
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

11-29-2019

Automated Generation and Integration of AUTOSAR ECU Automated Generation and Integration of AUTOSAR ECU

Configurations Configurations

Usha Sreeram
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Sreeram, Usha, "Automated Generation and Integration of AUTOSAR ECU Configurations" (2019).
Electronic Theses and Dissertations. 8149.
https://scholar.uwindsor.ca/etd/8149

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8149?utm_source=scholar.uwindsor.ca%2Fetd%2F8149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

i

Automated Generation and Integration of AUTOSAR ECU

Configurations

By

Usha Sreeram

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

© 2019 Usha Sreeram

ii

Automated Generation and Integration of AUTOSAR ECU Configurations

by

Usha Sreeram

APPROVED BY:

T. Bolisetti

Department of Civil and Environmental Engineering

__

B. Balasingam

Department of Electrical and Computer Engineering

M. Khalid, Advisor

Department of Electrical and Computer Engineering

 November 27th, 2019

iii

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other

material from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office and that this thesis has not been submitted

for a higher degree to any other University or Institution.

iv

Abstract

Automotive Open System Architecture (AUTOSAR) is a system-level standard that is

formed by the worldwide partnership of the automotive manufacturers and suppliers who are

working together to develop a standardized Electrical and Electronic(E/E) framework and

architecture for automobiles. The AUTOSAR methodology has two main activities: system

configuration and the Electronic Control Unit (ECU) configuration. The system configuration is

the mapping of the software components to the ECUs based on the system requirements. The ECU

configuration process is an important part of the ECU software integration and generation. ECU

specific information is extracted from the system configuration description and all the necessary

information for the implementation such as tasks, scheduling, assignments of the runnables to tasks

and configuration of the Basic Software (BSW) modules, are performed. This activity allows the

ECU to modify the configuration parameters based on the vendor-specific requirements. Due to

the high complexity and redundancy of this process, it has to be supported by different tool-related

editors that can automatically generate source files like *.c and *.h for the configuration. In this

thesis, we propose a method to automate the ECU configuration process for AUTOSAR. We use

configuration templates written in xtend programming language along with a BSW generator tool

developed at APAG Elektronik. This tool can extract the configuration parameters and

automatically generate the required ECU module configuration. The Watchdog module will be

used as an example to generate and integrate the ECU configuration. This enables the seamless

generation of the software configurations from the system level requirements to the software

implementation and therefore ensures consistency, correctness, cost efficiency and reduces the

work done by the developer to generate the configuration.

v

Acknowledgments

With utmost sincerity, I express my gratitude and respect to my advisor Dr. M. Khalid, who

gave me the wonderful opportunity to work under his supervision and inspired me to work with

honesty, integrity, and discipline.

I would like to thank Mitacs for supporting this work through the Mitacs Accelerate program.

Also, APAG Elektronik for funding and supporting my research.

I would also like to thank my committee members Dr. T. Bolisetti and Dr. Balasingam, who

provided me with insightful suggestions to improve my research.

I would like to dedicate my work to my parents, as their ever-encouraging faith has kept me

going and gave me the strength to overcome any obstacles that have come my way.

vi

Table of Contents

Author’s Declaration of Originality ... iii

Abstract ... iv

Acknowledgments .. v

List of Tables ... viii

List of Figures ... ix

List of Abbreviations .. xi

Chapter 1. Introduction .. 1

1.1. Motivation .. 1

1.2. Objective .. 2

1.3. Thesis Outline .. 2

Chapter 2. Background ... 4

2.1 AUTOSAR ... 4

2.2. AUTOSAR Methodology .. 9

2.3. AUTOSAR Extensible Markup Language ... 12

2.4. Introduction to Xtend ... 12

2.5. Related Research ... 14

Chapter 3. AUTOSAR ECU Configurations .. 17

3.1. Configuration Classes ... 18

3.2. Configuration Metamodel .. 21

3.3. ECUC Parameter Model .. 22

3.4. ECUC Model .. 22

3.5. Module Configuration Template (MCT) .. 25

Chapter 4. Automated Generation of ECU Configurations for Watchdog Timer 26

vii

4.1. Watchdog Timer in AUTOSAR ... 26

4.1.1. Watchdog Driver Module ... 26

4.1.2. Watchdog Interface Module ... 27

4.1.3. Watchdog Manager Module ... 28

4.2. Module Configuration description .. 31

4.3. ECUC Model .. 32

4.4. Module Configuration Template ... 39

4.5. BSG Tool .. 47

Chapter 5. Functional Testing and Evaluation .. 55

5.1. Auto-Generate Source Code ... 55

5.2. Tests Cases for the BSG tool .. 56

5.3. Approximate Time and Cost comparisons.. 64

Chapter 6. Conclusion ... 65

6.1. Summary .. 65

6.2. Future Work .. 66

References .. 67

Appendix A. AUTOSAR Methodology 4.4 ... 69

Appendix B. Executable Java Code ... 70

Appendix C. BSG class diagram .. 72

Vita Auctoris .. 73

viii

List of Tables

Table 4.1. Wdg module-specific information [11] .. 27

Table 4.2. WdgIf module specification information [12] ... 28

Table 4.3. WdgM module-specific information [13] .. 28

Table 4.4. WdgIfVersionInfoApi sample [11] .. 31

Table 4.5. ECUC model auxiliary functions ... 34

Table 4.6. List of auxiliary functions for formatting the output source code 44

Table 4.7. Feedback in the log file .. 53

Table 5.1. Take Cases ... 57

ix

List of Figures

Figure 2.1. AUTOSAR Architecture ... 4

Figure 2.2. Basic Software .. 5

Figure 2.3. AUTOSAR modules [9] ... 6

Figure 2.4. Interfaces defined by AUTOSAR [9] ... 8

Figure 2.5. Overview of AUTOSAR Methodology (version 3.2[16]) 10

Figure 2.6. AUTOSAR development process [16] ... 10

Figure 2.7. Xtend example – Attributes a – xtend class, b – generated Java code 13

Figure 2.8. Xtend example – Constructors .. 14

Figure 2.9. Methods .. 14

Figure 3.1. ECUC process ... 17

Figure 3.2. Pre-Compile time configuration chain .. 18

Figure 3.3. Link Time configuration chain ... 19

Figure 3.4. Post-build time loadable configuration chain ... 20

Figure 3.5. Post-build time loadable configuration chain ... 20

Figure 3.6. Parameter definition and ECUC value files .. 21

Figure 3.7. ECUC parameter model [20] .. 22

Figure 3.8. Value-Ref Structure .. 23

Figure 3.9. Class Diagram representing generic module design in AUTOSAR 24

Figure 4.1. WdgM module Configuration [13] .. 29

Figure 4.2. Watchdog timer file structure ... 29

Figure 4.3. Sequence flow for the watchdog modules [11] .. 30

Figure 4.4. arxml module configuration description sample... 32

Figure 4.5. ECUC model ... 33

x

Figure 4.6. MCT sample for Wdg (Xtend code) ... 39

Figure 4.7. Complex MCT sample (Xtend code) .. 41

Figure 4.8. executable Java code ... 42

Figure 4.9. Module configuration template Workflow ... 43

Figure 4.10. BSG GUI ... 47

Figure 4.11. MVC Pattern ... 48

Figure 4.12. Class diagram for implemented MVC pattern .. 49

Figure 4.13. BSG tool with loaded config files ... 50

Figure 4.14. BSG tool flow ... 52

Figure 5.1. Generate source code Wdg_Lcfg.c ... 55

Figure 5.2. Generated source code for WdgM_Cfg.c ... 56

Figure 5.3. example command line ... 57

Figure 5.4. Approximate time taken to generate ECUC ... 64

Figure A.1. AUTOSAR Methodology (version 4.4 [16]) ... 69

Figure A.2. Class diagram for the BSG .. 72

xi

List of Abbreviations

AUTOSAR Automotive Open System Architecture

ECU Electronic Control Unit

E/E Electrical and Electronic

BSW Basic Software

CAD Computer-Aided Design

RTE Real-time Environment

ECUC Electronic Control Unit Configuration

MCT Module Configuration Templates

IDE Integrated development environment

XML Xtensible Markup Language

ARXML AUTOSAR Xtensible Markup Language

BSG Basic Software Configuration Source Code Generator

SWC Software Components

OS Operating Systems

MCAL Microcontroller Abstraction Layer

API Application Programming Interface

CDD Complex Device Driver

I/O Input Output

AL Abstraction layer

OEM Original Equipment Manufacturer

xii

COM Communication Module

UML Unified Modeling Language

MDA Model Driven Architecture

Wdg Watchdog Module

WdgIf Watchdog Interface Module

WdgM Watchdog Manager Module

SEID Supervised Identity

MVC Model View Controller

GUI Graphical User Interface

1

Chapter 1. Introduction

1.1. Motivation

Computer-Aided Design (CAD) of automotive embedded systems is gaining

popularity as a primary design methodology in the automotive industry. It has a number of

advantages such as seamless design integration, low cost and reduced development time.

It also helps avoid errors and other mistakes that can happen during manual development

by a developer. AUTOSAR standard gives the guidelines for the development of Electronic

Control Units (ECU) but does not specify the complete design process. Methods and tools

need to be developed to automate the process of the ECU development to make it less

complex and faster to develop.

There have been a few research efforts in the past that focus on the automated

generation of AUTOSAR configurations [1- 4] but they generally focus on generating the

Real-time Environment (RTE) or automating different parts of the AUTOSAR

methodology. A case study that explains the need for automation within the AUTOSAR

ECU configuration (ECUC) process is presented in [1]. MathWorks designed a CAD tool

to auto-generate RTE configurations [2]. The complexities in AUTOSAR methodology

requires external tools to help simplify the processes of configuration [3]. Some other

research studies were focused on automating the process of ECU and RTE configurations

using different methods of writing configuration templates and CAD tools [4]. A detailed

overview of currently available CAD tools used in the industry is presented in [20-26].

The main motivation for this thesis is to implement Module Configuration Templates

(MCT) and a CAD tool to automate the ECUC process based on the AUTOSAR

methodology. It can help small automotive suppliers reduce their design costs and time

when developing an ECU. It can also reduce the errors that are usually caused by the

manual development of ECUs.

2

1.2. Objective

The main goal of this thesis is to design and implement MCTs and a CAD tool to

automate the generation of ECUCs based on AUTOSAR methodology. The MCTs are

written using ARXML [5] and Xtend [6] programming languages and a CAD tool using

java is developed to generate the output files for the ECUC process. The Eclipse Integrated

development environment (IDE) is used for the programming of this project [7]. The main

objectives of this thesis are:

• Automate the process of ECU configuration in AUTOSAR.

• Implement the functionality of watchdog timer in the ECU configuration

process

The tasks leading to the objectives are:

• Describe the Watchdog module configuration information using ARXML

• Write a template to access values from the ARXML model using xtend

programming language.

• Use the module configuration template as input to the BSG tool to generate

ECUC source codes.

• Write test cases to test the functionality of the tool and the generated source

code.

1.3. Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, the background of AUTOSAR, arxml model description and xtend

programming language is briefly described. Also, the related research in this area is

discussed. Chapter 3 describes the ECUC process according to the AUTOSAR

methodology. It introduces the configuration metamodels, the template structures, and the

configuration classes.

3

Chapter 4 described the implementation of MCTs and CAD tool that can auto-

generate the ECUCs of the Basic Software in AUTOSAR. Chapter 5 discusses the results

obtained from the implementation and the testing process which is used to validate the

results produced by the CAD tool. We finally conclude the thesis in Chapter 6 with a

summary and suggestions for future work.

4

Chapter 2. Background

This chapter provides background information on AUTOSAR, xtend and related works.

2.1 AUTOSAR

Automotive Open System Architecture (AUTOSAR) is a system-level standard that

is formed by the worldwide partnership of the automotive manufacturers and suppliers who

are working together to develop a standardized Electrical and Electronic(E/E) framework

and architecture for automobiles. The technical goal of the architecture is to achieve

scalability, transferability, reusability, and modularity. AUTOSAR consists of software

architecture, methodology templates, conformance testing and application interfaces [8].

As an automotive ECU SW development standard, AUTOSAR is a significant part of the

industry. Many OEMs and suppliers consider AUTOSAR as the basis of their development

process for designing their ECU architecture and for developing the functionality of the

software components. Many researchers, including our research group, are focused on

making the standard more efficient and easier to use with the development environment

currently used in the automotive industry.

 Figure 2.1. AUTOSAR Architecture

5

The AUTOSAR architecture is divided into three layers: the basic software, the

runtime environment, and the application layer, often referred to as AUTOSAR Layered

Software Architecture [9]. In Figure 2.1, the first layer is the Application Layer, the second

layer is the Runtime Environment (RTE) and last but not least the basic software, which is

divided into further layers is shown in Figure 2.1, more on that later. The Application Layer

fulfills the functionality of the ECU. It is implemented with the help of one or more

software components (SWCs). Here is a distinction between hardware-independent and

hardware-dependent SWCs. The hardware-independent ones are called application SWCs,

for example, they perform calculations. The hardware-dependent ones are called Actuator

or Sensor SWCs. Sensor SWCs can, for example, evaluate signals by debouncing. Actuator

SWCs can be used, for example, to control an engine. The next layer, the Runtime

Environment, is responsible for facilitating the communication of SWCs among

themselves or between SWC and BSW modules including the OS and communication

services. For this, the RTE provides the necessary interfaces. RTE is responsible for

ensuring that components can communicate and that the system continues to function as

expected wherever the components are deployed [10]. The SWCs present in RTE

contribute towards the functionality of the AUTOSAR application. AUTOSAR defines

standardized interfaces associated with all the SWCs required to develop automotive

applications.

Figure 1.2. Basic Software

6

Figure 2.2. AUTOSAR modules [9]

As can be seen from Figure 2.1, The BSW is further divided into complex drivers,

microcontroller abstraction layer (MCAL), ECU abstraction layer and service layer. The

BSW is responsible for providing services such as operating system functionality, vehicle

network communication, memory services, ECU state management, and diagnostics, etc.

The service layer is responsible for Operating System (OS) services and, in-vehicle

communication, memory services, and diagnostic services. The ECU abstraction layer is

hardware dependent and implemented for a specific ECU and offers an Application

Programming Interface (API) for access to peripherals and devices regardless of their

location on-chip or off-chip and their connection to the microcontroller to make higher

software layers independent of the ECU hardware layout. MCAL is dependent on

microcontroller and container drivers to enable access to on-chip peripherals. The BSW

also contains the Complex Device Driver (CDD) that is used to add a functional model that

is outside of the AUTOSAR basic software stack. It provides the option of direct access to

the microcontroller via the RTE. The CDD is used only in time-critical functions such as

the reaction to a sensor. However, it should be avoided as it undermines the standardized

idea of AUTOSAR. The internal structure of the BSW is shown in Figure 2.2. The

7

arrangement of these layers represents the permitted accesses for RTE to each part as

shown in Figure 2.3. Thus, RTE is not allowed to access the Microcontroller Abstraction

Layer (MCAL in Figure 2.1) which is also shown by peach-colored parts in Figure 2.2 and

Figure 2.3. However, the RTE can access the microcontroller directly via the Complex

Drivers. The service layer (Figure 2.1) also shown in purple in Figure 2.2 has the largest

connected area to the RTE and, as the name implies, it provides service functions to the

application. A part of the ECU Abstraction Layer shown in green in Figure 2.3 is hidden

for the RTE. Only the I/O Hardware Abstraction can be accessed by the RTE to abstract

the information about the different I/O devices accessed via an I/O signal interface. This

thesis deals with the Watchdog modules present across the BSW layers. There are three

Watchdog modules in AUTOSAR: Watchdog driver, Watchdog Interface and the

Watchdog Manager. The watchdog driver is present in the Microcontroller Abstraction

Layer (MCAL) which provides the services for initialization, changing the operation mode

and setting the trigger condition for the hardware watchdog [11]. The watchdog interface

present in the ECU Abstraction layer (AL) provides uniform access to services of the

underlying watchdog drivers like mode switching and triggering [12]. The watchdog

manager present in the Services Layer is used to supervise the execution of the ECU

program [13].

To ensure the independence and reusability of the software, AUTOSAR defines

three different types of interfaces: AUTOSAR Interface, Standardized AUTOSAR

Interface, and Standardized Interface. The classification of these interfaces can be traced

in Figure 2.4. An "AUTOSAR Interface" defines the information exchanged between

software components and/or BSW modules. This description is independent of a specific

programming language, ECU or network technology. AUTOSAR Interfaces are used in

defining the ports of software-components and/or BSW modules. Through these ports,

SWCs and/or BSW modules can communicate with each other (send or receive information

or invoke services). AUTOSAR makes it possible to implement this communication

between SWCS and/or BSW modules either locally or via a network [14].

8

Figure 2.3. Interfaces defined by AUTOSAR [9]

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose syntax

and semantics are standardized in AUTOSAR. The "Standardized AUTOSAR Interfaces"

are typically used to define AUTOSAR Services, which are standardized services provided

by the AUTOSAR Basic Software to the application SWCs. A "Standardized Interface" is

an API that is standardized within AUTOSAR without using the "AUTOSAR Interface"

technique. These "Standardized Interfaces" are typically defined for a specific

programming language (like "C"). Because of this, "standardized interfaces" are typically

used between software modules which are always on the same ECU. When software

modules communicate through a "standardized interface", it is NOT possible anymore to

route the communication between the software-modules through a network [14][15].

A detailed explanation of the other modules and stacks of AUTOSAR is out of the

scope of this thesis.

9

2.2. AUTOSAR Methodology

This section introduces the AUTOSAR methodology, a condensed overview of that

is illustrated in Figure 2.5. AUTOSAR follows a general technical approach to develop a

system, which is called as the “AUTOSAR Methodology”. AUTOSAR Methodology is a

work-product flow that defines the dependencies of activities on work results.

The first step is to specify initial data for the design or the architecture of the system

being developed. That means to select the target hardware ECUs and the software

components SWCs. That means to map the modules by regarding timings and resources

onto control devices. The result is a “Configuration Description” as AUTOSAR XML file

also known as the ARXML file, which contains the complete system information such as

bus-mapping, topology, and mapping of containers and parameters. The following steps

are processed for each control unit for its own, thus no longer for the complete system.

There is a process called Flattening, which is used to generate ECU specific information

and this specific information is stored in the “ECU Extract” of System Description. ECU

Extract is similar to the System Extract of System Description, but only contains the atomic

parameter description in a flat perspective. The following activity “Configuring ECU”

feeds all the necessary information such as task scheduling, parameters for basic software

modules and allocation of runnables to tasks on the control unit. This information is stored

in an “ECUC Description”. In the last step “Generate Executable Code”, a runnable .jar

file, which contains the basic software, the RTE code and the software components of the

application layer, is generated on the basis of the previously generated “ECUC

Description”. Being one of the main goals of AUTOSAR, simplifying integration of

application components from the OEM and service providers, the process of application

development is independent of the above methodology steps. All the interfaces-related

information of SWCs are described in the SWC Descriptions file (AUTOSAR XML file).

Based on this description SWCs can be tested and implemented independently. As a result,

integration becomes easier. An analysis to understand the data structure of this

configuration methodology is done in the next chapter [15].

10

Figure 2.4. Overview of AUTOSAR Methodology (version 3.2[16])

The AUTOSAR standard was first released in 2005, where the structure and the basic

architecture was introduced. The standardized modules were described. A simple process

was established and tested to validate the use of AUTOSAR in OEMs. In the later versions,

the standard was more stabilized and more SWCs and modules were added. The

methodology has more complexities. In the latest AUTOSAR version 4.4 [17] which was

used for this research, the methodology is very complex and hard to understand. It can be

seen in the Appendix A. But, the 4.4 classic standard defines “Roles and Responsibilities”

and features all the standardized modules need by the automotive OEM’s and their supplier

to develop an ECU. This information was not specified in the older versions.

Figure 2.5. AUTOSAR development process [16]

11

Therefore, the already described Methodology is discussed again with their

respective responsibilities. Figure 2.6 shows the individual roles in a hierarchy. Before the

task can be divided, the individual roles are briefly presented. There is the OEM, the car

manufacturer, who engages suppliers to develop ECUs with the functionality defined by

them. There is a classification among the suppliers which describes the scope of the work.

There is a distinction between Tier1, Tier2, and Tier3. Tier1 suppliers like Bosch are

responsible for the development of the ECU. They develop at the application level of the

AUTOSAR architecture. They can hire Tier2 suppliers like APAG who will take care of

the BSW development. Tier3 suppliers like Teradyne usually provide the hardware, it does

not matter if it is the ECU hardware or just mechanical components or plastic parts. It is

also possible for a company to take on several of these roles. APAG Elektronik takes on

the role and responsibility of both a Tier 2 and a Tier 3 supplier. Figure 2.6 shows the

broken-down process with the responsibilities of each role. The OEM is responsible for the

design of the whole system (1 + 2), out of this it provides for each ECU an SWC ECU

Model (B), which corresponds to the ARXML File ECU Extract. The relationship between

Model and ARXML File is explained in the next section. The SWC System Model (A) thus

corresponds to the System Configuration Description. Furthermore, the OEM handles the

communication within the system, this is recorded in another model, the COM System

Model (F). The communication was not specifically looked at in the previous process. The

System Model is also broken down into a COM ECU Model (G). Tier1 receives the SWC

ECU Model (B) and the COM ECU Model (G) from the OEM. Based on the hardware, the

SWC ECU model is adapted and defined more precisely. Tier2 develops the basic software

and makes it available for the application. However, there is no connection to the Basic

Software Configuration (6). In the Figure 2.6, this is shown as having only the COM ECU

model influence to point 6. There is some kind of BSW Model missing, which is generated

from the Basic Software Development and is extended by the SWC ECU Model and COM

ECU Model. This BSW model should then be used for the Basic Software Configuration.

The proposed BSW Model corresponds to the ECUC Description and will be continued in

the next section. [18]

12

2.3. AUTOSAR Extensible Markup Language

Extensible Markup Language (XML) is a markup language that defines a set of rules

for encoding documents in a format that is both human-readable and machine-readable. It

was designed to store and transport data across web services. The AUTOSAR Extensible

Markup Language (ARXML) is a type of XML language description for exchanging

AUTOSAR models and descriptions. The ARXML models are used to represent the

AUTOSAR based ECUC. It was formed by an initiative of automotive manufacturers and

suppliers to be used by AUTOSAR for the development of the software architectures for

ECUs. ARXML files contain configuration and specification information in XML format

for an ECU which is used to control components of an automobile to make sure it achieves

its optimal performance.

The ARXML format was developed to standardize data exchange between

automotive software development partners. These files are integrated into the AUTOSAR

stack as per the AUTOSAR methodology. During this process above information gets

transformed into AUTOSAR modules as specified in AUTOSAR system specifications

[19]. In this project, the ARXML code is the first step of writing the module configurations.

This export of the data is from AUTOSAR module configuration templates is called ECU

description file which is in .arxml format. This file is used module configuration template

to access the parameter information and generate source code specific to the AUTOSAR

module which is in our case the Watchdog timer module.

2.4. Introduction to Xtend

Xtend is a statically-typed programming language which translates to comprehensive

Java code [20]. Xtend is a derivative of Java programming language and it is fully

compatible with it. The compiled xtend code automatically generates Java source files

which are used as input to the BSG tool in this research. Xtend is fully compatible with the

Eclipse IDE, therefore, it is the best known to create xtend projects using Eclipse IDE.

Let’s have a look at the following xtend examples, on the left side is the xtend code and on

the right side is the generated java source code.

13

Figure 2.6. Xtend example – Attributes a – xtend class, b – generated Java code

 Figure 2.7a shows the different ways how attributes can be declared in xtend and

Figure 2.7b the generated result is shown. But first of all, it has to be mentioned that there

are two kinds of comments. The double slash “//” which are not translated to the

generated java class and the slash star “/* */” which are translated to doxygen comments

“/** */”. Xtend doesn’t need the semicolon at the end of a command. The data type can

be deduced by the initialization. The only differentiation that has to be done is between

var and val. Attributes declared with val are only values and can’t be changed. Strings are

surrounded by double quotes as well by single quotes, because of this feature attention

has to be paid by declaring a variable with a character’s data type. The default visibility

for attributes is private, instead of the Java standard package-private. Xtend automatically

generates the name of the constructor. Only the keyword new is needed, see Figure 2.9.

Furthermore, it is possible to break the lines in a string, it is transformed correctly. The

default visibility for methods is public. A method’s return type need not be defined, see

Figure 2.9. To avoid unwanted behavior, it is recommended in most cases to declare

14

return type because Xtend uses the value of the last expression as return type. Other class

attributes can be accessed in the Xtend source code by using the attribute’s name.

Figure 2.7. Xtend example – Constructors

Figure 2.8. Xtend example - Methods

2.5. Related Research

The development of automotive embedded systems and the configuration of the basic

software are aimed at automating the workflow to improve consistency and reduce the

complexity of the software development process using AUTOSAR. The recent research

focus is on creating AUTOSAR toolchains and templates based on the AUTOSAR

methodology to automate all the processes which can be time and cost-efficient.

15

Due to the increasing complexity in the last few years, researchers are concentrating

their efforts to manage the automation of the development process of the automotive

embedded software. To manage this issue AUTOSAR was formed by a group of companies

to standardize and improve the complexity management of integrated E/E architectures

through increased reuse and exchangeability of SW modules between OEMs and suppliers

[21]. The AUTOSAR methodology provides a work-product flow that defines the

dependencies of activities on the work-products which is a piece of information or physical

entity produced by or used by an activity. But the methodology does not define the overall

system-design and process to carry out the configuration process. Automotive suppliers

and OEMs are working on setting up toolchains to automate the configuration process.

Various industries are working on the different modules of AUTOSAR to find

improvements and make the standard more efficient and easier to implement. A CAD tool

was developed based on the AUTOSAR methodology to automate the generation of

modules for the customer-specific ECUs. The AUTOSAR process is complex which makes

it time-consuming and error-prone. The specifications of all the Watchdog modules are

given by AUTOSAR [22]. The watchdog module will be used during the configuration,

these specifications provide the internal information of the module such as their type and

size. It will also be used to test the functionality of the generated configurations.

The development of the automotive embedded systems and configuration of the basic

software and embedded systems have been researched to reduce the complexity and

improve the performance of the systems. The authors in [23][24] present the disadvantages

of AUTOSAR which shows us that the AUTOSAR configuration process mainly involves

manual coding, followed by verification activities such as code inspections and integration

tests. Many of these activities lack tool automation, and so involve manual interaction

which is error-prone and time-consuming. This complexity is resolved during this research

project which makes the AUTOSAR configuration less complex.

The development process of an automotive embedded tool using a seamless

architecture is described by the authors in [25]. They use the architecture based on

16

AUTOSAR which defines all the module specifications, methodology and application

interfaces. System configuration is used to establish the configuration process. ARXML

(AUTOSAR Extensible Markup Language) files, which contain the module specifications

such as the containers and parameters.

In [26] the authors describe an approach for the design of an automotive embedded

code generator. More software problems and defects are found due to the increased

complexity in automotive development. The authors use an RTE module to design the code

generator in the early phases with the help of a predefined process. This approach reduces

the redundancy in the code and also saves time through the automated generation. The

generated output of the tool is limited to the RTE source code and the application

programming interface (API). The configuration of the Basic software modules such as the

watchdog module is not focused like in our research.

In [27] the authors describe an approach to bring AUTOSAR concepts like system

development, system configuration, timing analysis, and code generation together. They

present a meta-model approach to generate the software using the XML schema. An

approach to enhance the model-driven system and safety-engineering framework with

AUTOSAR aligned software architecture enabling the seamless description of safety

criticality systems is presented [28]. A tool bridge to seamlessly transfer artifacts from

system development level to software development level is described. The authors have

created a tool for the automated generation of Runtime Environment (RTE) configuration

in AUTOSAR. They try to generate the configuration files by interfacing approach that

establishes an interface between ASW and BSW based on AUTOSAR RTE and then they

are mapped into the hardware-specific implementation.

17

Chapter 3. AUTOSAR ECU Configurations

AUTOSAR has a standard technical approach for the development of the ECUs

called the AUTOSAR Methodology. The methodology describes the workflow of design

from the system level configuration to the generation of an ECU executable. The result of

each step is delivered to the input of the next step in XML format. The ECUC process in

one of the major steps of the AUTOSAR methodology. The ECUC process is shown in

Figure 3.1.

Figure 3.1. ECUC process

The ECUC process starts with the description of an entire system: the system

description. This description is then split up into several ECUCs. This ECU extract is the

basis for the ECUC process. Every single module of the AUTOSAR architecture can be

configured for the special needs of the ECU as specified by the customer requirements.

The complex AUTOSAR architecture makes the configuration process difficult and time-

consuming. In our research, we use BSG CAD Tool and MCTs to simplify the process.

The tool strategy and template details for the ECUC are out of the scope of the AUTOSAR

specifications. The tools need knowledge about the ECUC parameters and their constraints

such as configuration class, value range, etc [29]. We define this information using an

ARXML description that will be used to access the module container and parameter

18

information. Then an Xtend template is written to access the information from the ARXML

files and is used at the input to the BSG tool to generate the .c and .h files. Here the

configuration parameters are generated into ECU executables which are used to configure

the ECU.

3.1. Configuration Classes

The task of compiling and linking is required to create an executable (programmed

binary), then the executable must be downloaded (flashed) to the hardware. AUTOSAR

specifies for these steps three different times for configuring a BSW module. The “pre-

compile time”, “link time” and “post-build time”. Each of these times has influences on

the EcuC Description. The Pre-Compile Time Configuration, shown in Figure 3.2 is done

before the compilation. In the case of Pre-Compiled configurations, the code is compiled

before the configuration. This can lead to entire code sections can be excluded from the

compiled configurations. The advantage that arises is that this way memory space can be

saved, and functions will disappear from the compiled files. In order to make the functions

available a recompilation of the code is necessary.

Figure 3.2. Pre-Compile time configuration chain

19

The Link Time Configuration is created during the link process. Figure 3.3 shows

a BSW module consisting of two parts, the code, and the configuration. Both are compiled

independently of each other. The object files from the compilation process are linked

together, which resolves existing dependencies to external references. After the link

process, the values of the configuration cannot be changed anymore.

Figure 3.3. Link Time configuration chain

Figure 3.4 shows the Post-Build Time Configuration. The module is already linked

and loaded on the ECU. At this point, the module will know the address where the

configuration can be found in memory. One risk that this kind of configuration entails is

that there is no guarantee that this location in memory has been flashed with the appropriate

configuration, if there is a fault in the process, it will not be detected until runtime. For the

other two configuration classes, the compiler or linker can ensure that the configuration

exists. The advantage of this variant is that the values of the configuration can be changed

by rewriting the memory area. AUTOSAR distinguishes between two use cases in the post-

build configuration. First, the previously described case shown in Figure 3.4, called

loadable configuration and second, the selectable configuration, shown in Figure 3.5. The

20

process is reminiscent of the link-time configuration but is still considered as post-build.

This is because multiple configuration sets are provided at link time. During runtime, more

specifically at the initialization of the ECU, one of the existing configurations can be

selected. Thus, it can be said that the ECU is configured after building.

Figure 3.4. Post-build time loadable configuration chain

Figure 3.5. Post-build time loadable configuration chain

21

3.2. Configuration Metamodel

AUTOSAR is based on Model Driven Architecture (MDA). It is a software design

approach that uses models for the development of software systems. The model

specification is written using Unified Modeling Language (UML). AUTOSAR is made up

of several models which are based on metamodels. One of these metamodels is called the

Configuration Metamodel. This metamodel describes the structure of the configuration

model. It mainly consists of containers and parameters. Containers are used to group the

parameters and they can also have sub-containers. The configuration model is used to save

the configuration of the BSW, which corresponds to the BSW model mentioned in the

previous section. The aim of the metamodel is to make it possible to describe the

AUTOSAR specific elements such as the configuration parameters with the same set of

language elements. The configuration language generally uses containers and parameters

which describe the values that are used to configure the ECU. The configuration

metamodel is described in two parts: ECUC parameter definition and ECUC description.

The ECUC description is written using a template to specify the format exchange for

the configuration values in the ECU. This template is written using ARXML which was

explained in one of the previous sections. The ECUC parameter description which is also

an ARXML file contains the information on what kind of restrictions and features are given

to the parameters. The relationship between the two is shown in Figure 3.6.

Figure 3.6. Parameter definition and ECUC value files

22

3.3. ECUC Parameter Model

The ECUC parameter model contains the module the information regarding the

containers, parameters, and references. It specifies the relationship between the containers

and parameters that can be used by the configuration model to describe the module

template information. The top-level structure of the ECUC parameter model is shown in

Figure 3.7.

Figure 3.7. ECUC parameter model [20]

ECU Parameter Definition class (EcuParameterDefinition) collects all references to

individual module configuration definitions of AUTOSAR ECUC and defines a reference

relationship to the definition of several software modules. Module Definition class

(ModuleDef) defines ECUC parameters of one software module such as BSW, RTE, SWC.

3.4. ECUC Model

This step of the ECUC process is not specified by AUTOSAR. The templates are the

most important part of this thesis which helps in automating the configuration process

instead of manually configuring the BSW. Figure 3.9 shows the class diagram with the

respective attributes. The structure is based on the configuration metamodel. To assist the

developer in creating a template, the model provides several auxiliary functions. They are

intended to facilitate access to certain elements of the model. For example, the entire

configuration of a module should be returned by passing its name. It is distinguished

23

between name and reference. The getByName function searches for a particular name in

the model or in a part of the model. Uppercase and lowercase letters are considered. The

function getByRef uses a reference string to reach the referenced object. An example of a

VALUE-REF tag with regard to the class diagram is shown in Figure 3.8. According to the

class diagram, we get the following functions:

• getModuleConfigurationByName

• getModuleConfigurationByRef

• getContainerByRef

• getValueByRef

• getArPackageByRef

• getValueByName

• getReferenceValueByValueRefName

• getReferenceValueByDefinitionRefName

Figure 3.8. Value-Ref Structure

24

Figure 3.9. Class Diagram representing generic module design in AUTOSAR

A detailed description of these methods can be found in the next chapter. In addition,

there are the standard getter functions for getting a class’s attribute. The setter functions

are not implemented to exclude changes in values and to maintain consistency.

25

3.5. Module Configuration Template (MCT)

The BSW Module Configuration Template provides the template of the source code

that should be generated. The values from the ECUC Description can be inserted into the

template via the ECUC Model described in the next chapter. The template is written in

Xtend programming language. The developer of the respective BSW Module is responsible

to provide a template for the module configuration. Xtend is used to write the module

configuration templates due to its optimized syntax, it allows shorter and readable code

and is compatible with Java. The MCT accesses the module values from the ECUC model

and describes their function in the ECU. APAG Elektronik provides a library with

functions that can be used to access the values without increasing the complexity of the

code. These functions are described in the next chapter. Each template comprises a version

string. During execution, the version is passed as an argument (-v). Only if the transferred

version matches to the template’s version, the generation will be executed. Further

arguments are the path to ECUC Description (-ecuc) and the path to the output (-o).

Without these arguments, the generation won’t be started successfully. The Module

Configuration Template has to be compiled to an executable and saved with the naming

convention “«moduleName»_BswMCT.jar”.

26

Chapter 4. Automated Generation of ECU Configurations for

Watchdog Timer

This chapter describes the automated generation of ECUC for Watchdog Timer.

The following sections describe the Watchdog Timer in AUTOSAR, implementation of

the ECUC model, the module configuration templates and the Basic Software Source Code

Generator (BSG) tool.

4.1. Watchdog Timer in AUTOSAR

In order to enable structured software development and to ensure good

maintainability, extensibility, and portability of the software, the entire Watchdog Timer

module is developed according to a layer model consisting of three layers. the individual

layers only communicate with each other via defined interfaces. These interfaces contribute

to the security of the software by preventing the individual modules from being able to

manipulate any data in any way. In addition, an abstraction of the various layers is

achieved, so a layer must (only) know the interfaces to its superordinate or subordinate

layer, whereby the complexity of the entire system is encapsulated. The three watchdog

modules are:

i. Watchdog Driver (Wdg) – present in the MCAL

ii. Watchdog Interface (WdgIf) – present in the ECU abstraction layer

iii. Watchdog Manager (WdgM) – present in the Services Layer

4.1.1. Watchdog Driver Module

The Wdg Driver module provides services for initialization, changing the operation

mode and setting the trigger condition (timeout). This module is used to directly control

the hardware watchdog timer and control its function. Table 4.1 shows the Wdg module

information with information about the containers that are present in it as specified by

AUTOSAR [11]. Each of the containers has parameters that are defined to perform tasks

inside the Wdg Module.

27

Table 4.1. Wdg module-specific information [11]

4.1.2. Watchdog Interface Module

In case of more than one watchdog device and watchdog driver (e.g. both an internal

software watchdog and an external hardware watchdog) being used on an ECU, WdgIf

allows the watchdog manager (or any other client of the watchdog) to select the correct

watchdog driver - and thus the watchdog device - while retaining the API and functionality

of the underlying driver. Table 4.2 shows the WdgIf module information with information

about the containers that are present in it as specified by AUTOSAR [11]. Each of the

containers has parameters that are defined to perform tasks inside the WdgIf Module.

28

Table 4.2. WdgIf module specification information [12]

4.1.3. Watchdog Manager Module

The WdgM module is used to monitor the sequence for the internal watchdog. This

controls whether the 5ms, 10ms, 20ms task was called and processed by the OS. For this

purpose, a function with a unique Supervised Identity (SEID) is called at the beginning and

at the end of each task. This is to ensure that the corresponding task is called and has

completed its activity. The WdgM_MainFunction function regularly checks the process for

differences in the task flow. If no error has been detected, the watchdog continues to be

triggered normally. In the event of an error, error handling is initiated and the triggering of

the watchdog is suspended. Table 4.3 shows the WdgM module information with

information about the containers that are present in it as specified by AUTOSAR [13].

Each of the containers has parameters that are defined to perform tasks inside the WdgM

Module.

Table 4.3. WdgM module-specific information [13]

29

Figure 4.1. WdgM module Configuration [13]

All three watchdog modules work together in AUTOSAR. The file structure is shown

in the Figure 4.2. It shows the dependency of the Watchdog modules on each other. The

WdgM.c needs to include the Wdg.c, WdgIf.h and WdgM.h files. The WdgM header

(WdgM.h) includes the Std_Types.h which is a library containing the type definitions, The

WdgM_Lcfg.c and WdgM_Lcfg.h. The Wdg.c includes the Wdg.h file to access the data

declarations.

Figure 4.2. Watchdog timer file structure

The sequence diagram shown in the Figure 4.3 shows the sequence of workflow of

the watchdog modules. It starts with initializing the Wdg module, to set the trigger

30

condition and to change the watchdog mode. The Initialization condition to the Wdg is

received from the ECU state Manager (EcuM). Once the Wdg is initialized the WdgM

sends the trigger condition (WdgIf_SetTriggerCondition) to the WdgIf with the information

about the Device Index and the Timeout value. The WdgIf selects the right external

watchdog timer and sends the trigger condition (Wdg_SetTriggerCondition) to the Wdg to

trigger the timer and assigns the timeout value. After the watchdog is triggered, the

execution of modules begins, each of the modules has a start and endpoint. Once the

execution is done the Wdg either needs to be reset or stopped. The SetMode parameter is

of the enumerated type that contains the values start, stop and reset. The WdgM also sends

out the WdgIf_SetMode if there is a need to reset or stop the watchdog timeout counter,

which is, in turn, send to Wdg which controls the external watchdog timer. The sequence

diagram only shows the basic operation of the watchdog module, the complete

functionality of the watchdog timer implemented is not explained due to confidentiality.

For more information about the AUTOSAR module specifications and functionality please

refer to the AUTOSAR safety documents [10] [11] and [12].

Figure 4.3. Sequence flow for the watchdog modules [11]

31

4.2. Module Configuration description

The BSW module configuration templates provide the machine-understandable

ARXML coded files. It describes the values from classes provided by AUTOSAR module

specifications and inserts it into the module configuration template via the ECUC Model.

The ARXML model contains all the information regarding the system configuration-

related information such as the configuration module name, the containers, the parameters,

references and configuration values. The ARXML module configuration description file is

used to extract the module information with the help of the ECUC model for the generation

of the configuration source codes

Table 4.4. WdgIfVersionInfoApi sample [11]

Table 4.4 gives a sample parameter description from the WdgIf module. The

ARXML code for the above information is shown in Figure 4.4. All the specifications for

the WdgIfVersionInfoApi contained between the PARAMETERS and /PARAMETERS tags.

This parameter is used to enable or disable the service to return the version information.

The parameter is also enclosed between the tag pertaining to its data type ECUC-

BOOLEAN-PARAM-DEF as mentioned in the specification in Figure 4.4. The

configuration class of the module is set to Pre-compile using the tags CONFIG-CLASS.

The comments in ARXML are written using <!-- -->. The ECUC model extracts the values

from this code and it is used by the xtend template to generate the configurations.

32

<!-- Container Definition: WdgIfGeneral -->
<ECUC-PARAM-CONF-CONTAINER-DEF>
 <SHORT-NAME>WdgIfGeneral</SHORT-NAME>
 <LOWER-MULTIPLICITY>1</LOWER-MULTIPLICITY>
 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
 <PARAMETERS>
 <!-- PARAMETER DEFINITION: WdgIfVersionInfoApi -->
 <ECUC-BOOLEAN-PARAM-DEF>
 <SHORT-NAME>WdgIfVersionInfoApi</SHORT-NAME>
 <LOWER-MULTIPLICITY>1</LOWER-MULTIPLICITY>
 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
 <IMPLEMENTATION-CONFIG-CLASSES>
 <ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 <CONFIG-CLASS>PRE-COMPILE</CONFIG-CLASS>
<CONFIG-VARIANT>VARIANT-PRE-COMPILE</CONFIG-VARIANT>
 </ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 </IMPLEMENTATION-CONFIG-CLASSES>
 <ORIGIN>AUTOSAR_ECUC</ORIGIN>
 <SYMBOLIC-NAME-VALUE>FALSE</SYMBOLIC-NAME-VALUE>
 </ECUC-BOOLEAN-PARAM-DEF>
 </PARAMETERS>

Figure 4.4. arxml module configuration description sample

4.3. ECUC Model

The ECUC model that was described before is implemented using Java classes. The

complete class diagram can be seen in Figure 4.5. This model was developed at APAG

Elektronik using UML for this research, it specifies all the necessary functions are needed

to write the MCT. The ECUC model uses the ARXML to extract values from the

AUTOSAR specification documents. All the auxiliary functions of the model and their

functionality are described in Table 4.5. The functions defined under

EcuConfigurationModel are used to initialize the module using the information from the

specifications. The AutosarClass functions are used to access module configuration

information from predefined AUTOSAR libraries. The values from the Top-level model

designs and AUTOSAR Packages are extracted using functions inTopLevelPackageClass

and ArPackageClass respectively. Similarly, the values from modules, containers and

parameters are extracted using the ModuleConfigurationClass, ContainersClass and

ParamterValuesClass auxiliary functions. The detailed explanation of all the functions is

given in Table 4.5 and all the functions are mentioned in the class diagram in Figure 4.5.

33

Some function description is ignored as they are out of the scope of this thesis. Using this

information, the MCTs are written which is explained in the next section.

Figure 4.5. ECUC model

34

Table 4.5. ECUC model auxiliary functions

35

36

37

38

39

4.4. Module Configuration Template

As mentioned earlier, Xtend is used for the implementation of a Module

Configuration Template (MCT). The MCTs are developed to comply with MISRA and

ASPICE standards for automotive software development. The templates can be as complex

as the developer likes. The Wdg and WdgIf templates are fairly simple but the complexity

increases with the Watchdog Manager as it deals with services and interacts with many

other modules. A simple sample of the code is given in Figure 4.6 to show how the

templates are written to access the values from the ECUC model shown in Figure 4.5.

 «var WdgGeneralVar = moduleCfg.containers.getContainerListWithSameType("WdgGeneral")» 1
 «FOR var1 : WdgGeneralVar» 2
 const Wdg_ConfigType wdg_initialConfiguration_s = 3
 { 4

«var1.getValueByName("Wdg_SetWindowOpenTimeType").value», /* Window open period 5
in percent */ 6

 «var1.getValueByName("Wdg_SetErrorModeType").value», 7
 /* FEH handle the Error */ 8
 «var1.getValueByName("Wdg_SetIntRequestType").value», 9
 «var1.getValueByName("Wdg_SetOverflowIntervalTimeType").value», 10
 }; 11
 «ENDFOR» 12

Figure 4.6. MCT sample for Wdg (Xtend code)

The code in Figure 4.6 shows the definition of the WdgGeneral container. The

container is accessed using the function getContainerListWithSameType which extracts

the container from the ARXML file. Once the container is extracted, the values of the

parameters defined for the container are accessed using the ParameterValueClass function

getValueByName. Everything shown in blue is printed in the generated file as it is seen.

The identifier value is used to access the value for the mentioned parameter and print it in

the generate file. This is a simple example that shows how a container and its parameters

can be accessed.

The second sample in Figure 4.7 shows a very efficient but more complex method

that can be very beneficial for arrays or array structures with many entries. The procedure

is to create a list of all containers which belong to the same type, this is needed because

sometimes a container needs to be created more than once. For example, when there are

40

more than one hardware watchdog timers present, more than one container with the same

name is needed. Therefore, the function getContainerListWithSameType() from the

ContainerClass is called. The container name WdgMSeid is compared with the container

descriptions in ARXML to find and access the container. An iteration is performed using

for loop to in order to access the containers multiple times for every WdgMSeid container

that is created. When a Boolean parameter is value is accessed, the value needs to be

converted to uppercased as it is described in ARXML to avoid any conflicts that can occur

due to case sensitivity. The first two parameters declared are of type Boolean. This sample

code also uses some references inside the container. References in AUTOSAR are like

pointers, they point to other modules that might contain the information needed by the

WdgM. In Figure 4.7, we use the reference CheckpointRef to get the reference to the

execution start point of every module used in the ECU. The reference path is specified in

the ARXML file which will be accessed by the ReferenceClass function

getValueRefName(). The other reference used is the TransitionRef that is used to point to

the reference path where the execution needs to transition from one module to another

without completing the execution of the first module. This reference is important when a

task calls another function while already executing one. Further details on this topic are not

mentioned as they are out of the scope of this thesis. A special feature of xtend is that the

template code block is written in between triple single quotes (‘’’ ‘’’). The way the

statements are written in xtend which you can see in Figure 4.7 is called Lambda

Expressions. A lambda expression is basically a piece of code wrapped into an object to

pass it around [18]. We can think of a lambda expression as an anonymous class with a

single method. The first few lines of code in Figure 4.7 are an example of Lambda

expressions.

As the xtend code is written in Eclipse, an executable Java code is generated using

the ECUC model. This java file is used as input to the BSG tool to automate the generation

of the ECUC. A sample of the java code that is generated by the eclipse is shown in Figure

4.8. The complete Java code for a module is given in the Appendix B.

41

‘ ’ ’
««« WdgM_SEID container definition

«var WdgMSEIDVar = moduleCfg.containers.getContainerListWithSameType("WdgMSeid")»
const WdgM_SEIDType WdgM_SEID_as[WDGM_NUM_OF_SEIDS] =
{
 «var z = 1»
 «FOR SEID : WdgMSeidVar»
 {
 /*.WdgM_SEIDId_ui8 = */ WDGM_REF_ID_LIN«SEID.getValueByName("WdgMSEIDId").value»,
 «IF SEID.parametersValues.booleanValue.get(3).getValue().equals("true")»

/* .WdgM_SEIDUsed_b = */
«SEID.parametersValues.booleanValue.get(3).getValue().toUpperCase()»,

 «ELSEIF SEID.parametersValues.booleanValue.get(3).getValue().equals("false")»
/* .WdgM_SEIDUsed_b = */
«SEID.parametersValues.booleanValue.get(3).getValue().toUpperCase()»,

 «ENDIF»
 /* .WdgM_InitState_e = */«SEID.getValueByName("WdgM_InitMode").value»,
 «IF SEID.parametersValues.booleanValue.get(1).getValue().equals("true")»

/* .WdgM_Start_b = */
«SEID.parametersValues.booleanValue.get(1).getValue().toUpperCase()»,

 «ELSEIF SEID.parametersValues.booleanValue.get(1).getValue().equals("false")»
/* .WdgM_Start_b = */
«SEID.parametersValues.booleanValue.get(1).getValue().toUpperCase()»,

 «ENDIF»
 «var ref = SEID.getReferenceValueByDefinitionRefName("WdgMCheckpointRef")»
 «IF SEID.referenceValues.referenceValue.size > 0»
 /* .WdgM_CheckpointRef_ui8 = */ ECUM_Module_«ref.getValueRefName()»,
 «ELSEIF ref.getValueRefName().equals("invalid")»
 /* .WdgM_CheckpointRef_ui8 = */ 0, /* Module missing */
 «ENDIF»
 «var icuref = SEID.getReferenceValueByDefinitionRefName("WdgMTransitionRef")»
 «IF icuref.getValueRefName().equals("invalid")»

 /* .WdgM_TransitionRef_ui8 = */ 0, /* TransitionRef missing */
 «ELSEIF SEID.referenceValues.referenceValue.size > 0»
 /* .WdgM_TransitionRef_ui8 = */ ECUM_Transition_«TransitionRef.getValueRefName()»,
 «ENDIF»

/* .WdgM_Access_s = */
&«SEID.getSubContainers().getContainer().get(0).getShortName()»WdgM«z»

 },
 «{z = z+1; null}»
«ENDFOR»
};
‘ ’ ’

Figure 4.7. Complex MCT sample (Xtend code)

Each template needs a Java main for the execution. The Java code shown in Figure

4.8 is used for this purpose. This code is auto generated by Eclipse using the ECUC model.

The structure of the java file is the same for all the modules. Only some information needs

to be filled by the developer like the moduleName. The information that needs to be filled

by the developer is usually marked with the comment TODO. The Java file includes all the

ECUC model classes that are used by extend to access the values. The respective module

package and java libraries are imported.

42

package com.apagcosyst.genWdgIf;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;

import com.apagcosyst.generator.ArgumentsInterpreter;
import com.apagcosyst.generator.IGenSourceCode;
import com.apagcosyst.ecuCModel.ArxmlFileInterpreterClass;
import com.apagcosyst.ecuCModel.EcuConfigurationModel;
import com.apagcosyst.ecuCModel.ModuleConfigurationClass;

public class WdgIf_Main {
 private String moduleName;
 private String moduleVersion;
 private ModuleConfigurationClass moduleCfg;
 private EcuConfigurationModel ecuConfig;
 private IGenSourceCode moduleGen;
 private FileWriter fwCfgh;

 /* insert the configuration for the module which has to be generated */
 public WdgIf_Main()
 {

 /* TODO: insert here the module name */
 moduleName = "WdgIf";

 /* this is filled in Setup() function */
 moduleCfg = new ModuleConfigurationClass();
 ecuConfig = new EcuConfigurationModel();
 moduleGen = new WdgIf();
 moduleVersion = new String("1.0");

 }

Figure 4.8. executable Java code

Code to access such as module configuration class, ECUC model, the module being

generated and the module version are automatically generated by Eclipse using the Setup()

function. The java executable file contains more statements to access the values from the

ECUC model which as mentioned before is shown in Figure 4.5.

The flowchart in Figure 4.9 shows the general behavior of the program and its

messages. At first, the arguments are checked, if the correct arguments are not entered, the

execution would be canceled. The next step validates the version string, by comparing the

transferred version with the version defined in the template. Later, the ECUC Description

is loaded to the model and the module configuration of the module is searched for. This

information is transferred to the Xtend class, which generates the source code by inserting

the values into the template.

43

Figure 4.9. Module configuration template Workflow

After the implementation, a Java Archive (JAR) runnable has to be created. This is

done in the Eclipse Modeling Framework IDE by a right-click on the project in the “Model

Explorer” and select Export. A new window opens, choose there Java > Runnable JAR file

and press Next. In the next view, the Launch configuration has to be chosen. Select

«moduleName»_Main. Browse for the output folder and name the output

«moduleName»_BswMCT.jar. Last but not least select the item “Package required

libraries into generated JAR” and press Finish. The runnable is ready for executing. Make

44

sure the arguments ecuc, -o, -v are passed. Without these arguments, the generation won’t

be started correctly, as it can be back-traced in Figure 4.9.

Table 4.6 lists the auxiliary functions used to format the output source code. This

class also has attributes that can be used for a more generic way, for example, to print large

arrays without much effort. In all the functions mentioned, the parameter’s value is checked

for validity. If the value is not found or is the value found is unequal to the compared string,

the result is “invalid”.

Table 4.6. List of auxiliary functions for formatting the output source code

45

46

47

4.5. BSG Tool

The tool responsible for managing and executing the templates to generate the

configuration files is called the Basic Software Configuration Source Code Generator

(BSG) tool. The tool uses the Graphical User Interface (GUI) to interact with the user. The

GUI of the BSG is shown the Figure 4.10. The GUI allows the user to set up the tool to

generate the *.c and *.h files for the specific module.

Figure 4.10. BSG GUI

48

 Functions such as the automatic search for MCTs and the ARXML files within the

project are implemented. The functionality requires a naming convention of the templates

and also a root path for searching the templates. All the existing MCTs are listed on the left

when the BSG is opened. Each module consists of the properties such as module name,

whether it should be generated, the path and name of the template, the output path, and the

version. The default configuration properties for a module are loaded when the module is

selected. The properties listed are:

• Module Name: «moduleName» extracted from «moduleName»_BswMCT.jar

• Version: stays empty

• Execute: Yes

• Executable Path: the path of the MCT relative to the tool executable and the

name of the MCT: «moduleName»_BswMCT.jar

• Output Path: the path of the MCT relative to the tool executable

Figure 4.11. MVC Pattern

The implementation of the graphical user interface is solved by the Model View

Controller (MVC) pattern. This design pattern is used to separate the logic from the

representation of the data. The separation makes easier the later maintenance. Figure 4.11

shows the three components of the MVC pattern. The model contains the data, in this case,

it would be the configuration of the tool. The view is responsible for displaying the data

and what the user sees. The controller listens to the actions of the user. The dashed lines

49

correspond to communication via observers and observables. With this mechanism, a class

(observer) monitors another class (observable). If there is a change the observer gets a

notification.

The Implementation of MVC using UML classes is shown in Figure 4.12. The

MainControl is the interface between the model, the ToolConfig and the user interface, the

MainViewFrame. The controller handles all information and updates the data. Inputs of the

user are recognized by action and focus listener and are processed respectively. The class

diagrams of the classes for the BSG tool are shown in the Appendix C. The further

implementation details of the BSG tool are not mentioned as it out of the scope of this

thesis.

Figure 4.12. Class diagram for implemented MVC pattern

The functionality of the BSG tool shown is Figure 4.12 is explained. All the MCTs

and are found and listed when the tool is opened. For the search, the Root Path is used as

the root directory. All found templates are displayed on the left side. Each module in this

50

list has a checkbox next to its name to inform the user if a module is selected for generating

or not. This option can also be changed on the right side at the item Execute. There are the

two buttons Select All and Deselect All for a quick selection and deselection of all modules.

The ECUC field contains the path and name of the ECUC Description file. If a module is

selected, the fields of the lower right part are filled with the corresponding information,

also called module properties. The Module Name and the Executable Path cannot be

changed. The Version must be entered manually by the user, this is compared with the

version which is stored in the template, if these do not match, the generation of that module

will not be started and an error message is returned, therefore look at Table 4.7. This should

Figure 4.13. BSG tool with loaded config files

51

ensure that no wrong templates are used in the project. The button Delete Module deletes

the currently selected module, which module properties are displayed on the right side.

Generate triggers the generation of all selected modules by executing the templates. Before

that, the tool configuration will be saved automatically. The Close button exits the program.

Before the program is closed, it asks if the tool configuration should be saved, this is the

difference to exiting the program via the X button, here the configuration is not saved. In

the ribbon there is the item File, this opens a menu with 4 menu items:

• Load tool config...: opens the browser to select another tool configuration and

loads it.

• Save tool config: saves the tool configuration.

• Save tool config as...: opens the browser to select a new path and name for the

current tool configuration and stores it there.

• Exit: opens a dialog asking if the tool configuration should be saved, same as

Close.

The tool can optionally be executed with command-line arguments. These arguments

are the path and name of the tool configuration (-c) and a flag to enable the execution

without GUI (-execute). An execution without arguments opens the GUI and loads the

default tool configuration “BSGToolConfig.xml”. The program flow is shown graphically

in Figure 4.14.

The program flow of BSG starts with the execution of the tool. The tool is saved

within the development repository at APAG from where it can be executed. Once the

module which needs to be generated is selected. The BSG interprets the arguments set for

the module. If the arguments are found the tool configuration path is executed, if not the

BSG accesses arguments from inside the tool executable. After the tool has the arguments

the tool configuration is searched and loaded into the BSG. If the tool configuration is not

found then an error message is displayed to inform the user that the configuration is not

52

found. If the configuration is loaded correctly, the user can generate the output source code

using the generate button on the GUI.

Figure 4.14. BSG tool flow

53

There is a feedback, shown in the GUI or command line, it is a simple line explaining

if the generation was successful or failed. The detailed feedback is generated in the log file

saved in the same folder as the BSG tool in APAG’s file repository. The log file gives a

detailed explanation for every step of tool execution. The feedback that can be received in

the log file is explained in Table 4.7.

Table 4.7. Feedback in the log file

54

55

Chapter 5. Functional Testing and Evaluation

 This chapter discusses the results of the automated generation of ECUC. It

discusses the generated code samples, test cases for error management of BSG and timing

and cost analysis of our research.

5.1. Auto-Generate Source Code

After the BSG tool generates the code. The source code for the Wdg Module is

generated and saved in the Wdg folder in the file repository. According to the requirements

three source code files are generated for Wdg depending on the configuration classes:

Wdg_Cfg.h, Wdg_Lcfg.c and Wdg_Lcfg.h. The complete generated source code cannot

be discussed due to confidentiality reasons but a small part of the generated code

corresponding to the xtend template shown in Figure 5.1 is shown in Figure 4.6.

const Wdg_ConfigType wdg_initialConfiguration_s =
{
 Wdg_SetWindowOpenTimeType: WINDOW_OPEN_PERIOD_100_PERCENT,
 Wdg_SetErrorModeType: ERROR_RESET_MODE,
 Wdg_SetIntRequestType: INT_REQUEST_AT_75_PERCENT_DISABLED,
 Wdg_SetOverflowIntervalTimeType: OVERFLOW_TIME_2HIGH9_DIVIDED_BY_WDTA_CLK,
};

Figure 5.1. Generate source code Wdg_Lcfg.c

The generated code printed everything that was coded in blue in Figure 4.6 as it is.

We can see that the value for each of the parameters in the container WdgGeneral is

accessed from the ECUC model and displayed in blue in Figure 5.1. These values were

defined in the ARXML file and were accessed by xtend. Then the source code was auto-

generated using the BSG tool.

A more complex example of the generated source code for the template shown in

Figure 4.7 is given in Figure 5.2. The parameters were generated 4 times for the container

SEIDType because of 4 different watchdog timers used in the hardware.

56

const WdgM_SEIDType WdgM_SEID_as[WDGM_NUM_OF_SEIDS] =
{
 {
 /* .WdgM_SEIDId_ui8 = */ WDGM_REF_ID_LIN1,
 /* .WdgM_SEIDUsed_b = */ TRUE,
 /* .WdgM_InitState_e = */ WDGM_TRCV_MODE_NORMAL,
 /* .WdgM_Start_b = */ TRUE,
 /* .WdgM_CheckpointRef_ui8 = */ 0,
 /* .WdgM_TransitionRef_ui8 = */ 0,
 /* .WdgM_Access_s = */ &WdgM_Access_SEIDLin1
 },
 {
 /* .WdgM_SEIDId_ui8 = */ WDGM_REF_ID_LIN2,
 /* .WdgM_SEIDUsed_b = */ TRUE,
 /* .WdgM_InitState_e = */ WDGM_TRCV_MODE_NORMAL,
 /* .WdgM_Start_b = */ TRUE,
 /* .WdgM_CheckpointRef_ui8 = */ 0,
 /* .WdgM_TransitionRef_ui8 = */ 0,
 /* .WdgM_Access_s = */ &WdgM_Access_SEIDLin2
 },
 {
 /* .WdgM_SEIDId_ui8 = */ WDGM_REF_ID_LIN3,
 /* .WdgM_SEIDUsed_b = */ TRUE,
 /* .WdgM_InitState_e = */ WDGM_TRCV_MODE_NORMAL,
 /* .WdgM_Start_b = */ FALSE,
 /* .WdgM_CheckpointRef_ui8 = */ 0,
 /* .WdgM_TransitionRef_ui8 = */ 0,
 /* .WdgM_Access_s = */ &WdgM_Access_SEIDLin3
 },
 {
 /* .WdgM_SEIDId_ui8 = */ WDGM_REF_ID_LIN4,
 /* .WdgM_SEIDUsed_b = */ TRUE,
 /* .WdgM_InitState_e = */ WDGM_TRCV_MODE_NORMAL,
 /* .WdgM_Start_b = */ FALSE,
 /* .WdgM_CheckpointRef_ui8 = */ 0,
 /* .WdgM_TransitionRef_ui8 = */ 0,
 /* .WdgM_Access_s = */ &WdgM_Access_SEIDLin4
 }
};

const WdgM_ConfigType WdgM_Config_s =
{
 /* .WdgM_SEID_ps = */ WdgM_SEID_as
};

Figure 5.2. Generated source code for WdgM_Cfg.c

5.2. Tests Cases for the BSG tool

The Table 5.1 defines test cases (TCs) that were created to check the functionality of

the BSG tool. These briefly describe which action is taken and which result is expected.

The test is passed if the actual response matches the expectation, if not it has failed. For

some test cases, an execution on the command line is needed. The following convention is

made to describe the location and command: Tilde (~) is used for the root path (here:

57

TestProject). The dollar symbol ($) is used to mark the beginning of the command. In

addition, keywords in the command are highlighted in pink.

Figure 5.3. example command line

Table 5.1. Take Cases

Test Case

No.
Description Result

58

59

60

61

62

63

All the test cases were put to test at APAG and all were verified and passed. This

proves that the BSG tool works without any issues

64

5.3. Approximate Time and Cost comparisons

Time and Cost for the automated generation of ECUC in AUTOSAR utilized for this

research is compared with the generation of ECUC manually done by the developers.

Figure 5.4 gives an approximate estimation of the time taken for auto-generating ECUC

configurations at APAG versus the time taken to generate them manually by a developer.

The work done manually by a developer to generate the ECUC is approximately around 8

weeks. But our research at APAG can auto-generate the configurations and complete the

whole process in 2 weeks.

Figure 5.4. Approximate time taken to generate ECUC

 Automotive suppliers use some existing tools that our in the market like Vector da

Vinci [27] to complete the ECUC process. These tools are very expensive for small

companies like APAG Elektronik. It is easier for small companies to develop their own

code generator tool that will turn out to be less expensive.

0 2 4 6 8 10

Automated Generation

Manual Programming

Approximate time taken to Generate ECUC

65

Chapter 6. Conclusion

6.1. Summary

In this research, we described the process for the automated generation of the ECU

configurations, which is a necessary process for developing an ECU based on AUTOSAR.

The MCT and the BSG generator can be used in various projects to generate the

configuration files automatically with minimal input and effort from the developer. The

aim was to develop a process in the automotive embedded systems to ensure consistency

in design, software implementations, driver configurations and reduce the time and cost

consumed by the AUTOSAR ECU generation process. This work presents an approach

that seamlessly describes the ECU configuration process using templates and a generation

tool that can be reused. This approach can be used for all the AUTOSAR modules present

in the basic software layer.

The whole ECU configuration process and source code generation without the BSG

CAD tool can be done manually by a group of 2 to 3 embedded developers over a period

of approximately one month for one module of AUTOSAR. But by using the BSG tool and

the MCTs we can finish the ECU configuration process and generation of one module in

approximately one week.

Improved efficiency, traceability, and consistency for the configuration process,

reduction in cost, time and cumbersome, error-prone manual work along the ECU

development path are the main benefits of this approach. The approach can be further

improved in the process of configuring of the RTE in AUTOSAR and an even faster

implementation process.

66

6.2. Future Work

This research has a future scope of improvement. This process can be implemented

with the new AUTOSAR adaptive platform. Sorting algorithms can be used for the module

search to make the code generation faster. The template descriptions can be made simpler

by using domain-specific language. These optimizations and improvements can be

implemented through further research.

67

References

[1]. Guido Sandmann and Richard Thompson. “Development of AUTOSAR Component

with Mode-Based Design,” 2008, doi:10.4271/2008-01-0383.

[2] Georg Macher, Eric Armengaud and Christian Kreiner “Automated Generation of

AUTOSAR Description File for Safety-Critical Software Architectures,” presented at

Informatik – Automotive Software Engineering Workshop, Stuttgart, 2014.

[3]. Fabrizio Fabbrini, Maario Fusani, Giuseppe Lami, et al., “Software Engineering in

the European Automotive Industry: Achievements and Challenges,” published in

32nd Annual IEEE International Computer Software and Applications Conference,

Finland, 2008, doi: 10.1109/COMPSAC.2008.140.

[4]. Georg Macher, Rene Obendrauf, Eric Armengaud, et al., “RTE Generation and BSW

Configuration Tool-Extension for Embedded Automotive Systems,” presented at

European Congress Embedded Real Time Software and Systems, 2016.

[5]. AUTOSAR, “AUTOSAR XML Schema,” AUTOSAR standard 4.4, August. 2018.

[6]. JaxEnter, “Xtend Programming language,” https://jaxenter.com/xtend-pirates-jvm-

efftinge-132385.html, accessed Aug 2019.

[7]. Eclipse, “Eclipse IDE – Open platform for professional developers,”

https://www.eclipse.org/eclipseide/, accessed Fed 2018.

[8]. AUTOSAR, “AUTOSAR introduction,”

https://www.autosar.org/fileadmin/ABOUT/AUTOSAR_Introduction.pdf, accessed

Nov. 2019.

[9]. AUTOSAR, “AUTOSAR Layered Architecture,” AUTOSAR standard 4.4, August.

2018.

[10]. AUTOSAR, “Requirements on RTE Software,” AUTOSAR standard 4.4, August.

2018.

[11]. AUTOSAR, “Specification of Watchdog Driver,” AUTOSAR standard 4.4, August.

2018.

[12]. AUTOSAR, “Specification of Watchdog Interface,” AUTOSAR standard 4.4,

August. 2018.

[13]. AUTOSAR, “Specification of Watchdog Manager,” AUTOSAR standard 4.4,

August. 2018.

[14]. AUTOSAR, “Technical Overview,” AUTOSAR standard 4.4, August. 2018.

[15]. Kunal Chandmare, “Automated Configuration of Time-Critical Multi-Configuration

AUTOSAR Systems,” TU Chemnitz, 2017

[16]. AUTOSAR, “AUTOSAR Methodology,” AUTOSAR standard 1.2.2 Rev 3.2, April.

2007.

https://jaxenter.com/xtend-pirates-jvm-efftinge-132385.html
https://jaxenter.com/xtend-pirates-jvm-efftinge-132385.html
https://www.eclipse.org/eclipseide/
https://www.autosar.org/fileadmin/ABOUT/AUTOSAR_Introduction.pdf

68

[17]. AUTOSAR, “AUTOSAR Methodology,” AUTOSAR standard 4 Rev 4.4, August.

2018.

[18]. Miroslaw Staron. Automotive Software Architectures-An Introduction. Springer,

2017. isbn: 978-3-319-58609-0.

[19]. AUTOSAR, “AUTOSAR ARXML Serialization Rules,” AUTOSAR standard 4

Rev 4.4, August. 2018.

[20]. Xtend, “Xtend Documentation,”

https://eclipse.org/xtend/documentation/index.html, accessed November, 2018.

[21]. AUTOSAR, “AUTOSAR,” https://www.autosar.org/, accessed March, 2019.

[22]. AUTOSAR, “Specification of ECU Configuration,” AUTOSAR standard 4.4,

August. 2018.

[23]. Guido Sandmann and Richard Thompson. “Development of AUTOSAR

Component with Mode-Based Design,” 2008, doi:10.4271/2008-01-0383.

[24]. Brett Murphy, Chris Hayhurst, Jon Friedman, et al., “Verification and Validation

Integration within Processes Using Model-Based Design,” 2008, doi:10.427/2008-01-

2709.

[25]. J.-C. Lee and T.-M. Han.” ECU Configuration Framework based on AUTOSAR

ECU Configuration Metamodel,” Presented at International Conference on Hybrid

Information Technology 2009. 2008, doi:10.1145/1644993.164043.

[26]. H. C. Jo, S. Piao, and W. Y. Jung “Design of a Vehicular code generator for

Distributed Automotive Systems,” presented at Seventh International Conference on

Information Technology 2010, USA, 12-14 April. 2010, doi:

10.1109/ITNG.2010.212.

[27]. Stefan Voget and Continental Engineering Services GmbH “AUTOSAR and the

Automotive Tool Chain,” presented at Design, Automation and Test Conference &

Exhibition 2010, Europe, 8-12 March. 2010, doi: 10.1109/2010.5457202.

[28]. Georg Macher, Rene Obendrauf, Eric Armengaud, et al., “RTE Generation and

BSW Configuration Tool-Extension for Embedded Automotive Systems,” presented

at European Congress Embedded Real Time Software and Systems, 2016.

[29]. AUTOSAR, “Requirements of ECU Configurations,” AUTOSAR standard 4 Rev

4.3.1, August. 2017.

https://eclipse.org/xtend/documentation/index.html
https://www.autosar.org/

69

Appendix A. AUTOSAR Methodology 4.4

Figure A.1. AUTOSAR Methodology (version 4.4 [16])

70

Appendix B. Executable Java Code

package com.apagcosyst.genWdg;

import java.io.BufferedWriter;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;

import com.apagcosyst.generator.ArgumentsInterpreter;
import com.apagcosyst.generator.IGenSourceCode;
import com.apagcosyst.ecuCModel.ArxmlFileInterpreterClass;
import com.apagcosyst.ecuCModel.EcuConfigurationModel;
import com.apagcosyst.ecuCModel.ModuleConfigurationClass;

public class Wdg_Main {
 private String moduleName;
 private String moduleVersion;
 private ModuleConfigurationClass moduleCfg;
 private EcuConfigurationModel ecuConfig;
 private IGenSourceCode moduleGen;
 private FileWriter fwLcfgc;
 private FileWriter fwLcfgh;

 public Wdg_Main()
 {
 moduleName = "Wdg";

 /* this is filled in Setup() function */
 moduleCfg = new ModuleConfigurationClass();
 ecuConfig = new EcuConfigurationModel();
 moduleGen = new Wdg();
 moduleVersion = new String("1.0”);
 }
 public static void main(String[] args)
 {

 ArgumentsInterpreter arguments = new ArgumentsInterpreter();
 arguments.interpret(args);

 if(arguments.isValid())
 {
 Wdg_Main module = new Wdg_Main(/*arguments.getVersion()*/);

 if(arguments.getVersion().equals(module.moduleVersion))
 {
 try {
 module.ecuConfig.loadArxmlFileToModel(arguments.getEcucPath());
 module.moduleCfg = module.ecuConfig.getModuleConfigurationByName(module.moduleName);

 if(module.moduleCfg.getShortName().equals(ArxmlFileInterpreterClass.invalid))
 {

 System.err.println("ModuleConfiguration: " + module.moduleName + " in EcuC File: " +
arguments.getEcucPath() + " not found!\n!!Generation aborted!!!");

 return;
 }
 else
 {

String output = arguments.getOutputRootPath() + File.separator + module.moduleCfg.
getShortName();

71

 module.fwCfgc = new FileWriter(output + "_Cfg.c");
 module.fwLcfgc = new FileWriter(output + "_Lcfg.c");
 module.fwLcfgh = new FileWriter(output + "_Lcfg.h");

 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 try {
 /* Generate the «module»_Cfg.c */
 BufferedWriter bwCfgc = new BufferedWriter(module.fwCfgc);

bwCfgc.write((String) module.moduleGen.GenCfgC(module.moduleCfg,
module.ecuConfig));

 bwCfgc.close();
 module.fwCfgc.close();

 /* Generate the «module»_Lcfg.c */
 BufferedWriter bwLcfgc = new BufferedWriter(module.fwLcfgc);

bwLcfgc.write(module.moduleGen.GenLcfgC(module.moduleCfg,
module.ecuConfig));

 bwLcfgc.close();
 module.fwLcfgc.close();

 /* Generate the «module»_Lcfg.h */
 BufferedWriter bwLcfgh = new BufferedWriter(module.fwLcfgh);

bwLcfgh.write(module.moduleGen.GenLcfgH(module.moduleCfg,
module.ecuConfig));

 bwLcfgh.close();
 module.fwLcfgh.close();

 System.out.println("Generation is finished!");

 } catch (IOException e) {
 // Auto-generated catch block
 e.printStackTrace();
 }
 }
 else
 {
 System.err.println("Version is not valid!" + System.getProperty("line.separator") +
 "Expected: " + module.moduleVersion + System.getProperty("line.separator") +
 "got: -v " + arguments.getVersion() + System.getProperty("line.separator"));
 }
 }
 else
 {
 System.err.println("Arguments are not valid" + System.getProperty("line.separator") +

"Expected: -v [Version] -o [outputPath] - ecuc [EcucLocation]" + System.getProperty
("line.separator") + "got: -v " + arguments.getVersion() + System.getProperty("line.separator")

}

 }

}

72

Appendix C. BSG class diagram

Figure A.2. Class diagram for the BSG

73

Vita Auctoris

NAME: Usha Sreeram

PLACE OF BIRTH: Bengaluru, India

YEAR OF BIRTH: 1995

EDUCATION: Bachelor of Engineering in

 Electronics and Communication Engineering

 Dr. Ambedkar Institute of Technology,

Bengaluru, India

2013 – 2017

Master of Applied Science in

Electrical and Computer Engineering

University of Windsor, Windsor, Ontario, Canada

2017-2019

	Automated Generation and Integration of AUTOSAR ECU Configurations
	Recommended Citation

	tmp.1576791004.pdf.sKHyF

