
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

A Compact Camera with a Reconfigurable Real-time Embedded A Compact Camera with a Reconfigurable Real-time Embedded

Image Processor for Pharmaceutical Capsule Inspections Image Processor for Pharmaceutical Capsule Inspections

Anthony Karloff
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Karloff, Anthony, "A Compact Camera with a Reconfigurable Real-time Embedded Image Processor for
Pharmaceutical Capsule Inspections" (2008). Electronic Theses and Dissertations. 8030.
https://scholar.uwindsor.ca/etd/8030

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8030?utm_source=scholar.uwindsor.ca%2Fetd%2F8030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Compact Camera with a Reconfigurable
Real-time Embedded Image Processor for

Pharmaceutical Capsule Inspections

by

Anthony Karloff

A Thesis
Submitted to the Faculty of Graduate Studies through

Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47052-7
Our file Notre reference
ISBN: 978-0-494-47052-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

© 2008 Anthony Karloff

All Rights Reserved. No Part of this document may be reproduced, stored or oth­

erwise retained in a retreival system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Declaration of

Co- Authorship/Previous

Publication

I. Co-Authorship Declaration

This thesis also incorporates the outcome of a joint research undertaken in collab­

oration with Neil Scott and Mohammad Islam under the supervision of Dr. Roberto

Muscedere and Dr. Majid Ahmadi. The collaboration is covered in Chapter 2 of the

thesis. In all cases, the key ideas, primary contributions, experimental designs, data

analysis and interpretation, were performed by the author.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

iv

DECLARATION OF CO-AUTHORSHIP/PREVIOUS PUBLICATION

II. Declaration of Previous Publication

This thesis includes one original paper that has been previously published in a

peer reviewed journal, as follows:

Thesis Chapter
Chapter 2

Full Citation
A. Karloff, N. Scott, and R. Muscedere. A flexible
design for a cost effective, high-throughput inspec­
tion system for pharmaceutical capsules. In Proc.
IEEE International Conference on Industrial Technol­
ogy, April 2008

Status
Published

I certify that I have obtained a written permission from the copyright owner(s)

to include the above published material(s) in my thesis. I certify that the above

material describes work completed during my registration as graduate student at the

University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University of Institution.

Abstract

The following thesis presents the system requirements, design methodology, final

hardware design and system integration of a custom digital camera for high-speed

pharmaceutical capsule inspections.

The primary goals of the camera design were to minimize the cost of the device

and to have a flexible design that could be easily upgraded in the future. For this

application, a 3.1 mega pixel CMOS image sensor was used with a USB 2.0 interface.

In addition, the custom camera can pre-process image data in an embedded, recon-

figurable real-time image processor implemented in a FPGA. All data processing in

the camera occurs with only buffering four rows of an image, eliminating the need for

RAM on the device and lowering the overall cost.

The final design was manufactured and implemented into a complete inspection

system which used 16 of these cameras to inspect up to 60 000 capsules per second.

VI

To my family and friends for their endless support and encouragement. This work
would not have been possible without you.

vn

Acknow ledgments

There are several people who deserve to be acknowledged for their generous con­

tributions to this project. I would first like to express my sincere gratitude and

appreciation to Dr. Roberto Muscedere, my supervisor, for his invaluable guidance

and involvement throughout the course of this thesis. I would also like to extend a

very special thanks to Dr. Majid Ahmadi and Dr. Maher Sid-Ahmed for their expert

guidance, encouragement and constant support throughout my studies.

Vlll

Contents

Declaration of Co-Authorship/Previous Publication iv

Abstract vi

Dedication vii

Acknowledgments viii

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Project Overview 2

1.2 Quality Control of Two Part Gelatin Capsules 2

1.3 Methods of Defect Detection 3

1.3.1 Current Inspection Methods 3

1.3.2 Introduction to Machine Vision 5

1.3.3 Commercial Systems 6

1.4 Proposed Solution 7

ix

1.5 Thesis Organization 7

2 System Overview 9

2.1 Introduction to the Optisorter 9

2.1.1 Background Information 9

2.1.2 Summary of Operation 10

2.2 System Timing 11

2.3 Imaging Environment 13

2.4 Objectives for Modification 13

2.4.1 Selecting a Camera 14

2.4.2 Modifying the Imaging Environment 16

2.5 Proposed Design 18

3 Camera Design Methodology 21

3.1 Camera Design Flow 21

3.2 Design Specifications 23

3.3 Major Design Methods 23

3.3.1 Reconfigurable Hardware Programming 24

3.3.2 Simulation Tools 24

3.3.3 Prototyping Hardware 25

3.4 Testing 25

4 Hardware Design 26

4.1 Component Selection 26

4.1.1 Imaging Sensors 27

4.1.2 Reconfigurable Devices 28

4.1.3 Communication Interface 31

4.1.4 Component Summary 32

4.2 Circuit Schematics 32

4.2.1 Micron MT9T001 CMOS Imaging Sensor 32

4.2.2 Xilinx Spartan-3E500 FPGA 33

4.2.2.1 I/O Connections 33

4.2.2.2 Clock Connections 34

4.2.2.3 Power Connections 34

4.2.3 TPS Triple Supply 35

4.2.3.1 Limiting Buck Converter Current 36

4.2.3.2 Setting VCCO 37

4.2.3.3 Sizing Soft Start Capacitors 37

4.2.4 Cypress FX2 USB Microcontroller 38

4.2.5 I2C Communication Bus 39

4.3 PCB Layout 40

4.3.1 PCB specifications 41

4.3.2 Component Placement 43

4.3.3 Power and Grounding 46

4.3.4 Bypass capacitors 47

4.3.5 Routing 51

4.3.6 Manufacturing Files 52

5 HDL Blocks and Programming 54

5.1 FPGA Programming Overview 54

5.2 Frame Timing and Data Synchronization 55

5.3 I2C Write Slave 57

5.3.1 I2C Bus Overview 58

5.3.2 I2C Slave VHDL implementation 59

5.4 Asynchronous FIFO 61

5.5 Output Controller 62

5.6 Image Processing Block 64

5.7 Trigger Delay 65

5.8 Synthesis Constraints and Results 65

6 Image Processing 68

6.1 Demosaicking 68

6.2 Hardware Implementations 71

6.3 Edge-Enhanced Real-Time Hardware Demosaicking 73

6.4 Implementation and Results 77

7 Conclusion 79

7.1 System Integration 79

7.2 Summary 82

7.3 Future Work 84

References 86

A System Requirements 88

B Camera Board Schematics 92

C VHDL Code 99

D MATLAB Code 124

VITA AUCTORIS 129

List of Figures

1.1 Typical Defects in Gelatin Capsules 4

2.1 Optisorter External View 10

2.2 Quadrant 1 Detailed 12

2.3 Camera Configuration 14

2.4 System Block Diagram 18

2.5 Camera Block Diagram 19

3.1 Hardware Design Flow 22

4.1 DCM with Off-Chip Delay Feedback 35

4.2 PCB Design Flow 41

4.3 PCB Partitions and Final Layout 44

4.4 PCB Power Plane Layout 47

4.5 Bypass Capacitor Values 48

4.6 Bypass Capacitor Impedance Profile [1] 48

4.7 Capacitor Placement Inductive Loop[l] 50

4.8 Capacitor Impedance and Resonant Frequency[l] 50

4.9 Bypass Capacitor Critical Current Path 51

5.1 FPGA VHDL Modules and Data Flow 55

xiii

LIST OF FIGURES

5.2 MT9T001-3100 Timing [10] 56

5.3 MT9T001-3100 Synchronization Flow 57

5.4 I2C Bus Communication 59

5.5 I2C FSM 60

5.6 I2C write in FPGA 61

5.7 Timing for Cypress FX2 Slave FIFO 63

6.1 Bayer Pattern CFA on a CMOS Image Sensor 69

6.2 3x3 Data Window for Bilinear Interpolation 71

6.3 5x5 Data Window for Edge Weight Function 73

7.1 Camera PCB in an Enclosure 80

7.2 Final Capsule Images 81

B.l TPS Triple Supply Schematic 94

B.2 Spartan-3E FPGA 95

B.3 Cypress FX2 USB Microcontroller 96

B.4 Micron Sensor Schematic 97

B.5 I2C Component Schematic 98

xiv

List of Tables

1.1 Current MV Capsule Inspection Systems and Proposed Model 6

1.2 Proposed MV Components 7

3.1 Design Specification Summary 23

4.1 Spartan FPGA Summary[19] 30

4.2 Component Summary 32

4.3 Spartan-3E Supply Voltage Ramp Rate[21] 36

4.4 I2C Devices: Loading Capacitance 39

5.1 Write Controller Cases 64

5.2 FPGA Utilization with Edge Enhanced Demosaicking 66

5.3 FPGA Utilization without Edge Enhanced Demosaicking 67

6.1 Bilinear Output 72

6.2 Demosaicking Results 78

A.l Defect List and Tolerances[5] 88

A.2 High Level Business Requirements[5] 90

A.3 High Level Performance Requirements[5] 90

A.4 Business Scenarios[5] 91

XV

LIST OF TABLES

B.l Bill of Materials 92

XVI

List of Abbreviations

CFA
DCM
DSP
EEPROM
FIFO
FPGA
FSM
HMI
I/O
I2C
IC
LED
LUT
MV
PAL
PCB
PLC
PROM
RAM
ROM
VHDL
VHSIC

Color Filter Array
Digital Clock Manager
Digital Signal Processing (Processor)
Electrically Erasable PROM
First In First Out
Field Programmable Gate Array
Finite State Machine
Human Machine Interface
Input/Output
Inter Integrated-circuit Communication
Integrated Circuit
Light-emiting Diode
Look Up Table
Machine Vision
Phase Alternating Line
Printed Circuit Board
Programmable Logic Controller
Programmable ROM
Random Access Memory
Read Only Memory
VHSIC Hardware Description Language
Very High Speed Integrated Circuit

XVll

Chapter 1

Introduction

As technology advances, there is an ever increasing demand for faster, smaller and

more affordable technology in all corners of industry. The field of machine vision is no

exception. Advances in imaging devices and computing power has allowed machine

vision based inspection systems to increasingly appear in a variety of industrial and

manufacturing settings. The manufacturing of pharmaceutical gelatin capsules is an

extremely high volume and high throughput manufacturing environment which has

a strong need for quality control inspections to take place. However the intricacies

of performing such inspections make both an effective and affordable solution a chal­

lenge to develop.

1

1. INTRODUCTION

1.1 Project Overview

The objective of this project was to work in collaboration with a local pharmaceutical

capsule manufacturer, Pharmaphil Inc., with funding from the Ontario Centres of

Excellence (OCE), to develop a cost effective prototype inspection system for two-

part gelatin capsules.

The development of this system entailed upgrading and retrofitting an existing

capsule sorting device, the Optisorter, to perform detailed, high-throughput visual

inspection of these capsules at a low cost. The overall project was divided into three

major parts to be developed by individual students. These included: development of

control hardware and a PC interface, development of image processing software, and

finally, the development of custom digital cameras for image acquisition, construc­

tion and processing. The final contribution listed above is the focus of this thesis

along with contributions to co-ordinating system timing and modifying the imaging

environment.

1.2 Quality Control of Two Part Gelatin Capsules

The manufacturing of pharmaceutical two part gelatin capsules is a highly sensitive

process to both environmental and process variations which lead to undesired flaws

in some of the product. Currently there are limited methods of quality control that

provide a flexible, accurate and cost-effective solution. As a single capsule is essen­

tially valueless, neither time nor expense can be afforded to the quality assurance of

the product [8], yet each capsule must be fully inspected for potential defects so that

the manufacturer can provide a marketable quality guarantee for their product. The

ability to ensure that the capsules are within certain manufacturing specifications and

free of defects, without adding substantial cost the process, can give the manufacture

2

1. INTRODUCTION

an edge in sales and increase profit in this highly competitive market.

The two-part telescoping gelatin capsule was patented in London in 1847 by James

Murdock [14]. They are made in two parts by dipping metal rods in a liquid gelatin.

The two ends are trimmed, and supplied as partially closed units to various pharma­

ceutical companies who then separate, fill and close the two halves.

Typical defects found in these two part gelatin capsules include, but are not limited

to: holes, dents, bubbles, missing halves, incorrect dimensions, and foreign product

(such as a different colour or sized capsule). A complete list of defects required for

detection is provided in Table A.l and some examples of these defects can be seen

in Fig. 1.1. The cost of discarding a defective capsule is negligible especially when

compared to the potential cost that could be incurred by its accidental distribution.

Defective capsules can disrupt the filling process performed by drug companies that

purchase the product, leak contents into packaging, or in the case of a foreign capsule

(such as a red pill appearing in a batch of blue pills) promote a lack of confidence

in the drug distributor or even pose legal issues. Hence, there is a strong desire

for quality assurance in the manufacturing of these capsules. The following sections

detail current methods of defect detection, state of the art solutions on the market

and the advantages of a custom Machine Vision (MV) solution.

1.3 Methods of Defect Detection

1.3.1 Current Inspection Methods

There are currently two primary methods being used to inspect two part gelatin

capsules for quality assurance. The simplest method is manual inspection, whereby an

individual attempts to identify defective capsules as they pass through an inspection

station. This usually involves a large quantity of capsules moving over a conveyor belt

1. INTRODUCTION

Printed Mark i (__J) G O A) \Jll ')
I No Mark Imwoper Mark

Figure 1.1: Typical Defects in Gelatin Capsules

that is illuminated from the bottom. Although this is effective for processing very

large quantities at a very fast rate, the accuracy in which the capsules are inspected

is greatly compromised. This is because not every capsule can be fully inspected by

the individual and the integrity of the inspection fluctuates greatly due to human

error, fatigue, and focus. Also, the capsules are susceptible to areas of occlusion

where they may overlap or touch one another, making it impossible for every capsule

to be fully inspected. Generally, if an excessive number of defective capsules are

identified, the entire manufactured batch is discarded, adding greatly to the overall

manufacturing cost. The benefits of such a manual system are the reduced equipment

and maintenance cost, especially where labour is relatively inexpensive.

The second predominate method of capsule inspection involves the use of machine

vision systems to attempt to identify defective capsules. While the benefits of such

systems include improved accuracy and consistency in the inspection of each capsule,

they are typically very expensive to setup, may suffer reduced inspection rates de­

pending on the hardware and demand on the system and generally lack flexibility and

the ability to upgrade.

1. INTRODUCTION

1.3.2 Introduction to Machine Vision

A Machine Vision (MV) System is the application of computer vision to industry and

manufacturing. A typical machine vision system consists of several of the following

nine components[16]:

1. One or more digital or analog cameras (black-and-white or colour) with suitable

optics for acquiring images.

2. Camera interface for digitizing images (widely known as a "Frame grabber").

3. A processor, often a PC or embedded processor, such as a DSP. In some cases,

all of the above are combined within a single device, called a "Smart Camera."

4. Input/Output hardware (e.g. digital I/O) or communication links (e.g., network

connection or RS-232) to report results.

5. Lenses to focus the desired field of view onto the image sensor.

6. Suitable, often very specialized, light sources (LED illuminators, fluorescent or

halogen lamps, etc.).

7. A program to process images and detect relevant features.

8. A synchronizing sensor for part detection (often an optical or magnetic sensor)

to trigger image acquisition and processing.

9. Some form of actuators used to sort or reject defective parts. Each of the

following must be carefully considered and customized for a specific application.

In this thesis, the complete specifications of the MV system used for this applica­

tion will not be discussed in extensive detail, as the focus of this document is on the

imaging sensor.

1. INTRODUCTION

1.3.3 Commercial Systems

There are currently a variety of MV systems on the market targeted at defect detection

of pharmaceutical gelatin capsules and tablets. These range in price from $4,200

USD to over $600,000 USD. Table 1.1 outlines a few current systems as well as the

specifications for the proposed system. The approach these systems use to acquire

and process images varies greatly. Almost all the systems listed rely on line scan

cameras that process visual information as it is acquired. This benefits the system by

working extremely fast, but it limits the variety and accuracy of inspections that can

take place because only a single line of the image is available to process. In addition,

storing images of defective capsules is difficult unless image buffering occurs in the

system. Table 1.1 shows that regardless of the type of camera used, generally an

inspection rate of at least 60,000 capsules per hour is attained by these systems.

Some current systems such as the CVIS-SXX-E consist of a very elaborate me­

chanical system which adds significantly to the cost of the overall system. This seems

typical for most of the systems, as fixturing the capsules proves to be a difficult task.

Finally, while an average of 100 micron resolution is maintained, each system does

vary to some degree in detail and resolution.

System Model
CTI-1
InspeCaps 150
CVIS-SXX-E
MVT
Proposed

Cost

$4,200
Unknown
$600,000
$350,000
<$35,000

Caps/h

50,000
120,000
100,000
60,000
60,000

Camera Type
Unknown
3x Linescan CCD
8x Linescan CCD
Unknown
12x CMOS

Processing
Unknown
Visicard 4
Analog Sig.
Unknown
Digital PC

Resolution
0.1mm
0.1mm
0.1mm
0.2mm
0.01mm

Table 1.1: Current MV Capsule Inspection Systems and Proposed Model

1. INTRODUCTION

1.4 Proposed Solution

The proposed system maintains the competitive throughput requirements of com­

peting systems with an inspection rate of 60,000 capsules per hour, while showing

greatly reduced cost and an increase in inspection accuracy. This is achieved by tak­

ing a completely customized approach to the hardware of the system and combining

it with an affordable existing mechanical design. The additional benefits of such an

approach lay in both the flexibility and the ability to upgrade the proposed system.

Table 1.2 outlines the general MV components used in the proposed system and the

advantages of using these components over existing MV systems.

Component
Camera
Interface
Processor
Lens
Lights
IP Program
Sync. Sensors
Reject Mechanism

Typical
CCD Linescan
Frame Grabber
DSP
Standard
Red LED
Custom
Unknown
Mechanical

Proposed

CMOS
USB 2.0
PC
Standard
White LED
Custom
Inductive proximity.
Air actuator.

Advantage
Full digital image
Cost effective
Easy to upgrade
None
Full colour images
Flexible to change
Easy to interface
Touchless

Table 1.2: Proposed MV Components

1.5 Thesis Organization

This thesis discusses the design, build and testing of a custom digital camera used as

part of a MV system for quality control in the manufacturing of two part gelatin cap­

sules. Chapter 2 begins by giving an overview of the proposed MV system including

the current mechanical setup, imaging environment and system timing constraints.

Following this, Chapter 3 discuses the design methodology for the development of

the camera component of the MV system. This includes the design specifications for

7

1. INTRODUCTION

the camera, the design flow methodology used for high level device design and finally

introduces the development tools and equipment used for programming, simulating

and testing the design. Chapter 4 discusses the actual hardware design of the camera

including detailed schematic designs as well as physical component layout and PCB

design consideration for the final camera. Chapter 5 will detail the VHDL code devel­

oped for the FPGA on the camera and will discuss the various blocks and their role

on the camera. Chapter 6 introduces the image processing elements of the camera,

specifically discussing Colour Filter Array (CFA) imaging sensor data and the use of

"demosaicking" techniques to perform image reconstruction. This chapter will also

cover the software simulation and hardware implementation of several demosaicking

methods including a novel real-time edge enhancement method proposed in this the­

sis. Finally, Chapter 7 will discuss the integration of the camera with the MV system

as well as conclude the work and provide a discussion for future development of the

system.

Chapter 2

System Overview

2.1 Introduction to the Optisorter

2.1.1 Background Information

The Optisorter, seen in Fig. 2.1, was a German engineered MV system built in

the early 1990s. A number of these systems were acquired by Pharmaphil Inc. to

be implemented as an affordable quality control method for the manufacturing of

their size #00-#5 two part gelatin capsules. Although the Optisorter has a solid

mechanical foundation for an MV system, the hardware was essentially obsolete. The

exact functionality of the Optisorter is still unknown, however the hardware contained

therein gives a good indication of what functions this system may have performed.

With only analog PAL cameras and analog processors, the existing machine was

most likely only able to identify foreign capsules and measure basic geometric toler­

ances such as the length and width of the capsule.

9

2. SYSTEM OVERVIEW

Figure 2.1: Optisorter External View

2.1.2 Summary of Operation

The system original system is comprised of four identical inspection stations designed

to operate in parallel to provide the desired system throughput. Capsules are ini­

tially loaded into a large hopper seated on top of the machine. This hopper feeds a

series of 24 radial arms that rotate counter clockwise within the system. As an arm

enters a quadrant, the holder is first cleared of any stray contents such as a double

loaded capsule from the previous station. Next, a loading mechanism allows a sin­

gle capsule to descend down the arm into a holder that seats the capsule. The arm

continues to spin until the capsule passes beneath a series of four cameras which are

triggered by proximity sensors that track the arm positions. The four photographs

are inspected using simple analog circuits and an accept or reject decision is made as

the capsule passes over an air valve actuator responsible for ejecting the capsule into

the appropriate bin.

10

2. SYSTEM OVERVIEW

2.2 System Timing

To understand the most important factors in system timing, let an event represent

an operation that will be occurring in the system when an arm arrives at a certain

location and a cycle represent the time it takes for a new arm to arrive at an event,

in other words, the time between arms. Major events will include:

1. Clearing the holder.

2. Loading the holder.

3. Imaging the top of the capsule.

4. Imaging the bottom of the capsule.

5. Accepting the capsule.

6. Rejecting the capsule.

Fig. 2.2 shows the details of quadrant one with six of the 24 arms that will appear

in the quadrant at a single cycle. The general location of the enumerated events above

are show as circled numbers.

It is important to note that because each event is performed for a new arm on

every cycle, the amount of time allocated for an event is dependent on the cycle time

and not on the amount of time between events. This means greater time allocation

for critical events can only be gained by increasing the time allocated to a cycle, not

by increasing the physical spacing between events. Since cycle time is the product of

the physical spacing between arms and the rotational speed of the system, the system

timing is directly proportional to the rotational speed. This ultimately defines the

total system throughput. To achieve the desired inspection rate of 60,000 capsules

per hour, the 24 radial arms must be spinning at 10.411 revolutions per minute.

11

2. SYSTEM OVERVIEW

©0

Quadrant 3

Figure 2.2: Quadrant 1 Detailed

This was found by determining the number of capsule a single arm would have

to inspect in this time and then computing how fast this arm would have to move in

order to accomplish this task. Equation 2.1 shows this computation.

1000 caps I vain
10.4167 rev/min (2.1)

(24 arms/rev x 4 caps/arm)

Since a cycle represents 1/24 of a revolution, the maximum time allocated to any

event can be computed as shown equation 2.2.

60 sec/min
x (1/24) rev = 0.24 sec (2.2)

10.4167 rev/min

Therefore, the most critical event of the system (arguably the transfer and pro­

cessing of image data) must occur in < 240 ms. Both equations 2.1 and 2.2 are simply

theoretical calculations based on the operation of the the system as described above.

12

2. SYSTEM OVERVIEW

2.3 Imaging Environment

The current Optisorter system uses four cameras to capture the full 360 degree surface

of the capsule. The capsule is seated in an opaque holder with a slot down the middle

which allows both the top and back surfaces of the capsule to be visible. The capsules

are illuminated with back lighting to cast the outline of the capsule and any defects

in shadow while illuminating the background and flawless portions of the body for

the capsule. Three cameras are positioned to examine the top surface of the capsule

while a single camera is positioned from the reverse angle to examine the bottom of

the capsule. The cameras are angled to image as much of the surface as possible,

however, the solid metal holder occludes a small portion where the capsule makes

contact with the holder. In an ideal imaging environment, the back lighting would

remain perpendicular to the camera in order to reduce any uneven illumination that

results from reflected light. It would appear that due to space constraints, a single

panel of LEDs was used for back lighting the three top images while a separate panel

of LEDs was used to back light the bottom of the image. Fig. 2.3 shows the details

of the camera and lighting setup.

2.4 Objectives for Modification

As the project objectives state, the ultimate goal is to retrofit the existing Optisorter

system with upgraded hardware to perform faster, more comprehensive inspections

of the capsules. The following modifications were proposed as part of the final sys­

tem upgrade. These modifications were to be developed as three separate parts by

individual students.

1. New hardware to perform motor control, monitor proximity sensors, control

accept and reject air actuators, trigger cameras, and interface with the HMI .

13

2. SYSTEM OVERVIEW

. \
Camera3 / '

, ' - \

Camera 1

-

\
\

\

\
^Camera 2

\

LED Panel

\yf

Camera 4

Figure 2.3: Camera Configuration

2. Develop a PC based computer vision system to perform image processing and

analysis.

3. Develop new low cost digital cameras to acquire and transfer images.

The third modification listed above is the focus of this thesis where the first

two items were developed my Neil Scott and Mohammad Islam respectively. More

specific technical details regarding the requirements of these cameras will be discussed

in subsequent section. For more information regarding the other project objectives,

refer to thesis of Neil Scott and Mohammad Islam.

2.4.1 Selecting a Camera

After determining the overall system requirements, it was necessary to select the

hardware for capturing images and transferring them to PCs. The first and foremost

consideration was the potential cost of a camera, as 16 cameras were required for

a complete system (four cameras for each of the four quadrants). There were three

possible approaches, each with inherent advantages and disadvantages.

14

2. SYSTEM OVERVIEW

1. Frame Grabber

The first possible approach would be to purchase very inexpensive image sensors

that could be connected via a Frame Grabber card to a PC. This would result

in extremely fast implementation, but the high cost of a frame grabber made

this solution very undesirable, especially if the final system were to be mass

produced.

2. Fire wire PC Interface

The second consideration was to create custom cameras with a high speed

Firewire interface. Producing custom cameras would cost effective compared

to the cost of a frame grabber. It would also allow the hardware to be rea­

sonably upgraded. However the design of such cameras would require longer

development time. This was still advantageous over the high cost of the frame

grabber interface, however developing hardware and PC drivers for the Firewire

interface would have been quite difficult due to the interface complexity and lack

of commercial hardware and software support.

3. USB PC Interface

The final option was to continue with the idea of custom cameras, only with

a slightly slower speed USB interface. The advantages of USB lay not only

in the cost effectiveness, but in ease of development since many USB ready

micro controllers and open sourced software were readily available. This was

determined to be the optimal approach, as long as the USB transfer rates could

keep up with required data throughput.

Since the most desirable data interface was USB 2.0, a quick calculation was made

to verify that the USB transfer speeds could keep up with the system timing demands.

Assuming a simple 1024x768 image window at 8 bits per pixel, a single image would

15

2. SYSTEM OVERVIEW

consist of 786432 bytes of data. USB 2.0 has a theoretical maximum transfer rate of 60

MB/s but this is unattainable due to packet communication overhead. Bulk transfer

rates of up to 40 MB/s are possible with a realistic observable transfer rate of around

30 MB/s [3]. Preliminary USB 2.0 transfer test conducted by Neil Scott (a partner in

this collaborative project) found a sustained bulk transfer rate of 31145280 bytes per

sec or equivalently 30 MB/s. At this rate, it would take 0.1 seconds to transfer 4 full

images to the PC. As 240 ms is the maximum cycle time available in order to achieve

the desired system throughput, the USB interface would be sufficient and still leave

up to 140 ms to be allocated for image processing to occur within the PC.

The preliminary system timing consideration outlined above showed that a USB

2.0 interface would be sufficient, and two demo boards were obtained to perform

initial hardware feasibility tests.

2.4.2 Modifying the Imaging Environment

Although the current imaging setup may be sufficient, a number of improvements

were proposed to provide improved images for processing. These included:

1. Improved lighting

2. Transparent holders

3. Three camera setup

4. Reflected front lighting

5. Reduced stray reflections

Each item listed above was identified as a potential area of improvement not only

for the quality of images, but in the case of a three camera setup, reduced system load

and cost. Of these items, only the first was implemented in the final system. Instead

16

2. SYSTEM OVERVIEW

of using red LEDs, the diffused back lighting of the current system was upgraded to

high intensity white LEDs. The higher intensity light allowed for a shorter exposure

time while taking an image of the capsule, resulting in less blur introduced due to the

movement of the capsule. The white light allowed for full color spectrum exposure of

the color CMOS image sensors used in the final custom cameras.

The use of transparent holders for fixturing the capsules during imaging was tested,

however, due to difficulties manufacturing perfectly clear holders free of scratches, the

existing opaque holders were used. The use of clear holders should be considered as

an area of future development.

A three camera setup was also tested, however without perfect clear holders, there

are areas of the capsule that are occluded using three cameras and opaque holders.

Again, the use of a three camera setup should be further investigate along with the

use of clear holders.

The idea of reflected front lighting was proposed as a way of illuminating the front

of an opaque capsule without needing an additional front light. The idea was to place

a reflective surface over the front of the camera (around the lens) so that stray light

from the back lighting of the capsule would be reflected and illuminate the surface of

the capsule. This would provide the visibility required to identify color and surface

defects. This item was tested and verified, however, was not implemented since the

prototype was only desired to inspect clear capsules due to lack of project time.

Finally, as another point to consider, it was found that under certain circum­

stances, light from an inspection was reflecting off the various shiny metallic surfaces

withing the system, causing bright areas on the capsule surface to appear. This type

of reflection could be reduced by ensuring all surfaces within the system had a dark

matte finish as to reduce the reflection of light within the system. This was not im­

plemented into the final system, but could be considered as an area for improvement

in the future development of the inspection system.

17

2. SYSTEM OVERVIEW

2.5 Proposed Design

Using the understood operating principles of the existing mechanical system along

with the desired areas of improvement, a basic proposed system overview was com­

posed. This can be seen in Fig. 2.4.

Camera 1
i' ister)

1111-,
•» ' . nera 2

* • ' . . iera3

»• v. .i oera 4

Inspection Station n g g -

HMI
RS232

># •
System

Controller

Ace

4(.

1

t

« • —

Triggers

I2C Bus

Motor Control

ept/Reject Control

Lighting Control ___

Position Sensors

Figure 2.4: System Block Diagram

The design maintains the principal concept of having four identical stations work

in parallel to accomplish the desired inspection throughput. These four inspection

stations are connected via a custom control board that is responsible for co-ordinating

the entire system. The control board acts as an interface between the mechanical

systems and the computer vision stations, triggering the stations to capture an image

of the capsules at the appropriate time and using the inspection results from the

station to mechanically accept and reject the appropriate capsules.

The proposed custom digital cameras reeive triggers from the control board and

18

2. SYSTEM OVERVIEW

send image data via a UBS 2.0 interface to a PC that is responsible for performing the

necessary inspections. The results of the inspections are relayed through the master

camera, back to the control board. Thus the proposed custom cameras must provide

the following functionality:

1. Maintain the desired inspection rate.

2. Communicate image data to PC via USB 2.0.

3. Receive external triggers.

4. Output inspection results.

5. Remain competitive in cost compared to commercial systems.

6. Satisfy size constraints of existing imaging fixtures.

At this point, a proposed camera architecture was developed. Fig. 2.5 shows the

most basic required functional blocks.

Imaging Sensor

Status and Timing

External Trigger Input

J
Data Reconfigurable

Hardware Device

Inter-chip Communication Bus

Status and Timing

Data

External
Communication

Interface

USB 2.0
Communication

Interface

Memory
Device

External USB Connection

External Communication I/O

Figure 2.5: Camera Block Diagram

In this design, a suitable imaging sensor provides image data to a reconfigurable

hardware device. This device acts as the camera controller, initially processing the

19

2. SYSTEM OVERVIEW

image data and preparing the image data output. The image data is then be sent to

a USB 2.0 capable microcontroller, which is responsible for the data communication

to the PC for image processing. To satisfy the external communication requirements,

an I2C bus extender was used along with simple 3.3 V inputs for receiving triggers.

A small EEPROM is also added to the design, in order to store basic configuration

information such as the device identification for the USB enumeration as well as a

master camera setting.

A unique feature to this proposed architecture is that there will be no frame

buffering taking place within the camera. Data is processed and transfered in real­

time. This will greatly reduce the unit cost, as well as assist in maintaining the

desired inspection rates for the system.

20

Chapter 3

Camera Design Methodology

3.1 Camera Design Flow

After identifying the objectives for the custom digital camera and how it was to

operate as part of the larger system, a design procedure was developed. The major

steps involved in the camera design methodology include:

1. Deriving device specifications

2. Simulating hardware operation

3. Prototyping functional groups

4. Testing hardware functions

5. Building complete device

6. Testing device operation

21

3. CAMERA DESIGN METHODOLOGY

7. System integration

8. System testing

Fig. 3.1 shows the general bottom-up design flow for the proposed custom camera.

With our camera specifications, performance requirements, desired operation and ba­

sic overview in mind, this design procedure was developed to assist in the realization

of the custom camera.

Figure 3.1: Hardware Design Flow

22

3. CAMERA DESIGN METHODOLOGY

3.2 Design Specifications

The system design specifications were based on inspection requirements outlined by

Pharmaphil Inc. The details of both the business and defect detection requirements

can be found in Appendix A. Table A.l outlines the inspection requirements used to

derive the required resolution of the system. Table A.2 outlines the desired operation

and is used to determine the required operating speed of the system as well as the

test parameters. Finally, Table A.3 describes the desired features and functionality

that must be incorporated into the modified design. Since the focus of this thesis

is on the Camera Design with some insight into the imaging environment, Table 3.1

summarizes the pertinent specifications and the area of the system design to which

they apply to.

Requirement
Defect size

Capsule Colour

Speed of Inspection

Products Inspected

Specification
0.2mm or larger

RGB/YUV

1000 caps/min

All

Applies to
Imaging sensor
Imaging Environment
Imaging sensor
Imaging Environment
Reconfigurable Hardware
Imaging Sensor
Data Interface
Memory/Buffering
Reconfigurable Hardware

Table 3.1: Design Specification Summary

3.3 Major Design Methods

The following sections summarize the procedures used while developing the camera.

These cover the actual software and hardware tools used and their function in the

23

3. CAMERA DESIGN METHODOLOGY

design process.

3.3.1 Reconfigurable Hardware Programming

One of the largest portions of this design project involved developing hardware code

for the reconfigurable device used on the camera. All coding was done in VHDL

because of its modularity and easy readability (though Verilog coding would have

been a viable substitute). The development environment used was Xilinx ISE 10.1

where the final VHDL code was synthesised.

The required VHDL coding was broken down into various behavioural blocks.

Each block was behaviourally verified using an appropriate test bench when required,

also coded in VHDL.

The top level VHDL block was assigned timing constraints with respect to the

system clocks that would be provided to the system and final timing and resource

utilization reports were generated. More specific information pertaining to the actual

design results can be found in Chapter 6.

3.3.2 Simulation Tools

Some aspects of development for the system, such as the development of a demo-

saicking (image reconstruction) algorithm required rapid logical implementation for

verification before realization in hardware as part of the final design. For these pur­

poses, Matlab was used. Algorithms were implemented as functions in ".m" files and

called from either the Matlab command line or by a series of tests coded in additional

".m" file. Although Matlab is a relatively slow simulation tool, it was selected be­

cause of the wide range of library support in image processing as well as its ability to

easily interface with external data sources. More detail about the specific functions

implemented in Matlab, as well as the corresponding code, can be found in Chapter

24

3. CAMERA DESIGN METHODOLOGY

6 and Appendix D.

3.3.3 Prototyping Hardware

Only limited hardware prototyping took place concerning the camera design. This

was primarily due to the nature of the components, specifically their unique footprints

that could not easily be mounted to a breadboard. Essentially, hardware prototyping

took place by modifying demo boards. Ideally, multiple revisions of the final PCB

would have been developed allowing for measurement of circuit noise and further

adjustments. Details on the camera demo board used are outlined in the component

selection section of the following chapter.

3.4 Testing

Testing the design occurred on two levels. The first testing occurred independently

of the inspection environment, ensuring that the resulting camera was capable of

generating the required hardware. The second form of testing occurred with the

camera integrated into the system, increasing the operating speed and analyzing the

resulting quality of image until failure in either the device or in the transfered data.

The test results were used to verify that the final design met the system requirements.

The details of these test are outlined in the conclusion of this thesis.

25

Chapter 4

Hardware Design

4.1 Component Selection

After the design specifications for the camera were determined, the next step was to

select specific components capable of satisfying these requirements. Fig. 2.5 showed

the major components that were to be included in the design. These include:

1. Imaging sensor

2. Reconfigurable device

3. USB 2.0 compatible microcontroller

4. External communication interface

5. Small memory device

The following sections detail the selection of these devices and justifies their use

in the design with respect to the system specifications.

26

4. HARDWARE DESIGN

4.1.1 Imaging Sensors

Two of the most heavily weighted factors in selecting hardware were: cost and avail­

ability. Under these constraints, a variety of imaging sensors were compared for

suitability. One critical decision was on whether to use a CMOS sensor or a CCD

sensor as both have specific advantages and disadvantages.

Although they are faster and often cheaper than CMOS sensors, Charge Coupled

Device (CCD) sensors only output an analog signal representing the charge result­

ing from a pixel being exposed to light. This analog value must be amplified and

converted to a digital value by additional components and circuitry. On the other

hand, a CMOS image sensor has an internal CCD with supporting digital circuitry

integrated into the sensor itself. The sensor data output from a CMOS is in digital

format and accompanied by associated timing signals for tracking the row and column

of the current pixel being read out. In addition, CMOS sensors allow for windowing

an area of the sensor's pixel array so that the entire image frame does not need to be

outputted from the device. This provides greater control over both the exposure time

of the sensor as well as the frame readout time. Micron, one of the primary suppliers

of CMOS image sensors, provided a variety of demo boards with USB support. The

sensors, though slightly more expensive than typical CCD sensors, were readily avail­

able in large quantities and would not require as much additional hardware (i.e. a

controller to integrate into the design) providing overall savings in development costs.

The Micron MT9T001 3.1 mega pixel sensor was selected as it was readily available

with a demo board featuring a chip memory, Virtex II FPGA and a Cypress FX2

USB microcontroller. This demo board provided a solid backbone to the camera

design, even though it possessed expensive components and unnecessary features for

the requirements of our design, especially in terms of memory and logic capacity of

the FPGA. Nonetheless, the demo board acted as the basis for the custom camera's

27

4. HARDWARE DESIGN

hardware selection in the first iteration of the design flow.

4.1.2 Reconfigurable Devices

The reconfigurable device on the camera plays a vital part in synchronizing the various

hardware components as well as managing and processing image data. The reconfig­

urable device acts as the camera's memory for all necessary image data buffering as

well as a communication interface to the imaging sensor. Selecting a suitable device

for such a dynamic role involved many considerations and making a number of trade

offs. The decision parameters for selecting the appropriate device were as follows in

order of priority.

1. Memory

2. Cost

3. Device Capacity

4. Development Time

5. Footprint

6. I/O Capacity

Initial firmware development was done on a Xilinx Virtex II series device (XC2V2500)

as it was part of the Micron Demo board (MI3100 sensor head with DEM02 FPGA

base) which was used as a basis for the final design. Since expandability of the ini­

tial design was part of the camera design specifications, a reconfigurable device was

required.

There were two predominate reconfigurable devices considered for this design.

They were the FPGA and CPLD. FPGAs are "fine-grain" devices, meaning they

28

4. HARDWARE DESIGN

contain many tiny blocks of logic made up of flip-flops. CPLDs are "coarse-grain"

devices with relatively few larger blocks of logic made up with flip-flops. FPGAs

are RAM based and need to be configured each time they are powered up. CPLDs

are EEPROM based and retain their memory after being programmed. CPLDs have

faster input-to-output timing than FPGAs because FPGAs have a coarse-grain archi­

tecture where a single logic block can implement a more complex function. However,

FPGAs have special routing resources to implement efficiently binary counters and

arithmetic functions (adders, comparators, etc.) and RAM, where CPLDs do not.

In general, FPGAs can contain very large digital designs, while CPLDs can contain

small designs only [11]. In order to satisfy the more sophisticated operations required

by the reconfigurable device, an FPGA was selected as the more suitable device for

this role.

Next, an appropriate FPGA was selected. As Xilinx ISE development software was

readily licensed by the university with full access to support and CoreGEN designs,

Xilinx FPGAs were favored over competing FPGAs such as Altera. This decision to

use a Xilinx device was simply due to the availability of licensed development software

as well as compatibility of code being developed on the demo board with a Xilinx

FPGA.

As demo board firmware was already being developed for this application using

the Xilinx Virtex II device, Virtex was the first family investigated as a suitable

Xilinx FPGA for the final camera design. However, the cost for the Virtex family

far exceeded the cost parameters outlined, so the lower cost Spartan family was

investigated. Table 4.1 shows the Spartan series descriptions used in selecting the

appropriate device. Comparing the Spartan summary to our decision metrics, it was

quite clear that the Spartan-3E series was most suitable for our application due to

the high logic density, low I/O count and overall low cost.

29

4. HARDWARE DESIGN

Series
Spartan-3A DSP

Spartan-3AN

Spartan-3A

Spartan-3E

Spartan-3

Domain Description Cost (CAD)
DSP optimized For applications where in- $140 to $215

tegrated DSP MACs and
expanded memory are re­
quired.

Non-Volatile For applications where non- $13 to $80
volatile, system integration,
security and large user flash
are required.

I/O optimized Ideal for bridging, differ- $63 to $88
ential signaling and mem­
ory interfacing applications,
requiring wide or multiple
interfaces and modest pro­
cessing.

Logic optimized Ideal for logic integration, $11 to $75
DSP co-processing and em­
bedded control, requiring
significant processing and
narrow or few interfaces.

I/O + Logic Opt. Ideal for highly-integrated $10 to $130
data-processing applica­
tions.

Table 4.1: Spartan FPGA Summary[19]

The final step was to select a specific device from the Spartan-3E series FPGAs. As

per the reconfigurable device requirements listed at the start of the section, the specific

Spartan-3E device was not only selected based on its internal specifications, but also

based on a common footprint that would allow for future upgrades. The Spartan-

3E500 was selected as a balance of cost and logic capacity in the series of devices

that shared the FT256 footprint. This footprint was selected not only for its compact

nature, but also so that the more powerful Spartan-3E1200, or cheaper Spartan-3E250

could replace the selected FPGA without having to modify the physical layout and

placement of these devices in the final camera design.

30

4. HARDWARE DESIGN

A final point on the FPGA selection relates to the powering of the device. Un­

like the more expensive Virtex II devices, the Spartan series has some specific power

requirements. In order to supply the correct voltages to the device with the proper

power on start-up conditions, a separate component was chosen to perform this role.

The TPS7500 Triple supply by Texas Instruments was chosen based on a recommen­

dation in the device data sheet [21].

4.1.3 Communication Interface

There were two main components selected to act as communication interfaces for the

camera. The primary device responsible for transferring image data to the PC is the

Cypress CYCFX2. This specific device was selected by the developer of the USB 2.0

communication drivers so the details of this device are not covered in detail as part

of this thesis.

One benefit of using this device is its ability to act as a data slave device. A

16bit data bus allows an external device to write data to a 4 KB FIFO within the

Cypress controller that is automatically packeted and sent according to USB 2.0

communication specifications. The device also supports an I2C interface which is

utilized on the camera as part of the external communication interface. Finally,

the device is relatively cheap which is an extremely important factor in component

selection.

The second major device is the selection of an I2C bus extender. This allows the

local I2C bus on the camera to be connected to the control board for relaying the

accept and reject singles from the PC. The NXP P82B715TD-T device was simply

selected because of its low cost, availability and ability to provide the required range

of communication dictated by the physical system.

31

4. HARDWARE DESIGN

4.1.4 Component Summary

Table 4.2 summarizes the major components selected for the device design noting

how they will be referenced for the remainder of the thesis. For a complete list of

components used in the device design, a bill of materials can be found in appendix

C.

Device
Image Sensor
FPGA
USB MCU
Bus Extender
Memory
Triple Supply

Manufact urer
Micron
Xilinx
Cypress
NXP
Microchip
Texas Intruments

Part Number
MT9T001P12STC
XC3S500E-4FTG256C
CY7C68013A-100TAXC
P82B715TD-T
24LC128-I/ST
TPS75003RHLT

Referenced As
MT9T001
Spartan-3E
FX2
I 2CBE
128kB EEPROM
TPS supply

Table 4.2: Component Summary

4.2 Circuit Schematics

After having selected the specific devices to use in the camera design, the device

connections must be carefully made to ensure their desired and correct operation.

Some of the major considerations entail: powering the devices, terminating I/O,

routing I/O and external connectors, sizing filtering capacitors, providing clocks,

building reset circuits, designing power supplies and even placing test points on critical

nets.

4.2.1 Micron MT9T001 CMOS Imaging Sensor

The MT9T001 CMOS imaging sensor is one of the most critical devices in the camera

design. This device is responsible for acquiring image data and thus any error intro­

duced at this point will propagate throughout the remaining components. There were

32

4. HARDWARE DESIGN

some particular considerations that had to be made when designing the schematics

for this device as it required separate analog and digital power supplies. The purpose

of these separate supplies is to isolate the very noisy digital circuitry from the analog

portion of the IC, which is highly susceptible to noise in the power supply.

To improve the sensor's operation, separate analog and digital low drop-out linear

regulators were used to power this device. However, the ground pins share the same

grounding net. The appropriate placement of grounding points in the PCB layout

of this device made this possible, reducing the effect any ground noise may have on

the analog ground of the device by providing a direct path for the current to flow,

preventing potential current leaks towards the other ground pins.

The power saving features of the chip have been grounded to simplify the PCB

routing. The remaining data bus, timing signals and reset and status signals have

been connected to pins on the FPGA for flexible control over this device. Fig. B.4 in

Appendix B shows the final schematic drawing for the Micron MT9T001 sensor.

4.2.2 Xilinx Spartan-3E500 FPGA

4.2.2.1 I /O Connections

Since the FPGA acts as the main controller for the custom camera, almost every

device in one way or another is connected to the FPGA. The I/O connections for the

FPGA to the neighbouring devices were placed on pins whose functions did not change

between the three different Spartan-3E devices that share the FT256 footprint. This

provided greater flexibility for future upgrades. All I/O on the device were configured

as 3.3 V Low Voltage CMOS (LVCMOS33) capable of syncing or sourcing up to 16

mA of current [21].

33

4. HARDWARE DESIGN

4.2.2.2 Clock Connections

Special considerations were also made when connecting clock signals to the FPGA.

Although the FPGA can internally route any I/O to any cell, the Spartan-3E de­

vice has dedicated Digital Clock Managers (DCMs) with specific pins associated with

them. Any part of the design where an output clock was supplied to another device,

such as the clock for controlling exposure rate of the MT9T001 sensor, a neighbour­

ing I/O pin was shorted to the DCM output in order to provide DLL feedback for

the clock manager. The configuration of such a scenario can be seen in Fig. 4.1.

For the specific case of the camera schematic net CLKIN (provided to the MT9T001

sensor from the FPGA),the net IFCLK enters the FPGA at IBUFG feeding CLKIN

of the DCM (which is optionally shifted within the DCM). This is outputed from the

FPGA at OBUF as the net CLKIN which is then connected to the MT9T001 sensor.

The net CLKIN also re-enters the FPGA at the IBUFG feeding the CLKFB of the

DCM to regulate the clock output. This configuration is essential to removing any

clock skew that can occur through the FPGA device. This is critical, especially when

the clock net is shared by multiple devices and routed through the FPGA. A similar

configuration was used on the clock net (SCL) of the I2C communication bus.

4.2.2.3 Power Connections

Unlike most other components, the FPGA requires three different supply voltages:

1.2 V for the core, 2.5 V for auxiliary features and 3.3 V for the I/O. These volt­

ages required specific power-on conditions in order to properly power the Spartan

device. The exact voltage specifications are described in the following section. For

the schematics of the power connections, the most critical point was that each power

pin had to be assigned at least one bypass capacitor. The sizing and placement of

34

4. HARDWARE DESIGN

FPGA

CLKIN

DCM

CLKFB

CLK901
CLK180
GLK270
CLKDV
CLK2X

CLK2X180,

CLKO

CLKQ

Figure 4.1: DCM with Off-Chip Delay Feedback

these capacitors is discussed in greater detail in a later section of this thesis.

4.2.3 TPS Triple Supply

The TPS7500 Triple Supply was selected as an ideal component to supply the FPGA

with the required voltage levels for operation. This integrated circuit uses two non-

synchronous buck converters to supply up to 3 A on the 3.3 V and 1.2 V lines.

In addition, it has an integrated low-dropout linear regulator for the 2.5 V supply.

Each supply has an adjustable "soft start" that allows the desired voltages to be

increased at a controlled rate during power-on. This feature is used to satisfy the

power on requirements of the Spartan-3E series FPGAs. The specifications for these

voltages can be found in [21] and the voltage ramp rates are summarized in Table 4.3.

In order to configure the device correctly, the following design considerations

needed to be made when drawing the TPS7500 schematic (seen in Fig. B.l of Ap­

pendix B). These included: sizing soft start capacitors, selecting appropriate sized

35

4. HARDWARE DESIGN

Symbol | Description Min Max Units
VCCINTR Ramp rate from GND to valid VCCINT supply 0.2 50 ms

level.
VCCAUXR Ramp rate from GND to valid VCCAUX supply 0.2 50 ms

level.
Vcco2i? Ramp rate from GND to valid Vcco supply 0.2 50 ms

level.

Table 4.3: Spartan-3E Supply Voltage Ramp Rate[21]

components for the non-synchronous buck converters, selecting appropriate sized fil­

tering capacitors and providing a reverse current path on the drain of the power

transistors via Schottky diodes.

To suit the upgradable nature of the design, the supporting components were sized

for a maximum current draw of 3 A. This is the maximum the TPS device can source.

Even though the maximum current supplied from the USB controllers is limited to 500

mA, the cameras can handle external supplies capable of supplying greater currents

for potential off-line application (such as additional testing and prototyping).

4.2.3.1 Limiting Buck Converter Current

The two non-synchronous buck converters that supply voltage to the VCCO and VC­

CINT lines of the FPGA are both capable for sourcing up to 3 A (internally limited)

unless externally limited by sizing Ri and i?2> as seen in Fig. B.l of Appendix B.

Unlimited current allows the converters to operate in a continuous mode, preventing

"ringing" from occurring in the junction of the PMOS transistors and inductors. For

this reason, R\ and R^ were sized as to not limit current through these devices to any

less than 3 A and at the same time, be capable of dissipating the maximum power.

As power is a function of 72R with I at 3 A, R must be reduced as much as possible to

minimize power dissipation. R\ and i?2 were sized at 330 mf2 according to suggested

values in [15] resulting in a maximum power of 0.297 mW. Thus 1/2 W, 330 va.0,

36

4. HARDWARE DESIGN

resistors were chosen for this application.

4.2.3.2 Setting VCCO

The non-synchronous buck converts are designed to sustain a 1.22 V output with a

unity feedback. In order to set the voltage output of one of the buck converters greater

than 1.22 V, the feedback to the converter must be appropriately scaled down (i.e.,

through a voltage divider circuit) so that the resulting output voltage is regulated at

a desired level. Since the camera design operates on 3.3 V I/O, as specified in both

the Cypress FX2 device as well as the MT9T001 image sensor, a single VCCO of

3.3 V was required and was generated using Buck2. The feedback output voltage for

Buck2 can be written as:

VOUT = VFB (jl + l\ (4.1)

Since VFB = 1-22 V and VOUT — 3.3 V then RQ/RS = 1.705. Based on recommen­

dations from [15], i?6 and R5 were chosen as 61.9 kfl and 36.9 kfl respectively.

4.2.3.3 Sizing Soft Start Capacitors

One of the most substantial benefits of using the TPS7500 supply is the soft start

capability of the device. This controls the voltage ramp rate of the output supplies

by appropriately sizing soft start capacitors C4, C5 and Ce in Fig. B.l of Appendix

B. The voltage ramp rate is a complex function of many variables. It is recommended

that the soft start capacitors are appropriately sized by using a test bench setup and

monitoring the power-on conditions outlined in Table 4.3, adjusting the soft start

capacitor values until the desired power on conditions are met. This design used

recommended values supplied by [15] and [20] in the sizing of these capacitors, and

the resulting voltage ramps were verified on the first hardware revision of the board.

37

4. HARDWARE DESIGN

4.2.4 Cypress FX2 USB Microcontroller

The schematics seen in B.3 for the Cypress FX2 microcontroller were essentially

replicated from the Cypress CY3684/3674 EZ-USB Advanced Development Board.

Slight modifications were made, such as connecting the reset pin directly to power

through an RC circuit designed to delay the power on transient. As in the demo

board, the analog power was shared with the digital power. The data bus pins for the

slave FIFO were connected to the FPGA which was used to drive data to the device.

The FX2 required an external clock. For this, a 24 MHz crystal was supplied.

This clock was internally divided to produce a 48 MHz clock for IFCLK (used to

synchronize the incoming FIFO data) as well as provide an external system clock

CLKOUT. The CLKOUT net was supplied directly to the FPGA and was internally

referenced as USBCLK, which can be scaled using a DCM of the FPGA and sent to

the MT9T device to control exposure time.

The FX2 was also connected to the FPGA in a configuration that allowed it to

program the FPGA in serial slave mode. With this setup, FPGA code could be

loaded to the device through the USB port, eliminating the need for an additional

program memory device or external programming connection. This also allowed the

USB device drivers to supply the latest FPGA code whenever the device was plugged

in, ensuring that the FPGA was always loaded with the most recent code. This also

ensures that all cameras in a system will operate with the same code, without the

need to update each FPGA of each camera separately.

The final consideration for the FX2 schematics was the connection of a bypass

capacitor to each power pin to ground. The sizing and placement of these capacitors

is described in more detail in a section to follow. B.3 in Appendix B shows the final

schematics for this device.

38

4. HARDWARE DESIGN

4.2.5 I2C Communication Bus

The I2C components were connected so that the data net (SDA) was shared between

all I2C devices, as was done with the clock net (SCL). Special considerations had to

be made to size the pull-up resistors on both the local side of the I2C bus as well as

the external side of the I2C bus extender.

When calculating the pull-up resistance values, the gain of the signal buffers in­

troduces scaling factors that must be applied to the system components. In practical

systems, the pull-up resistance value is usually calculated to achieve the rise time

requirement of the system [7]. For the purpose of this design, the I2C bus operated

at 100 kHz. Thus, the time constant of the total system (RC) is set to 1 us or less

[12]. Equation 4.2 was used in determining the required pull-up resistance.

K>puU—
1/IS

up
(4.2)

^device > ^wiring

On the local side of the I2C bus, the following components were connected with

their corresponding capacitive load on the bus and factored in as part of Cdevice- Table

4.4 shows these devices.

Device

CY7C
MT9T001
Spartan-3E500
EEPROM
Total

^device

50 pF
30 pF
50 pF
50 P F
200 pF

{-'wire

10 pF
10 pF
10 pF
10 pF
40 pF

Table 4.4: I2C Devices: Loading Capacitance

The value of CWire was approximated as 10 pF for any copper traces to the device

as assumed in the device data sheet [12]. Thus, using Equation 4.2, the required

pull-up resistance was calculated as 4.116 kfl. To maintain a lower time constant,

39

4. HARDWARE DESIGN

this value was rounded down to the nearest common resistor value of 4 kf2.

On the external side of the I2C bus, the load capacitance was computed by as­

suming 50 pF per meter as outlined by [12]. For an approximate wire length of 2

m, a total capcitive load of 100 pF was used in Equation 4.2. The required pull-up

resistance on the external side of the extender was found to be lOkO.

Also attached to the I2C bus was the small 128 kB EEPROM used to store device

settings such as master/slave settings, windowing parameters for the camera and

device IDs for USB enumeration. Again, the SDA and SCL lines were connected to

the bus and the device was powered appropriately. As can be seen in the schematics

of B.5 of Appendix B, the I2C bus power is supplied by the same 3.3 V source as the

Cypress FX2 Microcontroller.

4.3 P C B Layout

After having selected the desired components, a Printed Circuit Board was designed

to create connections between the components, such as resistors, integrated circuits,

and connectors [13]. In order to accomplish this task, the following bottom-up design

approach was used (shown in Fig. 4.2).

A bottom-up approach was taken because specific ICs were first selected to fulfill

the camera's specifications. These ICs were then combined with supporting compo­

nents such as bypass capacitors and voltage regulators into larger functional groups.

After prototyping the functional groups, these groups were combined to form the

complete design. This section will discuss the PCB layout of these groups and the

formation of the final camera hardware design.

40

4. HARDWARE DESIGN

Component \
Selection J

Size Outer Board
Dimenstions

Partition PCB U | Resize Partitions k

.Yes

Place
Components in
Groups (rooms)

.^Componentsv^
\ ^ Fit? /

: Y e s

Route
Components in

Group

Jr

/ Successfuf\
\ . Routing?/^

L

No

No

*

Resize Group 1

Yes

Place Groups

Yes

Route Power and
Ground

f Produce X
(Manufacturing J
V Files y

Figure 4.2: PCB Design Flow

4.3.1 P C B specifications

There were some restrictions on the physical characteristics of the PCB that had to

be set before a layout could be designed. These included the following:

1. Maximum outer dimension <70 mm

2. Maximum of four layers on the PCB (two outer and two inner layers)

3. Space for four mounting through holes

In addition, the copper weight and dielectric material used in the boards needed

to be specified. Copper weight defines the number of ounces of copper on one square

41

4. HARDWARE DESIGN

foot of board. From this, the thickness of coper can be computed using the known

density of copper. A typical copper weight used for low voltage electronics is 1 oz

copper, resulting in a layer approximately 35 //m thick [6]. To verify that this would

suit the camera PCB board, the following assumptions and calculations were made.

First, because a FT256 footprint was used for the FPGA, a minimum trace width of

5mil was used (1 mil = 1/1000 inch). Second, the maximum current drawn through

any of these traces to I/O in the FPGA was limited to 100 mA by the input clamp

diodes [20]. Finally, the maximum temperature rise permitted for a trace was limited

to 10 °C as was the minimum rise value in the IPC-2221 graphs used to determine

thermal conductive properties of copper traces [6]. Using these values, the following

required copper weight can be calculated.

Area[mils2} = (Current[Amps]/(k * Temprise[°C]b))1/c (4.3)

Width[mils] = Area[mils2]/(Thickness[oz\ * 1.378[mils/oz\) (4.4)

where for IPC-2221 internal copper layers: k=0.024, b=0.44 and c=0.725

From Equation 4.3 the required trace area for our design constraints can be de­

termined as Area = 1.77 mil2. Using the area calculation and solving for Thickness

in Equation 4.4, the required copper thickness is 0.25 oz.

Thus 1 oz copper would be more than suffice for the requirements of the PCB

design and will maintain the desired thermal performance during operation.

As for the dielectric board material, because there was very limited structural

load on the board, standard FR-4 material was selected to reduce cost. The standard

board thickness of 62mil was used.

42

4. HARDWARE DESIGN

4.3.2 Component Placement

Component placement was the most critical step in the PCB layout, as this was

the primary determining factor for successful routing of the design. The first step

in component placement was to partition the PCB board in the major component

groups. In total, there were 5 groups, one for each schematic drawing summarized

above. These consisted of:

1. TPS Power Supply

2. Xilinx FPGA

3. Cypress FX2 USB

4. Micron MT9T001 image sensor

5. I2C components

Fig. 4.3 shows the final partitions and their layout on the PCB board. The top

of the board is shown to the left with copper traces in red and the bottom of the

board to the left with copper traces in blue. The shaded dotted rectangles outline

the partition bounds and the white markings show component boundaries. However,

before arriving to this final layout, a number of iterations were performed as outlined

in Fig. 4.2.

When determining the placement of the major components, the largest constraint

was that the MT9T001 sensor had to be placed with its optical center on the center of

the PCB board with respect to the mounting holes. Fig. 4.3 shows the position of the

sensor footprint on the bottom board (blue) where the optical center of the device was

marked with a thick white cross-hair, offset from the footprint board center indicated

by the thin white cross-hair. This offset was determined from the MT9T001 data

sheet in [10]. This severely limited placement of other major components on this side

43

4. HARDWARE DESIGN

Figure 4.3: PCB Partitions and Final Layout

of the board. Thus the remaining large components were placed on the top side (red).

The two linear regulators used to power this device (U6, U7) were placed adjacent to

each other in the ample free space surrounding the MT9T001 with the corresponding

input and output capacitors placed near their corresponding pins. These were later

routed through the power plane layer to MT9T001.

The top side of the PCB board was divided into 3 major partitions as seen in Fig.

4.3. Components for the TPS (Ul) power supply were placed first because they re­

quired specific locations with respect to Ul. The datasheet for the TPS75003 (found

in [15]) outlined critical placement for certain components and their corresponding

critical paths. These components, such as the diodes (Dl, D2) and especially in­

ductors (LI, L2), required connecting traces to be less than 100 mils in length in

order to minimize the equivalent series resistance (ESR) of the device and maintain

the desired performance of their connected buck converters. These conditions were

outlined in [15].

44

4. HARDWARE DESIGN

With the TPS75003 fully routed in place, the placement of the FPGA (U2) and

Cypress FX2 (U3) were both considered simultaneously. The FX2 was oriented such

that the data pins for the 16 bit FIFO bus were facing closest to the FPGA. Both

devices were also placed close the edge of the partition to facilitate successful rout­

ing. The USB mini-B connector was placed within 100 mils of the device and trace

lengths to the data lines were kept the same to prevent signal skew. Conveniently,

the connectors were located at the edge of the PCB and appropriately spaced from

any "tall" or high profile components which prevents possible obstruction from the

mating connector. The 24 MHz crystal oscillator (Yl) was also placed near to its

corresponding device pins to prevent signal degradation due to trace impedances.

Power to the FX2 was routed through an internal power plane in the PCB, therefore,

little consideration was paid to the placement of the 3.3 V linear regulator powering

it. Finally, bypass, input and output capacitors were placed appropriately near their

corresponding pins.

The FPGA (U2) was the simplest group to place as the only consideration nec­

essary was the location of the 32 bypass capacitors required for the device. These

were lined along the top and bottom of the device, spaced according to suggestions

by [18], where very few signals were required to be routed. This left the main data

buses for the MT9T001 image sensor and FX2 USB device free to be routed along

the sides and center. Because there were many unused I/O on the FPGA, the device

was placed at the edge of the PCB with very limited access to the pins along one

side. The general signal breakout for buried pins (pins towards the center of the ball

grid array) was planned according to the recommendations of [18].

The final group consisted of the I2C components. The bus extender was the most

critical component in this group to place because it needed to be as near as possible

to the I2C connector on the PCB. This connector (JP3) was placed in the TPS75003

partition, however, since it was a through hole component, the actual connections for

45

4. HARDWARE DESIGN

this device were made in the I2C partition on the bottom of the PCB. The I2C bus

extender chip (U8) was connected directly next to the connector, closely neighboured

by the I2C EEPROM (U9).

4.3.3 Power and Grounding

Typically in a four layer design such as the camera PCB, the two internal layers

are reserved for power and ground. This has two purposes: The first is to provide

accessibility to power and ground pins on the surface layers, without obstructing

routing; The second is to create a large capacitance between the power and ground

planes, which are usually separated by a dielectric pre-preg. Since the thickness of the

pre-preg is easily adjustable, the capacitance created between the two inner layers can

be optimised better than the FR-4 material that composes the PCB layers themselves

[6].

The goal in routing the power plane layer is not only to provide surface components

with accessibility to the appropriate voltages in this layer. It also to maximises the

copper area, increasing the effective capacitance of the plane. In addition, minimizing

bends or loops in the plane helps to reduce any parasitic inductances that could result

[18].

Fig. 4.4 shows the final power plane routing with six separate planes; one for each

required voltage on the device. These voltages include: 3.3 V I2C and digital/analog

USB, 3. 3V FPGA I/O, 3.3 V for MT9T001 digital, 3.3 V for MT9T001 analog, 2.5 V

for FPGA auxiliary and finally 1.2 V for FPGA internal power. Ideally, each voltage

should be on its own plane, separated by a ground layer, and hence a 14 layer board

would be required. However, due to cost considerations, the design was compacted

into a single power plane to fit a four layer board.

46

4. HARDWARE DESIGN

Figure 4.4: PCB Power Plane Layout

4.3.4 Bypass capacitors

The purpose of a bypass capacitor network is to filter digital switching noise, providing

a smooth impedance profile over a range of frequencies, thus ensuring a static voltage

level at the power pins of a device.

In order to accomplish this goal, an approximation of the desired frequency range

needs to be considered first. Ideally, a prototype would be constructed and frequency

spectrum analysis performed on the power lines to determine the undesired noise

frequencies and to size capacitors appropriately. However, a generally safe assumption

for slower speed electronics operating in the 50 MHz range is to create a smooth

impedance in the range of 500 kHz to 500 MHz [1]. A a capacitor only acts as a filter

near its resonate frequency [1], therefore, a variety of different sized capacitors was

used in order to produce the desired profile. In order for the resulting bypass network

to be effective, there must be at least one capacitor for every power pin on the device.

A good starting point for constructing a bypass network is to size the minimum and

maximum capacitive value required for the desired frequency range and distribute

47

4. HARDWARE DESIGN

varying capacitor values throughout this range so that the total number of capacitors

equals the total number of pins. However, since smaller capacitive values contribute

less to the overall impedance profile [1], a greater number of these capacitors needs to

be placed. In general, the number of capacitors should be doubled for every decade

decrease in capacitance. Fig. 4.5 shows an example of a selection of capacitors for a

48 power pin device. Note that the quantity of capacitors increases as the capacitance

decreases. Fig. 4.6 shows the impedance profile resulting from the capacitor selection

of Fig. 4.5. This selection of capacitors results in a fairly even impedance over the

range of 1MHz to 100 Mhz.

Quantity

2

7

13

26

Symbol

•

1

•

•

Package

E

0805

0603

0402

Capacitive
Values (|iF)

680

2.2

022

0.022

Parasitic
inductance

(tiH)

2.8

2.0

1.8

1.S

Parasitic
Resistance

(ohms)

0.57

0.02

0.06

0.20

Figure 4.5: Bypass Capacitor Values

t E . t »

1S01

e

I i,em

tmm
I.&0S 1.1

Pen* Values ol FfeiaM C« (stKSees [ohms]

\ > \

\

p'

/
—~yy

7

1.E«1 \.hM XSiM U t£*m

Figure 4.6: Bypass Capacitor Impedance Profile [1]

The placement of these capacitors on the PCB has a substantial effect on the per-

48

4. HARDWARE DESIGN

formance of the bypass network. This is because the routing to the bypass capacitor

adds to the equivalent series inductance (ESL) of the device. Fig. 4.7 shows how an

inductive loop can be formed in the cross-section view of the PCB, where current can

travel through the power plane, up a via, across the capacitor, down a via and back

through the ground plane. The size of this loop needs to be minimized to reduce the

inductive effects contributing to the equivalent impedance of the capacitor. Due to

this effect, the placement of a capacitor on the PCB can have a substantial effect

on the effective resonant frequency of the capacitor. Fig. 4.8 shows the impedance

profile of a capacitor and how the inductive and capacitive components influence the

resonant frequency of the device. Basically, the capacitive component reduces the

impedance, while the ESL of the device increases the impedance with respect to an

increase in frequency. As the trace lengths between the power pin of a device and

the bypass capacitor increases, the resonant frequency of the device shifts and may

make the capacitor ineffective in filtering the desired noise from the system. Thus

the bypass capacitors should be placed as close to the device power pins as possible,

generally less than 100 mils away.

Another reason to keep to the bypass capacitors near the power pins of the device

is to improve the response time of the capacitors to fluctuations in voltage. A small

drop in charge at the device power pin takes time to propagate to the capacitor. The

capacitor then releases charge which must then propagate back to the device. During

this time, the voltage level could drop below the device's required operating range (if

the distance to the capacitor is too large), indicating that the response time to these

fluctuations is too slow.

For the camera board design, all bypass capacitors were kept within 100 mils of

their respective power pins, and grounding vias were placed as near to the capacitor

as possible to minimize the inductive loop's size, which is responsible for contributing

to the ESL of the device. Fig. 4.9 shows two examples of critical paths that were

49

4. HARDWARE DESIGN

0402 Capacitor Body
Surface Trace

Power and Ground pianes

Mounted Capacitor Current Loop

Figure 4.7: Capacitor Placement Inductive Loop[l]

Impedance

Total Impedance Characteristic

Inductive
Contribution (ESL)

Capacitive
Contribution (C)

X623_04JJ72S02 Frequency

Figure 4.8: Capacitor Impedance and Resonant Frequency!!]

4. HARDWARE DESIGN

Figure 4.9: Bypass Capacitor Critical Current Path

routed in the power network where the estimated current path contributing to ESL

is highlighted.

4.3.5 Routing

Routing for the design was performed in two parts. First, critical paths as well

as power and ground connections were manually routed to ensure minimum bends,

appropriate trace widths, and optimal connections. Next, automatic routing was

performed to connect less critical nets. In the case of the FPGA, pin groups were

setup to allow easy swapping of pin locations with pins that served the same func­

tion. If automatic routing of the data buses failed, pins were swapped as needed and

automatic routing performed again until the entire design was successfully routed.

Minimum trance widths used in the design were 5 mils with a minimum spacing of 4

mil required when breaking out signals from the FT256 footprint.

51

4. HARDWARE DESIGN

4.3.6 Manufacturing Files

The final step (after defining the PCB physical characteristics, placing components

and routing connections between the components) was to generate the required files

for manufacturing. These are listed below.

1. Board Stackup: defines the order of the four layers, board thickness and pre-

preg.

2. Dill Holes: defines location and size of holes for the PCB such as mounting

points and through hole component footprints.

3. Copper Etch: defines the areas of copper on the four layers that compose the

routing of the design.

4. Solder Mask: defines areas of the board protected against solder. This en­

compasses everything except where the component pins will be soldered to the

copper board.

5. Solder Paste: defines areas where solder paste will be applied for mounting

components.

6. Silk Screen: defines the coluored print and artwork on the PCB used to identify

components and component locations.

7. Pick and Place: defines the location of the components to be placed relative to

the pick position on the components package.

8. Bill of Materials: list the components, quantities and identifier of all components

mounted on the PCB.

52

4. HARDWARE DESIGN

9. Assembly Drawing: defines specification for how to assemble mechanical com­

ponents on the PCB if this is required. This was not included in the camera

design.

The required files listed above were provided to the PCB manufacturer, Sierra

Proto Express, in Gerber RS-274-X format. The company successfully fabricated

PCBs and populated the components to produce the final functioning cameras.

53

Chapter 5

HDL Blocks and Programming

5.1 FPGA Programming Overview

The FPGA was used in the camera design to act as the main controller to the various

components within the camera. These functions included:

1. Frame timing and data synchronization

2. Digital Clock Management (DCM)

3. I2C communication

4. Data buffering FIFO

5. Output control

6. Image processing

7. Trigger delay and synchronisation

54

5. HDL BLOCKS AND PROGRAMMING

Image Sync Signals
* •

Image Data

I2C Bus

USB Data Out

USB Sync Out
-xi

Clocks
IN/OUT

AJL
DCMs

Frame
Sync.

I2C
Comm.

Output
Control

Triggers
IN/OUT

r

Trigger
Timing/
Delay

System
Regs.

Image Processor

Shift Control

-MM 5x5 Window

I
Image

Construction

32K FIFO

Line Buffer [0:W-1] |

Line Buffer [0:W-1] |

Line Buffer [0:W-1] |

Line Buffer [0:W-1] I

Color
Conversion

3
Figure 5.1: FPGA VHDL Modules and Data Flow

With these functions in mind, a block diagram was developed to show the data

flow through the FPGAs various functional blocks. Fig. 5.1 shows the proposed ar­

chitecture for the VHDL code developed for the FPGA in the camera design.

The following sections describe the development of these blocks and their VHDL

realization.

5.2 Frame Timing and Data Synchronization

The first functional block that incoming image data from the MT9T001 sensor en­

counters is responsible for synchronising the image data with a data clock and using

frame and line valid signals to track the row and column of current frame being out-

putted from the Micron sensor. According to the Micron MT9T001-3100 datasheet,

55

5. HDL BLOCKS AND PROGRAMMING

FRAME..VAUD — j

> f
UNCVAUD 1 '

i i

Number of master clocks > , , * f 2

VaM iroajje Data *.»• j Sinking

Figure 5.2: MT9T001-3100 Timing [10]

the data and timing signals appear as shown in Fig. 5.2.

Firstly, the process SYNC-IN in frame-grabber-vl.vhd latches the signal values of

LINE-VALID, FRAME-VALID, as well as the current state of the data bus (DIN) on

the rising edge of PIXCLK. The latched signals are also delayed by one clock cycle in

order to identify subsequent rising and falling edges of these signals. Concurrently, the

process FRAME-CTLR in frame-grabber-vl.vhd tracks the current row and column

of data based on the latched signals above.

Essentially, the FRAME-VALID signal is used to indicate the start and end of

a frame being read out from the sensor. While FRAME-VALID is high, the signal

LINE-VALID is used to indicate the start and end of a new row of data being read

out from the sensor. When both FRAME-VALID and LINE-VALID are high, either

8 bit or 10 bit data representing the intensity of the active pixel appears on the data

bus and is at a stable state on the rising edge of PIXCLK. Fig. 5.3 shows how the

FRAME-VALID and LINE-VALID signals are used to count the current row and

column of data.

The register FRAME-RESET is used as part of the data output controller block

to guarantee that a full frame of data is transmitted after the camera is triggered.

This simply compensates for any loss of data in the case of a FIFO overflow. The

PIXCLK

56

5. HDL BLOCKS AND PROGRAMMING

Figure 5.3: MT9T001-3100 Synchronization Flow

VHDL code for this process can be found in Appendix C.

5.3 I2C Write Slave

One of the requirements of the camera design was that all devices can share their

settings and configurations via the I2C bus, as was shown in Fig. 2.5. However, there

was no readily available I2C module suitable for the camera design. Thus, the most

basic I2C operation, the write slave, was implemented in VHDL to allow the other

devices on the bus, such as the Cypress USB Microcontroller, to send data to internal

registers in the FPGA.

57

5. HDL BLOCKS AND PROGRAMMING

5.3.1 I2C Bus Overview

I2C is a simple two wire serial communication interface that consist of a data line

(SDA) and a clock line (SCL). For this design, the I2C bus operates at 100 kHz. A

unique feature of the I2C is multi-master support. Communication on the I2C bus

begins when a master device transmits a start condition at a period when the bus is

free. The bus is considered to be free again a certain time after a stop condition is sent.

After the start condition, the master transmits an address followed by a read or write

bit r/w. The bus can operate with either 7 bit addresses or 10 bit address depending

on the required number of components connected to the bus. For the camera I2C bus

the 7 bit address mode was sufficient. Meanwhile, the I2C connected devices listen

for this address and the appropriately addressed device sends an acknowledge. Data

is then transfered in 8 bit words, each followed by an acknowledge from the receiving

device [7].

A write slave essentially acts as an addressable memory in which a master con­

troller, in this case the Cypress USB Microcontroller, can address and write data

words to various internal registers. The slave device must be capable of the following

operations:

1. Detect start/stop condition

2. Check device address and v/w

3. Receive data words

4. Send acknowledge signal

The I2C manual in [7] outlines the following communication protocol. Fig. 5.4

shows the example timing for a master device claiming the bus with a START condi­

tion. The master then transmits the device address ADDR it wants to communicate

58

5. HDL BLOCKS AND PROGRAMMING

STAR"

SDA ! [_,

SCL

r
A7

| 1]

A6 A1

1 ; ;; j [..

R/W

I [

ACK D7

I i

D6 DO

I i : I L

ACK

STOP

MM i]

Figure 5.4: I2C Bus Communication

with. The master then waits to receive an acknowledge ACK from the slave device,

which responds by pulling the SDA bus line low. The master then transfers 8 bits of

data and again waits for a ACK. This process repeats until finally the master device

terminates communication with a STOP condition.

5.3.2 I2C Slave VHDL implementation

The approach taken to realize the I2C write slave device was to implement a FSM. The

SDA and SCL lines of the I2C bus were sampled (using the 48 MHz clock supplied by

the Cypress USB Microcontroller) at a fixed sampling interval. The sampling interval

was computed based on an estimate of the rise time of the I2C bus when pulled high

(as determined by the RC network resulting from the total line load capacitance and

size of the pull-up resistors). The I2C lines were sampled every 64 clock cycles, which

at 48 MHz translates to 750 kHz sampling rate. The sampled signals are delayed to

ensure that at least two consecutive samples represent a single bus state, preventing

a single sample of a transition from being considered a stable bus state.

The sampled data is then used as part of a FSM, making up the I2C slave con­

troller. Fig. 5.5 shows the basic flow for the I2C FSM as well as 5 the 5 states and

their conditions for transition:

1. State 1 - IDLE: The device listens for a start condition

2. State 2 - ADDR: After a start condition, the devices reads in a 7 bit address

followed by a r/w bit

59

5. HDL BLOCKS AND PROGRAMMING

3. State 3 - SND_ACK: Upon verifying itself as the addressed device, the SDA line

is pulled low to indicate an acknowledge, otherwise the device returns to IDLE

4. State 4 - RCV_DATA: The device reads in an 8 bit word. Upon a successful read

of 8 bit, it transitions to the SND_ACK state, otherwise it returns to IDLE.

i
E: Send

±

Get Data

p \ N o
o n ? /

Yes

Figure 5.5: I2C FSM

For the sake of simplicity, one state transition is not shown in Fig. 5.5. The

omitted transition occurs when a START condition is detected while data is being

received. If a START condition is detected, then the state machine returns to the

ADDR state. According to I2C specifications, this situation would indicate that a

new communication is being initialized and devices must listen for a new address.

Also, although the state machine checks for a stop condition after receiving data, the

condition on the bus itself is actually flagged by a parallel process and hence can

occur anytime and not be missed.

The current state will remain in either ADDR or RCV.DATA until a full 8 bits of

serial data is read from the SDA line. This can be seen in the MainStateMach process

60

5. HDL BLOCKS AND PROGRAMMING

START REGADDR D[15-8] D[7-0] STOP

g D A I I ADDR WO W1 W2

ACK ACK ACK ACK

Figure 5.6: I2C write in FPGA.

included in I2c.SlaveCtrl.vhd. The data is read off the SDA line and stored in a shift

register which is enabled when the current state is ADDR or RCV-DATA. This same

register is cleared when the current state is SND_ACK. A counter is used to monitor

the number of incoming bits which is enabled and cleared in the same manner as the

shift register.

Finally, the process WritelScDataRegs in I2cSlaveCtrl.vhd. was developed to

store the incoming data into an appropriate memory register in the FPGA. Registers

were set up as 16 bit words to be referenced by an 8 bit address, and a communication

standard was developed for the I2C master device to follow in order to write to these

registers. Fig. 5.6 shows this comunication format. Essentially, in the valid data

transfer stage of normal I2C operation, the master device will transfer data in three

word blocks. The first 8 bit word is used to address a register within the FPGA, the

second 8 bit word carries the upper 8bits of the 16bit register value and the third 8

bit word carries the lower 8 bits of the 16 bit register value. The definition for each

register can be found in the comments of this process.

5.4 Asynchronous FIFO

Part of the challenge of developing the FPGA code was that the system operated

on two different clocks. Data read into the FPGA from the CMOS sensor operated

on PIKCLK and data to be outputted to the Cypress USB Microcontroller needed

61

http://I2c.SlaveCtrl.vhd

5. HDL BLOCKS AND PROGRAMMING

to be synchronized with IFCLK. The Asynchronous FIFO block of the FPGA was

developed with two purposes:

1. To provide a small buffer to prevent data loss when transmitting data to the

USB microcontroller

2. Bridge the two clock system

To realize the FIFO, Xilinx CoreGEN was used. The FIFO was simply sized as

large as possible utilizing all available block rams of the FPGA. The data bus width

was sized 16 bits wide to facilitate a single clock read operation as the output to the

USB microcontroller is a 16 bit bus. The creation of the FIFO instances can be found

in frame-grabberjvl.vhd. A separate read and write clock were specified and the FIFO

full status simply ignored as this is later accounted for in the output controller block

in the following section.

5.5 Output Controller

The output controller block was designed to act as a master device that writes image

data to the slave configured FIFO of the FX2 USB microcontroller. The timing

requirements of the Cypress device are outlined in the FX2 datasheet [4] and are

shown in Fig. 5.7.

A write of the data lines is triggered when the SLWR line is pulled low. The data is

actually written on the following rising edge of IFCLK. SLWR must then be asserted

high. In this manner 16 bits are written to the FIFO every other IFCLK clock cycle.

However, arbitrating data to the output bus and controlling the state of SLWR is

only one function of the output controller. The controller must also ensure that a

full frame of data is transmitted without loss of data to avoid any possible confusion

on the PC side as to whether or not the incoming data encompasses an entire frame.

62

5. HDL BLOCKS AND PROGRAMMING

IFCLK

SLWR

DATA z

FLAGS

*1FCLK

""If <** ' ^ T

*SFD| *FDH

. J*

J

Figure 5.7: Timing for Cypress FX2 Slave FIFO

For this to occur, the output controller counts the number of bits transmitted with

respect to the start of the frame and continues to output data until a complete frame

worth of data has been transmitted. In the case of a FIFO overflow in the FPGA due

to slow data transmission through the USB, the output data may appear erroneous

and irrelevant, however the quantity of data will be consistent with a full image frame.

The start of the frame condition was handled previously by the Frame Timing and

Data Synchronization section above.

In addition, the controller must monitor the states of both the internal FPGA

FIFO and the USB slave FIFO, ensuring that a write does not occur if either the

FPGA FIFO is empty, or the USB slave FIFO is full. Table 5.1 shows the various

cases that may occur and the status of the various registers and outputs under these

cases.

This state table was implemented in the USB-CLTR process found in

frame-grabber.vl.vhd. This generates the appropriate read and write signals for the

both the internal FPGA FIFO and external USB slave FIFO, however is not respon­

sible for arbitrating the appropriate data to the 16 bit FIFO data.

63

5. HDL BLOCKS AND PROGRAMMING

C
on

di
ti

on

V
al

ue

State
USB_FIFO_full
FPGA_FIFO_empty
PIX_CNT < 0 and FRAME_VALID

ram_ren
slwr
state
PIX_CNT action

0
X
X
X

0
0
1
-1

0
0
X

1
0
1
-1

1
1

0
0
1
0

1
X
X
X

0
1
0
0

Table 5.1: Write Controller Cases

5.6 Image Processing Block

The image processing block in the FPGA was created for the option to pre-process

image data coming form the CCD sensor. The primary use of the image processing

block was to reconstruct incomplete sensor data (demosaicking) before data was tran-

ferd to the PC to allocate more cycle time to image inspection. The extra data created

by reconstructing the image within the FPGA is easily handled by the USB transfer

rates. Because the data was reconstructed in real-time in the camera, substantial

time is saved in the PC which can be used for more complicated or thoughough in­

spections. RGB to YUV colour conversion is also performed in this block, partially

to help compress the data transfered to the PC.

The output format is 16 bit YUV with 8 bits allocated to the luminance channel

Y and 4 bits to each the chrominance channels U and V. If only grayscale data is

required, the chrominance channels can simply be ignored. This data is than buffered

in a FIFO withing the FPGA before being written to the FX2 FIFO for USB transfer.

The details behing the architecture for the image processing block as well as VHDL

implementation is described in detail in Chapter 6.

64

5. HDL BLOCKS AND PROGRAMMING

5.7 Trigger Delay

The final process implemented in the FPGA is the ability to delay a trigger and

control the ouput of various other triggers. Although this is not currently used in

the system, the option for this type of control exists by routing the triggers through

the FPGA. The TRIGGER.CTLR process in frame.grabber.vl.vhd was created for

this purpose. The number of clock cycles to delay the trigger is controled by I2C

data_regs(5) with a default value of zero.

5.8 Synthesis Constraints and Results

The final VHDL code was synthesised using Xilinx ISE 10. li for the Spartan-3E500-4

device. Constraints were specified for the two system clocks set to 48 MHz. The syn­

thesizer option was set to minimize timing to guarantee the constraints were satisfied.

The code was first synthesized to include the Edge Enhanced image processing algo­

rithm described in the following chapter, and then synthesized with only the Nearest

Neighbour and bilinear methods implemented. This was done because the current

implementation of the Edge Enhanced method did no meet the required timing, which

if further described in the conclusion of this thesis.

The I/O placement and timing constraints were specified in frame-grabber-jol.ucf

and can be found in Appendix C.

Table 5.2 shows the synthesis report generated by ISE for the design that includes

the Edge Enhanced demosaicking method and the Table 5.3 shows the synthesis report

excluding this extra block.

65

5. HDL BLOCKS AND PROGRAMMING

Logic Utilization
Number of Slice Flip Flops
Number of 4 input LUTs
Logic Distribution
Number of occupied Slices
Number of Slices containing only related logic
Number of Slices containing unrelated logic
Total Number of 4 input LUTs
Number used as logic
Number used as a route-thru
Number used as Shift registers
Number of bonded IOBs
IOB Flip Flops
Number of RAMB16s
Number of BUFGMUXs
Number of DCMs
Number of MULTl8X18SIOs

Timing Results
PIXCLK
USBCLK
SCL

Used
1,016
3,313

2,024
2,024
0
3,549
3,305
236
8
45
31
19
4
2
10

Available
9,312
9,312

4,656
2,024
2,024
9,312

190

20
24
4
20

Utilization
10%
35%

43%
100%
0%
38%

23%

95%
16%
50%
50%

Critical Path Delay
77.325 ns
10.621 ns
6.978 ns

Table 5.2: FPGA Utilization with Edge Enhanced Demosaicking

5. HDL BLOCKS AND PROGRAMMING

Logic Utilization
Number of Slice Flip Flops
Number of 4 input LUTs
Logic Distribution
Number of occupied Slices
Number of Slices containing only related logic
Number of Slices containing unrelated logic
Total Number of 4 input LUTs
Number used as logic
Number used as a route-thru
Number used as Shift registers
Number of bonded IOBs
IOB Flip Flops
Number of RAMB16s
Number of BUFGMUXs
Number of DCMs
Number of MULT18X18SIOs
Timing Results
PIXCLK
USBCLK
SCL

Used
676
870

765
765
0
1,032
854
162
16
45
31
19
4
2
9

Available
9,312
9,312

4,656
765
765
9,312

190

20
24
4
20

Utilization
7%
9%

16%
100%
0%
11%

23%

95%
16%
50%
45%

Critical Path Delay
19.119 ns
10.576 ns
7.186 ns

Table 5.3: FPGA Utilization without Edge Enhanced Demosaicking

Chapter 6

Image Processing

6.1 Demosaicking

When acquiring visual information, a Charge-Coupled Device (CCD) essentially op­

erates by converting light intensity to charge in the Photoactive layer (an epitaxial

p+ layer of silicon). This layer is made of a number of discrete points called pixels,

each collecting its own charge which is proportional to the light intensity exposed on

that region. Control hardware then shifts the cumulated charge to the neighbouring

pixel, where the charge of the last pixel is dumped to a charge amplifier. The resulting

output is a sequence of charges representing the row, or grid of pixels depending on

the type of sensor: line scan or full frame. In order to obtain colour information, a

Colour Filter Array (CFA) is applied over the Photoactive layer. The CFA filters light

at each pixel, such that each pixel is only exposed to one spectrum of light. The most

common CFA used in commercial electronics is the Bayer pattern, shown in Fig 6.1,

68

6. IMAGE PROCESSING

column readout direction

row
readout
direction

«

B

G

B

G

B

K

G

R

G

R

G

(j

B

G

B

G

B

K

G

R

G

R

G

<j

B

G

B

G

B

K

G

R

G

R

G

. . .

» j

B

G

E

G

B

black pixels

;- Pixel
(28, 16)

Figure 6.1: Bayer Pattern CFA on a CMOS Image Sensor

which is made up of alternating rows that expose red and green pixels and then green

and blue pixels. The resulting image data from this type of sensor is not a full Red

Green Blue (RGB) data, but rather three incomplete and phase shifted colour planes

(seen if Fig. 6.1). The green channel appears redundantly to replicate the nature of

the human eye, which has a greater ability to resolve green color information [2].

The process of constructing a full RGB image from CFA data is called demosaick-

ing. There are currently a number methods actively in use for performing this image

reconstruction. The most basic of these was implemented in the camera application.

In addition to this a more custom approach to image reconstruction was developed

to perform more accurate reconstruction in real-time.

The first method implemented is called Nearest Neighbour. In this method, the

missing colours at a pixel are simply copied from the neighbouring pixels. This is

typically done in a set pattern, for instance, copying from the nearest pixel to the

right and bottom of the current pixel being interpolated. On very high resolution

images, this process may be acceptable, however when an image that has areas which

exhibit sharp changes in contrast in a small region (a couple of pixels) is interpolated

using this method, a "zipper" effect results. This method was implemented in the

69

6. IMAGE PROCESSING

camera design as an option for quick interpolation, mostly to verify the operation of

the camera and its ability to successfully process data.

The next major set of demosaicking methods involve various types of interpolation,

whereby the missing colors for a pixel are calculated as an average of neighbouring

colours. The most common of these methods is bilinear interpolation, where only

the nearest neighbours of similar colours are averaged. This interpolation was im­

plemented into the camera as the predominate method for generating output data,

however, the resulting image lacks accuracy at sharp edges.

Many more sophisticated methods have been proposed since, which attempt to

identify regions or boundaries of objects in an image and interpolate along edges in­

stead of across them, thus reducing the "zipper" effect and the appearance of colour

mosaics (bleeding colours). These methods exploit image spacial or spectral corre­

lation. Spacial correlation refers to the fact that within a homogeneous region of a

natural image, neighbouring pixels share similar values. Spectral correlation refers to

the fact that within these homogeneous regions, the ratio of colour planes (i.e. red to

blue) are similar [9]. Two predominate methods involve the use of an edge indicator

functions to form a weighted average of either the difference in neighbouring pixels

[17] or the ratio of colours in neighbouring pixels [9]. Equations 6.1 and 6.2 show the

general form of these methods respectively. For the purpose of demonstration, the

calculation of the missing green at the 3rd row and 4th column is shown.

G34 = #34 + (^ = ^ , 4 4 , 3 5 ^ (^ - 4) , (g A)

/Lij=24,33,44,35 e*J

G34 = Ru (E ^ ^ 3 3 , 4 4 , 3 5 % (^ / 4) \ (6 2)

y Z_Wj=24,33,44,35 e*J /

Where e^ is an edge weight function based on either gradients or other compara­

tive criteria.

70

6. IMAGE PROCESSING

6.2 Hardware Implementations

The problem with methods such as [9] and [17] was that theses processes of demo-

saicking required multiple iterations to attain accurate reconstruction, which these

methods unsuitable for a real-time application. In addition, the edge weight functions

used by these methods required complex operations, such as square root functions,

which were difficult to implement in hardware. For these reasons, a novel demosaick-

ing method was developed to improve the accuracy over simple bi-linear interpolation

without the computational intensity and multiple iterations required by spacial and

spectral correlation methods.

The objective of the new method was to improve the reconstruction accuracy

over the bi-linear method, without the need to buffer much more data, and without

introducing unnecessarily complex operations. Bilinear interpolation of a missing

pixel color required that the four neighbouring pixel values be available. This required

a 3x3 window of data to be available, which meant that at least two complete rows

of image data need to be stored. This can be seen in Fig. 6.2.

in

L*
L^

P22

W

: P02

Pzi

VPn!-

Pin--

•'Par".

> » • •

Poo

: ? F « . " : P i s '••••

• '..:':": PoM^.i-PdS; '.

1

~1

Figure 6.2: 3x3 Data Window for Bilinear Interpolation

The output from this block was complete RGB data and the input was single

colour intensity depending on the current pixel being read in. The manner in which

the missing values were computed depended on the colour of the center pixel Pn.

The results for the missing colours were determined by the following formulae where

71

6. IMAGE PROCESSING

P[x represented a missing colour value at the centered pixel:

p'

p'

P\2 + -P2I + PlO + Poi
4

P22 + -P20 + -Poo + P02
4

D/ A2 + PlO
Fu~ 2

D/ -P21 + -Poi

(6.3)

(6.4)

(6.5)

(6.6)

The following table shows how the output is generated for 4 different cases:

Case

Red Center

Blue Center

Green Center on
Red row
Green Center on
Blue row

Missing Colour
Green
Blue
Green
Red
Red
Blue
Red
Blue

Equation
6.3
6.4
6.3
6.4
6.5
6.6
6.6
6.5

Table 6.1: Bilinear Output

The hardware implementation of such a method was quite straight forward. The

window of data was implemented as a series of registers, connected to two line mem­

ories. The equations were computed on each cycle and the output was multiplexed

depending on the current row and column which was determined by the frame con­

troller block. The VHDL implementation for this method can be found in IrnagePro-

cessor.vhd in Appendix C.

However, in order to attain highly accurate image reconstructions, information on

the changes in the colour planes as well as across colour planes needed to be used,

and the direction of weighted interpolation was determined based on this gradient

72

6. IMAGE PROCESSING

information. For this, a larger 5x5 window of data was required. The architecture for

implementing this in hardware was an expanded version of the 3x3 window (shown

in Fig. 6.3).

in

U-
U-
u
U

P"M ,

PS4

P»

•P l 4 f

P()4

,?*,.

P33

P23

M.
P03

?#:•

:'?&';

P22

"P.12-

. P02

•:Pw:

"P i t - ;

P21

• ' • P # -

,.p«;.

.P«::

. 'P30-

P20: •:

?P<b •'

Poo-

• ; . . ; " . "P IN . • • • Ps5 ; ' :..

;:r,;::::;: PIN..yPzs':.'.;•','.

.,,,.. ' PlN..vPl5 .

. ,,;Us":;."PoN--- Po5 :. rv .

I
~|

-1

~ |

Figure 6.3: 5x5 Data Window for Edge Weight Function

6.3 Edge-Enhanced Real-Time Hardware Demo-

saicking

A literature review of real-time hardware demosaicking revealed very limited tech­

niques. Some of these involved complex edge weight functions implemented in Look-

Up Tables (LUTs). Other methods used slightly modified alternatives to bilinear

interpolation. The techniques of [17] or [9] by simplifying the edge weight functions

to be more cost-effective to implement in hardware as well as remove the requirement

for multiple iterative processing, without substantially compromising accuracy. [17]

was selected as a basis since it exploited spacial correlation which used subtraction to

interpolate missing data. This was selected over spectral correlation (as in [9]) which

used division or ratios, because subtraction was far more cost effective to implement

in hardware.

73

6. IMAGE PROCESSING

The next step was to ascertain an effective edge weight function. In order to easily

implement and test various functions, a series of MATLAB programs were developed

to perform this task. First a function RGB2RAW.m was created to convert the full

colour RGB data into its equivalent RAW data which appears from a CFA Bayer

pattern. Nearest Neighbour as well as bilinear demosaicking were implemented in

demosaic.m (found in Appendix D). Finally, the edge enhanced method found in

ee-demosaic.m was iteratively developed and compared to Nearest Neighbour and

bilinear in demosaic-test.m.

The first step in creating the Edge Enhanced demosaicking method was to fully

recreate the green colour plane, as this plane comprises 50% of the incoming image

data. In order to do this, an edge weight function was created by not only examining

intensity changes between green pixels in a certain direction, but also considering

changes in intensity of the red and/or blue channel. The final edge weight function

can be seen in Equation 6.7 where Dij(u,v) denotes the difference of the (i,j) pixel

in the (u,v) direction.

Ui,j\U')'V) — I-M+2« J + 2 u *:i,j\i\-L'i+u,j+v ft—u,j—v\i\" * -^i+u,j+v *i+v,j+u *i—v,j—u

(6.7)

where: (u,v) G {(±1,0), (0, ±1)}

The four resulting edge weights are compared to a threshold value. If the edge

weight in a given direction was less than the threshold value, then the interpolation

was performed in that direction. Interpolation was performed using spacial correlation

where the change in colour intensity in one colour plane was assumed to be the same

in the other colour planes [9]. Equation 6.8 shows how a missing green value was

calculated, where P^(u,v) denotes the interpolated value of the missing green pixel

in the (u, v) direction.

74

6. IMAGE PROCESSING

P%(u, v) = Pi+uJ+v + {Pi'j P ^ + * «) (6.8)

where: (u, v) <E {(±1,0), (0, ±1)}

and : (i,j) e (i%2 ^ j%2) for missing green values.

The resulting interpolated values for each direction, which satisfied the threshold

value, was then averaged to produce the final missing green value. If none of the edge

weights satisfied the threshold criteria, then the missing green was computed as the

average of the interpolation in all directions.

The missing red at a blue pixel or missing blue at a red pixel was then computed in

a similar manner, except that instead of four directions of interpolation, the vertical

directions were considered as one case and the horizontal directions were considered

as another case so only two possible directions of interpolation exist. The same

edge weight function in Equation 6.7 was used, but with both vertical directions

(u,v) = (±1,0) compared to another threshold value (threshold2) to see if either

edge weight value satisfied the criteria. The same was done for the two horizontal

directions (u,v) = (0, ±1). Data for the missing red or blue pixel P?j(u,v) was

calculated according to Equation 6.9 using the newly calculated missing green value

Pjj from Equation 6.8.

*&(«»«) =
1 i4-li.4-lj.i4-ii.4-u ±i. „, „ 5 J , „ , „ f f i+u+vj+u+v ri-u-v,j+u+v pG _ p \ ,

~r lii 1%4-vA+u I ~r

/ Pj+u+v,j-u-v *i—u-v,j-u-v , pG _ p \
I 0 '••? ri~v,j-u J

/2 (6.9)

(« , i /) e{ (i ,o) , (o , i)}

and: {i,j)e(i%2^j%2)
' R for i=2k; k€N

and : x = <
B for i=2k+l

http://i4-li.4-lj.i4-ii.4-u

6. IMAGE PROCESSING

Finally, the missing red and blue values at the known green values were computed.

For this, a different edge weight function was used as criteria for the direction of

interpolation. This edge weight function was computed similarly to the edge weight

seen in Equation 6.7, however, with a slight variation to the last term as can be seen

in Equation 6.10:

!••'i+u-\-v,j+u+v i,j\ ' *i+u—v,j—u+v -**>•/1 to i n \

where: (u, v) e {(±1,0), (0, ±1)}

and : (i,j) € (i%2 = j%2) corresponding to missing Red and Blue values.

In this scenario, instead of averaging the interpolated pixel values in the direction

that satisfies a threshold criteria, only interpolation in the direction of the minimum

difference was performed. However, since interpolation, in this case, required informa­

tion from pixels adjacent to the direction of interpolation, the minimum perpendicular

edge with respect to the minimum edge weight was also considered. P^(ul, vl, u2, v2)

denoted the interpolated pixel value in the (ul,vl) direction where (u2,v2) corre­

sponded to the minimum D^j{u,v) perpendicular to (ul,v2).

Pid(ult vl,«2, v2) = Pi+u2,j+v2 + (Pij - PMW + P™j^ (6 1 1)

where: (ul, vl) € {(±1, 0), (0, ±1)}

and : (i,j) € (i%2 — j%2) for missing Red and Blue values.

76

6. IMAGE PROCESSING

R for i = 2k; keN
and : x — <

[B for i = 2k+l;

The remaining missing colour not computed in Equation 6.11 was calculated ac­

cording to Equation 6.9 in the direction corresponding to (ul,vl) in Equation 6.11.

The result was full RGB data for each pixel.

It was observed that all calculations were easily implemented in hardware as ad­

ditions and shifts. The only multiplication that ocured was when three interpolated

green values needed to be averaged. For instance, instead of dividing by 3, multiply

by 21 and divide by 64 (shift by 6) since 21/64 « 0.328.

6.4 Implementation and Results

The three methods of demosaicking described above were all implemented into a

Spartan3E FPGA. A test bench Image-Processor--TB.vhd was created to verify these

methods and can be found in Appendix C. The testbench reads a RAW data file gen­

erated in MATLAB and writes the output normally sent to the USB microcontroller,

to a file. This output data was read in MATLAB to generate an image file and the

results of the output were compared to the original image before it was converted to

RAW data.

Table 6.2 shows the Y channel results of the three methods of interpolation as

well as the Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) when

compared to the original. The test image was selected based on its sharply defined

edges that are not completely vertical or horizontal as these were difficult to accurately

reconstruct.

The Edge Enhanced method showed very promising results, with the lowest MSE

and most visually accurate reconstruction of the edges. There was a visible reduction

77

6. IMAGE PROCESSING

Table 6.2: Demosaicking Results

in the jagged "zipper" edges present in the Bilinear and Nearest Neighbour results.

Also, the Edge Enhanced image showed improved contrast over the other demosaick­

ing methods.

Although each algorithm was successfully synthesised in the Spartan-3E FPGA,

no definitive timing or utilization results have been included, as the VHDL code

for the Edge Enhanced method has not been optimized. Optimizations must still be

made to improve the critical path delay of the Edge Enhanced method, as it currently

exceeds the required timing requirements.

78

Chapter 7

Conclusion

7.1 System Integration

The final design files for the camera PCB were sent to a California based company,

Sierra Proto Express, for manufacturing. The company fabricated the PCBs accord­

ing to the Gerber files provided and populated the components listed in Table B.l in

Appendix B. The final design can be seen in Fig. 7.1. The final cost to manufacture

the cameras was $300 CAD per camera including component cost, component popu­

lation, PCB fabrication and shipping. The lead time for the manufacturing of these

cameras was less than 10 days from order to delivery.

Before implementing the camera into the complete vision system, the camera

boards were powered, programed and tested with software developed by Neil Scott.

If USB communication, serial slave programming of the FPGA and I2C communi­

cation were all successful, then the camera was connected to the triggers generated

79

7. CONCLUSION

Figure 7.1: Camera PCB in an Enclosure

by the control board by Neil Scott and the output image data checked for errors.

Cameras that operated correctly were mounted into the existing circular enclosures

and integrated into a quadrant of the final MV system.

Fig. 7.2 shows the final images generate by the camera and imaging setup. To­

gether, the four cameras capture 360° of the capsules body. The images in Fig. 7.2

were reconstructed using bilinear interpolation as the demosaicking method and the

output is a gray scale image. This output format seems to suffice for the time being,

however the possibility for enhanced demosaicking and YUV images is available. The

image size seen in Fig. 7.2 is 750x245 pixels, covering approximately a 3 cm x 1 cm

region in space. This corresponds to a 0.4 mm per pixel resolution, slightly lower

than the desired output. This is because the current sensor configuration is set to 2x

binning, where only every other row and every other column of the image sensor is ex­

posed. This results in only 1/4 of the total image resolution of the camera being used

to capture the imaging region. This can be increased to the sensors full resolution,

as the PC based image processing capabilities expand. The image resolution without

80

7. CONCLUSION

binning would then be 0.1 mm per pixel and satisfy the operational requirements of

the system.

Capsule Top

Capsule Bottom

Capusle Left

Capsule Right

Figure 7.2: Final Capsule Images

At the moment, the MV system is operating stably at around 80% of the desired

throughput, processing approximately 48 000 capsules per hour. This is due to the

PC based image inspection algorithms taking place. The image processing algorithms

are still in an experimental stage and will become faster and more effecient in the near

future. The hardware designed in this thesis has been tested successfully for 60 000

capsules per hour at a resolution up to 1536x1024 which is more than sufficient for the

required resolution. There is still much work to be done on the complete MV system

before a commercialized product can exist. Still, the basis for a functional system that

will meet the desired operating requirements and exceed the desired cost requirements

was successfully created. This includes: designing and building a backplate to the

camera enclosures with a suitable industrial I/O connector and improving the speed

performance of the proposed edge enhanced image demosaicking method.

81

7. CONCLUSION

7.2 Summary

This thesis covered the specifications, development and design of a custom digital cam­

era suitable for the application of pharmaceutical capsule inspection. This involved

understanding the nature of the inspections to take place in order to determine the

required operating specifications. The most important of these were: a throughput

rate of 60 000 capsules per hour and an image resolution of 0.1 mm per pixel.

As a basis for the design, an existing, but out of date, MV system (for sorting

capsules) was used. The objective of the project was to upgrade and retrofit the exist­

ing machine with custom electronics, in order to satisfy the outlined requirements. A

custom hardware design approach was taken in order to minimize the system cost and

provide maximum flexibility for future upgrades. This meant that suitable cameras

and image processors needed to be selected, as well as an interface for the two. PCs

were selected to perform the image inspection because they could be easily upgraded

at a low cost. After close comparison of differ possible cameras, a USB 2.0 interfaced

custom camera was the desired solution, as this provided a cost effective solution with

the desired data transfer rates. Using the operating and business specifications, the

requirements for the camera and a general functional diagram were composed. The

design methodology for creating a custom USB 2.0 digital camera was then outlined

and the development and testing methods defined.

The first step in the bottom-up design of the camera was to select components,

such as an appropriate image sensor and FPGA, that would meet the required spec­

ifications of resolution, flexibility and speed. After all the required components were

selected, these were organized into functional groups and electrical schematics were

created. This involved the use of Eagle CAD for designing the electrical schematics

and PCB layout. Many design decisions were made when creating the schematics

which include: Sizing the components of the TPS75003 triple supply to satisfy the

82

7. CONCLUSION

power requirements of the FPGA, setting up appropriate bypass capacitor networks,

planning the digital and analog powering of the various devices and making all the

appropriate I/O connections. The resulting schematics were then realized as a phys­

ical layout on a four layer PCB that was later manufactured and implemented into

the MV system.

The other main design aspect of this project involved the development of VHDL

code for the camera's FPGA. The FPGA acted as the main hardware controller

on the device, interfacing the imaging sensor to the USB 2.0 microcontroller. The

FPGA also was setup as a reconfigurable image processor, where the type of image

demosaicking, color output and size of the incoming image could be changed through

an I2C interface without reprogramming the device. The final VHDL coding included

blocks for: Synchronising incoming image sensor data, reconstructing the CFA pattern

into complete RGB data, converting this data to YUV format, and buffering the data

in a FIFO before transferring it to the USB 2.0 device through an output controller

block. The FPGA also had control of the distribution and delay of a trigger signal.

This gave the flexibility for a single trigger to be delayed and outputted, allowing the

multiple cameras of a quadrant to be daisy chained and operate off a single trigger

from the control board by Neil Scott if necessary.

The VHDL code, specifically for the Image Processing block, had an associated

test bench designed to read and write input/output data. Using this test bench,

RAW image data in the form of a Bayer CFA pattern could be supplied to the

image processing block and the processed output analyzed for accuracy. The test

data was generated in a MATLAB function and the output data analyzed similarly.

Intermediate test benches not included in this thesis were also used to verify the I2C

write slave block as well as the output controller.

The final VHDL code was synthesized using Xilinx ISE 10.1 and a binary file was

generated for programming the FPGA. Programming was ultimately done through

83

7. CONCLUSION

the USB microcontroller, as the FPGA was configured as a serial slave device for

this purpose. The final device utilization for the FPGA was approximately 50% for

LUTs and logic blocks and 90% for Block ram memories, with the Edge Enhanced

demosaicking method included, indicating that the Spartan-3E500 device was an

appropriate selection for this application.

The final manufactured cameras were tested as described above the implemented

into the MV system.

7.3 Future Work

Although the current camera design proves the concept that a custom hardware

approach can be an effective solution for the image acquisition component of the

MV system, there is still some development required before the entire system can

be sold as a commercial product. The two main areas for future work relevant to

custom camera include: Design and build of a backplate for the camera enclosure

and improving the synthesis of the edge enhanced demosaicking method.

The PCB camera boards were designed to optimise the area utilization of the

PCB and thus was not overly concerned with the placement of I/O connectors on

the PCB. The camera boards were mounted into the existing mechanical enclosures,

however, the existing backplates for these enclosures do not provide the appropriate

openings to allow the USB mini B connector, triggers and I2C connector access to

the board. A new set of backplates must be designed in order to completely enclose

the camera, while allowing for industrial standard connections into the enclosure for

the connectors listed above. This may require that the PCB board level connectors

be changed or moved, although modifications to the PCB design should be avoided.

In addition, the hardware synthesis of the edge enhanced demosaicking method

needs to be refined. Currently, the synthesis of this image processing block does not

84

7. CONCLUSION

meet the timing constraints, as a number of operations are being sequentially exe­

cuted. An investigation of the formulas used in this demosaicking method show that

the maximum critical path for the algorithm includes 8 additions, 2 comparators and

a LUT. These operations are performed on 8 bit data and should be able to be imple­

mented to meet the 48MHz requirements of the Image Processor block. Modifications

to the synthesis of the block is currently being performed.

Overall, the logical implementation of the device was successful. The desired image

resolution and throughput was achieved. The architecture of the image processing

block can successfully perform operations within a sliding 5x5 windows and can be

reconfigured to to suite the needs of the final MV system. The physical size of the

board suites the existing enclosures, however a final back panel to this holder with

the appropriate cable holes will still need to be designed. Ultimately, this custom

USB camera design can be used as a strong foundation for the development of a

cost effective commercial product suitable for a range of machine vision applications,

specifically the inspection of pharmaceutical two-part gelatin capsules.

85

References

[1] Mark Alexander. Power Distribution System (PDS) Design: Using Bypass/De­
coupling Capacitors. Xilinx, February 2005. XAPP623 v2.1.

[2] Bryce E. Bayer. U.S. pat. 3971065: Color imaging array, July 1976.

[3] Compaq et al. Universal Serial Bus Specification, April 2000. Revision 2.0.

[4] Cypress. CY7C68013 EZ-USB FX2 USB Microcontroller High-Speed USB Pe­
ripheral Controller, June 2002. 38-08012 Rev. *B.

[5] Pharmaphil Inc. Requirements and specifications document. Internal document,
November 2004.

[6] IPC. Generic Standard on Printed Board Design, February 1998. IPC-2221.

[7] Jean-Marc Irazabal and Steve Blozis. Application Note: I2C Bus. Philips Semi­
conductors, March 2003. AN10216-01.

[8] A. Karloff, N. Scott, and R. Muscedere. A flexible design for a cost effective,
high-throughput inspection system for pharmaceutical capsules. In Proc. IEEE
International Conference on Industrial Technology, April 2008.

[9] Ron Kimmel. Demosaicing: Image reconstruction from color CCD samples.
IEEE Transactin on Image Processing, 7(3), 1999.

[10] Micron Technology Inc. 1/2-Inch 3-Megapixel CMOS Digital Image Sensor, June
2005. MT9T001_3100_DS_2.ini - Rev.D.

[11] Jean P. Nicolle. http://www.fpga4fun.com/FPGAinfol.html, January 2008.

[12] NXP. I2C-bus Extender: Product data sheet, May 2008. P82B715 (rev. 07).

[13] Christopher T. Robertson. Printed Circuit Board Designer's Reference: Basic.
Prentice Hall, Upper Saddle River, NJ, 2004.

86

http://www.fpga4fun.com/FPGAinfol.html

REFERENCES

[14] James Swarbrick. A history of dosage forms and basic preparations. In Encyclo­
pedia of Pharmaceutical Technology, volume 7, pages 304-306. Informa Health
Care, 1998.

[15] Texas Instruments. triple-Supply Power Management IC for Powering FPGAs
and DSPs, June 2007. SBVS052G.

[16] D. Vernon. Machine Vision: Automated Visual Inspection and Robot Vision.
Prentice Hall, 1991.

[17] Ping Xue Xiaomeng Wang, Weisi Lin. Demosaicing with improved edge direction
detection. IEEE International Symposium on Circuits and Systems, 3, 2005.

[18] Xilinx. Four-and Six-Layer, High-Speed PCB Design for the Spartan-SE FT256
EGA Package, October 2006. XAPP489 vl.0.

[19] Xilinx. http://www.xilinx.com, June 2008.

[20] Xilinx. Spartan 3E Family FPGA: Complete Datasheet, April 2008. DS312-1
(v3.7).

[21] Xilinx. SpartanSE FPGA Family: Complete Data Sheet, April 2008. DS312.

87

http://www.xilinx.com

Appendix A

System Requirements

Table A.l: Defect List and Tolerances [5]

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Defect

Oil Hole

Scrape Hole

Cracked

Short Body

Double Dip

Telescoped

Mashed

Trims

Uncuts

Splits

Maximum allowable size

0.2 mm or larger

0.2 mm or larger

0.2 mm or larger

2.0 mm under spec

Large Defect

Large Defect

Large Defect

Large Defect

Large Defect

1.0 mm or larger

Continued on next page

88

A. SYSTEM REQUIREMENTS

Table A . l - continued from previous page

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Critical

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Defect

Large Strings

Black Grease Mark

Closed Capsule

Long / Short Joining

Thin Spots

Rough Cuts

Short Cap

Long Body

Long Cap

Loose Pieces

Bad Join

Double Cap

Punched End

Side Corrugation

Collet Pinches

Splits

Rough Cuts

Collet Pinches

Bubbles

Wrinkles

Star Ends

Dye Spec

Dirt Marks

Strings

Punched Ends

Maximum allowable size

5.0 mm or larger

0.2 mm or larger

Large Defect

within 1.0 mm of spec

TBD

1.0 mm or larger

1.0 mm under spec

1.0 mm over spec

1.0 mm over spec

Large Defect

Large Defect

Large Defect

1.0 mm or larger

Any

0.2 mm or larger

0.2 mm or larger

0.5 mm - 1.0 mm

3.0 mm or larger

0.5 mm or larger

2.0 mm or larger

3.0 mm or larger

1.0 mm or larger

0.2 mm or lager

2.0 mm - 5.0 mm

0.2 mm or larger

Continued on next page

A. SYSTEM REQUIREMENTS

Table A . l — continued from previous page

Minor

Minor

Defect

Grease Rings

Scrapes

Maximum allowable size

0.2 mm or larger

1.0 mm or larger

Requirement

1 Good capsules falsely rejected
2 Critical defects falsely accepted
2b Minor defects falsely accepted
3 Speed of capable inspection
4 Products inspected
5 Vendor facility validation
6 In process validation

Acceptable Marginal

< 1 % <5%
0 0
0 0.5%
1000 caps/min 750 caps/min
All sizes and colours Size 0 Natural
Must pass Must pass
Must pass Must pass

Table A.2: High Level Business Requirements[5]

Requirement
1 Size
2 Colours
3 Defects
4 Product Count
5 Remove Defects
6 Operator Friendly
7 User Manual
8 Admin Manual
9 Source Code
10 Self Testing
11 Security
12 Markings
13 Touch Screen
14 Drawings
15 Validation
16 Count

Description
The system must recognise and inspect sizes (00, 0, 1, 2, 3, 4)
The system must recognize and inspect all colours
Recognize and count and eject all defects (See A.l)
Count good capsules and display
Identify and remove pieces exhibiting defects automatically
Must have intuitive and secure method of user operation
Must have complete user manual with visual aids
Must have complete administrator manual
Must include source code
Detect setup problems such as camera focus or dirty pocket
Systems must be secure and lockable
System must have all hoses, wires, switches labelled
For first system to determine if ideally suited for the process
System drawing (blue prints)
System driven validation process for lot and shift change
Count to a preset quantity and close or redirect output

Table A.3: High Level Performance Requirements[5]

A. SYSTEM REQUIREMENTS

Scenario

1 Train vision system to analyze product
2 Use the vision system to inspect product as it is being manufactured
3 Use the vision system to inspect product after the product has been manufactured
4 Computerized validation process for each item change (system prompted)
5 Computerized validation/challenge for each shift (system prompted)

Table A.4: Business Scenarios[5]

91

Appendix B

Camera Board Schematics

The following are the final circuit schematics used for the camera board design:

Table B.l : Bill of Materials

R e f

C 1 . C 2
C 3
C4 , C 5
C6 , C44
C 7
C8
C9
CIO, C l l
C 1 2 - C 4 3 , C 4 7 -
C 5 7 , C 6 9 - C 7 4
C 4 5 , C46
C58
C59 , C 6 3 , C66
C 6 0 , C 6 4 , C 6 7 ,
C75 -C77 , C 7 9
C 6 1 , C 6 5 , C 6 8
C 6 2 , C 7 8
C80 , C81
C O N N 1
D l
D2
J P 1
J P 2
J P 3
L I
L2
L E D 1
Q l , Q 2
R l , R2
R 3 , R 6
R 4
R 5
R 7 , R 9 , R20
R 8

D e s c r i p t i o n

16V C e r a m i c C a p , 10% 1
6.3V C e r a m i c C a p , 10%
50V C e r a m i c C a p , 10%
16V C e r a m i c C a p , 10%
6.3V C e r a m i c C a p , 20%
6.3V C e r a m i c C a p , 20%
50V C e r a m i c C a p , + - 0.5p
6.3V T a n t a l u m C a p , 20%
10V C e r a m i c C a p , 10%

50V C e r a m i c C a p , + - 0.25p
16V T a n t a l u m C a p , 10%
6.3V C e r a m i c C a p , 10%
16V C e r a m i c C a p , 10%

6.3V C e r a m i c C a p , 20%
16V T a n t a l u m C a p , 20%
10V T a n t a l u m C a p , 20%
U S B M i n i - B , ver t i ca l
20V S c h o t t k y D iode
20V S c h o t t k y D iode
36 p in b reakab le heade r
18 p in , 2 row h e a d e r
4 p i n , fr ict ion p in heade r
1.4A I n d u c t o r , 3 0 %
2.4A I n d u c t o r , 3 0 %
7.6 mi l i c ande l a , 2.2V Green
1.8V P - C h a n n e l M O S F E T
1 / 2 W Res i s to r , 1%
1 / 1 0 W Res i s to r , 1%
1 /10W Res i s to r , 1%
1 /10W Res i s to r , 1%
1 /10W Res i s to r , 1%
1 /10W Res i s to r , 1%

V a l u e

O.lu
l u
1500p
lOOOOp
lOOu
lOu
lOp
lOOu
O.lu

lOp
l u
l u
lOOOOp

2.2u
2.2u
lOu

-
2A
1A
4p in
6p in
4p in
15u
5u
2 0 m A
2.4A
0.033
61.9k
15.4k
36.5k
4.7K
330

M a n u f a c t u r e r

P a n a s o n i c
P a n a s o n i c
P a n a s o n i c
P a n a s o n i c
M u r a t a
P a n a s o n i c
P a n a s o n i c
K e m e t
P a n a s o n i c

P a n a s o n i c
AVX
P a n a s o n i c
P a n a s o n i c

P a n a s o n i c
AVX
AVX
Molex
V i s h a y
O N Semicon .
3M
3M
3M
S u m i d a
S u m i d a
S t a n l e y
Fa i rch i ld
S u s u m u
P a n a s o n i c
P a n a s o n i c
P a n a s o n i c
P a n a s o n i c
P a n a s o n i c

M a n u f a c t u r e r P a r t N o .

E C J - 1 V B 1 C 1 0 4 K
E C J - 1 V B 0 J 1 0 5 K
E C J - 1 V B 1 H 1 5 2 K
E C J - 1 V B 1 C 1 0 3 K
G R M 3 1 C R 6 0 J 1 0 7 M E 3 9 L
E C J - 1 V B 0 J 1 0 6 M
E C J - 1 V C 1 H 1 0 0 D
T 4 9 1 B 1 0 7 M 0 0 6 A T
E C J - 0 E B 1 A 1 0 4 K

E C D - G 0 E 1 0 0 C
T A C L 1 0 5 K 0 1 6 X T A
E C J - 0 E B 0 J 1 0 5 K
E C J - 0 E B 1 C 1 0 3 K

E C J - 0 E B 0 J 2 2 5 M
T A C L 2 2 5 M 0 1 6 X T A
T A C L 1 0 6 M 0 1 0 X T A
500075-0517
S S 2 2 - E 3 / 5 2 T
M B R M 1 2 0 E T 3 G
929400-01-36
929710-10-09
640454-4
C D R H 6 D 2 8 N P - 1 5 0 N C
C D R H 6 D 2 8 N P - 5 R 0 N C
P G 1 1 1 2 C - T R
F D N 3 0 4 P Z
RL1632S-R033-F
E R J - 3 E K F 6 1 R 9 V
E R J - 3 E K F 1 5 R 4 V
E R J - 3 E K F 3 6 R 5 V
E R J - 2 R K F 4 7 0 1 X
E R J - 2 R K F 3 3 0 0 X

Q t y

2
1
2
2
1
1
1
2
49

2
1
3
7

3
2
2
1
1
1
1
1
1
1
1
1
2
2
2
1
1
3
1

Con t inued

P a c k a g e

0603
0603
0603
0603
1206
0603
0603
3528-21
0402

0402
0603
0402
0402

0402
0603
0603
Mi n i - B
D 0 2 1 4 - A A
P o w e r M I T E
0 . 1 " T H
0 . 1 " T H
0 . 1 " T H
7 x 7 x 3 m m
7 x 7 x 3 m m
0603
S O T - 3
1206
0603
0603
0603
0402
0402

on n e x t p a g e

92

B. CAMERA BOARD SCHEMATICS

Table B . l — continued from previous page
RIO
R l l
R12, R13
R14, R15
R16, R17
R 1 8
R 2 1
S W 1
U l
U2
U 3
U 4
U 5
U6, U7
U8
U 9
Y l

1/10W Resistor, 1%
1/16W Resistor, 1%
1/16W Resistor, 1%
1/16W Resistor, 1%
1/16W Resistor, 5%
1/10W Resistor, 5%
1/16W Resistor, 5%
OFF-MOM switch, SMD
Triple-Supply
Spartan 3E 500
FX2 USB MCU
Micron 1/3" color CMOS
3.3V LDO Regulator
3.3V LDO Regulator
I2C Bus Extender
I2C 128k EEPROM
Crystal, series cap, SMD

10M
100k
10k
I k
680
0
470

-
3A

-
-
-
500mA
250mA

-
-
24MHz

Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Omron
T I
Xilinx
Cypress
Micron
Catalyst Semicon.
National Semi.
N X P
Microchip
E C S

ERJ-3GEYJ106V
ERJ-2RKF1003X
ERJ-2RKF1002X
ERJ-2RKF1001X
ERJ-2GEJ681X
ERJ-3GEY0R00V
ERJ-2GEJ471X
B3U-1000P
TPS75003RHLT
XC3S500E-4FTG256C
CY7C68013A-100AXC
MT9T001P12STC
CAT6219-330TD-GT3
LP2992AIM5-3.3/NOPB
P82B715TD-T
24LC128-I/ST
ECS-240-S-23B-TR

1
1
2
2
2

0603
0402
0402
0402
0402
0603
0402
3x2.5mm
QFN-20
FT256
100-TQFP
48-PLCC
SOT23-5
SOT23-5
8-SOIC
8-TSSOP
6x3.5mm

B. CAMERA BOARD SCHEMATICS

*s

<-+

i iD*K" *8

in

3

"rf^l

sHH

H<Ml

a

fr7«i—^i

-*a

nmmm
? S « ? S i M

in'O D

11 " y y

nooi 9

-Dg

iP- »!

JP 4

O c

• a §

wS 3

-5 1

3 0 D

1

in

Figure B.l: TPS Triple Supply Schematic

94

B. CAMERA BOARD SCHEMATICS

uujjjjyiuiiujir
WiSSTien^n*i£ i¥m¥is iWi-WYi gs

iQOpQl

IIS1S111111II11II111I1III111
ase

<—±
-vwH

*r^n

mw$M¥, I
'rwiii

O30A

i i i i i i i i i i n i f i r n r i n i n n i i i i i i n r i m n n r

SE. S

J}

o

i I 1 [nn
i 1 1 i i i 1 1 1 1 1 1 1 1 1 r 1 1 1 1 1 1 v i i 1 1 i 1 1 1 1 1 1 i 1 1 i 1 1 1 1 1

mm
sss:

6bb

I 8

rtfT—&K

S < VWr-t-yWV &;

:rll-~

1!
>- i,
O £

= i
> 8

II
CD £

> I
• — t ;

c g.
D 8

3 CO

<X

III
Hi
x:
en

0)
CM

M

CD
(9
CB
CM

5 5 * "

;:nrll-

»W03A

-»S

^ M M ^ ^ ^ ^ M g . ^ V f f i ' . ^ ^ ^ ^ ^ ^ ^ ^ W ^

'U 0

SCO

I I -

610 " .

- «

-P

nt 0 ,

; ^ \
THI- -»§

ass l i s ! !

Figure B.2: Spartan-3E FPGA

B. CAMERA BOARD SCHEMATICS

tn
O
Q

-$o

-n

- M — i f

H I — > f

8 8 8 8 3'S Ml aasessgif assh4S8»ssMias«5:i8 tsBgEgggs sssz.ti

o s
0) S

• a |

O -a

> 1
D 8

1 II I llllll ?,u II II III tt II II 1!

ti
<r

JOOOl

rffi

HOH

Wyf -*p

UJr-

a

• • - #

.933

HF-
ni'O

»H 0
•'H 0

PS
m
is

Figure B.3: Cypress FX2 USB Microcontroller

B. CAMERA BOARD SCHEMATICS

- 7 ^

O
Q

>

<*000<H

411-

-*a

-n

-ts

- fee

T " »§

o
Q

5
>

HI >I

-Bo

H i to

-to?

UJT-

o «

> 1
3 s

1

GGA

I I ! «§!!!!!!!
i l l m i

itiF

ter8

-f>H

Figure B.4: Micron Sensor Schematic

97

C
O

O

O

cm

ttf

C
n

N
3 o

o

o X
3 O
 a 0>

o

0
>

 B p

I2
C

 B
us

 E
xt

en
de

r
2/

N

•̂
-J

s

r
LV

dk
o

!2
C

12
8k

E
E

P
R

0M

:S
flT

U
ni

ve
rs

ity
 o

f W
in

ds
or

D

ep
ar

tm
en

t o
t E

le
ct

ric
al

 a
nd

 C
om

pu
te

r
E

ng
in

ee
rin

g

T
IT

L
E

:
ca

m
e

ra
_

b
o

a
rd

_
vl

D
oc

um
en

t
N

um
be

r:

| 2
C

 C
om

po
ne

nt
s

R
E

U
:

1B

D
a

te
:

7
/1

8
/2

0
B

8
0

3
:5

7
:2

9
p

S
h

e
e

t:

5
/5

to
 I to
 I 8

Appendix C

VHDL Code

Listing C.l: frame-grabber.vl.vhd

Company:
Engineer :

Create Date :
Design Name:
Module Name:
Project Name:
Target Devices:
Tool versions :
Description :

Dep endencies :

Revision: 20071114
Revision 0.01 — File Created
Additional Comments :

13:23:42 04/03/2007

frame-grabber-vl — Behavioral

l i b r a r y IEEE;
u s e IEEE. STD.LOGIC.1164.ALL;
u s e IEEE. STD-LOGIC-ARITH. ALL;
u s e IEEE. STD.LOGIC-UNSIGNED. ALL;

Uncomment the following library declaration if instantiating
any Xilinx primitives in this code.

l i b r a r y UNISIM;
u s e UNISIM . VComponents . a l l ;

l i b r a r y CCD -FRAME-GRABBER-LIB;
u s e CCD-FRAME-GRABBER-LIB . I2C-WRITE-SLAVE. ALL;

e n t i t y f r a m e - g r a b b e r _vl i s
P o r t (

PIXCLKJN : in STD-LOGIC;
IFCLK.IN : i n STD-LOGIC;

FX2 Clock
RESET-IN : in STD-LOGIC;

LINE.VALID-IN : in STD-LOGIC;
FRAME-VALID JN : in STD-LOGIC;
CCD-DATAJN : in STD-LOGIC-VECTOR (9 d o w n t o 0) ;

GSHT-CTL-OUT : o u t STD-LOGIC;

99

C. VHDL CODE

USB.BUS-OUT :
USB.SLWR-OUT

USB-FULLJN : in STDXOGIC;
out STD-LOGICVECTOR (15 downto 0) ;

: out STD-LOGIC;
USB-SLRD-OUT
USB-ADRO.OUT
USB-ADRl.OUT

out STD-LOGIC
out STDXOGIC
out STDXOGIC

USB-PCKTENDJOUT : out STDXOGIC;

NSENSOR-RST : out STDXOGIC;
-FRAME-ERROR : out STD-LOGIC;

FS-EN : out STD-LOGIC;
FSO : out STD-LOGIC;
FS1 : out STD-LOGIC;

MCLK : in STDXOGIC;
SCL : in STDXOGIC;

SCL-PB : in STD-LOGIC;
SDA : inout STDXOGIC;

PI : IN STDXOGIC;
Nl : out STDXOGIC;

CLOCK-IN : out STDXOGIC
CLOCK-IN-FB : in STD-LOGIC

end frame-grabber_vl :
);

— B ehavioral D eclaration of frame-grabber-vl

architecture Behavioral of frame.grabber _v 1 is

Signal D eclaration

Constant Declaration

cons tant RESET-ACTIVE : s t d - l o g i c : =

Clock signals

signal PIXCLK :
signal PIXCLKJBUFG :
signal PIXCLKJLOCKED:
signal PIXCLK-DV:

signal USBCLK :
signal USBCLKJBUFG :
signal USBCLKXOCKED
signal USBCLK_cnt
signal USBCLK-DV :

st d - l o g i c ;
s t d - l o g i c ;

3 t d . l o g ic ;

s t d - l o g i c ;

s t d _ l o g i c ;
s t d - l o g i c ;

s t d _ l o g i c ;

s t d - l o g i c ;
s t d _ l o g i c _ v e c t o r (3 downto 0) ;

System Reset Signals

signal r e s e t :
signal s y s . r e s e t :
signal f i f o _ r e s e t :
signal frame-reset :
signal db-ctr :

signal ig _r e s e t :
signal i p_r e se t :

signal t r i g g e r . c n t
signal t r i g g e r - w a i t :
signal t r i g g e r . b :

s t d_logic ;
s t d _1 ogi c ;
s t d _1 ogic ;

st d_l ogi c ;
s t d - l o g i c . v e c t o r (IS downto 0) ;

st d - log i c ;
s t d _ l o g i c ;

s t d - l o g i c . v e c t o r (15 downto 0) ;
s t d - l o g i c . v e c t o r (15 downto 0) ;
s td - l o g i c ;

Image Grabber Signals

signal byte.cnt :
signal byte.O , byte_l :
signal ram.data.in :
signal ram_write :
signal i n t_ r am_wr i t e :
signal ram_wen :
signal r a m . a d d r . e n :

s t d - l o g i c ;
s t d - l o g i c . v e c t o r (7 downto 0) ;
s t d . l o g i c . v e c t o r (15 downto 0) ;

s t d - l o g i c ;
s t d - l o g i c ;

s t d - l o g i c ;
s t d_ log ic ;

100

http://ame.gr

C. VHDL CODE

s i g n a l r a m . c l r
s i g n a l r a m . r e n :
s i g n a l r am.e rap ty :
s i g n a l r a m _ f u l l
s i g n a l r a m . r e s e t :
s i g n a l s t a t e :
s i g n a l i n t . p x l . r o w :
s i g n a l i n t . p x l . c o l :
s i g n a l a c t i v e . p x l . r o w :
s i g n a l a c t i v e . p x L c o l :
s i g n a l a c t i v e . p x l . d a t a :
s i g n a l a c t i v e . p x l . d a t a . b
s i g n a l f l u s h - f r a m e :
s i g n a l f s _ r a m _ f u l l :
s i g n a l f s . c n t
s i g n a l p x l . d r o p . c n t :

1 frame 2048x1536
s i g n a l p x l . w r i t e . c n t

s t d _1 ogi c
s t d _ l o g i c

s t d . l o g i c
s t d . l o g i c
s t d_ log ic
s t d - l o g i c

s t d . l o g i c . v e c t o r (10 downto 0) ;
s t d - l o g i c - v e c t o r (10 downto 0)

s t d . l o g i c . v e c t o r (10 downto 0) ;
s t d - l o g i c _v e c t o r (10 downto 0) ;
s t d . l o g i c . v e c t o r (7 downto 0) ;

s t d . l o g i c . v e c t o r (7 downto 0) ;
s t d - l o g i c ;
s t d - l o g i c ;

s t d - l o g i c - v e c t o r
s t d . l o g i c . v e c t o r (21 downto 0) ;

s t d . l o g i c . v e c t o r (21 downto 0) ;

(3 downto 0) ;
enough to count

s i g n a l in t _f v
s i g n a l i n t _ f v _ b
s i g n a l i n t . l v
s i g n a l i n t . l v . b

s t d . l o g i c ;
s t d . l o g i c ;

s t d . l o g i c ;
s t d . l o g i c ;

Image Processor Signals

s i g n a l i p . e n s t d . l o g i c ;

Output Sync
s i g n a l u s b . s l w r :
s i g n a l u s b . p c k t e n d
s i g n a l u s b . b u s :

s t d . l o g i c ;
s t d . l o g i c . v e c t o r (15 downto 0) ;

I2C Signals

s i g n a l i 2 c . e n a b l e :
s i g n a l i 2c . b u s . b u s y
s i g n a l 12c_ack :
s i g n a l i 2 c _ d a t a :
s i g n a l i 2 c _ d e b u g :

s t d - l o g i c :
s t d - l o g i c ;

s t d - l o g i c ;

s t d . l o g i c ;
s t d . l o g i c . v e c t o r (7 downto 0) ;

s i g n a l t r i g g e r s t d - l o g i c ;

s i g n a l s y s . r e g s
s i g n a l i p . d e b u g

I 2 c D a t a R e g ;
s t d . l o g i c ;

s i g n a l f s _f 1 ag s t d . l o g i c ;

— Component Declaration

COvlPaNENT DCM.DLL
PORT(

CLKIN.IN : IN s t d . l o g i c ;
RST.IN : IN s t d . l o g i c ;
CLKDV.OUT : OUT s t d - l o g i c ;
CLKINJBUFG.OUT : OUT s t d . l o g i c ;
CLK0.OUT : OUT s t d . l o g i c ;
LOCKED.OUT ; OUT s t d . l o g i c

END COMPONENT;

COMPONENT I m a g e P r o c e s s o r
PORX(

CLK : IN s t d - l o g i c ;
RESET : IN s t d . l o g i c ;
EN : IN s t d . l o g i c ;
DIN : IN s t d . l o g i c . v e c t o r (7 downto 0) ;
ROW : IN s t d . l o g i c . v e c t o r (10 downto 0) ;
COL : IN s t d . l o g i c . v e c t o r (10 downto 0) ;
ROW-SIZE : IN s t d . l o g i c . v e c t o r (10 downto 0)
COL.SIZE : IN s t d . l o g i c . v e c t o r (10 downto 0)
DATAJVIODE : IN s t d . l o g i c . v e c t o r (2 downto 0)
COLOR3IT : IN s t d - l o g i c ;
FRAME : IN s t d - l o g i c ;
DOUT : OUT s t d _ l o g i c _ v e c t o r (15 downto 0) ;
RAM-WEN : OUT s t d . l o g i c ;
IPJDEBUG : OUT s t d . l o g i c
) ;

END COMPONENT;

101

http://int.lv

COMPONENT ASYNC-FIFO-16 IS
p o r t (

d i n : IN s t d . l o g i c . V E C T O R (15 d o w n t o 0) ;
r d . c l k : IN s t d . l o g i c ;
r d . e n : IN s t d - l o g i c ;
r s t : IN s t d - l o g i c ;
w c . c l k : IN s t d - l o g i c ;
wr_en : IN s t d - l o g i c ;
d o u t : OUT s t d . l o g i c - V E C T O R (1 5 d o w n t o 0) ;
e m p t y : OUT s t d - l o g i c ;
f u l l : OUT s t d - l o g i c) ;

END COMPONENT;

COMPONENT I 2 c - S l a v e C t r l
PORT(

S y s _ c 1 k : IN s t d - l o g i c ;
S y a - R e s e t : IN s t d - l o g i c ;
I 2 c E n a b l e : IN s t d - l o g i c ;
Scl : IN s t d - l o g i c ;
Sda : 1NOUT s t d - l o g i c ;
I2cBusBusy : OUT s t d - l o g i c ;
I 2 c D a t a R e g s : OUT I 2 c D a t a R e g ;
I2cDebug : OUT s t d - l o g i c
) ;

END COMPONENT;
BEGIN

b e g i n

Component Inatantiazation

Instl.DCM.DLL: DCM-DLL PORT MAP(

Ins t2 .DCM.DLL : DCM-DLL PORT MAP(
CLKIN-IN => IFCLK-IN ,
RST-IN => r e s e t ,
CLKDV-OUT => USBCLK-DV,
CLKINJBUFG-OUT => USBCLK-IBUFG,
CLK0.OUT => USBCLK,
LOCKED-OUT => USBCLK-LOCKED

I n s t l . D C M . D L L : DCM-DLL PORT MAP(
CLKIN-IN => PIXCLK J N ,
RST.IN => r e s e t ,
CLKDV-OUT => PIXCLK.DV,
CLKINJBUFG-OUT => PIXCLK JBUFG,
CLK0.OUT => PIXCLK,
LOCKED-OUT => PIXCLK-LOCKED

I n s t . I m a g e P r o c e s s o r : I m a g e P r o c e s s o r PORT MAP(
CLK => p i x c l k ,
RESET => i p . r e s e t ,
EN => ip_en ,
DIN => a c t i v e - p x l - d a t a_b ,
ROW => i n t - p x l . r o w ,
COL => i n t - p x l . c o l ,
ROW-SIZE => s y s . r e g s (2) (10 d o w n t o 0) ,
COL.SIZE => s y s . r e g s (3) (10 d o w n t o 0) ,
DATA-MODE => s y s . r e g s (4) (3 d o w n t o 1) ,
COLOR-BIT => s y s . r e g s (4) (0) ,
FRAME => FRAME-VALID J N ,
DOUT => r a m - d a t a - i n ,
RAM-WEN => r a m - w r i t e ,
IP-DEBUG => i p - d e b u g

In s t .ASYNC-FIFO: ASYNC-FIFO-16 PORT MAP (
d in => r a m _ d a t a . i n ,
r d _ c l k => usbc lk ,
r d . e n —> r a m . r e n ,
r s t => r a m . r e s e t ,
w r . c l k => p i x c l k ,
w r . e n => ram.wen ,
dou t => u s b - b u s ,
empty => ram.empty ,
f u l l => r a m _ f u 11

) ;

C. VHDL CODE

I n s t _ I 2 c _ S l a v e C t r l : I 2 c _ S l a v e C t r 1 PORT MAP(
Scl => Scl ,
Sda => Sda ,
S y s . c l k => usbc lk ,
S y s . R e s e t => s y s . r e s e t ,
I 2 c E n a b l e —> i 2 c _ e n a b l e ,
I2cBusBusy => i 2 c _ b u s _ b u s y ,
I 2 c D a t a R e g s => s y s . r e g s ,
I2cDebug ==> i 2 c _ d e b u g

) ;

Signal Initialization

Reset Signals

r e s e t < = (NOT r e s e t - i n) when (RESET_ACTIVE = ' 0 ') e l s e r e s e t . i n ;
i p _ r e s e t <= s y s . r e s e t ; when (sy s-res et = ' 1 ' or sys-regs(1) (1) = ' 1 ') else ' 0 ';
r a m . r e s e t < = s y s . r e s e t ; — or frame-reset ;

Internal Signal Assignmetns
i 2 c _ e n a b l e <= ' 1 ' ; — s y s - r e s e t ;
ram.wen < = r a m . w r i t e AND NOT r a m - f u l l ;

Output Assignments

c l o c k . i n < = u s b c l k - d v ;

GSHT.CTL.OUT < = t r i g g e r ;
Nl < = t r i g g e r ;

FX2 Configuration Pins

USB-PCKTEND.OUT <== ' 0 ' ; Active High
USB_SLRD_OUT < = '0
USB_ADR0_OUT < = * 0 '
USB_ADRl_OUT < = '0 '

A ctive Low

NSENSORJRST <— ' ! ' ; Micron Sensor Enable

Process : Deb ounce -Ctr
Desc: Handle Debounce on the RESET-IN pin

D e b o u n c e . C t r : p r o c e s s (USBCLK, r e s e t)
b e g i n

i f (r e s e t = ' 1 ') t h e n
d b . c t r <— (o t h e r s — > ' 0 ') ;

e l s i f (USBCLK'EVENT and USBCLK = ' 0 ') t h e n
i f (USBCLK-LOCKED = ' 1 ' and d b _ c t r (1 8) = ' 0 ') t h e n should be 18

Wait until DLL has locked onto the clock.
d b . c t r <— d b - c t r + 1;

end i f ;
end i f;

end p r o c e s s D e b o u n c e . C t r ;

Process : System-Reset
- Desc: Handle sys-reset baaed on state of RESET-IN pin and debounce counter.

S y s t e m - R e s e t : p r o c e s s (USBCLK, d b _ c t r (1 8))
b e g i n

i f (USBCLK'Event and USBCLK = ' 1 ') t h e n
i f (d b - c t r (1 8) = ' 1 ') t h e n

s y s . r e s e t < = ' 0 ' ; sys-regs (1) (0) ;
e l s e

s y s . r e s e t < = '1 ';
end i f;

end i f;
end p r o c e s s S y s t e m - R e s e t ;

— Process : TRIGGER-CTLR
— Desc: Synchronize the data from the micron sensor.

TRIGGER-CTLR : p r o c e s s (u s b c l k , s y s . r e s e t)
b e g i n

i f (s y s . r e s e t = ' 1 ') t h e n
Nl < = '0 ' ;

103

GSHT_CTL_OUT < = ' 0 ' ;
t r i g g e r - w a i t < = (o t h e r s => ' 0 ') ;
t r i g g e r . c n t < = (o t h e r s => ' 0 ') ;

e l s i f (u s b c l k ' E v e n t and u s b c l k = ' 1 ') t h e n
t r i g g e r . b < = t r i g g e r ;
i f t r i g g e r = ' 1 ' and t r i g g e r . b = ' 0 ' t h e n

t r i g g e r - w a i t < = d a t a . r e g s (5) ;
t r i g g e r . c n t < = (o t h e r s => ' 0 ') ;

e l s i f t r i g g e r = ' 1 '
GSHT.CTL-OUT < = t r i g g e r ;
t r i g g e r . c n t < = t r i g g e r . c n t + 1;

end i f ;

i f t r i g g e r _ w a i t / = 0 t h e n
t r i g g e r - w a i t < = t r i g g e r - w a i t — 1;

end i f ;

i f t r i g g e r - w a i t = 0 and t r i g g e r . c n t / = 0 t h e n
Nl < = ' 1 ' ;
t r i g g e r . c n t < = t r i g g e r . c n t — 1;

end i f;
end i f;

end p r o c e s s TRIGGER-CLTR;

Process : SYNCJN
Desc: Synchronize the data from the micron sensor.

i p . e n < = i n t . f v and i n t . l v ;

SYNCJN : p r o c e s s (p i x c l k , s y s . r e s e t)
begin

i f (s y s . r e s e t = ' 1 ') t h e n
i n t . f v < = '0 ' ;
i n t . f v . b <= '0 ' ;
i n t . l v <— '0 *;
a c t i v e . p x l . d a t a <~ (o t h e r s => ' 0 ') ;
a c t i v e . p x l . d a t a . b < = (o t h e r s ==> ' 0 ') ;

e l s i f (p i x c l k ' Event and p i x c l k = ' 1 ') t h e n
i n t . f v < = FRAME-VALID JN ;
i n t . f v . b < = i n t - f v ;
i n t . l v < = LINE-VALID J N ;
i n t . l v . b < = i n t . l v ;
a c t i v e . p x l . d a t a < = CCD_DATA_IN (9 downto 2) ;
a c t i v e . p x l . d a t a . b < = a c t i v e . p x l . d a t a ;

i f (i n t . f v = ' 1 ' and i n t . f v . b = ' 0 ') t h e n
f i f o . r e s e t < = '1 ' ;

e l s e
f i f o . r e s e t < = ' 0 ' ;

end i f;
end i f ;

end p r o c e s s SYNCJN;

FSJ3RROR : p r o c e s s (p i x c l k , s y s . r e s e t)
b e g i n

i f (s y s . r e s e t = ' 1 ') t h e n
f s . r a m . f u l l < = ' 1 ' ;
f s . c n t <= (o t h e r s => ' 1 ') ;

e l s i f (p i x c l k ' Event and p i x c l k — ' 1 ') t h e n
i f (f r a m e . v a l i d . i n = ' 1 ' and i n t . f v = ' 0 ') t h e n

f s . c n t <— (o t h e r s => '1 ') ;
fs-ram-full <~ '1 ';

e l s i f (f s . c n t / = 0) t h e n
f s . c n t <— f s . c n t — 1;

end i f;

i f (r a m - f u l l — ' 1 ' and f s . c n t — 0) then
f s . r a m . f u l l <— '0 ' ;

e l s e
f s . r a m . f u l l < = ' 1 ' ;

end i f;

end i f ;
end p r o c e s s FSJ3RROR;

Process : FRAME.CTLR
Desc: Track frame status and report errors

http://int.lv
http://int.lv
http://int.lv
http://int.lv

C. VHDL CODE

F R A M E J C T L R : p r o c e s s (p i x c l k , s y s . r e s e t)
b e g i n

i f (s y s . r e s e t = ' 1 ') t h e n
i n t . p x l . r o w < = (o t h e r s => ' 0 ') ;
i n t _ p x l _ c o l <— (o t h e r s => ' 0 ') ;
f r a m e - r e s e t < = '1 ' ;

e l s i f (p i x c l k ' E v e n t and p i x c l k = ' 1 ') t h e n
i f (i n t _f v = ' 1 ') t h e n

i f (i n t _ f v _ b = ' 0 ') t h e n
f r a m e - r e s e t < = '1 ' ;

e l s e
f r a m e _ r e s e t <— '0 ' ;

end i f;

e l s e

end i f;
end i f;

end p r o c e s s F R A M E J C T L R ;

i f (i n t _ l v _ b = ' 1 ') t h e n
i f (i n t . l v - ' 1 ') t h e n

i n t _ p x l _ c o l < = i n t _ p x l _ c o l + 1;
e l s e

i n t _ p x l _ c o l < = (o t h e r s => ' 0 ') ;
i n t . p x l . r o w < = i n t . p x l . r o w 4- 1;

end i f;
end i f;

i n t . p x l . r o w <— (o t h e r s => '0 ') ;
i n t _ p x l _ c o l <— (o t h e r s ~> ' 0 ') ;

USB DATA PROCESS

Process: SYNC.OUT
Desc: Synchronize output signals to the FXB

SYNC-OUT : p r o c e s s (u s b c l k , s y s . r e s e t)
b e g i n

i f (s y s . r e s e t = ' 1 ') t h e n
u s b . s l w r _ o u t < = ' 0 ' ;
u s b _ b u s _ o u t < = (o t h e r s = > '1 ') ;

e l s i f (u s b c l k 'EVENT and u s b c l k = ' l ') t h e n
u s b _ s l w r _ o u t < = u s b . s l w r ;
i f (p x l . w r i t e . c n t < " 0 1 1 ") t h e n or (pxl-writ e.cnt >

"0001011111111111111101" and pxl.write.cnt < "0001100000000000000000")
) then

u s b . b u s . o u t <— X"AAAA" ; (others —> '1 ') ;
e l s e

u s b . b u s . o u t < = u s b . b u s ; pxl.write.cnt (7 downto 0) &
pxl.write.cnt (15 downto 8); usb.bus ;

end i f ;
end i f;

end p r o c e s s SYNC.OUT;

Process : USB.Ctlr
Desc: State machine fo r sending data to FX2

U S B . C t l r : p r o c e s s (u s b c l k , s y s . r e s e t)
b e g i n

i f (s y s . r e s e t — ' 1 ') t h e n
u s b . s l w r <— ' 0 ' ;
s t a t e < = ' 0 ' ;
r a m . r e n < = ' 0 ' ;
p x l . w r i t e . c n t < ^ (o t h e r s ==> ' 0 ') ; "0011000000000000000000";

e l s i f (f i f o - r e s e t — ' 1 ') t h e n
p x l . w r i t e . c n t <— T o - S t d L o g i c V e c t o r (t o - B i t V e c t o r (s y s . r e g s (6) (5 d o w n t o 0) &

s y s - r e g s (7)) s r l 1) ; "0001100000000000000000";
"0011000000000000000000";

e l s i f (u s b c l k 'EVENT and u s b c l k = *l*) t h e n
i f (s t a t e = '0 *) t h e n

if (u s b - f u l l _ i n = ' 0 ' and r am-empty = ' 1 ' and f r a m e . v a l i d . i n — ' 0 '
and p x l . w r i t e . c n t > 0) t h e n

r a m . r e n < = ' 0 ' ;
u s b . s l w r < = ' 0 ' ;
s t a t e < = * 1 ' ;
p x l . w r i t e . c n t < = p x l . w r i t e . c n t — 1;

105

http://int.lv

C. VHDL CODE

end i f;
end i f;

end p r o c e s s U S B - C t l r ;

e l s i f (u s b _ f u l l _ i n = ' 0 ' and r am-empty = '0 ') t h e n
r a m . r e n < = ' 1 ' ;
u s b . s l w r < = ' 0 ' ;
s t a t e < = ' 1 ' ;
p x l _ w r i t e _ c n t <— p x l _ w r i t e _ c n t — 1;

e l s e

e n d

r am_ren < = '0 ' ;
u a b . s l w r < = ' 0 ' ;
s t a t e < = ' 0 ' ;

u s b . s l w r < = ' 1 ' ;
r a m . r e n < = ' 0 ' ;
s t a t e < = ' 0 ' ;

end B e h a v i o r a l ;

Listing C.2: I2c.SlaveCtrl.vhd

Company:
Engineer :

Create Date :
Design Name:
Module Name:
Project Name:
Target Devices :
Tool versions :
Description :

Dependencies :

— Revision :
— Revision 0.01 — File Created

Additional Comments:

11:15:26 07/25/2007

I2c.SlaveCtrl — Behavioral

l i b r a r y IEEE;
u s e IEEE. STD.LOGIC.1164.ALL;
u s e IEEE. STD_LOGIC-ARITH . ALL;
u s e IEEE. STD_LOGIC_UNSIGNED. ALL;

l i b r a r y CCD_FRAME_GRABBER_LIB;
u s e CCDJRAME_GRABBER_LIB. I2C-WRITE.SLAVE. ALL;

Uncomment the following library declaration if instantiating
any Xilinx primitives in this code.

library UNISIM;
use UNISIM. VComponents. all ;

e n t i t y 1 2 c _ S l a v e C t r l i s
P o r t (Sc l : i n STD.LOGIC;

Sda : i n o u t STDXOGIC;
S y s -c 1 k : i n STDXOGIC;
S y s . R e s e t : in STDXOGIC;
I 2 c E n a b l e : in STDXOGIC;
I2cBusBusy : o u t STDXOGIC;
I 2 c D a t a R e g s : o u t I 2 c D a t a R e g ;

I2cDebug : o u t STDXOGIC) ;
end I 2 c _ S l a v e C t r l ;

a r c h i t e c t u r e B e h a v i o r a l of I 2 c _Sla ve C t r 1 i s

Constant Declaration
c o n s t a n t S l a v e A d d r e s s s t d . l o g i c . v e c t o r (6 d o w n t o 0)

Sensor
:= " 1 0 1 0 1 0 1 ' 0x5D for MI

106

http://I2c.SlaveCtrl.vhd

C. VHDL CODE

Signal Declaration

t y p e I 2 c S t a t e M a c h i s (IDLE, ADDR, SND-ACK, RCV-DATA) ;
s i g n a l I 2 c S t a t e : I 2 c S t a t e M a c h ;

s i g n
s i g n
s i g n
s i g n

s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n

s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n

al r e s e t : s t d - l o g i c ;
al I n t S d a : s t d - l o g i c ;
al I n t S d a B : s t d - l o g i c ;
al I n t S d a C n t : s t d - l o g i c _vec t or
and stop.

al I n t St a r t D e t e c t e d : s t d - l o g i c ;
al I n t S c l : s t d - l o g i c ;
al I n t S c l B : s t d - l o g i c ;
al I n t S t a r t D e t e c t e d B : s t d - l o g i c
al I n t S t o p D e t e c t e d : s t d - l o g i c ;

I n t I 2 c A c k : s t d - l o g i c ;
I n t B u s B u s y ; s t d - l o g i c ;
ignal .

al I n t I 2 c B i t C n t
al I n t B i t C n t E n
al I n t B i t C n t C l r
a l I n t I 2 c D a t a :
al I n t S h i f t R e g E n

(4 downto 0) ; Sampling rate

Start signal

Sampled Sda
Delayed Sda Sample
of Sda line for start

Delayed start signal
Stop signal

Trigger an Acknowledge
Set on start signal and cleared on stop

: s t d _ l o g i c - v e c t o r
s t d - l o g i c ; —

: s t d - l o g i c ;
s t d _ l o g i c _ v e c t o r (7 downto 0)

s t d - l o g i c
al I n t S h i f t R e g C l r : s t d - l o g i c ; -
al I n t B y t e C n t : s t d - l o g i c - v e c t o r (3 downto 0)

(3 d o w n t o 0) ; Counts received bits .
Counts incoming bits

Clears bit counter
ISC data

Enable the shift register
Clear the shift register

type I2cDataReg is array (4 downto 0) of std-logic-vector (15 downto 0);
s i g n a l I n t D a t a R e g s : I 2 c D a t a R e g ;
s i g n a l I n tRegAddr : s t d - l o g i c - v e c t o r (7 downto 0) ;

s i g n a l I n t I 2 c D e b u g : s t d - l o g i c ;

Component Declaration
component I 2 c - S h i f t R e g

PORT (
CLK: IN s t d . l o g i c ;
SDIN: IN s t d - l o g i c ;
Q: OUT s t d - l o g i c . V B C T O R (7 downto 0) ;
CE: IN s t d - l o g i c ;
ACLR: IN s t d - l o g i c) ;

END COMPONENT;

component I 2c_Bi t C o u n t e r
PORT (

END COMPONENT;

e l k ; IN s t d - l o g i c ;
ce : IN s t d - l o g i c ;
ac 1 r : IN s t d - l o g i c ;
q: OUT s t d - l o g i c . V E C T O R (3 downto 0)) ;

b e g i n

Process Declaration

r e s e t < = ' 1 ' when (s y s - r e s e t = ' 1 ' or I 2 c E n a b l e = ' 0 ') e l s e ' 0 '
I 2cDebug < = ' 1 ' when (I n t D a t a R e g s (3) = x " 0 7 F F ") e l s e ' 0 ' ;

— Input and Output
— Sda is a bidirectional signal.

Sda <= ' 0 ' when (I 2 c S t a t e = SND-ACK) e l s e ' Z ' ; -OVER HERE !!! ! ! ! !

W r i t e
b e g i n

[2 c D a t a R e g s : p r o c e s s (Scl , R e s e t)

if (R e s e t = ' 1 ') t h e n
I n t D a t a R e g s (0) < =
I n t D a t a R e g s (1) < =
I n t D a t a R e g s (2) <=
I n t D a t a R e g s (3) < ~
I n t D a t a R e g s (4) < =
I n t D a t a R e g s (5) < =
I n t D a t a R e g s (6) < =

786432
I n t D a t a R e g s (7) <=
I n t D a t a R e g s (8) < =
I n t D a t a R e g s (9) < =

1021

0000000000000000"
0000000000000110"
0000001011111111"
0000001111111111"
0000000000000010"
0000000000000000"
0000000000000110"

0000000000000000"
'0100000010101010"
'0000001111111101"

DEFAULT-REG
FPGA RESETS:
ROW-SIZE: default 767
COL-SIZE: default 1023
DATA-MODE: default 2 (RAW data) (8-
TRIGGER-DELA Y: default 0
FRAME-SIZE-UPPER: default 1024x768

FRAME-SIZE-LOWER: '
FRAME-MARKER : xxDDDDDDxxxxxxxx
IP-ROW-BUFFER-SIZE : default 1023-i

bit)

107

C. VHDL CODE

I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s
I n t D a t a R e g s

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

<-
<=
<=
<=
<=
<=
<=
<=
<=
<=
<-
<-
<
<
<
<
<
<
<
<
<
<

" 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '

IP-OUT-COUNT : default 1023 +

e l s i f (I n t S c l ' E v e n t and I n t S c l = ' 0 ') t h e n
i f (I n t I 2 c B H C n t = " 0 1 1 1 ") t h e n

i f (I n t B y t e C n t = " 0 0 1 ") t h e n
In tRegAddr < = I n t I 2 c D a t a (6 downto 0) & I n t S d a ;

e l s i f (I n t B y t e C n t = " 0 1 0 ") t h e n
I n t D a t a R e g s (c o n v . i n t e g e r (I n t R e g A d d r)) (15 downto 8) < = I n t I 2 c D a t a

(6 downto 0) & I n t S d a ;
e l s i f (I n t B y t e C n t = " 0 1 1 ") t h e n

I n t D a t a R e g s (c o n v - i n t e g e r (I n t R e g A d d r)) (7 downto 0) < = I n t I 2 c D a t a (
6 downto 0) & I n t S d a ;

end i f;
end i f;

end i f;
end p r o c e s s ;

I 2 c D a t a R e g s <— I n t D a t a R e g s ;

S i g n a l S y n c : p r o c e s s (R e s e t , s y s _ c l k)
b e g i n

i f (r e s e t = ' 1 ') t h e n
I n t S d a < = ' 0 ' ;
I n t S d a B < = '0 ';
I n t S c l < = '0 ' ;
I n t S c l B < = '0 ';
I n t S d a C n t < = (o t h e r s => ' 0 ') ;

e l s i f (s y s . c l k ' E v e n t and s y s - c l k = ' 1 ') t h e n
I n t S d a C n t < = I n t S d a C n t + 1;
i f (I n t S d a C n t = " 0 0 0 0 0 ") t h e n

I n t S d a < = Sda ;
In tSdaB <= I n t S d a ;
I n t S c l < = Scl ;
I n t S c l B <= I n t S c l ;

end i f ;
end i f ;

end p r o c e s s S i g n a l S y n c ;

D e t e c t S t a r t S t o p ; p r o c e s s (R e s e t , s y s _ c l k)
b e g i n

i f (r e s e t = ' 1 ') t h e n
IntStartDetected <= '0';
IntStopDetected <= '0';

elsif (sys.clk 'Event and sys-clk = '1') then

if (IntSda = '0' and IntSdaB = '1') then
if (IntScl = '1 ') then

IntStartDetected <= '1';
else

IntStartDetected < = '0';
end i f ;

elsif (IntSda = '1' and IntSdaB = '0') then
if (IntScl = '1 ') then

IntStopDetected <= '1';
else

IntStopDetected <= '0';
end i f;

end i f;

if (I2cState = ADDR) then

108

C. VHDL CODE

I n t S t a r t D e t e c t e d <— ' 0 ' ;
end i f;

i f (I n t S t a r t D e t e c t e d = ' 1 ') t h e n
I n t S t o p D e t e c t e d < = ' 0 ' ;

end i f ;
end i f;

end p r o c e s s ;

Indication that the device is busy. Set when a Start is detected and released when a
Stop is found. This bit is take outside as status bit for connecting logic.

- A one indicate s , Bus Busy.

BusBusyReg : p r o c e s s (Sys_clk , R e s e t)
b e g i n

i f (R e s e t = ' 1 ') t h e n
I n t B u s B u s y < = ' 0 ' ;

IntBusBusyB < = '0 ';
e l s i f (S y s - c l k ' e v e n t and Sy s_clk = '1 ') t h e n

i f (I n t S t a r t D e t e c t e d = ' 1 ') t h e n
I n t B u s B u s y < = '1 ' ;

end i f ;
if (I n t S t o p D e t e c t e d — ' 1 ') t h e n

I n t B u s B u s y < = ' 0 ' ;
end i f;

IntBusBusyB < = IntBusBusy ;
end i f;

end p r o c e s s ;

I 2cBusBusy < = I n t B u s B u s y ; Ctrl output as indication the the controller has the
bus .

— Main I2C state machine.
The following process contains the main I2C slave state machine.
This state machine is clocked on the falling edge of Scl.

MainS ta t eMach : p r o c e s s (I n t S c l , Reset , I n t S t o p D e t e c t e d)
b e g i n

i f (R e s e t = ' 1 ' or I n t S t o p D e t e c t e d = ' 1 ') t h e n
I 2 c S t a t e < = IDLE;
I n t B y t e C n t < = (o t h e r s = > '0 ') ;

IntMainStatMachStop < = '0 ';
e l s i f (I n t S c l ' e v e n t and I n t S c l — ' 0 ') t h e n

c a s e I 2 c S t a t e i s

IDLE I2cState
when IDLE =>

if (I n t S t a r t D e t e c t e d = ' 1 ') then
I 2 c S t a t e < = ADDR;
I n t B y t e C n t < = (o t h e r s = > '0') ;

end i f:

ADDR I2cState
when ADDR =>

i f (I n t I 2 c B i t C n t = " 0 1 1 1 ") t h e n
i f (I n t I 2 c D a t a (6 downto 0) & I n t S d a = S l a v e A d d r e s s & ' 0 ')

t h e n
I 2 c S t a t e < = SND_ACK;

e l s e
I 2 c S t a t e < = IDLE;

end i f;
end i f;

SND.ACK I2cState
when SND-A.CK =>

I n t B y t e C n t < = I n t B y t e C n t + 1;
I n t I 2 c A c k < = ' 1 ' ;
I 2 c S t a t e < = RCVJDATA;

RCV-DATA I2cState
when RCV.DATA =>

I n t I 2 c A c k < - '0 ' ;
if (IntStartDetected = '1') then

I2cState <= ADDR;
elsif (IntI2cBitCnt = "0111") then

I2cState <= SND.ACK;
end i f;

end case;

109

C. VHDL CODE

end i f ;
end p r o c e s s ;

I2C shift register

S h i f t R e g : I 2 c . S h i f t R e g PORT MAP (
CLK => NOT I n t S c l ,
SDIN => I n t S d a ,
Q => I n t I 2 c D a t a ,
CE => I n t S h i f t R e g E n ,
ACLR => I n t S h i f t R e g C l r

) ;
I n t S h i f t R e g E n < = ' 1 ' when (I 2 c S t a t e = ADDR) or (I 2 c S t a t e = RCV-DATA) e l s e ' 0 ' ;
I n t S h i f t R e g C l r < = ' 1 ' when (R e s e t = ' 1 ' o r I n t S t o p D e t e c t e d = ' ! ' o r I 2 c S t a t e = SND-ACK) e l s e ' 0 '

I2C bit counter.

B i t C o u n t e r : I 2 c . B i t C o u n t e r PORT MAP (
CLK => NOT I n t S c l ,
CE => I n t B i t C n t E n ,
a c l r => I n t B i t C n t C l r ,
q => I n t I 2 c B i t C n t

) ;
I n t B i t C n t E n < = ' 1 ' when (I 2 c S t a t e = ADDR)

or (I 2 c S t a t e = RCV-DATA)
e l s e '0 ' ;

I n t B i t C n t C l r < = ' 1 ' when (I 2 c S t a t e = IDLE)
or (I 2 c S t a t e = SND.ACK)
or (IntStartDetected = '1')
else '0 ';

end B e h a v i o r a l ;

Listing C.3: ImageProcessor.vhd

— Company:
— Engineer :

Create Date:
Design Name;

— Module Name:
Project Name:
Target Devices :

— Tool versions :
Description:

Dependencies :

Revision :
Revision 0.01 — File Created
Additional Comments :

11:10:59 04/17/2007

JmageProcessor — Behavioral

l i b r a r y IEEE;
u s e IEEE. STD_LOGIC_1164.ALL;
u s e IEEE. STD-LOGIC_ARITH. ALL;
u s e IEEE. STDXOGIC-UNSIGNED. ALL;

Uncomment the following library declaration if instantiating
any Xilinx primitives in this code .

library UNISIM;
use UNISIM. VComponents. all ;

e n t i t y I m a g e P r o c e s s o r i s
P o r t (CLK : i n STD-LOGIC;

RESET : i n STD-LOGIC;
EN : in STD-LOGIC;
DIN : i n STDXOGIC.VECTOR (7 d o w n t o 0) ;

ROW : in STD.LOGIC-VECTOR (10 d o w n t o 0) ;
COL : in STD_LOGIC_VECTOR (10 d o w n t o 0) ;
FRAME : i n STD-LOGIC;

C. VHDL CODE

end I m a g e P r o c e s s o r ;

ROW-SIZE : in STD-LOGIC-VECTOR (10 downto 0)
COL.SIZE : in STD-LOGIC-VECTOR (10 downto 0)
DATA-MODE : in STD-LOGIC-VECTOR (2 downto 0)
COLOR-BIT : in STD-LOGIC;

STD-LOGIC-VECTOR (15 downto 0) ;
RAM.WEN : out STD-LOGIC;
IP-DEBUG : out STD-LOGIC) ;

a r c h i t e c t u r e B e h a v i o r a l of I m a g e P r o c e s s o r i s

c o n s t a n t ROW-COUNT : i n t e g e r := 5;
c o n s t a n t COL-COUNT : i n t e g e r := 5;

Type D ef initio n
t y p e r e g _ a r r a y i s array (i n t e g e r range < > , i n t e g e r range <>) of s t d _ i o g i c _ v e c t or (7 downto

0) ;

Signal Declarations
Row Memory Signals

signal row.in : reg.array (ROWJDOUNT—1 downto 0, COL-COUNT—1 downto 0) ;
s i g n a l

0)
s i g n a l

0)
s i g n a l

0)
s i g n a l

0)
s i g n a l

0)

s i g n a l

row. in .OO ,

r o w . i n . 1 0 ,

row_in_20 ,

row_in_30 ,

row_in_40 ,

r o w . a d d r :

r o w . i n . 0 1 , row_in_02 , row. :

r o w _ i n . l l , row_in_12 , r o w .

row_in_21 , r o w . i n _ 2 2 , row. :

row_in_31 , r o w . i n . 3 2 , r o w .

n_03 , row_in_04

n_13 , row_in_14

n . 2 3 , row_in_24

n_33 , r o w - i n . 3 4

row_in_41 , row_in_42 , row_in_43 , r o w . i n . 4 4

STDXOGIC.VECTOR (10 downto 0) ;
s i g n a l row.wen : STDXOGIC;
s i g n a l r o w . e n : STD-LOGIC;
s i g n a l p x l . c n t : STDXOGIC.VECTOR (2 downto 0) ;
s i g n a l r o w . a d d r . m a x : STDXOGICVECTOR (10 downto 0) ;
s i g n a l row-wen_in : s t d . l o g i c ;

s t d - l o g

s t d . l o g

s t d . l og

s t d . l o g

c . v e c t o r (7 downto

c . v e c t o r (7 downto

c . v e c t o r (7 downto

c . v e c t o r (7 downto

s t d . l o g i c - v e c t o r (7 downto

RGB
s h a r e d
s h a r e d
s h a r e d
s h a r e d
s h a r e d
s h a r e d
s i g n a l
s i g n a l
s i g n a l
s i g n a l

construction signals
v a r i a b l e R, G, B : i n t e g e r
v a r i a b l e R l , Gl
v a r i a b l e R2, G2,
v a r i a b l e Ri , Gi ,
v a r i a b l e Y i , U i ,
v a r i a b l e Y t , U t ,

Bl
B2
Bi
Vi
Vt

i n t e g e r ;
i n t e g e r ;
i n t e g e r ;
i n t e g e r ;
s t d . l o g i c . v e c t o r (31 downto 0) ;

tmp.Y : STD-LOGIC-VECTOR (9 downto 0) ;
STD-LOGIC-VECTOR (9 downto 0)
STD-LOGIC-VECTOR (3 downto 0)
STD-LOGIC-VECTOR (3 downto 0)

— Edge Enhanced Interpolation signal
s h a r e d v a r i a b l e D l , D2, D3, D4 : i n t e
s h a r e d v a r i a b l e D p i , Dp2, Dp3, Dp4 :
s h a r e d v a r i a b l e P i , P 2 , P 3 , P4
s h a r e d v a r i a b l e P 5 , P 6 , P 7 , P8
s h a r e d v a r i a b l e t P l , t P 2 , t P 3 ,
s h a r e d v a r i a b l e tP5 , tP6 , t P 7 ,
s h a r e d v a r i a b l e c l , c2 , c3 , c4
s h a r e d v a r i a b l e c 5 , c 6 , c 7 , c8
s h a r e d v a r i a b l e t h r e s h o l d 1
s h a r e d v a r i a b l e t h r e s h o l d 2
s h a r e d v a r i a b l e suml , sum2
s h a r e d v a r i a b l e s u m 3 , sum4

ger ;

inte
: inte
tP4 :
tP8 :
: inte

8 : inte
integer
integer
integer ;
int eger;

t e g e r ;

i t e g e r ;
i t e g e r ;

ge r
g e r

— O
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n
s i g n

utput Control signals
b y t e . c n t : STD .LOGIC;
t m p . b y t e : STDXOGIC.VECTOR (7 downto 0) ;
o u t . e n : STD-LOGIC;
o u t . w a i t : STD-LOGIC;
o u t . c n t : STDXOGICVECTOR (14 downto 0) ;
i n . c n t : STDXOGIC.VECTOR (14 downto 0) ;
i n . e n : STDXOGIC;
i n t _en : STDXOGIC;
i n t . d i n : STDXOGIC.VECTOR (7 downto 0) ;
r o w - d l , row_d2 , row.d3 , r o w . d 4 : STDXOGIC;
c o l - d l , c o l . d 2 , co l_d3 , c o l . d 4 : STDXOGIC;
r o w . c n t , c o l . c n t : STDXOGIC.VECTOR (10 downto 0) ;

s i g n a l i n t _ i p _ d e b u g : STDXOGIC;

signal start-row : STDJ^OGIC-VECTOR (10 downto 0) ;

i l l

http://row.in.10
http://row.in.01
http://row_in.ll
http://row.in.32
http://row.in.44
http://row.addr.max

a VHDL CODE

signal start-col : STDJJOGIC-VECTOR (10 downto 0) ,

Component Definition
COMPONENT RowBuffer IS

p o r t (
a d d r : IN s t d . l o g i c . V E C T O R (10 downto 0) ;
e l k : IN s t d - l o g i c ;
d i n : IN s t d . l o g i c . V E C T O R (7 downto 0) ;
dou t : OUT s t d _ l o g i c . V E C T O R (7 downto 0) ;
en : IN s t d - l o g i c ;
we: IN s t d _ l o g i c) ;

END OCMPONENT;

b e g i n

How Buffers
Generate the Row Buffers based on the number of rows and cols required to process a pixel-

— Row-Buffer.GEN:
— for N in ROW-COUNT- 2 downto 0 generate
— begin

Jnst-Row : RowBuffer Port Map (
addr ==> row.addr ,
elk => CLK,

— din ~> row-in (N, 4) ,
— dout => row„in (N+l ,0) ,
— en => EN,
— we => row-wen

) :
— end generate;

I n s t . R o w l : RowBuffer Port Map (
add r ~> r o w . a d d r ,
e lk => CLK,
d in => row_in_04 ,
dou t => r o w . i n - 1 0 ,
en —> row.en ,
we —> row.wen

) ;
Ins t_Row2 : RowBuffer Por t Map (

a d d r => r o w . a d d r ,
e lk => CLK,
d in => r o w . i n . 1 4 ,
dou t => row_in -20 ,
en => row.en ,
we => row.wen

) ;
Ins t_Row3 : RowBuffer Port Map (

add r => r o w . a d d r ,
e lk => CLK,
d in => row_in_24 ,
dou t => row_in_30 ,
en => row.en ,
we => row.wen

) ;
Ins t_Row4 : RowBuffer Port Map (

add r => r o w - a d d r ,
e lk => CLK,
d in => row_in_34 ,
d o u t —> row_in_40 ,
en —> row.en ,
we => row.wen

Row Shift
Handle the addressing of the Row Buffer

row.wen < = EN or o u t . e n ;
r o w . e n < = EN or o u t . e n ;
r o w . a d d r . m a x < = c o n v . s t d . l o g i c . v e c t o r { c o n v . i n t e g e r (c o l . s i z e) — 5 , 1 1) ;

ROW-SHPT : p r o c e s s (CLK, RESET)
b e g i n

i f (RESET = '1 ') t h e n
r o w . i n . 0 0 < = (o t h e r s => ' 0 ') ;
r o w . i n . 0 1 < = (o t h e r s => ' 0 ') ;

112

http://row.in.14
http://row.in.01

C. VHDL CODE

row_in_02 <—
row_in_03 < =
row_in_04 < =

— row^in-1 0 <•
r o w . i n . l 1 <—
row_in_12 < =
row_in_13 < =
r o w . i n . 1 4 < =

row-in-20 <•
row_in_21 < =
row_in_22 <—
r o w . i n . 2 3 <=
r o w . i n . 2 4 <~

row-in-30 <
row_ in_31 < =
r o w . i n . 3 2 < =
row_in_33 < =
row_in_34 < =

— row-in-40 <
row_in_4 1 < =
row_in_42 <—
r o w . i n . 4 3 <=
row_in_44 < =

o t h e r s => ' 0 ') ;
o t h e r s => ' 0 ') ;
o t h e r s ~> '0 ') ;

: (o t h e r s => '0 ') ;
o t h e r s —> '0 ') ;
o t h e r s => '0 ') ;
o t h e r s => '0 ') ;
o t h e r s => '0 ') ;

• (others => '0 ') ;
o t h e r s —> ' 0 ') ;
o t h e r s => '0 ') ;
o t h e r s => '0 ') ;
o t h e r s => '0 ') ;

: (others - > '0 ') ;
o t h e r s => ' 0 ') ;
o t h e r s —> '0 ') ;
o t h e r s => '0 ') ;
o t h e r s => '0 ') ;

- (others -> '0 ') ;
o t h e r s => '0 ') ;
o t h e r s —> '0 ') ;
o t h e r s —> '0 ') ;
o t h e r s => ' 0 ') ;

r o w . a d d r < = (o t h e r s => ' 0 ') ;

r o w . c n t < = (o t h e r s = > ' 0 ') ;
c o L c n t < ~ (o t h e r s — > ' 0 ') ;

s l s i f (CLK'EVENT and CLK = ' 1 ') t h e n
i f (EN = * 1 * or o u t . e n = ' ! ') t h e n

i f (n o t ((r o w < = " 0 0 0 0 0 0 0 0 0 1 1 ") or (row — " 0 0 0 0 0 0 0 0 1 0 0 " and col < -
0 0 0 0 0 0 0 0 1 0 0 ")) or o u t . e n = ' 1 ') t h e n

c o l . c n t < = c o l . c n t + 1;
i f c o l . c n t = c o l . s i z e t h e n

c o L c n t < = (o t h e r s = > ' 0 ') ;
r o w . c n t < = r o w . c n t -f- 1 ;
i f r o w . c n t — r o w . s i z e t h e n

r o w . c n t <— (o t h e r s => ' 0 ') ;
end i f ;

end i f;
end i f;

if (r o w . a d d r = r o w . a d d r . m a x) t h e n
r o w . a d d r < = (o t h e r s => ' 0 ') ;

e l s e
r o w . a d d r < = r o w . a d d r -f 1;

end i f ;

if DATAJvlODE = 0 t h e n
r o w . i n . 0 0 < = COL(7 downto 0) ;

e l s e
r o w . i n . 0 0 < = DIN;

end i f;

Delay row count sig
r o w . d l < = r o w (0) ;
row_d2 < = r o w . d l ;
row_d3 < = row_d2 ;
row_d4 <_= row_d3 ;

c o l . d l < = c o l (0)
co l_d2 < = c o l . d l
c o l . d 3 < = co l_d2
co l_d4 <~ c o l - d 3

i a I by 5 sh ift s

r o w . i n . O l <— r o w . i n . 0 0
row_in_02 < = r o w . i n . O l
row_in_03 < = row_in_02
r o w . i n . 0 4 < = row_in_03

r o w . i n . l 1 < = r o w . i n . 1 0
r o w . i n . l 2 < = r o w . i n . l 1
r o w . i n . l 3 < = r o w . i n . l 2
row_in_14 <= row_in_13

113

http://row.in.14
http://row.in.23
http://row.in.24
http://row.in.32
http://row.in.43
http://row.addr.max
http://row.in.04
http://row.in.10

C. VHDL CODE

row_in_21 < = r o w . i n . 2 0
row_in_22 < = row_in_21
r o w . i n . 2 3 < = r o w . i n . 2 2
r o w . i n . 2 4 < = r o w . i n . 2 3

r o w . i n . 3 1 < = row_in_30
r o w . i n . 3 2 < ~ row_in_31
r o w . i n . 3 3 < = r o w . i n - 3 2
r o w . i n . 3 4 <— r o w . i n . 3 3

r o w . i n . 4 1 < = r o w . i n_4 0
r o w . i n . 4 2 < = row_in_41
row_in_43 <— r o w . i n . 4 2
row_in_44 < = r o w . i n . 4 3

tmp.Y < = Y;
end i f ;

end i f;
end p r o c e s s ROW-SHFT;

i n . e n < = ' 1 * when ((r o w < = " 0 0 0 0 0 0 0 0 0 1 1 ") or (row = " 0 0 0 0 0 0 0 0 1 0 0 " and col < = " 0 0 0 0 0 0 0 0 1 0 1 ")) e l s e
'0 ' ;

o u t . e n < = ' 1 ' when (o u t . c n t / = 0) e l s e ' 0 ' ;

ROW-SHFT.DELAY : p r o c e s s (RESET, CLK)
b e g i n

i f (RESET = '1 ') t h e n
o u t . c n t < = (o t h e r s —> ' 0 ') ;

e l s i f (CLK'Event and CLK = ' 1 ') t h e n
i f (row — r o w . s i z e and col — c o l . s i z e) t h e n

o u t . c n t < = c o n v . s t d . l o g i c . v e c t o r (4* c o n v _ i n t e g e r (c o l . s i z e) + 1 0 , 1 5) ;
conv.std-logic-vector (16, 15) ;

end i f;

i f (o u t . c n t / = 0) t h e n
o u t . c n t < = o u t . c n t — 1;

end i f ;
end i f;

end p r o c e s s ROW_SHFT-DELAY;

Synchronize Ouput
Latch 16 bit words with a signal to trigger a WEN for the ram fifo .

S Y N C J O U T : p r o c e s s (CLK, RESET)
b e g i n

i f (RESET = '1 ') t h e n
DOUT <= (o t h e r s ~> ' 1 ') ;
by t e . c n t < = '0 ' ;
RAM.WEN < = ' 0 ' ;
i n t . e n < = '0 ' ;

e l s i f (CLK'EVENT and CLK = ' 1 ') t h e n
i n t . e n < = EN;
i f ((EN — ' 1 * and i n . e n = ' 0 ') or o u t . e n — ' 1 ') t h e n

b y t e . c n t < = NOT b y t e . c n t ;

— Build a 16 bit word with 2—8 b its for raw data output .
i f (c o l o r . b i t ™ ' 0 ') t h e n

i f (b y t e . c n t — ' 1 ') then
DOUT < = tmp_Y(7 downto 0)& Y (7 downto 0) ;

SWITCH FOR HARDWARE SYNTHESIS
RAM.WEN < = ' 1 ' ;

e l s e
RAM.WEN < = ' 0 ' ;

end i f;
e l s e

DOUT < = Y(7 downto 0) & U(3 downto 0) &c V(3 downto
0) ;

RAM.WEN < = ' 1 ' ;
end i f;

e l s e
— byte-cnt <= '0';
RAMWEN < = ' 0 ' ;

end i f ;
end i f ;

end p r o c e s s S Y N C J O U T ;

114

http://row.in.20
http://row.in.23
http://row.in.22
http://row.in.24
http://row.in.23
http://row.in.31
http://row.in.32
http://row.in.33
http://row.in.34
http://row.in.33
http://row.in.41
http://row.in.42
http://row.in.42
http://row.in.43

C. VHDL CODE

Get RGB
Bilinear Interpolation of the the RAW image data to 3— 8bit color channels .

GET-RGB : p r o c e s s (RESET, CLK, EN)
b e g i n

i f (RESET = ' 1 ') then
Y <— (o t h e r s —> ' 0 ')
U < = (o t h e r s —> '0 ')
V <— (o t h e r s => ' 0 ')

e l s i f (CLK'Event and CLK '1 ' and (EN — '1 ' or o u t . e n = ' 1 ')) t h e n

case OUTPUT-FORMAT is
c a s e DATAJVIODE i s
when " 0 0 0 " => TEST DATA MODE

R := c o n v . i n t e g e r (row_in_44) ;
G := c o n v . i n t e g e r (r o w . i n . 4 4) ;
B :— c o n v . i n t e g e r (r o w . i n . 4 4) ;

when " 0 0 1 " => RAW DATA MODE
R ;= c o n v . i n t e g e r (r o w . i n . 4 4) ;
G := 0;
B := 0;

when " 0 1 0 " => Nearest Neighbour Interpolatior
if (r o w . c n t (0) = ' 0 ') t h e n

i f (c o l . c n t (0) = '0 ') then
Red Row

— c o n v . i n t e g e r
= c o n v . i n t e g e r

(row_in_43) ;
(r o w . i n . 4 4) ;

= c o n v . i n t e g e r (r o w _ i n _ 3 4) ;

— Red Center
= c o n v . i n t e g e r (r o w _ i n _ 4 4) ;
= c o n v . i n t e g e r (r o w _ i n _ 3 4) ;
= c o n v . i n t e g e r (r o w _ i n _ 3 3) ;

Green Center

i f (c o l . c n t (0)

end i f;
end i f;

when " O i l " => —

' 0 ') t h e n Blue Center
c o n v . i n t e g e r (r o w . i n . 3 3) ;
c o n v . i n t e g e r (r o w . i n . 4 3) ;
c o n v . i n t e g e r (r o w _ i n _ 4 4) ;

— Green Center on Blxte Row
c o n v . i n t e g e r (row_in_34) ;
c o n v . i n t e g e r (r o w _ i n _ 3 3) ;
c o n v . i n t e g e r (r o w _ i n _ 4 3) ;

Bilinear Interpolation

Green Center on
i f (r o w . c n t (0) = '()*) t h e n

i f (c o l . c n t (0) = ' 0 ') t h e n
Red Row

R :— (c o n v . i n t e g e r (r o w _ i n _ 2 1) + c o n v . i n t e g e r (
row_in_21)) / 2 ;

G := c o n v . i n t e g e r (r o w . i n . 2 2) ;
B := (c o n v . i n t e g e r (r o w . i n . 1 2) + c o n v . i n t e g e r (

r o w . i n _ 3 2)) / 2 ;

end i f;

— Red Center
R := c o n v . i n t e g e r (r o w . i n . 2 2) ;
G := (c o n v . i n t e g e r (r o w _ i n _ 2 1) + c o n v . i n t e g e r

r o w _ i n _ 2 1) + c o n v . i n t e g e r (r o w _ i n . l 2) +
c o n v . i n t e g e r (row_in_32)) / 4 ;

B := (c o n v . i n t e g e r (r o w . i n . l l) + c o n v . i n t e g e r
r o w _ i n _ 1 3) + c o n v . i n t e g e r (r o w _ i n _ 3 1) +
c o n v . i n t e g e r (row_in_33)) / 4 ;

i f (c o l . c n t (0) ' 0 ') t h e n Blue Center
R :~ (c o n v . i n t e g e r (r o w . i n . l l) + c o n v . i n t e g e r

r o w _ i n _ 1 3) + c o n v . i n t e g e r (r o w _ i n _ 3 1) +
c o n v . i n t e g e r (row_in_33)) / 4 ;
(c o n v . i n t e g e r (r o w . i n . 2 1) + c o n v . i n t e g e r

r o w _ i n _ 2 1) + c o n v . i n t e g e r (r o w . i n . 1 2) +
c o n v . i n t e g e r (r o w . i n . 3 2)) / 4 ;
c o n v . i n t e g e r (r o w _ i n _ 3 3) ;

—• Green Center on Blue Row

115

http://row.in.44
http://row.in.44
http://row.in.44
http://row.in.44
http://row.in.33
http://row.in.43
http://row.in.22
http://row.in.12
http://row.in.22
http://row.in.21
http://row.in.12
http://row.in.32

C. VHDL CODE

R, := (c o n v_in t e g e r (r o w . i n . 1 2) + c o n v . i n t e g e r (
r o w _ i n _ 3 2)) / 2 ;

G := c o n v . i n t e g e r (r o w . i n . 2 2) ;
B :— (c o n v . i n t e g e r (r o w _ i n _ 2 1) + c o n v . i n t e g e r (

row_in_21)) / 2 ;
end i f;

end i f ;

when " 100" —> Edge Enhanced
i f not (r o w . c n t (O) = c o l . c n t (O)) t h e n Red of Blue Center Pixel

North Edge Detect
Dl := a b s (con v . i n t ege r (r o w _ i n _ 0 2) — c o n v . i n t e g e r (

r o w . i n . 2 2)) +
a b s (con v . i n t ege r (r o w _ i n _ 1 2) —

c o n v . i n t e g e r (r o w . i n . 3 2)) +
a b s (2 * c o n v . i n t e g e r (r o w . i n . 1 2) —

c o n v . i n t e g e r (r o w _ i n _ 2 1) —
c o n v . i n t e g e r (r o w . i n . 2 3)) / 2 ;

East Edge Detect
D2 :~ abs (c o n v . i n t e g e r (r o w _ i n _ 2 4) — c o n v . i n t e g e r (

r o w . i n . 2 2)) +
a b s (c o n v . i n t e g e r (r o w . i n . 2 3) —

c o n v . i n t e g e r (r o w _ i n _ 2 1)) +
a b s (2 * c o n v . i n t e g e r (r o w _ i n _ 2 3) —

c o n v . i n t e g e r (r o w . i n . 1 2) —
c o n v . i n t e g e r (r o w _ i n _ 3 2)) / 2 ;

South Edge Detect
D3 := abs (c o n v . i n t e g e r (r o w _ i n _ 4 2) — c o n v . i n t e g e r (

r o w . i n . 2 2)) +
abs (c o n v . i n t e g e r (r o w . i n . 3 2) —

c o n v . i n t e g e r (r o w . i n . 1 2)) +
a b s (2 * c o n v . i n t e g e r (r o w . i n . 3 2) —

c o n v . i n t e g e r (r o w _ i n _ 2 3) —
c o n v . i n t e g e r (row_in_21)) / 2 ;

West Edge Detect
D4 := abs (c o n v . i n t e g e r (r o w _ i n _ 2 0) — c o n v . i n t e g e r (

r o w _ i n _ 2 2)) +
abs (c o n v . i n t e g e r (r o w _ i n _ 2 1) —

c o n v . i n t e g e r (r o w _ i n _ 2 3)) +
a b s (2 * c o n v . i n t e g e r (r o w _ i n _ 2 1) —

c o n v . i n t e g e r (r o w _ i n _ 3 2) —
c o n v . i n t e g e r (row_in_12)) / 2 ;

t P l : = c o n v . i n t e g e r (r o w _ i n _ 1 2) -f (c o n v . i n t e g e r (r o w _ i n _ 2 2
) — c o n v . i n t e g e r (r o w _ i n . 0 2)) / 2 ;

i f Dl < t h r e s h o l d l t h e n

e l s e

end i f;

P I
c l

P I
c l

:= t P l ;
:= 1;

:= 0;
:= 0;

t P 2 := c o n v . i n t e g e r (r o w _ i n _ 2 3) + (c o n v . i n t e g e r (r o w . i n . 2 2
) — c o n v . i n t e g e r (r o w . i n . 2 4)) / 2 ;

i f D2 < t h r e s h o l d l then
P2 := t P 2 ;
c2 : - 1;

e l s e

end

t P 3

i f ;

_

P2 := 0;
cl := 0;

conv . in te (r o w . i n - 3 2) + (c o n v . i n t e g e r (r o w . i n . 2 2
) — c o n v . i n t e g e r (row_in_42)) / 2 ;

i f D3 < t h r e s h o l d l t h e n
P3 := t P 3 ;
c3 := 1;

e l s e
P3 := 0;
c3 := 0;

end i f;

t P 4 := c o n v . i n t e g e r (r o w . i n . 2 1) + (c o n v . i n t e g e r (r o w . i n . 2 2
) — c o n v . i n t e g e r (r ow_in_20)) / 2 ;

i f D4 < t h r e s h o l d l t h e n
P4 := t P 4 ;

116

http://row.in.12
http://row.in.22
http://row.in.22
http://row.in.32
http://row.in.12
http://row.in.23
http://row.in.22
http://row.in.23
http://row.in.12
http://row.in.32
http://row.in.12
http://row.in.32
http://row.in.22
http://row.in.22
http://row.in.21

C. VHDL CODE

P4 := 0;
c4 := 0;

end i f;

suml := P I + P2 + P3 + P4 ;
sum2 := c l + c2 + c3 + c 4 ;

— Fill in the missing Green Pixel
i f sum2 = 0 t h e n

e

e

e

s i f

s i f

s i f

G := (t P l + t P 2 + t P 3 + t P 4) / 4 ;
sum2 — 1 t h e n

G := s u m l ;
sum2 = 2 t h e n

G := s u m l / 2 ;
sum2 = 3 t h e n

G := s u m l » 2 1 / 6 4 ;
1/3

— 21/64

e l s e
suml / 4 ;

end i f;

— Find missing Red or Blue Pixel

t P 5 := (((con v _ i n t ege r (r o w _ i n _ l l) 4- c o n v - i n t e g e r (
row_in_3 1)) / 2 + G — c o n v _ i n t e g e r (r o w . i n . 2 1)) +

((c o n v - i n t e g e r (r o w - i n - 1 3) -f-
c o n v _ i n t e g e r (row_in_33)) / 2
+ G — c o n v - i n t e g e r (

r o w _ i n - 2 3))) / 2;
i f (Dl < t h r e s h o l d 2) or (D3 < t h r e s h o l d 2) t h e n

P5 := t P 5 ;
c5 := 1;

e l s e
P5 := 0;
c5 := 0;

end i f;

t P 6 :— (((c o n v _ i n t e g e r (r o w . i n . l l) 4- c o n v - i n t e g e r (
r ow_ in_13)) / 2 + G — c o n v - i n t e g e r (r o w - i n _ 1 2)) 4-

((con v _ i n t e g e r (r o w _ i n _ 3 1) +
c o n v - i n t e g e r (row_in_33)) / 2
+ G — c o n v - i n t e g e r (

r o w . i n . 3 2))) / 2;
i f (D2 < t h r e s h o l d 2) o r (D4 < t h r e s h o l d 2) t h e n

P6 := t P 6 ;
c6 := 1;

e l s e
P6 := 0;
c6 := 0;

end i f;

sum3 := P5 + P 6 ;
sum4 :— c5 + c6 ;

if sum4 = 0 then
if (Dl <= D2 and Dl <= D4) or (D3 <= D2 and D3 <=

D4) then
P7 := tP5;

else
P7 := tP6;

e n a 1
e l s if sum4 =

P7 : =
e l s e

P7 : =
end i f;

i f r o w . c n t (0)
R : =
B : =

e l s e Blue
R : =
B : =

end i f;

Green Center

I ;

1 t h e n
sum3 ;

s u m 3 / 2 ;

= ' 0 ' t h e n
c o n v - i n t e g e r
P 7 ;
Center
P 7 ;
c o n v - i n t e g e r

Pixel

Red
(r o w . i n . 2 2) ;

(r o w - i n _ 2 2) ;

Center

117

http://row.in.21
http://row.in.32
http://row.in.22

C. VHDL CODE

North Edge Detect
Dl := abs (c o n v . i n t e g e r (r o w _ i n _ 0 2) — c o n v . i n t e g e r (

r o w , i n . 2 2)) +
abs(c o n v . i n t e g e r (r o w . i n . 1 2) —

c o n v . i n t e g e r (r o w . i n . 3 2)) +
(a b s (c o n v . i n t e g e r (r o w . i n . l l) —

c o n v . i n t e g e r (r o w . i n . 2 2)) +
abs (c o n v . i n t e g e r (r o w . i n . 1 3) —

c o n v . i n t e g e r (r o w _ i n _ 2 2))) / 2 ;

— Bast Edge Detect
D2 := abs (c o n v . i n t e g e r (r o w _ i n _ 2 4) — c o n v . i n t e g e r (

r o w . i n . 2 2)) +
abs (c o n v . i n t e g e r (r o w _ i n _ 2 3) —

c o n v . i n t e g e r (r o w _ i n _ 2 1)) +
(a b s (con v . i n t e g e r (r o w _ i n _ 1 3) —

c o n v . i n t e g e r (r o w . i n . 2 2)) +
abs (c o n v . i n t e g e r (r o w . i n . 3 3) —

c o n v . i n t e g e r (row_in_22))) / 2 ;

South Edge Detect
D3 := a b s (c o n v . i n t e g e r (r o w _ i n _ 4 2) — c o n v . i n t e g e r (

r o w _ i n _ 2 2)) -f
abs (c o n v . i n t e g e r (r o w _ i n _ 3 2) —

c o n v . i n t e g e r (r o w . i n . 1 2)) +
(abs (con v . i n t e g e r (r o w . i n . 3 3) —

c o n v . i n t e g e r (r o w _ i n _ 2 2)) +
abs(c o n v . i n t e g e r (r o w _ i n _ 3 1) —

c o n v . i n t e g e r (row_in_22))) / 2 ;

West Edge Detect
D4 := a b s (c o n v . i n t e g e r (r o w _ i n _ 2 0) — c o n v . i n t e g e r (

r o w . i n . 2 2)) +
abs (c o n v . i n t e g e r (r o w _ i n _ 2 1) —

c o n v . i n t e g e r (r o w . i n . 2 3)) +
(a b s (c o n v . i n t e g e r (r o w . i n . 3 1) —

c o n v . i n t e g e r (r o w . i n . 2 2)) +
abs(c o n v . i n t e g e r (r o w . i n . l l) —

c o n v . i n t e g e r (r o w . i n . 2 2))) / 2 ;

i f (Dl <= D2) and (Dl <= D3) and (Dl < = D4) t h e n — Dl is
minimum

P I := c o n v . i n t e g e r (r o w _ i n _ 1 2) + (c o n v . i n t e g e r (
r o w _ i n _ 2 2) — c o n v . i n t e g e r (r o w _ i n _ 0 2)) / 2 ;

i f D2 < = D4 t h e n
P2 := c o n v . i n t e g e r (r o w . i n . 2 3) +

(c o n v . i n t e g e r (r o w . i n . 2 2) — (
c o n v . i n t e g e r (r o w _ i n _ 1 3) +
c o n v . i n t e g e r (r o w . i n . 3 3)) / 2)

e l s e
P2 := c o n v . i n t e g e r (r o w _ i n _ 2 1) +

(c o n v . i n t e g e r (r o w . i n . 2 2) — (
c o n v . i n t e g e r (r o w . i n . l l) +
c o n v . i n t e g e r (row_in_31)) / 2)

end i f;
e l s i f D2 < = D3 and D2 < = D4 t h e n — D2 in minimum

P2 :— c o n v . i n t e g e r (r o w . i n . 2 3) + (c o n v . i n t e g e r (
r o w . i n . 2 2) — c o n v . i n t e g e r (r o w . i n . 2 4)) / 2 ;

i f Dl < = D3 t h e n
P I :== c o n v . i n t e g e r (r o w . i n . 1 2) +

(c o n v . i n t e g e r (r o w . i n . 2 2) — (
c o n v . i n t e g e r (r o w . i n . l l) +
c o n v . i n t e g e r (r o w _ i n _ 1 3)) / 2)

e l s e
PI := c o n v . i n t e g e r (r o w . i n . 3 2) +

(c o n v . i n t e g e r (r o w . i n . 2 2) — (
c o n v . i n t e g e r (r o w _ i n _ 3 1) +
c o n v . i n t e g e r (r o w . i n . 3 3)) / 2)

end i f;
e l s i f D3 < = D4 t h e n

P I := c o n v . i n t e g e r (r o w _ i n _ 3 2) -f (c o n v . i n t e g e r (
r o w . i n . 2 2) — c o n v . i n t e g e r (r o w . i n . 4 2)) / 2 ;

i f D2 <— D4 then
P2 := c o n v . i n t e g e r (r o w _ i n _ 2 3) +

(c o n v . i n t e g e r (r o w _ i n _ 2 2) — (
c o n v . i n t e g e r (r o w _ i n _ 1 3) +
c o n v . i n t e g e r (r o w . i n . 3 3)) / 2)

118

http://row.in.12
http://row.in.32
http://row.in.22
http://row.in.13
http://row.in.22
http://row.in.22
http://row.in.33
http://row.in.12
http://row.in.33
http://row.in.22
http://row.in.23
http://row.in.31
http://row.in.22
http://row.in.22
http://row.in.23
http://row.in.22
http://row.in.33
http://row.in.22
http://row.in.23
http://row.in.22
http://row.in.24
http://row.in.12
http://row.in.22
http://row.in.32
http://row.in.22
http://row.in.33
http://row.in.22
http://row.in.42
http://row.in.33

C. VHDL CODE

c o n v _ i n t e g e r (r o w _ i n _ 2 1) -\-
(c o n v _ i n t e g e r (r o w . i n . 2 2) — (

c o n v . i n t e g e r (r o w . i n . l l) +
c o n v - i n t e g e r (row_in_31)) / 2)

end i f;

P2 := c o n v . i n t e g e r (r o w . i n . 2 1) + (c o n v . i n t e g e r (
r o w . i n . 2 2) — c o n v . i n t e g e r (r o w _ i n _ 2 0)) / 2 ;

if Dl < = D3 then
PI := c o n v . i n t e g e r (r o w _ i n _ 1 2) +

(c o n v . i n t e g e r (r o w . i n . 2 2) — (
c o n v . i n t e g e r (r o w . i n . l l) +
c o n v . i n t e g e r (r ow_ in_13)) / 2)

c o n v . i n t e g e r (r o w . i n . 3 2) +
(c o n v . i n t e g e r (r o w . i n . 2 2) — (

c o n v . i n t e g e r (r o w _ i n _ 3 1) +
c o n v . i n t e g e r (r o w . i n . 3 3)) / 2)

end i f ;
end i f;

end i f;
l e r s —>
R := 0;
G := 0;
B := 0;

G := c o n v . i n t e g e r (r o w . i n . 2 2) ;
i f r o w . c n t (O) — ' 0 ' t h e n Red

R := P2;
B := PI ;

e l s e
R := P I ;
B := P2;

end i f;

row

end c a s e ;

if d a t a . m o d e = " 0 0 0 " or d a t a - m o d e = " 0 0 1 " t h e n

e l s e

Yt
Ut
Vt
Y <

= c o n v_s t d - l o g i c _ v e c t or (R, 32)
= c o n v _ s t d _ l o g i c _ v e c t o r (G, 32)
= c o n v _ s t d _ l o g i c _ v e c t o r (B , 32)

" 0 0 " & Y t (7 downto 0) ;

e n d

U < = U t (7 downto 4) ;
V < = V t (7 downto 4) ;

Yi := (((6 6 * R) + (1 2 9 * G)) + ((2 5 * B) + 4 2 2 4)) ;
Ui := (((- 3 8 * R) + (- 7 4 * G)) + ((1 1 2 * B) + 3 2 8 9 6)) :
Vi := (((1 1 2 * R) + (- 9 4 * G)) + ((1 8 * B) + 3 2 8 9 6)) ;
Yt := c o n v _ s t d _ l o g i c _ v e c t o r (Y i , 3 2) ;
Ut := c o n v_s t d _ l o g i c _ v e c t or (Ui , 3 2) ;
Vt := c o n v . s t d _ l o g i c _ v e c t or (Vi , 3 2) ;
V < = " 0 0 " & Y t (1 5 downto 8) ;
U < = U t (1 5 downto 1 2) ;
V < = V t (1 5 downto 1 2) ;

end i f;
end process GET-RGB;

end Behavioral :

Listing C.4: Image_Processor_TB.vhd

Company:
Engineer :

Create Date :
Design Name :
Module Name:
Project Name:
Target Device:
Tool versions :
Description ;

12:42:31 03/12/2008
ImageProcessor
/home/akarloff /pill-machine/hdl/Spartan-FG-v2/Image-Processor-TB . vhd
Spartan-FG-v2

119

http://row.in.22
http://row.in.21
http://row.in.22
http://row.in.32
http://row.in.22
http://row.in.33
http://row.in.22

C. VHDL CODE

VHDL Test Bench Created by ISE for module : ImageProcessor

Dependencies :

Revision :
Revision 0.01 — File Created
Additional Comments:

Notes :
— This testb ench has been automatically generated using types std-logic and

std-logic -vector for the ports of the unit under t e s t . Xilinx recommends
that these types always be used for the top—lev el I/O of a design in order
to guarantee that the testb ench will bind correctly to the post — implementation

— simulation model.

LIBRARY ieee ;
USE ieee . st d_logic_l 1 64 .ALL;
USE ieee . s t d _ l o g i c _ u n s i g n e d . a l l ;
USE ieee . numer ic_s td .ALL;
USE IEEE . STD.LOGIC-ARITH . ALL;
USE s td . t e x t i o .ALL;

l ibrary t e x t u t i l ; — Synposys Text I/O package
use t e x t u t i l . s t d _ l o g i c _ t e x t i o . a l l ;
use t e x t u t i l . t x t - u t i l . a l l ;

ENTITY Image_Processor_TB_vhd IS
END Image_Proces8or .TB.vhd ;

ARCHITECTURE behavior OF Image_Processor_TB_vhd IS

Component Declaration for the Unit Under Test (UUT)
COMPONENT ImageProcessor
PORT(

CLK : IN s t d - l o g i c ;
RESET : IN s t d - l o g i c ;
EN : IN s t d - l o g i c ;
DIN : IN s t d _ l o g i c _ v e c t o r (7 downto 0) ;
ROW : IN s t d _ l o g i c _ v e c t o r (10 downto 0) ;
COL : IN s t d _ l o g i c _ v e c t o r (10 downto 0) ;
FRAME : IN s t d - l o g i c ;
ROW-SIZE : IN s t d _ l o g i c _ v e c t o r (10 downto 0) ;
COL.SIZE : IN s t d . l o g i c . v e c t o r (10 downto 0) ;
DATA-MODE : IN s t d - l o g i c v e c t or (2 downto 0) ;
COLOR-BIT : IN s t d - l o g i c ;
DOUT : OUT s t d - l o g i c _vect or (15 downto 0) ;
RAM-WEN : OUT s t d _ l o g i c ;
IP_DEBUG : OUT s t d - l o g i c

) ;
END COVIPCNENT;

Simulation parameters
constant c lk_high : t ime := 10 ns ; ns
constant e lk- low : t ime := 10 n s ; ns
constant r o w . p x l . s i z e : i n t e g e r :— 60; 768; pxls
constant c o l . p x L s i z e : i n t e g e r := 40; 512; pxls
constant h_blank : i n t e g e r := 4; pxls
constant v_blank : i n t e g e r :== 12; pxls
constant r e s e t - d e l a y : t ime
constant l i n e - t i m e ..0 : t ime
constant l i ne_ t i rne_ l : t ime
constant frame_time_0 : t ime

) ;
constant f r a m e - t i m e . l : t ime
constant frame_time_2 : t ime

100 * (e l k . h i g h + e l k . l o w) ;
= c o l . p x l . s i z e * (c l k . h i g h + e l k . l o w) ;
= l i n e . t i m e . O + h-b lank * (c lk . l ow + c l k . h i g h) ;
:— l i n e . t i m e . l * r o w . p x l . s i z e + h-blank * (c l k . l o w + c l k . h i g h

l i n e . t i m e . l * 2; / / / Times number of row buffers t i l l
f rame. t ime.O + f r a m e . t i m e . l ;

Inputs
SIGNAL PIXCLKJN : s t d . l o g i c r= ' 0 ' ;
SIGNAL USBCLKJN : s t d - l o g i c := ' 0 ' ;
SIGNAL RESET-IN : s t d - l o g i c := * 1 ' ;
SIGNAL LINE.VAL1DJN i s t d - l o g i c := ' 0 ' ;
SIGNAL PRAME-VALIDJN : s t d - l o g i c := ' 0 ' ;
SIGNAL USB-FULL-IN : s t d - l o g i c := ' 0 ' ;
SIGNAL CCD-DATAJN : s t d - log i c -vec t or (9 downto 0)

Inputs
SIGNAL EN : s t d - l o g i c := ' 0 ' ;
SIGNAL FRAME : s t d - l o g i c := ' 1 ' ;
SIGNAL COLOR-BIT : s t d - l o g i c := ' 0 ' ;

(o t h s r s = > '0 ') ;

120

http://Image_Proces8or.TB.vhd

C. VHDL CODE

SIGNAL ROW : s t d . l o g i c . v e c t o r (10 downto 0) := (o t h e r s = > ' 0 ')
SIGNAL COL : s t d . l o g i c . v e c t o r (10 d o w n t o 0) : = (o t h e r s ^ > ' 0 ')
SIGNAL ROW.SIZE : s t d . l o g i c . v e c t o r (10 downto 0)

1 , 11) ; "00000001011"; "10111111111";
SIGNAL COL.SIZE : s t d . l o g i c . v e c t o r (10 downto 0)

1, 1 1) ; "00000001011"; "11111111111";
SIGNAL DATAMODE : s t d . l o g i c . v e c t o r (2 downto 0) := " 0 1 1 " ;

Outputs
SIGNAL USB_BUS_OUT : s t d . l o g i c . v e c t o r (15 downto 0) ;
SIGNAL USB_SLWR_OUT : s t d „ l o g i c ;
SIGNAL IP .DEBUG : s t d . l o g i c ;

con v . s t d . l o g i c . v e c t o r (r o w . p x l . s i z e

c o n v . s t d . l o g i c v e c t o r (c o l . p x l . s i z e

s i g n a l i n c . d a t a s t d . l o g i c

File IO
s h a r e d v a r i a b l e VALUE J n , VALUE-out : c h a r a c t e r ; —

s h a r e d v a r i a b l e iVALUEJn : i n t e g e r ;
s h a r e d v a r i a b l e L . in , L-out : LINE;
s h a r e d v a r i a b l e GOOD : b o o l e a n ;
f i l e FIN : TEXT i s in " t b . raw" ; "image.raw'
f i l e FOUT : TEXT i s o u t " o u t p u t . raw" ;

-BIT-VECTOR (7 downto 0) ;

BEGIN

Test Bench Variables
s h a r e d v a r i a b l e p x l . d a t a
s h a r e d v a r i a b l e p x l . r o w :
s h a r e d v a r i a b l e p x l . c o l :

s t d . l o g i c . v e c t o r (9 downto 0) :
s t d . l o g i c . v e c t o r (10 downto 0)
s t d . l o g i c . v e c t o r (10 downto 0)

= (o t h e r s => '0 ') ;
:= (o t h e r s => '0 ') ;
:— (o t h e r s => ' 0 ') ;

):

Instantiate the Unit Under Test (UUT)
b: I m a g e P r o c e s s o r PORT MAP(

CLK => PIXCLKJN,
RESET => RESET J N ,
EN => EN,
DIN => CCDJDATAJN (7 downto 0) ,
ROW => ROW,
COL => COL,
FRAME => FRAME,
ROW-SIZE => ROW-SIZE,
COL.SIZE => COL-SIZE,
DATA-MODE => DATA-MODE,
COLOR-BIT => COLOR-BIT,
BOOT => USB-BUS-OUT,
RAM-WEN => USB-SLWR-OUT,
IP-DEBUG => IP-DEBUG

c lock : PROCESS
b e g i n

PIXCLKJN < = ' 1 '
w a i t for c lk_ low
PIXCLKJN < = '0 '
w a i t for c l k _ h i g h ;

end p r o c e s s c l o c k ;

d a t a - o u t
b e g i n

p r o c e s s (USB-SLWR-OUT)

if (USB-SLWR-OUT'Event and USB-SLWR-OUT = ' 1 ') t h e n
— hwrite(L-out , USB-BUS-OUT); — t o - b i t Vector (USB-BUS-OUT) , left,

16);
w r i t e (L - o u t , a t r (c o n v - i n t e g e r (USBJ3US-OUT (15 downto 8))) &"_"&

s t r (c o n v . i n t e g e r (USBJ3US-OUT (7 downto 0)))) ;
— write (L-out, string ' (CONVJNTEGERf USB-BUS-OUT (7 downto 0)))) ;
— write (L-out, string ' (CONVJNTEGERf USB-BUS.OUT (IS downto 8))));
w r i t e l i n e (FOUT, L . o u t) ;

end i f;
end p r o c e s s ;

EN < = FRAME-VALIDJN and LINE-VALID J N ;

t b : PROCESS
BEGIN

Wait 100 ns for global reset to finish
w a i t for 100 n s ;
RESETJN < = '0 ' ;
w a i t for 98 ns ;
FRAME-VALIDJN < = ' 1 ' ;
w a i t for 100 ns ; — (v-blank * (clk-high-hclk-low)) ;
for p x l - r o w s in 0 t o r o w . p x l . s i z e — 1 l o o p

w a i t for (h - b l a n k * (c l k - h i g h + c l k - l o w)) ;

121

C. VHDL CODE

l oop

l i n e _ v a l i d _ i n < = ' 1 ' ;
r e a d l i n e (F IN , L - i n) ;
for p x l - c o l s in 0 t o c o l . p x L s i z e — 1

— read (L-in , VALUE.in ,GOOD) ;
r e a d (L _ i n , iVALUE_in , GOOD);
CCD_DATA_IN < = c o n v . s t d . l o g i c . v e c t o r (iVALUE.in , 10) ;
—CCD-DATA.IN <= conv.Std.Logic-Vector (character ' pos (VALUEJ,n) .

10);
—COL < ~ COL + 1;
ROW < = c o n v . s t d . l o g i c . v e c t o r (p x l . r o w s , 11) ;
COL < = c o n v _ s t d _ l o g i c _ v e c t o r (p x l _ c o l s , 11) ;
wai t for (c l k . h i g h + e l k - l o w) ;

end loop ;
—ROW <= ROW + 1;
—COL <= (others -> '0');
l i n e _ v a l i d _ i n < = ' 0 ' ;
w a i t for (h _ b l a n k * (c l k _ h i g h + c l k _ l o w)) ;

end l o o p ;
w a i t for (v _ b l a n k * (c l k _ h i g h + c l k _ l o w)) ;
f r a m e . v a l i d . i n <= '0 ' ;

ROW<= (o t h e r s => ' 0 ') ;
COL <= (o t h e r s - > ' 0 ') ;
w a i t for 20000 n s ;
RESET-IN < = ' 1 ' ;

w a i t ;
END PROCESS;

will wait forever

END;

Listing C.5: frame-grabber.vl.ucf
T iming C o n t r a i n t s
NET "PIXCLK" PERIOD = 2 0 n s ;
NET "USBCLK{" PERIOD = 2 0 n s ;

IIIIIIIIII till IIIIIIIIIIIIIIIIIIIIIIII It II It II It II tl-
V e r s i o n 2 PCB I / O Pin A s s i g n m e n t s
IIII It IIIIIIIIIIIIIIIIIIIIIIIIIIIIII It II It IIIIIIIIIIIIIIIIII It It I! IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII It IIIIIIIIIIIIIIII
NET "PIXCLKJN" LOC = "D8" ;
NET "IFCLK-IN" LOC = "E10" | IOSTANDARD = LVCMOS33 | SLEW = FAST ;
NET " R E S E T J N " LOC = "D2" | IOSTANDARD = LVCMOS33 ;
NET "LINE-VALID-IN" LOC = " D l l " I IOSTANDARD = LVCMOS33 ;

" E7"
" A14"
"A12"
"B13"

NET " FRAME-VALIDJN" LOC
NET "CCD-DATAJN<0>" LOC
NET "CCD.DATAJN<1>" LOC
NET "CCD-DATAJN<2>" LOC
NET "CCDJDATAJN<3>" LOC = " C l l "
NET "CCDJDATAJN<4>" LOC = "B10"
NET "CCD_DATAJN<5>" LOC = "B6"
NET "CCDJDATAJN<6>" LOC = "B7"
NET "CCDJ3ATAJN<7>" LOC
NET "CCD_DATAJN<8>" LOC
NET "CCDJ3ATAJN<9>" LOC = " C3" | IOSTANDARD = LVCMOS33
NET "GSHT.CTL.OUT" LOC = "G13" | IOSTANDARD = LVCMOS33
NET "USB-FULLJN" LOC = "R2" | IOSTANDARD = LVCMOS33 ;
NET "USB-BUS-OUT<0>" LOC = " J l " | IOSTANDARD = LVCMOS33

IOSTANDARD = LVCMOS33
| IOSTANDARD = LVCMOS33
I IOSTANDARD = LVCMOS33
j IOSTANDARD = LVCMOS33
| IOSTANDARD = LVCMOS33
| IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33

"C4" | IOSTANDARD = LVCMOS33
"C6" j IOSTANDARD = LVCMOS33

| DRIVE = 16 FAST

NET "USB_BUS-OUT<l>"
NET "USB.BUS-OUT<2>"
NET "USB-BUS-OUT<3>"
NET "USB-BUS-OUT<4>"
NET "USB_BUS.OUT<5>"
NET "USB_BUS.OUT<6>"
NET "USB_BUS-OUT<7>"
NET "USB_BUS.OUT<8>"
NET "USB-BUS-OUT<9>"
NET "USB_BUS.OUT<10>"
NET "USB-BUS.OUT<ll>"
NET "USB-BUS-OUT<12>"
NET "USB_BUS.OUT<13>"
NET "USB-BUS-OUT<14>"
NET "USB_BUS-OUT<15>"
NET "USB.ADR0.OUT" LOC
NET "USB.ADRl.OUT" LOC

LOC = "R6" | IOSTANDARD = LVCMOS33 ;
LOC = " T 5 " | IOSTANDARD = LVCMOS33 ;
LOC = "P12" | IOSTANDARD = LVCMOS33 ;
LOC = "N12" j IOSTANDARD = LVCMOS33 ;
LOC = "G3" | IOSTANDARD = LVCMOS33 ;
LOC = "T13" | IOSTANDARD = LVCMOS33 ;
LOC = "R13" | IOSTANDARD = LVCMOS33 ;
LOC = "G2" | IOSTANDARD = LVCMOS33 ;
LOC = "A5" j IOSTANDARD = LVCMOS33 ;

LOC = "A7" | IOSTANDARD = LVCMOS33 ;
LOC = "B4" I IOSTANDARD = LVCMOS33 ;
LOC = "K13" | IOSTANDARD = LVCMOS33
LOC = " L I 2 " | IOSTANDARD = LVCMOS33
LOC = "L13" I IOSTANDARD = LVCMOS33
LOC = "K15" | IOSTANDARD = LVCMOS33

" F 5 " | IOSTANDARD = LVCMOS33 ;
"E4" I IOSTANDARD = LVCMOS33 ;

NET "USB-SLRD.OUT" LOC = "L14" | IOSTANDARD = LVCMOS33 ;
NET " U S B - S L W R J O U T " LOC = "L15" | IOSTANDARD = LVCMOS33 | SLEW = FAST
NET " U S B - P C K T E N D J O U T " LOC = " E l " | IOSTANDARD = LVCMOS33;
NET "NSENSOR.RST" LOC = " E 1 3 " | IOSTANDARD = LVCMOS33 ;
#NET "FS.EN" LOC = " J l " | IOSTANDARD = LVCMOS33 ;

122

http://USB.ADRl.OUT

C. VHDL CODE

#4ET "PSO" LOC = "G3" | IOSTANDARD = LVCMOS33 ;
#NET " F S 1 " LOC = "G2" | IOSTANDARD = LVCMOS33 ;
NET "MCLK" LOC = " L 8 " | IOSTANDARD = LVCMOS33 ;
NET "SCL" LOC = "P9" | IOSTANDARD = LVCMOS33 ;
NET "SDA" LOC = "N16" | IOSTANDARD = LVCMOS33 ;
NET "CLOCKJN" LOC = "N8" | IOSTANDARD = LVCMOS33 ;
NET " N l " LOC = "N14" | IOSTANDARD = LVCMOS33 | DRIVE = 16 | SLEW = FAST ; # T r i g g e r Out T2
NET " P I " LOC = "M14" I IOSTANDARD = LVCMOS33 ; # T r i g g e r I n T l

123

Appendix D

MATLAB Code

Listing D.l: demosaic.test.m

% Camera Board Demosaicing

% FILENAME: demosaic-test .m
% DESCRIPTION: Computes the output for an image interp olated using the
% Edge Enhanced method and compares to Nearest Neighbour and
% Bilinear.
% DATE: July 24, 2007
% AUTHOR: Anthony Karloff , University of Windsor
% = = = = = = — — ~- = = =

f i l e n a m e — ' l i g h t h o u s e . j p g ' ;

% Read the image file
im = d o u b l e (i m r e a d (f i l e n a m e)) ;
M = s i z e (i m , l) ; %h eight (rows — y)
N = s i z e (i m , 2) ; %width (cols — x)

% Create the RAW data
b a y e r = RGB2RAW (i m) ;
r a w . d a t a = b a y e r (: , : , 1) . * r epmat ([0 1; 0 0] , M / 2 , N / 2) + baye r (: , : , 2) . * repmat ([1 0; 0 1] , M/2 , N / 2)

+ b a y e r (: , : , 3) . * r e p m a t ([0 0; 1 0] , M / 2 , N / 2) ;

% Process as Nearest Neighbour and Bilinear for comparison.
imNN =DEMOSAIC(bayer , ' n e a r e s t - n e i g h b o u r ') ;
im B i l i n e a r ~ DEMOSAIC(bayer , ' b i l i n e a r ') ;
% De-mosaic using the Edge Enhanced Method
imEE = e e . d e m o s a i c (r a w . d a t a) ;

% Compute Peak Signal to Noise Ratio (PSNR)
e r r o r ~ imRR (3 : M - 2 , 3 : N - 2 , :) - i m (3 : M - 2 , 3 : N - 2 , :) ;
im_MSE = M S E (i m E E (3 : M - 2 , 3 : N - 2 ,:) , i m (3 : M - 2 , 3 : N - 2 ,:)) ;
im_PSNR = 10 * log lO(65025 / im_MSE)

% Create a Grayscale for comparison
yuv = RGB2YUV(imEE) ;

%Display images ,
i m t o o l (u i n t S (i m B i l i n e a r)) ;
i m t o o l (u i n t 8 (imNN)) ;
imview (u i n t 8 (imEE)) ;
i m t o o l (u i n t 8 (yuv (: , : , 1)))

^

124

D. MATLAB CODE

Listing D.2: ee_demosaic.m

% Camera Board Demosaicing

% FILENAME: ee-demosaic .m
% DESCRIPTION: A cheap hardware demosaic
% DATE: June 3, 2008
% AUTHOR: Anthony Karloff , University of Windsor

f u n c t i o n ic (irn_in)

s i z e (i m . i n , 1) ;
s i z e (i m . i n , 2) ;

%roius
%cols

- d a t a i m _ i n ;

t h r e s h o l d l = 2 5 ; %95;
t h r e s h o l d 2 = 55 ;
t h r e s h o l d 3 = 0;
t h r e s h o l d 4 = 0;

% Initialize the Output Matrix
m . d e m o s a i c (
m . d e m o s a i c (
m . d e m o s a i c (

1) = i m - d a t a .* repmat ([0 1; 0 0] , M / 2 , N / 2)
, 2) = i m _ d a t a . * repmat ([1 0; 0 1] , M / 2 , N / 2)
, 3) = i m _ d a t a . * repmat ([0 0; 1 0] , M / 2 , N / 2)

% Red Channel
% Green Channel
% Blue Channel

%Define Vectors for inter p olating neighbouring pixels

I]-,

v (l •
v (2 ,
v (3 ,
v (4 ,
v (5 ,
v (6 ,
v (7 ,
v (8 ,

) = l - i o]
) = [0 1] ;
) = [1 0] ;
) = [0 - 1
) = [-1 11
) = [1 l] i
) = [1 - 1
) = [- ! -

i m _ d a t a (i , j)) -f a b s (i m - d a t a (i-j-v (k , 1) , j

i = 3 : M - 2
for j = 3 : N - 2

% Red or Blue Center
if mod(i ,2) "== mod(j ,2) % RED or BLUE

f o r k = l :4
D (k) = a b s (i m _ d a t a (i + 2 * v (k , 1) , j + 2 * v (k , 2))

+ v (k , 2)) - i m _ d a t a (i - v (k , l) , j - v (k , 2))) -f (a b s (2* i m . d a t a (i+v (k , 1) , j + v (k , 2)) -
i m _ d a t a (i - v (k , 2) , j - v (k , l)) - i m - d a t a (i + v (k , 2) , j+v (k , 1)))) / 2 ;

end

% Complete the missing GREEN value
sum = 0;
sum2 = 0;

i m _ d a t a (i + 2 * v (k , l) , j + 2 *

c n t =

for k = l:4
sum2 — sum2 + i m - d a t a (i + v (k , 1) , j + v (k , 2)) + (i m _ d a t a (i , j)

v (k , 2))) / 2 ;
i f D (k) < t h r e s h o l d l

sum = sum + i m _ d a t a (i + v (k , 1) , j + v (k ,2)) + (i m _ d a t a (i , j) — i m _ d a t a (i + 2 * v (k , 1) , j
+ 2 * v (k , 2))) / 2 ;

cn t = cn t + 1;
end

end
if c n t = 0

i m . d e m o s a i c (i , j ,2) = s u m 2 / 4 ;
e l s e

i m _ d e m o s a i c (i , j , 2) = s u m / c n t ;
end

% Complete the missing RED or BLUE value
sum — 0;
sum2 — 0;
cn t = 0;
sum2 — (((i m _ d a t a (i — l , j — 1) + i m _ d a t a (i 4 - l , j — 1)) / 2 + i m _ d e m o s a i c (i , j , 2)

) + ...
((i m - d a t a (i - l , j +1) + i m - d a t a (i + 1 , j + 1)) / 2 + i m . d e m o s a i c (i , j , 2) - i m _ d a t a (i , j -

)) / 2 + . . .
(((i m - d a t a (i - l , j - 1) + i m - d a t a (i - l , j +1)) / 2 + i m . d e m o s a i c (i , j ,2) - i m . d a t a (I - 1 , j)

((i m . d a t a (i + l , j - 1) + i m . d a t a (i + 1 , j + 1)) / 2 + i m . d e m o s a i c (i , j , 2) - i m . d a t a (i + 1 , j)

)) / 2 ;

if (D (l) < t h r e s h o l d 2 | | D(3) < t h r e s h o l d 2)

i m . d a t a (i , j —1)

-1)

125

D. MATLAB CODE

e n d

sum = (((i m - d a t a (i - l , j - 1) + i m _ d a t a (i + l , j - l)) / 2 + i m . d e m o s a i c (i , j ,2) - i m _ d a t a (i , j
-1)) + . . .

((i m - d a t a (i — l , j +1) + i m . d a t a (i + 1 , j +1)) / 2 + i m . d e m o s a i c (i , j , 2) — i m . d a t a (i , j
+ 1))) / 2 ;

cn t = cn t 4- 1;

if (D(2) < t h r e s h o l d 2 | | D(4) < t h r e a h o l d 2)
sum — sum + . . .

(((i m _ d a t a (i —l,j —1) + i m . d a t a (i — l , j + 1)) / 2 + i m . d e m o s a i c (i , j , 2) — i m . d a t a (i
- l , j)) + •••

((i m . d a t a (i + l , j —1) + i m . d a t a (i + 1 , j +1)) / 2 + i m . d e m o s a i c (i , j , 2) — i m . d a t a (i
+ l , j))) / 2 ;

cn t = cn t + 1;
end

i f cn t ==0
[Yl I I] = m i n (D (l : 4)) ;
if I I = 1 | | 11 = 3

i m . d e m o s a i c (i , j , l + 2*mod(i , 2)) = (((i m - d a t a (i - 1 , j - 1) + i m . d a t a (i + 1 , j - 1)) / 2 +
i m _ d e m o s a i c (i , j , 2) — i m _ d a t a (i , j — 1)) + . . .

((i m . d a t a (i - l , j + l) + i m - d a t a (i + 1 , j + 1)) / 2 +
i m _ d e m o s a i c (i , j , 2) — i m _ d a t a (i , j - (- l))) / 2;

e l s e
i m . d e m o s a i c (i , j , l + 2*mod(i , 2)) = (((i m - d a t a (i - 1 ,j - 1) + i m - d a t a (i - l , j + 1)) / 2 +

i m _ d e m o s a i c (i , j , 2) — i m _ d a t a (i — l , j)) + . . .
((i m - d a t a (i + l , j - 1) + i m . d a t a (i + 1 , j + 1)) / 2 +

i m _ d e m o s a i c (i , j , 2) — i m _ d a t a (i + l , j))) / 2 ;

i m . d e
e n d

sa ic (i , j , l + 2*mod(i , 2)) = s u m / c n t ;

e l s e %GREBN Pixel
fo r k = l :4

D p (k) = i m . d a t a (i + v (k , 1) + v (k , 2) , j - v (k , 1) + v (k , 2)) - i m . d a t a (i , j) ;
end

for k = l :4
D (k) = a b s (i m - d a t a (i + 2 * v (k , l) , j + 2 * v (k , 2)) - i m . d a t a (i , j)) + a b s (i m . d a t a (i+v (k , 1) , j

+ v (k , 2)) - i m _ d a t a (i - v (k , l) , j - v (k , 2))) + (a b s (D p (k)) + a b s (Dp(mod (k + 2 , 4)+1))) / 2 ;
end

[Yl I I] = m i n (D (l : 4)) ;
i f I I = 1

[Y2 12] = m i n ([D (2) D (4)])
e l s e i f I I = 2

[Y2 12) = m i n ([D (l) D (3)])
e l s e i f I I = 3

[Y2 12] = m l n ([D (2) D(4)])
e l s e

[Y2 12] = m i n ([D (l) D(3)])
end

if I I = 1
i m _ d e m o s a i c (i , j , l + 2*mod(i , 2)) = i m _ d a t a (i+v (I I , 1) , j+v (1 1 , 2)) + (i m _ d a t a (i , j) —

i m . d a t a (i + 2 * v (I l ,1) , j + 2 * v (I l , 2))) / 2 ;

if 12 = 1
i m _ d e m o s a i c (i , j ,3 —2* mod (i , 2)) = i m - d a t a (i , j + l) + (i m _ d a t a (i , j) — (i m - d a t a (i — 1 ,

j + 1) + i m - d a t a (i + l , j + l)) / 2) ;

e n d

i m _ d e m o s a i c (i , j ,3 —2* mod (i , 2)) = i m _ d a t a (i , j — l) + (i m - d a t a (i , j) — (i m _ d a t a (i — 1 ,
j - 1) + i m - d a t a (i + l , j - l)) / 2) ;

e l s e i f I I = 3
i m . d e m o s a i c (i , j , l + 2*mod(i , 2)) = i m . d a t a (i+v(II , 1) , j + v (I I , 2)) + (i m . d a t a (i , j)

i m . d a t a (i + 2 * v (I l , 1) , j + 2 » v (I l , 2))) / 2 ;

if 12 = 1
i m . d e m o s a i c (i , j ,3 —2* mod (i , 2)) = i m _ d a t a (i , j + l) + (i m _ d a t a (i , j) — (i m _ d a t a (i — 1,

j + 1) + i m . d a t a (i + l , j + l)) / 2) ;
e l s e

e n d

i m _ d e m o s a i c (i , j ,3 —2* mod (i , 2)) = i m _ d a t a (i , j — 1) + (i m _ d a t a (i , j) — (i m _ d a t a (i — 1 ,
j - 1) + i m - d a t a (i + l , j - l)) / 2) i

e l s e i f I I = 2
i m . d e m o s a i c (i , j ,3 —2*mod(i ,2)) = i m . d a t a (i+v (I I , 1) , j + v (I I , 2)) + (i m . d a t a (i , j)

i m - d a t a (i + 2 * v (I l , 1) , j + 2 * v (I l , 2))) / 2 ;

126

http://im.de

D. MATLAB CODE

i f 12 = 1
i m . d e m o s a i c (i , j , l + 2*mod(i , 2)) = i m - d a t a (i—l , j) •+- i m - d a t a (i , j) — (i r a - d a t a (i — 1, j

- 1) + i m . d a t a (i - l , j + l)) / 2 ;
e l s e

i m . d e m o s a i c (i , j , l + 2*mod(i , 2)) = i m . d a t a (i + 1 , j) + i m - d a t a (i , j) — (i m . d a t a (i + 1 , j
- 1) + i r a . d a t a (i + l , j + l)) / 2 ;

end

i m . d e m o s a i c (i , j ,3— 2*mod(i ,2)) = i m - d a t a (i+v (I I , 1) , j+v (I I ,2)) + (i m - d a t a (i , j) —
i m - d a t a (i + 2 * v (I l ,1) , j + 2 * v (I l , 2))) / 2 ;

if 12 = 1
i m . d e m o s a i c (i , j , l - f2*mod(i , 2)) = i m - d a t a (i — l , j) + i m _ d a t a (i , j) — (i m . d a t a (i — 1, j

- 1) + i m - d a t a (i - l , j + l)) / 2 ;
e l s e

i m . d e m o s a i c (i , j , l + 2*mod(i , 2)) = i m - d a t a (i + 1 , j) + i m - d a t a (i , j) — (i m - d a t a (i + 1 , j
- 1) + i m . d a t a (i + l , j + l)) / 2 ;

end
e n d

end
end

end

i m . o u t — i m . d e m o s a i c ;

Listing D.3: demosaic.m

% Camera Board Demosaicing

% FILENAME: DEMOSAIC.m
% DESCRIPTION: Performs Various Interpolations in a RAW Bayer Pattern image
% DATE: March 25, 2008
% AUTHOR: Anthony Karloff , University of Windsor

f u n c t i o n [i m . d e m o s a i c] = DEMOSAIC (i m . r a w , mode)

if s i z e (s i z e (i m . r a w) ,2) = 3
R = i m _ r a w (: , : , l) ;
G = i m . r a w (: , : , 2) ;
B = i m . r a w (: , : , 3) ;

s w i t c h mode
case ' n e a r e s t . n e i g h bou r '

i m . d e m o s a i c (: , : , 1) = R + c i r c s h i f t (R, [0 - 1]) + c i r c s h i f t (R , [1

i m . d e m o s a i c (: , : , 2) = G + c i r c s h i f t (G, [0 1]) ;
i m . d e m o s a i c (: , : , 3) = B -) ~ c i r c s h i f t (B , [0 1]) + c i r c s h i f t (B , [- 1

i]) ;

c a s e ' b i l i n e a r '
%Interp olate Green Channel
G = G + i m f i l t e r (G, [0 1 0; 1 0 1; 0 1 0] / 4) ;

%Interpolate Blue at Reds
Br = i m f i l t e r (B , [1 0 1; 0 0 0; 1 0 l] / 4) ;
%Interpolate Blue at Greens
Bg = i m f i l t e r (B+Br, [0 1 0; 1 0 1; 0 1 0] / 4) ;

%Interpolate Red at Blues;
Rb = i m f i l t e r (R, [1 0 1; 0 0 0; 1 0 l] / 4) ;
%Interpolate Red at Greens;
Rg = i m f i l t e r (R + Rb, [0 1 0; 1 0 1; 0 1 0] / 4) ;

i m . d e m o s a i c (: , : , 1) = R + Rb + Rg;
i m . d e m o s a i c (: , : , 2) — G;
i m . d e m o s a i c (: , : , 3) = B + Br + Bg;

ot he r w i s e
i m . d e m o s a i c — 0;

end
e n d

0])

0])

+

+

c i r c s h i ft (R,

c i r c s h i f t (B ,

[1

[- 1

Listing D.4: RGB2RAW.m

127

D. MATLAB CODE

% Camera Board Demosaicing

% FILENAME: RGB2RAW.m
% DESCRIPTION: Converts the 3 channels of an RGB image to RAW image format
% along with the 3 seperate color channels .
% DATE: July 24, 2007
% AUTHOR: Anthony Karloff , University of Windsor

f u n c t i o n [i m . r a w] = RGB2RAW (i n p u t)

i f s i z e (s i z e (i n p u t) ,2) = 3
i m g . i n = d o u b l e (i n p u t) ;

R = i m g . i n (
G = i m g . i n (
B = i m g . i n (

,2)
,3)

M = s i z e (i m g _ i n ,1) ;
N = s i z e (i m g _ i n , 2) ;

im-raw (
i m . r a w (
im_raw (

, 1) = R . * r e p m a t ([0 1
, 2) = G . * r e p m a t ([1 0
, 3) = B . * r e p m a t ([0 0

0 0] , M / 2 , N / 2)
0 1] , M / 2 , N / 2)
1 0] , M / 2 , N / 2)

Listing D.5: RGB2YUV m

%
%
%

Camera Board Demosaicing

FILENAME: RGB2RAW.m
DESCRIPTION: Converts th

% along with
% DATE: July 24, 2007
% AUTHOR: Anthony Karloff ,

fu

i f

e

n o t i o n

s i z e I
img

R =
G =
B =

II
II

II

img .
img .
img .

s e
ling­

erie!

e 3 channels of an RGB
the 3 seperate color c

University of Windsor

[i m g . y u v] = RGB2YUV (i n p u t)

s i z e (i n p u t) ,2) =
. in = d o u b l e (i n p u t)

i m g . i n (: , : , 1) ;
i m g . i n (: , : , 2) ;
i m g . i n (: , : , 3) ;

3

(6 6 . * R + 1 2 9 . » G + 2 5 . * B + 1 2 8 + 4 0 9 6) . / 2 5 6 ;
(- 3 8 . * R - 7 4 . * G + 1 1 2 . * B + 1 2 8 + 3 2 7 6 8) . / 2 5 6 ;
(112»R-94*G+18*B+128 + 3 2 7 6 8) . / 2 5 6 ;

y u v (: , : , 1) = Y;
y u v (: ,: , 2) = U;
y u v (: , : , 3) = V;

yuv = 0;

image to
hannels .

YUV image format

VITA AUCTORIS

Anthony Christopher Karloff was born in Windsor, Ontario, Canada on April 1st,

1982. He received his B.A.Sc. Degree in Electrical Engineering in 2006 from the Uni­

versity of Windsor, Windsor, ON. He is currently a candidate in the department of

Electrical and Computer Engineering at the University of Windsor. His research in­

terest include Image and Signal Processing, Reconfigurable System design and custom

hardware design.

129

	A Compact Camera with a Reconfigurable Real-time Embedded Image Processor for Pharmaceutical Capsule Inspections
	Recommended Citation

	ProQuest Dissertations

