutions.

2. A SortPooling layer which

sorts graph vertices in a

consistent order so that

traditional neural networks

can be trained on the

graphs. Datasets used:

MUTAG, PTC, NCI1,

PROTEINS, and D&D.
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2016 Learning convo-

lutional neural

networks for

graphs (Niepert

et al. 2016)

Mathias

Niepert, Mo-

hamed Ahmed,

& Konstantin

Kutzkov

This research proposed:

1. A technique to generate a

graph neighborhood by cre-

ating a sequence of nodes.

2. A unique mapping from

the graph representation

to a vector representa-

tion such that nodes with

similar structural roles in

the neighborhood graphs

are positioned similarly in

the vector representation.

Datasets used: MUTAG,

PTC, NCI1, PROTEIN,

and D & D.

2014 DeepWalk: On-

line Learning of

Social Represen-

tations (Perozzi

et al. 2014)

Bryan Perozzi,

Rami Al-Rfou &

Steven Skiena

Proposed node search using uni-

form random walks. The obvi-

ous limitation of such a strat-

egy is that it gives us no con-

trol over the explored neighbor-

hoods. Datasets used: BlogCata-

log, Flickr, and YouTube.
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2015 LINE: Large-

scale Informa-

tion Network

Embedding

(Tang et al.

2015)

Jian Tang, Meng

Qu, Mingzhe

Wang, Ming

Zhang, Jun Yan

& Qiaozhu Mei

Proposed a breadth-first strategy,

sampling nodes primarily and op-

timizing the likelihood indepen-

dently over only 1-hop and 2-hop

neighbors. The effect of such an

exploration is easier to character-

ize, but it is restrictive and pro-

vides no flexibility in exploring

nodes at further depths.

2016 node2vec: Scal-

able Feature

Learning for

Networks

(Grover &

Leskovec 2016)

Aditya Grover &

Jure Leskovec

They proposed a framework for

continuous feature representa-

tions for the nodes in networks

by a flexible and controllable

way to explore the neighborhood

through parameters p and q.

2017 HARP: Hierar-

chical Represen-

tation Learning

for Networks

(Chen et al.

2018)

Haochen Chen,

Bryan Perozzi,

Yifan Hu &

Steven Skiena

In this approach, a graph coars-

ening procedure is used to col-

lapse related nodes in the graph

together into “supernodes,” and

then DeepWalk, node2vec, and

LINE is run on this coarsened

graph.
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2018 Towards Gene

Expression Con-

volutions using

Gene Interaction

Graphs (Dutil

et al. 2018)

Francis Dutil,

Joseph Paul

Cohen, Martin

Weiss, Georgy

Derevyanko &

Yoshua Bengio

This paper experimentally found

that gene expression predictions

can be done using graph convolu-

tional network with gene interac-

tion graph as input and perform

better than multi-layer percep-

tron or logistic regression models.

3.4 Conclusion

We discussed some of the major contributions made by other researchers in the ap-

plication of deep neural networks in graph-structured data. Most of the literature

discussed above ((Kipf & Welling 2016), (Bruna et al. 2013) and (Defferrard et al.

2016)) is designed for vertex classification. The research done by (Zhang et al. 2018)

is a graph classification approach, but does not work well on attributed, weighted

graphs. The spectral-based methods ((Kipf & Welling 2016), (Bruna et al. 2013)

and (Defferrard et al. 2016)) use matrix factorization and Eigen decomposition in

their convolution strategy, which are costly operations and requires additional com-

putation. The spatial-based approaches are computationally in-expensive compared

to spectral-based approaches but do not support any pooling strategy. Thus, these

models are memory inefficient, slow, and non-parallelizable approaches. The key dif-

ference from the approaches discussed above and our approach is that we treat graphs

as images with fixed topology and apply convolution operation with learnable filters

to understand the statistical patterns hidden in the graph data. Another key inno-

vation is that we introduce a pooling layer that coarsens the graph by statistically

measuring the information gain of a vertex.
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Chapter 4

Proposed Graph Convolutional

Neural Network

In this chapter, we present a novel graph convolutional neural network architecture

with a pooling layer called attributed graph convolutional neural network with pooling

(AGCP). This architecture takes a weighted, labeled, attributed graph with arbitrary

size and fixed topology as input and predicts the “class labels” as output. AGCP has

an efficient convolution layer followed by a pooling layer that coarsens the graph

by eliminating less important vertices while preserving the global structure of the

graph. In this chapter, we first discuss the overall architecture of the proposed model,

followed by a detailed description of the convolution, pooling, and the prediction

generation layers. We further analyze the complexity of the proposed model, followed

by evaluation techniques.

4.1 Pipeline of the Proposed Model

The pipeline of the proposed model is depicted in Figure 26, there are two main mod-

ules which make up the architecture of AGCP. The first module is a data handler that

collates input data from different sources and pre-processes the data to be passed on

to the AGCP module. The AGCP module takes the input graphs and assigns them

to the corresponding class labels. ENZYME and D&D are pre-processed weighted

datasets that we acquired from (Kersting et al. 2016). We designed the data handler

module to generate three variations of GINA.
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Graph data is the data of vertex and edge information of the graph, and vertex at-

tributes usually contain the attributes of each vertex. We then embed the attribute

vector to the vertices of the graph. We pre-process both graph data, and vertex at-

tributes to convert the data to real values instead of categorical and text variables.

We pass the weighted attributed graph dataset to the AGCP module. The AGCP

module receives the weighted, attributed graph dataset as input and learns the la-

beled graph data and vertex attribute distributions to classify the labels of unseen

graphs. The AGCP module contains a series of convolution layer followed by a pool-

ing layer based on the depth of the proposed neural network specified, followed by a

prediction layer. The prediction layer predicts the probability of input belonging to

the corresponding class labels based on the classification problem.

Figure 26: Overall pipeline of the proposed model.

4.1.1 Data Handler Module

The data handler module was designed to generate three variations of GINA. This

module collates the data from different sources and pre-processes the data to prepare

it for further analysis by the AGCP model. As shown in Figure 26, the data handler

module generates the weighted, attributed graph dataset from the data sources. Fur-

ther, this module assigns weights to the edges connecting the vertices of the graph

and embeds the attributes to the vertices of the graph. We identified two primary

data sources in the data handler module:

1. Graph data: The graph data is a dataset of graphs that have a finite set of
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vertices and edges connecting the vertices. The edges connecting the vertices have

weights associated with them, which determine how strongly two vertices are con-

nected. In this thesis, to generate GINA, we consider the gene interaction network

of patients diagnosed with prostate cancer. We acquired the graph data from Gene-

MANIA Cytoscape plugin (Warde-Farley et al. 2010).

2. Vertex attributes: The vertex attributes are a finite set of correlated attributes

that describe the attributes of the data and help us predict the class labels better.

Modern-day graphs have attributes embedded in the vertices of the graph. Each graph

represents a patient gene interaction network. The vertices of the gene interaction

network are genes. The attributes of genes are clinical features of patients. We ac-

quired the mutation data of patients from cBioPortal (cBioPortal 2012). We consider

different types of mutations, for example, nonsense and missense. The attributes in

the vertices are clinical features such as Reference_Allele, Tumor_Seq_Allele1, and

Tumor_Seq_Allele2. For each variation of GINA, we tried a different set of attributes

to compare the performance.

4.2 AGCP Module

The AGCP module contains the AGCP model, which is the core of our proposed

architecture. This module takes a dataset of weighted, attributed graphs with labels

as input. The graphs are of arbitrary sized with a fixed topology. We convolve a

randomly initialized filter vector over the entire graph topology to define the new

attribute representation of the graph. Then, we update the attribute representation

of a vertex by aggregating the attributes of its k-order neighbors. We then take

the average of all neighboring attributes and their corresponding weights. The new

attribute representation of the graph contains the same number of vertices, but the

attributes present on the vertices are the aggregated average of the k-order neighbors.

The graph with new representation is then passed to an activation function to nor-

malize the graph. Here we use the ReLU activation function. The output graph after

ReLU activation contains the same number of vertices and edges as the original input
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graph, but the attribute vectors on the vertices are different. The output graph might

contain edges and vertices that are not relevant to the classification task. Thus, we

pass the resulting output graph to the pooling layer. To downsample the graph, we

introduce a pooling layer that eliminates the vertices and edges of the graph that are

not statistically relevant to the classification task. The pooling layer preserves the

global structural roles of the graph while reducing the dimensionality. We interleave

multiple pooling layers and convolution layers until optimal performance is achieved.

The number of layers is a design choice. Finally, we apply a prediction generation

layer followed by a softmax activation function to classify the input graphs to cor-

responding class labels. We discuss the detailed working of the AGCP model in the

upcoming section.

Algorithm 1: AGCP

We consider the problem of supervised learning on a dataset of the weighted, at-

tributed graph. Our model has two phases, known as the training phase and the

inference phase. During the training phase, the AGCP model finds the best pa-

rameters with the training dataset. The parameters to AGCP are the filter vector

F, number of filters f and the weight matrix W. The best parameters are found

by forward propagation step of the AGCP algorithm. The error in prediction is

then propagated back to adjust the parameters until convergence. During the in-

ference phase, the classification task of our model consists of predicting the labels

of the graph for which the labels are unknown. Let the training dataset of graphs

be St = {(G1, y1), (G2, y2), (G3, y3) · · · (Gt, yt)}, where t is the number of the train-

ing samples, G is weighted attributed graph, and Y = {y1, y2, y3 · · · yl} is the set

of of l labels and the testing dataset is dataset of graphs without the labels. Let

G = (V,E,W,X) be a graph for which the labels are unknown, the goal of AGCP is

to derive a mapping function f : G 7→ Y ; which predicts the class label yi for a given

graph G. We accomplish this task by devising a convolution layer, represented by

Convolution(), which updates the attribute representations of each vertex by aggre-

gating the attributes of its k-order neighbors. The output of the convolutional layer
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is a graph Gzv with new vertex representations. The output from the convolutional

layer is then passed on to the pooling layer, represented by Pooling(). In the pooling

layer, the objective is to find a coarse graph GC = (VC , EC), where VC ⊆ V is the set

of vertices of the coarser graph and EC ⊆ E is the set of edges in the coarser graph

and |VC | << |V | and |EC | << |E|. The prediction generation layer, represented by

Predict() is a typical fully-connected layer with only a feed-forward neural network.

The detailed working of the convolution layer is given in the upcoming section, fol-

lowed by the pooling layer and prediction generation layer. Algorithm 1 depicts the

working of the AGCP model.

Algorithm 1: AGCP(G)

Input : graph, G; vertex attribute matrix, X ∈ Rn×d; number of layers, l

Output : label, yi of the graph

Parameters: filter, F; number of filters, f ; weight matrices, Wl for layer l

1 for i = 1 to l do

2 Gi
zv = Convolution(G);

3 Gi
C = Pooling(Gi

zv);

4 end

5 yi ← Predict(Gl
C);

6 return yi

4.2.1 Graph Convolution Layer

Graph convolution is the core operation of the AGCP and is executed in the con-

volution layers. The primary purpose of the convolution operation is to analyze the

latent attributes of highly- complex graph data, and to find useful attribute represen-

tations to make accurate predictions efficiently (Henaff et al. 2015). In-depth analysis

of graph data has shown that the vertices in close proximity have similar attributes

and, thus, have the same class labels (Grover & Leskovec 2016). Our proposed graph

convolutional neural network learns the best attribute representation of each vertex of

the graph by aggregating the attributes of the neighboring vertices within the k-order.
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The proposed AGCP model has four main steps in the convolution operation:

1. Linear attribute transformation (Trans()): The linear attribute transformation

is an element-wise multiplication of randomly initialized weighted filter vector

with the attribute vector of each vertex of the entire graph. This operation

helps assign higher weights to more prevalent attribute vector present on the

vertices of the graph and lower weights to the less prevalent vertices. Figure

27 shows an example of linear attribute transformation. The attribute vector

representing transcript exon and reference allele of SYNE1 gene is (28, 1) and

(3, 1) for SYNE2. When multiplying the attribute vector with the filter vector

of (3, 0), the attribute vector of gene SYNE2 is updated to (9, 0) and (84, 0) for

SYNE1.

Figure 27: The new attribute representation of vertices after linear attribute
transformation.

2. Node neighbor aggregation (Aggregate()): AGCP, updates the attribute repre-

sentations of each vertex in a graph, by aggregating the attribute information

of its neighbors in k-order proximity at each convolution layer. We define a

variable k, also known as search depth. AGCP then aggregates the attributes
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of the vertices in the k-order proximity of each vertex by taking the average of

all the attributes descriptors of the neighboring vertices. For example, if k = 1,

we consider the neighbors in first-order proximity of the vertices as explained

in Definition 3.

Figure 28: The new attribute representation of target vertex v3 marked in red is
obtained by aggregating the attributes of its 1-hop neighbors.

The aggregate function can be mathematically explained with the help of Figure

28 and Equation 1 as follows: As shown in Figure 28, let the target vertex be v3.

To aggregate the attribute vector of the vertex v3; we consider the attributes

of vertices within k = 1 proximity of v3. Let the vertices within the 1-order

proximity of vertex v3 represented by N1(v3) and HN1(v3) represent the average

aggregated attribute vector of target vertex v3 and is given by:

HN1(v3) =

(
(xv2 × w32) + (xv1 × w31) + (xv4 × w34)

)
|N1(v3)|

, (1)

3. Vertex information propagation (Propagate()): AGCP propagates the new at-

tribute representations to the next layer of the neural network. These attribute

representations then acts as the input graph to the next layer of AGCP.
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4. Non-linear activation function (σ()): AGCP then applies a non-linear activation

function to the graph propagated from the previous layer. In AGCP, we use the

ReLU activation function.

Algorithm 2: Convolution

Algorithm 2 depicts the working of our convolution layer. The input to our con-

volutional layer is a weighted, attributed graph G; the input attribute vector of all

vertices (xv,∀v ∈ V ); the number of layers l; and the search depth k. The output

is a graph with new vertex representations (Gzv ,∀v ∈ V ). The outer loop of the

algorithm shows the current convolution layer. For k, find the neighboring vertices,

u ∈ Nk(v),∀v ∈ V . At each step in the convolution layer, H i represents the attribute

vector of vertices at the current layer l. At each layer, for each vertex (v,∀v ∈ V ) in

the graph G, the algorithm aggregates the attribute representations of the vertices in

its immediate neighborhood, {Hi−1
u ,∀u ∈ Nk(v)}, into a single vector Hi

Nk(v)
. Note

that this aggregation step depends on the representations generated at the previous

iteration of the outer loop, i − 1, and base case with i = 0. At i = 0, the input

vertex features are represented by vector H0
v. After aggregating the neighboring fea-

ture vectors, AGCP then concatenates the vertices’s current representation, Hi−1
v ,

with the aggregated neighborhood vector, Hi
Nk(v)

, given by the function Concate-

nate(). The concatenated vector is then fed through a nonlinear activation function

σ. In the convolution layer, AGCP propagates the output representations to the next

step of the algorithm Hi
v. We denote the final representations output at layer l as

zv = Hl
v,∀v ∈ V . The graph with new representations Gzv is the output of the

convolution layer. In order to learn useful parameters such as weight matrices Wl,

∀ ∈ 1, ..., l, filter vector F, and, number of filters f , we apply a graph-based loss func-

tion to the output representations. We tune AGCP via stochastic gradient descent to

find the best parameters. The graph-based loss function encourages nearby vertices

to have similar representations.
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Algorithm 2: Convolution(G)

Input : graph, G; number of layers, l; search depth, k

Output : graph with new vector representations, (Gzv , ∀v ∈ V )

Parameters: filter, F; number of filters, f ; weight matrices, Wl for layer l

7 H0
v ← Trans(xv),∀v ∈ V ;

8 for i = 1 to l do

9 for v ∈ V do

10 Hi
Nk(v)

← Aggregate({Hi−1
u ,∀u ∈ Nk(v)})

11 Hi
v ← σ

(
Wi.Concatenate(Hi−1

v ,Hi
Nk(v)

)

)
12 end

13 end

14 zv ← Hl
v,∀v ∈ V ;

15 return Gzv

4.2.2 Graph Pooling Layer

Downsampling is very important in graph analysis ((Vaishnav & Tatu 2016) and

(Nguyen & Do 2014)). We devised a pooling layer in AGCP, which consists of sta-

tistically selecting the genes that aid in the classification of cancer type. The main

function of this layer is to coarsen the graph to produce a subgraph which preserves

the global graph structural information at a different scale. One of the new features

of the AGCP architecture is the pooling layer that consists of statistically eliminating

the vertices. We calculate the information gain of the attribute vectors of each vertex

in a graph, and then set a threshold. If the information gain of a vertex is less than

the threshold, we eliminate that vertex. The threshold information gain is set by

taking the average information gain of all vertices of an input graph.

The inspiration for our pooling layer comes from information theory. In informa-

tion theory, there are two measures of information called entropy and information

gain (Asim et al. 2018). Entropy is a common way to measure impurities in a given

set of samples. Here, impurities refer to attribute vectors that do not contribute to
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the prediction of class labels.

The focus is to find the vertices whose attributes in a given set of training graphs

are the most useful for discriminating between class labels. The information gain of a

vertex helps us determine the most relevant vertices that contribute to the prediction

of class labels, as information gain is the information contained in a vertex. Vertices

that can accurately classify the graph to either of the possible class labels have max-

imal information. Given a graph G = (V,E), let V = {v1, v2, · · · , vn} be the set of

vertices in graph G and Y = {y1, y2, · · · , yl} be the set of class labels. Then, the

information gain IG(v) of a vertex is given by:

IG(v) = −
∑
Y

P (yi) logP (yi) +
∑
Y

P (yi|v) logP (yi|v) , (2)

where P (yi) is the probability of label yi (Azhagusundari & Thanamani 2013).

Algorithm 3: Pooling

Algorithm 3 depicts the working of our pooling layer. The objective of the pool-

ing layer is to produce a coarser graph GC = (VC , EC) from Gzv = (Vzv , E), where

VC ⊆ Vzv is the set of vertices of the coarser graph and EC ⊆ E is the set of edges

in the coarser graph. Also, the number of vertices and edges in the coarsened graph

is less than the number of vertices and edges in the original input graph. That is,

|VC | << |Vzv | and |EC | << |E|. Gzv is the input graph to the pooling layer with the

new representations from the convolution layer.
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Algorithm 3: Pooling(Gzv)

Input : input graph, Gzv = (Vzv , E) with new attribute representations from

the graph convolution layer

Output: Coarser graph, GC = (VC , EC), where, |VC | << |Vzv | and |EC | << |E|

16 Threshold = Average(IG of the input graph);

17 for v ∈ Vzv do

18 if IG(v) < Threshold then

19 prune v and all the edges connected to v;

20 else

21 GC ← Gzv

22 end

23 end

24 return GC

4.2.3 Prediction Generation Layer

The prediction generation layer is a typical fully-connected layer with only a feed-

forward neural network. The input to this layer is a graph GC with a compact

representation of the attributes from the previous layer. The prediction generation

layer predicts the class label from the compact representation given by: GC 7→ yi.

This layer is followed by the Softmax activation function as AGCP allows both binary-

class and multi-class classification.

4.2.4 Forwardpropagation and Backpropagation in AGCP

Figure 29 shows the architecture of the AGCP; we use this figure to describe forward

propagation in AGCP. AGCP accepts a graph G and produces an output label ŷ, since

AGCP learns the parameter weights of the filter function, which helps in labeling

predictions by minimizing the prediction error or cost (Chen 1990). We call this

forward propagation, “learning,” or “training” in machine learning. The prediction

error is then propagated back to adjust the parameters of the AGCP to minimize the
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cost or error.

Figure 29: Forward propagation in AGCP.

Input Layer: The input layer in AGCP takes weighted, attributed graphs with

fixed topology and arbitrary size as input. The data from the input layer are passed

on to the convolution layer.

Convolution Layer: The convolution layer in AGCP receives the graphs from

the input layer. The graphs are analyzed, and a randomly initialized filter function

is applied to form a new attribute representation. Aggregating the attributes of the

neighboring vertices of the original input graph helps the model to recognize and

distinguish the low-level attributes. In Figure 29, we consider the first input graph,

which has a class label 1. After the first convolutional layer, the vertices of the

output graph have a new representation. AGCP has multiple convolution layers. As

the network goes more in-depth, the convolution layers tries to learn the high-level

attributes of the graph.

The model then applies an activation function to the output from the convolution

layer. In this case, we use the ReLU activation function. The output graphs with

new representations are passed to the pooling layer.
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Pooling Layer: The pooling layer takes the graph with the new representations

as input. The model finds the threshold information gain value for each graph and

finds the information gain for each vertex. If the information gain of any given vertex

is less than the threshold value, the model eliminates that vertex, which reduces the

dimensionality of the graph to a different scale. The coarsened sub-graph represents

the global attributes of the original input graph at a different scale.

We interleave multiple convolution layers and pooling layers to analyze both low-

level and high-level graph attributes. The number of layers used is a parameter to

the neural network design. AGCP performs well with three convolution and pooling

layers. After three convolution and pooling layers, the coarse subgraph, which has

high-level attribute representation, is passed on to the prediction generation layer.

Back Propagation: AGCP accepts an input graph G and produces the prob-

ability score for the output label ŷ. The predicted probability score is then used to

calculate the error or cost of classification is calculated using Equation 1. The error

is then backpropagated to update the model parameters such as filter vector, number

of filters, and the weight matrix.

4.3 Complexity Analysis of AGCP

The complexity of an algorithm is the measure of the amount of time and/or space

needed to produce the desired output, as a funciton of the size of the input. AGCP

has two essential phases: training and inference. Additionally, AGCP has back-

propagation using SGD, batch normalization, dropout, and classification using the

sigmoid function. In this section, we explain the complexity of the training and in-

ference phases of AGCP. We report the worst-case complexity by order of input size

and model parameters using the big-O notation. Traditional deep learning models

perform millions of matrix multiplications, convolutions, multiplications, and sum-

mations, which are computationally very expensive. AGCP has a set of parameters

that affect the complexity of training:
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1. The number of the input graphs, t.

2. The number of nodes in the input graph, n.

3. The number of edges in the input graph, m.

4. The number of attributes, d.

5. The number of layers in AGCP; l is a constant.

6. The number of neurons in each layer of AGCP; p is a constant.

7. The number of filters used in the convolution layer of AGCP; f is a constant.

8. The number of epochs for AGCP; e which can be considered as a constant.

9. The activation function used after the convolution layer; a is a constant.

The performance of the AGCP algorithm grows linearly with the number of input

graphs and the nodes and edges of that graph. The other parameters can be con-

sidered as constant and thus not affect the complexity vastly. In big-O terms, the

worst-case running time of AGCP can be notated as O(t × n ×m). We discuss the

training time of our model on GPU and CPU in Section 5.4.

Experimental studies have shown that additional computations such as batch

normalization, dropout, and classification using the sigmoid function take up only

5-10% of the total training time (Zhang et al. 2018). Once the model is trained, and

all the weights are learned, the complexity of inference is O(t × n ×m). The space

complexity of the model is linear to the number and size of the input samples to be

stored, O(t).

4.4 Evaluation of the Proposed Model

We evaluate the proposed model using different evaluation methods and compared the

results with previously published benchmark results. We used three metrics for as-

sessing the accuracy of disease state prediction: ROC, AUC, and Accuracy ((Bishop
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1995) and (Goodfellow et al. 2016)). The model evaluation methods used are dis-

cussed below with the examples using GINA.

4.4.1 Classification Accuracy

Accuracy is the most crucial metric of model evaluation in this thesis. AGCP sup-

ports both binary and multi-class classification problems. In the case of binary-

classification, we can generally categorize the classification into four groups. A true

positive (TP) represents the predicted class label where the actual class label is

predicted correctly as an aggressive cancer type. A false-positive (FP) represents

a prediction which incorrectly predicted an aggressive cancer type instead of non-

aggressive. A false negative (FN) represents a prediction of an aggressive cancer

type as non-aggressive. A true negative (TN) represents a non-aggressive cancer type

predicted as non-aggressive.

Table 2: Categories of prediction for GINA.

Actual disease state

Aggressive Non-Aggressive

Predicted disease state
Aggressive True-Positive (TP) False-Positive (FP)

Non-Aggressive False-Negative (FN) True-Negative (TN)

1. Classification Accuracy: Classification accuracy is the ratio of correct predic-

tions to the total number of input samples (Wallach et al. 2009):

Accuracy =
TP + TN

t
. (3)

2. Precision: Precision is the number of items correctly predicted, divided by

the number of all predictions Equation (4). Precision shows the percentage of
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predictions that are done correctly (Wallach et al. 2009):

Precision =
TP

TP + FP
. (4)

3. Recall or Sensitivity: The recall is the number of items correctly predicted,

divided by the total number of aggressive cancer type Equation (5) (Wallach

et al. 2009). Recall shows the percentage of predictions correctly made by the

classifier as aggressive to the number of all aggressive cancer type:

Recall =
TP

TP + FN
. (5)

4. Specificity: Specificity is the true negative rate or the proportion of negatives

that are correctly identified (Chitra & Seenivasagam 2013):

Specificity =
TN

FP + TN
. (6)

5. F1-Score: The F1-score is the average of the precision and recall, where the

best score is 1, and the worst score is 0. F1-score combines both precision and

recall so it can be used as the overall utility of the model (Wallach et al. 2009):

F1 = 2 ∗ Precision.Recall

Precision+Recall
. (7)

4.4.2 Area Under the Curve

Area Under the Curve (AUC) is one of the most commonly used metrics for evaluation

of deep learning models (Fawcett 2006). AUC is one of the mainly used metric for

binary classification problem performance evaluation. The AUC of a classifier gives

the probability that the classifier ranks a randomly chosen aggressive cancer type

example higher than a randomly chosen non-aggressive cancer type example. Before

defining AUC, let us understand two important terms:
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1. True Positive Rate: We can define True Positive Rate as the number of items

correctly predicted as aggressive, divided by the total number of the sample with

an aggressive cancer type. True Positive Rate corresponds to the proportion

of aggressive cancer type data that are correctly predicted as aggressive, to all

aggressive data points (Fawcett 2006).

2. False-Positive Rate: We can define the False-Positive Rate as the number of FP

/ (FP+TN). The false-positive rate represents the proportion of non-aggressive

cancer types that are incorrectly predicted as aggressive, to all non-aggressive

data points (Fawcett 2006).

Both the False-Positive Rate and true positive rate take values in the range [0, 1].

The ROC curve is a plot between the false-positive rate on the x-axis and true posi-

tive rate on the y-axis. The area under the curve is in the range [0, 1]. A higher AUC

indicates a better performance of the classifier (Fawcett 2006).

In this chapter, we discuss the architecture of AGCP, followed by the working

of our proposed model, complexity, and evaluation of the model. We discuss the

experimental setup and the results of the application of our model on the three

benchmark datasets in the following chapter. We also give a comparison of our model

with two other state-of-the-arts graph classification models.
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Chapter 5

Results and Comparative Analysis

In this chapter, we present the classification tasks we defined with a detailed discussion

of the datasets, followed by the performance evaluation of the proposed model in terms

of classification accuracy and AUC. We further report the wall-clock training time in

minutes until convergence of our method. In several experiments on the datasets, we

demonstrate the performance of our model on a set of hyperparameters.

5.1 Experiments and Results

In this section, we explain different applications of our proposed model on different

datasets, following which we introduce two baseline models that we are using to

compare the performance of our proposed model.

5.1.1 Datasets

Here, we discuss different datasets that we use in our research. We begin by in-

troducing ENZYME, followed by D&D and GINA which is a dataset of weighted

attributed graphs that we generated to classify cancer types to either aggressive or

non-aggressive.

1. ENZYME: ENZYME is a dataset of tertiary protein graph structures obtained

from (Borgwardt et al. 2005), which consists of 600 enzymes from the BRENDA

enzyme database (Sen et al. 2008). In this case, the task is to correctly assign

each enzyme to one of the six Enzyme Commission Numbers (EC number), top-

level classes, summarized in Table 3. Out of 16 attributes, the ones that help us
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distinguish EC numbers are catalyzed reaction rate, kinetics, substrates/prod-

ucts, inhibitors, cofactors, activators, structure, and stability.

Table 3: Top-level EC Numbers.

Class Reaction catalyzed

EC1 Oxidoreductases To catalyze oxidation/reduction reactions; transfer

of H and O atoms or electrons from one substance

to another.

EC2 Transferases To transfer a functional group from one substance

to another. The group may be methyl-, acyl-,

amino- or phosphate group.

EC3 Hydrolases To help the formation of two products from a sub-

strate by hydrolysis.

EC4 Lyases To help in non-hydrolytic addition or removal of

groups from substrates.

EC5 Isomerases To help in intramolecular rearrangement, such as

isomerization changes, within a single molecule.

EC6 Ligases Join together two molecules by the synthesis of

new C-O, C-S, C-N or C-C bonds with the simul-

taneous breakdown of ATP.

2. D&D: D&D dataset consists of 1,178 protein structure graphs, which are either

enzymes or non-enzymes. The task is to classify a protein as enzyme or non-

enzyme, which is essentially a two-class classification problem. We embedded
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36 attributes to the vertices of the graph. Some of the most useful attributes

for distinguishing enzymes from non-enzymes are secondary-structure content,

amino acid frequencies, number of disulfide bonds, and size of the largest cleft.

3. GINA: GINA is a dataset consisting of 498 graphs that we have generated to

study the interactions of genes in a patient diagnosed with prostate cancer, with

or without mutations. We aim to predict the aggressiveness of the disease, in

a given patient. We are leveraging the gene expressions as well as the patient’s

clinical attributes to make more accurate predictions.

We obtained the genetic mutation data of prostate cancer patients, along with

their clinical attributes and gene expression from cBioPortal (cBioPortal 2012).

We then loaded the genetic mutation data into the GeneMANIA Cytoscape

plugin (Smoot et al. 2010) to generate the graph-structured data with weighted

edges. Each graph, thus, represents the gene interaction network of a patient.

After obtaining the graph-structured data, we embeded the clinical attributes

of the patient to the vertices of their respective gene interaction network.

A gene interaction network is a set of vertices representing genes connected by

edges representing functional relationships amongst them. The edges are physi-

cal interactions, meaning the two given genes are thought to interact with their

gene products such as RNA or proteins. In this thesis, we are interested in phys-

ical interactions between two genes in terms of their protein-protein interaction

study. These data are collected from primary studies found in protein interac-

tion databases, including BioGRID (Stark et al. 2006) and PathwayCommons

(Cerami et al. 2010).

Each vertex of the gene interaction network has a real-valued attribute vector

with n dimensions. In this thesis, we generated three variations of GINA:

GINA I with 24 attributes, GINA II with 25 attributes, and GINA III with

1 attribute in the vertices of the gene interaction network. The attributes

of different variations of GINA is a combination of clinical attributes and gene

expression data. Each graph has an associated label, which is the aggressiveness
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of the cancer type of a particular patient. The classification task is essentially

a binary classification problem to classify the disease state of the tumor to an

aggressive or non-aggressive type. Patients who have a Gleason score of seven

or above are considered to have an aggressive cancer type, and a Gleason score

below seven is considered to be a non-aggressive cancer type. Figure 30 shows

a gene interaction network of the proposed labeled, attributed GINA, with n

attributes embedded to each of the vertices. The label is the state of the disease

and can be either aggressive or non-aggressive cancer type.

Figure 30: Schematic view of an attributed gene interaction network with label.
The gene interaction network has been created using GeneMANIA Cytoscape plugin

(Warde-Farley et al. 2010).

Data pre-processing: Data pre-processing is an essential step in any deep

learning task; this step prepares raw data for further processing. The clinical at-

tributes are categorical, and we converted them to real-valued vectors using one-hot

encoding (Bishop 1995) for GINA I, GINA II, and GINA III. ENZYME and D&D

dataset were already pre-processed and were obtained from (Zhang et al. 2018).

In this thesis, we use one-hot encoding (Bishop 1995) to convert the raw categorical

attributes into real-value vectors on GINA I, GINA II, and GINA III. ENZYME and

D&D dataset were already preprocessed and are obtained from (Zhang et al. 2018).
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We created the following datasets with GINA, to study the potential variations in

performance:

1. GINA I: This dataset consists of a weighted gene interaction network with 24

real-valued clinical attributes embedded as the vertex attributes.

2. GINA II: This dataset consists of a weighted gene interaction network with 24

real-valued clinical attributes and additionally, one gene expression of each gene

embedded as the vertex attributes. Thus, this dataset contains 25 attributes in

total.

3. GINA III: This dataset consists of a weighted gene interaction network with

only one gene expression value embedded as the vertex attribute.

The statistics of the datasets are given in Table 5.

Table 5: Dataset statistics.

Dataset Number

of

graphs

Avg

number

of edges

Avg

number

of

vertices

Number

of

classes

Number

of At-

tributes

GINA I 498 204.60 302.40 2 24

GINA II 498 204.60 302.40 2 25

GINA III 498 204.60 302.40 2 1

D&D 1,178 1921.60 284.40 2 36

ENZYME 600 124.30 32.60 6 16
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5.1.2 Data Splitting

We have divided all five datasets: D&D, ENZYME, and the three variations of GINA

into training and testing datasets. Following conventional settings, we performed a

10-fold cross-validation (Browne 2000). In the 10-fold cross-validation, we divide the

dataset into 10-equal folds or parts. We used one of the fold as the testing set and the

union of remaining folds as the training set and repeated the experiments for 2 times;

thus, 20 runs per dataset. We repeat the process of choosing a training and testing

data from different folds and calculating the testing accuracy for 20 runs per dataset.

The final classification accuracy is the average testing accuracy of all 20 runs.

5.1.3 Baselines

In this work, we compare AGCP with two other baseline methods: graph convolu-

tional networks (GCN) (Kipf & Welling 2016) discussed in Section 3.1.2, and deep

graph convolutional neural network (DGCN) (Zhang et al. 2018) discussed in Sec-

tion 3.2.2. Both models work well with binary-class and multi-class classification

problems.

5.2 Performance Evaluation in terms of Classifica-

tion Accuracy

We implemented the proposed model and baseline models using PyTorch (Fey et al.

2018) and Tensorflow (Abadi, Martín and Barham, Paul and Chen, Jianmin and

Chen, Zhifeng and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghe-

mawat, Sanjay and Irving, Geoffrey and Isard, Michael 2016). Table 6 shows a sum-

mary of the mean classification accuracy and the standard deviations after 20 runs.

In each run, we train AGCP for 400 epochs, GCN, and DGCN for 300 epochs. The

results indicate that the proposed model performs marginally better over the baseline

models. As shown in Table 6, for GINA I, our model performs slightly better than

GCN and considerably better than DGCN. For GINA II, AGCP outperforms GCN
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and DGCN. On D&D, AGCP outperforms GCN by a considerable margin and DGCN

by a slight margin. On ENZYME, AGCP gives better classification accuracy than

DGCN and GCN by a slight margin. On the other hand, on GINA III, GCN outper-

forms AGCP by a slight margin, and AGCP outperforms DGCN by a considerable

margin.

We anticipate that the improved performance of our model is due to the proposed

convolution layer better at capturing the correlated attributes present on the vertices

and its neighbors. The pooling layer is also able to select the graph vertices that

constitute for better classification.

Table 6: Result summary in terms of classification accuracy.

Method AGCP GCN DGCN

GINA I 75.30± 2.54 74.40± 1.90 70.67± 1.20

GINA II 79.60± 1.34 73.20± 2.30 68.00± 1.40

GINA III 70.20± .70 72.60± 0.64 62.90± 0.56

D&D 81.98± 0.87 72.40± 0.60 79.30± 0.90

ENZYME 72.98± 0.87 70.40± 0.60 72.37± 0.94

Performance Evaluation on GINA: Here, we discuss the performance of

AGCP, GCN, and DGCN on all three variations of GINA. We provided different

variations of GINA as input to the model. We trained the proposed model and the

baseline models with the best hyperparameters for each model after repeated experi-

ments. We provide more details of the experiments in Section 5.5.1. GINA II contains

gene interaction networks of prostate cancer patients, along with the twenty-five clin-

ical attributes of genetic mutations. Compared to the other two variations of GINA,
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GINA II has richer attributes present in the vertices of the gene interaction networks.

AGCP yields the highest average classification accuracy of 79.60% in classifying GINA

II, compared to GCN and DGCN. In comparison with the three variations of GINA,

AGCP on GINA II gives the highest accuracy. The increase in classification accuracy

in GINA II is accounted for by the rich attributes present in graph vertices. We can

also infer that the clinical attributes of mutations along with gene expression data

aids in the classification of aggressiveness of cancer. AGCP yields higher accuracy

than DGCN by 11.60% (79.60% - 68.00%) and GCN by 6.40% (79.60% - 73.20%).

AGCP on GINA I give the second-best results in terms of accuracy followed closely

by GINA III. GINA I contains all twenty-four genomic mutation attributes of the

patients diagnosed with prostate cancer. AGCP classifies the aggressiveness of the

tumor with an average accuracy of 75.30%.

GINA III contains only one attribute, which is gene expression values of a gene

in the network as vertex attributes. Analyzing the results ascertain that the clinical

attributes, along with the gene interaction network, can aid in the classification of

the aggressiveness of cancer. AGCP on GINA III achieves 70.20% accuracy with

GCN, which is the best in comparison to AGCP and DGCN. The results on all three

variations of GINA indicate that the accuracy of our proposed model increases with

an increased number of attributes, which is ideal for analyzing real-life graph data

since the graphs used in day-to-day life have a high number of attributes.

Performance Evaluation on D&D: D&D is the largest dataset with which

we conducted our experiments. AGCP shows the highest accuracy for this dataset,

which indicates that the model performs better with more data samples as more data

samples help the model to learn the attributes better. To give more quantitative

insight into the performance trends, AGCP performs 9.58% (81.98% - 72.40%) better

in terms of classification accuracy than GCN and 2.65% (81.98% - 79.30%) better

than DGCN.

Performance Evaluation on ENZYME: On ENZYME, the classification ac-

curacy of AGCP is considerably better than the other two models; DGCN and GCN.

This indicates that our proposed model works very well on multi-class classification
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problems, even with a limited amount of data for each class. To provide more quan-

titative insight into the performance trends, AGCP yields a higher accuracy of 2.58%

(72.98% - 70.40%) better than GCN and 0.61% (72.98% - 72.37%) better than DGCN

in terms of classification accuracy.

5.3 Performance Evaluation in terms of AUC

We plotted the ROC curve for AGCP, GCN, and DGCN on GINA II and D&D. GINA

II has rich attributes in the gene interaction network. This dataset also achieves better

classification accuracy than the other two GINA; thus, we plotted ROC for GINA II

only amongst the three variations. Figure 31 plots the ROC curve for AGCP, GCN,

and DGCN on GINA II, and Figure 32 plots the ROC for AGCP, GCN, and DGCN

on D&D. Table 8 gives the AUC for AGCP, DGCN, and GCN on D&D and GINA

II.

Figure 31: ROC for GINA II.

Figure 31 plots the ROC for AGCP, GCN, and DGCN on GINA II. From the

ROC analysis, it is evident that AGCP (AUC = 0.83) outperforms GCN (AUC =

0.75) and DGCN (AUC = 0.71) by a significant margin. The better performance

in classification is accounted for by the efficiency of AGCP’s convolution layer that
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we propose, which is better at capturing the statistical patterns hidden in the graph

structure.

Figure 32: ROC for D&D.

Figure 32 plots the ROC for AGCP, GCN, and DGCN on D&D. Observing the

ROC curve it is evident that AGCP (AUC = 0.81) outperforms GCN (AUC = 0.77)

and DGCN (AUC = 0.73) by a significant margin even on larger datasets.

Table 8: Summary of AUC for AGCP, GCN and DGCN.

Dataset AGCP GCN DGCN

GINA II 0.83 0.75 0.71

D&D 0.81 0.77 0.73

Evaluation of AGCP using Precision, Recall/Sensitivity, Specificity and

F1-score: Precision, specificity, F1-score, and recall/sensitivity are the commonly

used statistical measures to illustrate the medical diagnostic classification and pri-

marily used to enumerate the performance and consistency of the classifier (Chitra &

Seenivasagam 2013). Sensitivity/recall evaluates the classifier for correctly detecting
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an aggressive cancer type. Specificity measures how the proportion of patients clas-

sified as non-aggressive cancer types can be correctly ruled out. Precision shows the

percentage of predictions accurately made by the classifier. Table 9 shows the preci-

sion, recall/sensitivity, F1-score, and specificity of binary-classification using AGCP

on GINA I, II, III, and D&D datasets. The performance of AGCP on all three vari-

ations of the dataset is a proof-of-concept experiment, which shows that “it works.”

We can predict the aggressiveness of cancer by analyzing the gene interaction network

and embedded attributes.

As observed in Table 9, on GINA I dataset, AGCP classifies the cancer types as

aggressive or non-aggressive with a precision of 64%, a recall of 69%, the specificity

of 71% and F1-score of 66%. AGCP performs comparatively well in distinguishing

the aggressive cancer type from non-aggressive types. On the other hand, on GINA

II, AGCP classifies the cancer types as aggressive or non-aggressive with a precision

of 79%; it performs marginally well in distinguishing the aggressive cancer type from

non-aggressive types. On GINA III, AGCP can classify the cancer types as aggressive

or non-aggressive with a precision of 33%, a recall of 30%, a specificity of 35%, and F1-

score of 30%. AGCP can perform considerably well in distinguishing the aggressive

cancer type from non-aggressive types.

The result of classification on D&D is shown in Table 9. AGCP model can classify

the graphs as an enzyme or non-enzyme with a precision of 65%, a recall of 77%, a

specificity of 66%, and an F1-score of 66%.
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Table 9: Results of AGCP for binary classification.

Dataset Precision Recall F1-score Specifi-

city

GINA I 0.64 0.69 0.66 0.71

GINA II 0.82 0.62 0.71 0.79

GINA III 0.33 0.30 0.31 0.35

D&D 0.65 0.77 0.70 0.66

Figure 33 shows the precision-recall curve for GINA I, GINA II, GINA III, and

D&D datasets. For ease of representation, we use 0 for non-aggressive cancer type and

1 for aggressive cancer type. The graphs are the plot for different threshold values,

starting from 0.1 to 1.0, along with precision and recall for each class at different

threshold values. Based on the user requirements, we can adjust the threshold to

produce results that are desirable. For example, at threshold .4 for GINA II precision

and recall for aggressive cancer type is low. Recall measures the percentage of actual

aggressive cancer types that were correctly classified as aggressive cancer types as we

increase threshold, the false positive rate decreases, but false-negative rate increase.

As a result, precision increases, while recall decreases.
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((a)) GINA II ((b)) D&D

((c)) GINA I ((d)) GINA III

Figure 33: The precision-recall graphs for (a) GINA II, (b) D&D , (c) GINA I, and
(d) GINA III datasets.

5.4 Training Time per Run

We report the mean training time per run (forward propagation, backpropagation,

and cross-entropy error calculation) for AGCP. The model is trained using a CPU and

a GPU. Figure 34 compares the training time with each type of microprocessor. We

used D&D to calculate the training time per run and varied the input graph sample

size from 200 graphs to 1200 graphs. We used the following sets of hyperparameters:

0.001 learning rate, learning rate decay of 0.01, momentum 0.99, 0.5 dropout rate,

and a batch size of 64 for 400 epochs. We experimentally proved that the training

time and the number of graphs are directly proportional, that is, training time linearly

scales as the number of graphs. As expected, the training time taken on GPU is much
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lower than the CPU due to the TensorFlow cuDNN optimization (Chen et al. 2015).
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Figure 34: Time per run for different graph sample sizes.

5.5 Experiments with Hyperparameters

Hyperparameters are a set of variables that need to be set before applying a deep

learning model to a dataset. The hyperparameters vary depending on the dataset and

the classification problem (Goodfellow et al. 2016). Therefore, we need to find the

hyperparameters that work well with our proposed model and the targeted datasets,

such as GINA, ENZYME, and D&D. We have used the following hyperparameters in

this thesis:

Learning Rate: Deep neural networks are trained using an algorithm called

stochastic gradient descent (SGD). SGD is an optimization algorithm that calculates

the error gradient for the current state of the model by comparing the predicted and

actual class labels from the training dataset and then update the weights of the model
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using the backpropagation of error to update the state of the algorithm. The learning

rate is the amount by which the state of the model is updated during training to

produce the results. It is often a positive value and range between 0.0001 and 1.0.

For example, a learning rate of 0.1 means that weights in the network are updated

0.1×(weight error). In this thesis, we manually tune AGCP to find the best learning

rate (Bengio 2012).

Batch Size: While training a neural network, passing one sample at a time is

computationally costly. Thus it is essential to define the number of samples to work

through before updating the internal model parameters. This is called setting the

batch size. In this thesis, we performed experiments with batch sizes of 16, 32, and

64.

Training Epochs: The number of epochs is a hyperparameter that defines the

number times that the neural network training will work through the entire training

dataset to produce the best results. While we train our neural network with SGD

batch by batch, we update the state of the neural network to minimize the error.

Each batch is passed multiple times to reduce the error of prediction. The number of

passes each batch makes is called number of epochs. Thus, one epoch means that each

batch in the training dataset has had a chance to update the state. In this thesis, we

performed experiments with 100, 200, 300,400, and 500 epochs.

Regularization To avoid overfitting in AGCP architecture, we included a dropout

layer. At every iteration during training, the dropout layer selects some nodes at ran-

dom and removes them along with their connections. In our model, the dropout is

only applied to the prediction generation layer. The neural units with a probability

value of less than 0.5 are removed (Srivastava et al. 2014). We found out experimen-

tally that the regularization does not affect the performance in terms of accuracy but

avoids overfitting.
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5.5.1 Results and Discussion of Hyperparameter Tuning

We manually tuned the hyperparameters for AGCP, GCN, and DGCN on each of

the five datasets. We tuned the hyperparameters on one random splitting of training

(90%) and testing (10%) data to select one pair of hyperparameters for each dataset to

use consistently in all ten series of cross-validations instead of tuning independently

for ten series of datasets. Following the work done by (Kipf & Welling 2016), the

learning rates are selected from 0.1, 0.01, 0.001, and 0.0001 and training epochs from

100, 200, 300, 400, and 500. The combination, which both shows the convergence of

optimization and small overfitting, is selected. Table 11 shows the hyper-parameters

we adopted to evaluate the model. Figures 35 and 36 plot the changes in the test and

training accuracies and the cross-entropy error of AGCP on GINA II as the model

learns, respectively. Based on the performance in terms of accuracy of the model, we

trained AGCP on GINA II for 400 epochs.

Figure 35: Plot of AGCP model performance with respect to the number of epochs.

Figure 35 clearly shows that the accuracy steadily increases until 100 epochs, and

from 200 epochs, the accuracy gradually increases until it gives improved results, after

400 epochs the model accuracy does not change significantly.

Figure 36: Plot of AGCP model error with respect to the number of epochs.
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Figure 36 clearly shows that the error steadily decreases until 100 epochs, and

from 200 epochs, the error gradually decreases until it reaches minimum values.

We also plotted the performance of AGCP on GINA II with respect to the different

learning rates we selected for experimenting with. Figure 37 shows the variation in

performance with respect to 500 epochs for different learning rates.

Figure 37: Plot of AGCP accuracy with respect to different learning rates on GINA
II.

Figure 37 shows that the accuracy oscillates for higher learning rates such as 1.0

and 0.1. The model hardly learns anything for learning rates that are too low, such

as 0.0001. We chose 0.1 to train AGCP on GINA. Likewise, for GCN and DGCN,

we found the best number of epoch and learning rates on all datasets. The results

are summarized in Table 11. Due to the larger size of this dataset compared to the

others, the model converged to optimization without overfitting the data at a higher

number of epochs compared to other datasets.

Annealing the Learning Rate: In this thesis, we did experiments with an-

nealing of learning rate over time as follows:
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Dataset GINA I GINA II GINA III D&D ENZYME

Hyperparameters for AGCP

Learning
rate

0.1 0.1 0.1 0.01 0.01

Number of
epochs

400 400 400 500 300

Hyperparameters for GCN

Learning
rate

0.01 0.01 0.01 0.01 0.01

Number of
epochs

300 300 300 400 300

Hyperparameters for DGCN

Learning
rate

0.0001 0.0001 0.0001 0.001 0.001

Number of
epochs

300 300 300 500 300

Table 11: Summary of hyperparameters for AGCP, GCN and DGCN.

1. Decay: Learning rate decay helps slowly reduce the learning rate of the algo-

rithm and helps it to converge faster. Figure 38 shows that the desired accuracy

is achieved within 20 epochs rather than 100 to 200 epochs.

2. Momentum: Momentum accelerated the learning rate by smoothing the pro-

gression of the learning rate. We selected the best learning rate for AGCP,

GCN, and DGCN and tried to ease the learning by applying momentum values

(0.50, 0.60, 0.80, 0.90, 0.99). We experimentally found that the performance is

accelerated by 1.85% for AGCP, 1.05% for GCN, and 1.09% for DGCN when

we applied a learning momentum of 0.99 for all three models.
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Figure 38: Plot of AGCP accuracy variation with respect to the learning rate,
momentum and decay on GINA II.

Batch Size: We performed experiments with batch sizes 64, 32 and 16. We

experimentally found that the batch size of 64 gives the best performance and is

plotted in Figure 39.

Figure 39: Plot of AGCP accuracy variation with batch size of 64 on GINA II.

The performance changes with respect to the number of hidden layer l are ana-
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lyzed. In several experiments, the results show that the best l to use is 3. We report

that 3 layers give a boost in accuracy by 5− 7%, compared to hidden layer size of 2,

and beyond 3, the performance gave prohibitively diminishing returns. We used 32

neural units in each hidden layer and prediction generation layer.

The performance changes with respect to the input search depth, k is also analyzed.

For AGCP implemented on GINA II, we found that setting k = 2 provided a consis-

tent boost in the accuracy of around 8−10% on average compared to k = 1. However,

increasing k beyond 2 gave marginal performance (0− 4%), while increasing the run-

time by a large factor.
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Figure 40: Comparison of accuracy and runtime in seconds with respect to search
depth k.

5.5.2 Implementation and Tools

In this section, we discuss the tools that we have used in the implementation of

AGCP. For DGCN implementation, the code was based on the work of (Zhang et al.

2018). For GCN implementation, the baseline architecture was based on the code
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by (Kipf & Welling 2016). Most of the unique contributions were applying GCN

and DGCN on GINA to classify the aggressiveness of cancer and tuning the vari-

ous hyperparameters. Tensorboard, a graphical visualization using TensorFlow, was

used for monitoring and assessing convergence. The code is available for reference at

https://github.com/SushaSureshh/AGCP. The environment, followed by the devel-

opment tools, are explained below.

Testing environment

1. Operation system: 64-bit Windows 10 Enterprise Edition, version 10.0.17763

2. System type: x64 based processor

3. CPU: Intel core i7-4790 with 3.6GHz frequency

4. RAM: 16 GB

5. GPU: NVIDIA Pascal GPUs (12 GB)

Development Tools

1. Languages used: Python (3.5) and Python (3.7)

2. Development tools: PyTorch (1.2), Tensorflow (>0.12), Keras (2.2.4-tf), Net-

workX, Matplotlib
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Chapter 6

Conclusion and Future work

From social networks to biological networks, graphs are a natural way to represent

a diverse set of real-world data. We presented AGCP, an efficient variation of con-

volutional neural networks (CNN), which operate directly on weighted, attributed

graphs. The architecture of AGCP has a linear filter function that convolves over the

fixed topological structure of a graph to encode the representation of both local and

global attributes. Convolution is followed by a pooling layer that coarsens the graph

while preserving the global structure of the original input graph using information

gain. In several experiments on the bioinformatics datasets, we empirically proved

that AGCP yields better results in terms of performance accuracy relative to the

previously proposed models by a considerable margin.

6.1 Summary of Contributions

Below is a summary of the significant contributions made throughout this research:

Novel paradigm of supervised classification of graph data. We pro-

posed a novel supervised classification model called AGCP that works well on graph-

structured data generated from non-Euclidean or irregular domains. Our proposed

model works well on a dataset of weighted, attributed graphs with arbitrary size and

fixed topology. The proposed model performs better in terms of accuracy than the

two other benchmark models in graph classification by a significant margin.
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New Pooling Strategy for weighted, attributed graph coarsening. Down-

sampling is very important in any machine learning task. We proposed a pooling layer

that downsamples the input graph and then generates a sub-graph with vertices and

edges that are the most relevant for the classification problem.

Applied the proposed model to classify the aggressiveness of prostate

cancer based on mutation data. We generated a weighted, attributed graph

dataset called GINA with three different variations to predict the aggressiveness of

Prostate cancer. We used the proposed model in the classification of the aggressive-

ness of prostate cancer.

Applied the proposed model to classify the six top-level EC numbers.

The proposed model is also used in the multi-class classification problem to classify

the tertiary graph structures to 6 top-level enzyme numbers using ENZYME and

binary classification problem to classify the protein structures to either enzymes or

non-enzymes.

6.1.1 Conclusions on Supervised Classification by the Pro-

posed Model AGCP

Our research objective was to design an efficient variant of the graph neural network

that works well on the weighted, attributed graph data. We experimentally proved

that the model we proposed in this research performs better than the two other

existing models in terms of classification accuracy and ROC. We conducted multiple

experiments to conclude that our model performs well with the more relevant dataset.

We experimentally showed that the quality of graphs is vital in better performance

of the supervised classification model that we proposed. The model performance also

increases with an increased number of relevant attributes. Our model performs well

for both binary-class and multi-class classification, while still comparing favorably in

terms of efficiency (training time).
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6.2 Future Work

Although our proposed model works well on attributed, weighted graphs, there are

some tasks that researchers would like to perform in the future.

Quality of graph dataset: The performance of the model that we proposed

depends on the quality of the graph data, which is evident from the performed ex-

periments.

Directed graphs: The model we proposed currently does not naturally support

directed graphs. The solution is representing these directed graphs as undirected

bipartite graphs. We would like to conduct more in-depth experiments on directed

graphs in the future.

Applications: Despite the applications of AGCP on graph classification demon-

strated in this research. We would like to apply the proposed model on node classifica-

tion, network embedding, graph generation, and spatial-temporal graph forecasting,

node clustering, link prediction, and graph partitioning. We would also anticipate

applying AGCP on domains such as computer vision, natural language processing,

traffic analysis, document classification, target interactions, disease-gene associations,

and recommendation systems.

Multi-class classification: Even though the proposed model works marginally

well for multi-class problems, we need to acquire and conduct more experiments to

understand the limitations of the proposed model and to improve the performance

for multi-class classification problems.
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