University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

11-29-2019

Automated Generation and Integration of AUTOSAR ECU
Configurations

Usha Sreeram
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Sreeram, Usha, "Automated Generation and Integration of AUTOSAR ECU Configurations" (2019).
Electronic Theses and Dissertations. 8149.

https://scholar.uwindsor.ca/etd/8149

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8149?utm_source=scholar.uwindsor.ca%2Fetd%2F8149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Automated Generation and Integration of AUTOSAR ECU
Configurations

By

Usha Sreeram

A Thesis
Submitted to the Faculty of Graduate Studies
through the Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

© 2019 Usha Sreeram

Automated Generation and Integration of AUTOSAR ECU Configurations

by

Usha Sreeram

APPROVED BY:

T. Bolisetti

Department of Civil and Environmental Engineering

B. Balasingam

Department of Electrical and Computer Engineering

M. Khalid, Advisor
Department of Electrical and Computer Engineering

November 27 2019

Author’s Declaration of Originality

| hereby certify that | am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s
copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other
material from the work of other people included in my thesis, published or otherwise, are fully
acknowledged in accordance with the standard referencing practices. Furthermore, to the extent
that 1 have included copyrighted material that surpasses the bounds of fair dealing within the
meaning of the Canada Copyright Act, | certify that | have obtained a written permission from the
copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

| declare that this is a true copy of my thesis, including any final revisions, as approved by
my thesis committee and the Graduate Studies office and that this thesis has not been submitted

for a higher degree to any other University or Institution.

Abstract

Automotive Open System Architecture (AUTOSAR) is a system-level standard that is
formed by the worldwide partnership of the automotive manufacturers and suppliers who are
working together to develop a standardized Electrical and Electronic(E/E) framework and
architecture for automobiles. The AUTOSAR methodology has two main activities: system
configuration and the Electronic Control Unit (ECU) configuration. The system configuration is
the mapping of the software components to the ECUs based on the system requirements. The ECU
configuration process is an important part of the ECU software integration and generation. ECU
specific information is extracted from the system configuration description and all the necessary
information for the implementation such as tasks, scheduling, assignments of the runnables to tasks
and configuration of the Basic Software (BSW) modules, are performed. This activity allows the
ECU to modify the configuration parameters based on the vendor-specific requirements. Due to
the high complexity and redundancy of this process, it has to be supported by different tool-related
editors that can automatically generate source files like *.c and *.h for the configuration. In this
thesis, we propose a method to automate the ECU configuration process for AUTOSAR. We use
configuration templates written in xtend programming language along with a BSW generator tool
developed at APAG Elektronik. This tool can extract the configuration parameters and
automatically generate the required ECU module configuration. The Watchdog module will be
used as an example to generate and integrate the ECU configuration. This enables the seamless
generation of the software configurations from the system level requirements to the software
implementation and therefore ensures consistency, correctness, cost efficiency and reduces the

work done by the developer to generate the configuration.

Acknowledgments

With utmost sincerity, | express my gratitude and respect to my advisor Dr. M. Khalid, who
gave me the wonderful opportunity to work under his supervision and inspired me to work with

honesty, integrity, and discipline.

I would like to thank Mitacs for supporting this work through the Mitacs Accelerate program.

Also, APAG Elektronik for funding and supporting my research.

I would also like to thank my committee members Dr. T. Bolisetti and Dr. Balasingam, who
provided me with insightful suggestions to improve my research.

| would like to dedicate my work to my parents, as their ever-encouraging faith has kept me

going and gave me the strength to overcome any obstacles that have come my way.

Table of Contents

Author’s Declaration of Originalityc.ccooiiiiiiii e, ii
N 01 1 =Tt PRSPPI v
ACKNOWIBAGMENTS. ...ttt et s e e e s b e et e e saeeesbeearaeereeas %
LiSE OF TaBIES ... viii
IS A0 o U =t PSPPSR IX
List OF ADDIeVIatioNS.........ooiiiiii Xi
(@4 gF=T o (= gl R 104 oo 11 Tod £ o] o ISR 1
1.1 MOTIVALION ..ottt 1
I © 1 o] 101 1 Y- SRS 2
130 THESIS OULHNE ..ot 2
Chapter 2. BaCKOIOUNG.........ccuiiiii ittt na e snae s 4
2.1 AUTOSAR ettt 4
2.2. AUTOSAR Methodologycccooiiiiiiiiie i 9
2.3. AUTOSAR Extensible Markup Languagecccocererirenininnenenese e 12
2.4, INtroduction t0 XEENMcoviiiiiiiiiiiee s 12
2.5, Related RESEAICNcciiiiiiciee e 14
Chapter 3. AUTOSAR ECU ConfigurationsS...........cccocveiiieeiieiie e see e 17
3.1, Configuration CIASSESccuciieiiiiieiieeie et 18
3.2. Configuration Metamodelccoovveiiiiiiicie e 21
3.3, ECUC Parameter Modelccoooiiiiiiiiiicceeee e 22
34, ECUC MOGEL.....coiiiiiiicieeeee e e 22
3.5. Module Configuration Template (MCT)ccccooviieiiieniiiiecieceee e 25
Chapter 4. Automated Generation of ECU Configurations for Watchdog Timer 26

Vi

4.1. Watchdog Timer in AUTOSAR.......ooiiiee et 26

4.1.1. Watchdog Driver MOQUIEcccuiiiiiieiieee e 26
4.1.2. Watchdog Interface Moduleccoooveiiiiiiiccece e 27
4.1.3. Watchdog Manager MOAUIEc.cooviieiiiiiei e 28

4.2. Module Configuration desCriptioncccoceviveiiiiiesieeie e 31
4.3, ECUC MOEL......ciiiiiiiee e 32
4.4. Module Configuration Templatecccooviveiieieiceseee e 39
N = 1 T 1o Yo SR 47
Chapter 5. Functional Testing and Evaluationcccccccooiieiiiiiinie e 55
5.1. Auto-Generate SOUICE COUE........cccoiiiiiiiieieieie e 55
5.2, Tests Cases for the BSG 100cccociieiiiiiiiiicceeeese e 56
5.3. Approximate Time and CoSt COMPAFISONS........cccereririririeieie e 64
Chapter 6. CONCIUSION......cc.iiiiiiie it e e s be e s e e etee s 65
6.1, SUMIMAIY .ot 65
6.2, FULUIE WOIK ..o 66
o] (= (=] o0 TRS 67
Appendix A. AUTOSAR Methodology 4.4 ..o 69
Appendix B. Executable Java COOE..........cccueiiiriieese e 70
Appendix C. BSG Class QIagramcocuiiiiiiiieiie e 72
RV = B [0 0] SRR 73

vii

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

Table 5.1.

List of Tables

Wdg module-specific information [11]........cccoeieiiiiiiiiniiieecee e 27
Wdglf module specification information [12]ccccoooeviieiiiiie i 28
WdgM module-specific information [13]ccccceooeviiiiiiieiiee e 28
WdglfVersionInfoApi sSample [11] ..o 31
ECUC model auxiliary fUNCIONScccoviiieiieicecee e s 34
List of auxiliary functions for formatting the output source code 44
Feedback inthe 10g file ... 53
TAKE CASES ..ttt b bbbttt 57

viii

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 2.9.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.

Figure 4.5.

List of Figures

AUTOSAR AICHITECIUIE......eotiiiiiiiisieeeee e 4
BaSIC SOTIWAIE ... 5
AUTOSAR MOTUIES [9] ..o 6
Interfaces defined by AUTOSAR [9] ..ccveiveiiiiiiece e 8
Overview of AUTOSAR Methodology (version 3.2[16])ccccevererervnnnnnns 10
AUTOSAR development process [16]ccevveveeieeieerieiiie e seesie e 10
Xtend example — Attributes a — xtend class, b — generated Java code 13
Xtend example — CONSIIUCIOIS.........civiieiiecie e 14
IMBENOUS ... bbb 14
ECUC PIrOCESS ... vttt sttt ettt e s e e e nee s 17
Pre-Compile time configuration Chain............c.cocviiiiiininicce e 18
Link Time configuration Chainccccceeveiieiecic e 19
Post-build time loadable configuration chaincccccoceiiiienncnceee 20
Post-build time loadable configuration chainccccooveiiiieci e, 20
Parameter definition and ECUC value files..........c.ccooviviiiiiineniee 21
ECUC parameter model [20]ooovviieiieiecccece e 22
ValUB-RET STTUCTUIE ... s 23
Class Diagram representing generic module design in AUTOSAR.................. 24
WdgM module Configuration [13]........ccooeieiiiiniiireieeeeee e 29
Watchdog timer file StrUCLUIEcooviii e 29
Sequence flow for the watchdog modules [11]cccoviiriniiiniiiencreneseas 30
arxml module configuration description sample...........ccccovvivieieiiic e, 32
ECUC MOUEL ... 33

Figure 4.6. MCT sample for Wdg (Xtend €Ode)ccoveieiieiiiieiiece e 39

Figure 4.7. Complex MCT sample (Xtend COUe)ccueieiiieiiiiiiiecieeeee e 41
Figure 4.8. executable JaVa COUE..........coiiiiiiiece e 42
Figure 4.9. Module configuration template WOrkflow ... 43
FIQUIe 4.10. BSG GUILL....ooiiiiiiiii et 47
FIQUIe 4.11. MV C PALEINoviiiiieiieieeee et 48
Figure 4.12. Class diagram for implemented MVC pattern...........cccccocvevevieenesieseesieenenns 49
Figure 4.13. BSG tool with loaded config files..........cccooiiiiiinii 50
Figure 4.14. BSG t0O] FIOWccooiiiii e 52
Figure 5.1. Generate source code WAQ_LCTQ.C.....occviiiiiiiiiieiiieeesie e 55
Figure 5.2. Generated source code for WAdgM_Cfg.C...cccoviieiiiiiiicce e 56
Figure 5.3. example command lINEc.coeiiiiiiiiiie e 57
Figure 5.4. Approximate time taken to generate ECUCccccccoivive i 64
Figure A.1. AUTOSAR Methodology (Version 4.4 [16])ccccoverererieiinieieniene s 69
Figure A.2. Class diagram for the BSGccocoiiieiiiiicecee e 72

AUTOSAR

ECU

E/E

BSW

CAD

RTE

ECUC

MCT

IDE

XML

ARXML

BSG

SWC

0S

MCAL

API

CDD

1/0

AL

OEM

List of Abbreviations

Automotive Open System Architecture
Electronic Control Unit

Electrical and Electronic

Basic Software

Computer-Aided Design

Real-time Environment

Electronic Control Unit Configuration
Module Configuration Templates
Integrated development environment
Xtensible Markup Language
AUTOSAR Xtensible Markup Language
Basic Software Configuration Source Code Generator
Software Components

Operating Systems

Microcontroller Abstraction Layer
Application Programming Interface
Complex Device Driver

Input Output

Abstraction layer

Original Equipment Manufacturer

Xi

COM
UML
MDA
Wdg
Wdglf
WdgM
SEID
MVC

GUI

Communication Module
Unified Modeling Language
Model Driven Architecture
Watchdog Module
Watchdog Interface Module
Watchdog Manager Module
Supervised Identity

Model View Controller

Graphical User Interface

xii

Chapter 1. Introduction
1.1. Motivation

Computer-Aided Design (CAD) of automotive embedded systems is gaining
popularity as a primary design methodology in the automotive industry. It has a number of
advantages such as seamless design integration, low cost and reduced development time.
It also helps avoid errors and other mistakes that can happen during manual development
by a developer. AUTOSAR standard gives the guidelines for the development of Electronic
Control Units (ECU) but does not specify the complete design process. Methods and tools
need to be developed to automate the process of the ECU development to make it less
complex and faster to develop.

There have been a few research efforts in the past that focus on the automated
generation of AUTOSAR configurations [1- 4] but they generally focus on generating the
Real-time Environment (RTE) or automating different parts of the AUTOSAR
methodology. A case study that explains the need for automation within the AUTOSAR
ECU configuration (ECUC) process is presented in [1]. MathWorks designed a CAD tool
to auto-generate RTE configurations [2]. The complexities in AUTOSAR methodology
requires external tools to help simplify the processes of configuration [3]. Some other
research studies were focused on automating the process of ECU and RTE configurations
using different methods of writing configuration templates and CAD tools [4]. A detailed

overview of currently available CAD tools used in the industry is presented in [20-26].

The main motivation for this thesis is to implement Module Configuration Templates
(MCT) and a CAD tool to automate the ECUC process based on the AUTOSAR
methodology. It can help small automotive suppliers reduce their design costs and time
when developing an ECU. It can also reduce the errors that are usually caused by the

manual development of ECUs.

1.2. Objective

The main goal of this thesis is to design and implement MCTs and a CAD tool to
automate the generation of ECUCs based on AUTOSAR methodology. The MCTs are
written using ARXML [5] and Xtend [6] programming languages and a CAD tool using
java is developed to generate the output files for the ECUC process. The Eclipse Integrated
development environment (IDE) is used for the programming of this project [7]. The main

objectives of this thesis are:

e Automate the process of ECU configuration in AUTOSAR.
e Implement the functionality of watchdog timer in the ECU configuration

process
The tasks leading to the objectives are:

e Describe the Watchdog module configuration information using ARXML

e Write a template to access values from the ARXML model using xtend
programming language.

e Use the module configuration template as input to the BSG tool to generate
ECUC source codes.

e \Write test cases to test the functionality of the tool and the generated source

code.
1.3. Thesis Outline
The remainder of this thesis is organized as follows:

In Chapter 2, the background of AUTOSAR, arxml model description and xtend
programming language is briefly described. Also, the related research in this area is
discussed. Chapter 3 describes the ECUC process according to the AUTOSAR
methodology. It introduces the configuration metamodels, the template structures, and the

configuration classes.

Chapter 4 described the implementation of MCTs and CAD tool that can auto-
generate the ECUCs of the Basic Software in AUTOSAR. Chapter 5 discusses the results
obtained from the implementation and the testing process which is used to validate the
results produced by the CAD tool. We finally conclude the thesis in Chapter 6 with a

summary and suggestions for future work.

Chapter 2. Background

This chapter provides background information on AUTOSAR, xtend and related works.
2.1 AUTOSAR

Automotive Open System Architecture (AUTOSAR) is a system-level standard that
is formed by the worldwide partnership of the automotive manufacturers and suppliers who
are working together to develop a standardized Electrical and Electronic(E/E) framework
and architecture for automobiles. The technical goal of the architecture is to achieve
scalability, transferability, reusability, and modularity. AUTOSAR consists of software
architecture, methodology templates, conformance testing and application interfaces [8].
As an automotive ECU SW development standard, AUTOSAR is a significant part of the
industry. Many OEMs and suppliers consider AUTOSAR as the basis of their development
process for designing their ECU architecture and for developing the functionality of the
software components. Many researchers, including our research group, are focused on
making the standard more efficient and easier to use with the development environment

currently used in the automotive industry.

Application Layer

Runtime Enviroment

Services Layer

Complex
ECU Abstraction Layer Drivers

Basic Software
.

Microcontroller Abstraction Layer

Microcontroller

Figure 2.1. AUTOSAR Architecture

The AUTOSAR architecture is divided into three layers: the basic software, the
runtime environment, and the application layer, often referred to as AUTOSAR Layered
Software Architecture [9]. In Figure 2.1, the first layer is the Application Layer, the second
layer is the Runtime Environment (RTE) and last but not least the basic software, which is
divided into further layers is shown in Figure 2.1, more on that later. The Application Layer
fulfills the functionality of the ECU. It is implemented with the help of one or more
software components (SWCs). Here is a distinction between hardware-independent and
hardware-dependent SWCs. The hardware-independent ones are called application SWCs,
for example, they perform calculations. The hardware-dependent ones are called Actuator
or Sensor SWCs. Sensor SWCs can, for example, evaluate signals by debouncing. Actuator
SWCs can be used, for example, to control an engine. The next layer, the Runtime
Environment, is responsible for facilitating the communication of SWCs among
themselves or between SWC and BSW modules including the OS and communication
services. For this, the RTE provides the necessary interfaces. RTE is responsible for
ensuring that components can communicate and that the system continues to function as
expected wherever the components are deployed [10]. The SWCs present in RTE
contribute towards the functionality of the AUTOSAR application. AUTOSAR defines
standardized interfaces associated with all the SWCs required to develop automotive

applications.

. Memory Communication
System Services : .
Services Services
/0 Hardware
Abstraction

Onboard Memory Communication

. Complex

Device Hardware Hardware Drivers

Abstraction Abstraction Abstraction
Microcontroller Memory Communication 11O
Drivers Drivers Drivers Drivers

Figure 1.2. Basic Software

Application Layer

AUTOSAR Runtime Environment (RTE)

/O Signal Interface

Driver for
ext. ext.
ADCASIC | VOASIC

AUTOSAR OS

BSW Scheduler

Core Test

SPIHandler
Driver
LIN Driver
FlexRay
Driver

Microcontroller

Figure 2.2. AUTOSAR modules [9]

As can be seen from Figure 2.1, The BSW is further divided into complex drivers,
microcontroller abstraction layer (MCAL), ECU abstraction layer and service layer. The
BSW is responsible for providing services such as operating system functionality, vehicle
network communication, memory services, ECU state management, and diagnostics, etc.
The service layer is responsible for Operating System (OS) services and, in-vehicle
communication, memory services, and diagnostic services. The ECU abstraction layer is
hardware dependent and implemented for a specific ECU and offers an Application
Programming Interface (API) for access to peripherals and devices regardless of their
location on-chip or off-chip and their connection to the microcontroller to make higher
software layers independent of the ECU hardware layout. MCAL is dependent on
microcontroller and container drivers to enable access to on-chip peripherals. The BSW
also contains the Complex Device Driver (CDD) that is used to add a functional model that
is outside of the AUTOSAR basic software stack. It provides the option of direct access to
the microcontroller via the RTE. The CDD is used only in time-critical functions such as
the reaction to a sensor. However, it should be avoided as it undermines the standardized
idea of AUTOSAR. The internal structure of the BSW is shown in Figure 2.2. The

arrangement of these layers represents the permitted accesses for RTE to each part as
shown in Figure 2.3. Thus, RTE is not allowed to access the Microcontroller Abstraction
Layer (MCAL in Figure 2.1) which is also shown by peach-colored parts in Figure 2.2 and
Figure 2.3. However, the RTE can access the microcontroller directly via the Complex
Drivers. The service layer (Figure 2.1) also shown in purple in Figure 2.2 has the largest
connected area to the RTE and, as the name implies, it provides service functions to the
application. A part of the ECU Abstraction Layer shown in green in Figure 2.3 is hidden
for the RTE. Only the I/O Hardware Abstraction can be accessed by the RTE to abstract
the information about the different 1/0 devices accessed via an 1/O signal interface. This
thesis deals with the Watchdog modules present across the BSW layers. There are three
Watchdog modules in AUTOSAR: Watchdog driver, Watchdog Interface and the
Watchdog Manager. The watchdog driver is present in the Microcontroller Abstraction
Layer (MCAL) which provides the services for initialization, changing the operation mode
and setting the trigger condition for the hardware watchdog [11]. The watchdog interface
present in the ECU Abstraction layer (AL) provides uniform access to services of the
underlying watchdog drivers like mode switching and triggering [12]. The watchdog
manager present in the Services Layer is used to supervise the execution of the ECU

program [13].

To ensure the independence and reusability of the software, AUTOSAR defines
three different types of interfaces: AUTOSAR Interface, Standardized AUTOSAR
Interface, and Standardized Interface. The classification of these interfaces can be traced
in Figure 2.4. An "AUTOSAR Interface" defines the information exchanged between
software components and/or BSW modules. This description is independent of a specific
programming language, ECU or network technology. AUTOSAR Interfaces are used in
defining the ports of software-components and/or BSW modules. Through these ports,
SWCs and/or BSW modules can communicate with each other (send or receive information
or invoke services). AUTOSAR makes it possible to implement this communication
between SWCS and/or BSW modules either locally or via a network [14].

[
AUTOSAR
Software
Component
S|

Interface -

Standard
Software

API 2
VFB & RTE
relevant

API1
RTE
relevant

1 AP0

API 3 Private
Interfaces inside

Application
Software
Component

AUTOSAR
Interface -

Actuator
Software
Component
AUTOSAR

Interface

Sensor
Software
Component

AUTOSAR

1 nt:erlace

AUTOSAR
Software

AUTOSAR Runtime Environment (RTE)
B 1

I

Application
Software
Component

- .AUTOSAR
- Interface

Standardized
Interface

“Interface = -

Standardized
Interface

| AUTOSAR
L - Interface . -

" AUTOSAR
" lInterface -

Services

Communication

ECU
Abstraction

Operating
System

seje)y|
pazipiepue)s

Standardized
Interface

Standardized
Interface

Standardized
Interface

1

Standardized
Interface

Microcontroller

Complex
Device
Drivers

Basic Software

possible Abstraction

ECU-Hardware

Figure 2.3. Interfaces defined by AUTOSAR [9]

A "Standardized AUTOSAR Interface” is an "AUTOSAR Interface™ whose syntax
and semantics are standardized in AUTOSAR. The "Standardized AUTOSAR Interfaces"
are typically used to define AUTOSAR Services, which are standardized services provided
by the AUTOSAR Basic Software to the application SWCs. A "Standardized Interface” is
an API that is standardized within AUTOSAR without using the "AUTOSAR Interface"
technique. These "Standardized Interfaces" are typically defined for a specific
programming language (like "C"). Because of this, "standardized interfaces" are typically
used between software modules which are always on the same ECU. When software
modules communicate through a "standardized interface", it is NOT possible anymore to

route the communication between the software-modules through a network [14][15].

A detailed explanation of the other modules and stacks of AUTOSAR is out of the
scope of this thesis.

2.2. AUTOSAR Methodology

This section introduces the AUTOSAR methodology, a condensed overview of that
is illustrated in Figure 2.5. AUTOSAR follows a general technical approach to develop a
system, which is called as the “AUTOSAR Methodology”. AUTOSAR Methodology is a

work-product flow that defines the dependencies of activities on work results.

The first step is to specify initial data for the design or the architecture of the system
being developed. That means to select the target hardware ECUs and the software
components SWCs. That means to map the modules by regarding timings and resources
onto control devices. The result is a “Configuration Description” as AUTOSAR XML file
also known as the ARXML file, which contains the complete system information such as
bus-mapping, topology, and mapping of containers and parameters. The following steps
are processed for each control unit for its own, thus no longer for the complete system.
There is a process called Flattening, which is used to generate ECU specific information
and this specific information is stored in the “ECU Extract” of System Description. ECU
Extract is similar to the System Extract of System Description, but only contains the atomic
parameter description in a flat perspective. The following activity “Configuring ECU”
feeds all the necessary information such as task scheduling, parameters for basic software
modules and allocation of runnables to tasks on the control unit. This information is stored
in an “ECUC Description”. In the last step “Generate Executable Code”, a runnable .jar
file, which contains the basic software, the RTE code and the software components of the
application layer, is generated on the basis of the previously generated “ECUC
Description”. Being one of the main goals of AUTOSAR, simplifying integration of
application components from the OEM and service providers, the process of application
development is independent of the above methodology steps. All the interfaces-related
information of SWCs are described in the SWC Descriptions file (AUTOSAR XML file).
Based on this description SWCs can be tested and implemented independently. As a result,
integration becomes easier. An analysis to understand the data structure of this
configuration methodology is done in the next chapter [15].

8- B-_ B -_ B

Extract Configure Generate
System ECU- ECU ECU ECU Executable ECU
Configuration Specific Extract Configuration Executable
Description Information of Description
: System
System Configuration
System

Figure 2.4. Overview of AUTOSAR Methodology (version 3.2[16])

The AUTOSAR standard was first released in 2005, where the structure and the basic
architecture was introduced. The standardized modules were described. A simple process
was established and tested to validate the use of AUTOSAR in OEMs. In the later versions,
the standard was more stabilized and more SWCs and modules were added. The
methodology has more complexities. In the latest AUTOSAR version 4.4 [17] which was
used for this research, the methodology is very complex and hard to understand. It can be
seen in the Appendix A. But, the 4.4 classic standard defines “Roles and Responsibilities”
and features all the standardized modules need by the automotive OEM’s and their supplier

to develop an ECU. This information was not specified in the older versions.

(oem N\
= ;"
Model Design . Model
Physical System
Design i
_ . SWC ECU . COM ECU .
/ Model Maodel
Tierl | |
Basic Software
—\ B
Physical ECU | o [Functonal |/
Design !. Model I Development ||'.
Tier2
Basic Software
Development .
.
Tier3 €] 4]
Hardware ;ﬂ[\"hﬂhl:rf H;r’drv\:;m

Figure 2.5. AUTOSAR development process [16]

10

Therefore, the already described Methodology is discussed again with their
respective responsibilities. Figure 2.6 shows the individual roles in a hierarchy. Before the
task can be divided, the individual roles are briefly presented. There is the OEM, the car
manufacturer, who engages suppliers to develop ECUs with the functionality defined by
them. There is a classification among the suppliers which describes the scope of the work.
There is a distinction between Tierl, Tier2, and Tier3. Tierl suppliers like Bosch are
responsible for the development of the ECU. They develop at the application level of the
AUTOSAR architecture. They can hire Tier2 suppliers like APAG who will take care of
the BSW development. Tier3 suppliers like Teradyne usually provide the hardware, it does
not matter if it is the ECU hardware or just mechanical components or plastic parts. It is
also possible for a company to take on several of these roles. APAG Elektronik takes on
the role and responsibility of both a Tier 2 and a Tier 3 supplier. Figure 2.6 shows the
broken-down process with the responsibilities of each role. The OEM is responsible for the
design of the whole system (1 + 2), out of this it provides for each ECU an SWC ECU
Model (B), which corresponds to the ARXML File ECU Extract. The relationship between
Model and ARXML File is explained in the next section. The SWC System Model (A) thus
corresponds to the System Configuration Description. Furthermore, the OEM handles the
communication within the system, this is recorded in another model, the COM System
Model (F). The communication was not specifically looked at in the previous process. The
System Model is also broken down into a COM ECU Model (G). Tierl receives the SWC
ECU Model (B) and the COM ECU Model (G) from the OEM. Based on the hardware, the
SWC ECU model is adapted and defined more precisely. Tier2 develops the basic software
and makes it available for the application. However, there is no connection to the Basic
Software Configuration (6). In the Figure 2.6, this is shown as having only the COM ECU
model influence to point 6. There is some kind of BSW Model missing, which is generated
from the Basic Software Development and is extended by the SWC ECU Model and COM
ECU Model. This BSW model should then be used for the Basic Software Configuration.
The proposed BSW Model corresponds to the ECUC Description and will be continued in

the next section. [18]

11

2.3. AUTOSAR Extensible Markup Language

Extensible Markup Language (XML) is a markup language that defines a set of rules
for encoding documents in a format that is both human-readable and machine-readable. It
was designed to store and transport data across web services. The AUTOSAR Extensible
Markup Language (ARXML) is a type of XML language description for exchanging
AUTOSAR models and descriptions. The ARXML models are used to represent the
AUTOSAR based ECUC. It was formed by an initiative of automotive manufacturers and
suppliers to be used by AUTOSAR for the development of the software architectures for
ECUs. ARXML files contain configuration and specification information in XML format
for an ECU which is used to control components of an automobile to make sure it achieves

its optimal performance.

The ARXML format was developed to standardize data exchange between
automotive software development partners. These files are integrated into the AUTOSAR
stack as per the AUTOSAR methodology. During this process above information gets
transformed into AUTOSAR modules as specified in AUTOSAR system specifications
[19]. In this project, the ARXML code is the first step of writing the module configurations.
This export of the data is from AUTOSAR module configuration templates is called ECU
description file which is in .arxml format. This file is used module configuration template
to access the parameter information and generate source code specific to the AUTOSAR
module which is in our case the Watchdog timer module.

2.4. Introduction to Xtend

Xtend is a statically-typed programming language which translates to comprehensive
Java code [20]. Xtend is a derivative of Java programming language and it is fully
compatible with it. The compiled xtend code automatically generates Java source files
which are used as input to the BSG tool in this research. Xtend is fully compatible with the
Eclipse IDE, therefore, it is the best known to create xtend projects using Eclipse IDE.
Let’s have a look at the following xtend examples, on the left side is the xtend code and on
the right side is the generated java source code.

12

—

class Example { public class Example {
// This comment does not appear in the 2| [
generated .java file * attributes - This is the first

]
w -

3| /# attributes - This is the first visible comment in .java file
visible comment in .java file */ 4 */
4| var bar = new LinkedList<String>() // 5| private LinkedList<String> bar = new

semicolon not necessary LinkedList<String>();
var String stringVar; // default
visibility for attributes is

we

-~ D

private String stringVar;

private 8
6| var package intVar = 3; // visibility is 9| int intVar = 3;
package-private 10
7| var public int intVar2; // visibility is 11| public int intVar2;
public 12
8| wval dar = ’only "a" value’; // ’ is used 13| private final String dar = "only \"a\"
for strings as well value";
9 wval s =’!’; // transformed to a String 14
instead of char! 15| private final String s = "!";
10| wal char ¢ = ¢’ 16

17| private final char c = ’c’;

Figure 2.6. Xtend example — Attributes a — xtend class, b — generated Java code

Figure 2.7a shows the different ways how attributes can be declared in xtend and
Figure 2.7b the generated result is shown. But first of all, it has to be mentioned that there
are two kinds of comments. The double slash ““//” which are not translated to the
generated java class and the slash star “/* */” which are translated to doxygen comments
“/x* */ Xtend doesn’t need the semicolon at the end of a command. The data type can
be deduced by the initialization. The only differentiation that has to be done is between
var and val. Attributes declared with val are only values and can’t be changed. Strings are
surrounded by double quotes as well by single quotes, because of this feature attention
has to be paid by declaring a variable with a character’s data type. The default visibility
for attributes is private, instead of the Java standard package-private. Xtend automatically
generates the name of the constructor. Only the keyword new is needed, see Figure 2.9,
Furthermore, it is possible to break the lines in a string, it is transformed correctly. The
default visibility for methods is public. A method’s return type need not be defined, see
Figure 2.9. To avoid unwanted behavior, it is recommended in most cases to declare

13

return type because Xtend uses the value of the last expression as return type. Other class

attributes can be accessed in the Xtend source code by using the attribute’s name.

/* constructor */ [**
new(int value){ * constructor
bar.add ("HELLO") */

public Example(final int value) {

o this.bar.add ("HELLO");

r String _string = new String("W\r\no\r\
1\nd")); // Strings can go over more lines nr\r\nl\nd");

bar.add(new String("W

=1 D B W R
[B S R

8 stringVar = 71’ 7 this.bar.add(_string);

9 intVar = value; 8 this.stringVar = "!";

| ¥ 9 this.intVar = value;
w| }

Figure 2.7. Xtend example — Constructors

1| def foo(){ // default visibility for 1| public void foo() {
methods is public 2 final JClass jClass = new JClass();
2 val jClass = new JClass 3 this.stringVar = jClass.getMyVal();
3 stringVar = jClass.myVal; // calls the 4 for (final String b : this.bar) {
getter function 5 InputOutput.<String>println(b);
4 6 }
5 for(b : bar) 71}
6 { 8
7 println(b) 9| public String getStringVar() {
8 } 10 return this.stringVar;
9 } 1| ¥
10 12
11 def getStringVar(){ 13 public boolean addValueToBar(final
12 stringVar // return is not necessary String value) {
13 } 14 return this.bar.add(value);
14 15| 1}
15| def addValueToBar(String value){
16 bar.add(value);
ird I

Figure 2.8. Xtend example - Methods

2.5. Related Research

The development of automotive embedded systems and the configuration of the basic
software are aimed at automating the workflow to improve consistency and reduce the
complexity of the software development process using AUTOSAR. The recent research
focus is on creating AUTOSAR toolchains and templates based on the AUTOSAR

methodology to automate all the processes which can be time and cost-efficient.

14

Due to the increasing complexity in the last few years, researchers are concentrating
their efforts to manage the automation of the development process of the automotive
embedded software. To manage this issue AUTOSAR was formed by a group of companies
to standardize and improve the complexity management of integrated E/E architectures
through increased reuse and exchangeability of SW modules between OEMs and suppliers
[21]. The AUTOSAR methodology provides a work-product flow that defines the
dependencies of activities on the work-products which is a piece of information or physical
entity produced by or used by an activity. But the methodology does not define the overall
system-design and process to carry out the configuration process. Automotive suppliers

and OEMs are working on setting up toolchains to automate the configuration process.

Various industries are working on the different modules of AUTOSAR to find
improvements and make the standard more efficient and easier to implement. A CAD tool
was developed based on the AUTOSAR methodology to automate the generation of
modules for the customer-specific ECUs. The AUTOSAR process is complex which makes
it time-consuming and error-prone. The specifications of all the Watchdog modules are
given by AUTOSAR [22]. The watchdog module will be used during the configuration,
these specifications provide the internal information of the module such as their type and

size. It will also be used to test the functionality of the generated configurations.

The development of the automotive embedded systems and configuration of the basic
software and embedded systems have been researched to reduce the complexity and
improve the performance of the systems. The authors in [23][24] present the disadvantages
of AUTOSAR which shows us that the AUTOSAR configuration process mainly involves
manual coding, followed by verification activities such as code inspections and integration
tests. Many of these activities lack tool automation, and so involve manual interaction
which is error-prone and time-consuming. This complexity is resolved during this research

project which makes the AUTOSAR configuration less complex.

The development process of an automotive embedded tool using a seamless

architecture is described by the authors in [25]. They use the architecture based on

15

AUTOSAR which defines all the module specifications, methodology and application
interfaces. System configuration is used to establish the configuration process. ARXML
(AUTOSAR Extensible Markup Language) files, which contain the module specifications
such as the containers and parameters.

In [26] the authors describe an approach for the design of an automotive embedded
code generator. More software problems and defects are found due to the increased
complexity in automotive development. The authors use an RTE module to design the code
generator in the early phases with the help of a predefined process. This approach reduces
the redundancy in the code and also saves time through the automated generation. The
generated output of the tool is limited to the RTE source code and the application
programming interface (API). The configuration of the Basic software modules such as the
watchdog module is not focused like in our research.

In [27] the authors describe an approach to bring AUTOSAR concepts like system
development, system configuration, timing analysis, and code generation together. They
present a meta-model approach to generate the software using the XML schema. An
approach to enhance the model-driven system and safety-engineering framework with
AUTOSAR aligned software architecture enabling the seamless description of safety
criticality systems is presented [28]. A tool bridge to seamlessly transfer artifacts from
system development level to software development level is described. The authors have
created a tool for the automated generation of Runtime Environment (RTE) configuration
in AUTOSAR. They try to generate the configuration files by interfacing approach that
establishes an interface between ASW and BSW based on AUTOSAR RTE and then they
are mapped into the hardware-specific implementation.

16

Chapter 3. AUTOSAR ECU Configurations

AUTOSAR has a standard technical approach for the development of the ECUs
called the AUTOSAR Methodology. The methodology describes the workflow of design
from the system level configuration to the generation of an ECU executable. The result of
each step is delivered to the input of the next step in XML format. The ECUC process in
one of the major steps of the AUTOSAR methodology. The ECUC process is shown in
Figure 3.1.

ECU Extract

\d

A 4

.c module

Prepare ECU oP
Configuration H

Y
m
8]
c
3

Generate
| BSW
BSW Module . ' : o
Delivered 1 !
Bundle

[n]
Q
]
Y

.hfile

h 4
h 4

Configure
BSW

Figure 3.1. ECUC process

The ECUC process starts with the description of an entire system: the system
description. This description is then split up into several ECUCs. This ECU extract is the
basis for the ECUC process. Every single module of the AUTOSAR architecture can be
configured for the special needs of the ECU as specified by the customer requirements.
The complex AUTOSAR architecture makes the configuration process difficult and time-
consuming. In our research, we use BSG CAD Tool and MCTs to simplify the process.
The tool strategy and template details for the ECUC are out of the scope of the AUTOSAR
specifications. The tools need knowledge about the ECUC parameters and their constraints
such as configuration class, value range, etc [29]. We define this information using an

ARXML description that will be used to access the module container and parameter

17

information. Then an Xtend template is written to access the information from the ARXML
files and is used at the input to the BSG tool to generate the .c and .h files. Here the
configuration parameters are generated into ECU executables which are used to configure
the ECU.

3.1. Configuration Classes

The task of compiling and linking is required to create an executable (programmed
binary), then the executable must be downloaded (flashed) to the hardware. AUTOSAR
specifies for these steps three different times for configuring a BSW module. The “pre-
compile time”, “link time” and “post-build time”. Each of these times has influences on
the EcuC Description. The Pre-Compile Time Configuration, shown in Figure 3.2 is done
before the compilation. In the case of Pre-Compiled configurations, the code is compiled
before the configuration. This can lead to entire code sections can be excluded from the
compiled configurations. The advantage that arises is that this way memory space can be
saved, and functions will disappear from the compiled files. In order to make the functions

available a recompilation of the code is necessary.

>

e

BSW1

ECl Generator

nker
ompller
Configuratiol Header H Code
Description H

—EB—2>—8
Generate w2 Compile

-c
BS
eney BSW2

BSW2 Generated Object
: Confifured Code
' Code
H
-h

BSW2

Generator BSW2

Figure 3.2. Pre-Compile time configuration chain

18

The Link Time Configuration is created during the link process. Figure 3.3 shows
a BSW module consisting of two parts, the code, and the configuration. Both are compiled
independently of each other. The object files from the compilation process are linked
together, which resolves existing dependencies to external references. After the link

process, the values of the configuration cannot be changed anymore.

Complle BSW3

E::Sn:: BSW3 Object

] Uneconfigured Code
Cojde

'
'h E% E% :
—
BSW3 [Linker
Link ECU

Comgpller
Heggder
Wﬁ v ECU
. Code
' H Executable

V
@ -c
ECU Generale BSW3 cg';ﬁ': BSW3
Configuration
Object
Code

Configuration BSW3 Configuration
Description Conng!.lrar.lon Ddta Cenfiguration
! :

W

BSW3 -h
Configuration
Generalor BSW3

Configuration
Header

Figure 3.3. Link Time configuration chain

Figure 3.4 shows the Post-Build Time Configuration. The module is already linked
and loaded on the ECU. At this point, the module will know the address where the
configuration can be found in memory. One risk that this kind of configuration entails is
that there is no guarantee that this location in memory has been flashed with the appropriate
configuration, if there is a fault in the process, it will not be detected until runtime. For the
other two configuration classes, the compiler or linker can ensure that the configuration
exists. The advantage of this variant is that the values of the configuration can be changed
by rewriting the memory area. AUTOSAR distinguishes between two use cases in the post-
build configuration. First, the previously described case shown in Figure 3.4, called

loadable configuration and second, the selectable configuration, shown in Figure 3.5. The

19

process is reminiscent of the link-time configuration but is still considered as post-build.
This is because multiple configuration sets are provided at link time. During runtime, more
specifically at the initialization of the ECU, one of the existing configurations can be

selected. Thus, it can be said that the ECU is configured after building.

ol

Compile Link Post-
BSWa "~ BSW4 Build BSW4
ild .

Configurati ~ c
—’%D eniquration - Object Gonfig Loadable
-, Cod | Ecu
ECU Generate \-_‘ “ ' :Bl\llﬂl'l‘
Configuration BSW4 . : "
Description cn"‘ﬂ!-lmﬂﬂl‘ \E% [&
i Y c Linker
i . Compiler .
é Configuration R H
Header H
BSW4
Configuration D E——
Generator
BSW4 Link ECU ECU
Heﬂel Co Executable
B -
BSW4 Compile BSW4
Code BSW4 Object
Unconfigured Code
Code
Figure 3.4. Post-build time loadable configuration chain
BSW5
Configyration
Genefator
\
. D
ECU Generate BSW5
Configuration BSWS5 Configyration
Description Configuration Loadable
to ECU
Memory
;
c E%D ;
Compiler Linker i
1 . i
BSWS Comple BSW5 Link ECU ECU
Code Unconfigured Object Code Executable
Co dge Code

Figure 3.5. Post-build time loadable configuration chain

20

3.2. Configuration Metamodel

AUTOSAR is based on Model Driven Architecture (MDA). It is a software design
approach that uses models for the development of software systems. The model
specification is written using Unified Modeling Language (UML). AUTOSAR is made up
of several models which are based on metamodels. One of these metamodels is called the
Configuration Metamodel. This metamodel describes the structure of the configuration
model. It mainly consists of containers and parameters. Containers are used to group the
parameters and they can also have sub-containers. The configuration model is used to save
the configuration of the BSW, which corresponds to the BSW model mentioned in the
previous section. The aim of the metamodel is to make it possible to describe the
AUTOSAR specific elements such as the configuration parameters with the same set of
language elements. The configuration language generally uses containers and parameters
which describe the values that are used to configure the ECU. The configuration

metamodel is described in two parts: ECUC parameter definition and ECUC description.

The ECUC description is written using a template to specify the format exchange for
the configuration values in the ECU. This template is written using ARXML which was
explained in one of the previous sections. The ECUC parameter description which is also
an ARXML file contains the information on what kind of restrictions and features are given

to the parameters. The relationship between the two is shown in Figure 3.6.

XML XML
ECU Configuration ECU
Parameter _——"] Configuration
Definition Value description

Figure 3.6. Parameter definition and ECUC value files

21

3.3. ECUC Parameter Model

The ECUC parameter model contains the module the information regarding the
containers, parameters, and references. It specifies the relationship between the containers
and parameters that can be used by the configuration model to describe the module
template information. The top-level structure of the ECUC parameter model is shown in

Figure 3.7.

PackageableElement
ARElement

]

AtpBiueprint AtpBluepnint -
AfpBiueprintable | +module AtpBlueprintable EcucDefinitionElement
EcucDefinitionCollection f EcucDefinitionElement _ EcucContainerDef
1. BT +container
cuchiodule + postBuildvariantMultiplicity: Boolean [0..1]
+ apiSenicePrefix: Cldentifier [0..1] + requiresindex: Boolean [0..1]

+ postBuildVariantSuppori: Boolean [0..1]
+ supportedConfigvanant: EcucConfigurationVanantEnum [0..7]
«aipUniDefs +refinedModuleDef 0.1

Figure 3.7. ECUC parameter model [20]

e
«atpSplitablex

ECU Parameter Definition class (EcuParameterDefinition) collects all references to
individual module configuration definitions of AUTOSAR ECUC and defines a reference
relationship to the definition of several software modules. Module Definition class
(ModuleDef) defines ECUC parameters of one software module such as BSW, RTE, SWC.

3.4. ECUC Model

This step of the ECUC process is not specified by AUTOSAR. The templates are the
most important part of this thesis which helps in automating the configuration process
instead of manually configuring the BSW. Figure 3.9 shows the class diagram with the
respective attributes. The structure is based on the configuration metamodel. To assist the
developer in creating a template, the model provides several auxiliary functions. They are
intended to facilitate access to certain elements of the model. For example, the entire
configuration of a module should be returned by passing its name. It is distinguished

22

between name and reference. The getByName function searches for a particular name in
the model or in a part of the model. Uppercase and lowercase letters are considered. The
function getByRef uses a reference string to reach the referenced object. An example of a
VALUE-REF tag with regard to the class diagram is shown in Figure 3.8. According to the

class diagram, we get the following functions:

e getModuleConfigurationByName

e getModuleConfigurationByRef

e getContainerByRef

e getValueByRef

e getArPackageByRef

e getValueByName

e getReferenceValueByValueRefName

e getReferenceValueByDefinitionRefName

<VALUE-REF DEST="CONTAINER">/ArPackage.shortName/ModuleConfiguration.shortName/Container.
shortName</VALUE-REF>

Figure 3.8. Value-Ref Structure

23

EcuConfigurationModel @|
| DocRevisionClass [

0.1 _ docRevigion | - revisionLabel - string

- docRevisions [pocRevisionsClass @% - issuedBy - string

- autosar | 1 A 0 |0 A - date : string
AutosarClass [- adminData | AdminDataClass =8
ass B8

- xmins : string |0_ 1 0.1 - sdgs [SdgsClass | -sdg | SdgClass -sd 3
0.1 B . - gid : string
0.1 - adminData’| 0..1 0.1 01 +|-9d:sting fo ¢ o1 - text : string
- topLevelPackages (0.1
ToplLevelPackagesClass @| 01
| EcuConfigurationClass
0.1 - uuid : string - moduleRefs
- arPackage |~ - shortName : string 01
ArPackageClass - ecuConfiguration |0..1 0.1 ModuleRefsClass
- shortName : string
0.1
-elements | 1
ElementsClass @|
[0.1 - moduleRef
o1 - ecuExtractRef | 1 ®
) - definitionRef RefClass _ definitionRef
- moduleConfiguration | = ‘o_ 1 0.1 | - dest: siring 01
ModuleConfi tionCl = - text : string ’
odulelontigurationL.lass - moduleDescriptionRef _ definitionRef
- shortName - string 01 0.1
- implementationConfigValue : string |~ ’ 0.1 0.1
- definitionRef | 0..1 - valueRef | 0..1
0.1 chinfionke valueRe ReferenceValueClass =
- definitionRefName : string
- containers (g 1 0.1 | - valueRefName : string
ContainersClass 7| - referenceValue
0.1
- container | * 0.1
ContainerClass | - referenceValues ReferenceValuesClass @|
- subContainers [9 1 0.1 - shortName : string [~ 01 |
SubContainersClass | _container'|* 0.1
0.1 - booleanValue 0.1
- parametersValues | ParamterValuesClass o > ValueClass
01 - integerValue | - value - sfring
o1 - name : string
- floatValue
0.1 *

- functionNameValue

0.1 *
- enumerationValue

0.1 =
- stringValue

0.1 *

Figure 3.9. Class Diagram representing generic module design in AUTOSAR

A detailed description of these methods can be found in the next chapter. In addition,
there are the standard getter functions for getting a class’s attribute. The setter functions

are not implemented to exclude changes in values and to maintain consistency.

24

3.5. Module Configuration Template (MCT)

The BSW Module Configuration Template provides the template of the source code
that should be generated. The values from the ECUC Description can be inserted into the
template via the ECUC Model described in the next chapter. The template is written in
Xtend programming language. The developer of the respective BSW Module is responsible
to provide a template for the module configuration. Xtend is used to write the module
configuration templates due to its optimized syntax, it allows shorter and readable code
and is compatible with Java. The MCT accesses the module values from the ECUC model
and describes their function in the ECU. APAG Elektronik provides a library with
functions that can be used to access the values without increasing the complexity of the
code. These functions are described in the next chapter. Each template comprises a version
string. During execution, the version is passed as an argument (-v). Only if the transferred
version matches to the template’s version, the generation will be executed. Further
arguments are the path to ECUC Description (-ecuc) and the path to the output (-0).
Without these arguments, the generation won’t be started successfully. The Module
Configuration Template has to be compiled to an executable and saved with the naming

convention “«moduleName» BswMCT jar”.

25

Chapter 4. Automated Generation of ECU Configurations for
Watchdog Timer

This chapter describes the automated generation of ECUC for Watchdog Timer.
The following sections describe the Watchdog Timer in AUTOSAR, implementation of
the ECUC model, the module configuration templates and the Basic Software Source Code
Generator (BSG) tool.

4.1. Watchdog Timer in AUTOSAR

In order to enable structured software development and to ensure good
maintainability, extensibility, and portability of the software, the entire Watchdog Timer
module is developed according to a layer model consisting of three layers. the individual
layers only communicate with each other via defined interfaces. These interfaces contribute
to the security of the software by preventing the individual modules from being able to
manipulate any data in any way. In addition, an abstraction of the various layers is
achieved, so a layer must (only) know the interfaces to its superordinate or subordinate
layer, whereby the complexity of the entire system is encapsulated. The three watchdog

modules are:

i. Watchdog Driver (Wdg) — present in the MCAL
ii. Watchdog Interface (Wdglf) — present in the ECU abstraction layer
iii. Watchdog Manager (WdgM) — present in the Services Layer

4.1.1.Watchdog Driver Module

The Wdg Driver module provides services for initialization, changing the operation
mode and setting the trigger condition (timeout). This module is used to directly control
the hardware watchdog timer and control its function. Table 4.1 shows the Wdg module
information with information about the containers that are present in it as specified by
AUTOSAR [11]. Each of the containers has parameters that are defined to perform tasks
inside the Wdg Module.

26

Table 4.1. Wdg module-specific information [11]

Isws ltem

ECUC_Wdg

00073

Module Name

Wedg

IModule Description

Configuration of the Wdg (Watchdog driver) module.

Post-Build Variant Support

true

s

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE
Included Containers
Container Name |Mult:‘pﬁcfty Scope / Dependency
Container for the references to DemEventParameter elements
hich shall be invoked using the API Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken
\VdgDemEventParameterRef 0.1 from the referenced DemEventParameter's DemEventid

symbolic value. The standardized errors are provided in this
container and can be extended by vendor-specific error
references.

\WdgGeneral

All general parameters of the watchdog driver are collected
here.

\WdgPublishedInformation

Container holding all Wdg specific published information
parameters

\WdgSettingsConfig

Configuration items for the different watchdog settings,
including those for external watchdog hardware.

Note: All posthuild parameters are handled via this container.

4.1.2. Watchdog Interface Module

In case of more than one watchdog device and watchdog driver (e.g. both an internal

software watchdog and an external hardware watchdog) being used on an ECU, Wdglf

allows the watchdog manager (or any other client of the watchdog) to select the correct

watchdog driver - and thus the watchdog device - while retaining the API and functionality

of the underlying driver. Table 4.2 shows the Wdglf module information with information
about the containers that are present in it as specified by AUTOSAR [11]. Each of the

containers has parameters that are defined to perform tasks inside the Wdglf Module.

27

Table 4.2. Wdglf module specification information [12]

Isws item ECUC_Wdglf 00033 :
IModule Name Wdglf
IModute Description Configuration of the Wdglf (Watchdog Interface) module.

Post-Build Variant Support [false
Supported Conﬁg;l Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity]Scope / Dependency

It contains the information for the selection of a particular
\WdglfDevice 1.* \Watchdog device in case multiple Watchdog drivers are

connected.

[This container collects all generic watchdog interface
\WdglfGeneral 1 arameters.

4.1.3. Watchdog Manager Module

The WdgM module is used to monitor the sequence for the internal watchdog. This
controls whether the 5ms, 10ms, 20ms task was called and processed by the OS. For this
purpose, a function with a unique Supervised Identity (SEID) is called at the beginning and
at the end of each task. This is to ensure that the corresponding task is called and has
completed its activity. The WdgM_MainFunction function regularly checks the process for
differences in the task flow. If no error has been detected, the watchdog continues to be
triggered normally. In the event of an error, error handling is initiated and the triggering of
the watchdog is suspended. Table 4.3 shows the WdgM module information with
information about the containers that are present in it as specified by AUTOSAR [13].
Each of the containers has parameters that are defined to perform tasks inside the WdgM

Module.

Table 4.3. WdgM module-specific information [13]

SWS Item ECUC_WdgM_00001 :
IModule Name WdgM
IModule Description [Configuration of the WdgM (Watchdog Manager) module.

Post-Build Variant Support jirue
Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

ncluded Containers
Container Name Wultip!icity Scope / Dependency

\WdgMConfigSet 1 wclisglc\:/lontamer describes one of multiple configuration sets of
Container defines all general configuration parameters of the
\Watchdog Manager.

[WdgMGeneral 1

28

WdgM: EcucModuleDef +container WdgMGeneral:
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container WdgMConfigSet:
o EcucParam ConfContainerDef

Figure 4.1. WdgM module Configuration [13]

All three watchdog modules work together in AUTOSAR. The file structure is shown
in the Figure 4.2. It shows the dependency of the Watchdog modules on each other. The
WdgM.c needs to include the Wdg.c, Wdglf.n and WdgM.h files. The WdgM header
(WdgM.h) includes the Std_Types.h which is a library containing the type definitions, The
WdgM_Lcfg.c and WdgM_Lcfg.h. The Wdg.c includes the Wdg.h file to access the data

declarations.

. WdgM_Lcfg.c
<<jnclude>>
Wdg.h —— WdgM_Cfg.h WdgM_Lefg.h
<<include>>
<<incIuvM /:inc\ude»
<<include>>
WdgM.h —_—> Std_Types.h
<<include>>
Wdg.c
i <<include>>
<<include>>
WdgM.c —_— Wdglf.h

<<include>>

Figure 4.2. Watchdog timer file structure

The sequence diagram shown in the Figure 4.3 shows the sequence of workflow of

the watchdog modules. It starts with initializing the Wdg module, to set the trigger

29

condition and to change the watchdog mode. The Initialization condition to the Wdg is
received from the ECU state Manager (EcuM). Once the Wdg is initialized the WdgM
sends the trigger condition (Wdglf_SetTriggerCondition) to the Wdglf with the information
about the Device Index and the Timeout value. The Wdglf selects the right external
watchdog timer and sends the trigger condition (Wdg_SetTriggerCondition) to the Wdg to
trigger the timer and assigns the timeout value. After the watchdog is triggered, the
execution of modules begins, each of the modules has a start and endpoint. Once the
execution is done the Wdg either needs to be reset or stopped. The SetMode parameter is
of the enumerated type that contains the values start, stop and reset. The WdgM also sends
out the Wdglf_SetMode if there is a need to reset or stop the watchdog timeout counter,
which is, in turn, send to Wdg which controls the external watchdog timer. The sequence
diagram only shows the basic operation of the watchdog module, the complete
functionality of the watchdog timer implemented is not explained due to confidentiality.
For more information about the AUTOSAR module specifications and functionality please
refer to the AUTOSAR safety documents [10] [11] and [12].

«modules «module» «modules «module»
EcuM WdgM Wdglf Wdg
O oo

Widg_Init(cons Wdg_ConfigType*)

T
|
|
|
|
T
|
H<_ __________ e _wegmto_ S
| |
| |
| |
| |
| |
| |

Wdglf_SetTriggerCondition(uints,
uint16)

Wdglf_SetTriggercondition() e DT EEETTON

Wdglf_SetMode(Std_RetumType, uints,
Wdglf_ModeType) Wdg_SetMode(Std_RetumType,

>
Wdgit_ModeType)
le___ \Wdg SetMode)
e VWaglf_SetMode() __ _ _ _

———1

Figure 4.3. Sequence flow for the watchdog modules [11]

30

4.2. Module Configuration description

The BSW module configuration templates provide the machine-understandable
ARXML coded files. It describes the values from classes provided by AUTOSAR module
specifications and inserts it into the module configuration template via the ECUC Model.
The ARXML model contains all the information regarding the system configuration-
related information such as the configuration module name, the containers, the parameters,
references and configuration values. The ARXML module configuration description file is
used to extract the module information with the help of the ECUC model for the generation

of the configuration source codes

Table 4.4. WdglfVersionInfoApi sample [11]

SWS Item ECUC_WdgIf_00005 :

Name WdglfVersionInfoApi

Parent Container WdglfGeneral

Description Pre-processor switch to enable / disable the service returning the version information.

true: Version information service enabled false: Version information service disabled
false: Version information service disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value FALSE

Post-Build Variant Value |FALSE

Value Configuration Class |Pre-compile time X All Variants
Link time NA
Post-build time NA

Scope / Dependency scope: local

Table 4.4 gives a sample parameter description from the Wdglf module. The
ARXML code for the above information is shown in Figure 4.4. All the specifications for
the WdglfVersioninfoApi contained between the PARAMETERS and /PARAMETERS tags.
This parameter is used to enable or disable the service to return the version information.
The parameter is also enclosed between the tag pertaining to its data type ECUC-
BOOLEAN-PARAM-DEF as mentioned in the specification in Figure 4.4. The
configuration class of the module is set to Pre-compile using the tags CONFIG-CLASS.
The comments in ARXML are written using <!-- -->. The ECUC model extracts the values

from this code and it is used by the xtend template to generate the configurations.

31

<!-- Container Definition: WdgIfGeneral -->
<ECUC-PARAM-CONF-CONTAINER-DEF>
<SHORT-NAME >WdgIfGeneral</SHORT-NAME>
<LOWER-MULTIPLICITY>1</LOWER-MULTIPLICITY>
<UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
<PARAMETERS>
<!-- PARAMETER DEFINITION: WdgIfVersionInfoApi -->
<ECUC-BOOLEAN-PARAM-DEF>
<SHORT-NAME >WdgIfVersionInfoApi</SHORT-NAME >
<LOWER-MULTIPLICITY>1</LOWER-MULTIPLICITY>
<UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
<IMPLEMENTATION-CONFIG-CLASSES>
<ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
<CONFIG-CLASS>PRE-COMPILE</CONFIG-CLASS>
<CONFIG-VARIANT>VARIANT-PRE-COMPILE</CONFIG-VARIANT>
</ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
</IMPLEMENTATION-CONFIG-CLASSES>
<ORIGIN>AUTOSAR_ECUC</ORIGIN>
<SYMBOLIC-NAME-VALUE>FALSE</SYMBOLIC-NAME-VALUE>
</ECUC-BOOLEAN-PARAM-DEF >
</PARAMETERS>

Figure 4.4. arxml module configuration description sample

4.3. ECUC Model

The ECUC model that was described before is implemented using Java classes. The
complete class diagram can be seen in Figure 4.5. This model was developed at APAG
Elektronik using UML for this research, it specifies all the necessary functions are needed
to write the MCT. The ECUC model uses the ARXML to extract values from the
AUTOSAR specification documents. All the auxiliary functions of the model and their
functionality are described in Table 4.5. The functions defined under
EcuConfigurationModel are used to initialize the module using the information from the
specifications. The AutosarClass functions are used to access module configuration
information from predefined AUTOSAR libraries. The values from the Top-level model
designs and AUTOSAR Packages are extracted using functions inTopLevelPackageClass
and ArPackageClass respectively. Similarly, the values from modules, containers and
parameters are extracted using the ModuleConfigurationClass, ContainersClass and
ParamterValuesClass auxiliary functions. The detailed explanation of all the functions is

given in Table 4.5 and all the functions are mentioned in the class diagram in Figure 4.5.

32

Some function description is ignored as they are out of the scope of this thesis. Using this

information, the MCTs are written which is explained in the next section.

EcuConfigurationMode| SdgClass
+ EcuConfigurationModel() € - gid : string T sd4
+ loadArxmiFile ToModel(in path: string) + SdgClass() =
+ getArPackageByRef(in ref- string): ArPackageClass ~ loadAnmilinClass(in noda: Nade) SdClass
+ getModuleConfigurationByRef(in ref. string): ModuleConfigurationClass + getSd(): SdClass : - gid : string
+ getContainerByRef(in ref: string): ContainerClass + gelen(i string - text : string
+ getValueByRef(in ref: string): ValueClass + sdClI =
+ getModule ConfigurationByName(in moduleName: string): ModuleConfigurationClass - sdg lass())
+ getAutosar(): AutosarClass 1 ~ loadArxmiinClass(in node: Node)
- SdgsCl. + getGid(): string
- autosar } 'gsClass + getText(): string
AutosarClass + SdgsClass() .
= ~ loadArxmiinClass(in node: Node)
- xmins : string + getSdg(): SdgClass [*]
+ AutosarClass() co e 1
~ lbadArxmilnClass(in node: Node) _adminData 998 h
+ getModuleConfigurationByName(in moduleName: string): ModuleConfigurationClass - docRevislons
+ getXmins(): string t i AdminDataClass 1 1
+ getAdminData(): AdminDataClass + AdminDataClass| -
+ getTopLevelPackages(): TopLevelPackagesClass g \oadArmenC\ass(()m node Nods) DocRevisionsClass
" + getDocRewisions(): DocRevisionsClass + DocRevisionsClass() 0
- topLevelPackages | 1 + getSdgs(): SdgsClass = loadAranlinClass(in node: Node)
+ getDocRevision(): DocRevisionClas
TopLevelPackagesClass 1
+ TopLevelPackagesClass() © - adminDatal 1
~ loadAramlinClass(in node: Node) 1 - docRewision, |«
+ gs;:\\nu;u\igongg%:liur(l_ﬁym"k:(inNrgudu\e;Qam)B: st(ring). ModuleConfigurationCl... EcucConfigurationClass DocRevisionClass
e e VROl | R0 KEgaama 2 SiNng) A Saing - uuid : string - revisonLabel : string
=getArPackage(): Arpack‘agemasi[1 - shortName : string - issuedBy : sfring
- arPackage | * + EcuConfigurationClass() € - date : string
ISP aciaae0iass ~ loadArxmilinClass(in node: Node) + DocRevisionClass() [
L) + getUuid(): string ~ loadAnanlinClass(in node: Node)
- shortName : string + getShortName(): string + getRevisionLabel() string
+ ArPackageClass() @ + getAdminData(): AdminDataClass + getlssuedBy(): string
~ loadArmiinClass(in node: Node) @ gelEcuE)draclRe_f(). RefClass + getDate(): string
+ getModuleConfigurationByName(in moduleName: string): ModuleConfigurationGl. + getModuleRefs(): ModuleRefsClass
+ getShortName(): string 1 4 4
+ getElements(): ElementsClass
- elements 3} - ecucConfiguration
- moduleRefs | 1

ElementsClass T

ModuleRefsClass

+ ElementsClass() —

~ loadAramiinClass(in node: Node) + ModuleRefsClass() o
+ getModuleConfigurationBy Name(in moduleName: string): ModuleConfigurationCl. .. ~ loadArxmiinClass(in node: Node)

+ getEcuConfiguration(): EcucConfigurationClass + getModuleRef(): RefClass [*]

+ getModuleConfiguration(): ModuleConfigurationClass [*]

1
- mndulConﬁgulalmnil

Module ConfigurationClass - moduleRef

- shortName © strin
- implementationConfigVariant : string

+ ModuleConfigurationClass() o -

- ecuExtractRef

1 "

~ loadArmilnClass(in node: Node) e re RefClass
+ getValueByName(in valueName: string). ValueCl. .. - dest : string - definitionRef
+ getShortName(): string - moduleDescriptionRef | - 1%t © String <

+ getlmplementationConfigValue(): string
+ getDefinitionRef(): RefClass 1
+ getModuleDescriptionRef(): RefClass
+ getContainers(): ContainersClass

+ RefClass() =3
- loadAramiinClass(in node: Node)

- definitionRef | * @xtractName(): string

+ getDest(): string

+ getText(): string

. 1
- containers | 1

ContainersClass - definitionRef |1 - valueRef |1
+ ContainersClass() © ! !
~ loadArxmiinClass(in node: Node) Eafsrencavalus Class
+ getContainerByName(in containerName: string): ContainerClass - definitionRefName : string
+ getValueByName(in valueName: string): ValueClass - valueRefName - string

+ getReferenceValueByValueRefName(in valRefName: string): Refer. .
+ getReferenceValueByDefinitionRefName(in defRefName: string): R...
+ getContainerListWithSameType(in type: string): ContainerClass [*]

+ getContainer(): ContainerClass [*]

+ ReferenceValueClass() o
~ loadAnalinClass(in node: Node)
+ getDefinitionRef(). RefClass

+ getvalueRef(): RefClass

1 N 1 + getDefinitionRefName(): string
- conlalnerI_ subContainers b] + getValueRefName(): string
ContainerClass - referenceValue |

- shortName : string - referenceValues

+ ContainerClass() =3
~ loadAramiinClass(in node: Node) 1 Rl 1
+ getValueByName(in valueName: string): ValueClass ReferenceValuesClass
+ getReferenceValueByValueRefName(in valRefName: string): Reference
+ getReferenceValueBy DefinitionRefName(in defRefName: string). Refere. . + ReferenceValuesClass() o
+ getShortName(): string ~ loadArxmiinClass(in node: Node)
+ getDefinitionRef(): RefClass + getReferenceValueByValueRefName(in valRefName: string): ReferenceValueClass
+ getParametersValues(): ParameterValuesClass + getReferenceValueByDefinitionRefName(in defRefName: string): ReferenceValueClass
+ getReferenceValues(): ReferenceValuesClass + getReferenceValue(). ReferenceValueClass [*]
Tﬂfrvmues
ParameterValuesClass - integervalue
s . = ValueClass

+ ParamterValuesClass e (1 5 3

~ loadAnamilnClass(in n(cZ:Ie' Node) - bocleanvalue :"W;r“‘!: sg[rr\::‘g

+ getValueByName(in name: string): ValueClass |1 * . 9 1

+ getintegerValue(). ValueClass [*] - stringValue | + ValueClass()) €

+ getBooleanValue(): ValueClass [*] T w7 ~ loadAramiinClass(in node: Node)

+ getStringValue(): ValueClass [*] - eunumerationValue | + getValue(): string

+ getEnumerationValue(): ValueClass [*] T 27| + getDefinitionRef(): RefClass

+ getFloatValue(): ValueClass [*] - floatValue | + getName(): string

+ getFunctionNameValue(): ValueClass [*] 1 -

Figure 4.5. ECUC model

33

Table 4.5. ECUC model auxiliary functions

EcuConfigurationModel

void loadArxmlFileToModel (final String path)

Description

This function initializes the EcuC model. It calls the nested, package global
loadArxzmlInClass function of the subclasses. It is not expected to merge
different EcuC files. An overload is avoided by checking whether the subclass

is invalid.

Return

moduleName)

Module ConfigurationClass getModuleConfigurationByName (final String

Description

This function is searching a module configuration by its name. It searches
through the model to get the ModuleConfigurationClass object whose

shortName attribute matches to the looked for name.

Return

Jound: searched object (moduleName equal to
ModuleConfigurationClass.shortName)
not found: an empty (invalid) ModuleConfigurationClass object to avoid a

null pointer exception.

Module ConfigurationClass getModuleConfigurationByRef (final String ref)

Description

This function is searching a ModuleConfigurationClass object in the model

with the reference string.

Note

Expected reference format: /ArPackageName/ModuleConfigurationName

Return

found: searched object
not found: an empty (invalid) ModuleConfigurationClass object to avoid a

null pointer exception.

Cor

itainerClass getContainerByRef (final String ref)

Description

This function is searching a ContainerClass object in the model with the

reference string. It also supports the nested search to find a subcontainer.

Note Expected reference format: /ArPackageName/ModuleConfigurationName /-
ContainerName(/SubContainerName...)
Return found: searched object

not found: an empty (invalid) ContainerClass object to avoid null pointer

exception.

Value Class getValueByRef (final String ref)

Description

This function is searching a ValueClass object in the model with the reference

string. [t supports the nested search to find the value in a subcontainer.

Note expected ref: [ArPackageName/ModuleConfigurationName/Container-
Name(/SubContainerName...) /ValueName
Return found: searched object

not found: an empty (invalid) ValueClass object to avoid a null pointer

exception.

34

EcuConfigurationModel

ArPackageClass get ArPackageByRef (final String ref)

Description | This function is searching an ArPackageClass object in the model with the

reference string.

Note expected ref: /ArPackageName

Return found: searched object

not found: an empty (invalid) ArPackageClass object to avoid a null pointer

exception.

AutosarClass

Module ConfigurationClass getModuleConfigurationByName (final String

moduleName)

Description | This function is searching a module cotuﬁguration by its name. It searches
through the model to get the ModuleConfigurationClass object whose

shortName attribute matches to the looked for name.

Return found: searched object (moduleName equal to
ModuleConfigurationClass.shortName)

not found: an empty (invalid) ModuleConfigurationClass object to avoid a

null pointer exception.

TopLevelPackageClass

Module ConfigurationClass getModuleConfigurationByName (final String

moduleName)

Description | This function is searching a module configuration by its name. It searches
through the model to get the ModuleConfigurationClass object whose

shortName attribute matches to the looked for name.

Return found: searched object (moduleName equal to
ModuleConfigurationClass.shortName)
not found: an empty (invalid) ModuleConfigurationClass object to avoid a

null pointer exception.

ArPackageClass get ArPackageByName (final String packageName)

Description | This function is searching an ar package by its name. It searches through the
model to get the ArPackageClass object whose shortName attribute matches

to the looked for name.

Return found: searched object (moduleName equal to ArPackageClass.shortName)
not found: an empty (invalid) ArPackageClass object to avoid a null pointer
exception.

ArPackageClass

Module ConfigurationClass getModuleConfigurationByName (final String

moduleName)

Description | This function is searching a module configuration by its name. It searches
through the model to get the ModuleConfigurationClass object whose

shortName attribute matches to the looked for name.

Return found: searched object (moduleName equal to
ModuleConfigurationClass.shortName)
not found: an empty (invalid) ModuleConfigurationClass object to avoid a

null pointer exception.

ElementsClass

moduleName)

ModuleConfigurationClass getModuleConfigurationByName (final String

Description

This function is searching a module configuration by its name. It searches
through the model to get the ModuleConfigurationClass object whose

shortName attribute matches to the looked for name.

Return

found: searched object (moduleName equal to
ModuleConfigurationClass.shortName)

not found: an empty (invalid) ModuleConfigurationClass object to avoid a
null pointer exception.

ModuleConfigurationClass

ValueClass getValueByName (final String valueName)

Description

This function is searching a value by its name. It searches through all
containers to get the ValueClass object whose shortName attribute matches

to the looked for name. It supports a nested search to find the value in a

subcontainer.
Return found: searched object (valueName equal to ValueClass.name)
not found: an empty (invalid) ValueClass object to avoid a null pointer
exception.
ContainersClass

ValueClass getValueByName (final String valueName)

Description

This function is searching a value by its name. It searches through all
containers to get the ValueClass object whose shortName attribute matches
to the looked for name. It supports a nested search to find the value in a
subcontainer.

Return

found: searched object (valueName equal to ValueClass.name)
not found: an empty (invalid) ValueClass object to avoid a null pointer
exception.

ContainerClass getContainerByName (final String containerName)

Description

This function is searching a container by its name. It searches through the
containers list to get the ContainerClass object whose shortName attribute

matches to the looked for name. It is not searched in subcontainers.

Return

found: searched object (containerName equal to ContainerClass.shortName)
not found: an empty (invalid) ContainerClass object to avoid a null pointer
exception.

valRefName)

ReferenceValueClass getReferenceValueByValueRefName (final String

Description

This function is searching a reference value by its value reference name. It
searches through all containers to get the ReferenceValueClass object whose
valueRefName attribute matches to the looked for name. It supports a nested

search to find the reference value in a subcontainer.

Return

found: searched object (valRefName equal to
ReferenceValueClass.valueRefName)
not found: an empty (invalid) ReferenceValueClass object to avoid a null

pointer exception.

ContainersClass

defRefName)

ReferenceValueClass getReferenceValueByDefinitionRefName (final String

Description

This function is searching a reference value by its definition reference name. It
searches through all containers to get the ReferenceValueClass object whose
definitionRefName attribute matches to the looked for name. It supports a

nested search to find the reference value in a subcontainer.

Return

found: searched object (defRefName equal to
ReferenceValueClass.definitionRefName)

not found: an empty (invalid) ReferenceValueClass object to avoid a null
pointer exception.

type)

ArrayList<ContainerClass> getContainerListWithSameType (final String

Description

This function is searching through the containers and lists all containers
whose type (definitionRefName) matches to the looked for type, in a new list.

The search in the sub containers is not supported, to avoid messing up the

order.

Return found: searched object (type equal to
ContainerClass.definition Ref.extractName())
not found: an empty list of ContainerClass

ContainerClass

ValueClass getValueByName (final String valueName)

Description | This function is searching a value by its name. It searches through the
container to get the ValueClass object whose shortName attribute matches to
the looked for name. It supports a nested search to find the value in a
subcontainer.

Return found: searched object (valueName equal to ValueClass.name)

not found: an empty (invalid) ValueClass object to avoid a null pointer

exception.

ReferenceValueClass getReferenceValueBy ValueRefName (final String

valRefName)

Description | This function is searching a reference value by its value reference name. It
searches through the container to get the ReferenceValueClass object whose
valueRefName attribute matches to the looked for name. It supports a nested
search to find the reference value in a subcontainer.

Return found: searched object (valRefName equal to

ReferenceValueClass.valueRefName)
not found: an empty (invalid) ReferenceValueClass object to avoid a null
pointer exception.

37

ContainerClass

ReferenceValueClass getReferenceValueByDefinitionReflName (final String

defRefName)

Description | This function is searching a reference value by its definition reference name. Tt
searches through the container to get the ReferenceValueClass object whose
definitionRefName attribute matches to the looked for name. It supports a
nested search to find the reference value in a subcontainer.

Return found: searched object (defRefName equal to
ReferenceValueClass.definitionRefName)
not found: an empty (invalid) ReferenceValueClass object to avoid a null
pointer exception.

ReferenceValuesClass

ReferenceValueClass getReferenceValueByValueRefName (final String

valRefName)

Description | This function is searching a reference value by its value reference name. It
searches through all reference values to get the ReferenceValueClass object
whose valueRefName attribute matches to the looked for name.

Return found: searched object (valRefName equal to

ReferenceValueClass.valueRefName)
not found: an empty (invalid) ReferenceValueClass object to avoid a null

pointer exception.

ReferenceValueClass getReferenceValueByDefinitionRefName (final String

defRefName)

Description | This function is searching a reference value by its definition reference name. It
searches through all reference values to get the ReferenceValueClass object
whose definitionRefName attribute matches to the looked for name.

Return found: searched object (defRefName equal to

ReferenceValueClass.definitionRefName)
not found: an empty (invalid) ReferenceValueClass object to avoid a null

pointer exception.

ParamterValuesClass

ValueClass getValueByName (final String name)

Description | This function is searching a value by its name. It searches through all values
to get the ValueClass object whose shortName attribute matches to the
looked for name.

Return found: searched object (valueName equal to ValueClass.name)

not found: an empty (invalid) ValueClass object to avoid a null pointer

exception.

38

4.4. Module Configuration Template

As mentioned earlier, Xtend is used for the implementation of a Module
Configuration Template (MCT). The MCTs are developed to comply with MISRA and
ASPICE standards for automotive software development. The templates can be as complex
as the developer likes. The Wdg and Wdglf templates are fairly simple but the complexity
increases with the Watchdog Manager as it deals with services and interacts with many
other modules. A simple sample of the code is given in Figure 4.6 to show how the
templates are written to access the values from the ECUC model shown in Figure 4.5.

«var WdgGeneralVar = moduleCfg.containers.getContainerListWithSameType("WdgGeneral")»

«FOR varl : WdgGeneralVar»
const Wdg_ConfigType wdg_initialConfiguration_s =

{

«varl.getValueByName("Wdg_SetWindowOpenTimeType").value», /* Window open period
in percent */
«varl.getValueByName("Wdg_SetErrorModeType").value»,
/* FEH handle the Error */
«varl.getValueByName(“Wdg_SetIntRequestType").value»,
«varl.getValueByName("Wdg_SetOverflowIntervalTimeType").value»,

¥

«ENDFOR»

Figure 4.6. MCT sample for Wdg (Xtend code)

The code in Figure 4.6 shows the definition of the WdgGeneral container. The
container is accessed using the function getContainerListWithSameType which extracts
the container from the ARXML file. Once the container is extracted, the values of the
parameters defined for the container are accessed using the ParameterValueClass function
getValueByName. Everything shown in blue is printed in the generated file as it is seen.
The identifier value is used to access the value for the mentioned parameter and print it in
the generate file. This is a simple example that shows how a container and its parameters

can be accessed.

The second sample in Figure 4.7 shows a very efficient but more complex method
that can be very beneficial for arrays or array structures with many entries. The procedure
is to create a list of all containers which belong to the same type, this is needed because

sometimes a container needs to be created more than once. For example, when there are

39

more than one hardware watchdog timers present, more than one container with the same
name is needed. Therefore, the function getContainerListWithSameType() from the
ContainerClass is called. The container name WdgMSeid is compared with the container
descriptions in ARXML to find and access the container. An iteration is performed using
for loop to in order to access the containers multiple times for every WdgMSeid container
that is created. When a Boolean parameter is value is accessed, the value needs to be
converted to uppercased as it is described in ARXML to avoid any conflicts that can occur
due to case sensitivity. The first two parameters declared are of type Boolean. This sample
code also uses some references inside the container. References in AUTOSAR are like
pointers, they point to other modules that might contain the information needed by the
WdgM. In Figure 4.7, we use the reference CheckpointRef to get the reference to the
execution start point of every module used in the ECU. The reference path is specified in
the ARXML file which will be accessed by the ReferenceClass function
getValueRefName(). The other reference used is the TransitionRef that is used to point to
the reference path where the execution needs to transition from one module to another
without completing the execution of the first module. This reference is important when a
task calls another function while already executing one. Further details on this topic are not
mentioned as they are out of the scope of this thesis. A special feature of xtend is that the
template code block is written in between triple single quotes (“*). The way the
statements are written in xtend which you can see in Figure 4.7 is called Lambda
Expressions. A lambda expression is basically a piece of code wrapped into an object to
pass it around [18]. We can think of a lambda expression as an anonymous class with a
single method. The first few lines of code in Figure 4.7 are an example of Lambda

expressions.

As the xtend code is written in Eclipse, an executable Java code is generated using
the ECUC model. This java file is used as input to the BSG tool to automate the generation
of the ECUC. A sample of the java code that is generated by the eclipse is shown in Figure

4.8. The complete Java code for a module is given in the Appendix B.

40

««« WdgM_SEID container definition

«var WdgMSEIDVar = moduleCfg.containers.getContainerListWithSameType("WdgMSeid")»
const WdgM_SEIDType WdgM_SEID_as[WDGM_NUM_OF_SEIDS] =

{

s

(R

Each template needs a Java main for the execution. The Java code shown in Figure
4.8 is used for this purpose. This code is auto generated by Eclipse using the ECUC model.
The structure of the java file is the same for all the modules. Only some information needs
to be filled by the developer like the moduleName. The information that needs to be filled
by the developer is usually marked with the comment TODO. The Java file includes all the

ECUC model classes that are used by extend to access the values. The respective module

«var z = 1»
«FOR SEID : WdgMSeidVar»

{

}J

«{Z
«ENDFOR»

/*.WdgM_SEIDId_ui8 = */ WDGM_REF_ID_LIN«SEID.getValueByName("WdgMSEIDId").value»,
«IF SEID.parametersValues.booleanValue.get(3).getValue().equals("true")»

/* .WdgM SEIDUsed b = */
«SEID.parametersValues.booleanValue.get(3).getValue().toUpperCase()»,

«ELSEIF SEID.parametersValues.booleanValue.get(3).getValue().equals("false")»
/* .WdgM SEIDUsed b = */
«SEID.parametersValues.booleanValue.get(3).getValue().toUpperCase()»,

«ENDIF»

/* .WdgM_InitState_e = */«SEID.getValueByName("WdgM_InitMode").value»,

«IF SEID.parametersValues.booleanValue.get(1).getValue().equals("true")»

/* .WdgM_Start_b = */
«SEID.parametersValues.booleanValue.get(1).getValue().toUpperCase()»,

«ELSEIF SEID.parametersValues.booleanValue.get(1).getValue().equals("false")»
/* .WdgM_Start_b = */
«SEID.parametersValues.booleanValue.get(1).getValue().toUpperCase()»,

«ENDIF»

«var ref = SEID.getReferenceValueByDefinitionRefName("WdgMCheckpointRef")»
«IF SEID.referenceValues.referenceValue.size > 0»

/* .WdgM_CheckpointRef_ui8 = */ ECUM_Module_«ref.getValueRefName()»,
«ELSEIF ref.getValueRefName().equals("invalid")»

/* .WdgM_CheckpointRef_ui8 = */ @, /* Module missing */

«ENDIF»

«var icuref = SEID.getReferenceValueByDefinitionRefName("WdgMTransitionRef")»
«IF icuref.getValueRefName().equals("invalid")»

/* .WdgM_TransitionRef_ui8 = */ 0, /* TransitionRef missing */

«ELSEIF SEID.referenceValues.referenceValue.size > 0»

/* .WdgM_TransitionRef_ui8 = */ ECUM_Transition_«TransitionRef.getValueRefName()»,
«ENDIF»

/* .WdgM_Access_s = */
&«SEID.getSubContainers().getContainer().get(0).getShortName()»WdgM«z»

z+1; null}»

Figure 4.7. Complex MCT sample (Xtend code)

package and java libraries are imported.

41

package com.apagcosyst.genWdgIf;

import java.io.BufferedWriter;
import java.io.File;

import java.io.FileWriter;
import java.io.IOException;

import com.apagcosyst.generator.ArgumentsInterpreter;
import com.apagcosyst.generator.IGenSourceCode;
import com.apagcosyst.ecuCModel.ArxmlFileInterpreterClass;
import com.apagcosyst.ecuCModel.EcuConfigurationModel;
import com.apagcosyst.ecuCModel.ModuleConfigurationClass;
public class WdgIf Main {

private String moduleName;

private String moduleVersion;

private ModuleConfigurationClass moduleCfg;

private EcuConfigurationModel ecuConfig;

private IGenSourceCode moduleGen;

private FileWriter fwCfgh;

/* insert the configuration for the module which has to be generated */

public WdgIf_Main()

{

/* TODO: insert here the module name */
moduleName = "WdgIf";

/* this is filled in Setup() function */
moduleCfg = new ModuleConfigurationClass();
ecuConfig = new EcuConfigurationModel();
moduleGen = new WdgIf();

moduleVersion = new String("1.0");

Figure 4.8. executable Java code

Code to access such as module configuration class, ECUC model, the module being
generated and the module version are automatically generated by Eclipse using the Setup()
function. The java executable file contains more statements to access the values from the
ECUC model which as mentioned before is shown in Figure 4.5.

The flowchart in Figure 4.9 shows the general behavior of the program and its
messages. At first, the arguments are checked, if the correct arguments are not entered, the
execution would be canceled. The next step validates the version string, by comparing the
transferred version with the version defined in the template. Later, the ECUC Description
is loaded to the model and the module configuration of the module is searched for. This
information is transferred to the Xtend class, which generates the source code by inserting

the values into the template.

42

Q
|

[C) Interpreting arguments]

[Passed arguments valid?]
l [Mo]

D) Print error message
"Arguments are not valid..."

[¥es]

) Declareation of the
template

[version valid?]

[Yes] Mo]

C)Load EcuC Description to model D Print error message
"\ersion is not valid!..."

configuration in the model

(CJ Search the template's module}

[module configuration found?]

[‘-’eS]\ﬁ <) ﬁmm

D) Generate source code)] Print error message
"ModuleConfiguration: ... not found!

IGeneration aborted!!”

)] Print message
"Generation is finished!”

L Q

®

Figure 4.9. Module configuration template Workflow

After the implementation, a Java Archive (JAR) runnable has to be created. This is
done in the Eclipse Modeling Framework IDE by a right-click on the project in the “Model
Explorer” and select Export. A new window opens, choose there Java > Runnable JAR file
and press Next. In the next view, the Launch configuration has to be chosen. Select
«moduleName»_Main. Browse for the output folder and name the output
«moduleName» BswMCT .jar. Last but not least select the item “Package required

libraries into generated JAR” and press Finish. The runnable is ready for executing. Make

43

sure the arguments ecuc, -0, -v are passed. Without these arguments, the generation won’t

be started correctly, as it can be back-traced in Figure 4.9.

Table 4.6 lists the auxiliary functions used to format the output source code. This
class also has attributes that can be used for a more generic way, for example, to print large
arrays without much effort. In all the functions mentioned, the parameter’s value is checked
for validity. If the value is not found or is the value found is unequal to the compared string,

the result is “invalid”.

Table 4.6. List of auxiliary functions for formatting the output source code

printDefineExpression

static String printDefineExpression (String name, String value, String casting,
b o f=] (=] (=]

String comment)

Description | This function prints a define expression. It defines the output format for the
other printDefineExpression methods. The casting and comment are

optional. If the strings are empty they are not printed.

Return String in the format: #define name ([(casting)|value) [/* comment */|

static String printDefineExpression (String name, ValueClass arValue, String

casting, String comment)

Description | This function checks if arValue.value is valid. If it is invalid a warning is
shown in the error stream and a preprocessor error string will be returned. In
the future the boundaries can be checked and the default value can be used as
soon as the information of the EcuC' Parameter Definition is available. This
function calls printDefineExpression(String, String, String, String) to

format the output.

Return valid: return of printDefineExpression(String, String, String, String)

invalid: #error: invalid value for parameter name

printParameterExpression

static String printParameterExpression (ValueClass arValue, String comment)

Description | This function casts the value to the correct type. For this functionality the
boundaries of the FeuC' Parameter Definition are needed, at the moment it
cannot be used. This function calls printParameterExpression(ValueClass,

String, String) to automatically generate the variable’s name.

Return return of printParameterExpression(ValueClass, String, String)

44

printDefineExpression

comment)

static String printDefineExpression (ValueClass arValue, String casting, String

Description

This function converts the arValue.name in a standardized define name. With
this functionality it will be possible to use the define names in a reference.
The previous methods allows the developer to chose the name, so it is not
possible to make a consistent naming. This function calls
printDefineExpression(String, ValueClass, String, String) to check the

arValue.value.

Return

return of printDefineExpression(String, ValueClass, String, String)

static String prin

tDefineExpression (ValueClass value, String comment)

Description | This function casts the value to the correct type. For this functionality the
boundaries of the EcuC Parameter Definition are needed, at the moment it
cannot be used. This function calls printDefineExpression(ValueClass,
String, String) to automatically generate the define name.

Return return of printDefineExpression(ValueClass, String, String)

printParameterExpression

static String printParameterExpression (String name, String value, String

casting, String comment)

Description | This function prints a parameter expression. It defines the output format for
the other printParameterExpression methods. The casting and comment are
optional. If the strings are empty they are not printed.

Return name = [(casting)|value; [/* comment */]

Stri

static String prin

tParameterExpression (String name, ValueClass arValue,

ng casting, String comment)

Description

This function checks if arValue.value is valid. If it is invalid a warning is
shown in the error stream and a preprocessor error string will be returned. In
the future the boundaries can be checked and the default value can be used as
soon as the information of the EcuC Parameter Definition is available. This
function calls printParameterExpression(String, String, String, String)

to format the output.

Return

valid: return of printParameterExpression(String, String, String,
String)

invalid: #error: invalid value for parameter name

Stri

static String prin

ng comment)

tParameterExpression (ValueClass arValue, String casting,

Description | This function uses the arValue.name for the naming of the variable. This
function calls printParameterExpression(String, ValueClass, String,
String) to check the arValue.value.

Return return of printParameterExpression(String, ValueClass, String,

String)

45

printParameterExpressionInStruct

static String printParameterExpressionInStruct (String name, String value,

String casting, String comment)

Description | This function prints a parameter expression inside a structure. It defines the
output format for the other printParameterExpressionInStruct methods.
The name, casting and comment are optional. If the strings are empty they
are not printed.

Return [/* .name = #/] [(casting)|value, [/* comment #/]

static String printParameterExpressionInStruct (String name, ValueClass

arValue, String casting, String comment)

Description

This function checks if arValue.value is valid. If it is invalid a warning is
shown in the error stream and a preprocessor error string will be returned. In
the future the boundaries can be checked and the default value can be used as
soon as the information of the FeuC Parameter Definition is available. This
function calls printParameterExpressionInStruct (String, String, String,
String) to format the output.

Return

valid: return of printParameterExpressionInStruct(String, String,
String, String)
invalid: #error: invalid value for parameter name

static String prin

tParameterExpressionInStruct (ValueClass arValue, String

casting, String comment)

Description | This function uses the arValue.name for the naming of the variable. This
function calls printParameterExpressionInStruct(String, ValueClass,
String, String) to check the arValue.value.

Return valid: return of printParameterExpressionInStruct (8tring, ValueClass,

String, String)

static String prin

tParameterExpressionInStruct (ValueClass arValue, String

comment)

Description | This function casts the value to the correct type. For this functionality the
boundaries of the FeuC Parameter Definition are needed, at the moment it
cannot be used. This function calls
printParameterExpressionInStruct (ValueClass, String, String) to
automatically generate the variable's name.

Return return of printParameterExpressionInStruct((ValueClass, String,

String)

46

45. BSG Tool

The tool responsible for managing and executing the templates to generate the
configuration files is called the Basic Software Configuration Source Code Generator
(BSG) tool. The tool uses the Graphical User Interface (GUI) to interact with the user. The
GUI of the BSG is shown the Figure 4.10. The GUI allows the user to set up the tool to
generate the *.c and *.h files for the specific module.

| £ | BswCSC Generator — O x
File
Modules E
i ECUC: “ || Browse
Root Path: | || Browse
Module List Operations
Select All | | Deselect All | | Research
Module Name: Version:
Execute:) Yes W No
Executable Path: Browse
Output Path: | Browse
| | Delete Module
No tool configuration found! Generate | | Close |

Figure 4.10. BSG GUI

47

Functions such as the automatic search for MCTs and the ARXML files within the
project are implemented. The functionality requires a naming convention of the templates
and also a root path for searching the templates. All the existing MCTs are listed on the left
when the BSG is opened. Each module consists of the properties such as module name,
whether it should be generated, the path and name of the template, the output path, and the
version. The default configuration properties for a module are loaded when the module is

selected. The properties listed are:

e Module Name: «moduleName» extracted from «moduleName» BswMCT .jar

e Version: stays empty

e Execute: Yes

e Executable Path: the path of the MCT relative to the tool executable and the
name of the MCT: «moduleName» BswMCT .jar

e Output Path: the path of the MCT relative to the tool executable

Figure 4.11. MVC Pattern

The implementation of the graphical user interface is solved by the Model View
Controller (MVC) pattern. This design pattern is used to separate the logic from the
representation of the data. The separation makes easier the later maintenance. Figure 4.11
shows the three components of the MV C pattern. The model contains the data, in this case,
it would be the configuration of the tool. The view is responsible for displaying the data

and what the user sees. The controller listens to the actions of the user. The dashed lines

48

correspond to communication via observers and observables. With this mechanism, a class
(observer) monitors another class (observable). If there is a change the observer gets a

notification.

The Implementation of MVC using UML classes is shown in Figure 4.12. The
MainControl is the interface between the model, the ToolConfig and the user interface, the
MainViewFrame. The controller handles all information and updates the data. Inputs of the
user are recognized by action and focus listener and are processed respectively. The class
diagrams of the classes for the BSG tool are shown in the Appendix C. The further

implementation details of the BSG tool are not mentioned as it out of the scope of this

thesis.
ToolConfig
-toolConfig |1
MainViewFrame MainControl
- view
1
-, A
. S
<<Flpwies 4 ;1
shows . S 2eflowes
Information & " change data, do
’ aclions
User

Figure 4.12. Class diagram for implemented MVC pattern

The functionality of the BSG tool shown is Figure 4.12 is explained. All the MCTs
and are found and listed when the tool is opened. For the search, the Root Path is used as

the root directory. All found templates are displayed on the left side. Each module in this

49

list has a checkbox next to its name to inform the user if a module is selected for generating

or not. This option can also be changed on the right side at the item Execute. There are the

two buttons Select All and Deselect All for a quick selection and deselection of all modules.
The ECUC field contains the path and name of the ECUC Description file. If a module is

selected, the fields of the lower right part are filled with the corresponding information,

also called module properties. The Module Name and the Executable Path cannot be

changed. The Version must be entered manually by the user, this is compared with the

version which is stored in the template, if these do not match, the generation of that module

will not be started and an error message is returned, therefore look at Table 4.7. This should

|£:| BswCSC Generator - O b4
File
e 1 Ecuc: [-LL L Wector42\Applications\SipAddon\StartApplicatien'ConfigEd | Browse
[]iCanTrcy :
& CanTrevTast | RootPath: [LLLLLLLL || Browse
[NvMm Module List Operations
[] imageCreator Select All || Deselect All || Research
[] LinTrev
[]wdg :
[]wadg_99 i| Module Name: CanTrcv Version:
v] Recute: es 0
[v] Wdglf | Execut o) | N
[l canTrcv2
{| Executable Path: .\\mplemeniation\SRC\HALICanTrevicig\CanTrev_BswMCTa | Browse
Output Path: [\ implementationSRCHALCanTrovicig || Browse
|| Delete Module
tool configuration loaded from: C:\Projects\P971_ALM_SW\03-1.. Generate || Close |

50

Figure 4.13. BSG tool with loaded config files

ensure that no wrong templates are used in the project. The button Delete Module deletes
the currently selected module, which module properties are displayed on the right side.
Generate triggers the generation of all selected modules by executing the templates. Before
that, the tool configuration will be saved automatically. The Close button exits the program.
Before the program is closed, it asks if the tool configuration should be saved, this is the
difference to exiting the program via the X button, here the configuration is not saved. In

the ribbon there is the item File, this opens a menu with 4 menu items:

e Load tool config...: opens the browser to select another tool configuration and
loads it.

e Save tool config: saves the tool configuration.

e Save tool config as...: opens the browser to select a new path and name for the
current tool configuration and stores it there.

e EXxit: opens a dialog asking if the tool configuration should be saved, same as

Close.

The tool can optionally be executed with command-line arguments. These arguments
are the path and name of the tool configuration (-c) and a flag to enable the execution
without GUI (-execute). An execution without arguments opens the GUI and loads the
default tool configuration “BSGToolConfig.xml”. The program flow is shown graphically
in Figure 4.14.

The program flow of BSG starts with the execution of the tool. The tool is saved
within the development repository at APAG from where it can be executed. Once the
module which needs to be generated is selected. The BSG interprets the arguments set for
the module. If the arguments are found the tool configuration path is executed, if not the
BSG accesses arguments from inside the tool executable. After the tool has the arguments
the tool configuration is searched and loaded into the BSG. If the tool configuration is not

found then an error message is displayed to inform the user that the configuration is not

51

found. If the configuration is loaded correctly, the user can generate the output source code

using the generate button on the GUI.

Execute the tool J

v
Interpret the 5
arguments V
tool configuration set inside
v the tool executable
Set the tool -
configuration path

J

A 4
A

Search for the tool configuration in
the expected directory

! !
Load the configuration file inform the uset that tool
with values to view configuration is not found

A 4
A

Generate the source code
according to the loaded

Figure 4.14. BSG tool flow

52

There is a feedback, shown in the GUI or command line, it is a simple line explaining
if the generation was successful or failed. The detailed feedback is generated in the log file
saved in the same folder as the BSG tool in APAG’s file repository. The log file gives a
detailed explanation for every step of tool execution. The feedback that can be received in
the log file is explained in Table 4.7.

Table 4.7. Feedback in the log file

Execution Path of the tool: C:\TestProject\Tools\BSW__CSC_ Generator
It prints the location the tool is executed. As will be shown later, it can happen
that the path is not always as expected.

Searching tool configuration in ".\’

‘ This shows the location where the tool configuration is searched
No argument for tool configuration is passed, as default
BswCSCToolConfig.xml is used.

‘ There is no argument transferred with the -c option, so the default one is used.
Resolved absolute path of tool configuration: C:\TestProject \Tools
\BSW__CSC__Generator\BswCSCToolConfig.xml\

This message shows the resolved absolute path, where the tool configuration is
expected. This can be used to find potential errors if somethin went wrong by
resolving the relative path.

Tool configuration is not found.

There is no tool configuration, check the previous message. Is the path correct? It

is no problem if it is the initial call of the tool or no tool configuration is expected.

Searching templates recursively. starting with root folder C: \TestProject

The user searched for the modules, the root path which is used as slarting point
for the search is printed.

Searching is finished, modules found.

The search for modules s finished. Some new modules are found. They are added

to the modules list. At this point they won’t appear in the tool configuration file

because it hasnt been saved.

Searching is finished, no new modules found.

The search for modules is finished. There are no new modules found. If a new
module is expected check the root path and the location of the MCT.

Tool configuration is saved in path C:\TestProject \Tools

\BSW__CSC_ Generator\BswCSCToolConfig.xml.

The tool configuration is saved in the path with the name
“BswCSCToolConfig.xml”

53

Tool configuration could not be saved in path: C:\TestProject \Tools
\BSW_CSC_Generator\BswCSCToolConfig.xml. Check settings and permissions!
During the saving of the tool configuration an error occurred. Maybe it is because
of missing permissions for the selected path.

ECUC path is in tool configuration empty!

See: C:\TestProject \Tools \BSW__CSC Generator\BswCSCToolConfig.xml

By triggering the generation, the ECUC path is checked. If it is empty this error

appears and the generation will not be executed as it doesn’t make sense to start
it without the FcuCDesc.

Start generating modules

‘ This message shows that the generation process is started.
EXECUTE:
java -jar
C:\TestProject\Implementation\ SRC\HAL\ CanTrcv\cfg\ CanTrev_ BswMCT jar
-ecuc C:\TestProject\ EcuCExample.arxml -o C:\TestProject
\Implementation\SRC\HAL\CanTrcv\cfg -v null

Output:

Errors and Warnings:

The command for the execution is printed, this can be used for debugging errors.
In this example the -v argument is not set, so the template will return an error
message and aborts the generation.

The messages of the MCT are caught and printed in the “Output”, “Errors and

Warnings” sections.

Error: Unable to access jarfile

C:\TestProject\ Implementation\SRC\HAL\ CanTrev\cfg\ CanTrev_ BswMCT jar
This message shows that the MCT is not located at this path. If the template is
moved to another location. Use the Delete bulton to remove the module and

research to get the correct location. Don’t forget to add the correct Version.

54

Chapter 5. Functional Testing and Evaluation

This chapter discusses the results of the automated generation of ECUC. It
discusses the generated code samples, test cases for error management of BSG and timing

and cost analysis of our research.
5.1. Auto-Generate Source Code

After the BSG tool generates the code. The source code for the Wdg Module is
generated and saved in the Wdg folder in the file repository. According to the requirements
three source code files are generated for Wdg depending on the configuration classes:
Wdg_Cfg.h, Wdg_Lcfg.c and Wdg_Lcfg.h. The complete generated source code cannot
be discussed due to confidentiality reasons but a small part of the generated code
corresponding to the xtend template shown in Figure 5.1 is shown in Figure 4.6.

const Wdg_ConfigType wdg_initialConfiguration_s =
{

Wdg_SetWindowOpenTimeType: WINDOW_OPEN_PERIOD 100 PERCENT,
Wdg_SetErrorModeType: ERROR_RESET_MODE,

Wdg_SetIntRequestType: INT_REQUEST AT 75 PERCENT DISABLED,
Wdg_SetOverflowIntervalTimeType: OVERFLOW_TIME_2HIGHS DIVIDED BY WDTA_CLK,

s
Figure 5.1. Generate source code Wdg_Lcfg.c

The generated code printed everything that was coded in blue in Figure 4.6 as it is.
We can see that the value for each of the parameters in the container WdgGeneral is
accessed from the ECUC model and displayed in blue in Figure 5.1. These values were
defined in the ARXML file and were accessed by xtend. Then the source code was auto-
generated using the BSG tool.

A more complex example of the generated source code for the template shown in
Figure 4.7 is given in Figure 5.2. The parameters were generated 4 times for the container
SEIDType because of 4 different watchdog timers used in the hardware.

55

const WdgM _SEIDType WdgM_SEID as[WDGM NUM OF SEIDS] =

{
{
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

const WdgM_ConfigType WdgM_Config_s

{
s

/* .WdgM_SEID ps

5.2.

.WdgM_SEIDId_ui8
.WdgM_SEIDUsed_b
.WdgM_InitState_e
.WdgM_Start_b = */

.WdgM_CheckpointRef_ui8
.WdgM_TransitionRef_ui8
.WdgM_Access_s = */

= *x/
= *x/
= %

/

.WdgM_SEIDId ui8 = */
.WdgM_SEIDUsed_b = */
.WdgM_InitState_e = */
.WdgM_Start_ b = */
.WdgM_CheckpointRef_ui8
.WdgM_TransitionRef_ui8

.WdgM_Access_s = */
.WdgM_SEIDId ui8 = */
.WdgM_SEIDUsed_b = */

.WdgM_InitState_e = */
.WdgM_Start_b = */
.WdgM_CheckpointRef_ui8
.WdgM_TransitionRef_ui8

.WdgM_Access_s = */
.WdgM_SEIDId ui8 = */
.WdgM_SEIDUsed_b = */

.WdgM_InitState_e = */
.WdgM_Start_b = */
.WdgM_CheckpointRef_ui8
.WdgM_TransitionRef_ui8
.WdgM_Access_s

*/

WDGM REF ID LIN1,

TRUE,
WDGM_TRCV MODE NORMAL,
TRUE,

/e,

*/ e)

&WdgM_Access_SEIDLinl

WDGM REF ID LIN2,
TRUE,
WDGM TRCV_MODE NORMAL,
TRUE,
9,
9,
&WdgM_Access_SEIDLin2

*/
*/

WDGM REF ID LIN3,
TRUE,
WDGM TRCV_MODE NORMAL,
FALSE,
9,
9,
&WdgM_Access_SEIDLin3

*/
*/

WDGM REF ID LIN4,
TRUE,
WDGM _TRCV_MODE NORMAL,
FALSE,
9,
9,
&WdgM_Access_SEIDLin4

*/
*/

*/ WdgM_SEID_as

Figure 5.2. Generated source code for WdgM_Cfg.c

Tests Cases for the BSG tool

The Table 5.1 defines test cases (TCs) that were created to check the functionality of

the BSG tool. These briefly describe which action is taken and which result is expected.

The test is passed if the actual response matches the expectation, if not it has failed. For

some test cases, an execution on the command line is needed. The following convention is

made to describe the location and command: Tilde (~) is used for the root path (here:

56

TestProject). The dollar symbol ($) is used to mark the beginning of the command. In

addition, keywords in the command are highlighted in pink.

~/this/is/a/path/ $ this is a command

Figure 5.3. example command line
Table 5.1. Take Cases

Test Case
No.

1. Starting tool

Description Result

1.1. Over icon (no arguments, so GUI is displayed)

Deseription:

Starting the tool without an existing default tool configuration.
1.1.1 Ezpected result: passed
User gets information that no tool configuration is found. All fields of the

GUI are empty.

Deseription:

Starting the tool with existing default tool configuration. It is located in
the same folder as the executable.

1.1.2 Erpected result: passed
Loading the content of the BswCSCToolConfig.xmil. Displays the content of
the configuration. User get informed of the location of the loaded tool

configuration.

1.2. Over command line

Deseription:

Starting the tool over the command line without any arguments.

FErpected result:

1.2 1 The reaction is similar to TC1.1.1 resp. TC1.1.2. pa‘-%sed
Command:
~/Tools/BSW_CSC_Generator/ %
Description.:
Starting the tool over the command line with an other tool configuration. It
is located in an other directory or has a different name compared to the
default one.
Ezxpected result:
1.2 9 The tool loads the content of the file and displays the content of the 1‘3a=%s<3d

configuration.

Command:

57

Description:
Starting the tool over the command line with an invalid tool configuration

(e.z. not found)

Ezpected result:

User gets information from the shell and GUI that no tool configuration is

1.2.3 found. All fields of the GUI are empty. This case is comparable to TC1.1.1 passed
Command:
~/Tools/BSW_CSC_Generator/ §
Description:
The tool should be executed without opening the GUIL The tool
configuration exists.
Ezpected result:
The tool loads the content of the BswCSCToolConfig.aml and starts the
1.2.4 generation of the modules immediately without opening the GUI. The shell passed
contains the information whether a module is generated or not.
Command:
~/Tools/BSW_CSC_Generator/ ¢
Description:
The generation should be started with a valid configuration from a different
location. The GUI should not be displayed.
Expected result:
The tool loads the content of the file and starts the generation of the
1.2.5 modules immediately without opening the GUIL The shell contains the passed
information whether a module is generated or not.
Command:
~/Tools/BSW_CSC_Generator/ §
T fig/Valid o
Description:
The tool is executed with a invalid path resp. file name for the tool
configuration. The GUI should not be displayed.
Erxpected result:
User gets information from the shell that no tool configuration is found and
1.2.6 passed

generation is aborted because of an empty ECUC path.

Command:

~/Tools/BSW_CSC_Generator/ $

58

Description:
The tool is called by the shell from an other location.

Expected result:

The tool loads the content of the default tool configuration which is located

1.2 .7 | in the same path were the tool executable is located and displays the passed
content of the configuration. This case is comparable to TC1.1.2
Command:
2. Loading configuration
2. 1. automatically at start up
Description:
The tool configuration is found in the expected folder and is loaded at start
up.
2.1.1 Ezxpected result: passed
The configuration is displayed in the graphical user interface. The modules
are listed, the check boxes show the selection for the generation. The first
module’s configuration in the list is displayed in more detail.
Description:
The tool configuration is not found in the expected folder, so no tool
; configuration is loaded.
2612 passed
Frpected result:
The view stays empty. At the bottom an info shows “No tool configuration
found™.
2.2. via menu
Description:
(Re-)Loading the tool configuration via the menu item
291 Ezxpected result: passed
- . [e
The tool shows the new configuration in the graphical user interface. The
modules are listed, the check boxes show the selection for the generation.
The first module’s configuration in the list is displayed in more detail.
3. Saving configuration
3.1. via menu
Description:
The tool configuration will be saved by using the menu (File -> Save).
3.1.1 Expected result: passed

The current configuration is saved. The loaded tool configuration is over
written with the changed values. The GUI shows a massage at the bottom,

that saving was successfully or has failed.

59

3.2.

3.1.2

Description:
The tool configuration will be saved by using the menu (File -> Save as..)

Ezpected resuli:
The tool opens the file explorer to select a file. Saving the current

configuration in the selected file. The GUI shows a massage at the bottom,
that saving was successfully or has failed. The new file will be used for

further runtime.

generating

passed

3.3.

3.2.1

by

Description:

By clicking the generate button the configuration will be automatically
stored to maintain the coherence between generated source code and the
configuration.

Ezpected resuli:
The tool overwrites the loaded configuration with the changed values.

closing

passed

3.3.1

Description:
If the tool will be closed through the button or over the menu with exit

(compare with TC4), a dialog asks the user if the configuration should be
stored.

Ezpected result:
Depending of the user’s decision the tool configuration is saved or discarded

passed

4.1

4. Clo
. by

sing the tool

Close button

411

4.2.

by

Description:
The tool will be closed through the close button.
Ezpected resuli:

A dialog opens, asking the user if the tool configuration should be saved or
not. Afterwards the application is closed.

menu

passed

4.2.1

4.3.

by

Description:
The tool will be closed via the menu (File -> Exit).

Ezpected result:
A dialog opens, asking the user if the tool configuration should be saved or

not. Afterwards the application is closed.

the X

passed

4.3.1

Description:
The tool will be closed through the X in the upper right corner of the

window

Expected result:
The application is closed immediately. The changed configuration is not
saved.

passed

60

5. Elements of the view

5.1. Browse button

5.1.1

Description:
There is no path entered in the left text field and the browse button to its

right is clicked.
Erpected resull:

The file explorer is opened. The start directory is the location of the tool’s
executable.

passed

5.1.2

Description:
There is a path entered in the left text field and the browse button to its
right is clicked.

Ezpected result:
The file explorer is opened. The start directory is the path of the text filed.

passed

5.1.3

Description:

The browse button for searching an EcuC' Description is pressed.

Erpected result:

The file explorer only shows folders and files with the pattern *.arxml

passed

5.1.4

Description:

The browse button for selecting the root path is pressed.

Frpecited resulf:

The file explorer only shows folders.

passed

5.1.5

Description:
The browse button for selecting the output path is pressed.
Erpected resull:

The file explorer only shows folders.

5.2 . Browse text filed

passed

5.2.1

Description:
A absolute path is entered in the text field.

Erpected resull:

The entered path is converted to a relative path to the location of the

executable.

passed

5.2.2

Description:
A relative path is entered in the text field.

Ezpected resull:

The entered path should be relative to the to the location of the tool’s

executable elsewise an error will occur by resolving the path.

5.3 . Version text filed

passed

5.3.1

Description:

A version string is inserted. There are no rules defined how the format
should look like. (see also TC 5.10.2)

Erpected resull:
The entered text is displayed.

passed

61

5.4 . Modules list

5.4.1

Description:
The settings of a module are regarded by clicking on its name in the
module list.

Expected result:

The module’s configuration is shown on the right side. The sate for
execution has changed.

5.5. Select All button

passed

5.5.1

Description:
All modules should be selected for the generation, therefore the select all
button is used.

Erpected result:

All checkboxes appears as selected in the modules list. The first module in
the list is displayed.

5.6 . Deselect All button

passed

5.6.1

Description:

All modules should be deselected for the generation, therefore the deselect

all button is used.

Ezpected resull:

In the modules list none checkbox is selected. The first module in the list is
displayed.

5.8 . Research button

passed

5.8.1

Description:
The button to research MCTs in the project is pressed.

Expected result:
The tool searches through all subfolders of the root path and lists founded

MCTs.

5.9. Delete button

passed

5.9.1

Description:

The delete button is pressed to remove one module.

Expected result:

The selected module is removed from the modules list. User get informed
which module was deleted. The first module in the list is displayed.

passed

5.9.2

Description:

The delete button is pressed but no module is selected (e.g. no modules are
in the list).

Ezpected result:
Nothing happens.

passed

62

5.10. Generate button

Description:
The generate button is pressed to start the generation. Everything is

configured correctly.

5.10.1 passed
Expected resulf:
The module configurations are generated to the respective output path.

The user get informed that the generation is finished successfully.

Description:
The generate button is pressed to start the generation. Something is wrong

(e.g. Version is not correct or template has a problem).

Erpected resulf: passed

The user get informed that generation is finished, but that there was an
error. He has to look in the log file (BswCSCLogFile.log) for further
information.

5.10.2

Description.:

The generate button is pressed to start the generation. The ECUC path is
empty.

5.10.3 passed
Erpected resulf:

The user get informed that generation is canceled, because of the empty
ECUC path.
5.11. Close button

Description:

The close button is pushed for closing the tool.
5.11.1 . : passed

Erpected resulf:
See TC4.1.1

5.12. File menu

Description.:

The file item in the menu ribbon is pressed.

Expected resulf:
Further options for saving loading and exiting the tool are listed.

5.12.1 passed

All the test cases were put to test at APAG and all were verified and passed. This

proves that the BSG tool works without any issues

63

5.3. Approximate Time and Cost comparisons

Time and Cost for the automated generation of ECUC in AUTOSAR utilized for this
research is compared with the generation of ECUC manually done by the developers.
Figure 5.4 gives an approximate estimation of the time taken for auto-generating ECUC
configurations at APAG versus the time taken to generate them manually by a developer.
The work done manually by a developer to generate the ECUC is approximately around 8
weeks. But our research at APAG can auto-generate the configurations and complete the

whole process in 2 weeks.

Approximate time taken to Generate ECUC

Automated Generation -

Figure 5.4. Approximate time taken to generate ECUC

Automotive suppliers use some existing tools that our in the market like Vector da
Vinci [27] to complete the ECUC process. These tools are very expensive for small
companies like APAG Elektronik. It is easier for small companies to develop their own

code generator tool that will turn out to be less expensive.

64

Chapter 6. Conclusion
6.1. Summary

In this research, we described the process for the automated generation of the ECU
configurations, which is a necessary process for developing an ECU based on AUTOSAR.
The MCT and the BSG generator can be used in various projects to generate the
configuration files automatically with minimal input and effort from the developer. The
aim was to develop a process in the automotive embedded systems to ensure consistency
in design, software implementations, driver configurations and reduce the time and cost
consumed by the AUTOSAR ECU generation process. This work presents an approach
that seamlessly describes the ECU configuration process using templates and a generation
tool that can be reused. This approach can be used for all the AUTOSAR modules present

in the basic software layer.

The whole ECU configuration process and source code generation without the BSG
CAD tool can be done manually by a group of 2 to 3 embedded developers over a period
of approximately one month for one module of AUTOSAR. But by using the BSG tool and
the MCTs we can finish the ECU configuration process and generation of one module in

approximately one week.

Improved efficiency, traceability, and consistency for the configuration process,
reduction in cost, time and cumbersome, error-prone manual work along the ECU
development path are the main benefits of this approach. The approach can be further
improved in the process of configuring of the RTE in AUTOSAR and an even faster

implementation process.

65

6.2. Future Work

This research has a future scope of improvement. This process can be implemented
with the new AUTOSAR adaptive platform. Sorting algorithms can be used for the module
search to make the code generation faster. The template descriptions can be made simpler

by using domain-specific language. These optimizations and improvements can be
implemented through further research.

66

References

[1]. Guido Sandmann and Richard Thompson. “Development of AUTOSAR Component
with Mode-Based Design,” 2008, doi:10.4271/2008-01-0383.

[2] Georg Macher, Eric Armengaud and Christian Kreiner “Automated Generation of
AUTOSAR Description File for Safety-Critical Software Architectures,” presented at
Informatik — Automotive Software Engineering Workshop, Stuttgart, 2014.

[3]. Fabrizio Fabbrini, Maario Fusani, Giuseppe Lami, et al., “Software Engineering in
the European Automotive Industry: Achievements and Challenges,” published in
32nd Annual IEEE International Computer Software and Applications Conference,
Finland, 2008, doi: 10.1109/COMPSAC.2008.140.

[4]. Georg Macher, Rene Obendrauf, Eric Armengaud, et al., “RTE Generation and BSW
Configuration Tool-Extension for Embedded Automotive Systems,” presented at
European Congress Embedded Real Time Software and Systems, 2016.

[5]. AUTOSAR, “AUTOSAR XML Schema,” AUTOSAR standard 4.4, August. 2018.

[6]. JaxEnter, “Xtend Programming language,” https://jaxenter.com/xtend-pirates-jvm-
efftinge-132385.html, accessed Aug 2019.

[7]. Eclipse, “Eclipse IDE — Open platform for professional developers,”
https://www.eclipse.org/eclipseide/, accessed Fed 2018.

[8]. AUTOSAR, “AUTOSAR introduction,”
https://www.autosar.org/fileadmin/ABOUT/AUTOSAR_Introduction.pdf, accessed
Nov. 2019.

[9]. AUTOSAR, “AUTOSAR Layered Architecture,” AUTOSAR standard 4.4, August.
2018.

[10]. AUTOSAR, “Requirements on RTE Software,” AUTOSAR standard 4.4, August.
2018.

[11]. AUTOSAR, “Specification of Watchdog Driver,” AUTOSAR standard 4.4, August.
2018.

[12]. AUTOSAR, “Specification of Watchdog Interface,” AUTOSAR standard 4.4,
August. 2018.

[13]. AUTOSAR, “Specification of Watchdog Manager,” AUTOSAR standard 4.4,
August. 2018.

[14]. AUTOSAR, “Technical Overview,” AUTOSAR standard 4.4, August. 2018.

[15]. Kunal Chandmare, “Automated Configuration of Time-Critical Multi-Configuration
AUTOSAR Systems,” TU Chemnitz, 2017

[16]. AUTOSAR, “AUTOSAR Methodology,” AUTOSAR standard 1.2.2 Rev 3.2, April.
2007.

67

https://jaxenter.com/xtend-pirates-jvm-efftinge-132385.html
https://jaxenter.com/xtend-pirates-jvm-efftinge-132385.html
https://www.eclipse.org/eclipseide/
https://www.autosar.org/fileadmin/ABOUT/AUTOSAR_Introduction.pdf

[17]. AUTOSAR, “AUTOSAR Methodology,” AUTOSAR standard 4 Rev 4.4, August.
2018.

[18]. Miroslaw Staron. Automotive Software Architectures-An Introduction. Springer,
2017. isbn: 978-3-319-58609-0.

[19]. AUTOSAR, “AUTOSAR ARXML Serialization Rules,” AUTOSAR standard 4
Rev 4.4, August. 2018.

[20]. Xtend, “Xtend Documentation,”
https://eclipse.org/xtend/documentation/index.html, accessed November, 2018.

[21]. AUTOSAR, “AUTOSAR,” https://www.autosar.org/, accessed March, 2019.

[22]. AUTOSAR, “Specification of ECU Configuration,” AUTOSAR standard 4.4,
August. 2018.

[23]. Guido Sandmann and Richard Thompson. “Development of AUTOSAR
Component with Mode-Based Design,” 2008, doi:10.4271/2008-01-0383.

[24]. Brett Murphy, Chris Hayhurst, Jon Friedman, et al., “Verification and Validation
Integration within Processes Using Model-Based Design,” 2008, doi:10.427/2008-01-
2709.

[25]. J.-C. Lee and T.-M. Han.” ECU Configuration Framework based on AUTOSAR
ECU Configuration Metamodel,” Presented at International Conference on Hybrid
Information Technology 2009. 2008, doi:10.1145/1644993.164043.

[26]. H. C. Jo, S. Piao, and W. Y. Jung “Design of a Vehicular code generator for
Distributed Automotive Systems,” presented at Seventh International Conference on
Information Technology 2010, USA, 12-14 April. 2010, doi:
10.1109/ITNG.2010.212.

[27]. Stefan Voget and Continental Engineering Services GmbH “AUTOSAR and the
Automotive Tool Chain,” presented at Design, Automation and Test Conference &
Exhibition 2010, Europe, 8-12 March. 2010, doi: 10.1109/2010.5457202.

[28]. Georg Macher, Rene Obendrauf, Eric Armengaud, et al., “RTE Generation and
BSW Configuration Tool-Extension for Embedded Automotive Systems,” presented
at European Congress Embedded Real Time Software and Systems, 2016.

[29]. AUTOSAR, “Requirements of ECU Configurations,” AUTOSAR standard 4 Rev
4.3.1, August. 2017.

68

https://eclipse.org/xtend/documentation/index.html
https://www.autosar.org/

Appendix A. AUTOSAR Methodology 4.4

| [s Lo i
! £ i = [!
" 282 o 8 ! |
! =7 ' = ' I
- msm T E g Lo =2 0
'@ o g < Lo 8
i M M [a Lo 1
_m @ - ""m. m‘m P I
' = [[" € !
=] [}] __] : o [I
“.m %M “_c MS by m.wmm ”
T oo g _wmmm !
= 58 o @2 e
o @ __M L} MNSnm |
= B -1 1 5 !
' E o “"am 2 T ,
= L& L 3 ARANS !
! . L 2 RN !
! . 25y N |
L a1 N\ L= R ... Co !
IIIIIIIIIIIII QIWIIIIIIII I|II|I||¢H|u.I|III TTTTTTTTTToTTTTTTmT T 1 |
||||||||||| B R P - Rt R~ e
i & ¢ i ® o W
i e £ Vm [|
| E] = -
' TR] rtiiti1 B@ [|
|) 3. gz & b W
; o s_E - @ ! 2 |
: m a [<] |
i @5 o€ L £ !
" 53 - i B 3 W
= 1 i
“ %3 o g e B-H £2 ,
I - a2 A = i iy 3] i
= = 1 2w
: s - 3\ 7 5oz 3 Fif B
e = [[=ay=]
i a T = rrrrrire g M Eg g
' = : @ c - = I
'E g ° __) A s N &
' £5 2 2 @ 2 g
'e ZE 2 2 2 z - T g
N7 < B = c =) e 2 |
! cm 5 = ® = @
! Mm H 5 =
: oE E NN & e g
! it 5 g ! g ”
1 %) N = [|
1 =] ['
w el 1
: a g Lo !
1] I=] W I " I
i - a2 2 & L !
i 5 o £] . o [:
' = - C= = o ol |
' £ Es8 2 E po !
' ¢ EEE 3 a8 Lo i
! mdn._x] m | i ”
" 115388 [- |
Lo N __ Lo ,
i
T A N m o :
: |
| [|
| @ ! . I
5 : !
“m a e @ - 2 !
1 [=} (%] = I
= g N __ 2 ., &3 |
' - 5 @ T 3o |
(5] B =3 =3 S |
[3 £ K g |
-1 c ¥ @ # == |
_% 2 £ i 5 o'g !
!] El a 2 oo |
! ew"________ £ 2 ot W
' oM = B | 1

Figure A.1. AUTOSAR Methodology (version 4.4 [16])

Appendix B. Executable Java Code

package com.apagcosyst.genWdg;
import java.io.BufferedWriter;

import java.io.File;
import java.io.FileWriter;
import java.io.lOException;

import com.apagcosyst.generator.Argumentsinterpreter;
import com.apagcosyst.generator.IGenSourceCode;

import com.apagcosyst.ecuCModel.ArxmlFilelnterpreterClass;
import com.apagcosyst.ecuCModel.EcuConfigurationModel;
import com.apagcosyst.ecuCModel.ModuleConfigurationClass;

public class Wdg_Main {
private String moduleName;
private String moduleVersion;
private ModuleConfigurationClass moduleCfg;
private EcuConfigurationModel ecuConfig;
private IGenSourceCode moduleGen;
private FileWriter fwLcfgc;
private FileWriter fwLcfgh;

public Wdg_Main()

{
moduleName = "Wdg";
/* this is filled in Setup() function */
moduleCfg = new ModuleConfigurationClass();
ecuConfig = new EcuConfigurationModel();
moduleGen = new Wdg();
moduleVersion = new String("1.0”);

}

public static void main(String[] args)

{

Argumentsinterpreter arguments = new Argumentsinterpreter();
arguments.interpret(args);

if(arguments.isValid())

{
Wdg_Main module = new Wdg_Main(/*arguments.getVersion()*/);

if(arguments.getVersion().equals(module.moduleVersion))

{

try {
module.ecuConfig.loadArxmlFileToModel(arguments.getEcucPath());

module.moduleCfg = module.ecuConfig.getModuleConfigurationByName(module.moduleName);

if(module.moduleCfg.getShortName().equals(ArxmlFilelnterpreterClass.invalid))

{

System.err.printin("ModuleConfiguration: " + module.moduleName + " in EcuC File: " +

arguments.getEcucPath() + " not found!\n!!Generation aborted!!!");
return;

}

else

{

String output = arguments.getOutputRootPath() + File.separator + module.moduleCfg.

getShortName();

70

71

else

module.fwCfgc = new FileWriter(output + "_Cfg.c");
module.fwlLcfgc = new FileWriter(output + "_Lcfg.c");
module.fwLcfgh = new FileWriter(output + "_Lcfg.h");

}

} catch (Exception e) {
e.printStackTrace();

}

try {
/* Generate the «module»_Cfg.c */
BufferedWriter bwCfgc = new BufferedWriter(module.fwCfgc);
bwCfgc.write((String) module.moduleGen.GenCfgC(module.moduleCfg,
module.ecuConfig));
bwCfgc.close();
module.fwCfgc.close();

/* Generate the «module»_Lcfg.c */

BufferedWriter bwLcfgc = new BufferedWriter(module.fwLcfgc);
bwLcfgc.write(module.moduleGen.GenLcfgC(module.moduleCfg,
module.ecuConfig));

bwLcfgc.close();

module.fwLcfgc.close();

/* Generate the «module»_Lcfg.h */

BufferedWriter bwLcfgh = new BufferedWriter(module.fwLcfgh);
bwLcfgh.write(module.moduleGen.GenLcfgH(module.moduleCfg,
module.ecuConfig));

bwLcfgh.close();

module.fwLcfgh.close();

System.out.printIn("Generation is finished!");
} catch (IOException e) {

// Auto-generated catch block
e.printStackTrace();

}

}

else

{
System.err.printIn("Version is not valid!" + System.getProperty("line.separator") +
"Expected: " + module.moduleVersion + System.getProperty("line.separator") +
"got: -v " + arguments.getVersion() + System.getProperty("line.separator"));

}

System.err.printIn("Arguments are not valid" + System.getProperty("line.separator") +
"Expected: -v [Version] -o [outputPath] - ecuc [EcucLocation]" + System.getProperty
("line.separator") +"got: -v " + arguments.getVersion() + System.getProperty("line.separator")

Appendix C. BSG class diagram

ModuleProperties

-name : stnng

- version : string

- executablePath - Path
- outputPath : Path

- executeExe : boolean

+ ModuleProperties()

+ ModuleProperties(in name: string, in executablePath: string, in outputPath: stnng, in executeExe: boolean)

~ loadModuleProperties(in node: Node)

~ writeModuleProperties{in doc: Document, in node: Element)

cH
cH

- modules i

ToolConfig

- ecuCPath : Path
- toolConfigPath : Path
- rootPath : Path

+ ToolConfig()

ch

+ addModule(in name: string, in executablePath: stning, in outputPath: stnng, in executeExe: boolean)
+ removeModule(in module: ModuleProperties): boolean

+ readToolConfig(in toolConfigPath: string)

+ writeToolConfig(in toolConfigPath: stning)

72

Figure A.2. Class diagram for the BSG

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

73

Vita Auctoris

Usha Sreeram
Bengaluru, India
1995

Bachelor of Engineering in

Electronics and Communication Engineering
Dr. Ambedkar Institute of Technology,
Bengaluru, India

2013 — 2017

Master of Applied Science in

Electrical and Computer Engineering

University of Windsor, Windsor, Ontario, Canada
2017-2019

	Automated Generation and Integration of AUTOSAR ECU Configurations
	Recommended Citation

	tmp.1576791004.pdf.sKHyF

