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Abstract 

One of the fastest growing and the most demanding areas of computer science is 

Machine Learning (ML). Self-Organizing Map (SOM), categorized as unsupervised ML, 

is a popular data-mining algorithm widely used in Artificial Neural Network (ANN) for 

mapping high dimensional data into low dimensional feature maps. SOM, being 

computationally intensive, requires high computational time and power when dealing 

with large datasets. Acceleration of many computationally intensive algorithms can be 

achieved using Field-Programmable Gate Arrays (FPGAs) but it requires extensive 

hardware knowledge and longer development time when employing traditional Hardware 

Description Language (HDL) based design methodology. Open Computing Language 

(OpenCL) is a standard framework for writing parallel computing programs that execute 

on heterogeneous computing systems. Intel FPGA Software Development Kit for 

OpenCL (IFSO) is a High-Level Synthesis (HLS) tool that provides a more efficient 

alternative to HDL-based design. This research presents an optimized OpenCL 

implementation of SOM algorithm on Stratix V and Arria 10 FPGAs using IFSO. 

Compared to recent SOM implementations on Central Processing Unit (CPU) and 

Graphics Processing Unit (GPU), our OpenCL implementation on FPGAs provides 

superior speed performance and power consumption results. Stratix V achieves speedup 

of 1.41x - 16.55x compared to AMD and Intel CPU and 2.18x compared to Nvidia GPU 

whereas Arria 10 achieves speedup of 1.63x - 19.15x compared to AMD and Intel CPU 

and 2.52x compared to Nvidia GPU. In terms of power consumption, Stratix V is 35.53x 

and 42.53x whereas Arria 10 is 15.82x and 15.93x more power efficient compared to 

CPU and GPU respectively.  
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Chapter 1. Introduction 

1.1 Motivation 

The demand for ML has been increasing at an exponential rate due to its ability to 

provide actionable insights and achieve key goals in industry and business organizations. 

ML algorithms have been widely used in applications involving analysis of large amounts 

of data in order to find patterns, make predictions, etc. One of the most important 

characteristics of ML is its ability to solve complex computationally intensive problems 

efficiently. Self-Organizing Map (SOM) [1] is an unsupervised ML algorithm and is a 

form of ANN. SOM, being computationally intensive, consumes a lot of hardware 

resources, power and takes longer execution time as the dataset size increases. The 

inherently parallel nature of the algorithm makes it suitable for implementation in many 

core and multi-core architectures. A lot of research has been done on porting ML 

algorithms to parallel and heterogeneous platforms [2 - 5]. 

High Performance Computing (HPC) platform such as GPUs and FPGAs are used 

as hardware accelerators to efficiently accelerate computationally intensive ML 

algorithms [2, 3, 6] such as SOM [7]. Currently, GPUs having the features of delivering 

high throughput and better memory bandwidth serves to accelerate ML algorithms. 

However, the large amount of power required by GPU for execution of these algorithms 

serves as a major drawback compared to other HPC counterparts. FPGA-based 

accelerators on the other hand overcome this drawback by providing high throughput 

with low power consumption during execution of computationally intensive algorithms. 
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FPGAs are programmable logic devices that provides greater flexibility and high 

throughput. The designs implemented in FPGA are mainly done using HDLs such as 

Verilog and VHSIC Hardware Description Language (VHDL) requiring extensive 

hardware knowledge thereby increasing the development time and cost. To exploit the 

potential of FPGAs fully and to make it accessible to all software developers, HLS tools 

such as IFSO [8] provides the opportunity to program FPGAs using HLL such as 

OpenCL, C and C++ without requiring extensive hardware knowledge thus efficiently 

accelerating computationally intensive tasks. Optimized Verilog modules are 

automatically synthesized into FPGA hardware binaries to be able to run on FPGA 

boards from HLL using the Altera Offline Compiler (AOC). Since IFSO makes the use of 

FPGAs accessible to all developers without requiring extensive hardware knowledge, the 

development and deployment of a design and the time to market for HLS-based design is 

significantly lower compared to RTL-based design [2, 3, and 9]. FPGAs provide the 

benefit of low power consumption and the fact that pipelines can be efficiently 

customized in FPGAs, fine-tuned for the algorithm to be accelerated, makes FPGAs a 

better choice compared to CPUs and GPUs. 

OpenCL is the first industry standard language that supports parallel and 

heterogeneous computing platforms based on CPUs, GPUs, FPGAs, DSP processors, etc. 

and supports HLS. OpenCL was first introduces by Apple and is currently maintained 

and updated by Khronos Group [10] and is supported by vendors such as Intel, Nvidia, 

AMD, Apple, Xilinx, IBM, ARM Holdings, Qualcomm among many others. One 

alternative to OpenCL is Compute Unit Device Architecture (CUDA) [11], which can be 

implemented and deployed only in Nvidia GPUs. The IFSO consists of a host code and a 
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kernel code. The host is responsible for initializing the device for OpenCL computation, 

managing hardware resources such as assigning device buffers, memory synchronization 

and calling the execution of kernels, whereas the computational part of the algorithm for 

acceleration is coded on to the kernels. The host source code is written using C/C++ and 

executed on the host CPU using the standard C/C++ compiler whereas the kernel code is 

written in OpenCL and compiled using AOC into FPGA image to be executed on the 

desired FPGA hardware. As the kernels take a long time to compile, they are compiled 

offline using AOC before the execution starts [12 - 14].  

 However, there are some drawbacks to using HLS. In some cases hardware 

synthesis using HLS may not be as efficient as hardware designed by expert skilled 

engineers using HDL, due to the automatic generation of the design by the software. 

Furthermore, due to the architectural limitations of FPGAs not all algorithms will be 

efficient for acceleration using HLS.  

1.2 Thesis Objective 

 An optimized OpenCL - based FPGA implementation of SOM has been proposed 

in this research using IFSO with the aim to accelerate the SOM algorithm on Intel 

FPGAs, Stratix V and Arria 10. The major contribution of this research is the superior 

acceleration results obtained using IFSO compared to CPUs and GPUs. To our 

knowledge, this is the first research that focuses on the acceleration of SOM algorithm on 

FPGAs using IFSO and conducts a comparative analysis of performance and power 

consumption with CPUs and GPUs. The research was conducted in the following phases 

as shown in Fig. 1.1: 
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1. The fundamentals of parallel programming and IFSO were studied. 

2. The SOM algorithm was implemented on CPU and GPU (using CUDA) for 

comparison of performance and power consumption with FPGAs. 

3. Improvements were made in the baseline FPGA implementation by restructuring 

the operational flow of the SOM implementation, optimized for acceleration using 

IFSO. 

4. An analysis of speedup in terms of execution time and throughput, resource 

utilization and power consumption was conducted between: 

a. FPGAs and CPU 

b. FPGAs and GPU 

c. Stratix V and Arria 10 FPGAs. 

 

Figure 1. 1 Phases of research 
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1.3 Thesis Outline 

The remainder of this research is organized as follows:  

In Chapter 2, we discuss High-Performance Computing (HPC), FPGAs, HLS, 

OpenCL and IFSO.  

In Chapter 3, we discuss the SOM algorithm in brief and provide a review of the 

previously published SOM implementations targeting FPGA, CPU and GPU - based HPC 

platforms. 

In Chapter 4, we present an optimized operational flow designed for SOM 

OpenCL FPGA implementation.  

In Chapter 5, we present the synthesis results obtained for SOM implementation 

on FPGAs and compare the results with our own CPU and GPU implementations and 

previously published SOM research targeting CPUs and GPUs. 

Lastly, in Chapter 6, we conclude with a summary of the thesis and suggestions 

for future work. 
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Chapter 2. Computing Platforms and CAD Tools 

 

This chapter gives a brief introduction to High Performance computing (HPC) 

and HPC platforms, FPGAs, HLS, OpenCL and IFSO. 

2.1 High-Performance Computing (HPC) 

 With the advancement of technology and emergence of topics like ML, Artificial 

Intelligence (AI), Data Mining etc. the size of data to be handled by organizations has 

been increasing at an exponential rate. The demand for real-time, fast an accurate 

processing and prediction are crucial for organizations to achieve key goals and to obtain 

actionable insights.  The techniques and algorithms for processing the data to reach a 

conclusion are often computationally intensive and require large amount of computation 

time and power when computed on a normal CPU. HPC gives the organizations ability to 

compute/process data and implement computationally intensive algorithms at much 

higher speed compared to the traditional desktop or laptop [15, 16]. It is a subset of 

Technical Computing (TC) and includes Supercomputing as its member as shown in Fig. 

2.1. 
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Figure 2. 1 High Performance Computing overview and applications [17] 

An HPC architecture consists of compute servers called nodes networked to form 

clusters and a data storage facility as shown in Fig. 2.2. Each of the nodes in a cluster can 

communicate with each other and the data storage facility to provide maximum 

performance in solving computationally intensive problems. The nodes operate on the 

complex task in a parallel manner thereby boosting speed of execution. Hence, 

organizations have focused on using parallel computing and multi core designs in their 

Information Technology (IT) infrastructures to obtain efficient, reliable, fast and accurate 

solutions. 

  

 

Figure 2. 2 High Performance Computing Architecture [15]. 

 Even though parallel deployment of tasks in the HPC clusters boost performance, 

it may not be possible to parallelize all the algorithms/tasks. Some of the computations 
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might run more efficiently on CPU compared to other platforms. Heterogeneous 

Computing (HC) overcomes this constraint by allowing the use of multiple types of 

processors, coprocessors and cores to execute particular tasks [18, 19]. For example, the 

sequential part of the task can be computed on CPU whereas the parallel part of the task 

can be assigned to be executed on a GPU or FPGA.  

 Parallel computing is the simultaneous execution of a complex task, which has 

been broken down into several smaller tasks and assigned to each compute unit for 

execution at the same time [20]. Parallel computing or parallelism can be divided into: 

 Bit-Level Parallelism: Parallelism is achieved by increasing the processor word 

size [21]. For example adding two 16-bit numbers using 16-bit processor instead 

of an 8-bit processor.  

 Instruction-Level Parallelism: Parallelism is achieved by instruction pipelining, 

superscalar execution, out-of-order execution, register renaming, speculative 

execution and branch prediction techniques [22]. In Instruction-Level Parallelism, 

several instructions are executed per clock cycle by the processor. 

 Data-Level Parallelism: Parallelism is achieved by distributing the data across 

several compute units (i.e. nodes) for parallel execution of data. In other words is 

the simultaneous execution of the same task by each processor in a multi-

processor environment on different distributed data [23]. 

 Task-Level Parallelism: Parallelism is similar in this case to data-level parallelism 

but in this case instead of distributing data across each processor in a multi-

processor environment, this parallelism technique focuses on distributing tasks 
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[24]. Different tasks are assigned to each processor using the same data for 

execution. 

Traditionally, multi-core CPUs were used as HPC clusters. CPU employs instruction-

level parallelism and due to its high clock frequency, it is optimized for latency. In order 

to minimize memory operations, CPUs employ complicated caching schemes and have 

large amount of on-chip caches. GPUs on the other hand are optimized for throughput 

and is now being used in HPC clusters. GPUs also makes use of caches similar to CPU to 

minimize memory access but has far fewer caches compared to CPUs. GPU uses its high 

memory bandwidth and parallel execution capability to maximize throughput. The use of 

programming APIs such as OpenCL and CUDA have made it possible for developers to 

easily program GPUs for computation. However, one of the drawbacks of using GPUs is 

its high power consumption. FPGAs have reconfigurable resources and can be 

reprogrammed achieving high throughput at low power consumption, which makes 

FPGAs a good candidate for HPC [25].  

2.3 Field-Programmable Gate Array (FPGA) 

  FPGA stands for Field-Programmable Gate Arrays. FPGAs provide the features 

of re-programmability, re-configurability and are based on Static Random Access 

Memory (SRAM), which is a volatile memory [26, 27]. FPGA architecture consists of 

I/O Banks, matrix of Configurable Logic Blocks (CLBs) and programmable switching 

matrix interconnecting wires as shown in Fig. 2.3.  
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Figure 2. 3 FPGA Architecture [28] 

 The I/O Banks on the edge of the FPGA chip can be programmed to function as 

inputs, outputs, tristate buffers, differential-pair drivers, voltage logic standards, etc. Each 

CLB consists of a number of Logic Elements (LE), inputs and outputs. A Logic Element 

(LE) is composed of a Look-Up table (LUT), a Multiplexer (MUX) and a D-Flip Flop. A 

LUT consists of a tree of multiplexers implementing combinational logic functions, with 

an array of memory elements as inputs.  The output of the LUT is stored in the D-Flip 

Flop, which can also performs sequential logic function. The MUX is used for logic 

selection.  Since FPGA memory is volatile, the data programmed onto the FPGA memory 

is erased whenever the FPGA board is switched off. The basic layout of the Intel Stratix 

V and Arria 10 FPGA used in this research is shown in Fig. 2.4. 
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(a) 

 

(b) 

Figure 2. 4 (a) Stratix V [29] and (b) Arria 10 [30] FPGA Layout. 

 The FPGA boards used in this research are accelerator boards packaged in the 

form of a Peripheral Component Interconnect Express (PCIe) card which allows easy 

integration of the accelerator board into existing host system (i.e. CPU). FPGA 

accelerator cards are available from companies such as Terasic [31] and Bittware [32]. 



 

12 
 

These vendors also provides the option for developers to design their own accelerator by 

changing the reference board design [33]. The accelerator cards used in these research are 

Nallatech 385 (Stratix V GX A7) [34] and Nallatech 385A (Arria 10 GX 10AX115) [35]. 

The boards include 8GB of DDR3 SDRAM memory, with x8 Gen 3 interface. The 

Stratix V A7 FPGA (5SGXMA7H2F35C2) is a 28nm technology consisting of 622K 

Logic Elements, 234,720 ALMs, 939K Registers 664 I/Os, 2560 M20K memory blocks 

and 256 DSP blocks. The Arria 10 FPGA (10AX115N3F40E2SG) is a 20nm technology 

consisting of 1150K Logic Elements, 427,200 ALMs, 1708800 Registers, 826 I/Os, 2713 

M20K memory blocks and 1518 DSP blocks.  

2.4 High-Level Synthesis (HLS) 

FPGAs when programmed and configured properly according to the task can 

achieve significant increase in performance.  In-order to program FPGAs, traditionally 

HDL such as Verilog and VHDL are used to generate hardware design at Register 

Transfer Level (RTL) or gate-level. However, programming the FPGA using HDL 

requires developers to have extensive hardware knowledge which increases the 

development time and cost. As HDL requires skilled developers for programming 

FPGAs, most of the organizations use CPUs and GPUs as they can be programmed easily 

instead of FPGAs.  

HLS refers to an automated design process that generates the digital hardware for 

implementation from the interpreted algorithmic description [36]. HLS allows developers 

to access the full potential of the FPGA without requiring extensive hardware and 

debugging knowledge thus reducing development time and cost. HLS tools allows 

developers to use HLLs such as C, C++ or System C to synthesize their design/algorithm 
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directly into optimized HDL for implementation in FPGAs.  In [37], a detailed analysis of 

recent HLS tools has been provided. Table 2.1 gives an overview of some of the currently 

available HLS tools. For our research, we will be using IFSO. 

Table 2. 1 Overview of currently available HLS CAD Tool [37] 

 Owner Compiler License Input  Output 

Intel 

Intel FPGA 

SDK for 

OpenCL 

Commercial 
C/C++ and 

OpenCL 
Verilog 

Xilinx VivadoHLS Commercial 
C/C++ 

 SystemC  

VHDL/Verilog 

SystemC 

University of 

Toronto 
LegUp Academic C Verilog 

Cadence CtoS Commercial 
SystemC 

TLM/C++ 

Verilog 

SystemC 

Mentor 

Graphics 

DK Design 

Suite 
Commercial Handel-C 

VHDL 

Verilog 

Synopsys Synphony C Commercial 
C/C++ 

SystemC 

VHDL/Verilog 

SystemC 

Delft 

University of 

Technology 

DWARV Academic C Subset VHDL 

2.5 Open Computing Language (OpenCL) 

 OpenCL is an industry standard language, which was first, introduces by Apple 

Inc. and is now maintained and updated by the Khronos Group Inc. [10]. It can be 

executed on heterogeneous computing platforms which may be composed of CPUs, 

GPUs, FPGAs and Digital Signal Processors (DSPs). OpenCL is based on C99 and 

C++11 programming languages and defines a set of datatypes, structures and functions 

that augments C and C++ [38]. OpenCL provides the advantages of portability, 

standardized vector processing and parallel programming. It is supported and used by 

organizations such as Nvidia, Intel, AMD, Apple, Xilinx, Creative Technology, ARM 

Holdings, Imagination Technologies, Samsung, IBM, ZiiLabs, etc [39]. Computationally 
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intensive tasks to be computed on one or more OpenCL-compliant devices are called 

kernels. The kernels are sent to the device(s) from the host. OpenCL uses a hierarchy of 

model [40] – 

 Platform Model 

 Memory Model 

 Execution Model 

 Programming Model 

The platform model represents the host connected to the OpenCL devices as shown in 

Fig 2.5. The OpenCL devices are composed of Compute Units (CUs), which are 

composed of Processing Elements (PEs). Computation in OpenCL devices are done on 

the PEs. 

 

Figure 2. 5 OpenCL Platform Model [40] 

 Fig 2.6 shows the memory model for OpenCL. The memory model specifies four 

memory regions that can be accessed: 

 Global Memory: The global memory can be accessed by host through 

PCIe and by the device. The global memory provides both read and write 
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capabilities to all work-items in all work groups. It is the memory with 

largest capacity and has longer access latency and is sensitive to data 

access patterns. 

 Local Memory: A memory region that is specific to all the work-items 

within a particular work-group. Local memory has lower latency 

compared to global memory. 

 Constant Memory: It is a special type of global memory, which remains 

constant during kernel execution. Only the host can read/write into the 

constant memory, the kernels can only read data from the constant 

memory.  

 Private Memory: It is a memory region that is assigned for a particular 

work-item.  

 

Figure 2. 6 OpenCL Memory Model [40] 
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The execution model consists of the kernel program and the host program. The 

execution is managed by the host by defining the context and the command queue. The 

context contains the following information: devices, kernels, memory objects and 

program objects. The programming model of OpenCL supports task as well as data based 

parallelism. 

2.6 Intel FPGA SDK for OpenCL (IFSO) 

 IFSO is a HLS tool that enables developers to execute parallel computing 

programs easily and efficiently. It synthesizes the code written in OpenCL into optimized 

RTL Verilog code. The Verilog code can then be converted into FPGA hardware image 

by the Intel Quartus design software integrated with the IFSO tool. CPUs and GPUs use 

Single Instruction Multiple Data (SIMD) and/or Single Program Multiple Data (SPMD) 

model. IFSO allows FPGAs to support SIMD, Single Instruction Stream Single Data 

Stream (SISD), Multiple Instruction Single Data (MISD) and Multiple Instruction 

Multiple Data (MIMD) individually or in combination for computation. IFSO supports all 

features of OpenCL 1.0 and some features of OpenCL 1.2 and OpenCL 2.0 enabling the 

tool to accelerate algorithms efficiently.  

The design flow of the IFSO is given in Fig. 2.7. In order to execute an algorithm 

using IFSO we need a host code and a kernel code. The host code (i.e. host.cpp/host.c) is 

responsible for device and host buffer initialization, transferring data from host to device 

for kernel execution, setting up kernel argument, calling the kernel execution command 

on the device and reading data back from the device to the host. The kernel code (i.e. 

kernel.cl) contains the computationally intensive parallel task designed for execution in 

the targeted FPGA board. The compilation time of kernels for OpenCL is in the order of 
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hours. Hence, the kernel source code is first compiled using the AOC. In order to check 

the functionality of the kernel code, it is first compiled using an emulator integrated with 

the IFSO tool using the command, 

aoc -march=emulator --board <board_identifier> -g device/kernel.cl -o bin/kernel.aocx -v --report 

 Successful emulation of the kernel indicates that the kernel.cl program has no 

syntax, functionality, logic and stall problems. The host code is then compiled into an 

executable file using the standard C/C++ compiler using the command, 

make –f Makefile 

 

Figure 2. 7 Intel FPGA SDK for OpenCL (IFSO) Design Flow 
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The functionality of the program is then checked using the executable file and 

emulated kernel files. After successful emulation, a full compilation of the application 

with profiling for optimization is done in AOC using the command, 

aoc --board <board_identifier> --<optimization_flags> -g device/kernel.cl -o 

bin/kernel.aocx -v –report 

The full compilation synthesizes the kernel code into optimized RTL Verilog 

code and FPGA hardware image to be directly implemented onto the FPGA. The host 

executable and the files generated during AOC full compilation are executed by the host 

to run the application on the FPGA board for acceleration. The programming model for 

IFSO is given in Fig. 2.8. A sample template for HLS implementation using IFSO is 

given in Appendix A. A user perspective of the programming model has been discussed 

in [41].  
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Figure 2. 8 Intel FPGA SDK for OpenCL (IFSO) Programming model. 

2.6 Optimization Techniques - IFSO 

The IFSO supports various optimization techniques for the 

acceleration/implementation of the algorithms directly onto the FPGA boards [13, 14].  

 Data Parallelism: In data parallelism, work-items in a work-group are accessed by 

kernels using the SPMD/SIMD model. Each work-item executes the same 

operation on different data. In data parallelism, the highest throughput is achieved 

by the loops having no dependencies. 

 Task Parallelism: Task Parallelism is achieved by running the kernels using 

command queue in a pipelined manner. Concurrent execution of the kernels by 
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AOC is achieved using multiple asynchronous command queues. Task parallelism 

requires the inclusion of explicit synchronization point. In task parallelism, the 

highest throughput is obtained when the application to be implemented on the 

FPGA is divided into multiple kernels. 

 Vectorising Work-items: Vectorising allows SIMD mode execution of read/write 

as well as arithmetic/logic operations. It reduces memory access as the compiler 

creates kernel data path based on the number of vectors and increases memory 

read/write efficiency. 

 Loop Unrolling: Unrolling loops fully or partially by including #pragma unroll N, 

where N denotes the unroll factor, before loop starts, increases the throughput of 

the kernel. However, increased performance comes at a cost of increased 

hardware resource usage as the resource usage changes based on the unrolling 

factor. 

 Compute Units (CUs): Multiple kernel compute units creates multiple copies of 

the same kernel hardware for implementation simultaneously. It increases the data 

processing efficiency of the kernel but can cause bottlenecks in communication as 

the CUs share the same global memory. 

 Aligning Memory: Aligning Memory allows Direct Memory Access (DMA) 

transfer of data to and from the FPGA increasing the data transfer efficiency. 

Memory alignment of host side buffers has to be at least 64-bytes aligned.  

 Caching Local Memory: Local memory has high bandwidth and low latency 

compared to global memory. Hence, storing data from global memory to local 
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memory before computation starts provides the work-items easy access to the data 

thereby increasing throughput. 

 Memory Coalescing: Memory coalescing is especially important when 

reading/writing data from global memory repeatedly causing performance 

degradation. Memory coalescing reduces the number of memory access thereby 

improving memory efficiency. 

 Channels: Channels are First-In-First-Out (FIFO) based bus integrated in OpenCL 

and supported by Intel that allows efficient data transfer between the kernels in 

FPGA compared to the GPU, where data transfer between kernels is achieved 

only through global memory. FIFOs store data in on-chip memory and has high 

bandwidth. Channels allow the consumer kernel to launch as soon as the producer 

kernel has data available for transfer. However, vectorization of work-items and 

creation of CUs is not possible using channels. 

Many other optimization techniques focusing IFSO tool is presented in “The Best 

Practices Guide” [14]. 
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Chapter 3. Self-Organizing Map Algorithm (SOM) 

3.1 Overview 

In this research, we focused on the implementation and acceleration of the SOM 

algorithm. This chapter will first give an overview of the SOM algorithm and then will 

discuss some of the previous published research related to the implementation and 

acceleration of the SOM algorithm using HPC platforms. 

3.2 Self-Organizing Map (SOM) 

Self-Organizing Map (SOM) also known as Kohonen SOM or network is a form 

of an ANN proposed by a Finnish professor Teuvo Kohonen in the 1980s [1, 42 and 43]. 

It can be categorized as an unsupervised ML algorithm capable of mapping high-

dimensional data into low-dimensional (i.e. usually two) feature maps and hence given 

the title of dimensionality reduction [44]. SOM differs from the Neural Network (NN) in 

the sense that unlike the NN, which consists of hidden layers, SOM does not have any 

hidden layer. A SOM architecture consists of two layers - an input layer and an output 

layer (Kohonen layer) as shown in Fig. 3.1.  
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Figure 3. 1 SOM architecture. 

The input layer is connected to the kohonen layer by a set of weights. The 

kohonen layer is a fully connected layer of neurons. The concept of SOM is 

neurobiological inspired and is said to have similar functionality as that of the human 

brain connected to the nervous system as shown in Fig 3.2. The nerve endings serve as 

the input layer, the nerves connected to the central nervous system and the brain 

represents the weight vectors and the brain represents the kohonen layer, which is 

responsible for mapping the signal to a particular area in the brain. 
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Figure 3. 2 Analogy of the SOM concept [45, 46]. 

An input dataset (i.e. randomly generated weight vector) is initially fed onto the 

SOM network. In each iteration, one sample from each input dataset, x is chosen. The 

distance between x and all the weight vectors of the SOM network are compared usually 

using the Euclidean distance. The neuron whose weight vector is closest the input vector 

(i.e. the computation producing the smallest Euclidean distance) is chosen as the winner 

neuron or the Best Matching Unit (BMU). After identifying the BMU, the weight vectors 

corresponding to the neurons are updated so that the BMU and its topological neighbors 

are moved closer to the input vector in the input space as shown in Fig. 3.3. The neurons 

in the output acts in a competitive manner. The neurons in the kohonen layer are said to 

behave in a manner such that they exhibit long-range inhibition and short-range 

excitation. As the iteration progresses, the neighborhood size as well as the learning rate 

decreases for the algorithm to reach convergence. The pseudocode of the SOM algorithm 

is given below. 
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Figure 3. 3 Update stage of SOM algorithm. 

Table 3. 1 Pseudo-code of SOM algorithm 

ALGORITHM 1. Self-Organizing Map Algorithm 

Input: Map Size (M), Dimension (D), Input Size, Initial Cluster, 

Dataset  

Output: Resultant Cluster from dataset 

 

for all count ϵ 0 to Max_Iteration do 

          //Get input vector 

          for all i ϵ 0 to D       

                    //Compute Euclidean distance dj between the input               

                    //vector and each output node j 

                        
2

1

N

j i ij

i

d x t w t


   

                    //where,  

                    //i and j are input and output nodes 

                    //wij represents the weight of the connected nodes   

                    //t represents the time 

          end for 

          //Track the node that produces the smallest distance, 
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dist_index 

          //That node becomes the Best Matching Unit (BMU) or the  

          //winner neuron 

          BMU ← dist_index 

          for all i ϵ 0 to M*M*D do 

                //Update the weight of the nodes in the map 

                             1 1ij ij i ijw t w t t x t w t       

                 //where, 

                 //  is the neighborhood reduction coefficient which  

                 //decreases over time. 

          end for 

          Reduce neighborhood size 

          Reduce learning rate 

end for 

 

The computation of Euclidean distance, finding the winning neuron/BMU and the 

update of weights of the neurons in the kohonen layer repeats several times until 

convergence is reached and thus accounts for most of the execution time. Euclidean 

distance step and the update step involves going through all the coordinates of the input 

vector and is the most computationally intensive part of the algorithm. The computational 

complexity of conventional SOM depends on the input vector size, N and the number of 

document presentation cycles (i.e. Euclidean distance computation stage), C and is given 

as ( )O NC  [47]. 

SOM is used extensively in applications such as clustering (or classification) of 

satellite images [48 - 50], data visualization in finance sectors [51], modeling, probability 

density estimation, etc. [52, 53]. SOM being computationally intensive requires high 

computational time and power when dealing with large datasets. 
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3.3 Related Works  

Extensive research has been done on the acceleration of SOM algorithm on CPU, 

GPU and FPGA.  

In [54], a novel implementation of SOM was conducted on GPU using two 

different Application Programming Interfaces (APIs), OpenCL and CUDA. Two 

different environments were used for evaluation, a Zotac GeGorce GT 220 on AMD 

Athlon 64 X2 Dual Core processor 5400+ and the Sharcnet cluster Angel consisting of 11 

Nvidia Tesla S1070 GPU servers (each server consisting of 4 GPUs). Speedup achieved 

was in the range of 3 to 32 for various map and training data size. Experimental 

evaluation also showed that CUDA implementation outperformed OpenCL 

implementation.  

In [55], a massively parallel version of SOM was implemented on Intel core 2 

Duo 2.66GHz platform equipped with Nvidia GeForce 9600GT achieving speedup of 44x 

compared to CPU. The implementation was divided into three device kernel code calls to 

achieve parallelism. 

In [56], a SOM implementation for image pattern recognition was conducted on a 

Dual Core AMD Turion 64 X2 1.6Ghz platform equipped with Nvidia GeForce 6150 Go. 

In this implementation the images were first vectorized to form the dataset for 

computation, reducing the complexity and load on the GPU. The dataset generation was 

done on the CPU whereas the SOM computation was done in the GPU. For all the tests 

conducted, GPU showed significant speedup compared to CPU. The paper also highlights 

the overhead of data transfer between the host and the global memory which acts as a 

bottleneck in performance, a design consideration we will explore in our research. 
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In [57] a multi-pass method was used to find the location of the winner neuron 

and the update stage is then performed in reference to that position. Its dependence on 

low level textures enables efficient use of pipelines in solving large datasets. The SOM 

implementation was conducted on Intel Pentium 4, 2.4 GHz platform equipped with ATI 

9550 and Nvidia 5700 GPU. In this implementation, GPU outperformed CPU especially 

for large datasets. The unique feature of this research was the accuracy resulting from the 

use of floating-point computation and the use of commodity graphics hardware which is 

easily available and widely used. 

In [7], a parallel implementation of SOM was proposed using OpenCL on GPU. 

In this implementation, Manhattan distance was proposed compared to Euclidean 

distance to find the BMU. The concept of this research and the visual representation 

technique will be used while conducting our research. Comparison of performance of the 

parallel SOM implementation was conducted on AMD Operton 6366HE 1.8GHz 

processor, Intel core i7-2600 3.4GHz processor and Nvidia GeForce GTX 590 GPU. The 

output of the implementations were validated against a widely used package, SOM_PAK. 

OpenCL GPU implementation achieved speedup of upto 10x compared to SOM_PAK 

implementation on CPU. 

In [58] a Digital Phase-Locked Loop (DPLL) SOM architecture has been 

implemented in Xilinx Virtex II FPGA using VHDL. In order to hold the value at each 

input vector element, the implementation uses square wave phase. The DPLL SOM 

design generated a small circuit and the implementation resulted in having good 

quantization capability. However, the proposed architecture was not as efficient in terms 

of speedup compared to other architectures with numerical operation. 
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In [59] the SOM algorithm was applied to the Travelling Salesman Problem 

(TSP) for a robotic mobile agent application employing embedded parallel pipeline 

solution (i.e. parallel pipeline architecture and parallel computation of the output and the 

weight update). Real-time testing of the system was achieved by generating an IP core 

and integrating it to a Microblaze processor bus system.  The implementation was done 

on VHDL and the solution on FPGA showed better performance compared to CPU. 

In [60], a novel SOM implementation has been proposed having the capability of 

identifying binary input sequence after training on Xilinx Virtex 4 FPGA (XC4VLX160) 

using Handel-C high-level description language. The proposed implementation utilized a 

novel tri-state rule during the update stage of SOM while training. The FPGA 

implementation achieved 30x speedup compared to conventional SOM CPU 

implementation and is proposed for use in fast pattern clustering and classification. 
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Chapter 4. Optimized OpenCL Model for FPGA Implementation 

4.1 Overview 

The aim of this chapter is to discuss the operation flow that we implemented in 

our research towards achieving high throughput and reduced power consumption using 

the IFSO HLS tool. 

4.2 SOM Model for FPGA OpenCL Implementation 

The aim of our research is to create a fully optimized FPGA implementation of 

the SOM algorithm for high throughput and minimum power consumption. For our 

research, we implemented the SOM OpenCL model using an innovative operational flow. 

From our comprehensive analysis, we found that if we want to address the 

communication bottleneck we have to change the operational flow of the SOM algorithm. 

Fig. 4.1 shows the operation flow of the SOM OpenCL model for FPGA implementation 

using IFSO. In Fig 4.1, the black arrow lines represents the instruction flow whereas the 

red and blue arrow lines represents the data flow from the host (i.e. CPU) to the device 

(i.e. FPGA) and within FPGA accelerator board respectively. The execution starts with 

the host side doing all the necessary computations and initializing the device buffers. The 

host then sends all the required data from the host memory to the device global memory 

through PCIe bus for SOM computation. The host then calls for the kernel execution 

command on the FPGA. After the execution is done, the result is then transferred from 

the FPGA global memory back to the host memory through the PCIe bus. After the 

execution is done, the result is then transferred from the FPGA global memory back to 

the host memory through the PCIe bus. The host, upon receiving the data from the FPGA 

conducts a proof of correctness test as discussed later in Section 5.7. The execution is 
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completed if the host side implementation matches with that of the FPGA 

implementation. 

 

Figure 4. 1 SOM operational flow - OpenCL FPGA. 

The host execution starts by first initializing the random uniform dataset in the 

range of 0 to 10000 having no intentional patterns in the dataset for SOM 

implementation. The dataset is formed into a map of predefined size (i.e. pixels) where 

each pixel represents a neuron in the layer having the random value acting as weights 

connected to each neuron. The overhead on hardware resources and memory bandwidth 

increases each time a kernel is added to the FPGA binary. We tried to overcome this by 

minimizing the number of kernels in the design thus reserving memory and hardware 

resources for computation. The two kernels were designed as single thread task kernels 

achieving task-based parallelism, due to loop and memory dependencies with no 

requirement of communication or data transfer between the kernels.  
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We decided to divide our implementation into two device kernel code calls. The 

first kernel (i.e. SOMComp kernel) Algorithm 2, takes care of the finding the winner 

neuron/BMU and the updating of weights of the BMU and surrounding neurons 

according to the neighborhood size and the learning rate. In contrast to the Euclidean 

distance equation (1) used in the conventional SOM we decided to use Manhattan 

Distance, equation (2) as suggested in [2 and 7] to find the BMU.  Manhattan distance 

calculates the sum of the absolute value of the difference between two points thus 

requiring less resources compared to Euclidean distance computation by eliminating 

complex square and square root operations. 
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In the update stage, the neighborhood reduction function (NR) was designed as a 

multiplier vector dataset, generated incorporating the neighborhood reduction size and 

learning rate as given in equation (3). In equation (3), S represents the neighborhood size 

value and G represents the gauss value, which has been predefined earlier during 

initialization.  
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Table 4. 1 Pseudo-code of kernel 1 for SOM algorithm 

ALGORITHM 2. Kernel 1 – SOMComp 

Input: Reference Cluster (R), Map Dataset (MD), Neighborhood 

Reduction Dataset (NR)  

Output: Resultant Cluster from Map dataset (MD) 

//S = Length of one side of map, N = input size, D = Dimension, T 

= Total neurons  

 

//Load or transfer data from global memory to local memory 

pragma unroll S 

for all i ϵ 0 to T*D do 

       local_MD ← MD 

end for 

pragma unroll S 

for all i ϵ 0 to N*D do 

       local_R ← R 

end for 

pragma unroll S 

for all i ϵ 0 to S do 

       local_NR ← NR 

end for 

// Start SOM Computation 

for all count ϵ 0 to N*D; count = count + D 

       //Manhattan distance 

       pragma unroll D     

       for all i ϵ 0 to D do 

              dist += |local_MD – local_R| 

       end for 

       temp_winner_dist ← dist  

       for all i ϵ 0 to T*D; i ← i +D do 

              for all j ϵ 0 to D + i do 

                     dist += |local_MD – local_R| 

              end for 

              temp_dist_vect ← dist 

       end for 

       //Finding the BMU 

       pragma unroll S 

       for all i ϵ 0 to T*D do 

              if(temp_dist_vect < temp_winner_dist) do 

                     BMU ← i 

                     winner_distance ← temp_dist_vect 

              end if 

       end for 
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       //Update weights of BMU and neighboring neurons 

       for all i ϵ 0 to T*D do 

              local_MD ← local_MD – ((local_MD – local_R) * 

local_NR) 

       end for 

end for 

//Load or transfer data from local memory to global memory 

for all i ϵ 0 to T*D do  

       MD ← local_MD 

end for 

 

The second kernel (i.e. NeigRed kernel) Algorithm 3, takes care of reducing the 

neighborhood size and the learning rate for next iterations of the SOM implementation by 

simply shifting all the element in the NR vector to the element before it and filling the 

end of the vector with zero. 

Table 4. 2 Pseudo-code of kernel 2 for SOM algorithm 

Algorithm 3. Kernel 2 – NeigRed  

Input: Neighborhood Reduction Dataset (NR)  

Output: Neighborhood Reduction Dataset (NR) 

//S = Length of one side of map 

 

//Load or transfer data from global memory to local memory 

pragma unroll S 

for all i ϵ 0 to S 

       local_NR ← NR 

end for 

Pragma unroll S 

for all i ϵ 1 to S  

       temp ← local_NR[i] 

       local_NR[i - 1] ← temp 

end for 

local_NR[S-1] ← 0 
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//Load or transfer data from local memory to global memory 

pragma unroll S 

for all i ϵ 0 to S 

       NR ← local_NR 

end for 

 

Various other optimization techniques were also implemented in order to achieve 

better throughput at the cost of increased resource utilization as suggested in [13][14]. 

Parallelism was achieved by pipelining and loop unrolling techniques (i.e. allowing the 

kernel more operations per clock cycle). Floating-point operations were optimized using 

the balanced-tree floating-point implementation and rounding operations to reduce the 

amount of resources consumed achieving a fused floating-point operation. Buffer transfer 

efficiency was ensured by initializing the host buffers to be at least 64-bytes aligned and 

using Direct Memory Access (DMA) to transfer data to and from FPGA. Unnecessary 

memory dependencies between non-conflicting load and store units were prevented by 

instructing the AOC to avoid pointer aliasing. Memory bandwidth was maximized by 

manually partitioning global memory buffers to optimally control memory access by the 

device. Bottleneck in performance was further mitigated by transferring data from the 

global memory to the local memory before computation inside kernels. Global memory 

exhibits long access latency whereas local memory has much lower access latency and 

far higher bandwidth compared to global memory thus aiding in improved performance 

of the SOM algorithm. 
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Chapter 5. Experimental Results and Analysis 

5.1 Overview 

The aim of this chapter is to evaluate the acceleration results obtained for the 

proposed SOM algorithm on IFSO. We start by outlining the experimental setup for the 

implementation, dataset used, synthesis results and finally we compare the performance 

of our SOM-FPGA implementation in terms of speedup (execution time and throughput) 

and power consumption against other SOM implementations using CPU and GPU 

presented in previously published research.  

5.2 Experimental Setup 

For our research, we used IFSO [61] as HLS, Computer-Aided Design (CAD) 

tool. The two FPGA development boards used in this research are Nallatech 385 (Stratix 

V GX A7) [34] and Nallatech 385A (Arria 10 GX 10AX115) [35]. The boards include 

8GB of DDR3 SDRAM memory, with x8 Gen 3 PCIe interface. The Stratix V A7 FPGA 

(5SGXMA7H2F35C2) is based on 28nm technology, consisting of 622K Logic Elements 

(LEs), 234,720 ALMs, 939K Registers, 664 I/Os, 2560 M20K memory blocks and 256 

DSP blocks. The Arria 10 FPGA (10AX115N3F40E2SG) is based on 20nm technology 

consisting of 1150K LEs, 427,200 ALMs, 1708800 Registers, 826 I/Os, 2713 M20K 

memory blocks and 1518 DSP blocks. To compare FPGA performance against CPU 

performance we are using results from [7] using AMD Operton 6366HE processor (64 

cores, 32nm process) @1.8GHz with AMD’s Turbo charge technology and Intel Core i7-

2600 (4 cores, 32nm process) @3.4GHz and AMD Athlon II 170u processor (45nm 

process) @ 2.0GHz [62]. To compare FPGA performance against GPU performance we 

are using Nvidia Quadro K620 (28nm process) [63] having 2GB of DDR3 memory, 29.0 
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GB/s of memory bandwidth and 384 Nvidia CUDA® cores and implementation result 

from [7] using Nvidia GeForce GTX 590 (40nm process) GPU. 

5.3 Dataset Generation 

For our research, we conducted multiple tests with different map sizes (8x8 - 64 

neurons, 12x12 – 144 neurons, 16x16 – 256 neurons, 20x20 – 400 neurons and 24x24 – 

576 neurons respectively), input sizes (1024, 2048, 3072, 4096 and 5120 respectively) 

and dimensions (3, 4, 5 and 6 respectively). We generated random floating-point data 

from 0 to 10000(unsigned) and used it as dataset for computations. We selected different 

map sizes, input sizes and dimensions in order to evaluate its effect on FPGA 

performance compared to CPU and GPU. The dataset was generated in order to have 

similar parameter setting as that proposed in previous research, which will allow us to 

compare our FPGA implementation with the results published in [7]. Fig 5.1 shows an 

example of the dataset visualized by pixels using technique mentioned in [7 and 64] 

where each pixel in the map represents a neuron. 

  

Sample 1 Sample 2 
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Figure 5. 1 Visual representation of sample dataset for computation. 

5.4 Synthesis Results 

The compilation of the kernels for execution on FPGA is done using the AOC, 

which takes on average around 4 hours. Fig. 5.2 shows the top-level block diagram of the 

inferred RTL circuit obtained using the netlist viewer option in the Intel Quartus Prime 

Pro software. The box highlighted in blue indicates the connection to the kernel system. 

The box highlighted in red is a magnified view of the kernel system containing the kernel 

blocks (i.e. Kernel 1 and 2). The logic surrounding the SOM kernels are used to 

communicate with DDR memory and the host. It is very difficult to visualize the detailed 

kernel hardware due to the complexity of the IFSO generated RTL structures. The netlist 

viewer feature of the software was also utilized to view the State-Machine view of our 

SOM FPGA design as shown in Fig. 5.3. 
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Figure 5. 2 Block Diagram of Inferred RTL Circuit for SOM FPGA implementation. 

 

Figure 5. 3 State-Machine view of SOM FPGA design. 

The chip planner feature of the Intel Quartus Prime Pro software was used to 

further analyze the design for resource and routing utilization and to view the power map 
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of the FPGA design. Chip planner provides a visual display of the device resources, 

illustrating the arrangement of the resource atoms (i.e. Arithmetic Logic Modules 

(ALMs), Phase-Lock Loops (PLLs), DSP blocks, Memory blocks and I/O elements) in 

the device architecture. Fig. 5.4 shows the chip view of our SOM design on both Stratix 

V and Arria 10 FPGAs. The blocks labelled as board_region, ddr_region, board_inst and 

freezer_wrapper_inst denotes logic lock regions. The light green (i.e. vertical lines) 

represent the memory cells and the blue cells represents the Logic Blocks (LBs). Each 

LB consists of 16 individual Logic Elements (LEs). LBs utilized by our SOM design are 

indicated by a deeper blue shade.  

 

(a) 
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(b) 

Figure 5. 4 Chip view of SOM design (a) Stratix V and (b) Arria 10. 

Fig. 5.5 gives a view of the routing congestion of the SOM design for both Stratix 

V and Arria 10 FPGA obtained from the routing utilization feature of the software. 

Information from the feature can be used to ease routing congestion. Threshold value 

indicating the area of the chip considered as a high congestion area for the SOM design 

was set to 95%. Routing utilization as seen in Fig. 5.5, is displayed as a heat map of the 

logic resources, indicating relative resource utilization. Greater utilization is represented 

by hotter colors such as red/yellow and lower or zero utilization is represented by cooler 

colors such as green/blue. 
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(a) 

 

(b) 

Figure 5. 5 Chip view indicating routing congestion of SOM design (a) Stratix V and (b) 

Arria 10. 
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Fig. 5.6 represents the power map of the SOM FPGA design indicating the High-

Speed/Low-Power Tiles consisting of ALMs for both Stratix V and Arria 10 FPGAs. The 

tiles are differentiated by contrasting colors, where the yellow color represents High-

Speed Tiles and deep blue color represents Low-Power Tiles. 

 

(a) 
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(b) 

Figure 5. 6 Power Map of SOM design (a) Stratix V and (b) Arria 10. 

5.5 Performance Analysis 

The datasets were tested by launching the host program with different map sizes, 

input sizes and dimensions separately for both FPGA and GPU implementations. 

Automated test scripts were used for running the program and for generating and 

comparing experimental results in this research. The performance for different tests is 

measured by execution time in seconds (s), throughput in Floating Point Operations Per 

Second (FLOPS) and power in Watts (W). 

5.5.1 Implementation in CPU 

 The SOM algorithm was implemented in AMD Athlon II 170u Processor 

@2.0GHz CPU. Table 5.1. shows the execution time for the SOM-CPU algorithm 

implementation for different map and input sizes. Table 5.2. shows the throughput for the 

SOM-CPU algorithm implementation for different map and input sizes. Table 5.3. shows 
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execution time for the SOM-CPU algorithm implementation for a map size of 16x16 with 

5120 inputs and varying dimensions. 

Table 5. 1 SOM-CPU execution time for different map and input sizes 

Input size 
Execution time (s) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 5.02 16.32 35.50 71.43 122.92 

2048 9.24 31.39 69.47 140.35 242.64 

3072 13.62 46.09 120.60 209.66 396.08 

4096 17.81 60.96 196.44 278.91 485.25 

5120 22.02 76.02 224.21 349.11 603.87 

 

Table 5. 2 SOM-CPU throughput for different map and input sizes 

Input size 
Throughput (FLOPS) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 783298.80 542283.79 443097.73 344061.94 287908.62 

2048 851209.01 563669.72 452792.12 350212.68 291698.46 

3072 866368.98 575825.05 391249.97 351655.06 268046.99 

4096 883333.71 580506.86 320273.67 352457.78 291723.10 

5120 893063.82 581910.02 350753.75 351983.78 293021.04 

Average 

Throughput 
855454.86 568839.09 391633.45 350074.25 286479.64 
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Table 5. 3 SOM-CPU Implementation for different dimensions 

Dimension Execution Time (s) 

3 224.21 

4 213.77 

5 264.98 

6 321.06 

 

 

Figure 5. 7 Raw execution time for SOM on AMD Athlon II CPU for different map and 

input sizes. 
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Figure 5. 8 Raw throughput for SOM on AMD Athlon II CPU for different map and input 

sizes. 

The execution result of the SOM algorithm in CPU are shown in Fig 5.7 in terms 

of execution time (s) and Fig. 5.8 in terms of throughput (FLOPS). It can be observed 

that as the map size and input size increases, the execution time increases and the 

throughput decreases. 

5.5.2 Implementation in GPU 

The SOM algorithm was implemented in CUDA on Nvidia Quadro K620 GPU 

using the same operational flow and parameters used in FPGA implementation discussed 

in Chapter 4 for the purpose of comparison with FPGA implementation proposed in this 

research. Table 5.4 shows the execution time for the SOM-GPU algorithm 

implementation for different map and input sizes. Table 5.5. shows the throughput for the 

SOM-GPU algorithm implementation for different map and input sizes. Table 5.6. shows 

execution time for the SOM-GPU algorithm implementation for a map size of 16x16 with 

5120 inputs and varying dimensions.  
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Table 5. 4 SOM-GPU execution time for different map and input sizes 

Input size 
Execution time (s) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 8.75 31.99 69.25 149.04 257.73 

2048 17.49 63.96 138.49 298.18 515.55 

3072 26.23 95.96 207.73 447.31 773.31 

4096 34.97 127.96 276.97 596.34 1031.07 

5120 43.73 159.98 346.32 745.43 1288.93 

 

Table 5. 5 SOM-GPU throughput for different map and input sizes 

Input size 
Throughput (FLOPS) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 449543.84 276601.01 227131.66 164893.12 137311.54 

2048 449723.80 276652.91 227149.70 164839.48 137289.43 

3072 449766.66 276598.13 227151.34 164823.45 137290.76 

4096 449788.10 276557.78 227149.70 164845.56 137292.10 

5120 449646.66 276521.48 227081.81 164844.67 137281.92 

Average 

Throughput 
449693.81 276586.26 227132.8392 164849.25 137293.15 

 

Table 5. 6 SOM-GPU implementation for different dimensions 

Dimension Execution Time (s) 

3 346.32 

4 322.78 

5 435.86 

6 486.87 
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The execution result of the SOM algorithm in GPU are shown in Fig 5.9 in terms 

of execution time (s) and Fig. 5.10 in terms of throughput (FLOPS). It can be observed 

that as the map size and input size increases, the execution time increases and the 

throughput decreases. 

 

Figure 5. 9 Raw execution time for SOM on Nvidia Quadro K620 GPU for different map 

and input sizes. 

 

Figure 5. 10 Raw throughput for SOM on Nvidia Quadro K620 GPU for different map 

and input sizes. 
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5.5.3 Implementation in FPGA 

The SOM algorithm was implemented in Intel FPGA SDK for OpenCL on Stratix 

V and Arria 10 FPGA accelerator boards. Table 5.7 and Table 5.8, shows the execution 

time for the SOM-FPGA algorithm implementation on Stratix V  and Arria 10 FPGA for 

different map and input sizes. Table 5.9 and Table 5.10, shows the throughput for the 

SOM-FPGA algorithm implementation on Stratix V and Arria 10 FPGA for different 

map and input sizes. Table 5.11 and Table 5.12, shows execution time for the SOM-

FPGA algorithm implementation on Stratix V and Arria 10 FPGA for a map size of 

16x16 with 5120 inputs and varying dimensions. The execution result for the SOM 

algorithm in FPGA are shown in Fig 5.11 and Fig. 5.12 in terms of execution time (s) and 

Fig. 5.13 and Fig. 5.14 in terms of throughput (FLOPS). It can be observed that as the 

map size and input size increases, the execution time increases and the throughput 

decreases. 

Table 5. 7 SOM-FPGA execution time on Stratix V FPGA for different map and input 

sizes 

Input size 
Execution time (s) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 3.74 15.38 29.18 55.29 97.56 

2048 7.44 33.62 58.80 110.25 210.04 

3072 12.35 40.78 98.50 188.83 330.19 

4096 16.34 54.60 128.71 251.76 436.99 

5120 19.51 64.68 159.22 314.68 531.06 
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Table 5. 8 SOM-FPGA execution time on Arria 10 FPGA for different map and input 

sizes 

Input size 
Execution time (s) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 3.43 12.38 28.13 53.77 87.33 

2048 7.55 32.58 54.07 107.10 185.25 

3072 10.37 34.70 81.57 159.74 288.66 

4096 14.27 46.59 107.55 214.65 384.14 

5120 17.97 56.56 137.63 280.17 477.04 

 

Table 5. 9 SOM-FPGA throughput on Stratix V FPGA for different map and input sizes 

Input size 
Throughput (FLOPS) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 1050219.94 575399.50 539116.03 444479.11 362740.28 

2048 1057612.24 526383.08 534990.29 445831.09 336984.89 

3072 955584.16 650858.79 479060.68 390442.40 321539.92 

4096 962346.13 648118.12 488813.88 390469.28 323937.85 

5120 1007934.99 683954.25 493934.88 390490.20 333194.28 

Average 

Throughput 
1006739.49 616942.75 507183.15 412342.42 335679.44 
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Table 5. 10 SOM-FPGA throughput on Arria 10 FPGA for different map and input sizes 

Input size 
Throughput (FLOPS) for different Map Sizes 

8x8 12x12 16x16 20x20 24x24 

1024 1148012.90 714396.11 559115.89 457022.57 405217.21 

2048 1041028.96 543040.52 581822.31 458950.62 382067.60 

3072 1137330.22 764883.45 578443.42 461558.66 367798.62 

4096 1102357.37 759549.68 584962.40 457974.16 368504.48 

5120 1094182.46 782075.46 571416.74 438588.87 370927.38 

Average 

Throughput 
1104582.38 712789.04 575152.15 454818.98 378903.06 

 

Table 5. 11 SOM-FPGA implementation on Stratix V FPGA for different dimensions 

Dimension Execution Time (s) 

3 159.22 

4 97.03 

5 170.71 

6 198.52 

 

Table 5. 12 SOM-FPGA implementation on Arria 10 FPGA for different dimensions 

Dimension Execution Time (s) 

3 137.63 

4 75.72 

5 152.03 

6 147.02 
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Figure 5. 11 Raw execution time for SOM on Stratix V FPGA for different map and input 

sizes. 

 

Figure 5. 12 Raw execution time for SOM on Arria 10 FPGA for different map and input 

sizes. 
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Figure 5. 13 Raw throughput for SOM on Stratix V FPGA for different map and input 

sizes. 

 

Figure 5. 14 Raw throughput for SOM on Arria 10 FPGA for different map and input 

sizes. 
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5.5.4 Performance Comparison between CPU and FPGA 

Fig. 5.15 and Fig. 5.16, shows the execution time and throughput (FLOPS) 

comparison for different map sizes and dimensions for AMD Athlon II CPU, Stratix V 

FPGA and Arria 10 FPGA respectively. It is observed that for all map sizes Arria 10 

FPGA gives the highest throughput followed by Stratix V FPGA, AMD Athlon II CPU 

gives the lowest throughput in all cases compared to the FPGA devices. The 

implementation in Fig 5.16 by varying dimensions was done for map size of 16x16 – 256 

neurons with input size of 5120 points. 

 

Figure 5. 15 Comparison of throughput for SOM implementation on AMD Athlon II 

CPU, Stratix V and Arria 10 FPGAs for different map and input sizes. 
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Figure 5. 16 Comparison of throughput for SOM implementation on AMD Athlon II 

CPU, Stratix V and Arria 10 FPGAs for different dimensions. 

For the implementation shown in Fig 5.17 and Fig. 5.18, we chose map size: 

16x16 – 256 neurons, input size: 5120 points and dimension: 3. The CPU (AMD Operton 

6366HE and Intel core i7-2600) implementation result were obtained from [7] for 

comparison with our FPGA (Stratix V and Arria 10 using OpenCL) and CPU (AMD 

Athlon II) implementation. From Fig. 5.17 and Fig. 5.18, it can be observed that SOM-

CPU has higher execution time and lower throughput compared to SOM-FPGAs. From 

Fig. 5.19, it can be also concluded that Stratix V achieved 16.55x, 2.53x and 1.41x 

speedup compared to AMD Operton 6366HE and Intel core i7-2600 CPU [7] and our 

AMD Athlon II CPU implementation and Arria 10 achieved 19.15x, 2.93x and 1.63x 

speedup compared to AMD Operton 6366HE and Intel core i7-2600 CPU [7] and our 

AMD Athlon II CPU implementation respectively. 
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Figure 5. 17 Comparison of execution time for SOM implementation between CPU and 

FPGA. 

 

Figure 5. 18 Comparison of throughput for SOM implementation between CPU and 

FPGA. 
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Figure 5. 19 Speedup comparison between FPGA and CPU. 

5.5.5 Performance Comparison between GPU and FPGA 

Fig 5.20 and Fig. 5.21 shows the execution time and throughput (FLOPS) 

comparison for different map sizes and dimensions for Nvidia GeForce GTX 590 [7], 

Nvidia Quadro K620 GPU, Stratix V FPGA and Arria 10 FPGA respectively. For 

comparison between FPGA and GPU, as shown in Fig 5.20 and Fig 5.21, we chose map 

size: 16x16 – 256 neurons, input size: 5120 points and dimension: 3. The GPU (Nvidia 

GeForce GTX 590 using OpenCL) implementation result were obtained from [7] for 

comparison with our FPGA (Stratix V and Arria 10 using OpenCL) and GPU (Nvidia 

Quadro K620 using CUDA) implementation. From the implementations, as shown in Fig. 

21 and Fig. 22, it can be concluded that Stratix V and Arria 10 achieved speedup of 2.18x 

and 2.52x compared to Nvidia Quadro K620 GPU and is slightly slower or similar in 

terms of both execution time and throughput with that published in [20] using GPU. The 

implementation in Fig 5.21 by varying dimensions was done for map size of 16x16 – 256 

neurons with input size of 5120 points. 
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Figure 5. 20 Comparison of execution time for SOM implementation between GPU and 

FPGA. 

 

Figure 5. 21 Comparison of throughput for SOM implementation between GPU and 

FPGA. 
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Figure 5. 22 Speedup comparison between FPGA and GPU 

5.5.6 Performance Comparison between FPGAs 

Fig. 5.23 and Fig 5.24, shows the speedup comparison between Stratix V and 

Arria 10 FPGAs in terms of throughput (FLOPS) for different map sizes and dimensions. 

The implementation in Fig 5.23 by varying dimensions was done for map size of 16x16 – 

256 neurons with input size of 5120 points. From this implementation, it can be 

concluded that Arria 10 FPGA shows better performance and has achieved a speedup of 

1.12x compared to Stratix V FPGA. 
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Figure 5. 23 Comparison of throughput for SOM implementation between Stratix V and 

Arria 10 FPGAs for different map sizes. 

 

Figure 5. 24 Comparison of throughput for SOM implementation between Stratix V and 

Arria 10 FPGAs for different dimensions. 
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5.6 Resource Utilization 

Evaluation of resource utilized by the kernels are conducted by compiling the 

kernel using the AOC compiler for different data features such as map and input sizes 

and dimensions. The clock frequency (Kernel fmax) and hardware utilization such as 

Logic Utilization, Adaptive Look-Up Tables (ALUTs), Dedicated Logic Registers, 

Memory Blocks and Digital Signal Processing Blocks are different for each 

implementation. The resource utilization for different map sizes is shown in Table 5.13, 

Table 5.14 and Fig. 5.25, Fig. 5.26. The clock frequency in MHz for different 

implementations shown in Fig. 5.27 and Fig 5.28, is dependent upon the complexity of 

the HDL design generated by the AOCL. The operating frequency drops as the design 

becomes more and more complex and thus the latency of computation increases. Table 

5.15, Table 5.16 and Fig. 5.29, Fig. 5.30, shows the resource utilization for different 

dimensions for a map size of 16x16 - 256 neurons and input size of 5120. For our 

implementation, the resource utilization for different map and input sizes and dimensions 

was well below 45%, which indicates that maps and input sizes and dimensions of higher 

values can be implemented on the FPGAs before the resource utilization reaches a limit, 

which makes it difficult for the Quartus software to fit the design on the FPGA. To better 

fit the design on the FPGA decreasing/removing loop unroll factor for some and/or all 

loops inside each kernel was implemented. For this reason, for some implementations, 

FPGA resource usage and operating frequency dropped down compared to other 

implementations. 
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Table 5. 13 Stratix V FPGA resource utilization for different map sizes 

Map Size 
Logic 

Utilization 
ALUTs 

Dedicated Logic 

Registers 

Memory 

Blocks 
DSP Blocks 

8x8 28 17 12 26 5 

12x12 30 18 13 29 7 

16x16 30 17 14 27 5 

20x20 31 19 14 33 7 

24x24 32 19 14 32 7 

 

Table 5. 14 Arria 10 FPGA resource utilization for different map sizes 

Map Size 
Logic 

Utilization 
ALUTs 

Dedicated Logic 

Registers 

Memory 

Blocks 
DSP Blocks 

8x8 39 15 24 22 6 

12x12 40 16 25 24 7 

16x16 40 15 25 23 6 

20x20 41 16 25 29 7 

24x24 44 16 25 27 7 
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Figure 5. 25 Stratix V FPGA resource utilization for different map sizes. 

 

Figure 5. 26 Arria 10 FPGA resource utilization for different map sizes. 
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Figure 5. 27 Stratix V FPGA clock frequency kernel (fmax) for different input sizes. 

 

Figure 5. 28 Arria 10 FPGA clock frequency kernel (fmax) for different input sizes. 
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Table 5. 15 Stratix V FPGA resource utilization for different dimensions 

Map Size 
Logic 

Utilization 
ALUTs 

Dedicated Logic 

Registers 

Memory 

Blocks 
DSP Blocks 

8x8 30 17 14 27 5 

12x12 28 17 13 25 0 

16x16 31 18 14 31 5 

20x20 31 18 14 31 5 

24x24 30 17 14 27 5 

 

Table 5. 16 Arria 10 FPGA resource utilization for different dimensions 

Map Size 
Logic 

Utilization 
ALUTs 

Dedicated Logic 

Registers 

Memory 

Blocks 
DSP Blocks 

8x8 40 15 25 23 6 

12x12 39 15 24 21 6 

16x16 41 16 25 27 7 

20x20 41 16 25 27 7 

24x24 40 15 25 23 6 
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Figure 5. 29 Stratix V FPGA resource utilization for different dimensions. 

 

Figure 5. 30 Arria 10 FPGA resource utilization for different dimensions. 
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5.7 Energy Efficiency 

In order to calculate the power consumption by various HPC platforms 

implementing the SOM algorithm we used “Watts up? Pro” power meter [65], which can 

be used to obtain true power consumed by the device with an accuracy of 1.5%. Table 

5.17 shows the power consumption for two CPUs and FPGAs and GPU during the idle 

mode and program execution mode. The idle power corresponds to the power of the 

workstations when no computational tasks are assigned to them. The idle + execution 

power corresponds to the power obtained during the SOM algorithm execution in the 

respective devices. The actual execution power of the SOM algorithm was obtained by 

subtracting the Idle Power from the (Idle + Execution Power).  

Table 5. 17 Power Consumption of CPUs, GPU and FPGAs. 

System 

CPU with Stratix V 

Board 

CPU with Arria 10 

Board 

CPU with Nvidia 

Quadro K620 

Board 

CPU 

only 

CPU 

with 

Board 

CPU 

only 

CPU with 

Board 

CPU 

only 

CPU with 

Board 

Idle Power (W) 76.80 76.80 139.60 139.60 76.80 76.80 

Idle + Execution 

Power (W) 
107.00 77.65 175.50 141.87 107.00 112.95 

Actual Execution 

Power (W) 
30.20 0.85 35.90 2.27 30.20 36.15 
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Figure 5. 31 SOM algorithm execution power for CPU, GPU and FPGAs. 

Fig. 5.31 shows a comparison of the SOM execution power (W) between the 

CPU, GPU and FPGAs. From the power estimation as shown in Fig. 5.32 it was found 

out that Stratix V and Arria 10 are 35.53x and 15.82x more power efficient compared to 

CPU and 42.53x and 15.93x more power efficient compared to Nvidia Quadro K620 

GPU. Moreover, it was found out that Stratix V was 2.67x more power efficient 

compared to Arria 10 for SOM implementation. 
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Figure 5. 32 Comparison of efficiency (i.e. in terms of power) obtained using FPGA 

compared to CPU and GPU. 

5.8 Verification 

A sequential version of SOM algorithm was implemented in CPU alongside 

FPGA and GPU in order to ensure the accuracy of our FPGA and GPU implementations. 

The implementation was done after SOM FPGA and GPU implementations respectively 

on the same dataset. After the execution of the kernels, the host enqueues read command 

in order to obtain the clustered data from the FPGA and GPU global memory to the host 

memory for verification with the CPU clustered data obtained after SOM CPU 

implementation. Two verification methods were used (1) Average Quantization Error and 

(2) Visual representation. The average quantization error is the comparison/mapping of 

how well the input values maps on to the output values. For implementations of varying 

map and input sizes and dimensions, the average quantization error for all 

implementations was found to be same for CPU, GPU and FPGA. It was found from the 

implementations that the value of average quantization error decreases as the map and 

input sizes and dimensions increased. 
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For the purpose of verification of our implementations, we employed a way to 

visually represent our resultant clustered dataset similar to the way implemented in [7 and 

59]. Similar visual representations were obtained in case of CPU, GPU and FPGA for all 

data sets indicating the correctness our SOM implementation. Sample visual 

representation of the resultant clustered data obtained from CPU, GPU and FPGA is 

shown in Fig. 5.33. 

CPU GPU FPGA 

   

Sample 1 

   

Sample 2 

Figure 5. 33 Visual representation of SOM resultant clustered data obtained from HPC 

platforms (i.e. CPU/GPU/FPGA) 
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Chapter 6 Conclusion 

An optimized FPGA based acceleration of SOM algorithm was implemented 

using IFSO. HLS implementation using Stratix V and Arria 10 FPGAs of SOM was 

evaluated against other HPC platforms such as CPUs and GPUs. We had to efficiently 

restructure the operational flow of the SOM algorithm to fully take advantage of the 

parallel nature of the algorithm.  

Our FPGA implementation using Stratix V and Arria 10 was able to achieve 

speedup of 16.55x and 19.15x Vs AMD Operton CPU, 1.41x and 1.63x Vs AMD Athlon 

II CPU and 2.53x and 2.93x Vs Intel CPU respectively. Compared to Nvidia Quadro 

K620 GPU, our implementation using Stratix V and Arria 10 FPGA, achieved speedup of 

2.18x and 2.52x respectively. Moreover, Arria 10 FPGA achieved speedup of 1.12x 

compared to Stratix V FPGA. In terms of power, Stratix V and Arria 10 are 35.53x and 

15.82x more power efficient compared to CPU and 42.53x and 15.93x more power 

efficient compared to Nvidia Quadro K620 GPU.  

Due to the recent advancement in FPGA technology and an increasing demand for 

FPGAs, it is likely that FPGAs (i.e. newer generations) could outperform GPUs in 

solving computationally intensive tasks. In this research, we used single chip FPGA 

based accelerators, Stratix V and Arria 10, it would be interesting to see how SOM 

algorithm performance and resource utilization would change when multi-chip FPGA 

accelerators and newer versions of the FPGA accelerator boards are used. Even though 

we were able to fit the design onto a single FPGA board, it would be interesting to see 

how the SOM algorithm performs compared to GPUs and CPUs when the same 

algorithm is implemented on multiple FPGA boards at the same time and the maximum 

number of neurons and dimensions can be used for SOM computation. 
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Appendix A: Intel FPGA SDK for OpenCL Template 

//Library and header file declaration 

//Declaring all the necessary libraries and associated/required header 

//files for the implementation of the program 

#include <stdio.h> 

#include <stdlib.h> 

. 

. 

. 

. 

. 

#include "CL/opencl.h"   //OpenCL header file 

#include "AOCLUtils/aocl_utils.h" //AOCL header file  

#include "header_file.h"  //Header file created by the  

//user(if required) 

 

using namespace std; 

using namespace aocl_utils;  //AOCL declaration 

 

//AOCL Alignment 

//Required for DMA transfer from host to device [14] 

#define AOCL_ALIGNMENT 64 

 

//Enumeration of kernels 

//Used as an identifier specifying the kernel number to be used in code 

//efficiently.   

enum KERNELS 

{ 

    K_1, 

    K_2, 

    . 

    . 

    K_NUM_KERNELS 

}; 

 

//Kernel names 

//Lists the names of the kernels used in the kernel.cl while writing  

//the kernel codes for each kernel. 

static const char* kernel_names[K_NUM_KERNELS] =  

{ 

    "kernel_1_name", 

    "kernel_2_name", 

    ., 

    ., 

    "last_kernel_name" 

}; 

 

//Runtime OpenCL Configuration 

//Used for declaring/creating platform, device, context, queues, kernel  

//and program variables according to AOCL specifications 

static cl_platform_id platform = NULL;          //Platform 

static cl_device_id device = NULL;              //Device 

static cl_context context = NULL;               //Context 

static cl_command_queue queues[K_NUM_KERNELS];  //Queques 

static cl_kernel kernels[K_NUM_KERNELS];        //Kernels 
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static cl_program program = NULL;               //Program 

static cl_int status = 0;                       //Status for all OpenCL  

//execution 

 

//Device Buffer 

//Used to store data for FPGA implementation and transferring data to 

and from host. 

cl_mem d_buffer1;                        

cl_mem d_buffer2;                                

. 

.                            

.                            

cl_mem d_budderN; 

 

 

//Host Buffer 

//Used to store data for CPU implementation and transferring data to 

and from device. 

cl_float * h_buffer1 = new cl_float; 

cl_float * h_buffer2 = new cl_float; 

. 

. 

. 

cl_float * h_bufferN = new cl_float; 

 

//Execution time variable 

//Variables declared for performance computation. 

float cpu_time = 0.0;            //CPU Execution time in s 

double fpga_time = 0.0;          //FPGA Execution time in s 

float start_time_cpu = 0.0;    //Start CPU execution at 0s 

double start_time_fpga = 0.0;    //Start FPGA execution in 0s 

 

//Function Prototype – Support 

//Function generates the dataset for the program and conducts all 

//initial calculations that is suitable to be implemented in CPU before 

//FPGA implementation 

void initialize(); 

 

 

//Function Prototype – CPU 

//Function carries out the CPU version of the program. The output of 

//this function will be compared with FPGA implementation for 

//verification of results. 

void run_cpu();  //CPU execution 

 

//Function Prototype - OpenCL 

bool init_opencl();     //Initialize device for OpenCL implementation                          

void run_fpga();  //FPGA execution 

void cleanup();   //Release memory objects 
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// START: MAIN FUNCTION 

 

int main() 

{ 

    //Initializing OpenCL 

    if(!init_opencl()) //Initializing OpenCL 

    { 

        return false; 

    } 

 

    printf("\nSUCCESSFUL: OpenCL FPGA Initialization.\n\n"); 

     

    //Initializing data 

    initialize(); 

 

    //FPGA - Implementation 

    run_fpga(); 

 

    //CPU - Implementation 

    run_cpu(); 

     

    //Memory Cleanup 

    cleanup(); 

} 

//END: MAIN FUNCTION  

 

 

//HELPER FUNCTIONS 

 

// START: Initialize 

void initialize() 

{ 

 

    printf("\nSTART: Allocation of Host Buffer\n"); 

     

    //Allocating memory for host 

    //The size of memory required for host buffer is declared here. The  

    //host buffers needs to be 64-byte aligned in order to facilitate  

    //DMA transfer to and from FPGA [14]. 

    int temp_h_buffer1 = posix_memalign((void**)&h_buffer1, 

AOCL_ALIGNMENT, sizeof(cl_float)); 

    int temp_h_buffer2 = posix_memalign((void**)&h_buffer2, 

AOCL_ALIGNMENT, sizeof(cl_float)); 

    . 

    . 

    . 

    int temp_h_bufferN = posix_memalign((void**)&h_bufferN, 

AOCL_ALIGNMENT, sizeof(cl_float)); 

 

    if(!temp_h_buffer1 || !temp_h_buffer2 || !temp_h_bufferN) 

    { 

        printf("\nSUCCESSFUL: Allocation of Host Buffer.\n"); 

    } 

    else 

    { 

        printf("\nERROR: Allocation of Host Buffer.\n"); 

    } 
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    printf("Initialization SUCCESS!!\n"); 

} 

 

// END: Initialize 

 

 

//Initializing OpenCL  

 

// START: OpenCL Initialization 

 

bool init_opencl() 

{ 

    cl_int status; 

     

    //Start everything at NULL to help identify errors 

    for(int i = 0; i < K_NUM_KERNELS; ++i) 

    { 

        kernels[i] = NULL; 

        queues[i] = NULL; 

    } 

 

    //Locate Files via relative path 

    if(!setCwdToExeDir()) 

    { 

        return false; 

    } 

 

    //Get the OpenCL Platform 

    //platform = findPlatform("Intel(R) FPGA"); 

    platform = findPlatform("Altera"); 

    if(platform == NULL) 

    { 

        printf("ERROR: Unable to find Intel(R) FPGA OpenCL 

platform.\n"); 

        return false; 

    } 

 

    //Query the available OpenCL devices and just use the first device 

if there is more than one 

    scoped_array<cl_device_id> devices; 

    cl_uint num_devices; 

    devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, 

&num_devices)); 

    device = devices[0]; 

 

    //Create the context 

    context = clCreateContext(NULL, 1, &device, &oclContextCallback, 

NULL, &status); 

    checkError(status, "ERROR: Failed to create context\n"); 

 

    //Create the command queues 

    for(int i = 0; i < K_NUM_KERNELS; ++i) 

    { 

        queues[i] = clCreateCommandQueue(context, device, 

CL_QUEUE_PROFILING_ENABLE, &status); 
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        checkError(status, "ERROR: Failed to create command queue (%d: 

%s)\n", i, kernel_names[i]); 

    } 

 

    //Create the program 

    std::string binary_file = 

getBoardBinaryFile("Kernel_AOCX_file_name", device); 

    printf("Using AOCX: %s\n\n", binary_file.c_str()); 

    program = createProgramFromBinary(context, binary_file.c_str(), 

&device, 1); 

 

    //Build the program that was just created. 

    status = clBuildProgram(program, 0, NULL, "", NULL, NULL); 

    checkError(status, "ERROR: Failed to build program.\n"); 

     

    //Create the kernel - name passed in here must match kernel name in 

the original CL file, that was compiled into an AOCX file using the AOC 

tool 

    for(int i = 0; i < K_NUM_KERNELS; ++i) 

    { 

        kernels[i] = clCreateKernel(program, kernel_names[i], &status); 

        checkError(status, "ERROR: Failed to create kernel (%d: %s)\n", 

i, kernel_names[i]); 

    } 

 

    return true; 

} 

// END: OpenCL Initialization 

 

// START: FPGA Implementation 

 

void run_fpga() 

{ 

  

    //Create Device Buffer 

    //Allocates the memory size and indicates the memory bank to store  

    //the data for FPGA implementation. 

    d_buffer1 = clCreateBuffer(context, CL_MEM_READ_WRITE | 

CL_MEM_BANK_1_ALTERA, sizeof(cl_float), NULL, &status); 

    checkError(status, "ERROR: Failed to allocate input device buffer: 

d_buffer1.!\n"); 

    d_buffer2 = clCreateBuffer(context, CL_MEM_READ_ONLY | 

CL_MEM_BANK_2_ALTERA, sizeof(cl_float), NULL, &status); 

    checkError(status, "ERROR: Failed to allocate input device buffer: 

d_buffer2.!\n"); 

    . 

    . 

    . 

    d_bufferN = clCreateBuffer(context, CL_MEM_READ_WRITE | 

CL_MEM_BANK_1_ALTERA, sizeof(cl_float), NULL, &status); 

    checkError(status, "ERROR: Failed to allocate input device buffer: 

d_bufferN.!\n");  

     

    printf("\nSUCCESSFUL: Created Device Buffer.!\n"); 
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    //Copy Data from Host to Device 

    //Transferring data from host buffers to device (i.e. FPGA) buffer  

    //before starting the execution of the kernels.  

    status = clEnqueueWriteBuffer(queues[Kernel_number], d_buffer1, 

CL_TRUE, 0, sizeof(cl_float), h_buffer1, 0, NULL, NULL); 

    checkError(status, "ERROR: Failed to copy data from host to device: 

h_buffer1, d_buffer1.!\n"); 

    . 

    . 

    . 

    status = clEnqueueWriteBuffer(queues[Kernel_number], d_bufferN, 

CL_TRUE, 0, sizeof(cl_float), h_bufferN, 0, NULL, NULL); 

    checkError(status, "ERROR: Failed to copy data from host to device: 

h_bufferN, d_bufferN.!\n"); 

 

    //Set the kernel argument  

    //Sets the arguments of the kernels written in the kernel.cl file.   

    status = clSetKernelArg(kernels[Kernel_number], <Argument_number>, 

sizeof(cl_mem), (void*)&d_buffer1); 

    checkError(status, "\nERROR: Failed to set up kernel (K_comp) 

argument <Argument_number>\n"); 

    . 

    . 

    . 

    status = clSetKernelArg(kernels[Kernel_number], <Argument_number>, 

sizeof(cl_mem), (void*)&d_bufferN); 

    checkError(status, "\nERROR: Failed to set up kernel (K_comp) 

argument <Argument_number>\n");        

 

     

    //Launching Kernel 

    //Execution of the kernels starts from here on the FPGA board. 

    status = clEnqueueTask(queues[Kernel_number], 

kernels[Kernel_number], 0, NULL, NULL); 

    checkError(status, "ERROR: Failed to launch kernel: %s\n", 

kernel_names[Kernel_number]); 

    //or 

    status = clEnqueueNDRangeKernel(queues[Kernel_number], 

kernels[Kernel_number], 1, NULL, <global_size>, <local_size>, 0, NULL, 

NULL); 

    checkError(status, "ERROR: Failed to launch kernel: %s", 

kernel_names[Kernel_number]); 

 

 

    //Finishing Command Queue of kernel 

    //Waits for the execution of kernel to finish and then procedes to  

    //the next step 

    status = clFinish(queues[Kernel_number]); 

    checkError(status, "\nERROR: Failed to finish command queue of 

(%s)\n", kernel_names[Kernel_number]); 

     

 

    //Reading from Device to Host 

    //After the execution of the kernel is finished. Sends data from  

    //the FPGA back to the CPU for analysis. 

    status = clEnqueueReadBuffer(queues[Kernel_number], d_bufferN, 

CL_TRUE, 0, sizeof(cl_float), h_bufferN, 0, NULL, NULL); 
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    checkError(status, "\nERROR: Failed to copy data from Device to 

Host\n"); 

 

    status = clFinish(queues[Kernel_number]); 

    checkError(status, "\nERROR: Failed to finish command queue of 

(%s)\n", kernel_names[Kernel_number]); 

 

} 

// END: FPGA Implementation 

 

 

//CLEANUP – Release Memory Objects 

 

// START: Cleanup 

//Releases the memory objects. 

void cleanup() 

{ 

  

    //Release kernels 

    for(int i = 0; i < K_NUM_KERNELS; ++i) 

    { 

        if(kernels[i]) 

        { 

            clReleaseKernel(kernels[i]); 

        } 

    } 

 

    //Release Program 

    if(program) 

    { 

        clReleaseProgram(program); 

    } 

 

    //Release command queue 

    for(int i = 0; i < K_NUM_KERNELS; ++i) 

    { 

        if(queues[i]) 

        { 

            clReleaseCommandQueue(queues[i]); 

        } 

    } 

 

    //Release context 

    if(context) 

    { 

        clReleaseContext(context); 

    } 

 

    //Free/release device buffer 

    if(d_buffer1) 

    { 

        clReleaseMemObject(d_buffer1); 

    } 

    if(d_bufferN) 

    { 

        clReleaseMemObject(d_bufferN); 

    } 
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    . 

    . 

    . 

    if(d_bufferN) 

    { 

        clReleaseMemObject(d_bufferN); 

    } 

} 

 

// END: Cleanup 
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Appendix B: SOM OpenCL Kernel  

//inclusing header 

#include "../host/inc/som.h"   

 

//********************************************************************* 

//START >> Kernel 1 

//********************************************************************* 

__kernel 

__attribute__((task)) 

void SOMComp(           __global float * restrict K_cur_map, 

                        __global float * restrict K_input, 

                        __global float * restrict K_gauss_value_list) 

{ 

 

    int input_index; 

    int winnerpass = 0; 

    int winner = 0; 

    float winnerDistance; 

    float possible_winnerDistance; 

    int current_pos; 

    int neighbourhood_value; 

    int a_x; 

    int a_y; 

    int b_x; 

    int b_y; 

    int output; 

    int total_map_values_fpga = 

map_side_size*map_side_size*input_vector_length; 

    int total_input_values = input_size*input_vector_length; 

    float g_gauss[map_side_size]; 

    __local float g_distance_map[map_side_size*map_side_size]; 

    __local float 

cur_map[map_side_size*map_side_size*input_vector_length]; 

    __local float g_input[input_size*input_vector_length]; 

 

    #pragma unroll map_side_size 

    for(int j = 0; j < total_input_values; j++) 

    { 

        g_input[j] = K_input[j]; 

    } 

     

    #pragma unroll map_side_size 

    for(int i = 0; i < total_map_values_fpga; i++) 

    { 

        cur_map[i] = K_cur_map[i]; 

    } 

 

    #pragma unroll map_side_size 

    for(int i = 0; i < map_side_size; i++) 

    { 

        g_gauss[i] = K_gauss_value_list[i]; 

    } 
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    for(input_index = 0; input_index < total_input_values; input_index 

= input_index + input_vector_length) 

    { 

        float sum = 0; 

        int b_index = input_index; 

        #pragma unroll input_vector_length 

        for(int a_index = 0; a_index < input_vector_length; a_index++) 

        {    

            sum += fabs(cur_map[a_index] - g_input[b_index]); 

            b_index++; 

        } 

        winnerDistance = sum; 

 

         

        for(int i = 0; i < total_map_values_fpga; i = i + 

input_vector_length) 

            { 

                float accu = 0; 

                int c_index = input_index; 

                 

                for(int j = i; j < (input_vector_length + i); j++) 

                { 

                    accu += fabs(cur_map[j] - g_input[c_index]); 

                    c_index++; 

                } 

                g_distance_map[i/input_vector_length] = accu; 

            } 

        #pragma unroll map_side_size 

        for(int distance_index = 0; distance_index < 

(map_side_size*map_side_size); distance_index++) 

        { 

            if(g_distance_map[distance_index] < winnerDistance) 

            { 

                winnerDistance = g_distance_map[distance_index]; 

                winner = distance_index; 

            } 

        } 

        winnerpass = winner; 

     

         

        for(int i = 0; i < total_map_values_fpga; i++) 

        { 

            int a = i/input_vector_length; 

            int b = winnerpass; 

         

            a_x = a % map_side_size; 

            a_y = a / map_side_size; 

            b_x = b % map_side_size; 

            b_y = b / map_side_size; 

 

            neighbourhood_value = max(abs(a_x - b_x), abs(a_y - b_y)); 

     

            cur_map[i] = cur_map[i] - ((cur_map[i] - 

g_input[input_index + (i % input_vector_length)]) * 

g_gauss[neighbourhood_value]); 

        } 

    } 
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    #pragma unroll map_side_size 

    for(int l = 0; l < total_map_values_fpga; l++) 

    { 

        K_cur_map[l] = cur_map[l]; 

    }    

} 

 

//********************************************************************* 

//END >> Kernel 1 

//********************************************************************* 

 

//********************************************************************* 

//START >> Kernel 2 

//********************************************************************* 

 

__kernel 

__attribute__((task)) 

void NeigRed(          __global float * restrict K_gauss_value_list) 

{ 

     

    float temp_value; 

    float g_gauss[map_side_size]; 

 

 

    #pragma unroll map_side_size 

    for(int j = 0; j < map_side_size; j++) 

    { 

        g_gauss[j] = K_gauss_value_list[j]; 

    } 

 

 

    #pragma unroll map_side_size 

    for(int i = 1; i < map_side_size; i++) 

    { 

        temp_value = g_gauss[i]; 

        g_gauss[i - 1] = temp_value; 

    } 

    g_gauss[map_side_size - 1] = 0; 

 

    #pragma unroll map_side_size 

    for(int k = 0; k < map_side_size; k++) 

    { 

        K_gauss_value_list[k] = g_gauss[k]; 

    } 

} 

 

//********************************************************************* 

//END >> Kernel 2 

//********************************************************************* 
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