
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

11-17-2019

FPGA-Based Acceleration of the Self-Organizing Map (SOM) FPGA-Based Acceleration of the Self-Organizing Map (SOM)

Algorithm using High-Level Synthesis Algorithm using High-Level Synthesis

Mohammad Abdul Moin Oninda
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Oninda, Mohammad Abdul Moin, "FPGA-Based Acceleration of the Self-Organizing Map (SOM) Algorithm
using High-Level Synthesis" (2019). Electronic Theses and Dissertations. 8148.
https://scholar.uwindsor.ca/etd/8148

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8148?utm_source=scholar.uwindsor.ca%2Fetd%2F8148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FPGA-Based Acceleration of the Self-Organizing Map (SOM)

Algorithm using High-Level Synthesis

By

Mohammad Abdul Moin Oninda

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

 at the University of Windsor

Windsor, Ontario, Canada

2019

© 2019 Mohammad Abdul Moin Oninda

FPGA-Based Acceleration of the Self Organizing Map (SOM) Algorithm using

High-Level Synthesis

by

Mohammad Abdul Moin Oninda

APPROVED BY:

__

W. Abdul-Kader

Department of Mechanical, Automotive and Materials Engineering

__

E. Abdel-Raheem

Department of Electrical and Computer Engineering

__

M. Khalid, Advisor

Department of Electrical and Computer Engineering

November 15, 2019

iii

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

Abstract

One of the fastest growing and the most demanding areas of computer science is

Machine Learning (ML). Self-Organizing Map (SOM), categorized as unsupervised ML,

is a popular data-mining algorithm widely used in Artificial Neural Network (ANN) for

mapping high dimensional data into low dimensional feature maps. SOM, being

computationally intensive, requires high computational time and power when dealing

with large datasets. Acceleration of many computationally intensive algorithms can be

achieved using Field-Programmable Gate Arrays (FPGAs) but it requires extensive

hardware knowledge and longer development time when employing traditional Hardware

Description Language (HDL) based design methodology. Open Computing Language

(OpenCL) is a standard framework for writing parallel computing programs that execute

on heterogeneous computing systems. Intel FPGA Software Development Kit for

OpenCL (IFSO) is a High-Level Synthesis (HLS) tool that provides a more efficient

alternative to HDL-based design. This research presents an optimized OpenCL

implementation of SOM algorithm on Stratix V and Arria 10 FPGAs using IFSO.

Compared to recent SOM implementations on Central Processing Unit (CPU) and

Graphics Processing Unit (GPU), our OpenCL implementation on FPGAs provides

superior speed performance and power consumption results. Stratix V achieves speedup

of 1.41x - 16.55x compared to AMD and Intel CPU and 2.18x compared to Nvidia GPU

whereas Arria 10 achieves speedup of 1.63x - 19.15x compared to AMD and Intel CPU

and 2.52x compared to Nvidia GPU. In terms of power consumption, Stratix V is 35.53x

and 42.53x whereas Arria 10 is 15.82x and 15.93x more power efficient compared to

CPU and GPU respectively.

v

Acknowledgement

Firstly, I would like to express my deepest gratitude to my supervisor Dr.

Mohammed A.S. Khalid for giving me the opportunity to conduct my Masters thesis

research under his supervision. I am very grateful for his patience, advice and

encouragement. His encouragement helped me to the surpass difficulties that I have

encountered during my research and study. I am grateful and fortunate to have him as a

mentor and supervisor.

I would like to thank Dr. Esam Abdel-Raheem and Dr. Walid Abdul-Kader for

taking time from their busy schedule to be part of my thesis committee and for providing

insightful suggestions to improve my research.

I would like to give special thanks to Mohammad Abdul Momen for his technical

assistance and suggestions that helped me to improve my research.

I am grateful to Dr. Roberto Muscedere for his continuous help in maintaining the

workstations in our research lab.

I would like to thank The Canadian Microelectronics Corporation (CMC) and

Intel Programmable Solutions group for supporting this research by providing us with

research equipment and CAD software tools necessary for this research.

I am dedicating my research to my parents, without their continued support and

care; I would not be able to finish my research on time.

vi

Table of Contents

Declaration of Originality ... iii

Abstract ... iv

Acknowledgement ..v

List of Tables .. viii

List of Figures ...x

List of Abbreviations ... xiv

Chapter 1. Introduction ..1

1.1 Motivation.. 1

1.2 Thesis Objective ... 3

1.3 Thesis Outline... 5

Chapter 2. Computing Platforms and CAD Tools ..6

2.1 High-Performance Computing (HPC) ... 6

2.3 Field-Programmable Gate Array (FPGA) .. 9

2.4 High-Level Synthesis (HLS) ... 12

2.5 Open Computing Language (OpenCL) .. 13

2.6 Intel FPGA SDK for OpenCL (IFSO) ... 16

2.6 Optimization Techniques - IFSO ... 19

Chapter 3. Self-Organizing Map Algorithm (SOM) ...22

3.1 Overview .. 22

3.2 Self-Organizing Map (SOM) ... 22

3.3 Related Works .. 27

Chapter 4. Optimized OpenCL Model for FPGA Implementation30

4.1 Overview .. 30

4.2 SOM Model for FPGA OpenCL Implementation .. 30

vii

Chapter 5. Experimental Results and Analysis ...36

5.1 Overview .. 36

5.2 Experimental Setup .. 36

5.3 Dataset Generation .. 37

5.4 Synthesis Results .. 38

5.5 Performance Analysis .. 44

5.5.1 Implementation in CPU ... 44

5.5.2 Implementation in GPU .. 47

5.5.3 Implementation in FPGA ... 50

5.5.4 Performance Comparison between CPU and FPGA .. 55

5.5.5 Performance Comparison between GPU and FPGA ... 58

5.5.6 Performance Comparison between FPGAs ... 60

5.6 Resource Utilization ... 62

5.7 Energy Efficiency .. 68

5.8 Verification ... 70

Chapter 6 Conclusion ..72

References ...73

Appendix A: Intel FPGA SDK for OpenCL Template ..82

Appendix B: SOM OpenCL Kernel ...90

Vita Auctoris...93

viii

List of Tables

Chapter 2

Table 2. 1 Overview of currently available HLS CAD Tool [37] 13

Chapter 3

Table 3. 1 Pseudo-code of SOM algorithm .. 25

Chapter 4

Table 4. 1 Pseudo-code of kernel 1 for SOM algorithm ... 33

Table 4. 2 Pseudo-code of kernel 2 for SOM algorithm ... 34

Chapter 5

Table 5. 1 SOM-CPU execution time for different map and input sizes 45

Table 5. 2 SOM-CPU throughput for different map and input sizes 45

Table 5. 3 SOM-CPU Implementation for different dimensions 46

Table 5. 4 SOM-GPU execution time for different map and input sizes 48

Table 5. 5 SOM-GPU throughput for different map and input sizes 48

Table 5. 6 SOM-GPU implementation for different dimensions 48

Table 5. 7 SOM-FPGA execution time on Stratix V FPGA for different map and input

sizes ... 50

Table 5. 8 SOM-FPGA execution time on Arria 10 FPGA for different map and input

sizes ... 51

Table 5. 9 SOM-FPGA throughput on Stratix V FPGA for different map and input sizes

... 51

ix

Table 5. 10 SOM-FPGA throughput on Arria 10 FPGA for different map and input sizes

... 52

Table 5. 11 SOM-FPGA implementation on Stratix V FPGA for different dimensions

... 52

Table 5. 12 SOM-FPGA implementation on Arria 10 FPGA for different dimensions

... 52

Table 5. 13 Stratix V FPGA resource utilization for different map sizes 63

Table 5. 14 Arria 10 FPGA resource utilization for different map sizes 63

Table 5. 15 Stratix V FPGA resource utilization for different dimensions 66

Table 5. 16 Arria 10 FPGA resource utilization for different dimensions 66

Table 5. 17 Power Consumption of CPUs, GPU and FPGAs. 68

x

List of Figures

Chapter 2

Figure 2. 1 High Performance Computing overview and applications [17] 7

Figure 2. 2 High Performance Computing Architecture [15]. 7

Figure 2. 3 FPGA Architecture [28] ... 10

Figure 2. 4 (a) Stratix V [29] and (b) Arria 10 [30] FPGA Layout. 11

Figure 2. 5 OpenCL Platform Model [40] .. 14

Figure 2. 6 OpenCL Memory Model [40] .. 15

Figure 2. 7 Intel FPGA SDK for OpenCL (IFSO) Design Flow 17

Figure 2. 8 Intel FPGA SDK for OpenCL (IFSO) Programming model. 19

Chapter 3

Figure 3. 1 SOM architecture. ... 23

Figure 3. 2 Analogy of the SOM concept [45, 46]. .. 24

Figure 3. 3 Update stage of SOM algorithm. .. 25

Chapter 4

Figure 4. 1 SOM operational flow - OpenCL FPGA. ... 31

Chapter 5

Figure 5. 1 Visual representation of sample dataset for computation..................... 38

Figure 5. 2 Block Diagram of Inferred RTL Circuit for SOM FPGA implementation.

... 39

Figure 5. 3 State-Machine view of SOM FPGA design. .. 39

Figure 5. 4 Chip view of SOM design (a) Stratix V and (b) Arria 10. 41

xi

Figure 5. 5 Chip view indicating routing congestion of SOM design (a) Stratix V and (b)

Arria 10. .. 42

Figure 5. 6 Power Map of SOM design (a) Stratix V and (b) Arria 10. 44

Figure 5. 7 Raw execution time for SOM on AMD Athlon II CPU for different map and

input sizes.. 46

Figure 5. 8 Raw throughput for SOM on AMD Athlon II CPU for different map and input

sizes. .. 47

Figure 5. 9 Raw execution time for SOM on Nvidia Quadro K620 GPU for different map

and input sizes. .. 49

Figure 5. 10 Raw throughput for SOM on Nvidia Quadro K620 GPU for different map

and input sizes. .. 49

Figure 5. 11 Raw execution time for SOM on Stratix V FPGA for different map and input

sizes. .. 53

Figure 5. 12 Raw execution time for SOM on Arria 10 FPGA for different map and input

sizes. .. 53

Figure 5. 13 Raw throughput for SOM on Stratix V FPGA for different map and input

sizes. .. 54

Figure 5. 14 Raw throughput for SOM on Arria 10 FPGA for different map and input

sizes. .. 54

Figure 5. 15 Comparison of throughput for SOM implementation on AMD Athlon II

CPU, Stratix V and Arria 10 FPGAs for different map and input sizes. 55

Figure 5. 16 Comparison of throughput for SOM implementation on AMD Athlon II

CPU, Stratix V and Arria 10 FPGAs for different dimensions............................... 56

xii

Figure 5. 17 Comparison of execution time for SOM implementation between CPU and

FPGA. ... 57

Figure 5. 18 Comparison of throughput for SOM implementation between CPU and

FPGA. ... 57

Figure 5. 19 Speedup comparison between FPGA and CPU.................................. 58

Figure 5. 20 Comparison of execution time for SOM implementation between GPU and

FPGA. ... 59

Figure 5. 21 Comparison of throughput for SOM implementation between GPU and

FPGA. ... 59

Figure 5. 22 Speedup comparison between FPGA and GPU 60

Figure 5. 23 Comparison of throughput for SOM implementation between Stratix V and

Arria 10 FPGAs for different map sizes. .. 61

Figure 5. 24 Comparison of throughput for SOM implementation between Stratix V and

Arria 10 FPGAs for different dimensions. .. 61

Figure 5. 25 Stratix V FPGA resource utilization for different map sizes. 64

Figure 5. 26 Arria 10 FPGA resource utilization for different map sizes. 64

Figure 5. 27 Stratix V FPGA clock frequency kernel (fmax) for different input sizes.65

Figure 5. 28 Arria 10 FPGA clock frequency kernel (fmax) for different input sizes.65

Figure 5. 29 Stratix V FPGA resource utilization for different dimensions. 67

Figure 5. 30 Arria 10 FPGA resource utilization for different dimensions. 67

Figure 5. 31 SOM algorithm execution power for CPU, GPU and FPGAs. 69

Figure 5. 32 Comparison of efficiency (i.e. in terms of power) obtained using FPGA

compared to CPU and GPU. ... 70

xiii

Figure 5. 33 Visual representation of SOM resultant clustered data obtained from HPC

platforms (i.e. CPU/GPU/FPGA) ... 71

xiv

List of Abbreviations

ML Machine Learning

AI Artificial Intelligence

SOM Self-Organizing Map

ANN Artificial Neural Network

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

SDK Software Development Kit

IFSO Intel FPGA SDK for OpenCL

OpenCL Open Computing Language

HLS High-Level Synthesis

HLL High-Level Language

CPU Central Processing Unit

GPU Graphics Processing Unit

HPC High Performance Computing

IT Information Technology

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

AOC Altera Offline Compiler

CUDA Compute Unit Device Architecture

NN Neural Network

xv

BMU Best Matching Unit

API Application Programming Interface

DPLL Digital Phase-Locked Loop

TSP Travelling Salesman Problem

IP Intellectual Property

PCIe Peripheral Component Interconnect Express

DMA Direct Memory Access

CAD Computer-Aided Design

DDR Double Data Rate

SDRAM Synchronous Direct Random Access Memory

ALM Arithmetic Logic Module

I/O Input/Output

DSP Digital Signal Processing

RTL Register Transfer Level

PLL Phase-Lock Loop

LB Logic Blocks

LE Logic Elements

FLOPS Floating Point Operations Per Second

LU Logic Utilization

ALUTs Adaptive Look-Up Tables

CU Compute Unit

xvi

PE Processing Element

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

SISD Single Instruction Stream Single Data Stream

MISD Multiple Instruction Single Data

MIMD Multiple Instruction Multiple Data

1

Chapter 1. Introduction

1.1 Motivation

The demand for ML has been increasing at an exponential rate due to its ability to

provide actionable insights and achieve key goals in industry and business organizations.

ML algorithms have been widely used in applications involving analysis of large amounts

of data in order to find patterns, make predictions, etc. One of the most important

characteristics of ML is its ability to solve complex computationally intensive problems

efficiently. Self-Organizing Map (SOM) [1] is an unsupervised ML algorithm and is a

form of ANN. SOM, being computationally intensive, consumes a lot of hardware

resources, power and takes longer execution time as the dataset size increases. The

inherently parallel nature of the algorithm makes it suitable for implementation in many

core and multi-core architectures. A lot of research has been done on porting ML

algorithms to parallel and heterogeneous platforms [2 - 5].

High Performance Computing (HPC) platform such as GPUs and FPGAs are used

as hardware accelerators to efficiently accelerate computationally intensive ML

algorithms [2, 3, 6] such as SOM [7]. Currently, GPUs having the features of delivering

high throughput and better memory bandwidth serves to accelerate ML algorithms.

However, the large amount of power required by GPU for execution of these algorithms

serves as a major drawback compared to other HPC counterparts. FPGA-based

accelerators on the other hand overcome this drawback by providing high throughput

with low power consumption during execution of computationally intensive algorithms.

2

FPGAs are programmable logic devices that provides greater flexibility and high

throughput. The designs implemented in FPGA are mainly done using HDLs such as

Verilog and VHSIC Hardware Description Language (VHDL) requiring extensive

hardware knowledge thereby increasing the development time and cost. To exploit the

potential of FPGAs fully and to make it accessible to all software developers, HLS tools

such as IFSO [8] provides the opportunity to program FPGAs using HLL such as

OpenCL, C and C++ without requiring extensive hardware knowledge thus efficiently

accelerating computationally intensive tasks. Optimized Verilog modules are

automatically synthesized into FPGA hardware binaries to be able to run on FPGA

boards from HLL using the Altera Offline Compiler (AOC). Since IFSO makes the use of

FPGAs accessible to all developers without requiring extensive hardware knowledge, the

development and deployment of a design and the time to market for HLS-based design is

significantly lower compared to RTL-based design [2, 3, and 9]. FPGAs provide the

benefit of low power consumption and the fact that pipelines can be efficiently

customized in FPGAs, fine-tuned for the algorithm to be accelerated, makes FPGAs a

better choice compared to CPUs and GPUs.

OpenCL is the first industry standard language that supports parallel and

heterogeneous computing platforms based on CPUs, GPUs, FPGAs, DSP processors, etc.

and supports HLS. OpenCL was first introduces by Apple and is currently maintained

and updated by Khronos Group [10] and is supported by vendors such as Intel, Nvidia,

AMD, Apple, Xilinx, IBM, ARM Holdings, Qualcomm among many others. One

alternative to OpenCL is Compute Unit Device Architecture (CUDA) [11], which can be

implemented and deployed only in Nvidia GPUs. The IFSO consists of a host code and a

3

kernel code. The host is responsible for initializing the device for OpenCL computation,

managing hardware resources such as assigning device buffers, memory synchronization

and calling the execution of kernels, whereas the computational part of the algorithm for

acceleration is coded on to the kernels. The host source code is written using C/C++ and

executed on the host CPU using the standard C/C++ compiler whereas the kernel code is

written in OpenCL and compiled using AOC into FPGA image to be executed on the

desired FPGA hardware. As the kernels take a long time to compile, they are compiled

offline using AOC before the execution starts [12 - 14].

 However, there are some drawbacks to using HLS. In some cases hardware

synthesis using HLS may not be as efficient as hardware designed by expert skilled

engineers using HDL, due to the automatic generation of the design by the software.

Furthermore, due to the architectural limitations of FPGAs not all algorithms will be

efficient for acceleration using HLS.

1.2 Thesis Objective

 An optimized OpenCL - based FPGA implementation of SOM has been proposed

in this research using IFSO with the aim to accelerate the SOM algorithm on Intel

FPGAs, Stratix V and Arria 10. The major contribution of this research is the superior

acceleration results obtained using IFSO compared to CPUs and GPUs. To our

knowledge, this is the first research that focuses on the acceleration of SOM algorithm on

FPGAs using IFSO and conducts a comparative analysis of performance and power

consumption with CPUs and GPUs. The research was conducted in the following phases

as shown in Fig. 1.1:

4

1. The fundamentals of parallel programming and IFSO were studied.

2. The SOM algorithm was implemented on CPU and GPU (using CUDA) for

comparison of performance and power consumption with FPGAs.

3. Improvements were made in the baseline FPGA implementation by restructuring

the operational flow of the SOM implementation, optimized for acceleration using

IFSO.

4. An analysis of speedup in terms of execution time and throughput, resource

utilization and power consumption was conducted between:

a. FPGAs and CPU

b. FPGAs and GPU

c. Stratix V and Arria 10 FPGAs.

Figure 1. 1 Phases of research

5

1.3 Thesis Outline

The remainder of this research is organized as follows:

In Chapter 2, we discuss High-Performance Computing (HPC), FPGAs, HLS,

OpenCL and IFSO.

In Chapter 3, we discuss the SOM algorithm in brief and provide a review of the

previously published SOM implementations targeting FPGA, CPU and GPU - based HPC

platforms.

In Chapter 4, we present an optimized operational flow designed for SOM

OpenCL FPGA implementation.

In Chapter 5, we present the synthesis results obtained for SOM implementation

on FPGAs and compare the results with our own CPU and GPU implementations and

previously published SOM research targeting CPUs and GPUs.

Lastly, in Chapter 6, we conclude with a summary of the thesis and suggestions

for future work.

6

Chapter 2. Computing Platforms and CAD Tools

This chapter gives a brief introduction to High Performance computing (HPC)

and HPC platforms, FPGAs, HLS, OpenCL and IFSO.

2.1 High-Performance Computing (HPC)

 With the advancement of technology and emergence of topics like ML, Artificial

Intelligence (AI), Data Mining etc. the size of data to be handled by organizations has

been increasing at an exponential rate. The demand for real-time, fast an accurate

processing and prediction are crucial for organizations to achieve key goals and to obtain

actionable insights. The techniques and algorithms for processing the data to reach a

conclusion are often computationally intensive and require large amount of computation

time and power when computed on a normal CPU. HPC gives the organizations ability to

compute/process data and implement computationally intensive algorithms at much

higher speed compared to the traditional desktop or laptop [15, 16]. It is a subset of

Technical Computing (TC) and includes Supercomputing as its member as shown in Fig.

2.1.

7

Figure 2. 1 High Performance Computing overview and applications [17]

An HPC architecture consists of compute servers called nodes networked to form

clusters and a data storage facility as shown in Fig. 2.2. Each of the nodes in a cluster can

communicate with each other and the data storage facility to provide maximum

performance in solving computationally intensive problems. The nodes operate on the

complex task in a parallel manner thereby boosting speed of execution. Hence,

organizations have focused on using parallel computing and multi core designs in their

Information Technology (IT) infrastructures to obtain efficient, reliable, fast and accurate

solutions.

Figure 2. 2 High Performance Computing Architecture [15].

 Even though parallel deployment of tasks in the HPC clusters boost performance,

it may not be possible to parallelize all the algorithms/tasks. Some of the computations

8

might run more efficiently on CPU compared to other platforms. Heterogeneous

Computing (HC) overcomes this constraint by allowing the use of multiple types of

processors, coprocessors and cores to execute particular tasks [18, 19]. For example, the

sequential part of the task can be computed on CPU whereas the parallel part of the task

can be assigned to be executed on a GPU or FPGA.

 Parallel computing is the simultaneous execution of a complex task, which has

been broken down into several smaller tasks and assigned to each compute unit for

execution at the same time [20]. Parallel computing or parallelism can be divided into:

 Bit-Level Parallelism: Parallelism is achieved by increasing the processor word

size [21]. For example adding two 16-bit numbers using 16-bit processor instead

of an 8-bit processor.

 Instruction-Level Parallelism: Parallelism is achieved by instruction pipelining,

superscalar execution, out-of-order execution, register renaming, speculative

execution and branch prediction techniques [22]. In Instruction-Level Parallelism,

several instructions are executed per clock cycle by the processor.

 Data-Level Parallelism: Parallelism is achieved by distributing the data across

several compute units (i.e. nodes) for parallel execution of data. In other words is

the simultaneous execution of the same task by each processor in a multi-

processor environment on different distributed data [23].

 Task-Level Parallelism: Parallelism is similar in this case to data-level parallelism

but in this case instead of distributing data across each processor in a multi-

processor environment, this parallelism technique focuses on distributing tasks

9

[24]. Different tasks are assigned to each processor using the same data for

execution.

Traditionally, multi-core CPUs were used as HPC clusters. CPU employs instruction-

level parallelism and due to its high clock frequency, it is optimized for latency. In order

to minimize memory operations, CPUs employ complicated caching schemes and have

large amount of on-chip caches. GPUs on the other hand are optimized for throughput

and is now being used in HPC clusters. GPUs also makes use of caches similar to CPU to

minimize memory access but has far fewer caches compared to CPUs. GPU uses its high

memory bandwidth and parallel execution capability to maximize throughput. The use of

programming APIs such as OpenCL and CUDA have made it possible for developers to

easily program GPUs for computation. However, one of the drawbacks of using GPUs is

its high power consumption. FPGAs have reconfigurable resources and can be

reprogrammed achieving high throughput at low power consumption, which makes

FPGAs a good candidate for HPC [25].

2.3 Field-Programmable Gate Array (FPGA)

 FPGA stands for Field-Programmable Gate Arrays. FPGAs provide the features

of re-programmability, re-configurability and are based on Static Random Access

Memory (SRAM), which is a volatile memory [26, 27]. FPGA architecture consists of

I/O Banks, matrix of Configurable Logic Blocks (CLBs) and programmable switching

matrix interconnecting wires as shown in Fig. 2.3.

10

Figure 2. 3 FPGA Architecture [28]

 The I/O Banks on the edge of the FPGA chip can be programmed to function as

inputs, outputs, tristate buffers, differential-pair drivers, voltage logic standards, etc. Each

CLB consists of a number of Logic Elements (LE), inputs and outputs. A Logic Element

(LE) is composed of a Look-Up table (LUT), a Multiplexer (MUX) and a D-Flip Flop. A

LUT consists of a tree of multiplexers implementing combinational logic functions, with

an array of memory elements as inputs. The output of the LUT is stored in the D-Flip

Flop, which can also performs sequential logic function. The MUX is used for logic

selection. Since FPGA memory is volatile, the data programmed onto the FPGA memory

is erased whenever the FPGA board is switched off. The basic layout of the Intel Stratix

V and Arria 10 FPGA used in this research is shown in Fig. 2.4.

11

(a)

(b)

Figure 2. 4 (a) Stratix V [29] and (b) Arria 10 [30] FPGA Layout.

 The FPGA boards used in this research are accelerator boards packaged in the

form of a Peripheral Component Interconnect Express (PCIe) card which allows easy

integration of the accelerator board into existing host system (i.e. CPU). FPGA

accelerator cards are available from companies such as Terasic [31] and Bittware [32].

12

These vendors also provides the option for developers to design their own accelerator by

changing the reference board design [33]. The accelerator cards used in these research are

Nallatech 385 (Stratix V GX A7) [34] and Nallatech 385A (Arria 10 GX 10AX115) [35].

The boards include 8GB of DDR3 SDRAM memory, with x8 Gen 3 interface. The

Stratix V A7 FPGA (5SGXMA7H2F35C2) is a 28nm technology consisting of 622K

Logic Elements, 234,720 ALMs, 939K Registers 664 I/Os, 2560 M20K memory blocks

and 256 DSP blocks. The Arria 10 FPGA (10AX115N3F40E2SG) is a 20nm technology

consisting of 1150K Logic Elements, 427,200 ALMs, 1708800 Registers, 826 I/Os, 2713

M20K memory blocks and 1518 DSP blocks.

2.4 High-Level Synthesis (HLS)

FPGAs when programmed and configured properly according to the task can

achieve significant increase in performance. In-order to program FPGAs, traditionally

HDL such as Verilog and VHDL are used to generate hardware design at Register

Transfer Level (RTL) or gate-level. However, programming the FPGA using HDL

requires developers to have extensive hardware knowledge which increases the

development time and cost. As HDL requires skilled developers for programming

FPGAs, most of the organizations use CPUs and GPUs as they can be programmed easily

instead of FPGAs.

HLS refers to an automated design process that generates the digital hardware for

implementation from the interpreted algorithmic description [36]. HLS allows developers

to access the full potential of the FPGA without requiring extensive hardware and

debugging knowledge thus reducing development time and cost. HLS tools allows

developers to use HLLs such as C, C++ or System C to synthesize their design/algorithm

13

directly into optimized HDL for implementation in FPGAs. In [37], a detailed analysis of

recent HLS tools has been provided. Table 2.1 gives an overview of some of the currently

available HLS tools. For our research, we will be using IFSO.

Table 2. 1 Overview of currently available HLS CAD Tool [37]

 Owner Compiler License Input Output

Intel

Intel FPGA

SDK for

OpenCL

Commercial
C/C++ and

OpenCL
Verilog

Xilinx VivadoHLS Commercial
C/C++

 SystemC

VHDL/Verilog

SystemC

University of

Toronto
LegUp Academic C Verilog

Cadence CtoS Commercial
SystemC

TLM/C++

Verilog

SystemC

Mentor

Graphics

DK Design

Suite
Commercial Handel-C

VHDL

Verilog

Synopsys Synphony C Commercial
C/C++

SystemC

VHDL/Verilog

SystemC

Delft

University of

Technology

DWARV Academic C Subset VHDL

2.5 Open Computing Language (OpenCL)

 OpenCL is an industry standard language, which was first, introduces by Apple

Inc. and is now maintained and updated by the Khronos Group Inc. [10]. It can be

executed on heterogeneous computing platforms which may be composed of CPUs,

GPUs, FPGAs and Digital Signal Processors (DSPs). OpenCL is based on C99 and

C++11 programming languages and defines a set of datatypes, structures and functions

that augments C and C++ [38]. OpenCL provides the advantages of portability,

standardized vector processing and parallel programming. It is supported and used by

organizations such as Nvidia, Intel, AMD, Apple, Xilinx, Creative Technology, ARM

Holdings, Imagination Technologies, Samsung, IBM, ZiiLabs, etc [39]. Computationally

14

intensive tasks to be computed on one or more OpenCL-compliant devices are called

kernels. The kernels are sent to the device(s) from the host. OpenCL uses a hierarchy of

model [40] –

 Platform Model

 Memory Model

 Execution Model

 Programming Model

The platform model represents the host connected to the OpenCL devices as shown in

Fig 2.5. The OpenCL devices are composed of Compute Units (CUs), which are

composed of Processing Elements (PEs). Computation in OpenCL devices are done on

the PEs.

Figure 2. 5 OpenCL Platform Model [40]

 Fig 2.6 shows the memory model for OpenCL. The memory model specifies four

memory regions that can be accessed:

 Global Memory: The global memory can be accessed by host through

PCIe and by the device. The global memory provides both read and write

15

capabilities to all work-items in all work groups. It is the memory with

largest capacity and has longer access latency and is sensitive to data

access patterns.

 Local Memory: A memory region that is specific to all the work-items

within a particular work-group. Local memory has lower latency

compared to global memory.

 Constant Memory: It is a special type of global memory, which remains

constant during kernel execution. Only the host can read/write into the

constant memory, the kernels can only read data from the constant

memory.

 Private Memory: It is a memory region that is assigned for a particular

work-item.

Figure 2. 6 OpenCL Memory Model [40]

16

The execution model consists of the kernel program and the host program. The

execution is managed by the host by defining the context and the command queue. The

context contains the following information: devices, kernels, memory objects and

program objects. The programming model of OpenCL supports task as well as data based

parallelism.

2.6 Intel FPGA SDK for OpenCL (IFSO)

 IFSO is a HLS tool that enables developers to execute parallel computing

programs easily and efficiently. It synthesizes the code written in OpenCL into optimized

RTL Verilog code. The Verilog code can then be converted into FPGA hardware image

by the Intel Quartus design software integrated with the IFSO tool. CPUs and GPUs use

Single Instruction Multiple Data (SIMD) and/or Single Program Multiple Data (SPMD)

model. IFSO allows FPGAs to support SIMD, Single Instruction Stream Single Data

Stream (SISD), Multiple Instruction Single Data (MISD) and Multiple Instruction

Multiple Data (MIMD) individually or in combination for computation. IFSO supports all

features of OpenCL 1.0 and some features of OpenCL 1.2 and OpenCL 2.0 enabling the

tool to accelerate algorithms efficiently.

The design flow of the IFSO is given in Fig. 2.7. In order to execute an algorithm

using IFSO we need a host code and a kernel code. The host code (i.e. host.cpp/host.c) is

responsible for device and host buffer initialization, transferring data from host to device

for kernel execution, setting up kernel argument, calling the kernel execution command

on the device and reading data back from the device to the host. The kernel code (i.e.

kernel.cl) contains the computationally intensive parallel task designed for execution in

the targeted FPGA board. The compilation time of kernels for OpenCL is in the order of

17

hours. Hence, the kernel source code is first compiled using the AOC. In order to check

the functionality of the kernel code, it is first compiled using an emulator integrated with

the IFSO tool using the command,

aoc -march=emulator --board <board_identifier> -g device/kernel.cl -o bin/kernel.aocx -v --report

 Successful emulation of the kernel indicates that the kernel.cl program has no

syntax, functionality, logic and stall problems. The host code is then compiled into an

executable file using the standard C/C++ compiler using the command,

make –f Makefile

Figure 2. 7 Intel FPGA SDK for OpenCL (IFSO) Design Flow

18

The functionality of the program is then checked using the executable file and

emulated kernel files. After successful emulation, a full compilation of the application

with profiling for optimization is done in AOC using the command,

aoc --board <board_identifier> --<optimization_flags> -g device/kernel.cl -o

bin/kernel.aocx -v –report

The full compilation synthesizes the kernel code into optimized RTL Verilog

code and FPGA hardware image to be directly implemented onto the FPGA. The host

executable and the files generated during AOC full compilation are executed by the host

to run the application on the FPGA board for acceleration. The programming model for

IFSO is given in Fig. 2.8. A sample template for HLS implementation using IFSO is

given in Appendix A. A user perspective of the programming model has been discussed

in [41].

19

Figure 2. 8 Intel FPGA SDK for OpenCL (IFSO) Programming model.

2.6 Optimization Techniques - IFSO

The IFSO supports various optimization techniques for the

acceleration/implementation of the algorithms directly onto the FPGA boards [13, 14].

 Data Parallelism: In data parallelism, work-items in a work-group are accessed by

kernels using the SPMD/SIMD model. Each work-item executes the same

operation on different data. In data parallelism, the highest throughput is achieved

by the loops having no dependencies.

 Task Parallelism: Task Parallelism is achieved by running the kernels using

command queue in a pipelined manner. Concurrent execution of the kernels by

20

AOC is achieved using multiple asynchronous command queues. Task parallelism

requires the inclusion of explicit synchronization point. In task parallelism, the

highest throughput is obtained when the application to be implemented on the

FPGA is divided into multiple kernels.

 Vectorising Work-items: Vectorising allows SIMD mode execution of read/write

as well as arithmetic/logic operations. It reduces memory access as the compiler

creates kernel data path based on the number of vectors and increases memory

read/write efficiency.

 Loop Unrolling: Unrolling loops fully or partially by including #pragma unroll N,

where N denotes the unroll factor, before loop starts, increases the throughput of

the kernel. However, increased performance comes at a cost of increased

hardware resource usage as the resource usage changes based on the unrolling

factor.

 Compute Units (CUs): Multiple kernel compute units creates multiple copies of

the same kernel hardware for implementation simultaneously. It increases the data

processing efficiency of the kernel but can cause bottlenecks in communication as

the CUs share the same global memory.

 Aligning Memory: Aligning Memory allows Direct Memory Access (DMA)

transfer of data to and from the FPGA increasing the data transfer efficiency.

Memory alignment of host side buffers has to be at least 64-bytes aligned.

 Caching Local Memory: Local memory has high bandwidth and low latency

compared to global memory. Hence, storing data from global memory to local

21

memory before computation starts provides the work-items easy access to the data

thereby increasing throughput.

 Memory Coalescing: Memory coalescing is especially important when

reading/writing data from global memory repeatedly causing performance

degradation. Memory coalescing reduces the number of memory access thereby

improving memory efficiency.

 Channels: Channels are First-In-First-Out (FIFO) based bus integrated in OpenCL

and supported by Intel that allows efficient data transfer between the kernels in

FPGA compared to the GPU, where data transfer between kernels is achieved

only through global memory. FIFOs store data in on-chip memory and has high

bandwidth. Channels allow the consumer kernel to launch as soon as the producer

kernel has data available for transfer. However, vectorization of work-items and

creation of CUs is not possible using channels.

Many other optimization techniques focusing IFSO tool is presented in “The Best

Practices Guide” [14].

22

Chapter 3. Self-Organizing Map Algorithm (SOM)

3.1 Overview

In this research, we focused on the implementation and acceleration of the SOM

algorithm. This chapter will first give an overview of the SOM algorithm and then will

discuss some of the previous published research related to the implementation and

acceleration of the SOM algorithm using HPC platforms.

3.2 Self-Organizing Map (SOM)

Self-Organizing Map (SOM) also known as Kohonen SOM or network is a form

of an ANN proposed by a Finnish professor Teuvo Kohonen in the 1980s [1, 42 and 43].

It can be categorized as an unsupervised ML algorithm capable of mapping high-

dimensional data into low-dimensional (i.e. usually two) feature maps and hence given

the title of dimensionality reduction [44]. SOM differs from the Neural Network (NN) in

the sense that unlike the NN, which consists of hidden layers, SOM does not have any

hidden layer. A SOM architecture consists of two layers - an input layer and an output

layer (Kohonen layer) as shown in Fig. 3.1.

23

Figure 3. 1 SOM architecture.

The input layer is connected to the kohonen layer by a set of weights. The

kohonen layer is a fully connected layer of neurons. The concept of SOM is

neurobiological inspired and is said to have similar functionality as that of the human

brain connected to the nervous system as shown in Fig 3.2. The nerve endings serve as

the input layer, the nerves connected to the central nervous system and the brain

represents the weight vectors and the brain represents the kohonen layer, which is

responsible for mapping the signal to a particular area in the brain.

24

Figure 3. 2 Analogy of the SOM concept [45, 46].

An input dataset (i.e. randomly generated weight vector) is initially fed onto the

SOM network. In each iteration, one sample from each input dataset, x is chosen. The

distance between x and all the weight vectors of the SOM network are compared usually

using the Euclidean distance. The neuron whose weight vector is closest the input vector

(i.e. the computation producing the smallest Euclidean distance) is chosen as the winner

neuron or the Best Matching Unit (BMU). After identifying the BMU, the weight vectors

corresponding to the neurons are updated so that the BMU and its topological neighbors

are moved closer to the input vector in the input space as shown in Fig. 3.3. The neurons

in the output acts in a competitive manner. The neurons in the kohonen layer are said to

behave in a manner such that they exhibit long-range inhibition and short-range

excitation. As the iteration progresses, the neighborhood size as well as the learning rate

decreases for the algorithm to reach convergence. The pseudocode of the SOM algorithm

is given below.

25

Figure 3. 3 Update stage of SOM algorithm.

Table 3. 1 Pseudo-code of SOM algorithm

ALGORITHM 1. Self-Organizing Map Algorithm

Input: Map Size (M), Dimension (D), Input Size, Initial Cluster,

Dataset

Output: Resultant Cluster from dataset

for all count ϵ 0 to Max_Iteration do

 //Get input vector

 for all i ϵ 0 to D

 //Compute Euclidean distance dj between the input

 //vector and each output node j

2

1

N

j i ij

i

d x t w t

 //where,

 //i and j are input and output nodes

 //wij represents the weight of the connected nodes

 //t represents the time

 end for

 //Track the node that produces the smallest distance,

26

dist_index

 //That node becomes the Best Matching Unit (BMU) or the

 //winner neuron

 BMU ← dist_index

 for all i ϵ 0 to M*M*D do

 //Update the weight of the nodes in the map

 1 1ij ij i ijw t w t t x t w t

 //where,

 // is the neighborhood reduction coefficient which

 //decreases over time.

 end for

 Reduce neighborhood size

 Reduce learning rate

end for

The computation of Euclidean distance, finding the winning neuron/BMU and the

update of weights of the neurons in the kohonen layer repeats several times until

convergence is reached and thus accounts for most of the execution time. Euclidean

distance step and the update step involves going through all the coordinates of the input

vector and is the most computationally intensive part of the algorithm. The computational

complexity of conventional SOM depends on the input vector size, N and the number of

document presentation cycles (i.e. Euclidean distance computation stage), C and is given

as ()O NC [47].

SOM is used extensively in applications such as clustering (or classification) of

satellite images [48 - 50], data visualization in finance sectors [51], modeling, probability

density estimation, etc. [52, 53]. SOM being computationally intensive requires high

computational time and power when dealing with large datasets.

27

3.3 Related Works

Extensive research has been done on the acceleration of SOM algorithm on CPU,

GPU and FPGA.

In [54], a novel implementation of SOM was conducted on GPU using two

different Application Programming Interfaces (APIs), OpenCL and CUDA. Two

different environments were used for evaluation, a Zotac GeGorce GT 220 on AMD

Athlon 64 X2 Dual Core processor 5400+ and the Sharcnet cluster Angel consisting of 11

Nvidia Tesla S1070 GPU servers (each server consisting of 4 GPUs). Speedup achieved

was in the range of 3 to 32 for various map and training data size. Experimental

evaluation also showed that CUDA implementation outperformed OpenCL

implementation.

In [55], a massively parallel version of SOM was implemented on Intel core 2

Duo 2.66GHz platform equipped with Nvidia GeForce 9600GT achieving speedup of 44x

compared to CPU. The implementation was divided into three device kernel code calls to

achieve parallelism.

In [56], a SOM implementation for image pattern recognition was conducted on a

Dual Core AMD Turion 64 X2 1.6Ghz platform equipped with Nvidia GeForce 6150 Go.

In this implementation the images were first vectorized to form the dataset for

computation, reducing the complexity and load on the GPU. The dataset generation was

done on the CPU whereas the SOM computation was done in the GPU. For all the tests

conducted, GPU showed significant speedup compared to CPU. The paper also highlights

the overhead of data transfer between the host and the global memory which acts as a

bottleneck in performance, a design consideration we will explore in our research.

28

In [57] a multi-pass method was used to find the location of the winner neuron

and the update stage is then performed in reference to that position. Its dependence on

low level textures enables efficient use of pipelines in solving large datasets. The SOM

implementation was conducted on Intel Pentium 4, 2.4 GHz platform equipped with ATI

9550 and Nvidia 5700 GPU. In this implementation, GPU outperformed CPU especially

for large datasets. The unique feature of this research was the accuracy resulting from the

use of floating-point computation and the use of commodity graphics hardware which is

easily available and widely used.

In [7], a parallel implementation of SOM was proposed using OpenCL on GPU.

In this implementation, Manhattan distance was proposed compared to Euclidean

distance to find the BMU. The concept of this research and the visual representation

technique will be used while conducting our research. Comparison of performance of the

parallel SOM implementation was conducted on AMD Operton 6366HE 1.8GHz

processor, Intel core i7-2600 3.4GHz processor and Nvidia GeForce GTX 590 GPU. The

output of the implementations were validated against a widely used package, SOM_PAK.

OpenCL GPU implementation achieved speedup of upto 10x compared to SOM_PAK

implementation on CPU.

In [58] a Digital Phase-Locked Loop (DPLL) SOM architecture has been

implemented in Xilinx Virtex II FPGA using VHDL. In order to hold the value at each

input vector element, the implementation uses square wave phase. The DPLL SOM

design generated a small circuit and the implementation resulted in having good

quantization capability. However, the proposed architecture was not as efficient in terms

of speedup compared to other architectures with numerical operation.

29

In [59] the SOM algorithm was applied to the Travelling Salesman Problem

(TSP) for a robotic mobile agent application employing embedded parallel pipeline

solution (i.e. parallel pipeline architecture and parallel computation of the output and the

weight update). Real-time testing of the system was achieved by generating an IP core

and integrating it to a Microblaze processor bus system. The implementation was done

on VHDL and the solution on FPGA showed better performance compared to CPU.

In [60], a novel SOM implementation has been proposed having the capability of

identifying binary input sequence after training on Xilinx Virtex 4 FPGA (XC4VLX160)

using Handel-C high-level description language. The proposed implementation utilized a

novel tri-state rule during the update stage of SOM while training. The FPGA

implementation achieved 30x speedup compared to conventional SOM CPU

implementation and is proposed for use in fast pattern clustering and classification.

30

Chapter 4. Optimized OpenCL Model for FPGA Implementation

4.1 Overview

The aim of this chapter is to discuss the operation flow that we implemented in

our research towards achieving high throughput and reduced power consumption using

the IFSO HLS tool.

4.2 SOM Model for FPGA OpenCL Implementation

The aim of our research is to create a fully optimized FPGA implementation of

the SOM algorithm for high throughput and minimum power consumption. For our

research, we implemented the SOM OpenCL model using an innovative operational flow.

From our comprehensive analysis, we found that if we want to address the

communication bottleneck we have to change the operational flow of the SOM algorithm.

Fig. 4.1 shows the operation flow of the SOM OpenCL model for FPGA implementation

using IFSO. In Fig 4.1, the black arrow lines represents the instruction flow whereas the

red and blue arrow lines represents the data flow from the host (i.e. CPU) to the device

(i.e. FPGA) and within FPGA accelerator board respectively. The execution starts with

the host side doing all the necessary computations and initializing the device buffers. The

host then sends all the required data from the host memory to the device global memory

through PCIe bus for SOM computation. The host then calls for the kernel execution

command on the FPGA. After the execution is done, the result is then transferred from

the FPGA global memory back to the host memory through the PCIe bus. After the

execution is done, the result is then transferred from the FPGA global memory back to

the host memory through the PCIe bus. The host, upon receiving the data from the FPGA

conducts a proof of correctness test as discussed later in Section 5.7. The execution is

31

completed if the host side implementation matches with that of the FPGA

implementation.

Figure 4. 1 SOM operational flow - OpenCL FPGA.

The host execution starts by first initializing the random uniform dataset in the

range of 0 to 10000 having no intentional patterns in the dataset for SOM

implementation. The dataset is formed into a map of predefined size (i.e. pixels) where

each pixel represents a neuron in the layer having the random value acting as weights

connected to each neuron. The overhead on hardware resources and memory bandwidth

increases each time a kernel is added to the FPGA binary. We tried to overcome this by

minimizing the number of kernels in the design thus reserving memory and hardware

resources for computation. The two kernels were designed as single thread task kernels

achieving task-based parallelism, due to loop and memory dependencies with no

requirement of communication or data transfer between the kernels.

32

We decided to divide our implementation into two device kernel code calls. The

first kernel (i.e. SOMComp kernel) Algorithm 2, takes care of the finding the winner

neuron/BMU and the updating of weights of the BMU and surrounding neurons

according to the neighborhood size and the learning rate. In contrast to the Euclidean

distance equation (1) used in the conventional SOM we decided to use Manhattan

Distance, equation (2) as suggested in [2 and 7] to find the BMU. Manhattan distance

calculates the sum of the absolute value of the difference between two points thus

requiring less resources compared to Euclidean distance computation by eliminating

complex square and square root operations.

2

1

N

j i ij

i

d x t w t

 (1)

1

N

j i ij

i

d x t w t

 (2)

2

2

()

2

2

S

G
e

NR
G

(3)

In the update stage, the neighborhood reduction function (NR) was designed as a

multiplier vector dataset, generated incorporating the neighborhood reduction size and

learning rate as given in equation (3). In equation (3), S represents the neighborhood size

value and G represents the gauss value, which has been predefined earlier during

initialization.

33

Table 4. 1 Pseudo-code of kernel 1 for SOM algorithm

ALGORITHM 2. Kernel 1 – SOMComp

Input: Reference Cluster (R), Map Dataset (MD), Neighborhood

Reduction Dataset (NR)

Output: Resultant Cluster from Map dataset (MD)

//S = Length of one side of map, N = input size, D = Dimension, T

= Total neurons

//Load or transfer data from global memory to local memory

pragma unroll S

for all i ϵ 0 to T*D do

 local_MD ← MD

end for

pragma unroll S

for all i ϵ 0 to N*D do

 local_R ← R

end for

pragma unroll S

for all i ϵ 0 to S do

 local_NR ← NR

end for

// Start SOM Computation

for all count ϵ 0 to N*D; count = count + D

 //Manhattan distance

 pragma unroll D

 for all i ϵ 0 to D do

 dist += |local_MD – local_R|

 end for

 temp_winner_dist ← dist

 for all i ϵ 0 to T*D; i ← i +D do

 for all j ϵ 0 to D + i do

 dist += |local_MD – local_R|

 end for

 temp_dist_vect ← dist

 end for

 //Finding the BMU

 pragma unroll S

 for all i ϵ 0 to T*D do

 if(temp_dist_vect < temp_winner_dist) do

 BMU ← i

 winner_distance ← temp_dist_vect

 end if

 end for

34

 //Update weights of BMU and neighboring neurons

 for all i ϵ 0 to T*D do

 local_MD ← local_MD – ((local_MD – local_R) *

local_NR)

 end for

end for

//Load or transfer data from local memory to global memory

for all i ϵ 0 to T*D do

 MD ← local_MD

end for

The second kernel (i.e. NeigRed kernel) Algorithm 3, takes care of reducing the

neighborhood size and the learning rate for next iterations of the SOM implementation by

simply shifting all the element in the NR vector to the element before it and filling the

end of the vector with zero.

Table 4. 2 Pseudo-code of kernel 2 for SOM algorithm

Algorithm 3. Kernel 2 – NeigRed

Input: Neighborhood Reduction Dataset (NR)

Output: Neighborhood Reduction Dataset (NR)

//S = Length of one side of map

//Load or transfer data from global memory to local memory

pragma unroll S

for all i ϵ 0 to S

 local_NR ← NR

end for

Pragma unroll S

for all i ϵ 1 to S

 temp ← local_NR[i]

 local_NR[i - 1] ← temp

end for

local_NR[S-1] ← 0

35

//Load or transfer data from local memory to global memory

pragma unroll S

for all i ϵ 0 to S

 NR ← local_NR

end for

Various other optimization techniques were also implemented in order to achieve

better throughput at the cost of increased resource utilization as suggested in [13][14].

Parallelism was achieved by pipelining and loop unrolling techniques (i.e. allowing the

kernel more operations per clock cycle). Floating-point operations were optimized using

the balanced-tree floating-point implementation and rounding operations to reduce the

amount of resources consumed achieving a fused floating-point operation. Buffer transfer

efficiency was ensured by initializing the host buffers to be at least 64-bytes aligned and

using Direct Memory Access (DMA) to transfer data to and from FPGA. Unnecessary

memory dependencies between non-conflicting load and store units were prevented by

instructing the AOC to avoid pointer aliasing. Memory bandwidth was maximized by

manually partitioning global memory buffers to optimally control memory access by the

device. Bottleneck in performance was further mitigated by transferring data from the

global memory to the local memory before computation inside kernels. Global memory

exhibits long access latency whereas local memory has much lower access latency and

far higher bandwidth compared to global memory thus aiding in improved performance

of the SOM algorithm.

36

Chapter 5. Experimental Results and Analysis

5.1 Overview

The aim of this chapter is to evaluate the acceleration results obtained for the

proposed SOM algorithm on IFSO. We start by outlining the experimental setup for the

implementation, dataset used, synthesis results and finally we compare the performance

of our SOM-FPGA implementation in terms of speedup (execution time and throughput)

and power consumption against other SOM implementations using CPU and GPU

presented in previously published research.

5.2 Experimental Setup

For our research, we used IFSO [61] as HLS, Computer-Aided Design (CAD)

tool. The two FPGA development boards used in this research are Nallatech 385 (Stratix

V GX A7) [34] and Nallatech 385A (Arria 10 GX 10AX115) [35]. The boards include

8GB of DDR3 SDRAM memory, with x8 Gen 3 PCIe interface. The Stratix V A7 FPGA

(5SGXMA7H2F35C2) is based on 28nm technology, consisting of 622K Logic Elements

(LEs), 234,720 ALMs, 939K Registers, 664 I/Os, 2560 M20K memory blocks and 256

DSP blocks. The Arria 10 FPGA (10AX115N3F40E2SG) is based on 20nm technology

consisting of 1150K LEs, 427,200 ALMs, 1708800 Registers, 826 I/Os, 2713 M20K

memory blocks and 1518 DSP blocks. To compare FPGA performance against CPU

performance we are using results from [7] using AMD Operton 6366HE processor (64

cores, 32nm process) @1.8GHz with AMD’s Turbo charge technology and Intel Core i7-

2600 (4 cores, 32nm process) @3.4GHz and AMD Athlon II 170u processor (45nm

process) @ 2.0GHz [62]. To compare FPGA performance against GPU performance we

are using Nvidia Quadro K620 (28nm process) [63] having 2GB of DDR3 memory, 29.0

37

GB/s of memory bandwidth and 384 Nvidia CUDA® cores and implementation result

from [7] using Nvidia GeForce GTX 590 (40nm process) GPU.

5.3 Dataset Generation

For our research, we conducted multiple tests with different map sizes (8x8 - 64

neurons, 12x12 – 144 neurons, 16x16 – 256 neurons, 20x20 – 400 neurons and 24x24 –

576 neurons respectively), input sizes (1024, 2048, 3072, 4096 and 5120 respectively)

and dimensions (3, 4, 5 and 6 respectively). We generated random floating-point data

from 0 to 10000(unsigned) and used it as dataset for computations. We selected different

map sizes, input sizes and dimensions in order to evaluate its effect on FPGA

performance compared to CPU and GPU. The dataset was generated in order to have

similar parameter setting as that proposed in previous research, which will allow us to

compare our FPGA implementation with the results published in [7]. Fig 5.1 shows an

example of the dataset visualized by pixels using technique mentioned in [7 and 64]

where each pixel in the map represents a neuron.

Sample 1 Sample 2

38

Figure 5. 1 Visual representation of sample dataset for computation.

5.4 Synthesis Results

The compilation of the kernels for execution on FPGA is done using the AOC,

which takes on average around 4 hours. Fig. 5.2 shows the top-level block diagram of the

inferred RTL circuit obtained using the netlist viewer option in the Intel Quartus Prime

Pro software. The box highlighted in blue indicates the connection to the kernel system.

The box highlighted in red is a magnified view of the kernel system containing the kernel

blocks (i.e. Kernel 1 and 2). The logic surrounding the SOM kernels are used to

communicate with DDR memory and the host. It is very difficult to visualize the detailed

kernel hardware due to the complexity of the IFSO generated RTL structures. The netlist

viewer feature of the software was also utilized to view the State-Machine view of our

SOM FPGA design as shown in Fig. 5.3.

39

Figure 5. 2 Block Diagram of Inferred RTL Circuit for SOM FPGA implementation.

Figure 5. 3 State-Machine view of SOM FPGA design.

The chip planner feature of the Intel Quartus Prime Pro software was used to

further analyze the design for resource and routing utilization and to view the power map

40

of the FPGA design. Chip planner provides a visual display of the device resources,

illustrating the arrangement of the resource atoms (i.e. Arithmetic Logic Modules

(ALMs), Phase-Lock Loops (PLLs), DSP blocks, Memory blocks and I/O elements) in

the device architecture. Fig. 5.4 shows the chip view of our SOM design on both Stratix

V and Arria 10 FPGAs. The blocks labelled as board_region, ddr_region, board_inst and

freezer_wrapper_inst denotes logic lock regions. The light green (i.e. vertical lines)

represent the memory cells and the blue cells represents the Logic Blocks (LBs). Each

LB consists of 16 individual Logic Elements (LEs). LBs utilized by our SOM design are

indicated by a deeper blue shade.

(a)

41

(b)

Figure 5. 4 Chip view of SOM design (a) Stratix V and (b) Arria 10.

Fig. 5.5 gives a view of the routing congestion of the SOM design for both Stratix

V and Arria 10 FPGA obtained from the routing utilization feature of the software.

Information from the feature can be used to ease routing congestion. Threshold value

indicating the area of the chip considered as a high congestion area for the SOM design

was set to 95%. Routing utilization as seen in Fig. 5.5, is displayed as a heat map of the

logic resources, indicating relative resource utilization. Greater utilization is represented

by hotter colors such as red/yellow and lower or zero utilization is represented by cooler

colors such as green/blue.

42

(a)

(b)

Figure 5. 5 Chip view indicating routing congestion of SOM design (a) Stratix V and (b)

Arria 10.

43

Fig. 5.6 represents the power map of the SOM FPGA design indicating the High-

Speed/Low-Power Tiles consisting of ALMs for both Stratix V and Arria 10 FPGAs. The

tiles are differentiated by contrasting colors, where the yellow color represents High-

Speed Tiles and deep blue color represents Low-Power Tiles.

(a)

44

(b)

Figure 5. 6 Power Map of SOM design (a) Stratix V and (b) Arria 10.

5.5 Performance Analysis

The datasets were tested by launching the host program with different map sizes,

input sizes and dimensions separately for both FPGA and GPU implementations.

Automated test scripts were used for running the program and for generating and

comparing experimental results in this research. The performance for different tests is

measured by execution time in seconds (s), throughput in Floating Point Operations Per

Second (FLOPS) and power in Watts (W).

5.5.1 Implementation in CPU

 The SOM algorithm was implemented in AMD Athlon II 170u Processor

@2.0GHz CPU. Table 5.1. shows the execution time for the SOM-CPU algorithm

implementation for different map and input sizes. Table 5.2. shows the throughput for the

SOM-CPU algorithm implementation for different map and input sizes. Table 5.3. shows

45

execution time for the SOM-CPU algorithm implementation for a map size of 16x16 with

5120 inputs and varying dimensions.

Table 5. 1 SOM-CPU execution time for different map and input sizes

Input size
Execution time (s) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 5.02 16.32 35.50 71.43 122.92

2048 9.24 31.39 69.47 140.35 242.64

3072 13.62 46.09 120.60 209.66 396.08

4096 17.81 60.96 196.44 278.91 485.25

5120 22.02 76.02 224.21 349.11 603.87

Table 5. 2 SOM-CPU throughput for different map and input sizes

Input size
Throughput (FLOPS) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 783298.80 542283.79 443097.73 344061.94 287908.62

2048 851209.01 563669.72 452792.12 350212.68 291698.46

3072 866368.98 575825.05 391249.97 351655.06 268046.99

4096 883333.71 580506.86 320273.67 352457.78 291723.10

5120 893063.82 581910.02 350753.75 351983.78 293021.04

Average

Throughput
855454.86 568839.09 391633.45 350074.25 286479.64

46

Table 5. 3 SOM-CPU Implementation for different dimensions

Dimension Execution Time (s)

3 224.21

4 213.77

5 264.98

6 321.06

Figure 5. 7 Raw execution time for SOM on AMD Athlon II CPU for different map and

input sizes.

47

Figure 5. 8 Raw throughput for SOM on AMD Athlon II CPU for different map and input

sizes.

The execution result of the SOM algorithm in CPU are shown in Fig 5.7 in terms

of execution time (s) and Fig. 5.8 in terms of throughput (FLOPS). It can be observed

that as the map size and input size increases, the execution time increases and the

throughput decreases.

5.5.2 Implementation in GPU

The SOM algorithm was implemented in CUDA on Nvidia Quadro K620 GPU

using the same operational flow and parameters used in FPGA implementation discussed

in Chapter 4 for the purpose of comparison with FPGA implementation proposed in this

research. Table 5.4 shows the execution time for the SOM-GPU algorithm

implementation for different map and input sizes. Table 5.5. shows the throughput for the

SOM-GPU algorithm implementation for different map and input sizes. Table 5.6. shows

execution time for the SOM-GPU algorithm implementation for a map size of 16x16 with

5120 inputs and varying dimensions.

48

Table 5. 4 SOM-GPU execution time for different map and input sizes

Input size
Execution time (s) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 8.75 31.99 69.25 149.04 257.73

2048 17.49 63.96 138.49 298.18 515.55

3072 26.23 95.96 207.73 447.31 773.31

4096 34.97 127.96 276.97 596.34 1031.07

5120 43.73 159.98 346.32 745.43 1288.93

Table 5. 5 SOM-GPU throughput for different map and input sizes

Input size
Throughput (FLOPS) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 449543.84 276601.01 227131.66 164893.12 137311.54

2048 449723.80 276652.91 227149.70 164839.48 137289.43

3072 449766.66 276598.13 227151.34 164823.45 137290.76

4096 449788.10 276557.78 227149.70 164845.56 137292.10

5120 449646.66 276521.48 227081.81 164844.67 137281.92

Average

Throughput
449693.81 276586.26 227132.8392 164849.25 137293.15

Table 5. 6 SOM-GPU implementation for different dimensions

Dimension Execution Time (s)

3 346.32

4 322.78

5 435.86

6 486.87

49

The execution result of the SOM algorithm in GPU are shown in Fig 5.9 in terms

of execution time (s) and Fig. 5.10 in terms of throughput (FLOPS). It can be observed

that as the map size and input size increases, the execution time increases and the

throughput decreases.

Figure 5. 9 Raw execution time for SOM on Nvidia Quadro K620 GPU for different map

and input sizes.

Figure 5. 10 Raw throughput for SOM on Nvidia Quadro K620 GPU for different map

and input sizes.

50

5.5.3 Implementation in FPGA

The SOM algorithm was implemented in Intel FPGA SDK for OpenCL on Stratix

V and Arria 10 FPGA accelerator boards. Table 5.7 and Table 5.8, shows the execution

time for the SOM-FPGA algorithm implementation on Stratix V and Arria 10 FPGA for

different map and input sizes. Table 5.9 and Table 5.10, shows the throughput for the

SOM-FPGA algorithm implementation on Stratix V and Arria 10 FPGA for different

map and input sizes. Table 5.11 and Table 5.12, shows execution time for the SOM-

FPGA algorithm implementation on Stratix V and Arria 10 FPGA for a map size of

16x16 with 5120 inputs and varying dimensions. The execution result for the SOM

algorithm in FPGA are shown in Fig 5.11 and Fig. 5.12 in terms of execution time (s) and

Fig. 5.13 and Fig. 5.14 in terms of throughput (FLOPS). It can be observed that as the

map size and input size increases, the execution time increases and the throughput

decreases.

Table 5. 7 SOM-FPGA execution time on Stratix V FPGA for different map and input

sizes

Input size
Execution time (s) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 3.74 15.38 29.18 55.29 97.56

2048 7.44 33.62 58.80 110.25 210.04

3072 12.35 40.78 98.50 188.83 330.19

4096 16.34 54.60 128.71 251.76 436.99

5120 19.51 64.68 159.22 314.68 531.06

51

Table 5. 8 SOM-FPGA execution time on Arria 10 FPGA for different map and input

sizes

Input size
Execution time (s) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 3.43 12.38 28.13 53.77 87.33

2048 7.55 32.58 54.07 107.10 185.25

3072 10.37 34.70 81.57 159.74 288.66

4096 14.27 46.59 107.55 214.65 384.14

5120 17.97 56.56 137.63 280.17 477.04

Table 5. 9 SOM-FPGA throughput on Stratix V FPGA for different map and input sizes

Input size
Throughput (FLOPS) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 1050219.94 575399.50 539116.03 444479.11 362740.28

2048 1057612.24 526383.08 534990.29 445831.09 336984.89

3072 955584.16 650858.79 479060.68 390442.40 321539.92

4096 962346.13 648118.12 488813.88 390469.28 323937.85

5120 1007934.99 683954.25 493934.88 390490.20 333194.28

Average

Throughput
1006739.49 616942.75 507183.15 412342.42 335679.44

52

Table 5. 10 SOM-FPGA throughput on Arria 10 FPGA for different map and input sizes

Input size
Throughput (FLOPS) for different Map Sizes

8x8 12x12 16x16 20x20 24x24

1024 1148012.90 714396.11 559115.89 457022.57 405217.21

2048 1041028.96 543040.52 581822.31 458950.62 382067.60

3072 1137330.22 764883.45 578443.42 461558.66 367798.62

4096 1102357.37 759549.68 584962.40 457974.16 368504.48

5120 1094182.46 782075.46 571416.74 438588.87 370927.38

Average

Throughput
1104582.38 712789.04 575152.15 454818.98 378903.06

Table 5. 11 SOM-FPGA implementation on Stratix V FPGA for different dimensions

Dimension Execution Time (s)

3 159.22

4 97.03

5 170.71

6 198.52

Table 5. 12 SOM-FPGA implementation on Arria 10 FPGA for different dimensions

Dimension Execution Time (s)

3 137.63

4 75.72

5 152.03

6 147.02

53

Figure 5. 11 Raw execution time for SOM on Stratix V FPGA for different map and input

sizes.

Figure 5. 12 Raw execution time for SOM on Arria 10 FPGA for different map and input

sizes.

54

Figure 5. 13 Raw throughput for SOM on Stratix V FPGA for different map and input

sizes.

Figure 5. 14 Raw throughput for SOM on Arria 10 FPGA for different map and input

sizes.

55

5.5.4 Performance Comparison between CPU and FPGA

Fig. 5.15 and Fig. 5.16, shows the execution time and throughput (FLOPS)

comparison for different map sizes and dimensions for AMD Athlon II CPU, Stratix V

FPGA and Arria 10 FPGA respectively. It is observed that for all map sizes Arria 10

FPGA gives the highest throughput followed by Stratix V FPGA, AMD Athlon II CPU

gives the lowest throughput in all cases compared to the FPGA devices. The

implementation in Fig 5.16 by varying dimensions was done for map size of 16x16 – 256

neurons with input size of 5120 points.

Figure 5. 15 Comparison of throughput for SOM implementation on AMD Athlon II

CPU, Stratix V and Arria 10 FPGAs for different map and input sizes.

56

Figure 5. 16 Comparison of throughput for SOM implementation on AMD Athlon II

CPU, Stratix V and Arria 10 FPGAs for different dimensions.

For the implementation shown in Fig 5.17 and Fig. 5.18, we chose map size:

16x16 – 256 neurons, input size: 5120 points and dimension: 3. The CPU (AMD Operton

6366HE and Intel core i7-2600) implementation result were obtained from [7] for

comparison with our FPGA (Stratix V and Arria 10 using OpenCL) and CPU (AMD

Athlon II) implementation. From Fig. 5.17 and Fig. 5.18, it can be observed that SOM-

CPU has higher execution time and lower throughput compared to SOM-FPGAs. From

Fig. 5.19, it can be also concluded that Stratix V achieved 16.55x, 2.53x and 1.41x

speedup compared to AMD Operton 6366HE and Intel core i7-2600 CPU [7] and our

AMD Athlon II CPU implementation and Arria 10 achieved 19.15x, 2.93x and 1.63x

speedup compared to AMD Operton 6366HE and Intel core i7-2600 CPU [7] and our

AMD Athlon II CPU implementation respectively.

57

Figure 5. 17 Comparison of execution time for SOM implementation between CPU and

FPGA.

Figure 5. 18 Comparison of throughput for SOM implementation between CPU and

FPGA.

58

Figure 5. 19 Speedup comparison between FPGA and CPU.

5.5.5 Performance Comparison between GPU and FPGA

Fig 5.20 and Fig. 5.21 shows the execution time and throughput (FLOPS)

comparison for different map sizes and dimensions for Nvidia GeForce GTX 590 [7],

Nvidia Quadro K620 GPU, Stratix V FPGA and Arria 10 FPGA respectively. For

comparison between FPGA and GPU, as shown in Fig 5.20 and Fig 5.21, we chose map

size: 16x16 – 256 neurons, input size: 5120 points and dimension: 3. The GPU (Nvidia

GeForce GTX 590 using OpenCL) implementation result were obtained from [7] for

comparison with our FPGA (Stratix V and Arria 10 using OpenCL) and GPU (Nvidia

Quadro K620 using CUDA) implementation. From the implementations, as shown in Fig.

21 and Fig. 22, it can be concluded that Stratix V and Arria 10 achieved speedup of 2.18x

and 2.52x compared to Nvidia Quadro K620 GPU and is slightly slower or similar in

terms of both execution time and throughput with that published in [20] using GPU. The

implementation in Fig 5.21 by varying dimensions was done for map size of 16x16 – 256

neurons with input size of 5120 points.

59

Figure 5. 20 Comparison of execution time for SOM implementation between GPU and

FPGA.

Figure 5. 21 Comparison of throughput for SOM implementation between GPU and

FPGA.

60

Figure 5. 22 Speedup comparison between FPGA and GPU

5.5.6 Performance Comparison between FPGAs

Fig. 5.23 and Fig 5.24, shows the speedup comparison between Stratix V and

Arria 10 FPGAs in terms of throughput (FLOPS) for different map sizes and dimensions.

The implementation in Fig 5.23 by varying dimensions was done for map size of 16x16 –

256 neurons with input size of 5120 points. From this implementation, it can be

concluded that Arria 10 FPGA shows better performance and has achieved a speedup of

1.12x compared to Stratix V FPGA.

61

Figure 5. 23 Comparison of throughput for SOM implementation between Stratix V and

Arria 10 FPGAs for different map sizes.

Figure 5. 24 Comparison of throughput for SOM implementation between Stratix V and

Arria 10 FPGAs for different dimensions.

62

5.6 Resource Utilization

Evaluation of resource utilized by the kernels are conducted by compiling the

kernel using the AOC compiler for different data features such as map and input sizes

and dimensions. The clock frequency (Kernel fmax) and hardware utilization such as

Logic Utilization, Adaptive Look-Up Tables (ALUTs), Dedicated Logic Registers,

Memory Blocks and Digital Signal Processing Blocks are different for each

implementation. The resource utilization for different map sizes is shown in Table 5.13,

Table 5.14 and Fig. 5.25, Fig. 5.26. The clock frequency in MHz for different

implementations shown in Fig. 5.27 and Fig 5.28, is dependent upon the complexity of

the HDL design generated by the AOCL. The operating frequency drops as the design

becomes more and more complex and thus the latency of computation increases. Table

5.15, Table 5.16 and Fig. 5.29, Fig. 5.30, shows the resource utilization for different

dimensions for a map size of 16x16 - 256 neurons and input size of 5120. For our

implementation, the resource utilization for different map and input sizes and dimensions

was well below 45%, which indicates that maps and input sizes and dimensions of higher

values can be implemented on the FPGAs before the resource utilization reaches a limit,

which makes it difficult for the Quartus software to fit the design on the FPGA. To better

fit the design on the FPGA decreasing/removing loop unroll factor for some and/or all

loops inside each kernel was implemented. For this reason, for some implementations,

FPGA resource usage and operating frequency dropped down compared to other

implementations.

63

Table 5. 13 Stratix V FPGA resource utilization for different map sizes

Map Size
Logic

Utilization
ALUTs

Dedicated Logic

Registers

Memory

Blocks
DSP Blocks

8x8 28 17 12 26 5

12x12 30 18 13 29 7

16x16 30 17 14 27 5

20x20 31 19 14 33 7

24x24 32 19 14 32 7

Table 5. 14 Arria 10 FPGA resource utilization for different map sizes

Map Size
Logic

Utilization
ALUTs

Dedicated Logic

Registers

Memory

Blocks
DSP Blocks

8x8 39 15 24 22 6

12x12 40 16 25 24 7

16x16 40 15 25 23 6

20x20 41 16 25 29 7

24x24 44 16 25 27 7

64

Figure 5. 25 Stratix V FPGA resource utilization for different map sizes.

Figure 5. 26 Arria 10 FPGA resource utilization for different map sizes.

65

Figure 5. 27 Stratix V FPGA clock frequency kernel (fmax) for different input sizes.

Figure 5. 28 Arria 10 FPGA clock frequency kernel (fmax) for different input sizes.

66

Table 5. 15 Stratix V FPGA resource utilization for different dimensions

Map Size
Logic

Utilization
ALUTs

Dedicated Logic

Registers

Memory

Blocks
DSP Blocks

8x8 30 17 14 27 5

12x12 28 17 13 25 0

16x16 31 18 14 31 5

20x20 31 18 14 31 5

24x24 30 17 14 27 5

Table 5. 16 Arria 10 FPGA resource utilization for different dimensions

Map Size
Logic

Utilization
ALUTs

Dedicated Logic

Registers

Memory

Blocks
DSP Blocks

8x8 40 15 25 23 6

12x12 39 15 24 21 6

16x16 41 16 25 27 7

20x20 41 16 25 27 7

24x24 40 15 25 23 6

67

Figure 5. 29 Stratix V FPGA resource utilization for different dimensions.

Figure 5. 30 Arria 10 FPGA resource utilization for different dimensions.

68

5.7 Energy Efficiency

In order to calculate the power consumption by various HPC platforms

implementing the SOM algorithm we used “Watts up? Pro” power meter [65], which can

be used to obtain true power consumed by the device with an accuracy of 1.5%. Table

5.17 shows the power consumption for two CPUs and FPGAs and GPU during the idle

mode and program execution mode. The idle power corresponds to the power of the

workstations when no computational tasks are assigned to them. The idle + execution

power corresponds to the power obtained during the SOM algorithm execution in the

respective devices. The actual execution power of the SOM algorithm was obtained by

subtracting the Idle Power from the (Idle + Execution Power).

Table 5. 17 Power Consumption of CPUs, GPU and FPGAs.

System

CPU with Stratix V

Board

CPU with Arria 10

Board

CPU with Nvidia

Quadro K620

Board

CPU

only

CPU

with

Board

CPU

only

CPU with

Board

CPU

only

CPU with

Board

Idle Power (W) 76.80 76.80 139.60 139.60 76.80 76.80

Idle + Execution

Power (W)
107.00 77.65 175.50 141.87 107.00 112.95

Actual Execution

Power (W)
30.20 0.85 35.90 2.27 30.20 36.15

69

Figure 5. 31 SOM algorithm execution power for CPU, GPU and FPGAs.

Fig. 5.31 shows a comparison of the SOM execution power (W) between the

CPU, GPU and FPGAs. From the power estimation as shown in Fig. 5.32 it was found

out that Stratix V and Arria 10 are 35.53x and 15.82x more power efficient compared to

CPU and 42.53x and 15.93x more power efficient compared to Nvidia Quadro K620

GPU. Moreover, it was found out that Stratix V was 2.67x more power efficient

compared to Arria 10 for SOM implementation.

70

Figure 5. 32 Comparison of efficiency (i.e. in terms of power) obtained using FPGA

compared to CPU and GPU.

5.8 Verification

A sequential version of SOM algorithm was implemented in CPU alongside

FPGA and GPU in order to ensure the accuracy of our FPGA and GPU implementations.

The implementation was done after SOM FPGA and GPU implementations respectively

on the same dataset. After the execution of the kernels, the host enqueues read command

in order to obtain the clustered data from the FPGA and GPU global memory to the host

memory for verification with the CPU clustered data obtained after SOM CPU

implementation. Two verification methods were used (1) Average Quantization Error and

(2) Visual representation. The average quantization error is the comparison/mapping of

how well the input values maps on to the output values. For implementations of varying

map and input sizes and dimensions, the average quantization error for all

implementations was found to be same for CPU, GPU and FPGA. It was found from the

implementations that the value of average quantization error decreases as the map and

input sizes and dimensions increased.

71

For the purpose of verification of our implementations, we employed a way to

visually represent our resultant clustered dataset similar to the way implemented in [7 and

59]. Similar visual representations were obtained in case of CPU, GPU and FPGA for all

data sets indicating the correctness our SOM implementation. Sample visual

representation of the resultant clustered data obtained from CPU, GPU and FPGA is

shown in Fig. 5.33.

CPU GPU FPGA

Sample 1

Sample 2

Figure 5. 33 Visual representation of SOM resultant clustered data obtained from HPC

platforms (i.e. CPU/GPU/FPGA)

72

Chapter 6 Conclusion

An optimized FPGA based acceleration of SOM algorithm was implemented

using IFSO. HLS implementation using Stratix V and Arria 10 FPGAs of SOM was

evaluated against other HPC platforms such as CPUs and GPUs. We had to efficiently

restructure the operational flow of the SOM algorithm to fully take advantage of the

parallel nature of the algorithm.

Our FPGA implementation using Stratix V and Arria 10 was able to achieve

speedup of 16.55x and 19.15x Vs AMD Operton CPU, 1.41x and 1.63x Vs AMD Athlon

II CPU and 2.53x and 2.93x Vs Intel CPU respectively. Compared to Nvidia Quadro

K620 GPU, our implementation using Stratix V and Arria 10 FPGA, achieved speedup of

2.18x and 2.52x respectively. Moreover, Arria 10 FPGA achieved speedup of 1.12x

compared to Stratix V FPGA. In terms of power, Stratix V and Arria 10 are 35.53x and

15.82x more power efficient compared to CPU and 42.53x and 15.93x more power

efficient compared to Nvidia Quadro K620 GPU.

Due to the recent advancement in FPGA technology and an increasing demand for

FPGAs, it is likely that FPGAs (i.e. newer generations) could outperform GPUs in

solving computationally intensive tasks. In this research, we used single chip FPGA

based accelerators, Stratix V and Arria 10, it would be interesting to see how SOM

algorithm performance and resource utilization would change when multi-chip FPGA

accelerators and newer versions of the FPGA accelerator boards are used. Even though

we were able to fit the design onto a single FPGA board, it would be interesting to see

how the SOM algorithm performs compared to GPUs and CPUs when the same

algorithm is implemented on multiple FPGA boards at the same time and the maximum

number of neurons and dimensions can be used for SOM computation.

73

References

[1]H. Hikawa and Y. Maeda, "Improved Learning Performance of Hardware Self-

Organizing Map Using a Novel Neighborhood Function," in IEEE Transactions on

Neural Networks and Learning Systems, vol. 26, no. 11, pp. 2861-2873, Nov. 2015.

doi: 10.1109/TNNLS.2015.2398932.

[2]Qing Y. Tang and Mohammed A. S. Khalid. 2016. Acceleration of k-Means

Algorithm Using Altera SDK for OpenCL. ACM Trans. Reconfigurable Technol.

Syst. 10, 1, Article 6 (September 2016), 19 pages. DOI:

https://doi.org/10.1145/2964910.

[3]Momen, Mohammad Abdul. "FPGA-Based Acceleration of Expectation Maximization

Algorithm using High Level Synthesis." MASc Thesis, University of Windsor, 2017.

[4]Yixing Li, Zichuan Liu, Kai Xu, Hao Yu, and Fengbo Ren. 2018. A GPU-

Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural

Networks. J. Emerg. Technol. Comput. Syst. 14, 2, Article 18 (July 2018), 16 pages.

DOI: https://doi.org/10.1145/3154839.

[5]Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. 2019. [DL]

A Survey of FPGA-based Neural Network Inference Accelerators. ACM Trans.

Reconfigurable Technol. Syst. 12, 1, Article 2 (March 2019), 26 pages. DOI:

https://doi.org/10.1145/3289185.

[6]Ma, Yufei, Naveen Suda, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. "ALAMO:

FPGA acceleration of deep learning algorithms with a modularized RTL compiler."

Integration 62 (2018): 14-23.

https://doi.org/10.1145/3154839
https://doi.org/10.1145/3289185

74

[7]Davidson, Gavin. "A parallel implementation of the self organising map using

OpenCL." Level 4 Project, School of Computing Science, University of Glasgow

(2015).

[8]Intel FPGA SDK for OpenCL, [Online] Available from -

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-

opencl/overview.html. [Accessed August 13, 2019]

[9]Luthra, Siddhant. "High level synthesis and evaluation of an automotive radar signal

processing algorithm for fpgas." MASc Thesis, University of Windsor, 2017.

[10]The Khronos Group Inc., [Online] Available from - https://www.khronos.org/.

[Accessed August 13, 2019].

[11]Sanders, Jason, and Edward Kandrot. CUDA by example: an introduction to general-

purpose GPU programming. Addison-Wesley Professional, 2010.

[12]Altera SDK for OpenCL – Getting Started Guide. [Online] Available from -

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/open

cl-sdk/archives/ug-aocl-getting-started-16.0.pdf. [Accessed August 13, 2019].

[13]Altera SDK for OpenCL – Programming Guide.[Online] Available from -

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/open

cl-sdk/archives/aocl-programming-guide-15.1.pdf. [Accessed August 13, 2019].

[14]Altera SDK for OpenCL – Best Practices Guide. [Online] Available from -

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/open

cl-sdk/aocl_optimization_guide.pdf. [Accessed August 13, 2019].

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.khronos.org/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-getting-started-16.0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-getting-started-16.0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/aocl-programming-guide-15.1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/aocl-programming-guide-15.1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf

75

[15]What Is High-Performance Computing? [Online] Available from -

https://www.netapp.com/us/info/what-is-high-performance-computing.aspx.

[Accessed August 20, 2019]

[16]Geshi, M. (2019). The Art of High Performance Computing for Computational

Science, Vol. 1. Springer.

[17]About High-Performance Computing (HPC). [Online] Available from -

https://www.ichec.ie/news/press-corner/about-high-performance-computing-hpc.

[Accessed August 20, 2019].

[18]Shan, Amar. "Heterogeneous processing: a strategy for augmenting moore's law."

Linux Journal 2006, no. 142 (2006): 7.

[19]Zahran, M. (2019). Heterogeneous Computing: Hardware and Software Perspectives.

Morgan & Claypool.

[20]Gottlieb, Allan, and G. Almasi. Highly parallel computing. Redwood City, CA:

Benjamin/Cummings, 1989.

[21]Bit-level parallelism. [Online] Available from - https://en.wikipedia.org/wiki/Bit-

level_parallelism. [Accessed August 20, 2019].

[22]Instruction-level parallelism [Online] Available from -

https://en.wikipedia.org/wiki/Instruction-level_parallelism. [Accessed August 20,

2019].

[23]Data-level parallelism. [Online] Available from -

https://en.wikipedia.org/wiki/Data_parallelism. [Accessed August 20, 2019].

[24]Task-level parallelism. [Online] Available from -

https://en.wikipedia.org/wiki/Task_parallelism. [Accessed August 20, 2019].

https://www.netapp.com/us/info/what-is-high-performance-computing.aspx
https://www.ichec.ie/news/press-corner/about-high-performance-computing-hpc
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism

76

[25]Inta, Ra, David J. Bowman, and Susan M. Scott. "The Chimera: an off-the-shelf

CPU/GPGPU/FPGA hybrid computing platform." International Journal of

Reconfigurable Computing 2012 (2012): 2.

[26]Waidyasooriya, H. M., Hariyama, M., & Uchiyama, K. (2018). Design of FPGA-

based computing systems with OpenCL. Springer International Publishing.

[27]Parab, J. S., Gad, R. S., & Naik, G. M. (2018). Hands-on Experience with Altera

FPGA Development Boards. Springer.

[28]FPGA Architecture. [Online] Available from - https://allaboutfpga.com/fpga-

architecture/.[Accessed August 20, 2019].

[29]Stratix V FPGA Features. [Online] Available from -

https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-

v/features.html. [Accessed August 20, 2019].

[30]Arria 10 FPGA Features. [Online] Available from -

https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga/arria-

10/features.html. [Accessed August 20, 2019].

[31]Terasic [Online] Available from - https://www.terasic.com.tw/en/.[Accessed August

20, 2019].

[32]Bittware [Online] Available from - https://www.bittware.com. [Accessed August 20,

2019].

[33]Altera Corporation, “OpenCL Reference Platforms,” [Online]. [Accessed: Dec 01,

2015]

[34]Nallatech 385 –with Stratix V A7 FPGA PCIe Accelerator Card. [Online] Available

from -

https://allaboutfpga.com/fpga-architecture/
https://allaboutfpga.com/fpga-architecture/
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-v/features.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-v/features.html
https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga/arria-10/features.html
https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga/arria-10/features.html
https://www.terasic.com.tw/en/
https://www.bittware.com/

77

https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-

profile/isi-nallatech/board/385---with-stratix-v-a7-fpga-pcie-accelerator-card.html.

[Accessed August 20, 2019]

[35]Nallatech 385A –with Arria 10 FPGA PCIe Accelerator Card. [Online] Available

from -

https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-

profile/isi-nallatech/board/385a---pga-accelerator-card-with-arria-10-fpga.html.

[Accessed August 20, 2019]

[36]Coussy, Philippe, and Adam Morawiec, eds. High-level synthesis: from algorithm to

digital circuit. Springer Science & Business Media, 2008.

[37]Nane, Razvan, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew

Canis, Yu Ting Chen et al. "A survey and evaluation of FPGA high-level synthesis

tools." IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 35, no. 10 (2015): 1591-1604.

[38]Scarpino, M. (2011). OpenCL in action: how to accelerate graphics and

computations. Manning Publications.

[39]The Khronos Group Inc. “OpenCL Overview” [online]. Available:

https://www.khronos.org/opencl/. [Accessed August 20, 2019].

[40]A. Munshi, "The OpenCL specification," 2009 IEEE Hot Chips 21 Symposium

(HCS), Stanford, CA, 2009, pp. 1-314.doi: 10.1109/HOTCHIPS.2009.7478342

[41]Janik, Ian, Qing Tang, and Mohammed Khalid. "An Overview of Altera SDK for

OpenCL: A User Perspective." In 2015 IEEE 28th Canadian Conference on Electrical

and Computer Engineering (CCECE), pp. 559-564. IEEE, 2015.

https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/isi-nallatech/board/385---with-stratix-v-a7-fpga-pcie-accelerator-card.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/isi-nallatech/board/385---with-stratix-v-a7-fpga-pcie-accelerator-card.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/isi-nallatech/board/385a---pga-accelerator-card-with-arria-10-fpga.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/isi-nallatech/board/385a---pga-accelerator-card-with-arria-10-fpga.html
https://www.khronos.org/opencl/

78

[42]Kohonen, Teuvo. "The self-organizing map." Proceedings of the IEEE 78, no. 9

(1990): 1464-1480.

[43]Kohonen, Teuvo. "Exploration of very large databases by self-organizing maps." In

Proceedings of International Conference on Neural Networks (ICNN'97), vol. 1, pp.

PL1-PL6. IEEE, 1997.

[44]Johnsson, Magnus, ed. Applications of Self-Organizing Maps. BoD–Books on

Demand, 2012.

[45]Image of nervous system. [online] Available: https://pngtree.com/freepng/simple-

human-nervous-system-map_3254163.html. [Accessed August 20, 2019]

[46]Image of human brain. [online] Available:

https://en.wikipedia.org/wiki/Human_brain. [Accessed August 20, 2019].

[47]Roussinov, Dmitri G., and Hsinchun Chen. "A scalable self-organizing map

algorithm for textual classification: A neural network approach to thesaurus

generation.” Communication Cognition and Artificial Intelligence, Spring (1998),

v.15, pg.: 81-112.

[48]Richardson, A. J., Risien, C., & Shillington, F. A. (2003). Using self-organizing

maps to identify patterns in satellite imagery. Progress in Oceanography, 59(2-3),

223-239.

[49]Hardman-Mountford, N. J., Richardson, A. J., Boyer, D. C., Kreiner, A., & Boyer, H.

J. (2003). Relating sardine recruitment in the Northern Benguela to satellite-derived

sea surface height using a neural network pattern recognition approach. Progress in

Oceanography, 59(2-3), 241-255.

https://pngtree.com/freepng/simple-human-nervous-system-map_3254163.html
https://pngtree.com/freepng/simple-human-nervous-system-map_3254163.html
https://en.wikipedia.org/wiki/Human_brain

79

[50]Lobo, V. J. (2009). Application of self-organizing maps to the maritime environment.

In Information Fusion and Geographic Information Systems (pp. 19-36). Springer,

Berlin, Heidelberg.

[51]Iturriaga, F. J. L., & Sanz, I. P. (2013). Self-organizing maps as a tool to compare

financial macroeconomic imbalances: The European, Spanish and German case. The

Spanish Review of Financial Economics, 11(2), 69-84.

[52]Faigl, J. (2016). An application of self-organizing map for multirobot multigoal path

planning with minmax objective. Computational intelligence and neuroscience, 2016.

[53]Marie Cottrell, Madalina Olteanu, Fabrice Rossi, Nathalie Villa-Vialaneix. Self-

OrganizingMaps, theory and applications. Revista de Investigacion Operacional,

2018, 39 (1), pp.1-22. hal-01796059.

[54]McConnell, Sabine, Robert Sturgeon, Gregory Henry, Andrew Mayne, and Richard

Hurley. "Scalability of Self-organizing Maps on a GPU cluster using OpenCL and

CUDA." In Journal of Physics: Conference Series, vol. 341, no. 1, p. 012018. IOP

Publishing, 2012.

[55]Moraes, Felipe C., Silvia C. Botelho, Nelson Duarte Filho, and Joel Felipe O. Gaya.

"Parallel high dimensional self organizing maps using CUDA." In 2012 Brazilian

Robotics Symposium and Latin American Robotics Symposium, pp. 302-306. IEEE,

2012.

[56]Prabhu, Raghavendra D. "SOMGPU: an unsupervised pattern classifier on graphical

processing unit." In 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence), pp. 1011-1018. IEEE, 2008.

80

[57]Zhongwen, Luo, Liu Hongzhi, Yang Zhengping, and Wu Xincai. "Self-organizing

maps computing on graphic process unit." European Symposium on Artificial Neural

Networks Bruges (Belgium), 2005.

[58]Hikawa, Hiroomi. "FPGA implementation of self organizing map with digital phase

locked loops." Neural Networks 18, no. 5-6 (2005): 514-522.

[59]Brassai, S. T. "FPGA based hardware implementation of a self-organizing map." In

IEEE 18th International Conference on Intelligent Engineering Systems INES 2014,

pp. 101-104. IEEE, 2014.

[60] Appiah, K., Hunter, A., Meng, H., Yue, S., Hobden, M., Priestley, N., ... & Pettit, C.

(2009, June). A binary self-organizing map and its FPGA implementation. In 2009

International Joint Conference on Neural Networks (pp. 164-171). IEEE.

[61]Intel FPGA SDK for OpenCL. [Online] Available from -

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-

opencl/overview.html. [Accessed August 20, 2019]

[62]AMD Athlon II 170u Processor. [Online] Available from -

https://www.cnet.com/products/amd-athlon-ii-x2-170u-2-ghz-processor/.[Accessed

August 20, 2019]

[63]Nvidia Quadro K620 GPU. [Online] Available from -

https://images.nvidia.com/content/pdf/quadro/datasheets/75509_DS_NV_Quadro_K6

20_US_NV_HR.pdf. [Accessed August 20, 2019]

[64]Gavin Davidson, Parallel Self-Organising Map in OpenCL, 2014-2015. [Online]

Available from - https://github.com/wimvanderbauwhede/Parallel-SOM.

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.cnet.com/products/amd-athlon-ii-x2-170u-2-ghz-processor/
https://images.nvidia.com/content/pdf/quadro/datasheets/75509_DS_NV_Quadro_K620_US_NV_HR.pdf
https://images.nvidia.com/content/pdf/quadro/datasheets/75509_DS_NV_Quadro_K620_US_NV_HR.pdf
https://github.com/wimvanderbauwhede/Parallel-SOM

81

[65]Watts Up? Pro Power Meter. [Online] Available from -

https://www.vernier.com/products/sensors/wu-pro/.[Accessed August 20, 2019]

https://www.vernier.com/products/sensors/wu-pro/

82

Appendix A: Intel FPGA SDK for OpenCL Template

//Library and header file declaration

//Declaring all the necessary libraries and associated/required header

//files for the implementation of the program

#include <stdio.h>

#include <stdlib.h>

.

.

.

.

.

#include "CL/opencl.h" //OpenCL header file

#include "AOCLUtils/aocl_utils.h" //AOCL header file

#include "header_file.h" //Header file created by the

//user(if required)

using namespace std;

using namespace aocl_utils; //AOCL declaration

//AOCL Alignment

//Required for DMA transfer from host to device [14]

#define AOCL_ALIGNMENT 64

//Enumeration of kernels

//Used as an identifier specifying the kernel number to be used in code

//efficiently.

enum KERNELS

{

 K_1,

 K_2,

 .

 .

 K_NUM_KERNELS

};

//Kernel names

//Lists the names of the kernels used in the kernel.cl while writing

//the kernel codes for each kernel.

static const char* kernel_names[K_NUM_KERNELS] =

{

 "kernel_1_name",

 "kernel_2_name",

 .,

 .,

 "last_kernel_name"

};

//Runtime OpenCL Configuration

//Used for declaring/creating platform, device, context, queues, kernel

//and program variables according to AOCL specifications

static cl_platform_id platform = NULL; //Platform

static cl_device_id device = NULL; //Device

static cl_context context = NULL; //Context

static cl_command_queue queues[K_NUM_KERNELS]; //Queques

static cl_kernel kernels[K_NUM_KERNELS]; //Kernels

83

static cl_program program = NULL; //Program

static cl_int status = 0; //Status for all OpenCL

//execution

//Device Buffer

//Used to store data for FPGA implementation and transferring data to

and from host.

cl_mem d_buffer1;

cl_mem d_buffer2;

.

.

.

cl_mem d_budderN;

//Host Buffer

//Used to store data for CPU implementation and transferring data to

and from device.

cl_float * h_buffer1 = new cl_float;

cl_float * h_buffer2 = new cl_float;

.

.

.

cl_float * h_bufferN = new cl_float;

//Execution time variable

//Variables declared for performance computation.

float cpu_time = 0.0; //CPU Execution time in s

double fpga_time = 0.0; //FPGA Execution time in s

float start_time_cpu = 0.0; //Start CPU execution at 0s

double start_time_fpga = 0.0; //Start FPGA execution in 0s

//Function Prototype – Support

//Function generates the dataset for the program and conducts all

//initial calculations that is suitable to be implemented in CPU before

//FPGA implementation

void initialize();

//Function Prototype – CPU

//Function carries out the CPU version of the program. The output of

//this function will be compared with FPGA implementation for

//verification of results.

void run_cpu(); //CPU execution

//Function Prototype - OpenCL

bool init_opencl(); //Initialize device for OpenCL implementation

void run_fpga(); //FPGA execution

void cleanup(); //Release memory objects

84

// START: MAIN FUNCTION

int main()

{

 //Initializing OpenCL

 if(!init_opencl()) //Initializing OpenCL

 {

 return false;

 }

 printf("\nSUCCESSFUL: OpenCL FPGA Initialization.\n\n");

 //Initializing data

 initialize();

 //FPGA - Implementation

 run_fpga();

 //CPU - Implementation

 run_cpu();

 //Memory Cleanup

 cleanup();

}

//END: MAIN FUNCTION

//HELPER FUNCTIONS

// START: Initialize

void initialize()

{

 printf("\nSTART: Allocation of Host Buffer\n");

 //Allocating memory for host

 //The size of memory required for host buffer is declared here. The

 //host buffers needs to be 64-byte aligned in order to facilitate

 //DMA transfer to and from FPGA [14].

 int temp_h_buffer1 = posix_memalign((void**)&h_buffer1,

AOCL_ALIGNMENT, sizeof(cl_float));

 int temp_h_buffer2 = posix_memalign((void**)&h_buffer2,

AOCL_ALIGNMENT, sizeof(cl_float));

 .

 .

 .

 int temp_h_bufferN = posix_memalign((void**)&h_bufferN,

AOCL_ALIGNMENT, sizeof(cl_float));

 if(!temp_h_buffer1 || !temp_h_buffer2 || !temp_h_bufferN)

 {

 printf("\nSUCCESSFUL: Allocation of Host Buffer.\n");

 }

 else

 {

 printf("\nERROR: Allocation of Host Buffer.\n");

 }

85

 printf("Initialization SUCCESS!!\n");

}

// END: Initialize

//Initializing OpenCL

// START: OpenCL Initialization

bool init_opencl()

{

 cl_int status;

 //Start everything at NULL to help identify errors

 for(int i = 0; i < K_NUM_KERNELS; ++i)

 {

 kernels[i] = NULL;

 queues[i] = NULL;

 }

 //Locate Files via relative path

 if(!setCwdToExeDir())

 {

 return false;

 }

 //Get the OpenCL Platform

 //platform = findPlatform("Intel(R) FPGA");

 platform = findPlatform("Altera");

 if(platform == NULL)

 {

 printf("ERROR: Unable to find Intel(R) FPGA OpenCL

platform.\n");

 return false;

 }

 //Query the available OpenCL devices and just use the first device

if there is more than one

 scoped_array<cl_device_id> devices;

 cl_uint num_devices;

 devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL,

&num_devices));

 device = devices[0];

 //Create the context

 context = clCreateContext(NULL, 1, &device, &oclContextCallback,

NULL, &status);

 checkError(status, "ERROR: Failed to create context\n");

 //Create the command queues

 for(int i = 0; i < K_NUM_KERNELS; ++i)

 {

 queues[i] = clCreateCommandQueue(context, device,

CL_QUEUE_PROFILING_ENABLE, &status);

86

 checkError(status, "ERROR: Failed to create command queue (%d:

%s)\n", i, kernel_names[i]);

 }

 //Create the program

 std::string binary_file =

getBoardBinaryFile("Kernel_AOCX_file_name", device);

 printf("Using AOCX: %s\n\n", binary_file.c_str());

 program = createProgramFromBinary(context, binary_file.c_str(),

&device, 1);

 //Build the program that was just created.

 status = clBuildProgram(program, 0, NULL, "", NULL, NULL);

 checkError(status, "ERROR: Failed to build program.\n");

 //Create the kernel - name passed in here must match kernel name in

the original CL file, that was compiled into an AOCX file using the AOC

tool

 for(int i = 0; i < K_NUM_KERNELS; ++i)

 {

 kernels[i] = clCreateKernel(program, kernel_names[i], &status);

 checkError(status, "ERROR: Failed to create kernel (%d: %s)\n",

i, kernel_names[i]);

 }

 return true;

}

// END: OpenCL Initialization

// START: FPGA Implementation

void run_fpga()

{

 //Create Device Buffer

 //Allocates the memory size and indicates the memory bank to store

 //the data for FPGA implementation.

 d_buffer1 = clCreateBuffer(context, CL_MEM_READ_WRITE |

CL_MEM_BANK_1_ALTERA, sizeof(cl_float), NULL, &status);

 checkError(status, "ERROR: Failed to allocate input device buffer:

d_buffer1.!\n");

 d_buffer2 = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_BANK_2_ALTERA, sizeof(cl_float), NULL, &status);

 checkError(status, "ERROR: Failed to allocate input device buffer:

d_buffer2.!\n");

 .

 .

 .

 d_bufferN = clCreateBuffer(context, CL_MEM_READ_WRITE |

CL_MEM_BANK_1_ALTERA, sizeof(cl_float), NULL, &status);

 checkError(status, "ERROR: Failed to allocate input device buffer:

d_bufferN.!\n");

 printf("\nSUCCESSFUL: Created Device Buffer.!\n");

87

 //Copy Data from Host to Device

 //Transferring data from host buffers to device (i.e. FPGA) buffer

 //before starting the execution of the kernels.

 status = clEnqueueWriteBuffer(queues[Kernel_number], d_buffer1,

CL_TRUE, 0, sizeof(cl_float), h_buffer1, 0, NULL, NULL);

 checkError(status, "ERROR: Failed to copy data from host to device:

h_buffer1, d_buffer1.!\n");

 .

 .

 .

 status = clEnqueueWriteBuffer(queues[Kernel_number], d_bufferN,

CL_TRUE, 0, sizeof(cl_float), h_bufferN, 0, NULL, NULL);

 checkError(status, "ERROR: Failed to copy data from host to device:

h_bufferN, d_bufferN.!\n");

 //Set the kernel argument

 //Sets the arguments of the kernels written in the kernel.cl file.

 status = clSetKernelArg(kernels[Kernel_number], <Argument_number>,

sizeof(cl_mem), (void*)&d_buffer1);

 checkError(status, "\nERROR: Failed to set up kernel (K_comp)

argument <Argument_number>\n");

 .

 .

 .

 status = clSetKernelArg(kernels[Kernel_number], <Argument_number>,

sizeof(cl_mem), (void*)&d_bufferN);

 checkError(status, "\nERROR: Failed to set up kernel (K_comp)

argument <Argument_number>\n");

 //Launching Kernel

 //Execution of the kernels starts from here on the FPGA board.

 status = clEnqueueTask(queues[Kernel_number],

kernels[Kernel_number], 0, NULL, NULL);

 checkError(status, "ERROR: Failed to launch kernel: %s\n",

kernel_names[Kernel_number]);

 //or

 status = clEnqueueNDRangeKernel(queues[Kernel_number],

kernels[Kernel_number], 1, NULL, <global_size>, <local_size>, 0, NULL,

NULL);

 checkError(status, "ERROR: Failed to launch kernel: %s",

kernel_names[Kernel_number]);

 //Finishing Command Queue of kernel

 //Waits for the execution of kernel to finish and then procedes to

 //the next step

 status = clFinish(queues[Kernel_number]);

 checkError(status, "\nERROR: Failed to finish command queue of

(%s)\n", kernel_names[Kernel_number]);

 //Reading from Device to Host

 //After the execution of the kernel is finished. Sends data from

 //the FPGA back to the CPU for analysis.

 status = clEnqueueReadBuffer(queues[Kernel_number], d_bufferN,

CL_TRUE, 0, sizeof(cl_float), h_bufferN, 0, NULL, NULL);

88

 checkError(status, "\nERROR: Failed to copy data from Device to

Host\n");

 status = clFinish(queues[Kernel_number]);

 checkError(status, "\nERROR: Failed to finish command queue of

(%s)\n", kernel_names[Kernel_number]);

}

// END: FPGA Implementation

//CLEANUP – Release Memory Objects

// START: Cleanup

//Releases the memory objects.

void cleanup()

{

 //Release kernels

 for(int i = 0; i < K_NUM_KERNELS; ++i)

 {

 if(kernels[i])

 {

 clReleaseKernel(kernels[i]);

 }

 }

 //Release Program

 if(program)

 {

 clReleaseProgram(program);

 }

 //Release command queue

 for(int i = 0; i < K_NUM_KERNELS; ++i)

 {

 if(queues[i])

 {

 clReleaseCommandQueue(queues[i]);

 }

 }

 //Release context

 if(context)

 {

 clReleaseContext(context);

 }

 //Free/release device buffer

 if(d_buffer1)

 {

 clReleaseMemObject(d_buffer1);

 }

 if(d_bufferN)

 {

 clReleaseMemObject(d_bufferN);

 }

89

 .

 .

 .

 if(d_bufferN)

 {

 clReleaseMemObject(d_bufferN);

 }

}

// END: Cleanup

90

Appendix B: SOM OpenCL Kernel

//inclusing header

#include "../host/inc/som.h"

//***

//START >> Kernel 1

//***

__kernel

__attribute__((task))

void SOMComp(__global float * restrict K_cur_map,

 __global float * restrict K_input,

 __global float * restrict K_gauss_value_list)

{

 int input_index;

 int winnerpass = 0;

 int winner = 0;

 float winnerDistance;

 float possible_winnerDistance;

 int current_pos;

 int neighbourhood_value;

 int a_x;

 int a_y;

 int b_x;

 int b_y;

 int output;

 int total_map_values_fpga =

map_side_size*map_side_size*input_vector_length;

 int total_input_values = input_size*input_vector_length;

 float g_gauss[map_side_size];

 __local float g_distance_map[map_side_size*map_side_size];

 __local float

cur_map[map_side_size*map_side_size*input_vector_length];

 __local float g_input[input_size*input_vector_length];

 #pragma unroll map_side_size

 for(int j = 0; j < total_input_values; j++)

 {

 g_input[j] = K_input[j];

 }

 #pragma unroll map_side_size

 for(int i = 0; i < total_map_values_fpga; i++)

 {

 cur_map[i] = K_cur_map[i];

 }

 #pragma unroll map_side_size

 for(int i = 0; i < map_side_size; i++)

 {

 g_gauss[i] = K_gauss_value_list[i];

 }

91

 for(input_index = 0; input_index < total_input_values; input_index

= input_index + input_vector_length)

 {

 float sum = 0;

 int b_index = input_index;

 #pragma unroll input_vector_length

 for(int a_index = 0; a_index < input_vector_length; a_index++)

 {

 sum += fabs(cur_map[a_index] - g_input[b_index]);

 b_index++;

 }

 winnerDistance = sum;

 for(int i = 0; i < total_map_values_fpga; i = i +

input_vector_length)

 {

 float accu = 0;

 int c_index = input_index;

 for(int j = i; j < (input_vector_length + i); j++)

 {

 accu += fabs(cur_map[j] - g_input[c_index]);

 c_index++;

 }

 g_distance_map[i/input_vector_length] = accu;

 }

 #pragma unroll map_side_size

 for(int distance_index = 0; distance_index <

(map_side_size*map_side_size); distance_index++)

 {

 if(g_distance_map[distance_index] < winnerDistance)

 {

 winnerDistance = g_distance_map[distance_index];

 winner = distance_index;

 }

 }

 winnerpass = winner;

 for(int i = 0; i < total_map_values_fpga; i++)

 {

 int a = i/input_vector_length;

 int b = winnerpass;

 a_x = a % map_side_size;

 a_y = a / map_side_size;

 b_x = b % map_side_size;

 b_y = b / map_side_size;

 neighbourhood_value = max(abs(a_x - b_x), abs(a_y - b_y));

 cur_map[i] = cur_map[i] - ((cur_map[i] -

g_input[input_index + (i % input_vector_length)]) *

g_gauss[neighbourhood_value]);

 }

 }

92

 #pragma unroll map_side_size

 for(int l = 0; l < total_map_values_fpga; l++)

 {

 K_cur_map[l] = cur_map[l];

 }

}

//***

//END >> Kernel 1

//***

//***

//START >> Kernel 2

//***

__kernel

__attribute__((task))

void NeigRed(__global float * restrict K_gauss_value_list)

{

 float temp_value;

 float g_gauss[map_side_size];

 #pragma unroll map_side_size

 for(int j = 0; j < map_side_size; j++)

 {

 g_gauss[j] = K_gauss_value_list[j];

 }

 #pragma unroll map_side_size

 for(int i = 1; i < map_side_size; i++)

 {

 temp_value = g_gauss[i];

 g_gauss[i - 1] = temp_value;

 }

 g_gauss[map_side_size - 1] = 0;

 #pragma unroll map_side_size

 for(int k = 0; k < map_side_size; k++)

 {

 K_gauss_value_list[k] = g_gauss[k];

 }

}

//***

//END >> Kernel 2

//***

93

Vita Auctoris

NAME: Mohammad Abdul Moin Oninda

PLACE OF BIRTH:

Dhaka, Bangladesh

YEAR OF BIRTH:

1995

EDUCATION:

Bachelor of Science in

Electrical & Electronic Engineering (2014-2017)

Islamic University of Technology, Gazipur,

Bangladesh.

 Master of Applied Science in

Electrical Engineering (2019)

Department of Electrical and Computer Engineering,

University of Windsor, Windsor, ON, Canada.

	FPGA-Based Acceleration of the Self-Organizing Map (SOM) Algorithm using High-Level Synthesis
	Recommended Citation

	tmp.1576791004.pdf.t9Mrc

