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Abstract 

The following thesis presents the system requirements, design methodology, final 

hardware design and system integration of a custom digital camera for high-speed 

pharmaceutical capsule inspections. 

The primary goals of the camera design were to minimize the cost of the device 

and to have a flexible design that could be easily upgraded in the future. For this 

application, a 3.1 mega pixel CMOS image sensor was used with a USB 2.0 interface. 

In addition, the custom camera can pre-process image data in an embedded, recon-

figurable real-time image processor implemented in a FPGA. All data processing in 

the camera occurs with only buffering four rows of an image, eliminating the need for 

RAM on the device and lowering the overall cost. 

The final design was manufactured and implemented into a complete inspection 

system which used 16 of these cameras to inspect up to 60 000 capsules per second. 

VI 



To my family and friends for their endless support and encouragement. This work 
would not have been possible without you. 

vn 



Acknow ledgments 

There are several people who deserve to be acknowledged for their generous con­

tributions to this project. I would first like to express my sincere gratitude and 

appreciation to Dr. Roberto Muscedere, my supervisor, for his invaluable guidance 

and involvement throughout the course of this thesis. I would also like to extend a 

very special thanks to Dr. Majid Ahmadi and Dr. Maher Sid-Ahmed for their expert 

guidance, encouragement and constant support throughout my studies. 

Vlll 



Contents 

Declaration of Co-Authorship/Previous Publication iv 

Abstract vi 

Dedication vii 

Acknowledgments viii 

List of Figures xiii 

List of Tables xv 

List of Abbreviations xvii 

1 Introduction 1 

1.1 Project Overview 2 

1.2 Quality Control of Two Part Gelatin Capsules 2 

1.3 Methods of Defect Detection 3 

1.3.1 Current Inspection Methods 3 

1.3.2 Introduction to Machine Vision 5 

1.3.3 Commercial Systems 6 

1.4 Proposed Solution 7 

ix 



1.5 Thesis Organization 7 

2 System Overview 9 

2.1 Introduction to the Optisorter 9 

2.1.1 Background Information 9 

2.1.2 Summary of Operation 10 

2.2 System Timing 11 

2.3 Imaging Environment 13 

2.4 Objectives for Modification 13 

2.4.1 Selecting a Camera 14 

2.4.2 Modifying the Imaging Environment 16 

2.5 Proposed Design 18 

3 Camera Design Methodology 21 

3.1 Camera Design Flow 21 

3.2 Design Specifications 23 

3.3 Major Design Methods 23 

3.3.1 Reconfigurable Hardware Programming 24 

3.3.2 Simulation Tools 24 

3.3.3 Prototyping Hardware 25 

3.4 Testing 25 

4 Hardware Design 26 

4.1 Component Selection 26 

4.1.1 Imaging Sensors 27 

4.1.2 Reconfigurable Devices 28 

4.1.3 Communication Interface 31 

4.1.4 Component Summary 32 



4.2 Circuit Schematics 32 

4.2.1 Micron MT9T001 CMOS Imaging Sensor 32 

4.2.2 Xilinx Spartan-3E500 FPGA 33 

4.2.2.1 I/O Connections 33 

4.2.2.2 Clock Connections 34 

4.2.2.3 Power Connections 34 

4.2.3 TPS Triple Supply 35 

4.2.3.1 Limiting Buck Converter Current 36 

4.2.3.2 Setting VCCO 37 

4.2.3.3 Sizing Soft Start Capacitors 37 

4.2.4 Cypress FX2 USB Microcontroller 38 

4.2.5 I2C Communication Bus 39 

4.3 PCB Layout 40 

4.3.1 PCB specifications 41 

4.3.2 Component Placement 43 

4.3.3 Power and Grounding 46 

4.3.4 Bypass capacitors 47 

4.3.5 Routing 51 

4.3.6 Manufacturing Files 52 

5 HDL Blocks and Programming 54 

5.1 FPGA Programming Overview 54 

5.2 Frame Timing and Data Synchronization 55 

5.3 I2C Write Slave 57 

5.3.1 I2C Bus Overview 58 

5.3.2 I2C Slave VHDL implementation 59 

5.4 Asynchronous FIFO 61 



5.5 Output Controller 62 

5.6 Image Processing Block 64 

5.7 Trigger Delay 65 

5.8 Synthesis Constraints and Results 65 

6 Image Processing 68 

6.1 Demosaicking 68 

6.2 Hardware Implementations 71 

6.3 Edge-Enhanced Real-Time Hardware Demosaicking 73 

6.4 Implementation and Results 77 

7 Conclusion 79 

7.1 System Integration 79 

7.2 Summary 82 

7.3 Future Work 84 

References 86 

A System Requirements 88 

B Camera Board Schematics 92 

C VHDL Code 99 

D MATLAB Code 124 

VITA AUCTORIS 129 



List of Figures 

1.1 Typical Defects in Gelatin Capsules 4 

2.1 Optisorter External View 10 

2.2 Quadrant 1 Detailed 12 

2.3 Camera Configuration 14 

2.4 System Block Diagram 18 

2.5 Camera Block Diagram 19 

3.1 Hardware Design Flow 22 

4.1 DCM with Off-Chip Delay Feedback 35 

4.2 PCB Design Flow 41 

4.3 PCB Partitions and Final Layout 44 

4.4 PCB Power Plane Layout 47 

4.5 Bypass Capacitor Values 48 

4.6 Bypass Capacitor Impedance Profile [1] 48 

4.7 Capacitor Placement Inductive Loop[l] 50 

4.8 Capacitor Impedance and Resonant Frequency[l] 50 

4.9 Bypass Capacitor Critical Current Path 51 

5.1 FPGA VHDL Modules and Data Flow 55 

xiii 



LIST OF FIGURES 

5.2 MT9T001-3100 Timing [10] 56 

5.3 MT9T001-3100 Synchronization Flow 57 

5.4 I2C Bus Communication 59 

5.5 I2C FSM 60 

5.6 I2C write in FPGA 61 

5.7 Timing for Cypress FX2 Slave FIFO 63 

6.1 Bayer Pattern CFA on a CMOS Image Sensor 69 

6.2 3x3 Data Window for Bilinear Interpolation 71 

6.3 5x5 Data Window for Edge Weight Function 73 

7.1 Camera PCB in an Enclosure 80 

7.2 Final Capsule Images 81 

B.l TPS Triple Supply Schematic 94 

B.2 Spartan-3E FPGA 95 

B.3 Cypress FX2 USB Microcontroller 96 

B.4 Micron Sensor Schematic 97 

B.5 I2C Component Schematic 98 

xiv 



List of Tables 

1.1 Current MV Capsule Inspection Systems and Proposed Model . . . . 6 

1.2 Proposed MV Components 7 

3.1 Design Specification Summary 23 

4.1 Spartan FPGA Summary[19] 30 

4.2 Component Summary 32 

4.3 Spartan-3E Supply Voltage Ramp Rate[21] 36 

4.4 I2C Devices: Loading Capacitance 39 

5.1 Write Controller Cases 64 

5.2 FPGA Utilization with Edge Enhanced Demosaicking 66 

5.3 FPGA Utilization without Edge Enhanced Demosaicking 67 

6.1 Bilinear Output 72 

6.2 Demosaicking Results 78 

A.l Defect List and Tolerances[5] 88 

A.2 High Level Business Requirements[5] 90 

A.3 High Level Performance Requirements[5] 90 

A.4 Business Scenarios[5] 91 

XV 



LIST OF TABLES 

B.l Bill of Materials 92 

XVI 



List of Abbreviations 

CFA 
DCM 
DSP 
EEPROM 
FIFO 
FPGA 
FSM 
HMI 
I/O 
I2C 
IC 
LED 
LUT 
MV 
PAL 
PCB 
PLC 
PROM 
RAM 
ROM 
VHDL 
VHSIC 

Color Filter Array 
Digital Clock Manager 
Digital Signal Processing (Processor) 
Electrically Erasable PROM 
First In First Out 
Field Programmable Gate Array 
Finite State Machine 
Human Machine Interface 
Input/Output 
Inter Integrated-circuit Communication 
Integrated Circuit 
Light-emiting Diode 
Look Up Table 
Machine Vision 
Phase Alternating Line 
Printed Circuit Board 
Programmable Logic Controller 
Programmable ROM 
Random Access Memory 
Read Only Memory 
VHSIC Hardware Description Language 
Very High Speed Integrated Circuit 

XVll 



Chapter 1 

Introduction 

As technology advances, there is an ever increasing demand for faster, smaller and 

more affordable technology in all corners of industry. The field of machine vision is no 

exception. Advances in imaging devices and computing power has allowed machine 

vision based inspection systems to increasingly appear in a variety of industrial and 

manufacturing settings. The manufacturing of pharmaceutical gelatin capsules is an 

extremely high volume and high throughput manufacturing environment which has 

a strong need for quality control inspections to take place. However the intricacies 

of performing such inspections make both an effective and affordable solution a chal­

lenge to develop. 

1 



1. INTRODUCTION 

1.1 Project Overview 

The objective of this project was to work in collaboration with a local pharmaceutical 

capsule manufacturer, Pharmaphil Inc., with funding from the Ontario Centres of 

Excellence (OCE), to develop a cost effective prototype inspection system for two-

part gelatin capsules. 

The development of this system entailed upgrading and retrofitting an existing 

capsule sorting device, the Optisorter, to perform detailed, high-throughput visual 

inspection of these capsules at a low cost. The overall project was divided into three 

major parts to be developed by individual students. These included: development of 

control hardware and a PC interface, development of image processing software, and 

finally, the development of custom digital cameras for image acquisition, construc­

tion and processing. The final contribution listed above is the focus of this thesis 

along with contributions to co-ordinating system timing and modifying the imaging 

environment. 

1.2 Quality Control of Two Part Gelatin Capsules 

The manufacturing of pharmaceutical two part gelatin capsules is a highly sensitive 

process to both environmental and process variations which lead to undesired flaws 

in some of the product. Currently there are limited methods of quality control that 

provide a flexible, accurate and cost-effective solution. As a single capsule is essen­

tially valueless, neither time nor expense can be afforded to the quality assurance of 

the product [8], yet each capsule must be fully inspected for potential defects so that 

the manufacturer can provide a marketable quality guarantee for their product. The 

ability to ensure that the capsules are within certain manufacturing specifications and 

free of defects, without adding substantial cost the process, can give the manufacture 

2 



1. INTRODUCTION 

an edge in sales and increase profit in this highly competitive market. 

The two-part telescoping gelatin capsule was patented in London in 1847 by James 

Murdock [14]. They are made in two parts by dipping metal rods in a liquid gelatin. 

The two ends are trimmed, and supplied as partially closed units to various pharma­

ceutical companies who then separate, fill and close the two halves. 

Typical defects found in these two part gelatin capsules include, but are not limited 

to: holes, dents, bubbles, missing halves, incorrect dimensions, and foreign product 

(such as a different colour or sized capsule). A complete list of defects required for 

detection is provided in Table A.l and some examples of these defects can be seen 

in Fig. 1.1. The cost of discarding a defective capsule is negligible especially when 

compared to the potential cost that could be incurred by its accidental distribution. 

Defective capsules can disrupt the filling process performed by drug companies that 

purchase the product, leak contents into packaging, or in the case of a foreign capsule 

(such as a red pill appearing in a batch of blue pills) promote a lack of confidence 

in the drug distributor or even pose legal issues. Hence, there is a strong desire 

for quality assurance in the manufacturing of these capsules. The following sections 

detail current methods of defect detection, state of the art solutions on the market 

and the advantages of a custom Machine Vision (MV) solution. 

1.3 Methods of Defect Detection 

1.3.1 Current Inspection Methods 

There are currently two primary methods being used to inspect two part gelatin 

capsules for quality assurance. The simplest method is manual inspection, whereby an 

individual attempts to identify defective capsules as they pass through an inspection 

station. This usually involves a large quantity of capsules moving over a conveyor belt 
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Printed Mark i (__J ) G O A ) \Jll ' ) 
I No Mark Imwoper Mark 

Figure 1.1: Typical Defects in Gelatin Capsules 

that is illuminated from the bottom. Although this is effective for processing very 

large quantities at a very fast rate, the accuracy in which the capsules are inspected 

is greatly compromised. This is because not every capsule can be fully inspected by 

the individual and the integrity of the inspection fluctuates greatly due to human 

error, fatigue, and focus. Also, the capsules are susceptible to areas of occlusion 

where they may overlap or touch one another, making it impossible for every capsule 

to be fully inspected. Generally, if an excessive number of defective capsules are 

identified, the entire manufactured batch is discarded, adding greatly to the overall 

manufacturing cost. The benefits of such a manual system are the reduced equipment 

and maintenance cost, especially where labour is relatively inexpensive. 

The second predominate method of capsule inspection involves the use of machine 

vision systems to attempt to identify defective capsules. While the benefits of such 

systems include improved accuracy and consistency in the inspection of each capsule, 

they are typically very expensive to setup, may suffer reduced inspection rates de­

pending on the hardware and demand on the system and generally lack flexibility and 

the ability to upgrade. 



1. INTRODUCTION 

1.3.2 Introduction to Machine Vision 

A Machine Vision (MV) System is the application of computer vision to industry and 

manufacturing. A typical machine vision system consists of several of the following 

nine components[16]: 

1. One or more digital or analog cameras (black-and-white or colour) with suitable 

optics for acquiring images. 

2. Camera interface for digitizing images (widely known as a "Frame grabber"). 

3. A processor, often a PC or embedded processor, such as a DSP. In some cases, 

all of the above are combined within a single device, called a "Smart Camera." 

4. Input/Output hardware (e.g. digital I/O) or communication links (e.g., network 

connection or RS-232) to report results. 

5. Lenses to focus the desired field of view onto the image sensor. 

6. Suitable, often very specialized, light sources (LED illuminators, fluorescent or 

halogen lamps, etc.). 

7. A program to process images and detect relevant features. 

8. A synchronizing sensor for part detection (often an optical or magnetic sensor) 

to trigger image acquisition and processing. 

9. Some form of actuators used to sort or reject defective parts. Each of the 

following must be carefully considered and customized for a specific application. 

In this thesis, the complete specifications of the MV system used for this applica­

tion will not be discussed in extensive detail, as the focus of this document is on the 

imaging sensor. 
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1.3.3 Commercial Systems 

There are currently a variety of MV systems on the market targeted at defect detection 

of pharmaceutical gelatin capsules and tablets. These range in price from $4,200 

USD to over $600,000 USD. Table 1.1 outlines a few current systems as well as the 

specifications for the proposed system. The approach these systems use to acquire 

and process images varies greatly. Almost all the systems listed rely on line scan 

cameras that process visual information as it is acquired. This benefits the system by 

working extremely fast, but it limits the variety and accuracy of inspections that can 

take place because only a single line of the image is available to process. In addition, 

storing images of defective capsules is difficult unless image buffering occurs in the 

system. Table 1.1 shows that regardless of the type of camera used, generally an 

inspection rate of at least 60,000 capsules per hour is attained by these systems. 

Some current systems such as the CVIS-SXX-E consist of a very elaborate me­

chanical system which adds significantly to the cost of the overall system. This seems 

typical for most of the systems, as fixturing the capsules proves to be a difficult task. 

Finally, while an average of 100 micron resolution is maintained, each system does 

vary to some degree in detail and resolution. 

System Model 
CTI-1 
InspeCaps 150 
CVIS-SXX-E 
MVT 
Proposed 

Cost 

$4,200 
Unknown 
$600,000 
$350,000 
<$35,000 

Caps/h 

50,000 
120,000 
100,000 
60,000 
60,000 

Camera Type 
Unknown 
3x Linescan CCD 
8x Linescan CCD 
Unknown 
12x CMOS 

Processing 
Unknown 
Visicard 4 
Analog Sig. 
Unknown 
Digital PC 

Resolution 
0.1mm 
0.1mm 
0.1mm 
0.2mm 
0.01mm 

Table 1.1: Current MV Capsule Inspection Systems and Proposed Model 
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1.4 Proposed Solution 

The proposed system maintains the competitive throughput requirements of com­

peting systems with an inspection rate of 60,000 capsules per hour, while showing 

greatly reduced cost and an increase in inspection accuracy. This is achieved by tak­

ing a completely customized approach to the hardware of the system and combining 

it with an affordable existing mechanical design. The additional benefits of such an 

approach lay in both the flexibility and the ability to upgrade the proposed system. 

Table 1.2 outlines the general MV components used in the proposed system and the 

advantages of using these components over existing MV systems. 

Component 
Camera 
Interface 
Processor 
Lens 
Lights 
IP Program 
Sync. Sensors 
Reject Mechanism 

Typical 
CCD Linescan 
Frame Grabber 
DSP 
Standard 
Red LED 
Custom 
Unknown 
Mechanical 

Proposed 

CMOS 
USB 2.0 
PC 
Standard 
White LED 
Custom 
Inductive proximity. 
Air actuator. 

Advantage 
Full digital image 
Cost effective 
Easy to upgrade 
None 
Full colour images 
Flexible to change 
Easy to interface 
Touchless 

Table 1.2: Proposed MV Components 

1.5 Thesis Organization 

This thesis discusses the design, build and testing of a custom digital camera used as 

part of a MV system for quality control in the manufacturing of two part gelatin cap­

sules. Chapter 2 begins by giving an overview of the proposed MV system including 

the current mechanical setup, imaging environment and system timing constraints. 

Following this, Chapter 3 discuses the design methodology for the development of 

the camera component of the MV system. This includes the design specifications for 

7 



1. INTRODUCTION 

the camera, the design flow methodology used for high level device design and finally 

introduces the development tools and equipment used for programming, simulating 

and testing the design. Chapter 4 discusses the actual hardware design of the camera 

including detailed schematic designs as well as physical component layout and PCB 

design consideration for the final camera. Chapter 5 will detail the VHDL code devel­

oped for the FPGA on the camera and will discuss the various blocks and their role 

on the camera. Chapter 6 introduces the image processing elements of the camera, 

specifically discussing Colour Filter Array (CFA) imaging sensor data and the use of 

"demosaicking" techniques to perform image reconstruction. This chapter will also 

cover the software simulation and hardware implementation of several demosaicking 

methods including a novel real-time edge enhancement method proposed in this the­

sis. Finally, Chapter 7 will discuss the integration of the camera with the MV system 

as well as conclude the work and provide a discussion for future development of the 

system. 



Chapter 2 

System Overview 

2.1 Introduction to the Optisorter 

2.1.1 Background Information 

The Optisorter, seen in Fig. 2.1, was a German engineered MV system built in 

the early 1990s. A number of these systems were acquired by Pharmaphil Inc. to 

be implemented as an affordable quality control method for the manufacturing of 

their size #00-#5 two part gelatin capsules. Although the Optisorter has a solid 

mechanical foundation for an MV system, the hardware was essentially obsolete. The 

exact functionality of the Optisorter is still unknown, however the hardware contained 

therein gives a good indication of what functions this system may have performed. 

With only analog PAL cameras and analog processors, the existing machine was 

most likely only able to identify foreign capsules and measure basic geometric toler­

ances such as the length and width of the capsule. 

9 



2. SYSTEM OVERVIEW 

Figure 2.1: Optisorter External View 

2.1.2 Summary of Operation 

The system original system is comprised of four identical inspection stations designed 

to operate in parallel to provide the desired system throughput. Capsules are ini­

tially loaded into a large hopper seated on top of the machine. This hopper feeds a 

series of 24 radial arms that rotate counter clockwise within the system. As an arm 

enters a quadrant, the holder is first cleared of any stray contents such as a double 

loaded capsule from the previous station. Next, a loading mechanism allows a sin­

gle capsule to descend down the arm into a holder that seats the capsule. The arm 

continues to spin until the capsule passes beneath a series of four cameras which are 

triggered by proximity sensors that track the arm positions. The four photographs 

are inspected using simple analog circuits and an accept or reject decision is made as 

the capsule passes over an air valve actuator responsible for ejecting the capsule into 

the appropriate bin. 

10 



2. SYSTEM OVERVIEW 

2.2 System Timing 

To understand the most important factors in system timing, let an event represent 

an operation that will be occurring in the system when an arm arrives at a certain 

location and a cycle represent the time it takes for a new arm to arrive at an event, 

in other words, the time between arms. Major events will include: 

1. Clearing the holder. 

2. Loading the holder. 

3. Imaging the top of the capsule. 

4. Imaging the bottom of the capsule. 

5. Accepting the capsule. 

6. Rejecting the capsule. 

Fig. 2.2 shows the details of quadrant one with six of the 24 arms that will appear 

in the quadrant at a single cycle. The general location of the enumerated events above 

are show as circled numbers. 

It is important to note that because each event is performed for a new arm on 

every cycle, the amount of time allocated for an event is dependent on the cycle time 

and not on the amount of time between events. This means greater time allocation 

for critical events can only be gained by increasing the time allocated to a cycle, not 

by increasing the physical spacing between events. Since cycle time is the product of 

the physical spacing between arms and the rotational speed of the system, the system 

timing is directly proportional to the rotational speed. This ultimately defines the 

total system throughput. To achieve the desired inspection rate of 60,000 capsules 

per hour, the 24 radial arms must be spinning at 10.411 revolutions per minute. 

11 



2. SYSTEM OVERVIEW 

©0 

Quadrant 3 

Figure 2.2: Quadrant 1 Detailed 

This was found by determining the number of capsule a single arm would have 

to inspect in this time and then computing how fast this arm would have to move in 

order to accomplish this task. Equation 2.1 shows this computation. 

1000 caps I vain 
10.4167 rev/min (2.1) 

(24 arms/rev x 4 caps/arm) 

Since a cycle represents 1/24 of a revolution, the maximum time allocated to any 

event can be computed as shown equation 2.2. 

60 sec/min 
x (1/24) rev = 0.24 sec (2.2) 

10.4167 rev/min 

Therefore, the most critical event of the system (arguably the transfer and pro­

cessing of image data) must occur in < 240 ms. Both equations 2.1 and 2.2 are simply 

theoretical calculations based on the operation of the the system as described above. 

12 



2. SYSTEM OVERVIEW 

2.3 Imaging Environment 

The current Optisorter system uses four cameras to capture the full 360 degree surface 

of the capsule. The capsule is seated in an opaque holder with a slot down the middle 

which allows both the top and back surfaces of the capsule to be visible. The capsules 

are illuminated with back lighting to cast the outline of the capsule and any defects 

in shadow while illuminating the background and flawless portions of the body for 

the capsule. Three cameras are positioned to examine the top surface of the capsule 

while a single camera is positioned from the reverse angle to examine the bottom of 

the capsule. The cameras are angled to image as much of the surface as possible, 

however, the solid metal holder occludes a small portion where the capsule makes 

contact with the holder. In an ideal imaging environment, the back lighting would 

remain perpendicular to the camera in order to reduce any uneven illumination that 

results from reflected light. It would appear that due to space constraints, a single 

panel of LEDs was used for back lighting the three top images while a separate panel 

of LEDs was used to back light the bottom of the image. Fig. 2.3 shows the details 

of the camera and lighting setup. 

2.4 Objectives for Modification 

As the project objectives state, the ultimate goal is to retrofit the existing Optisorter 

system with upgraded hardware to perform faster, more comprehensive inspections 

of the capsules. The following modifications were proposed as part of the final sys­

tem upgrade. These modifications were to be developed as three separate parts by 

individual students. 

1. New hardware to perform motor control, monitor proximity sensors, control 

accept and reject air actuators, trigger cameras, and interface with the HMI . 

13 



2. SYSTEM OVERVIEW 
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Figure 2.3: Camera Configuration 

2. Develop a PC based computer vision system to perform image processing and 

analysis. 

3. Develop new low cost digital cameras to acquire and transfer images. 

The third modification listed above is the focus of this thesis where the first 

two items were developed my Neil Scott and Mohammad Islam respectively. More 

specific technical details regarding the requirements of these cameras will be discussed 

in subsequent section. For more information regarding the other project objectives, 

refer to thesis of Neil Scott and Mohammad Islam. 

2.4.1 Selecting a Camera 

After determining the overall system requirements, it was necessary to select the 

hardware for capturing images and transferring them to PCs. The first and foremost 

consideration was the potential cost of a camera, as 16 cameras were required for 

a complete system (four cameras for each of the four quadrants). There were three 

possible approaches, each with inherent advantages and disadvantages. 
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2. SYSTEM OVERVIEW 

1. Frame Grabber 

The first possible approach would be to purchase very inexpensive image sensors 

that could be connected via a Frame Grabber card to a PC. This would result 

in extremely fast implementation, but the high cost of a frame grabber made 

this solution very undesirable, especially if the final system were to be mass 

produced. 

2. Fire wire PC Interface 

The second consideration was to create custom cameras with a high speed 

Firewire interface. Producing custom cameras would cost effective compared 

to the cost of a frame grabber. It would also allow the hardware to be rea­

sonably upgraded. However the design of such cameras would require longer 

development time. This was still advantageous over the high cost of the frame 

grabber interface, however developing hardware and PC drivers for the Firewire 

interface would have been quite difficult due to the interface complexity and lack 

of commercial hardware and software support. 

3. USB PC Interface 

The final option was to continue with the idea of custom cameras, only with 

a slightly slower speed USB interface. The advantages of USB lay not only 

in the cost effectiveness, but in ease of development since many USB ready 

micro controllers and open sourced software were readily available. This was 

determined to be the optimal approach, as long as the USB transfer rates could 

keep up with required data throughput. 

Since the most desirable data interface was USB 2.0, a quick calculation was made 

to verify that the USB transfer speeds could keep up with the system timing demands. 

Assuming a simple 1024x768 image window at 8 bits per pixel, a single image would 
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2. SYSTEM OVERVIEW 

consist of 786432 bytes of data. USB 2.0 has a theoretical maximum transfer rate of 60 

MB/s but this is unattainable due to packet communication overhead. Bulk transfer 

rates of up to 40 MB/s are possible with a realistic observable transfer rate of around 

30 MB/s [3]. Preliminary USB 2.0 transfer test conducted by Neil Scott (a partner in 

this collaborative project) found a sustained bulk transfer rate of 31145280 bytes per 

sec or equivalently 30 MB/s. At this rate, it would take 0.1 seconds to transfer 4 full 

images to the PC. As 240 ms is the maximum cycle time available in order to achieve 

the desired system throughput, the USB interface would be sufficient and still leave 

up to 140 ms to be allocated for image processing to occur within the PC. 

The preliminary system timing consideration outlined above showed that a USB 

2.0 interface would be sufficient, and two demo boards were obtained to perform 

initial hardware feasibility tests. 

2.4.2 Modifying the Imaging Environment 

Although the current imaging setup may be sufficient, a number of improvements 

were proposed to provide improved images for processing. These included: 

1. Improved lighting 

2. Transparent holders 

3. Three camera setup 

4. Reflected front lighting 

5. Reduced stray reflections 

Each item listed above was identified as a potential area of improvement not only 

for the quality of images, but in the case of a three camera setup, reduced system load 

and cost. Of these items, only the first was implemented in the final system. Instead 
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2. SYSTEM OVERVIEW 

of using red LEDs, the diffused back lighting of the current system was upgraded to 

high intensity white LEDs. The higher intensity light allowed for a shorter exposure 

time while taking an image of the capsule, resulting in less blur introduced due to the 

movement of the capsule. The white light allowed for full color spectrum exposure of 

the color CMOS image sensors used in the final custom cameras. 

The use of transparent holders for fixturing the capsules during imaging was tested, 

however, due to difficulties manufacturing perfectly clear holders free of scratches, the 

existing opaque holders were used. The use of clear holders should be considered as 

an area of future development. 

A three camera setup was also tested, however without perfect clear holders, there 

are areas of the capsule that are occluded using three cameras and opaque holders. 

Again, the use of a three camera setup should be further investigate along with the 

use of clear holders. 

The idea of reflected front lighting was proposed as a way of illuminating the front 

of an opaque capsule without needing an additional front light. The idea was to place 

a reflective surface over the front of the camera (around the lens) so that stray light 

from the back lighting of the capsule would be reflected and illuminate the surface of 

the capsule. This would provide the visibility required to identify color and surface 

defects. This item was tested and verified, however, was not implemented since the 

prototype was only desired to inspect clear capsules due to lack of project time. 

Finally, as another point to consider, it was found that under certain circum­

stances, light from an inspection was reflecting off the various shiny metallic surfaces 

withing the system, causing bright areas on the capsule surface to appear. This type 

of reflection could be reduced by ensuring all surfaces within the system had a dark 

matte finish as to reduce the reflection of light within the system. This was not im­

plemented into the final system, but could be considered as an area for improvement 

in the future development of the inspection system. 
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2. SYSTEM OVERVIEW 

2.5 Proposed Design 

Using the understood operating principles of the existing mechanical system along 

with the desired areas of improvement, a basic proposed system overview was com­

posed. This can be seen in Fig. 2.4. 
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Figure 2.4: System Block Diagram 

The design maintains the principal concept of having four identical stations work 

in parallel to accomplish the desired inspection throughput. These four inspection 

stations are connected via a custom control board that is responsible for co-ordinating 

the entire system. The control board acts as an interface between the mechanical 

systems and the computer vision stations, triggering the stations to capture an image 

of the capsules at the appropriate time and using the inspection results from the 

station to mechanically accept and reject the appropriate capsules. 

The proposed custom digital cameras reeive triggers from the control board and 
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2. SYSTEM OVERVIEW 

send image data via a UBS 2.0 interface to a PC that is responsible for performing the 

necessary inspections. The results of the inspections are relayed through the master 

camera, back to the control board. Thus the proposed custom cameras must provide 

the following functionality: 

1. Maintain the desired inspection rate. 

2. Communicate image data to PC via USB 2.0. 

3. Receive external triggers. 

4. Output inspection results. 

5. Remain competitive in cost compared to commercial systems. 

6. Satisfy size constraints of existing imaging fixtures. 

At this point, a proposed camera architecture was developed. Fig. 2.5 shows the 

most basic required functional blocks. 
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Figure 2.5: Camera Block Diagram 

In this design, a suitable imaging sensor provides image data to a reconfigurable 

hardware device. This device acts as the camera controller, initially processing the 
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2. SYSTEM OVERVIEW 

image data and preparing the image data output. The image data is then be sent to 

a USB 2.0 capable microcontroller, which is responsible for the data communication 

to the PC for image processing. To satisfy the external communication requirements, 

an I2C bus extender was used along with simple 3.3 V inputs for receiving triggers. 

A small EEPROM is also added to the design, in order to store basic configuration 

information such as the device identification for the USB enumeration as well as a 

master camera setting. 

A unique feature to this proposed architecture is that there will be no frame 

buffering taking place within the camera. Data is processed and transfered in real­

time. This will greatly reduce the unit cost, as well as assist in maintaining the 

desired inspection rates for the system. 
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Chapter 3 

Camera Design Methodology 

3.1 Camera Design Flow 

After identifying the objectives for the custom digital camera and how it was to 

operate as part of the larger system, a design procedure was developed. The major 

steps involved in the camera design methodology include: 

1. Deriving device specifications 

2. Simulating hardware operation 

3. Prototyping functional groups 

4. Testing hardware functions 

5. Building complete device 

6. Testing device operation 
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3. CAMERA DESIGN METHODOLOGY 

7. System integration 

8. System testing 

Fig. 3.1 shows the general bottom-up design flow for the proposed custom camera. 

With our camera specifications, performance requirements, desired operation and ba­

sic overview in mind, this design procedure was developed to assist in the realization 

of the custom camera. 

Figure 3.1: Hardware Design Flow 
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3.2 Design Specifications 

The system design specifications were based on inspection requirements outlined by 

Pharmaphil Inc. The details of both the business and defect detection requirements 

can be found in Appendix A. Table A.l outlines the inspection requirements used to 

derive the required resolution of the system. Table A.2 outlines the desired operation 

and is used to determine the required operating speed of the system as well as the 

test parameters. Finally, Table A.3 describes the desired features and functionality 

that must be incorporated into the modified design. Since the focus of this thesis 

is on the Camera Design with some insight into the imaging environment, Table 3.1 

summarizes the pertinent specifications and the area of the system design to which 

they apply to. 

Requirement 
Defect size 

Capsule Colour 

Speed of Inspection 

Products Inspected 

Specification 
0.2mm or larger 

RGB/YUV 

1000 caps/min 

All 

Applies to 
Imaging sensor 
Imaging Environment 
Imaging sensor 
Imaging Environment 
Reconfigurable Hardware 
Imaging Sensor 
Data Interface 
Memory/Buffering 
Reconfigurable Hardware 

Table 3.1: Design Specification Summary 

3.3 Major Design Methods 

The following sections summarize the procedures used while developing the camera. 

These cover the actual software and hardware tools used and their function in the 
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3. CAMERA DESIGN METHODOLOGY 

design process. 

3.3.1 Reconfigurable Hardware Programming 

One of the largest portions of this design project involved developing hardware code 

for the reconfigurable device used on the camera. All coding was done in VHDL 

because of its modularity and easy readability (though Verilog coding would have 

been a viable substitute). The development environment used was Xilinx ISE 10.1 

where the final VHDL code was synthesised. 

The required VHDL coding was broken down into various behavioural blocks. 

Each block was behaviourally verified using an appropriate test bench when required, 

also coded in VHDL. 

The top level VHDL block was assigned timing constraints with respect to the 

system clocks that would be provided to the system and final timing and resource 

utilization reports were generated. More specific information pertaining to the actual 

design results can be found in Chapter 6. 

3.3.2 Simulation Tools 

Some aspects of development for the system, such as the development of a demo-

saicking (image reconstruction) algorithm required rapid logical implementation for 

verification before realization in hardware as part of the final design. For these pur­

poses, Matlab was used. Algorithms were implemented as functions in ".m" files and 

called from either the Matlab command line or by a series of tests coded in additional 

".m" file. Although Matlab is a relatively slow simulation tool, it was selected be­

cause of the wide range of library support in image processing as well as its ability to 

easily interface with external data sources. More detail about the specific functions 

implemented in Matlab, as well as the corresponding code, can be found in Chapter 
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6 and Appendix D. 

3.3.3 Prototyping Hardware 

Only limited hardware prototyping took place concerning the camera design. This 

was primarily due to the nature of the components, specifically their unique footprints 

that could not easily be mounted to a breadboard. Essentially, hardware prototyping 

took place by modifying demo boards. Ideally, multiple revisions of the final PCB 

would have been developed allowing for measurement of circuit noise and further 

adjustments. Details on the camera demo board used are outlined in the component 

selection section of the following chapter. 

3.4 Testing 

Testing the design occurred on two levels. The first testing occurred independently 

of the inspection environment, ensuring that the resulting camera was capable of 

generating the required hardware. The second form of testing occurred with the 

camera integrated into the system, increasing the operating speed and analyzing the 

resulting quality of image until failure in either the device or in the transfered data. 

The test results were used to verify that the final design met the system requirements. 

The details of these test are outlined in the conclusion of this thesis. 
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Chapter 4 

Hardware Design 

4.1 Component Selection 

After the design specifications for the camera were determined, the next step was to 

select specific components capable of satisfying these requirements. Fig. 2.5 showed 

the major components that were to be included in the design. These include: 

1. Imaging sensor 

2. Reconfigurable device 

3. USB 2.0 compatible microcontroller 

4. External communication interface 

5. Small memory device 

The following sections detail the selection of these devices and justifies their use 

in the design with respect to the system specifications. 
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4.1.1 Imaging Sensors 

Two of the most heavily weighted factors in selecting hardware were: cost and avail­

ability. Under these constraints, a variety of imaging sensors were compared for 

suitability. One critical decision was on whether to use a CMOS sensor or a CCD 

sensor as both have specific advantages and disadvantages. 

Although they are faster and often cheaper than CMOS sensors, Charge Coupled 

Device (CCD) sensors only output an analog signal representing the charge result­

ing from a pixel being exposed to light. This analog value must be amplified and 

converted to a digital value by additional components and circuitry. On the other 

hand, a CMOS image sensor has an internal CCD with supporting digital circuitry 

integrated into the sensor itself. The sensor data output from a CMOS is in digital 

format and accompanied by associated timing signals for tracking the row and column 

of the current pixel being read out. In addition, CMOS sensors allow for windowing 

an area of the sensor's pixel array so that the entire image frame does not need to be 

outputted from the device. This provides greater control over both the exposure time 

of the sensor as well as the frame readout time. Micron, one of the primary suppliers 

of CMOS image sensors, provided a variety of demo boards with USB support. The 

sensors, though slightly more expensive than typical CCD sensors, were readily avail­

able in large quantities and would not require as much additional hardware (i.e. a 

controller to integrate into the design) providing overall savings in development costs. 

The Micron MT9T001 3.1 mega pixel sensor was selected as it was readily available 

with a demo board featuring a chip memory, Virtex II FPGA and a Cypress FX2 

USB microcontroller. This demo board provided a solid backbone to the camera 

design, even though it possessed expensive components and unnecessary features for 

the requirements of our design, especially in terms of memory and logic capacity of 

the FPGA. Nonetheless, the demo board acted as the basis for the custom camera's 
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hardware selection in the first iteration of the design flow. 

4.1.2 Reconfigurable Devices 

The reconfigurable device on the camera plays a vital part in synchronizing the various 

hardware components as well as managing and processing image data. The reconfig­

urable device acts as the camera's memory for all necessary image data buffering as 

well as a communication interface to the imaging sensor. Selecting a suitable device 

for such a dynamic role involved many considerations and making a number of trade 

offs. The decision parameters for selecting the appropriate device were as follows in 

order of priority. 

1. Memory 

2. Cost 

3. Device Capacity 

4. Development Time 

5. Footprint 

6. I/O Capacity 

Initial firmware development was done on a Xilinx Virtex II series device (XC2V2500) 

as it was part of the Micron Demo board (MI3100 sensor head with DEM02 FPGA 

base) which was used as a basis for the final design. Since expandability of the ini­

tial design was part of the camera design specifications, a reconfigurable device was 

required. 

There were two predominate reconfigurable devices considered for this design. 

They were the FPGA and CPLD. FPGAs are "fine-grain" devices, meaning they 
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contain many tiny blocks of logic made up of flip-flops. CPLDs are "coarse-grain" 

devices with relatively few larger blocks of logic made up with flip-flops. FPGAs 

are RAM based and need to be configured each time they are powered up. CPLDs 

are EEPROM based and retain their memory after being programmed. CPLDs have 

faster input-to-output timing than FPGAs because FPGAs have a coarse-grain archi­

tecture where a single logic block can implement a more complex function. However, 

FPGAs have special routing resources to implement efficiently binary counters and 

arithmetic functions (adders, comparators, etc.) and RAM, where CPLDs do not. 

In general, FPGAs can contain very large digital designs, while CPLDs can contain 

small designs only [11]. In order to satisfy the more sophisticated operations required 

by the reconfigurable device, an FPGA was selected as the more suitable device for 

this role. 

Next, an appropriate FPGA was selected. As Xilinx ISE development software was 

readily licensed by the university with full access to support and CoreGEN designs, 

Xilinx FPGAs were favored over competing FPGAs such as Altera. This decision to 

use a Xilinx device was simply due to the availability of licensed development software 

as well as compatibility of code being developed on the demo board with a Xilinx 

FPGA. 

As demo board firmware was already being developed for this application using 

the Xilinx Virtex II device, Virtex was the first family investigated as a suitable 

Xilinx FPGA for the final camera design. However, the cost for the Virtex family 

far exceeded the cost parameters outlined, so the lower cost Spartan family was 

investigated. Table 4.1 shows the Spartan series descriptions used in selecting the 

appropriate device. Comparing the Spartan summary to our decision metrics, it was 

quite clear that the Spartan-3E series was most suitable for our application due to 

the high logic density, low I/O count and overall low cost. 
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Series 
Spartan-3A DSP 

Spartan-3AN 

Spartan-3A 

Spartan-3E 

Spartan-3 

Domain Description Cost (CAD) 
DSP optimized For applications where in- $140 to $215 

tegrated DSP MACs and 
expanded memory are re­
quired. 

Non-Volatile For applications where non- $13 to $80 
volatile, system integration, 
security and large user flash 
are required. 

I/O optimized Ideal for bridging, differ- $63 to $88 
ential signaling and mem­
ory interfacing applications, 
requiring wide or multiple 
interfaces and modest pro­
cessing. 

Logic optimized Ideal for logic integration, $11 to $75 
DSP co-processing and em­
bedded control, requiring 
significant processing and 
narrow or few interfaces. 

I/O + Logic Opt. Ideal for highly-integrated $10 to $130 
data-processing applica­
tions. 

Table 4.1: Spartan FPGA Summary[19] 

The final step was to select a specific device from the Spartan-3E series FPGAs. As 

per the reconfigurable device requirements listed at the start of the section, the specific 

Spartan-3E device was not only selected based on its internal specifications, but also 

based on a common footprint that would allow for future upgrades. The Spartan-

3E500 was selected as a balance of cost and logic capacity in the series of devices 

that shared the FT256 footprint. This footprint was selected not only for its compact 

nature, but also so that the more powerful Spartan-3E1200, or cheaper Spartan-3E250 

could replace the selected FPGA without having to modify the physical layout and 

placement of these devices in the final camera design. 
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A final point on the FPGA selection relates to the powering of the device. Un­

like the more expensive Virtex II devices, the Spartan series has some specific power 

requirements. In order to supply the correct voltages to the device with the proper 

power on start-up conditions, a separate component was chosen to perform this role. 

The TPS7500 Triple supply by Texas Instruments was chosen based on a recommen­

dation in the device data sheet [21]. 

4.1.3 Communication Interface 

There were two main components selected to act as communication interfaces for the 

camera. The primary device responsible for transferring image data to the PC is the 

Cypress CYCFX2. This specific device was selected by the developer of the USB 2.0 

communication drivers so the details of this device are not covered in detail as part 

of this thesis. 

One benefit of using this device is its ability to act as a data slave device. A 

16bit data bus allows an external device to write data to a 4 KB FIFO within the 

Cypress controller that is automatically packeted and sent according to USB 2.0 

communication specifications. The device also supports an I2C interface which is 

utilized on the camera as part of the external communication interface. Finally, 

the device is relatively cheap which is an extremely important factor in component 

selection. 

The second major device is the selection of an I2C bus extender. This allows the 

local I2C bus on the camera to be connected to the control board for relaying the 

accept and reject singles from the PC. The NXP P82B715TD-T device was simply 

selected because of its low cost, availability and ability to provide the required range 

of communication dictated by the physical system. 
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4.1.4 Component Summary 

Table 4.2 summarizes the major components selected for the device design noting 

how they will be referenced for the remainder of the thesis. For a complete list of 

components used in the device design, a bill of materials can be found in appendix 

C. 

Device 
Image Sensor 
FPGA 
USB MCU 
Bus Extender 
Memory 
Triple Supply 

Manufact urer 
Micron 
Xilinx 
Cypress 
NXP 
Microchip 
Texas Intruments 

Part Number 
MT9T001P12STC 
XC3S500E-4FTG256C 
CY7C68013A-100TAXC 
P82B715TD-T 
24LC128-I/ST 
TPS75003RHLT 

Referenced As 
MT9T001 
Spartan-3E 
FX2 
I 2CBE 
128kB EEPROM 
TPS supply 

Table 4.2: Component Summary 

4.2 Circuit Schematics 

After having selected the specific devices to use in the camera design, the device 

connections must be carefully made to ensure their desired and correct operation. 

Some of the major considerations entail: powering the devices, terminating I/O, 

routing I/O and external connectors, sizing filtering capacitors, providing clocks, 

building reset circuits, designing power supplies and even placing test points on critical 

nets. 

4.2.1 Micron MT9T001 CMOS Imaging Sensor 

The MT9T001 CMOS imaging sensor is one of the most critical devices in the camera 

design. This device is responsible for acquiring image data and thus any error intro­

duced at this point will propagate throughout the remaining components. There were 
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some particular considerations that had to be made when designing the schematics 

for this device as it required separate analog and digital power supplies. The purpose 

of these separate supplies is to isolate the very noisy digital circuitry from the analog 

portion of the IC, which is highly susceptible to noise in the power supply. 

To improve the sensor's operation, separate analog and digital low drop-out linear 

regulators were used to power this device. However, the ground pins share the same 

grounding net. The appropriate placement of grounding points in the PCB layout 

of this device made this possible, reducing the effect any ground noise may have on 

the analog ground of the device by providing a direct path for the current to flow, 

preventing potential current leaks towards the other ground pins. 

The power saving features of the chip have been grounded to simplify the PCB 

routing. The remaining data bus, timing signals and reset and status signals have 

been connected to pins on the FPGA for flexible control over this device. Fig. B.4 in 

Appendix B shows the final schematic drawing for the Micron MT9T001 sensor. 

4.2.2 Xilinx Spartan-3E500 FPGA 

4.2.2.1 I /O Connections 

Since the FPGA acts as the main controller for the custom camera, almost every 

device in one way or another is connected to the FPGA. The I/O connections for the 

FPGA to the neighbouring devices were placed on pins whose functions did not change 

between the three different Spartan-3E devices that share the FT256 footprint. This 

provided greater flexibility for future upgrades. All I/O on the device were configured 

as 3.3 V Low Voltage CMOS (LVCMOS33) capable of syncing or sourcing up to 16 

mA of current [21]. 
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4.2.2.2 Clock Connections 

Special considerations were also made when connecting clock signals to the FPGA. 

Although the FPGA can internally route any I/O to any cell, the Spartan-3E de­

vice has dedicated Digital Clock Managers (DCMs) with specific pins associated with 

them. Any part of the design where an output clock was supplied to another device, 

such as the clock for controlling exposure rate of the MT9T001 sensor, a neighbour­

ing I/O pin was shorted to the DCM output in order to provide DLL feedback for 

the clock manager. The configuration of such a scenario can be seen in Fig. 4.1. 

For the specific case of the camera schematic net CLKIN (provided to the MT9T001 

sensor from the FPGA),the net IFCLK enters the FPGA at IBUFG feeding CLKIN 

of the DCM (which is optionally shifted within the DCM). This is outputed from the 

FPGA at OBUF as the net CLKIN which is then connected to the MT9T001 sensor. 

The net CLKIN also re-enters the FPGA at the IBUFG feeding the CLKFB of the 

DCM to regulate the clock output. This configuration is essential to removing any 

clock skew that can occur through the FPGA device. This is critical, especially when 

the clock net is shared by multiple devices and routed through the FPGA. A similar 

configuration was used on the clock net (SCL) of the I2C communication bus. 

4.2.2.3 Power Connections 

Unlike most other components, the FPGA requires three different supply voltages: 

1.2 V for the core, 2.5 V for auxiliary features and 3.3 V for the I/O. These volt­

ages required specific power-on conditions in order to properly power the Spartan 

device. The exact voltage specifications are described in the following section. For 

the schematics of the power connections, the most critical point was that each power 

pin had to be assigned at least one bypass capacitor. The sizing and placement of 
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FPGA 

CLKIN 

DCM 

CLKFB 

CLK901 
CLK180 
GLK270 
CLKDV 
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CLK2X180, 

CLKO 

CLKQ 

Figure 4.1: DCM with Off-Chip Delay Feedback 

these capacitors is discussed in greater detail in a later section of this thesis. 

4.2.3 TPS Triple Supply 

The TPS7500 Triple Supply was selected as an ideal component to supply the FPGA 

with the required voltage levels for operation. This integrated circuit uses two non-

synchronous buck converters to supply up to 3 A on the 3.3 V and 1.2 V lines. 

In addition, it has an integrated low-dropout linear regulator for the 2.5 V supply. 

Each supply has an adjustable "soft start" that allows the desired voltages to be 

increased at a controlled rate during power-on. This feature is used to satisfy the 

power on requirements of the Spartan-3E series FPGAs. The specifications for these 

voltages can be found in [21] and the voltage ramp rates are summarized in Table 4.3. 

In order to configure the device correctly, the following design considerations 

needed to be made when drawing the TPS7500 schematic (seen in Fig. B.l of Ap­

pendix B). These included: sizing soft start capacitors, selecting appropriate sized 
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Symbol | Description Min Max Units 
VCCINTR Ramp rate from GND to valid VCCINT supply 0.2 50 ms 

level. 
VCCAUXR Ramp rate from GND to valid VCCAUX supply 0.2 50 ms 

level. 
Vcco2i? Ramp rate from GND to valid Vcco supply 0.2 50 ms 

level. 

Table 4.3: Spartan-3E Supply Voltage Ramp Rate[21] 

components for the non-synchronous buck converters, selecting appropriate sized fil­

tering capacitors and providing a reverse current path on the drain of the power 

transistors via Schottky diodes. 

To suit the upgradable nature of the design, the supporting components were sized 

for a maximum current draw of 3 A. This is the maximum the TPS device can source. 

Even though the maximum current supplied from the USB controllers is limited to 500 

mA, the cameras can handle external supplies capable of supplying greater currents 

for potential off-line application (such as additional testing and prototyping). 

4.2.3.1 Limiting Buck Converter Current 

The two non-synchronous buck converters that supply voltage to the VCCO and VC­

CINT lines of the FPGA are both capable for sourcing up to 3 A (internally limited) 

unless externally limited by sizing Ri and i?2> as seen in Fig. B.l of Appendix B. 

Unlimited current allows the converters to operate in a continuous mode, preventing 

"ringing" from occurring in the junction of the PMOS transistors and inductors. For 

this reason, R\ and R^ were sized as to not limit current through these devices to any 

less than 3 A and at the same time, be capable of dissipating the maximum power. 

As power is a function of 72R with I at 3 A, R must be reduced as much as possible to 

minimize power dissipation. R\ and i?2 were sized at 330 mf2 according to suggested 

values in [15] resulting in a maximum power of 0.297 mW. Thus 1/2 W, 330 va.0, 
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resistors were chosen for this application. 

4.2.3.2 Setting VCCO 

The non-synchronous buck converts are designed to sustain a 1.22 V output with a 

unity feedback. In order to set the voltage output of one of the buck converters greater 

than 1.22 V, the feedback to the converter must be appropriately scaled down (i.e., 

through a voltage divider circuit) so that the resulting output voltage is regulated at 

a desired level. Since the camera design operates on 3.3 V I/O, as specified in both 

the Cypress FX2 device as well as the MT9T001 image sensor, a single VCCO of 

3.3 V was required and was generated using Buck2. The feedback output voltage for 

Buck2 can be written as: 

VOUT = VFB (jl + l\ (4.1) 

Since VFB = 1-22 V and VOUT — 3.3 V then RQ/RS = 1.705. Based on recommen­

dations from [15], i?6 and R5 were chosen as 61.9 kfl and 36.9 kfl respectively. 

4.2.3.3 Sizing Soft Start Capacitors 

One of the most substantial benefits of using the TPS7500 supply is the soft start 

capability of the device. This controls the voltage ramp rate of the output supplies 

by appropriately sizing soft start capacitors C4, C5 and Ce in Fig. B.l of Appendix 

B. The voltage ramp rate is a complex function of many variables. It is recommended 

that the soft start capacitors are appropriately sized by using a test bench setup and 

monitoring the power-on conditions outlined in Table 4.3, adjusting the soft start 

capacitor values until the desired power on conditions are met. This design used 

recommended values supplied by [15] and [20] in the sizing of these capacitors, and 

the resulting voltage ramps were verified on the first hardware revision of the board. 
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4.2.4 Cypress FX2 USB Microcontroller 

The schematics seen in B.3 for the Cypress FX2 microcontroller were essentially 

replicated from the Cypress CY3684/3674 EZ-USB Advanced Development Board. 

Slight modifications were made, such as connecting the reset pin directly to power 

through an RC circuit designed to delay the power on transient. As in the demo 

board, the analog power was shared with the digital power. The data bus pins for the 

slave FIFO were connected to the FPGA which was used to drive data to the device. 

The FX2 required an external clock. For this, a 24 MHz crystal was supplied. 

This clock was internally divided to produce a 48 MHz clock for IFCLK (used to 

synchronize the incoming FIFO data) as well as provide an external system clock 

CLKOUT. The CLKOUT net was supplied directly to the FPGA and was internally 

referenced as USBCLK, which can be scaled using a DCM of the FPGA and sent to 

the MT9T device to control exposure time. 

The FX2 was also connected to the FPGA in a configuration that allowed it to 

program the FPGA in serial slave mode. With this setup, FPGA code could be 

loaded to the device through the USB port, eliminating the need for an additional 

program memory device or external programming connection. This also allowed the 

USB device drivers to supply the latest FPGA code whenever the device was plugged 

in, ensuring that the FPGA was always loaded with the most recent code. This also 

ensures that all cameras in a system will operate with the same code, without the 

need to update each FPGA of each camera separately. 

The final consideration for the FX2 schematics was the connection of a bypass 

capacitor to each power pin to ground. The sizing and placement of these capacitors 

is described in more detail in a section to follow. B.3 in Appendix B shows the final 

schematics for this device. 
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4.2.5 I2C Communication Bus 

The I2C components were connected so that the data net (SDA) was shared between 

all I2C devices, as was done with the clock net (SCL). Special considerations had to 

be made to size the pull-up resistors on both the local side of the I2C bus as well as 

the external side of the I2C bus extender. 

When calculating the pull-up resistance values, the gain of the signal buffers in­

troduces scaling factors that must be applied to the system components. In practical 

systems, the pull-up resistance value is usually calculated to achieve the rise time 

requirement of the system [7]. For the purpose of this design, the I2C bus operated 

at 100 kHz. Thus, the time constant of the total system (RC) is set to 1 us or less 

[12]. Equation 4.2 was used in determining the required pull-up resistance. 

K>puU— 
1/IS 

up 
(4.2) 

^device > ^wiring 

On the local side of the I2C bus, the following components were connected with 

their corresponding capacitive load on the bus and factored in as part of Cdevice- Table 

4.4 shows these devices. 

Device 

CY7C 
MT9T001 
Spartan-3E500 
EEPROM 
Total 

^device 

50 pF 
30 pF 
50 pF 
50 P F 
200 pF 

{-'wire 

10 pF 
10 pF 
10 pF 
10 pF 
40 pF 

Table 4.4: I2C Devices: Loading Capacitance 

The value of CWire was approximated as 10 pF for any copper traces to the device 

as assumed in the device data sheet [12]. Thus, using Equation 4.2, the required 

pull-up resistance was calculated as 4.116 kfl. To maintain a lower time constant, 
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this value was rounded down to the nearest common resistor value of 4 kf2. 

On the external side of the I2C bus, the load capacitance was computed by as­

suming 50 pF per meter as outlined by [12]. For an approximate wire length of 2 

m, a total capcitive load of 100 pF was used in Equation 4.2. The required pull-up 

resistance on the external side of the extender was found to be lOkO. 

Also attached to the I2C bus was the small 128 kB EEPROM used to store device 

settings such as master/slave settings, windowing parameters for the camera and 

device IDs for USB enumeration. Again, the SDA and SCL lines were connected to 

the bus and the device was powered appropriately. As can be seen in the schematics 

of B.5 of Appendix B, the I2C bus power is supplied by the same 3.3 V source as the 

Cypress FX2 Microcontroller. 

4.3 P C B Layout 

After having selected the desired components, a Printed Circuit Board was designed 

to create connections between the components, such as resistors, integrated circuits, 

and connectors [13]. In order to accomplish this task, the following bottom-up design 

approach was used (shown in Fig. 4.2). 

A bottom-up approach was taken because specific ICs were first selected to fulfill 

the camera's specifications. These ICs were then combined with supporting compo­

nents such as bypass capacitors and voltage regulators into larger functional groups. 

After prototyping the functional groups, these groups were combined to form the 

complete design. This section will discuss the PCB layout of these groups and the 

formation of the final camera hardware design. 
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Figure 4.2: PCB Design Flow 

4.3.1 P C B specifications 

There were some restrictions on the physical characteristics of the PCB that had to 

be set before a layout could be designed. These included the following: 

1. Maximum outer dimension <70 mm 

2. Maximum of four layers on the PCB (two outer and two inner layers) 

3. Space for four mounting through holes 

In addition, the copper weight and dielectric material used in the boards needed 

to be specified. Copper weight defines the number of ounces of copper on one square 
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foot of board. From this, the thickness of coper can be computed using the known 

density of copper. A typical copper weight used for low voltage electronics is 1 oz 

copper, resulting in a layer approximately 35 //m thick [6]. To verify that this would 

suit the camera PCB board, the following assumptions and calculations were made. 

First, because a FT256 footprint was used for the FPGA, a minimum trace width of 

5mil was used (1 mil = 1/1000 inch). Second, the maximum current drawn through 

any of these traces to I/O in the FPGA was limited to 100 mA by the input clamp 

diodes [20]. Finally, the maximum temperature rise permitted for a trace was limited 

to 10 °C as was the minimum rise value in the IPC-2221 graphs used to determine 

thermal conductive properties of copper traces [6]. Using these values, the following 

required copper weight can be calculated. 

Area[mils2} = (Current[Amps]/(k * Temprise[°C]b))1/c (4.3) 

Width[mils] = Area[mils2]/(Thickness[oz\ * 1.378[mils/oz\) (4.4) 

where for IPC-2221 internal copper layers: k=0.024, b=0.44 and c=0.725 

From Equation 4.3 the required trace area for our design constraints can be de­

termined as Area = 1.77 mil2. Using the area calculation and solving for Thickness 

in Equation 4.4, the required copper thickness is 0.25 oz. 

Thus 1 oz copper would be more than suffice for the requirements of the PCB 

design and will maintain the desired thermal performance during operation. 

As for the dielectric board material, because there was very limited structural 

load on the board, standard FR-4 material was selected to reduce cost. The standard 

board thickness of 62mil was used. 
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4.3.2 Component Placement 

Component placement was the most critical step in the PCB layout, as this was 

the primary determining factor for successful routing of the design. The first step 

in component placement was to partition the PCB board in the major component 

groups. In total, there were 5 groups, one for each schematic drawing summarized 

above. These consisted of: 

1. TPS Power Supply 

2. Xilinx FPGA 

3. Cypress FX2 USB 

4. Micron MT9T001 image sensor 

5. I2C components 

Fig. 4.3 shows the final partitions and their layout on the PCB board. The top 

of the board is shown to the left with copper traces in red and the bottom of the 

board to the left with copper traces in blue. The shaded dotted rectangles outline 

the partition bounds and the white markings show component boundaries. However, 

before arriving to this final layout, a number of iterations were performed as outlined 

in Fig. 4.2. 

When determining the placement of the major components, the largest constraint 

was that the MT9T001 sensor had to be placed with its optical center on the center of 

the PCB board with respect to the mounting holes. Fig. 4.3 shows the position of the 

sensor footprint on the bottom board (blue) where the optical center of the device was 

marked with a thick white cross-hair, offset from the footprint board center indicated 

by the thin white cross-hair. This offset was determined from the MT9T001 data 

sheet in [10]. This severely limited placement of other major components on this side 
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Figure 4.3: PCB Partitions and Final Layout 

of the board. Thus the remaining large components were placed on the top side (red). 

The two linear regulators used to power this device (U6, U7) were placed adjacent to 

each other in the ample free space surrounding the MT9T001 with the corresponding 

input and output capacitors placed near their corresponding pins. These were later 

routed through the power plane layer to MT9T001. 

The top side of the PCB board was divided into 3 major partitions as seen in Fig. 

4.3. Components for the TPS (Ul) power supply were placed first because they re­

quired specific locations with respect to Ul. The datasheet for the TPS75003 (found 

in [15]) outlined critical placement for certain components and their corresponding 

critical paths. These components, such as the diodes (Dl, D2) and especially in­

ductors (LI, L2), required connecting traces to be less than 100 mils in length in 

order to minimize the equivalent series resistance (ESR) of the device and maintain 

the desired performance of their connected buck converters. These conditions were 

outlined in [15]. 
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With the TPS75003 fully routed in place, the placement of the FPGA (U2) and 

Cypress FX2 (U3) were both considered simultaneously. The FX2 was oriented such 

that the data pins for the 16 bit FIFO bus were facing closest to the FPGA. Both 

devices were also placed close the edge of the partition to facilitate successful rout­

ing. The USB mini-B connector was placed within 100 mils of the device and trace 

lengths to the data lines were kept the same to prevent signal skew. Conveniently, 

the connectors were located at the edge of the PCB and appropriately spaced from 

any "tall" or high profile components which prevents possible obstruction from the 

mating connector. The 24 MHz crystal oscillator (Yl) was also placed near to its 

corresponding device pins to prevent signal degradation due to trace impedances. 

Power to the FX2 was routed through an internal power plane in the PCB, therefore, 

little consideration was paid to the placement of the 3.3 V linear regulator powering 

it. Finally, bypass, input and output capacitors were placed appropriately near their 

corresponding pins. 

The FPGA (U2) was the simplest group to place as the only consideration nec­

essary was the location of the 32 bypass capacitors required for the device. These 

were lined along the top and bottom of the device, spaced according to suggestions 

by [18], where very few signals were required to be routed. This left the main data 

buses for the MT9T001 image sensor and FX2 USB device free to be routed along 

the sides and center. Because there were many unused I/O on the FPGA, the device 

was placed at the edge of the PCB with very limited access to the pins along one 

side. The general signal breakout for buried pins (pins towards the center of the ball 

grid array) was planned according to the recommendations of [18]. 

The final group consisted of the I2C components. The bus extender was the most 

critical component in this group to place because it needed to be as near as possible 

to the I2C connector on the PCB. This connector (JP3) was placed in the TPS75003 

partition, however, since it was a through hole component, the actual connections for 
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this device were made in the I2C partition on the bottom of the PCB. The I2C bus 

extender chip (U8) was connected directly next to the connector, closely neighboured 

by the I2C EEPROM (U9). 

4.3.3 Power and Grounding 

Typically in a four layer design such as the camera PCB, the two internal layers 

are reserved for power and ground. This has two purposes: The first is to provide 

accessibility to power and ground pins on the surface layers, without obstructing 

routing; The second is to create a large capacitance between the power and ground 

planes, which are usually separated by a dielectric pre-preg. Since the thickness of the 

pre-preg is easily adjustable, the capacitance created between the two inner layers can 

be optimised better than the FR-4 material that composes the PCB layers themselves 

[6]. 

The goal in routing the power plane layer is not only to provide surface components 

with accessibility to the appropriate voltages in this layer. It also to maximises the 

copper area, increasing the effective capacitance of the plane. In addition, minimizing 

bends or loops in the plane helps to reduce any parasitic inductances that could result 

[18]. 

Fig. 4.4 shows the final power plane routing with six separate planes; one for each 

required voltage on the device. These voltages include: 3.3 V I2C and digital/analog 

USB, 3. 3V FPGA I/O, 3.3 V for MT9T001 digital, 3.3 V for MT9T001 analog, 2.5 V 

for FPGA auxiliary and finally 1.2 V for FPGA internal power. Ideally, each voltage 

should be on its own plane, separated by a ground layer, and hence a 14 layer board 

would be required. However, due to cost considerations, the design was compacted 

into a single power plane to fit a four layer board. 
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Figure 4.4: PCB Power Plane Layout 

4.3.4 Bypass capacitors 

The purpose of a bypass capacitor network is to filter digital switching noise, providing 

a smooth impedance profile over a range of frequencies, thus ensuring a static voltage 

level at the power pins of a device. 

In order to accomplish this goal, an approximation of the desired frequency range 

needs to be considered first. Ideally, a prototype would be constructed and frequency 

spectrum analysis performed on the power lines to determine the undesired noise 

frequencies and to size capacitors appropriately. However, a generally safe assumption 

for slower speed electronics operating in the 50 MHz range is to create a smooth 

impedance in the range of 500 kHz to 500 MHz [1]. A a capacitor only acts as a filter 

near its resonate frequency [1], therefore, a variety of different sized capacitors was 

used in order to produce the desired profile. In order for the resulting bypass network 

to be effective, there must be at least one capacitor for every power pin on the device. 

A good starting point for constructing a bypass network is to size the minimum and 

maximum capacitive value required for the desired frequency range and distribute 
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varying capacitor values throughout this range so that the total number of capacitors 

equals the total number of pins. However, since smaller capacitive values contribute 

less to the overall impedance profile [1], a greater number of these capacitors needs to 

be placed. In general, the number of capacitors should be doubled for every decade 

decrease in capacitance. Fig. 4.5 shows an example of a selection of capacitors for a 

48 power pin device. Note that the quantity of capacitors increases as the capacitance 

decreases. Fig. 4.6 shows the impedance profile resulting from the capacitor selection 

of Fig. 4.5. This selection of capacitors results in a fairly even impedance over the 

range of 1MHz to 100 Mhz. 
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Figure 4.6: Bypass Capacitor Impedance Profile [1] 

The placement of these capacitors on the PCB has a substantial effect on the per-
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formance of the bypass network. This is because the routing to the bypass capacitor 

adds to the equivalent series inductance (ESL) of the device. Fig. 4.7 shows how an 

inductive loop can be formed in the cross-section view of the PCB, where current can 

travel through the power plane, up a via, across the capacitor, down a via and back 

through the ground plane. The size of this loop needs to be minimized to reduce the 

inductive effects contributing to the equivalent impedance of the capacitor. Due to 

this effect, the placement of a capacitor on the PCB can have a substantial effect 

on the effective resonant frequency of the capacitor. Fig. 4.8 shows the impedance 

profile of a capacitor and how the inductive and capacitive components influence the 

resonant frequency of the device. Basically, the capacitive component reduces the 

impedance, while the ESL of the device increases the impedance with respect to an 

increase in frequency. As the trace lengths between the power pin of a device and 

the bypass capacitor increases, the resonant frequency of the device shifts and may 

make the capacitor ineffective in filtering the desired noise from the system. Thus 

the bypass capacitors should be placed as close to the device power pins as possible, 

generally less than 100 mils away. 

Another reason to keep to the bypass capacitors near the power pins of the device 

is to improve the response time of the capacitors to fluctuations in voltage. A small 

drop in charge at the device power pin takes time to propagate to the capacitor. The 

capacitor then releases charge which must then propagate back to the device. During 

this time, the voltage level could drop below the device's required operating range (if 

the distance to the capacitor is too large), indicating that the response time to these 

fluctuations is too slow. 

For the camera board design, all bypass capacitors were kept within 100 mils of 

their respective power pins, and grounding vias were placed as near to the capacitor 

as possible to minimize the inductive loop's size, which is responsible for contributing 

to the ESL of the device. Fig. 4.9 shows two examples of critical paths that were 
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Figure 4.9: Bypass Capacitor Critical Current Path 

routed in the power network where the estimated current path contributing to ESL 

is highlighted. 

4.3.5 Routing 

Routing for the design was performed in two parts. First, critical paths as well 

as power and ground connections were manually routed to ensure minimum bends, 

appropriate trace widths, and optimal connections. Next, automatic routing was 

performed to connect less critical nets. In the case of the FPGA, pin groups were 

setup to allow easy swapping of pin locations with pins that served the same func­

tion. If automatic routing of the data buses failed, pins were swapped as needed and 

automatic routing performed again until the entire design was successfully routed. 

Minimum trance widths used in the design were 5 mils with a minimum spacing of 4 

mil required when breaking out signals from the FT256 footprint. 
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4.3.6 Manufacturing Files 

The final step (after defining the PCB physical characteristics, placing components 

and routing connections between the components) was to generate the required files 

for manufacturing. These are listed below. 

1. Board Stackup: defines the order of the four layers, board thickness and pre-

preg. 

2. Dill Holes: defines location and size of holes for the PCB such as mounting 

points and through hole component footprints. 

3. Copper Etch: defines the areas of copper on the four layers that compose the 

routing of the design. 

4. Solder Mask: defines areas of the board protected against solder. This en­

compasses everything except where the component pins will be soldered to the 

copper board. 

5. Solder Paste: defines areas where solder paste will be applied for mounting 

components. 

6. Silk Screen: defines the coluored print and artwork on the PCB used to identify 

components and component locations. 

7. Pick and Place: defines the location of the components to be placed relative to 

the pick position on the components package. 

8. Bill of Materials: list the components, quantities and identifier of all components 

mounted on the PCB. 
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9. Assembly Drawing: defines specification for how to assemble mechanical com­

ponents on the PCB if this is required. This was not included in the camera 

design. 

The required files listed above were provided to the PCB manufacturer, Sierra 

Proto Express, in Gerber RS-274-X format. The company successfully fabricated 

PCBs and populated the components to produce the final functioning cameras. 
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Chapter 5 

HDL Blocks and Programming 

5.1 FPGA Programming Overview 

The FPGA was used in the camera design to act as the main controller to the various 

components within the camera. These functions included: 

1. Frame timing and data synchronization 

2. Digital Clock Management (DCM) 

3. I2C communication 

4. Data buffering FIFO 

5. Output control 

6. Image processing 

7. Trigger delay and synchronisation 
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Figure 5.1: FPGA VHDL Modules and Data Flow 

With these functions in mind, a block diagram was developed to show the data 

flow through the FPGAs various functional blocks. Fig. 5.1 shows the proposed ar­

chitecture for the VHDL code developed for the FPGA in the camera design. 

The following sections describe the development of these blocks and their VHDL 

realization. 

5.2 Frame Timing and Data Synchronization 

The first functional block that incoming image data from the MT9T001 sensor en­

counters is responsible for synchronising the image data with a data clock and using 

frame and line valid signals to track the row and column of current frame being out-

putted from the Micron sensor. According to the Micron MT9T001-3100 datasheet, 
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Figure 5.2: MT9T001-3100 Timing [10] 

the data and timing signals appear as shown in Fig. 5.2. 

Firstly, the process SYNC-IN in frame-grabber-vl.vhd latches the signal values of 

LINE-VALID, FRAME-VALID, as well as the current state of the data bus (DIN) on 

the rising edge of PIXCLK. The latched signals are also delayed by one clock cycle in 

order to identify subsequent rising and falling edges of these signals. Concurrently, the 

process FRAME-CTLR in frame-grabber-vl.vhd tracks the current row and column 

of data based on the latched signals above. 

Essentially, the FRAME-VALID signal is used to indicate the start and end of 

a frame being read out from the sensor. While FRAME-VALID is high, the signal 

LINE-VALID is used to indicate the start and end of a new row of data being read 

out from the sensor. When both FRAME-VALID and LINE-VALID are high, either 

8 bit or 10 bit data representing the intensity of the active pixel appears on the data 

bus and is at a stable state on the rising edge of PIXCLK. Fig. 5.3 shows how the 

FRAME-VALID and LINE-VALID signals are used to count the current row and 

column of data. 

The register FRAME-RESET is used as part of the data output controller block 

to guarantee that a full frame of data is transmitted after the camera is triggered. 

This simply compensates for any loss of data in the case of a FIFO overflow. The 

PIXCLK 
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Figure 5.3: MT9T001-3100 Synchronization Flow 

VHDL code for this process can be found in Appendix C. 

5.3 I2C Write Slave 

One of the requirements of the camera design was that all devices can share their 

settings and configurations via the I2C bus, as was shown in Fig. 2.5. However, there 

was no readily available I2C module suitable for the camera design. Thus, the most 

basic I2C operation, the write slave, was implemented in VHDL to allow the other 

devices on the bus, such as the Cypress USB Microcontroller, to send data to internal 

registers in the FPGA. 
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5.3.1 I2C Bus Overview 

I2C is a simple two wire serial communication interface that consist of a data line 

(SDA) and a clock line (SCL). For this design, the I2C bus operates at 100 kHz. A 

unique feature of the I2C is multi-master support. Communication on the I2C bus 

begins when a master device transmits a start condition at a period when the bus is 

free. The bus is considered to be free again a certain time after a stop condition is sent. 

After the start condition, the master transmits an address followed by a read or write 

bit r/w. The bus can operate with either 7 bit addresses or 10 bit address depending 

on the required number of components connected to the bus. For the camera I2C bus 

the 7 bit address mode was sufficient. Meanwhile, the I2C connected devices listen 

for this address and the appropriately addressed device sends an acknowledge. Data 

is then transfered in 8 bit words, each followed by an acknowledge from the receiving 

device [7]. 

A write slave essentially acts as an addressable memory in which a master con­

troller, in this case the Cypress USB Microcontroller, can address and write data 

words to various internal registers. The slave device must be capable of the following 

operations: 

1. Detect start/stop condition 

2. Check device address and v/w 

3. Receive data words 

4. Send acknowledge signal 

The I2C manual in [7] outlines the following communication protocol. Fig. 5.4 

shows the example timing for a master device claiming the bus with a START condi­

tion. The master then transmits the device address ADDR it wants to communicate 
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Figure 5.4: I2C Bus Communication 

with. The master then waits to receive an acknowledge ACK from the slave device, 

which responds by pulling the SDA bus line low. The master then transfers 8 bits of 

data and again waits for a ACK. This process repeats until finally the master device 

terminates communication with a STOP condition. 

5.3.2 I2C Slave VHDL implementation 

The approach taken to realize the I2C write slave device was to implement a FSM. The 

SDA and SCL lines of the I2C bus were sampled (using the 48 MHz clock supplied by 

the Cypress USB Microcontroller) at a fixed sampling interval. The sampling interval 

was computed based on an estimate of the rise time of the I2C bus when pulled high 

(as determined by the RC network resulting from the total line load capacitance and 

size of the pull-up resistors). The I2C lines were sampled every 64 clock cycles, which 

at 48 MHz translates to 750 kHz sampling rate. The sampled signals are delayed to 

ensure that at least two consecutive samples represent a single bus state, preventing 

a single sample of a transition from being considered a stable bus state. 

The sampled data is then used as part of a FSM, making up the I2C slave con­

troller. Fig. 5.5 shows the basic flow for the I2C FSM as well as 5 the 5 states and 

their conditions for transition: 

1. State 1 - IDLE: The device listens for a start condition 

2. State 2 - ADDR: After a start condition, the devices reads in a 7 bit address 

followed by a r/w bit 
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3. State 3 - SND_ACK: Upon verifying itself as the addressed device, the SDA line 

is pulled low to indicate an acknowledge, otherwise the device returns to IDLE 

4. State 4 - RCV_DATA: The device reads in an 8 bit word. Upon a successful read 

of 8 bit, it transitions to the SND_ACK state, otherwise it returns to IDLE. 

i 
E: Send 

± 

Get Data 

p \ N o 
o n ? / 

Yes 

Figure 5.5: I2C FSM 

For the sake of simplicity, one state transition is not shown in Fig. 5.5. The 

omitted transition occurs when a START condition is detected while data is being 

received. If a START condition is detected, then the state machine returns to the 

ADDR state. According to I2C specifications, this situation would indicate that a 

new communication is being initialized and devices must listen for a new address. 

Also, although the state machine checks for a stop condition after receiving data, the 

condition on the bus itself is actually flagged by a parallel process and hence can 

occur anytime and not be missed. 

The current state will remain in either ADDR or RCV.DATA until a full 8 bits of 

serial data is read from the SDA line. This can be seen in the MainStateMach process 

60 



5. HDL BLOCKS AND PROGRAMMING 

START REGADDR D[15-8] D[7-0] STOP 
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Figure 5.6: I2C write in FPGA. 

included in I2c.SlaveCtrl.vhd. The data is read off the SDA line and stored in a shift 

register which is enabled when the current state is ADDR or RCV-DATA. This same 

register is cleared when the current state is SND_ACK. A counter is used to monitor 

the number of incoming bits which is enabled and cleared in the same manner as the 

shift register. 

Finally, the process WritelScDataRegs in I2cSlaveCtrl.vhd. was developed to 

store the incoming data into an appropriate memory register in the FPGA. Registers 

were set up as 16 bit words to be referenced by an 8 bit address, and a communication 

standard was developed for the I2C master device to follow in order to write to these 

registers. Fig. 5.6 shows this comunication format. Essentially, in the valid data 

transfer stage of normal I2C operation, the master device will transfer data in three 

word blocks. The first 8 bit word is used to address a register within the FPGA, the 

second 8 bit word carries the upper 8bits of the 16bit register value and the third 8 

bit word carries the lower 8 bits of the 16 bit register value. The definition for each 

register can be found in the comments of this process. 

5.4 Asynchronous FIFO 

Part of the challenge of developing the FPGA code was that the system operated 

on two different clocks. Data read into the FPGA from the CMOS sensor operated 

on PIKCLK and data to be outputted to the Cypress USB Microcontroller needed 
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to be synchronized with IFCLK. The Asynchronous FIFO block of the FPGA was 

developed with two purposes: 

1. To provide a small buffer to prevent data loss when transmitting data to the 

USB microcontroller 

2. Bridge the two clock system 

To realize the FIFO, Xilinx CoreGEN was used. The FIFO was simply sized as 

large as possible utilizing all available block rams of the FPGA. The data bus width 

was sized 16 bits wide to facilitate a single clock read operation as the output to the 

USB microcontroller is a 16 bit bus. The creation of the FIFO instances can be found 

in frame-grabberjvl.vhd. A separate read and write clock were specified and the FIFO 

full status simply ignored as this is later accounted for in the output controller block 

in the following section. 

5.5 Output Controller 

The output controller block was designed to act as a master device that writes image 

data to the slave configured FIFO of the FX2 USB microcontroller. The timing 

requirements of the Cypress device are outlined in the FX2 datasheet [4] and are 

shown in Fig. 5.7. 

A write of the data lines is triggered when the SLWR line is pulled low. The data is 

actually written on the following rising edge of IFCLK. SLWR must then be asserted 

high. In this manner 16 bits are written to the FIFO every other IFCLK clock cycle. 

However, arbitrating data to the output bus and controlling the state of SLWR is 

only one function of the output controller. The controller must also ensure that a 

full frame of data is transmitted without loss of data to avoid any possible confusion 

on the PC side as to whether or not the incoming data encompasses an entire frame. 
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Figure 5.7: Timing for Cypress FX2 Slave FIFO 

For this to occur, the output controller counts the number of bits transmitted with 

respect to the start of the frame and continues to output data until a complete frame 

worth of data has been transmitted. In the case of a FIFO overflow in the FPGA due 

to slow data transmission through the USB, the output data may appear erroneous 

and irrelevant, however the quantity of data will be consistent with a full image frame. 

The start of the frame condition was handled previously by the Frame Timing and 

Data Synchronization section above. 

In addition, the controller must monitor the states of both the internal FPGA 

FIFO and the USB slave FIFO, ensuring that a write does not occur if either the 

FPGA FIFO is empty, or the USB slave FIFO is full. Table 5.1 shows the various 

cases that may occur and the status of the various registers and outputs under these 

cases. 

This state table was implemented in the USB-CLTR process found in 

frame-grabber.vl.vhd. This generates the appropriate read and write signals for the 

both the internal FPGA FIFO and external USB slave FIFO, however is not respon­

sible for arbitrating the appropriate data to the 16 bit FIFO data. 
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State 
USB_FIFO_full 
FPGA_FIFO_empty 
PIX_CNT < 0 and FRAME_VALID 

ram_ren 
slwr 
state 
PIX_CNT action 

0 
X 
X 
X 

0 
0 
1 
-1 

0 
0 
X 

1 
0 
1 
-1 

1 
1 

0 
0 
1 
0 

1 
X 
X 
X 

0 
1 
0 
0 

Table 5.1: Write Controller Cases 

5.6 Image Processing Block 

The image processing block in the FPGA was created for the option to pre-process 

image data coming form the CCD sensor. The primary use of the image processing 

block was to reconstruct incomplete sensor data (demosaicking) before data was tran-

ferd to the PC to allocate more cycle time to image inspection. The extra data created 

by reconstructing the image within the FPGA is easily handled by the USB transfer 

rates. Because the data was reconstructed in real-time in the camera, substantial 

time is saved in the PC which can be used for more complicated or thoughough in­

spections. RGB to YUV colour conversion is also performed in this block, partially 

to help compress the data transfered to the PC. 

The output format is 16 bit YUV with 8 bits allocated to the luminance channel 

Y and 4 bits to each the chrominance channels U and V. If only grayscale data is 

required, the chrominance channels can simply be ignored. This data is than buffered 

in a FIFO withing the FPGA before being written to the FX2 FIFO for USB transfer. 

The details behing the architecture for the image processing block as well as VHDL 

implementation is described in detail in Chapter 6. 
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5.7 Trigger Delay 

The final process implemented in the FPGA is the ability to delay a trigger and 

control the ouput of various other triggers. Although this is not currently used in 

the system, the option for this type of control exists by routing the triggers through 

the FPGA. The TRIGGER.CTLR process in frame.grabber.vl.vhd was created for 

this purpose. The number of clock cycles to delay the trigger is controled by I2C 

data_regs(5) with a default value of zero. 

5.8 Synthesis Constraints and Results 

The final VHDL code was synthesised using Xilinx ISE 10. li for the Spartan-3E500-4 

device. Constraints were specified for the two system clocks set to 48 MHz. The syn­

thesizer option was set to minimize timing to guarantee the constraints were satisfied. 

The code was first synthesized to include the Edge Enhanced image processing algo­

rithm described in the following chapter, and then synthesized with only the Nearest 

Neighbour and bilinear methods implemented. This was done because the current 

implementation of the Edge Enhanced method did no meet the required timing, which 

if further described in the conclusion of this thesis. 

The I/O placement and timing constraints were specified in frame-grabber-jol.ucf 

and can be found in Appendix C. 

Table 5.2 shows the synthesis report generated by ISE for the design that includes 

the Edge Enhanced demosaicking method and the Table 5.3 shows the synthesis report 

excluding this extra block. 
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Logic Utilization 
Number of Slice Flip Flops 
Number of 4 input LUTs 
Logic Distribution 
Number of occupied Slices 
Number of Slices containing only related logic 
Number of Slices containing unrelated logic 
Total Number of 4 input LUTs 
Number used as logic 
Number used as a route-thru 
Number used as Shift registers 
Number of bonded IOBs 
IOB Flip Flops 
Number of RAMB16s 
Number of BUFGMUXs 
Number of DCMs 
Number of MULTl8X18SIOs 

Timing Results 
PIXCLK 
USBCLK 
SCL 

Used 
1,016 
3,313 

2,024 
2,024 
0 
3,549 
3,305 
236 
8 
45 
31 
19 
4 
2 
10 

Available 
9,312 
9,312 

4,656 
2,024 
2,024 
9,312 

190 

20 
24 
4 
20 

Utilization 
10% 
35% 

43% 
100% 
0% 
38% 

23% 

95% 
16% 
50% 
50% 

Critical Path Delay 
77.325 ns 
10.621 ns 
6.978 ns 

Table 5.2: FPGA Utilization with Edge Enhanced Demosaicking 
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Logic Utilization 
Number of Slice Flip Flops 
Number of 4 input LUTs 
Logic Distribution 
Number of occupied Slices 
Number of Slices containing only related logic 
Number of Slices containing unrelated logic 
Total Number of 4 input LUTs 
Number used as logic 
Number used as a route-thru 
Number used as Shift registers 
Number of bonded IOBs 
IOB Flip Flops 
Number of RAMB16s 
Number of BUFGMUXs 
Number of DCMs 
Number of MULT18X18SIOs 
Timing Results 
PIXCLK 
USBCLK 
SCL 

Used 
676 
870 

765 
765 
0 
1,032 
854 
162 
16 
45 
31 
19 
4 
2 
9 

Available 
9,312 
9,312 

4,656 
765 
765 
9,312 

190 

20 
24 
4 
20 

Utilization 
7% 
9% 

16% 
100% 
0% 
11% 

23% 

95% 
16% 
50% 
45% 

Critical Path Delay 
19.119 ns 
10.576 ns 
7.186 ns 

Table 5.3: FPGA Utilization without Edge Enhanced Demosaicking 



Chapter 6 

Image Processing 

6.1 Demosaicking 

When acquiring visual information, a Charge-Coupled Device (CCD) essentially op­

erates by converting light intensity to charge in the Photoactive layer (an epitaxial 

p+ layer of silicon). This layer is made of a number of discrete points called pixels, 

each collecting its own charge which is proportional to the light intensity exposed on 

that region. Control hardware then shifts the cumulated charge to the neighbouring 

pixel, where the charge of the last pixel is dumped to a charge amplifier. The resulting 

output is a sequence of charges representing the row, or grid of pixels depending on 

the type of sensor: line scan or full frame. In order to obtain colour information, a 

Colour Filter Array (CFA) is applied over the Photoactive layer. The CFA filters light 

at each pixel, such that each pixel is only exposed to one spectrum of light. The most 

common CFA used in commercial electronics is the Bayer pattern, shown in Fig 6.1, 

68 



6. IMAGE PROCESSING 

column readout direction 

row 
readout 
direction 

« 

B 

G 

B 

G 

B 

K 

G 

R 

G 

R 

G 

( j 

B 

G 

B 

G 

B 

K 

G 

R 

G 

R 

G 

<j 

B 

G 

B 

G 

B 

K 

G 

R 

G 

R 

G 

. . . 

» j 

B 

G 

E 

G 

B 

black pixels 

;- Pixel 
(28, 16) 

Figure 6.1: Bayer Pattern CFA on a CMOS Image Sensor 

which is made up of alternating rows that expose red and green pixels and then green 

and blue pixels. The resulting image data from this type of sensor is not a full Red 

Green Blue (RGB) data, but rather three incomplete and phase shifted colour planes 

(seen if Fig. 6.1). The green channel appears redundantly to replicate the nature of 

the human eye, which has a greater ability to resolve green color information [2]. 

The process of constructing a full RGB image from CFA data is called demosaick-

ing. There are currently a number methods actively in use for performing this image 

reconstruction. The most basic of these was implemented in the camera application. 

In addition to this a more custom approach to image reconstruction was developed 

to perform more accurate reconstruction in real-time. 

The first method implemented is called Nearest Neighbour. In this method, the 

missing colours at a pixel are simply copied from the neighbouring pixels. This is 

typically done in a set pattern, for instance, copying from the nearest pixel to the 

right and bottom of the current pixel being interpolated. On very high resolution 

images, this process may be acceptable, however when an image that has areas which 

exhibit sharp changes in contrast in a small region (a couple of pixels) is interpolated 

using this method, a "zipper" effect results. This method was implemented in the 

69 



6. IMAGE PROCESSING 

camera design as an option for quick interpolation, mostly to verify the operation of 

the camera and its ability to successfully process data. 

The next major set of demosaicking methods involve various types of interpolation, 

whereby the missing colors for a pixel are calculated as an average of neighbouring 

colours. The most common of these methods is bilinear interpolation, where only 

the nearest neighbours of similar colours are averaged. This interpolation was im­

plemented into the camera as the predominate method for generating output data, 

however, the resulting image lacks accuracy at sharp edges. 

Many more sophisticated methods have been proposed since, which attempt to 

identify regions or boundaries of objects in an image and interpolate along edges in­

stead of across them, thus reducing the "zipper" effect and the appearance of colour 

mosaics (bleeding colours). These methods exploit image spacial or spectral corre­

lation. Spacial correlation refers to the fact that within a homogeneous region of a 

natural image, neighbouring pixels share similar values. Spectral correlation refers to 

the fact that within these homogeneous regions, the ratio of colour planes (i.e. red to 

blue) are similar [9]. Two predominate methods involve the use of an edge indicator 

functions to form a weighted average of either the difference in neighbouring pixels 

[17] or the ratio of colours in neighbouring pixels [9]. Equations 6.1 and 6.2 show the 

general form of these methods respectively. For the purpose of demonstration, the 

calculation of the missing green at the 3rd row and 4th column is shown. 

G34 = #34 + ( ^ = ^ , 4 4 , 3 5 ^ ( ^ - 4 ) , ( g A ) 

/Lij=24,33,44,35 e*J 

G34 = Ru ( E ^ ^ 3 3 , 4 4 , 3 5 % ( ^ / 4 ) \ ( 6 2 ) 

y Z_Wj=24,33,44,35 e*J / 

Where e^ is an edge weight function based on either gradients or other compara­

tive criteria. 
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6.2 Hardware Implementations 

The problem with methods such as [9] and [17] was that theses processes of demo-

saicking required multiple iterations to attain accurate reconstruction, which these 

methods unsuitable for a real-time application. In addition, the edge weight functions 

used by these methods required complex operations, such as square root functions, 

which were difficult to implement in hardware. For these reasons, a novel demosaick-

ing method was developed to improve the accuracy over simple bi-linear interpolation 

without the computational intensity and multiple iterations required by spacial and 

spectral correlation methods. 

The objective of the new method was to improve the reconstruction accuracy 

over the bi-linear method, without the need to buffer much more data, and without 

introducing unnecessarily complex operations. Bilinear interpolation of a missing 

pixel color required that the four neighbouring pixel values be available. This required 

a 3x3 window of data to be available, which meant that at least two complete rows 

of image data need to be stored. This can be seen in Fig. 6.2. 
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Figure 6.2: 3x3 Data Window for Bilinear Interpolation 

The output from this block was complete RGB data and the input was single 

colour intensity depending on the current pixel being read in. The manner in which 

the missing values were computed depended on the colour of the center pixel Pn. 

The results for the missing colours were determined by the following formulae where 
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P[x represented a missing colour value at the centered pixel: 

p' 

p' 

P\2 + -P2I + PlO + Poi 
4 

P22 + -P20 + -Poo + P02 
4 

D/ A2 + PlO 
Fu~ 2 

D/ -P21 + -Poi 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

The following table shows how the output is generated for 4 different cases: 

Case 

Red Center 

Blue Center 

Green Center on 
Red row 
Green Center on 
Blue row 

Missing Colour 
Green 
Blue 
Green 
Red 
Red 
Blue 
Red 
Blue 

Equation 
6.3 
6.4 
6.3 
6.4 
6.5 
6.6 
6.6 
6.5 

Table 6.1: Bilinear Output 

The hardware implementation of such a method was quite straight forward. The 

window of data was implemented as a series of registers, connected to two line mem­

ories. The equations were computed on each cycle and the output was multiplexed 

depending on the current row and column which was determined by the frame con­

troller block. The VHDL implementation for this method can be found in IrnagePro-

cessor.vhd in Appendix C. 

However, in order to attain highly accurate image reconstructions, information on 

the changes in the colour planes as well as across colour planes needed to be used, 

and the direction of weighted interpolation was determined based on this gradient 
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information. For this, a larger 5x5 window of data was required. The architecture for 

implementing this in hardware was an expanded version of the 3x3 window (shown 

in Fig. 6.3). 
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Figure 6.3: 5x5 Data Window for Edge Weight Function 

6.3 Edge-Enhanced Real-Time Hardware Demo-

saicking 

A literature review of real-time hardware demosaicking revealed very limited tech­

niques. Some of these involved complex edge weight functions implemented in Look-

Up Tables (LUTs). Other methods used slightly modified alternatives to bilinear 

interpolation. The techniques of [17] or [9] by simplifying the edge weight functions 

to be more cost-effective to implement in hardware as well as remove the requirement 

for multiple iterative processing, without substantially compromising accuracy. [17] 

was selected as a basis since it exploited spacial correlation which used subtraction to 

interpolate missing data. This was selected over spectral correlation (as in [9]) which 

used division or ratios, because subtraction was far more cost effective to implement 

in hardware. 
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The next step was to ascertain an effective edge weight function. In order to easily 

implement and test various functions, a series of MATLAB programs were developed 

to perform this task. First a function RGB2RAW.m was created to convert the full 

colour RGB data into its equivalent RAW data which appears from a CFA Bayer 

pattern. Nearest Neighbour as well as bilinear demosaicking were implemented in 

demosaic.m (found in Appendix D). Finally, the edge enhanced method found in 

ee-demosaic.m was iteratively developed and compared to Nearest Neighbour and 

bilinear in demosaic-test.m. 

The first step in creating the Edge Enhanced demosaicking method was to fully 

recreate the green colour plane, as this plane comprises 50% of the incoming image 

data. In order to do this, an edge weight function was created by not only examining 

intensity changes between green pixels in a certain direction, but also considering 

changes in intensity of the red and/or blue channel. The final edge weight function 

can be seen in Equation 6.7 where Dij(u,v) denotes the difference of the (i,j) pixel 

in the (u,v) direction. 

Ui,j\U')'V) — I-M+2« J + 2 u *:i,j\i\-L'i+u,j+v ft—u,j—v\i\" * -^i+u,j+v *i+v,j+u *i—v,j—u 

(6.7) 

where: (u,v) G {(±1,0), (0, ±1)} 

The four resulting edge weights are compared to a threshold value. If the edge 

weight in a given direction was less than the threshold value, then the interpolation 

was performed in that direction. Interpolation was performed using spacial correlation 

where the change in colour intensity in one colour plane was assumed to be the same 

in the other colour planes [9]. Equation 6.8 shows how a missing green value was 

calculated, where P^(u,v) denotes the interpolated value of the missing green pixel 

in the (u, v) direction. 
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P%(u, v) = Pi+uJ+v + {Pi'j P ^ + * « ) (6.8) 

where: (u, v) <E {(±1,0), (0, ±1)} 

and : (i,j) e (i%2 ^ j%2) for missing green values. 

The resulting interpolated values for each direction, which satisfied the threshold 

value, was then averaged to produce the final missing green value. If none of the edge 

weights satisfied the threshold criteria, then the missing green was computed as the 

average of the interpolation in all directions. 

The missing red at a blue pixel or missing blue at a red pixel was then computed in 

a similar manner, except that instead of four directions of interpolation, the vertical 

directions were considered as one case and the horizontal directions were considered 

as another case so only two possible directions of interpolation exist. The same 

edge weight function in Equation 6.7 was used, but with both vertical directions 

(u,v) = (±1,0) compared to another threshold value (threshold2) to see if either 

edge weight value satisfied the criteria. The same was done for the two horizontal 

directions (u,v) = (0, ±1). Data for the missing red or blue pixel P?j(u,v) was 

calculated according to Equation 6.9 using the newly calculated missing green value 

Pjj from Equation 6.8. 

*&(«»«) = 
1 i4-li.4-lj.i4-ii.4-u ±i. „, „ 5 J , „ , „ f f i+u+vj+u+v ri-u-v,j+u+v pG _ p \ , 

~r lii 1%4-vA+u I ~r 

/ Pj+u+v,j-u-v *i—u-v,j-u-v , pG _ p \ 
I 0 '••? ri~v,j-u J 

/2 (6.9) 

(« , i / ) e{ ( i ,o ) , (o , i )} 

and: {i,j)e(i%2^j%2) 
' R for i=2k; k€N 

and : x = < 
B for i=2k+l 

http://i4-li.4-lj.i4-ii.4-u
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Finally, the missing red and blue values at the known green values were computed. 

For this, a different edge weight function was used as criteria for the direction of 

interpolation. This edge weight function was computed similarly to the edge weight 

seen in Equation 6.7, however, with a slight variation to the last term as can be seen 

in Equation 6.10: 

!••'i+u-\-v,j+u+v i,j\ ' \*i+u—v,j—u+v -**>•/1 to i n \ 

where: (u, v) e {(±1,0), (0, ±1)} 

and : (i,j) € (i%2 = j%2) corresponding to missing Red and Blue values. 

In this scenario, instead of averaging the interpolated pixel values in the direction 

that satisfies a threshold criteria, only interpolation in the direction of the minimum 

difference was performed. However, since interpolation, in this case, required informa­

tion from pixels adjacent to the direction of interpolation, the minimum perpendicular 

edge with respect to the minimum edge weight was also considered. P^(ul, vl, u2, v2) 

denoted the interpolated pixel value in the (ul,vl) direction where (u2,v2) corre­

sponded to the minimum D^j{u,v) perpendicular to (ul,v2). 

Pid(ult vl,«2, v2) = Pi+u2,j+v2 + (Pij - PMW + P™j^ ( 6 1 1 ) 

where: (ul, vl) € {(±1, 0), (0, ±1)} 

and : (i,j) € (i%2 — j%2) for missing Red and Blue values. 
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R for i = 2k; keN 
and : x — < 

[ B for i = 2k+l; 

The remaining missing colour not computed in Equation 6.11 was calculated ac­

cording to Equation 6.9 in the direction corresponding to (ul,vl) in Equation 6.11. 

The result was full RGB data for each pixel. 

It was observed that all calculations were easily implemented in hardware as ad­

ditions and shifts. The only multiplication that ocured was when three interpolated 

green values needed to be averaged. For instance, instead of dividing by 3, multiply 

by 21 and divide by 64 (shift by 6) since 21/64 « 0.328. 

6.4 Implementation and Results 

The three methods of demosaicking described above were all implemented into a 

Spartan3E FPGA. A test bench Image-Processor--TB.vhd was created to verify these 

methods and can be found in Appendix C. The testbench reads a RAW data file gen­

erated in MATLAB and writes the output normally sent to the USB microcontroller, 

to a file. This output data was read in MATLAB to generate an image file and the 

results of the output were compared to the original image before it was converted to 

RAW data. 

Table 6.2 shows the Y channel results of the three methods of interpolation as 

well as the Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) when 

compared to the original. The test image was selected based on its sharply defined 

edges that are not completely vertical or horizontal as these were difficult to accurately 

reconstruct. 

The Edge Enhanced method showed very promising results, with the lowest MSE 

and most visually accurate reconstruction of the edges. There was a visible reduction 
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Table 6.2: Demosaicking Results 

in the jagged "zipper" edges present in the Bilinear and Nearest Neighbour results. 

Also, the Edge Enhanced image showed improved contrast over the other demosaick­

ing methods. 

Although each algorithm was successfully synthesised in the Spartan-3E FPGA, 

no definitive timing or utilization results have been included, as the VHDL code 

for the Edge Enhanced method has not been optimized. Optimizations must still be 

made to improve the critical path delay of the Edge Enhanced method, as it currently 

exceeds the required timing requirements. 
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Chapter 7 

Conclusion 

7.1 System Integration 

The final design files for the camera PCB were sent to a California based company, 

Sierra Proto Express, for manufacturing. The company fabricated the PCBs accord­

ing to the Gerber files provided and populated the components listed in Table B.l in 

Appendix B. The final design can be seen in Fig. 7.1. The final cost to manufacture 

the cameras was $300 CAD per camera including component cost, component popu­

lation, PCB fabrication and shipping. The lead time for the manufacturing of these 

cameras was less than 10 days from order to delivery. 

Before implementing the camera into the complete vision system, the camera 

boards were powered, programed and tested with software developed by Neil Scott. 

If USB communication, serial slave programming of the FPGA and I2C communi­

cation were all successful, then the camera was connected to the triggers generated 
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Figure 7.1: Camera PCB in an Enclosure 

by the control board by Neil Scott and the output image data checked for errors. 

Cameras that operated correctly were mounted into the existing circular enclosures 

and integrated into a quadrant of the final MV system. 

Fig. 7.2 shows the final images generate by the camera and imaging setup. To­

gether, the four cameras capture 360° of the capsules body. The images in Fig. 7.2 

were reconstructed using bilinear interpolation as the demosaicking method and the 

output is a gray scale image. This output format seems to suffice for the time being, 

however the possibility for enhanced demosaicking and YUV images is available. The 

image size seen in Fig. 7.2 is 750x245 pixels, covering approximately a 3 cm x 1 cm 

region in space. This corresponds to a 0.4 mm per pixel resolution, slightly lower 

than the desired output. This is because the current sensor configuration is set to 2x 

binning, where only every other row and every other column of the image sensor is ex­

posed. This results in only 1/4 of the total image resolution of the camera being used 

to capture the imaging region. This can be increased to the sensors full resolution, 

as the PC based image processing capabilities expand. The image resolution without 
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binning would then be 0.1 mm per pixel and satisfy the operational requirements of 

the system. 

Capsule Top 

Capsule Bottom 

Capusle Left 

Capsule Right 

Figure 7.2: Final Capsule Images 

At the moment, the MV system is operating stably at around 80% of the desired 

throughput, processing approximately 48 000 capsules per hour. This is due to the 

PC based image inspection algorithms taking place. The image processing algorithms 

are still in an experimental stage and will become faster and more effecient in the near 

future. The hardware designed in this thesis has been tested successfully for 60 000 

capsules per hour at a resolution up to 1536x1024 which is more than sufficient for the 

required resolution. There is still much work to be done on the complete MV system 

before a commercialized product can exist. Still, the basis for a functional system that 

will meet the desired operating requirements and exceed the desired cost requirements 

was successfully created. This includes: designing and building a backplate to the 

camera enclosures with a suitable industrial I/O connector and improving the speed 

performance of the proposed edge enhanced image demosaicking method. 

81 



7. CONCLUSION 

7.2 Summary 

This thesis covered the specifications, development and design of a custom digital cam­

era suitable for the application of pharmaceutical capsule inspection. This involved 

understanding the nature of the inspections to take place in order to determine the 

required operating specifications. The most important of these were: a throughput 

rate of 60 000 capsules per hour and an image resolution of 0.1 mm per pixel. 

As a basis for the design, an existing, but out of date, MV system (for sorting 

capsules) was used. The objective of the project was to upgrade and retrofit the exist­

ing machine with custom electronics, in order to satisfy the outlined requirements. A 

custom hardware design approach was taken in order to minimize the system cost and 

provide maximum flexibility for future upgrades. This meant that suitable cameras 

and image processors needed to be selected, as well as an interface for the two. PCs 

were selected to perform the image inspection because they could be easily upgraded 

at a low cost. After close comparison of differ possible cameras, a USB 2.0 interfaced 

custom camera was the desired solution, as this provided a cost effective solution with 

the desired data transfer rates. Using the operating and business specifications, the 

requirements for the camera and a general functional diagram were composed. The 

design methodology for creating a custom USB 2.0 digital camera was then outlined 

and the development and testing methods defined. 

The first step in the bottom-up design of the camera was to select components, 

such as an appropriate image sensor and FPGA, that would meet the required spec­

ifications of resolution, flexibility and speed. After all the required components were 

selected, these were organized into functional groups and electrical schematics were 

created. This involved the use of Eagle CAD for designing the electrical schematics 

and PCB layout. Many design decisions were made when creating the schematics 

which include: Sizing the components of the TPS75003 triple supply to satisfy the 
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power requirements of the FPGA, setting up appropriate bypass capacitor networks, 

planning the digital and analog powering of the various devices and making all the 

appropriate I/O connections. The resulting schematics were then realized as a phys­

ical layout on a four layer PCB that was later manufactured and implemented into 

the MV system. 

The other main design aspect of this project involved the development of VHDL 

code for the camera's FPGA. The FPGA acted as the main hardware controller 

on the device, interfacing the imaging sensor to the USB 2.0 microcontroller. The 

FPGA also was setup as a reconfigurable image processor, where the type of image 

demosaicking, color output and size of the incoming image could be changed through 

an I2C interface without reprogramming the device. The final VHDL coding included 

blocks for: Synchronising incoming image sensor data, reconstructing the CFA pattern 

into complete RGB data, converting this data to YUV format, and buffering the data 

in a FIFO before transferring it to the USB 2.0 device through an output controller 

block. The FPGA also had control of the distribution and delay of a trigger signal. 

This gave the flexibility for a single trigger to be delayed and outputted, allowing the 

multiple cameras of a quadrant to be daisy chained and operate off a single trigger 

from the control board by Neil Scott if necessary. 

The VHDL code, specifically for the Image Processing block, had an associated 

test bench designed to read and write input/output data. Using this test bench, 

RAW image data in the form of a Bayer CFA pattern could be supplied to the 

image processing block and the processed output analyzed for accuracy. The test 

data was generated in a MATLAB function and the output data analyzed similarly. 

Intermediate test benches not included in this thesis were also used to verify the I2C 

write slave block as well as the output controller. 

The final VHDL code was synthesized using Xilinx ISE 10.1 and a binary file was 

generated for programming the FPGA. Programming was ultimately done through 
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the USB microcontroller, as the FPGA was configured as a serial slave device for 

this purpose. The final device utilization for the FPGA was approximately 50% for 

LUTs and logic blocks and 90% for Block ram memories, with the Edge Enhanced 

demosaicking method included, indicating that the Spartan-3E500 device was an 

appropriate selection for this application. 

The final manufactured cameras were tested as described above the implemented 

into the MV system. 

7.3 Future Work 

Although the current camera design proves the concept that a custom hardware 

approach can be an effective solution for the image acquisition component of the 

MV system, there is still some development required before the entire system can 

be sold as a commercial product. The two main areas for future work relevant to 

custom camera include: Design and build of a backplate for the camera enclosure 

and improving the synthesis of the edge enhanced demosaicking method. 

The PCB camera boards were designed to optimise the area utilization of the 

PCB and thus was not overly concerned with the placement of I/O connectors on 

the PCB. The camera boards were mounted into the existing mechanical enclosures, 

however, the existing backplates for these enclosures do not provide the appropriate 

openings to allow the USB mini B connector, triggers and I2C connector access to 

the board. A new set of backplates must be designed in order to completely enclose 

the camera, while allowing for industrial standard connections into the enclosure for 

the connectors listed above. This may require that the PCB board level connectors 

be changed or moved, although modifications to the PCB design should be avoided. 

In addition, the hardware synthesis of the edge enhanced demosaicking method 

needs to be refined. Currently, the synthesis of this image processing block does not 
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meet the timing constraints, as a number of operations are being sequentially exe­

cuted. An investigation of the formulas used in this demosaicking method show that 

the maximum critical path for the algorithm includes 8 additions, 2 comparators and 

a LUT. These operations are performed on 8 bit data and should be able to be imple­

mented to meet the 48MHz requirements of the Image Processor block. Modifications 

to the synthesis of the block is currently being performed. 

Overall, the logical implementation of the device was successful. The desired image 

resolution and throughput was achieved. The architecture of the image processing 

block can successfully perform operations within a sliding 5x5 windows and can be 

reconfigured to to suite the needs of the final MV system. The physical size of the 

board suites the existing enclosures, however a final back panel to this holder with 

the appropriate cable holes will still need to be designed. Ultimately, this custom 

USB camera design can be used as a strong foundation for the development of a 

cost effective commercial product suitable for a range of machine vision applications, 

specifically the inspection of pharmaceutical two-part gelatin capsules. 
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Appendix A 

System Requirements 

Table A.l: Defect List and Tolerances [5] 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Defect 

Oil Hole 

Scrape Hole 

Cracked 

Short Body 

Double Dip 

Telescoped 

Mashed 

Trims 

Uncuts 

Splits 

Maximum allowable size 

0.2 mm or larger 

0.2 mm or larger 

0.2 mm or larger 

2.0 mm under spec 

Large Defect 

Large Defect 

Large Defect 

Large Defect 

Large Defect 

1.0 mm or larger 

Continued on next page 
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Table A . l - continued from previous page 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Critical 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Defect 

Large Strings 

Black Grease Mark 

Closed Capsule 

Long / Short Joining 

Thin Spots 

Rough Cuts 

Short Cap 

Long Body 

Long Cap 

Loose Pieces 

Bad Join 

Double Cap 

Punched End 

Side Corrugation 

Collet Pinches 

Splits 

Rough Cuts 

Collet Pinches 

Bubbles 

Wrinkles 

Star Ends 

Dye Spec 

Dirt Marks 

Strings 

Punched Ends 

Maximum allowable size 

5.0 mm or larger 

0.2 mm or larger 

Large Defect 

within 1.0 mm of spec 

TBD 

1.0 mm or larger 

1.0 mm under spec 

1.0 mm over spec 

1.0 mm over spec 

Large Defect 

Large Defect 

Large Defect 

1.0 mm or larger 

Any 

0.2 mm or larger 

0.2 mm or larger 

0.5 mm - 1.0 mm 

3.0 mm or larger 

0.5 mm or larger 

2.0 mm or larger 

3.0 mm or larger 

1.0 mm or larger 

0.2 mm or lager 

2.0 mm - 5.0 mm 

0.2 mm or larger 

Continued on next page 
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Table A . l — continued from previous page 

Minor 

Minor 

Defect 

Grease Rings 

Scrapes 

Maximum allowable size 

0.2 mm or larger 

1.0 mm or larger 

Requirement 

1 Good capsules falsely rejected 
2 Critical defects falsely accepted 
2b Minor defects falsely accepted 
3 Speed of capable inspection 
4 Products inspected 
5 Vendor facility validation 
6 In process validation 

Acceptable Marginal 

< 1 % <5% 
0 0 
0 0.5% 
1000 caps/min 750 caps/min 
All sizes and colours Size 0 Natural 
Must pass Must pass 
Must pass Must pass 

Table A.2: High Level Business Requirements[5] 

Requirement 
1 Size 
2 Colours 
3 Defects 
4 Product Count 
5 Remove Defects 
6 Operator Friendly 
7 User Manual 
8 Admin Manual 
9 Source Code 
10 Self Testing 
11 Security 
12 Markings 
13 Touch Screen 
14 Drawings 
15 Validation 
16 Count 

Description 
The system must recognise and inspect sizes (00, 0, 1, 2, 3, 4) 
The system must recognize and inspect all colours 
Recognize and count and eject all defects (See A.l) 
Count good capsules and display 
Identify and remove pieces exhibiting defects automatically 
Must have intuitive and secure method of user operation 
Must have complete user manual with visual aids 
Must have complete administrator manual 
Must include source code 
Detect setup problems such as camera focus or dirty pocket 
Systems must be secure and lockable 
System must have all hoses, wires, switches labelled 
For first system to determine if ideally suited for the process 
System drawing (blue prints) 
System driven validation process for lot and shift change 
Count to a preset quantity and close or redirect output 

Table A.3: High Level Performance Requirements[5] 
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Scenario 

1 Train vision system to analyze product 
2 Use the vision system to inspect product as it is being manufactured 
3 Use the vision system to inspect product after the product has been manufactured 
4 Computerized validation process for each item change (system prompted) 
5 Computerized validation/challenge for each shift (system prompted) 

Table A.4: Business Scenarios[5] 
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Appendix B 

Camera Board Schematics 

The following are the final circuit schematics used for the camera board design: 

Table B.l : Bill of Materials 

R e f 

C 1 . C 2 
C 3 
C4 , C 5 
C6 , C44 
C 7 
C8 
C9 
CIO, C l l 
C 1 2 - C 4 3 , C 4 7 -
C 5 7 , C 6 9 - C 7 4 
C 4 5 , C46 
C58 
C59 , C 6 3 , C66 
C 6 0 , C 6 4 , C 6 7 , 
C75 -C77 , C 7 9 
C 6 1 , C 6 5 , C 6 8 
C 6 2 , C 7 8 
C80 , C81 
C O N N 1 
D l 
D2 
J P 1 
J P 2 
J P 3 
L I 
L2 
L E D 1 
Q l , Q 2 
R l , R2 
R 3 , R 6 
R 4 
R 5 
R 7 , R 9 , R20 
R 8 

D e s c r i p t i o n 

16V C e r a m i c C a p , 10% 1 
6.3V C e r a m i c C a p , 10% 
50V C e r a m i c C a p , 10% 
16V C e r a m i c C a p , 10% 
6.3V C e r a m i c C a p , 20% 
6.3V C e r a m i c C a p , 20% 
50V C e r a m i c C a p , + - 0.5p 
6.3V T a n t a l u m C a p , 20% 
10V C e r a m i c C a p , 10% 

50V C e r a m i c C a p , + - 0.25p 
16V T a n t a l u m C a p , 10% 
6.3V C e r a m i c C a p , 10% 
16V C e r a m i c C a p , 10% 

6.3V C e r a m i c C a p , 20% 
16V T a n t a l u m C a p , 20% 
10V T a n t a l u m C a p , 20% 
U S B M i n i - B , ver t i ca l 
20V S c h o t t k y D iode 
20V S c h o t t k y D iode 
36 p in b reakab le heade r 
18 p in , 2 row h e a d e r 
4 p i n , fr ict ion p in heade r 
1.4A I n d u c t o r , 3 0 % 
2.4A I n d u c t o r , 3 0 % 
7.6 mi l i c ande l a , 2.2V Green 
1.8V P - C h a n n e l M O S F E T 
1 / 2 W Res i s to r , 1% 
1 / 1 0 W Res i s to r , 1% 
1 /10W Res i s to r , 1% 
1 /10W Res i s to r , 1% 
1 /10W Res i s to r , 1% 
1 /10W Res i s to r , 1% 

V a l u e 

O.lu 
l u 
1500p 
lOOOOp 
lOOu 
lOu 
lOp 
lOOu 
O.lu 

lOp 
l u 
l u 
lOOOOp 

2.2u 
2.2u 
lOu 

-
2A 
1A 
4p in 
6p in 
4p in 
15u 
5u 
2 0 m A 
2.4A 
0.033 
61.9k 
15.4k 
36.5k 
4.7K 
330 

M a n u f a c t u r e r 

P a n a s o n i c 
P a n a s o n i c 
P a n a s o n i c 
P a n a s o n i c 
M u r a t a 
P a n a s o n i c 
P a n a s o n i c 
K e m e t 
P a n a s o n i c 

P a n a s o n i c 
AVX 
P a n a s o n i c 
P a n a s o n i c 

P a n a s o n i c 
AVX 
AVX 
Molex 
V i s h a y 
O N Semicon . 
3M 
3M 
3M 
S u m i d a 
S u m i d a 
S t a n l e y 
Fa i rch i ld 
S u s u m u 
P a n a s o n i c 
P a n a s o n i c 
P a n a s o n i c 
P a n a s o n i c 
P a n a s o n i c 

M a n u f a c t u r e r P a r t N o . 

E C J - 1 V B 1 C 1 0 4 K 
E C J - 1 V B 0 J 1 0 5 K 
E C J - 1 V B 1 H 1 5 2 K 
E C J - 1 V B 1 C 1 0 3 K 
G R M 3 1 C R 6 0 J 1 0 7 M E 3 9 L 
E C J - 1 V B 0 J 1 0 6 M 
E C J - 1 V C 1 H 1 0 0 D 
T 4 9 1 B 1 0 7 M 0 0 6 A T 
E C J - 0 E B 1 A 1 0 4 K 

E C D - G 0 E 1 0 0 C 
T A C L 1 0 5 K 0 1 6 X T A 
E C J - 0 E B 0 J 1 0 5 K 
E C J - 0 E B 1 C 1 0 3 K 

E C J - 0 E B 0 J 2 2 5 M 
T A C L 2 2 5 M 0 1 6 X T A 
T A C L 1 0 6 M 0 1 0 X T A 
500075-0517 
S S 2 2 - E 3 / 5 2 T 
M B R M 1 2 0 E T 3 G 
929400-01-36 
929710-10-09 
640454-4 
C D R H 6 D 2 8 N P - 1 5 0 N C 
C D R H 6 D 2 8 N P - 5 R 0 N C 
P G 1 1 1 2 C - T R 
F D N 3 0 4 P Z 
RL1632S-R033-F 
E R J - 3 E K F 6 1 R 9 V 
E R J - 3 E K F 1 5 R 4 V 
E R J - 3 E K F 3 6 R 5 V 
E R J - 2 R K F 4 7 0 1 X 
E R J - 2 R K F 3 3 0 0 X 

Q t y 

2 
1 
2 
2 
1 
1 
1 
2 
49 

2 
1 
3 
7 

3 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
3 
1 

Con t inued 

P a c k a g e 

0603 
0603 
0603 
0603 
1206 
0603 
0603 
3528-21 
0402 

0402 
0603 
0402 
0402 

0402 
0603 
0603 
Mi n i - B 
D 0 2 1 4 - A A 
P o w e r M I T E 
0 . 1 " T H 
0 . 1 " T H 
0 . 1 " T H 
7 x 7 x 3 m m 
7 x 7 x 3 m m 
0603 
S O T - 3 
1206 
0603 
0603 
0603 
0402 
0402 

on n e x t p a g e 
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Table B . l — continued from previous page 
RIO 
R l l 
R12, R13 
R14, R15 
R16, R17 
R 1 8 
R 2 1 
S W 1 
U l 
U2 
U 3 
U 4 
U 5 
U6, U7 
U8 
U 9 
Y l 

1/10W Resistor, 1% 
1/16W Resistor, 1% 
1/16W Resistor, 1% 
1/16W Resistor, 1% 
1/16W Resistor, 5% 
1/10W Resistor, 5% 
1/16W Resistor, 5% 
OFF-MOM switch, SMD 
Triple-Supply 
Spartan 3E 500 
FX2 USB MCU 
Micron 1/3" color CMOS 
3.3V LDO Regulator 
3.3V LDO Regulator 
I2C Bus Extender 
I2C 128k EEPROM 
Crystal, series cap, SMD 

10M 
100k 
10k 
I k 
680 
0 
470 

-
3A 

-
-
-
500mA 
250mA 

-
-
24MHz 

Panasonic 
Panasonic 
Panasonic 
Panasonic 
Panasonic 
Panasonic 
Panasonic 
Omron 
T I 
Xilinx 
Cypress 
Micron 
Catalyst Semicon. 
National Semi. 
N X P 
Microchip 
E C S 

ERJ-3GEYJ106V 
ERJ-2RKF1003X 
ERJ-2RKF1002X 
ERJ-2RKF1001X 
ERJ-2GEJ681X 
ERJ-3GEY0R00V 
ERJ-2GEJ471X 
B3U-1000P 
TPS75003RHLT 
XC3S500E-4FTG256C 
CY7C68013A-100AXC 
MT9T001P12STC 
CAT6219-330TD-GT3 
LP2992AIM5-3.3/NOPB 
P82B715TD-T 
24LC128-I/ST 
ECS-240-S-23B-TR 

1 
1 
2 
2 
2 

0603 
0402 
0402 
0402 
0402 
0603 
0402 
3x2.5mm 
QFN-20 
FT256 
100-TQFP 
48-PLCC 
SOT23-5 
SOT23-5 
8-SOIC 
8-TSSOP 
6x3.5mm 
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Figure B.l: TPS Triple Supply Schematic 
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Appendix C 

VHDL Code 

Listing C.l: frame-grabber.vl.vhd 

Company: 
Engineer : 

Create Date : 
Design Name: 
Module Name: 
Project Name: 
Target Devices: 
Tool versions : 
Description : 

Dep endencies : 

Revision: 20071114 
Revision 0.01 — File Created 
Additional Comments : 

13:23:42 04/03/2007 

frame-grabber-vl — Behavioral 

l i b r a r y IEEE; 
u s e IEEE. STD.LOGIC.1164.ALL; 
u s e IEEE. STD-LOGIC-ARITH. ALL; 
u s e IEEE. STD.LOGIC-UNSIGNED. ALL; 

Uncomment the following library declaration if instantiating 
any Xilinx primitives in this code. 

l i b r a r y UNISIM; 
u s e UNISIM . VComponents . a l l ; 

l i b r a r y CCD -FRAME-GRABBER-LIB; 
u s e CCD-FRAME-GRABBER-LIB . I2C-WRITE-SLAVE. ALL; 

e n t i t y f r a m e - g r a b b e r _vl i s 
P o r t ( 

PIXCLKJN : in STD-LOGIC; 
IFCLK.IN : i n STD-LOGIC; 

FX2 Clock 
RESET-IN : in STD-LOGIC; 

LINE.VALID-IN : in STD-LOGIC; 
FRAME-VALID JN : in STD-LOGIC; 
CCD-DATAJN : in STD-LOGIC-VECTOR (9 d o w n t o 0) ; 

GSHT-CTL-OUT : o u t STD-LOGIC; 
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C. VHDL CODE 

USB.BUS-OUT : 
USB.SLWR-OUT 

USB-FULLJN : in STDXOGIC; 
out STD-LOGICVECTOR (15 downto 0) ; 

: out STD-LOGIC; 
USB-SLRD-OUT 
USB-ADRO.OUT 
USB-ADRl.OUT 

out STD-LOGIC 
out STDXOGIC 
out STDXOGIC 

USB-PCKTENDJOUT : out STDXOGIC; 

NSENSOR-RST : out STDXOGIC; 
-FRAME-ERROR : out STD-LOGIC; 

FS-EN : out STD-LOGIC; 
FSO : out STD-LOGIC; 
FS1 : out STD-LOGIC; 

MCLK : in STDXOGIC; 
SCL : in STDXOGIC; 

SCL-PB : in STD-LOGIC; 
SDA : inout STDXOGIC; 

PI : IN STDXOGIC; 
Nl : out STDXOGIC; 

CLOCK-IN : out STDXOGIC 
CLOCK-IN-FB : in STD-LOGIC 

end frame-grabber_vl : 
); 

— B ehavioral D eclaration of frame-grabber-vl 

architecture Behavioral of frame.grabber _v 1 is 

Signal D eclaration 

Constant Declaration 

cons tant RESET-ACTIVE : s t d - l o g i c : = 

Clock signals 

signal PIXCLK : 
signal PIXCLKJBUFG : 
signal PIXCLKJLOCKED: 
signal PIXCLK-DV: 

signal USBCLK : 
signal USBCLKJBUFG : 
signal USBCLKXOCKED 
signal USBCLK_cnt 
signal USBCLK-DV : 

st d - l o g i c ; 
s t d - l o g i c ; 

3 t d . l o g ic ; 

s t d - l o g i c ; 

s t d _ l o g i c ; 
s t d - l o g i c ; 

s t d _ l o g i c ; 

s t d - l o g i c ; 
s t d _ l o g i c _ v e c t o r (3 downto 0) ; 

System Reset Signals 

signal r e s e t : 
signal s y s . r e s e t : 
signal f i f o _ r e s e t : 
signal frame-reset : 
signal db-ctr : 

signal ig _r e s e t : 
signal i p_r e se t : 

signal t r i g g e r . c n t 
signal t r i g g e r - w a i t : 
signal t r i g g e r . b : 

s t d_logic ; 
s t d _1 ogi c ; 
s t d _1 ogic ; 

st d_l ogi c ; 
s t d - l o g i c . v e c t o r (IS downto 0) ; 

st d - log i c ; 
s t d _ l o g i c ; 

s t d - l o g i c . v e c t o r (15 downto 0) ; 
s t d - l o g i c . v e c t o r (15 downto 0) ; 
s td - l o g i c ; 

Image Grabber Signals 

signal byte.cnt : 
signal byte.O , byte_l : 
signal ram.data.in : 
signal ram_write : 
signal i n t_ r am_wr i t e : 
signal ram_wen : 
signal r a m . a d d r . e n : 

s t d - l o g i c ; 
s t d - l o g i c . v e c t o r (7 downto 0) ; 
s t d . l o g i c . v e c t o r (15 downto 0) ; 

s t d - l o g i c ; 
s t d - l o g i c ; 

s t d - l o g i c ; 
s t d_ log ic ; 
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C. VHDL CODE 

s i g n a l r a m . c l r 
s i g n a l r a m . r e n : 
s i g n a l r am.e rap ty : 
s i g n a l r a m _ f u l l 
s i g n a l r a m . r e s e t : 
s i g n a l s t a t e : 
s i g n a l i n t . p x l . r o w : 
s i g n a l i n t . p x l . c o l : 
s i g n a l a c t i v e . p x l . r o w : 
s i g n a l a c t i v e . p x L c o l : 
s i g n a l a c t i v e . p x l . d a t a : 
s i g n a l a c t i v e . p x l . d a t a . b 
s i g n a l f l u s h - f r a m e : 
s i g n a l f s _ r a m _ f u l l : 
s i g n a l f s . c n t 
s i g n a l p x l . d r o p . c n t : 

1 frame 2048x1536 
s i g n a l p x l . w r i t e . c n t 

s t d _1 ogi c 
s t d _ l o g i c 

s t d . l o g i c 
s t d . l o g i c 
s t d_ log ic 
s t d - l o g i c 

s t d . l o g i c . v e c t o r (10 downto 0 ) ; 
s t d - l o g i c - v e c t o r (10 downto 0) 

s t d . l o g i c . v e c t o r (10 downto 0 ) ; 
s t d - l o g i c _v e c t o r (10 downto 0) ; 
s t d . l o g i c . v e c t o r (7 downto 0 ) ; 

s t d . l o g i c . v e c t o r (7 downto 0) ; 
s t d - l o g i c ; 
s t d - l o g i c ; 

s t d - l o g i c - v e c t o r 
s t d . l o g i c . v e c t o r (21 downto 0 ) ; 

s t d . l o g i c . v e c t o r (21 downto 0 ) ; 

(3 downto 0) ; 
enough to count 

s i g n a l in t _f v 
s i g n a l i n t _ f v _ b 
s i g n a l i n t . l v 
s i g n a l i n t . l v . b 

s t d . l o g i c ; 
s t d . l o g i c ; 

s t d . l o g i c ; 
s t d . l o g i c ; 

Image Processor Signals 

s i g n a l i p . e n s t d . l o g i c ; 

Output Sync 
s i g n a l u s b . s l w r : 
s i g n a l u s b . p c k t e n d 
s i g n a l u s b . b u s : 

s t d . l o g i c ; 
s t d . l o g i c . v e c t o r (15 downto 0) ; 

I2C Signals 

s i g n a l i 2 c . e n a b l e : 
s i g n a l i 2c . b u s . b u s y 
s i g n a l 12c_ack : 
s i g n a l i 2 c _ d a t a : 
s i g n a l i 2 c _ d e b u g : 

s t d - l o g i c : 
s t d - l o g i c ; 

s t d - l o g i c ; 

s t d . l o g i c ; 
s t d . l o g i c . v e c t o r (7 downto 0) ; 

s i g n a l t r i g g e r s t d - l o g i c ; 

s i g n a l s y s . r e g s 
s i g n a l i p . d e b u g 

I 2 c D a t a R e g ; 
s t d . l o g i c ; 

s i g n a l f s _f 1 ag s t d . l o g i c ; 

— Component Declaration 

COvlPaNENT DCM.DLL 
PORT( 

CLKIN.IN : IN s t d . l o g i c ; 
RST.IN : IN s t d . l o g i c ; 
CLKDV.OUT : OUT s t d - l o g i c ; 
CLKINJBUFG.OUT : OUT s t d . l o g i c ; 
CLK0.OUT : OUT s t d . l o g i c ; 
LOCKED.OUT ; OUT s t d . l o g i c 

END COMPONENT; 

COMPONENT I m a g e P r o c e s s o r 
PORX( 

CLK : IN s t d - l o g i c ; 
RESET : IN s t d . l o g i c ; 
EN : IN s t d . l o g i c ; 
DIN : IN s t d . l o g i c . v e c t o r (7 downto 0 ) ; 
ROW : IN s t d . l o g i c . v e c t o r (10 downto 0 ) ; 
COL : IN s t d . l o g i c . v e c t o r (10 downto 0 ) ; 
ROW-SIZE : IN s t d . l o g i c . v e c t o r (10 downto 0) 
COL.SIZE : IN s t d . l o g i c . v e c t o r (10 downto 0) 
DATAJVIODE : IN s t d . l o g i c . v e c t o r (2 downto 0) 
COLOR3IT : IN s t d - l o g i c ; 
FRAME : IN s t d - l o g i c ; 
DOUT : OUT s t d _ l o g i c _ v e c t o r (15 downto 0 ) ; 
RAM-WEN : OUT s t d . l o g i c ; 
IPJDEBUG : OUT s t d . l o g i c 
) ; 

END COMPONENT; 
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COMPONENT ASYNC-FIFO-16 IS 
p o r t ( 

d i n : IN s t d . l o g i c . V E C T O R (15 d o w n t o 0 ) ; 
r d . c l k : IN s t d . l o g i c ; 
r d . e n : IN s t d - l o g i c ; 
r s t : IN s t d - l o g i c ; 
w c . c l k : IN s t d - l o g i c ; 
wr_en : IN s t d - l o g i c ; 
d o u t : OUT s t d . l o g i c - V E C T O R ( 1 5 d o w n t o 0) ; 
e m p t y : OUT s t d - l o g i c ; 
f u l l : OUT s t d - l o g i c ) ; 

END COMPONENT; 

COMPONENT I 2 c - S l a v e C t r l 
PORT( 

S y s _ c 1 k : IN s t d - l o g i c ; 
S y a - R e s e t : IN s t d - l o g i c ; 
I 2 c E n a b l e : IN s t d - l o g i c ; 
Scl : IN s t d - l o g i c ; 
Sda : 1NOUT s t d - l o g i c ; 
I2cBusBusy : OUT s t d - l o g i c ; 
I 2 c D a t a R e g s : OUT I 2 c D a t a R e g ; 
I2cDebug : OUT s t d - l o g i c 
) ; 

END COMPONENT; 
BEGIN 

b e g i n 

Component Inatantiazation 

Instl.DCM.DLL: DCM-DLL PORT MAP( 

Ins t2 .DCM.DLL : DCM-DLL PORT MAP( 
CLKIN-IN => IFCLK-IN , 
RST-IN => r e s e t , 
CLKDV-OUT => USBCLK-DV, 
CLKINJBUFG-OUT => USBCLK-IBUFG, 
CLK0.OUT => USBCLK, 
LOCKED-OUT => USBCLK-LOCKED 

I n s t l . D C M . D L L : DCM-DLL PORT MAP( 
CLKIN-IN => PIXCLK J N , 
RST.IN => r e s e t , 
CLKDV-OUT => PIXCLK.DV, 
CLKINJBUFG-OUT => PIXCLK JBUFG, 
CLK0.OUT => PIXCLK, 
LOCKED-OUT => PIXCLK-LOCKED 

I n s t . I m a g e P r o c e s s o r : I m a g e P r o c e s s o r PORT MAP( 
CLK => p i x c l k , 
RESET => i p . r e s e t , 
EN => ip_en , 
DIN => a c t i v e - p x l - d a t a_b , 
ROW => i n t - p x l . r o w , 
COL => i n t - p x l . c o l , 
ROW-SIZE => s y s . r e g s (2) (10 d o w n t o 0) , 
COL.SIZE => s y s . r e g s (3 ) (10 d o w n t o 0) , 
DATA-MODE => s y s . r e g s (4) (3 d o w n t o 1) , 
COLOR-BIT => s y s . r e g s (4) (0) , 
FRAME => FRAME-VALID J N , 
DOUT => r a m - d a t a - i n , 
RAM-WEN => r a m - w r i t e , 
IP-DEBUG => i p - d e b u g 

In s t .ASYNC-FIFO: ASYNC-FIFO-16 PORT MAP ( 
d in => r a m _ d a t a . i n , 
r d _ c l k => usbc lk , 
r d . e n —> r a m . r e n , 
r s t => r a m . r e s e t , 
w r . c l k => p i x c l k , 
w r . e n => ram.wen , 
dou t => u s b - b u s , 
empty => ram.empty , 
f u l l => r a m _ f u 11 

) ; 



C. VHDL CODE 

I n s t _ I 2 c _ S l a v e C t r l : I 2 c _ S l a v e C t r 1 PORT MAP( 
Scl => Scl , 
Sda => Sda , 
S y s . c l k => usbc lk , 
S y s . R e s e t => s y s . r e s e t , 
I 2 c E n a b l e —> i 2 c _ e n a b l e , 
I2cBusBusy => i 2 c _ b u s _ b u s y , 
I 2 c D a t a R e g s => s y s . r e g s , 
I2cDebug ==> i 2 c _ d e b u g 

) ; 

Signal Initialization 

Reset Signals 

r e s e t < = (NOT r e s e t - i n ) when (RESET_ACTIVE = ' 0 ' ) e l s e r e s e t . i n ; 
i p _ r e s e t <= s y s . r e s e t ; when (sy s-res et = ' 1 ' or sys-regs(1) (1) = ' 1 ') else ' 0 '; 
r a m . r e s e t < = s y s . r e s e t ; — or frame-reset ; 

Internal Signal Assignmetns 
i 2 c _ e n a b l e <= ' 1 ' ; — s y s - r e s e t ; 
ram.wen < = r a m . w r i t e AND NOT r a m - f u l l ; 

Output Assignments 

c l o c k . i n < = u s b c l k - d v ; 

GSHT.CTL.OUT < = t r i g g e r ; 
Nl < = t r i g g e r ; 

FX2 Configuration Pins 

USB-PCKTEND.OUT <== ' 0 ' ; Active High 
USB_SLRD_OUT < = '0 
USB_ADR0_OUT < = * 0 ' 
USB_ADRl_OUT < = '0 ' 

A ctive Low 

NSENSORJRST <— ' ! ' ; Micron Sensor Enable 

Process : Deb ounce -Ctr 
Desc: Handle Debounce on the RESET-IN pin 

D e b o u n c e . C t r : p r o c e s s (USBCLK, r e s e t ) 
b e g i n 

i f ( r e s e t = ' 1 ' ) t h e n 
d b . c t r <— ( o t h e r s — > ' 0 ' ) ; 

e l s i f (USBCLK'EVENT and USBCLK = ' 0 ' ) t h e n 
i f (USBCLK-LOCKED = ' 1 ' and d b _ c t r ( 1 8 ) = ' 0 ' ) t h e n should be 18 

Wait until DLL has locked onto the clock. 
d b . c t r <— d b - c t r + 1; 

end i f ; 
end i f; 

end p r o c e s s D e b o u n c e . C t r ; 

Process : System-Reset 
- Desc: Handle sys-reset baaed on state of RESET-IN pin and debounce counter. 

S y s t e m - R e s e t : p r o c e s s (USBCLK, d b _ c t r ( 1 8 ) ) 
b e g i n 

i f (USBCLK'Event and USBCLK = ' 1 ' ) t h e n 
i f ( d b - c t r ( 1 8 ) = ' 1 ' ) t h e n 

s y s . r e s e t < = ' 0 ' ; sys-regs (1) (0) ; 
e l s e 

s y s . r e s e t < = '1 '; 
end i f; 

end i f; 
end p r o c e s s S y s t e m - R e s e t ; 

— Process : TRIGGER-CTLR 
— Desc: Synchronize the data from the micron sensor. 

TRIGGER-CTLR : p r o c e s s ( u s b c l k , s y s . r e s e t ) 
b e g i n 

i f ( s y s . r e s e t = ' 1 ' ) t h e n 
Nl < = '0 ' ; 
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GSHT_CTL_OUT < = ' 0 ' ; 
t r i g g e r - w a i t < = ( o t h e r s => ' 0 ' ) ; 
t r i g g e r . c n t < = ( o t h e r s => ' 0 ' ) ; 

e l s i f ( u s b c l k ' E v e n t and u s b c l k = ' 1 ' ) t h e n 
t r i g g e r . b < = t r i g g e r ; 
i f t r i g g e r = ' 1 ' and t r i g g e r . b = ' 0 ' t h e n 

t r i g g e r - w a i t < = d a t a . r e g s ( 5 ) ; 
t r i g g e r . c n t < = ( o t h e r s => ' 0 ' ) ; 

e l s i f t r i g g e r = ' 1 ' 
GSHT.CTL-OUT < = t r i g g e r ; 
t r i g g e r . c n t < = t r i g g e r . c n t + 1; 

end i f ; 

i f t r i g g e r _ w a i t / = 0 t h e n 
t r i g g e r - w a i t < = t r i g g e r - w a i t — 1; 

end i f ; 

i f t r i g g e r - w a i t = 0 and t r i g g e r . c n t / = 0 t h e n 
Nl < = ' 1 ' ; 
t r i g g e r . c n t < = t r i g g e r . c n t — 1; 

end i f; 
end i f; 

end p r o c e s s TRIGGER-CLTR; 

Process : SYNCJN 
Desc: Synchronize the data from the micron sensor. 

i p . e n < = i n t . f v and i n t . l v ; 

SYNCJN : p r o c e s s ( p i x c l k , s y s . r e s e t ) 
begin 

i f ( s y s . r e s e t = ' 1 ' ) t h e n 
i n t . f v < = '0 ' ; 
i n t . f v . b <= '0 ' ; 
i n t . l v <— '0 *; 
a c t i v e . p x l . d a t a <~ ( o t h e r s => ' 0 ' ) ; 
a c t i v e . p x l . d a t a . b < = ( o t h e r s ==> ' 0 ' ) ; 

e l s i f ( p i x c l k ' Event and p i x c l k = ' 1 ' ) t h e n 
i n t . f v < = FRAME-VALID JN ; 
i n t . f v . b < = i n t - f v ; 
i n t . l v < = LINE-VALID J N ; 
i n t . l v . b < = i n t . l v ; 
a c t i v e . p x l . d a t a < = CCD_DATA_IN (9 downto 2 ) ; 
a c t i v e . p x l . d a t a . b < = a c t i v e . p x l . d a t a ; 

i f ( i n t . f v = ' 1 ' and i n t . f v . b = ' 0 ' ) t h e n 
f i f o . r e s e t < = '1 ' ; 

e l s e 
f i f o . r e s e t < = ' 0 ' ; 

end i f; 
end i f ; 

end p r o c e s s SYNCJN; 

FSJ3RROR : p r o c e s s ( p i x c l k , s y s . r e s e t ) 
b e g i n 

i f ( s y s . r e s e t = ' 1 ' ) t h e n 
f s . r a m . f u l l < = ' 1 ' ; 
f s . c n t <= ( o t h e r s => ' 1 ' ) ; 

e l s i f ( p i x c l k ' Event and p i x c l k — ' 1 ' ) t h e n 
i f ( f r a m e . v a l i d . i n = ' 1 ' and i n t . f v = ' 0 ' ) t h e n 

f s . c n t <— ( o t h e r s => '1 ' ) ; 
fs-ram-full <~ '1 '; 

e l s i f ( f s . c n t / = 0) t h e n 
f s . c n t <— f s . c n t — 1; 

end i f; 

i f ( r a m - f u l l — ' 1 ' and f s . c n t — 0) then 
f s . r a m . f u l l <— '0 ' ; 

e l s e 
f s . r a m . f u l l < = ' 1 ' ; 

end i f; 

end i f ; 
end p r o c e s s FSJ3RROR; 

Process : FRAME.CTLR 
Desc: Track frame status and report errors 
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C. VHDL CODE 

F R A M E J C T L R : p r o c e s s ( p i x c l k , s y s . r e s e t ) 
b e g i n 

i f ( s y s . r e s e t = ' 1 ' ) t h e n 
i n t . p x l . r o w < = ( o t h e r s => ' 0 ' ) ; 
i n t _ p x l _ c o l <— ( o t h e r s => ' 0 ' ) ; 
f r a m e - r e s e t < = '1 ' ; 

e l s i f ( p i x c l k ' E v e n t and p i x c l k = ' 1 ' ) t h e n 
i f ( i n t _f v = ' 1 ') t h e n 

i f ( i n t _ f v _ b = ' 0 ' ) t h e n 
f r a m e - r e s e t < = '1 ' ; 

e l s e 
f r a m e _ r e s e t <— '0 ' ; 

end i f; 

e l s e 

end i f; 
end i f; 

end p r o c e s s F R A M E J C T L R ; 

i f ( i n t _ l v _ b = ' 1 ' ) t h e n 
i f ( i n t . l v - ' 1 ' ) t h e n 

i n t _ p x l _ c o l < = i n t _ p x l _ c o l + 1; 
e l s e 

i n t _ p x l _ c o l < = ( o t h e r s => ' 0 ' ) ; 
i n t . p x l . r o w < = i n t . p x l . r o w 4- 1; 

end i f; 
end i f; 

i n t . p x l . r o w <— ( o t h e r s => '0 ' ) ; 
i n t _ p x l _ c o l <— ( o t h e r s ~> ' 0 ' ) ; 

USB DATA PROCESS 

Process: SYNC.OUT 
Desc: Synchronize output signals to the FXB 

SYNC-OUT : p r o c e s s ( u s b c l k , s y s . r e s e t ) 
b e g i n 

i f ( s y s . r e s e t = ' 1 ' ) t h e n 
u s b . s l w r _ o u t < = ' 0 ' ; 
u s b _ b u s _ o u t < = ( o t h e r s = > '1 ' ) ; 

e l s i f ( u s b c l k 'EVENT and u s b c l k = ' l ' ) t h e n 
u s b _ s l w r _ o u t < = u s b . s l w r ; 
i f ( p x l . w r i t e . c n t < " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 " ) t h e n or (pxl-writ e.cnt > 

"0001011111111111111101" and pxl.write.cnt < "0001100000000000000000") 
) then 

u s b . b u s . o u t <— X"AAAA" ; (others —> '1 ') ; 
e l s e 

u s b . b u s . o u t < = u s b . b u s ; pxl.write.cnt (7 downto 0) & 
pxl.write.cnt (15 downto 8); usb.bus ; 

end i f ; 
end i f; 

end p r o c e s s SYNC.OUT; 

Process : USB.Ctlr 
Desc: State machine fo r sending data to FX2 

U S B . C t l r : p r o c e s s ( u s b c l k , s y s . r e s e t ) 
b e g i n 

i f ( s y s . r e s e t — ' 1 ' ) t h e n 
u s b . s l w r <— ' 0 ' ; 
s t a t e < = ' 0 ' ; 
r a m . r e n < = ' 0 ' ; 
p x l . w r i t e . c n t < ^ ( o t h e r s ==> ' 0 ' ) ; "0011000000000000000000"; 

e l s i f ( f i f o - r e s e t — ' 1 ' ) t h e n 
p x l . w r i t e . c n t <— T o - S t d L o g i c V e c t o r ( t o - B i t V e c t o r ( s y s . r e g s (6) (5 d o w n t o 0) & 

s y s - r e g s ( 7 ) ) s r l 1) ; "0001100000000000000000"; 
"0011000000000000000000"; 

e l s i f ( u s b c l k 'EVENT and u s b c l k = *l*) t h e n 
i f ( s t a t e = '0 *) t h e n 

if ( u s b - f u l l _ i n = ' 0 ' and r am-empty = ' 1 ' and f r a m e . v a l i d . i n — ' 0 ' 
and p x l . w r i t e . c n t > 0) t h e n 

r a m . r e n < = ' 0 ' ; 
u s b . s l w r < = ' 0 ' ; 
s t a t e < = * 1 ' ; 
p x l . w r i t e . c n t < = p x l . w r i t e . c n t — 1; 
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end i f; 
end i f; 

end p r o c e s s U S B - C t l r ; 

e l s i f ( u s b _ f u l l _ i n = ' 0 ' and r am-empty = '0 ' ) t h e n 
r a m . r e n < = ' 1 ' ; 
u s b . s l w r < = ' 0 ' ; 
s t a t e < = ' 1 ' ; 
p x l _ w r i t e _ c n t <— p x l _ w r i t e _ c n t — 1; 

e l s e 

e n d 

r am_ren < = '0 ' ; 
u a b . s l w r < = ' 0 ' ; 
s t a t e < = ' 0 ' ; 

u s b . s l w r < = ' 1 ' ; 
r a m . r e n < = ' 0 ' ; 
s t a t e < = ' 0 ' ; 

end B e h a v i o r a l ; 

Listing C.2: I2c.SlaveCtrl.vhd 

Company: 
Engineer : 

Create Date : 
Design Name: 
Module Name: 
Project Name: 
Target Devices : 
Tool versions : 
Description : 

Dependencies : 

— Revision : 
— Revision 0.01 — File Created 

Additional Comments: 

11:15:26 07/25/2007 

I2c.SlaveCtrl — Behavioral 

l i b r a r y IEEE; 
u s e IEEE. STD.LOGIC.1164.ALL; 
u s e IEEE. STD_LOGIC-ARITH . ALL; 
u s e IEEE. STD_LOGIC_UNSIGNED. ALL; 

l i b r a r y CCD_FRAME_GRABBER_LIB; 
u s e CCDJRAME_GRABBER_LIB. I2C-WRITE.SLAVE. ALL; 

Uncomment the following library declaration if instantiating 
any Xilinx primitives in this code. 

library UNISIM; 
use UNISIM. VComponents. all ; 

e n t i t y 1 2 c _ S l a v e C t r l i s 
P o r t ( Sc l : i n STD.LOGIC; 

Sda : i n o u t STDXOGIC; 
S y s -c 1 k : i n STDXOGIC; 
S y s . R e s e t : in STDXOGIC; 
I 2 c E n a b l e : in STDXOGIC; 
I2cBusBusy : o u t STDXOGIC; 
I 2 c D a t a R e g s : o u t I 2 c D a t a R e g ; 

I2cDebug : o u t STDXOGIC) ; 
end I 2 c _ S l a v e C t r l ; 

a r c h i t e c t u r e B e h a v i o r a l of I 2 c _Sla ve C t r 1 i s 

Constant Declaration 
c o n s t a n t S l a v e A d d r e s s s t d . l o g i c . v e c t o r (6 d o w n t o 0) 

Sensor 
:= " 1 0 1 0 1 0 1 ' 0x5D for MI 
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Signal Declaration 

t y p e I 2 c S t a t e M a c h i s (IDLE, ADDR, SND-ACK, RCV-DATA) ; 
s i g n a l I 2 c S t a t e : I 2 c S t a t e M a c h ; 

s i g n 
s i g n 
s i g n 
s i g n 

s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 

s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 

al r e s e t : s t d - l o g i c ; 
al I n t S d a : s t d - l o g i c ; 
al I n t S d a B : s t d - l o g i c ; 
al I n t S d a C n t : s t d - l o g i c _vec t or 
and stop. 

al I n t St a r t D e t e c t e d : s t d - l o g i c ; 
al I n t S c l : s t d - l o g i c ; 
al I n t S c l B : s t d - l o g i c ; 
al I n t S t a r t D e t e c t e d B : s t d - l o g i c 
al I n t S t o p D e t e c t e d : s t d - l o g i c ; 

I n t I 2 c A c k : s t d - l o g i c ; 
I n t B u s B u s y ; s t d - l o g i c ; 
ignal . 

al I n t I 2 c B i t C n t 
al I n t B i t C n t E n 
al I n t B i t C n t C l r 
a l I n t I 2 c D a t a : 
al I n t S h i f t R e g E n 

(4 downto 0) ; Sampling rate 

Start signal 

Sampled Sda 
Delayed Sda Sample 
of Sda line for start 

Delayed start signal 
Stop signal 

Trigger an Acknowledge 
Set on start signal and cleared on stop 

: s t d _ l o g i c - v e c t o r 
s t d - l o g i c ; — 

: s t d - l o g i c ; 
s t d _ l o g i c _ v e c t o r (7 downto 0) 

s t d - l o g i c 
al I n t S h i f t R e g C l r : s t d - l o g i c ; -
al I n t B y t e C n t : s t d - l o g i c - v e c t o r (3 downto 0) 

(3 d o w n t o 0) ; Counts received bits . 
Counts incoming bits 

Clears bit counter 
ISC data 

Enable the shift register 
Clear the shift register 

type I2cDataReg is array (4 downto 0) of std-logic-vector (15 downto 0); 
s i g n a l I n t D a t a R e g s : I 2 c D a t a R e g ; 
s i g n a l I n tRegAddr : s t d - l o g i c - v e c t o r (7 downto 0) ; 

s i g n a l I n t I 2 c D e b u g : s t d - l o g i c ; 

Component Declaration 
component I 2 c - S h i f t R e g 

PORT ( 
CLK: IN s t d . l o g i c ; 
SDIN: IN s t d - l o g i c ; 
Q: OUT s t d - l o g i c . V B C T O R ( 7 downto 0) ; 
CE: IN s t d - l o g i c ; 
ACLR: IN s t d - l o g i c ) ; 

END COMPONENT; 

component I 2c_Bi t C o u n t e r 
PORT ( 

END COMPONENT; 

e l k ; IN s t d - l o g i c ; 
ce : IN s t d - l o g i c ; 
ac 1 r : IN s t d - l o g i c ; 
q: OUT s t d - l o g i c . V E C T O R ( 3 downto 0) ) ; 

b e g i n 

Process Declaration 

r e s e t < = ' 1 ' when ( s y s - r e s e t = ' 1 ' or I 2 c E n a b l e = ' 0 ' ) e l s e ' 0 ' 
I 2cDebug < = ' 1 ' when ( I n t D a t a R e g s (3) = x " 0 7 F F " ) e l s e ' 0 ' ; 

— Input and Output 
— Sda is a bidirectional signal. 

Sda <= ' 0 ' when ( I 2 c S t a t e = SND-ACK) e l s e ' Z ' ; -OVER HERE !!! ! ! ! ! 

W r i t e 
b e g i n 

[ 2 c D a t a R e g s : p r o c e s s ( Scl , R e s e t ) 

if ( R e s e t = ' 1 ' ) t h e n 
I n t D a t a R e g s (0 ) < = 
I n t D a t a R e g s (1) < = 
I n t D a t a R e g s (2) <= 
I n t D a t a R e g s (3) < ~ 
I n t D a t a R e g s (4) < = 
I n t D a t a R e g s (5) < = 
I n t D a t a R e g s (6) < = 

786432 
I n t D a t a R e g s (7) <= 
I n t D a t a R e g s (8 ) < = 
I n t D a t a R e g s (9) < = 

1021 

0000000000000000" 
0000000000000110" 
0000001011111111" 
0000001111111111" 
0000000000000010" 
0000000000000000" 
0000000000000110" 

0000000000000000" 
'0100000010101010" 
'0000001111111101" 

DEFAULT-REG 
FPGA RESETS: 
ROW-SIZE: default 767 
COL-SIZE: default 1023 
DATA-MODE: default 2 (RAW data) (8-
TRIGGER-DELA Y: default 0 
FRAME-SIZE-UPPER: default 1024x768 

FRAME-SIZE-LOWER: ' 
FRAME-MARKER : xxDDDDDDxxxxxxxx 
IP-ROW-BUFFER-SIZE : default 1023-i 

bit ) 
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I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 
I n t D a t a R e g s 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 

<-
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<-
<-
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 

" 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 

IP-OUT-COUNT : default 1023 + 

e l s i f ( I n t S c l ' E v e n t and I n t S c l = ' 0 ' ) t h e n 
i f ( I n t I 2 c B H C n t = " 0 1 1 1 " ) t h e n 

i f ( I n t B y t e C n t = " 0 0 1 " ) t h e n 
In tRegAddr < = I n t I 2 c D a t a (6 downto 0) & I n t S d a ; 

e l s i f ( I n t B y t e C n t = " 0 1 0 " ) t h e n 
I n t D a t a R e g s ( c o n v . i n t e g e r ( I n t R e g A d d r ) ) (15 downto 8) < = I n t I 2 c D a t a 

(6 downto 0) & I n t S d a ; 
e l s i f ( I n t B y t e C n t = " 0 1 1 " ) t h e n 

I n t D a t a R e g s ( c o n v - i n t e g e r ( I n t R e g A d d r ) ) (7 downto 0) < = I n t I 2 c D a t a ( 
6 downto 0) & I n t S d a ; 

end i f; 
end i f; 

end i f; 
end p r o c e s s ; 

I 2 c D a t a R e g s <— I n t D a t a R e g s ; 

S i g n a l S y n c : p r o c e s s ( R e s e t , s y s _ c l k ) 
b e g i n 

i f ( r e s e t = ' 1 ' ) t h e n 
I n t S d a < = ' 0 ' ; 
I n t S d a B < = '0 '; 
I n t S c l < = '0 ' ; 
I n t S c l B < = '0 '; 
I n t S d a C n t < = ( o t h e r s => ' 0 ' ) ; 

e l s i f ( s y s . c l k ' E v e n t and s y s - c l k = ' 1 ' ) t h e n 
I n t S d a C n t < = I n t S d a C n t + 1; 
i f ( I n t S d a C n t = " 0 0 0 0 0 " ) t h e n 

I n t S d a < = Sda ; 
In tSdaB <= I n t S d a ; 
I n t S c l < = Scl ; 
I n t S c l B <= I n t S c l ; 

end i f ; 
end i f ; 

end p r o c e s s S i g n a l S y n c ; 

D e t e c t S t a r t S t o p ; p r o c e s s ( R e s e t , s y s _ c l k ) 
b e g i n 

i f ( r e s e t = ' 1 ' ) t h e n 
IntStartDetected <= '0'; 
IntStopDetected <= '0'; 

elsif (sys.clk 'Event and sys-clk = '1') then 

if (IntSda = '0' and IntSdaB = '1') then 
if (IntScl = '1 ') then 

IntStartDetected <= '1'; 
else 

IntStartDetected < = '0'; 
end i f ; 

elsif (IntSda = '1' and IntSdaB = '0') then 
if (IntScl = '1 ') then 

IntStopDetected <= '1'; 
else 

IntStopDetected <= '0'; 
end i f; 

end i f; 

if (I2cState = ADDR) then 
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I n t S t a r t D e t e c t e d <— ' 0 ' ; 
end i f; 

i f ( I n t S t a r t D e t e c t e d = ' 1 ' ) t h e n 
I n t S t o p D e t e c t e d < = ' 0 ' ; 

end i f ; 
end i f; 

end p r o c e s s ; 

Indication that the device is busy. Set when a Start is detected and released when a 
Stop is found. This bit is take outside as status bit for connecting logic. 

- A one indicate s , Bus Busy. 

BusBusyReg : p r o c e s s ( Sys_clk , R e s e t ) 
b e g i n 

i f ( R e s e t = ' 1 ' ) t h e n 
I n t B u s B u s y < = ' 0 ' ; 

IntBusBusyB < = '0 '; 
e l s i f ( S y s - c l k ' e v e n t and Sy s_clk = '1 ' ) t h e n 

i f ( I n t S t a r t D e t e c t e d = ' 1 ' ) t h e n 
I n t B u s B u s y < = '1 ' ; 

end i f ; 
if ( I n t S t o p D e t e c t e d — ' 1 ' ) t h e n 

I n t B u s B u s y < = ' 0 ' ; 
end i f; 

IntBusBusyB < = IntBusBusy ; 
end i f; 

end p r o c e s s ; 

I 2cBusBusy < = I n t B u s B u s y ; Ctrl output as indication the the controller has the 
bus . 

— Main I2C state machine. 
The following process contains the main I2C slave state machine. 
This state machine is clocked on the falling edge of Scl. 

MainS ta t eMach : p r o c e s s ( I n t S c l , Reset , I n t S t o p D e t e c t e d ) 
b e g i n 

i f ( R e s e t = ' 1 ' or I n t S t o p D e t e c t e d = ' 1 ' ) t h e n 
I 2 c S t a t e < = IDLE; 
I n t B y t e C n t < = ( o t h e r s = > '0 ') ; 

IntMainStatMachStop < = '0 '; 
e l s i f ( I n t S c l ' e v e n t and I n t S c l — ' 0 ' ) t h e n 

c a s e I 2 c S t a t e i s 

IDLE I2cState 
when IDLE => 

if ( I n t S t a r t D e t e c t e d = ' 1 ' ) then 
I 2 c S t a t e < = ADDR; 
I n t B y t e C n t < = ( o t h e r s = > '0') ; 

end i f: 

ADDR I2cState 
when ADDR => 

i f ( I n t I 2 c B i t C n t = " 0 1 1 1 " ) t h e n 
i f ( I n t I 2 c D a t a (6 downto 0) & I n t S d a = S l a v e A d d r e s s & ' 0 ' ) 

t h e n 
I 2 c S t a t e < = SND_ACK; 

e l s e 
I 2 c S t a t e < = IDLE; 

end i f; 
end i f; 

SND.ACK I2cState 
when SND-A.CK => 

I n t B y t e C n t < = I n t B y t e C n t + 1; 
I n t I 2 c A c k < = ' 1 ' ; 
I 2 c S t a t e < = RCVJDATA; 

RCV-DATA I2cState 
when RCV.DATA => 

I n t I 2 c A c k < - '0 ' ; 
if (IntStartDetected = '1') then 

I2cState <= ADDR; 
elsif (IntI2cBitCnt = "0111") then 

I2cState <= SND.ACK; 
end i f; 

end case; 
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end i f ; 
end p r o c e s s ; 

I2C shift register 

S h i f t R e g : I 2 c . S h i f t R e g PORT MAP ( 
CLK => NOT I n t S c l , 
SDIN => I n t S d a , 
Q => I n t I 2 c D a t a , 
CE => I n t S h i f t R e g E n , 
ACLR => I n t S h i f t R e g C l r 

) ; 
I n t S h i f t R e g E n < = ' 1 ' when ( I 2 c S t a t e = ADDR) or ( I 2 c S t a t e = RCV-DATA) e l s e ' 0 ' ; 
I n t S h i f t R e g C l r < = ' 1 ' when ( R e s e t = ' 1 ' o r I n t S t o p D e t e c t e d = ' ! ' o r I 2 c S t a t e = SND-ACK) e l s e ' 0 ' 

I2C bit counter. 

B i t C o u n t e r : I 2 c . B i t C o u n t e r PORT MAP ( 
CLK => NOT I n t S c l , 
CE => I n t B i t C n t E n , 
a c l r => I n t B i t C n t C l r , 
q => I n t I 2 c B i t C n t 

) ; 
I n t B i t C n t E n < = ' 1 ' when ( I 2 c S t a t e = ADDR) 

or ( I 2 c S t a t e = RCV-DATA) 
e l s e '0 ' ; 

I n t B i t C n t C l r < = ' 1 ' when ( I 2 c S t a t e = IDLE) 
or ( I 2 c S t a t e = SND.ACK) 
or ( IntStartDetected = '1') 
else '0 '; 

end B e h a v i o r a l ; 

Listing C.3: ImageProcessor.vhd 

— Company: 
— Engineer : 

Create Date: 
Design Name; 

— Module Name: 
Project Name: 
Target Devices : 

— Tool versions : 
Description: 

Dependencies : 

Revision : 
Revision 0.01 — File Created 
Additional Comments : 

11:10:59 04/17/2007 

JmageProcessor — Behavioral 

l i b r a r y IEEE; 
u s e IEEE. STD_LOGIC_1164.ALL; 
u s e IEEE. STD-LOGIC_ARITH. ALL; 
u s e IEEE. STDXOGIC-UNSIGNED. ALL; 

Uncomment the following library declaration if instantiating 
any Xilinx primitives in this code . 

library UNISIM; 
use UNISIM. VComponents. all ; 

e n t i t y I m a g e P r o c e s s o r i s 
P o r t ( CLK : i n STD-LOGIC; 

RESET : i n STD-LOGIC; 
EN : in STD-LOGIC; 
DIN : i n STDXOGIC.VECTOR (7 d o w n t o 0 ) ; 

ROW : in STD.LOGIC-VECTOR (10 d o w n t o 0) ; 
COL : in STD_LOGIC_VECTOR (10 d o w n t o 0) ; 
FRAME : i n STD-LOGIC; 
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end I m a g e P r o c e s s o r ; 

ROW-SIZE : in STD-LOGIC-VECTOR (10 downto 0) 
COL.SIZE : in STD-LOGIC-VECTOR (10 downto 0) 
DATA-MODE : in STD-LOGIC-VECTOR (2 downto 0) 
COLOR-BIT : in STD-LOGIC; 

STD-LOGIC-VECTOR (15 downto 0 ) ; 
RAM.WEN : out STD-LOGIC; 
IP-DEBUG : out STD-LOGIC) ; 

a r c h i t e c t u r e B e h a v i o r a l of I m a g e P r o c e s s o r i s 

c o n s t a n t ROW-COUNT : i n t e g e r := 5; 
c o n s t a n t COL-COUNT : i n t e g e r := 5; 

Type D ef initio n 
t y p e r e g _ a r r a y i s array ( i n t e g e r range < > , i n t e g e r range <>) of s t d _ i o g i c _ v e c t or (7 downto 

0 ) ; 

Signal Declarations 
Row Memory Signals 

signal row.in : reg.array (ROWJDOUNT—1 downto 0, COL-COUNT—1 downto 0) ; 
s i g n a l 

0 ) 
s i g n a l 

0 ) 
s i g n a l 

0 ) 
s i g n a l 

0 ) 
s i g n a l 

0 ) 

s i g n a l 

row. in .OO , 

r o w . i n . 1 0 , 

row_in_20 , 

row_in_30 , 

row_in_40 , 

r o w . a d d r : 

r o w . i n . 0 1 , row_in_02 , row. : 

r o w _ i n . l l , row_in_12 , r o w . 

row_in_21 , r o w . i n _ 2 2 , row. : 

row_in_31 , r o w . i n . 3 2 , r o w . 

n_03 , row_in_04 

n_13 , row_in_14 

n . 2 3 , row_in_24 

n_33 , r o w - i n . 3 4 

row_in_41 , row_in_42 , row_in_43 , r o w . i n . 4 4 

STDXOGIC.VECTOR (10 downto 0 ) ; 
s i g n a l row.wen : STDXOGIC; 
s i g n a l r o w . e n : STD-LOGIC; 
s i g n a l p x l . c n t : STDXOGIC.VECTOR (2 downto 0 ) ; 
s i g n a l r o w . a d d r . m a x : STDXOGICVECTOR (10 downto 0 ) ; 
s i g n a l row-wen_in : s t d . l o g i c ; 

s t d - l o g 

s t d . l o g 

s t d . l og 

s t d . l o g 

c . v e c t o r (7 downto 

c . v e c t o r (7 downto 

c . v e c t o r (7 downto 

c . v e c t o r (7 downto 

s t d . l o g i c - v e c t o r (7 downto 

RGB 
s h a r e d 
s h a r e d 
s h a r e d 
s h a r e d 
s h a r e d 
s h a r e d 
s i g n a l 
s i g n a l 
s i g n a l 
s i g n a l 

construction signals 
v a r i a b l e R, G, B : i n t e g e r 
v a r i a b l e R l , Gl 
v a r i a b l e R2, G2, 
v a r i a b l e Ri , Gi , 
v a r i a b l e Y i , U i , 
v a r i a b l e Y t , U t , 

Bl 
B2 
Bi 
Vi 
Vt 

i n t e g e r ; 
i n t e g e r ; 
i n t e g e r ; 
i n t e g e r ; 
s t d . l o g i c . v e c t o r (31 downto 0) ; 

tmp.Y : STD-LOGIC-VECTOR (9 downto 0) ; 
STD-LOGIC-VECTOR (9 downto 0) 
STD-LOGIC-VECTOR (3 downto 0) 
STD-LOGIC-VECTOR (3 downto 0) 

— Edge Enhanced Interpolation signal 
s h a r e d v a r i a b l e D l , D2, D3, D4 : i n t e 
s h a r e d v a r i a b l e D p i , Dp2, Dp3, Dp4 : 
s h a r e d v a r i a b l e P i , P 2 , P 3 , P4 
s h a r e d v a r i a b l e P 5 , P 6 , P 7 , P8 
s h a r e d v a r i a b l e t P l , t P 2 , t P 3 , 
s h a r e d v a r i a b l e tP5 , tP6 , t P 7 , 
s h a r e d v a r i a b l e c l , c2 , c3 , c4 
s h a r e d v a r i a b l e c 5 , c 6 , c 7 , c8 
s h a r e d v a r i a b l e t h r e s h o l d 1 
s h a r e d v a r i a b l e t h r e s h o l d 2 
s h a r e d v a r i a b l e suml , sum2 
s h a r e d v a r i a b l e s u m 3 , sum4 

ger ; 

inte 
: inte 
tP4 : 
tP8 : 
: inte 

8 : inte 
integer 
integer 
integer ; 
int eger; 

t e g e r ; 

i t e g e r ; 
i t e g e r ; 

ge r 
g e r 

— O 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 
s i g n 

utput Control signals 
b y t e . c n t : STD .LOGIC; 
t m p . b y t e : STDXOGIC.VECTOR (7 downto 0) ; 
o u t . e n : STD-LOGIC; 
o u t . w a i t : STD-LOGIC; 
o u t . c n t : STDXOGICVECTOR (14 downto 0 ) ; 
i n . c n t : STDXOGIC.VECTOR (14 downto 0 ) ; 
i n . e n : STDXOGIC; 
i n t _en : STDXOGIC; 
i n t . d i n : STDXOGIC.VECTOR (7 downto 0 ) ; 
r o w - d l , row_d2 , row.d3 , r o w . d 4 : STDXOGIC; 
c o l - d l , c o l . d 2 , co l_d3 , c o l . d 4 : STDXOGIC; 
r o w . c n t , c o l . c n t : STDXOGIC.VECTOR (10 downto 0) ; 

s i g n a l i n t _ i p _ d e b u g : STDXOGIC; 

signal start-row : STDJ^OGIC-VECTOR (10 downto 0) ; 

i l l 
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a VHDL CODE 

signal start-col : STDJJOGIC-VECTOR (10 downto 0) , 

Component Definition 
COMPONENT RowBuffer IS 

p o r t ( 
a d d r : IN s t d . l o g i c . V E C T O R (10 downto 0 ) ; 
e l k : IN s t d - l o g i c ; 
d i n : IN s t d . l o g i c . V E C T O R (7 downto 0 ) ; 
dou t : OUT s t d _ l o g i c . V E C T O R ( 7 downto 0 ) ; 
en : IN s t d - l o g i c ; 
we: IN s t d _ l o g i c ) ; 

END OCMPONENT; 

b e g i n 

How Buffers 
Generate the Row Buffers based on the number of rows and cols required to process a pixel-

— Row-Buffer.GEN: 
— for N in ROW-COUNT- 2 downto 0 generate 
— begin 

Jnst-Row : RowBuffer Port Map ( 
addr ==> row.addr , 
elk => CLK, 

— din ~> row-in (N, 4 ) , 
— dout => row„in (N+l ,0) , 
— en => EN, 
— we => row-wen 

) : 
— end generate; 

I n s t . R o w l : RowBuffer Port Map ( 
add r ~> r o w . a d d r , 
e lk => CLK, 
d in => row_in_04 , 
dou t => r o w . i n - 1 0 , 
en —> row.en , 
we —> row.wen 

) ; 
Ins t_Row2 : RowBuffer Por t Map ( 

a d d r => r o w . a d d r , 
e lk => CLK, 
d in => r o w . i n . 1 4 , 
dou t => row_in -20 , 
en => row.en , 
we => row.wen 

) ; 
Ins t_Row3 : RowBuffer Port Map ( 

add r => r o w . a d d r , 
e lk => CLK, 
d in => row_in_24 , 
dou t => row_in_30 , 
en => row.en , 
we => row.wen 

) ; 
Ins t_Row4 : RowBuffer Port Map ( 

add r => r o w - a d d r , 
e lk => CLK, 
d in => row_in_34 , 
d o u t —> row_in_40 , 
en —> row.en , 
we => row.wen 

Row Shift 
Handle the addressing of the Row Buffer 

row.wen < = EN or o u t . e n ; 
r o w . e n < = EN or o u t . e n ; 
r o w . a d d r . m a x < = c o n v . s t d . l o g i c . v e c t o r { c o n v . i n t e g e r ( c o l . s i z e ) — 5 , 1 1 ) ; 

ROW-SHPT : p r o c e s s (CLK, RESET) 
b e g i n 

i f (RESET = '1 ' ) t h e n 
r o w . i n . 0 0 < = ( o t h e r s => ' 0 ' ) ; 
r o w . i n . 0 1 < = ( o t h e r s => ' 0 ' ) ; 
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C. VHDL CODE 

row_in_02 <— 
row_in_03 < = 
row_in_04 < = 

— row^in-1 0 <• 
r o w . i n . l 1 <— 
row_in_12 < = 
row_in_13 < = 
r o w . i n . 1 4 < = 

row-in-20 <• 
row_in_21 < = 
row_in_22 <— 
r o w . i n . 2 3 <= 
r o w . i n . 2 4 <~ 

row-in-30 < 
row_ in_31 < = 
r o w . i n . 3 2 < = 
row_in_33 < = 
row_in_34 < = 

— row-in-40 < 
row_in_4 1 < = 
row_in_42 <— 
r o w . i n . 4 3 <= 
row_in_44 < = 

o t h e r s => ' 0 ' ) ; 
o t h e r s => ' 0 ' ) ; 
o t h e r s ~> '0 ' ) ; 

: ( o t h e r s => '0 ') ; 
o t h e r s —> '0 ') ; 
o t h e r s => '0 ') ; 
o t h e r s => '0 ' ) ; 
o t h e r s => '0 ' ) ; 

• (others => '0 ') ; 
o t h e r s —> ' 0 ') ; 
o t h e r s => '0 ' ) ; 
o t h e r s => '0 ' ) ; 
o t h e r s => '0 ' ) ; 

: (others - > '0 ') ; 
o t h e r s => ' 0 ' ) ; 
o t h e r s —> '0 ' ) ; 
o t h e r s => '0 ' ) ; 
o t h e r s => '0 ') ; 

- (others -> '0 ') ; 
o t h e r s => '0 ' ) ; 
o t h e r s —> '0 ') ; 
o t h e r s —> '0 ' ) ; 
o t h e r s => ' 0 ' ) ; 

r o w . a d d r < = ( o t h e r s => ' 0 ' ) ; 

r o w . c n t < = ( o t h e r s = > ' 0 ' ) ; 
c o L c n t < ~ ( o t h e r s — > ' 0 ' ) ; 

s l s i f (CLK'EVENT and CLK = ' 1 ' ) t h e n 
i f (EN = * 1 * or o u t . e n = ' ! ' ) t h e n 

i f ( n o t ( ( r o w < = " 0 0 0 0 0 0 0 0 0 1 1 " ) or (row — " 0 0 0 0 0 0 0 0 1 0 0 " and col < -
0 0 0 0 0 0 0 0 1 0 0 " ) ) or o u t . e n = ' 1 ' ) t h e n 

c o l . c n t < = c o l . c n t + 1; 
i f c o l . c n t = c o l . s i z e t h e n 

c o L c n t < = ( o t h e r s = > ' 0 ' ) ; 
r o w . c n t < = r o w . c n t -f- 1 ; 
i f r o w . c n t — r o w . s i z e t h e n 

r o w . c n t <— ( o t h e r s => ' 0 ' ) ; 
end i f ; 

end i f; 
end i f; 

if ( r o w . a d d r = r o w . a d d r . m a x ) t h e n 
r o w . a d d r < = ( o t h e r s => ' 0 ' ) ; 

e l s e 
r o w . a d d r < = r o w . a d d r -f 1; 

end i f ; 

if DATAJvlODE = 0 t h e n 
r o w . i n . 0 0 < = COL(7 downto 0) ; 

e l s e 
r o w . i n . 0 0 < = DIN; 

end i f; 

Delay row count sig 
r o w . d l < = r o w ( 0 ) ; 
row_d2 < = r o w . d l ; 
row_d3 < = row_d2 ; 
row_d4 <_= row_d3 ; 

c o l . d l < = c o l ( 0 ) 
co l_d2 < = c o l . d l 
c o l . d 3 < = co l_d2 
co l_d4 <~ c o l - d 3 

i a I by 5 sh ift s 

r o w . i n . O l <— r o w . i n . 0 0 
row_in_02 < = r o w . i n . O l 
row_in_03 < = row_in_02 
r o w . i n . 0 4 < = row_in_03 

r o w . i n . l 1 < = r o w . i n . 1 0 
r o w . i n . l 2 < = r o w . i n . l 1 
r o w . i n . l 3 < = r o w . i n . l 2 
row_in_14 <= row_in_13 
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row_in_21 < = r o w . i n . 2 0 
row_in_22 < = row_in_21 
r o w . i n . 2 3 < = r o w . i n . 2 2 
r o w . i n . 2 4 < = r o w . i n . 2 3 

r o w . i n . 3 1 < = row_in_30 
r o w . i n . 3 2 < ~ row_in_31 
r o w . i n . 3 3 < = r o w . i n - 3 2 
r o w . i n . 3 4 <— r o w . i n . 3 3 

r o w . i n . 4 1 < = r o w . i n_4 0 
r o w . i n . 4 2 < = row_in_41 
row_in_43 <— r o w . i n . 4 2 
row_in_44 < = r o w . i n . 4 3 

tmp.Y < = Y; 
end i f ; 

end i f; 
end p r o c e s s ROW-SHFT; 

i n . e n < = ' 1 * when ( ( r o w < = " 0 0 0 0 0 0 0 0 0 1 1 " ) or (row = " 0 0 0 0 0 0 0 0 1 0 0 " and col < = " 0 0 0 0 0 0 0 0 1 0 1 " ) ) e l s e 
'0 ' ; 

o u t . e n < = ' 1 ' when ( o u t . c n t / = 0) e l s e ' 0 ' ; 

ROW-SHFT.DELAY : p r o c e s s (RESET, CLK) 
b e g i n 

i f (RESET = '1 ' ) t h e n 
o u t . c n t < = ( o t h e r s —> ' 0 ' ) ; 

e l s i f (CLK'Event and CLK = ' 1 ' ) t h e n 
i f (row — r o w . s i z e and col — c o l . s i z e ) t h e n 

o u t . c n t < = c o n v . s t d . l o g i c . v e c t o r (4* c o n v _ i n t e g e r ( c o l . s i z e ) + 1 0 , 1 5 ) ; 
conv.std-logic-vector (16, 15) ; 

end i f; 

i f ( o u t . c n t / = 0) t h e n 
o u t . c n t < = o u t . c n t — 1; 

end i f ; 
end i f; 

end p r o c e s s ROW_SHFT-DELAY; 

Synchronize Ouput 
Latch 16 bit words with a signal to trigger a WEN for the ram fifo . 

S Y N C J O U T : p r o c e s s (CLK, RESET) 
b e g i n 

i f (RESET = '1 ' ) t h e n 
DOUT <= ( o t h e r s ~> ' 1 ' ) ; 
by t e . c n t < = '0 ' ; 
RAM.WEN < = ' 0 ' ; 
i n t . e n < = '0 ' ; 

e l s i f (CLK'EVENT and CLK = ' 1 ' ) t h e n 
i n t . e n < = EN; 
i f ((EN — ' 1 * and i n . e n = ' 0 ' ) or o u t . e n — ' 1 ' ) t h e n 

b y t e . c n t < = NOT b y t e . c n t ; 

— Build a 16 bit word with 2—8 b its for raw data output . 
i f ( c o l o r . b i t ™ ' 0 ' ) t h e n 

i f ( b y t e . c n t — ' 1 ' ) then 
DOUT < = tmp_Y(7 downto 0)& Y (7 downto 0 ) ; 

SWITCH FOR HARDWARE SYNTHESIS 
RAM.WEN < = ' 1 ' ; 

e l s e 
RAM.WEN < = ' 0 ' ; 

end i f; 
e l s e 

DOUT < = Y(7 downto 0) & U(3 downto 0) &c V(3 downto 
0 ) ; 

RAM.WEN < = ' 1 ' ; 
end i f; 

e l s e 
— byte-cnt <= '0'; 
RAMWEN < = ' 0 ' ; 

end i f ; 
end i f ; 

end p r o c e s s S Y N C J O U T ; 
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C. VHDL CODE 

Get RGB 
Bilinear Interpolation of the the RAW image data to 3— 8bit color channels . 

GET-RGB : p r o c e s s (RESET, CLK, EN) 
b e g i n 

i f (RESET = ' 1 ' ) then 
Y <— ( o t h e r s —> ' 0 ' ) 
U < = ( o t h e r s —> '0 ') 
V <— ( o t h e r s => ' 0 ' ) 

e l s i f (CLK'Event and CLK '1 ' and (EN — '1 ' or o u t . e n = ' 1 ' ) ) t h e n 

case OUTPUT-FORMAT is 
c a s e DATAJVIODE i s 
when " 0 0 0 " => TEST DATA MODE 

R := c o n v . i n t e g e r ( row_in_44 ) ; 
G := c o n v . i n t e g e r ( r o w . i n . 4 4 ) ; 
B :— c o n v . i n t e g e r ( r o w . i n . 4 4 ) ; 

when " 0 0 1 " => RAW DATA MODE 
R ;= c o n v . i n t e g e r ( r o w . i n . 4 4 ) ; 
G := 0; 
B := 0; 

when " 0 1 0 " => Nearest Neighbour Interpolatior 
if ( r o w . c n t (0) = ' 0 ' ) t h e n 

i f ( c o l . c n t (0 ) = '0 ' ) then 
Red Row 

— c o n v . i n t e g e r 
= c o n v . i n t e g e r 

( row_in_43 ) ; 
( r o w . i n . 4 4 ) ; 

= c o n v . i n t e g e r ( r o w _ i n _ 3 4 ) ; 

— Red Center 
= c o n v . i n t e g e r ( r o w _ i n _ 4 4 ) ; 
= c o n v . i n t e g e r ( r o w _ i n _ 3 4 ) ; 
= c o n v . i n t e g e r ( r o w _ i n _ 3 3 ) ; 

Green Center 

i f ( c o l . c n t ( 0 ) 

end i f; 
end i f; 

when " O i l " => — 

' 0 ' ) t h e n Blue Center 
c o n v . i n t e g e r ( r o w . i n . 3 3 ) ; 
c o n v . i n t e g e r ( r o w . i n . 4 3 ) ; 
c o n v . i n t e g e r ( r o w _ i n _ 4 4 ) ; 

— Green Center on Blxte Row 
c o n v . i n t e g e r ( row_in_34 ) ; 
c o n v . i n t e g e r ( r o w _ i n _ 3 3 ) ; 
c o n v . i n t e g e r ( r o w _ i n _ 4 3 ) ; 

Bilinear Interpolation 

Green Center on 
i f ( r o w . c n t (0) = '()*) t h e n 

i f ( c o l . c n t (0) = ' 0 ' ) t h e n 
Red Row 

R :— ( c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) + c o n v . i n t e g e r ( 
row_in_21 ) ) / 2 ; 

G := c o n v . i n t e g e r ( r o w . i n . 2 2 ) ; 
B := ( c o n v . i n t e g e r ( r o w . i n . 1 2 ) + c o n v . i n t e g e r ( 

r o w . i n _ 3 2 ) ) / 2 ; 

end i f; 

— Red Center 
R := c o n v . i n t e g e r ( r o w . i n . 2 2 ) ; 
G := ( c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) + c o n v . i n t e g e r 

r o w _ i n _ 2 1 ) + c o n v . i n t e g e r ( r o w _ i n . l 2 ) + 
c o n v . i n t e g e r ( row_in_32 ) ) / 4 ; 

B := ( c o n v . i n t e g e r ( r o w . i n . l l ) + c o n v . i n t e g e r 
r o w _ i n _ 1 3 ) + c o n v . i n t e g e r ( r o w _ i n _ 3 1 ) + 
c o n v . i n t e g e r ( row_in_33 ) ) / 4 ; 

i f ( c o l . c n t ( 0 ) ' 0 ' ) t h e n Blue Center 
R :~ ( c o n v . i n t e g e r ( r o w . i n . l l ) + c o n v . i n t e g e r 

r o w _ i n _ 1 3 ) + c o n v . i n t e g e r ( r o w _ i n _ 3 1 ) + 
c o n v . i n t e g e r ( row_in_33 ) ) / 4 ; 
( c o n v . i n t e g e r ( r o w . i n . 2 1 ) + c o n v . i n t e g e r 

r o w _ i n _ 2 1 ) + c o n v . i n t e g e r ( r o w . i n . 1 2 ) + 
c o n v . i n t e g e r ( r o w . i n . 3 2 ) ) / 4 ; 
c o n v . i n t e g e r ( r o w _ i n _ 3 3 ) ; 

—• Green Center on Blue Row 
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R, := ( c o n v_in t e g e r ( r o w . i n . 1 2 ) + c o n v . i n t e g e r ( 
r o w _ i n _ 3 2 ) ) / 2 ; 

G := c o n v . i n t e g e r ( r o w . i n . 2 2 ) ; 
B :— ( c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) + c o n v . i n t e g e r ( 

row_in_21 ) ) / 2 ; 
end i f; 

end i f ; 

when " 100" —> Edge Enhanced 
i f not ( r o w . c n t ( O ) = c o l . c n t ( O ) ) t h e n Red of Blue Center Pixel 

North Edge Detect 
Dl := a b s ( con v . i n t ege r ( r o w _ i n _ 0 2 ) — c o n v . i n t e g e r ( 

r o w . i n . 2 2 ) ) + 
a b s ( con v . i n t ege r ( r o w _ i n _ 1 2 ) — 

c o n v . i n t e g e r ( r o w . i n . 3 2 ) ) + 
a b s ( 2 * c o n v . i n t e g e r ( r o w . i n . 1 2 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) — 
c o n v . i n t e g e r ( r o w . i n . 2 3 ) ) / 2 ; 

East Edge Detect 
D2 :~ abs ( c o n v . i n t e g e r ( r o w _ i n _ 2 4 ) — c o n v . i n t e g e r ( 

r o w . i n . 2 2 ) ) + 
a b s ( c o n v . i n t e g e r ( r o w . i n . 2 3 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) ) + 
a b s ( 2 * c o n v . i n t e g e r ( r o w _ i n _ 2 3 ) — 

c o n v . i n t e g e r ( r o w . i n . 1 2 ) — 
c o n v . i n t e g e r ( r o w _ i n _ 3 2 ) ) / 2 ; 

South Edge Detect 
D3 := abs ( c o n v . i n t e g e r ( r o w _ i n _ 4 2 ) — c o n v . i n t e g e r ( 

r o w . i n . 2 2 ) ) + 
abs ( c o n v . i n t e g e r ( r o w . i n . 3 2 ) — 

c o n v . i n t e g e r ( r o w . i n . 1 2 ) ) + 
a b s ( 2 * c o n v . i n t e g e r ( r o w . i n . 3 2 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 2 3 ) — 
c o n v . i n t e g e r ( row_in_21 ) ) / 2 ; 

West Edge Detect 
D4 := abs ( c o n v . i n t e g e r ( r o w _ i n _ 2 0 ) — c o n v . i n t e g e r ( 

r o w _ i n _ 2 2 ) ) + 
abs ( c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 2 3 ) ) + 
a b s ( 2 * c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 3 2 ) — 
c o n v . i n t e g e r ( row_in_12 ) ) / 2 ; 

t P l : = c o n v . i n t e g e r ( r o w _ i n _ 1 2 ) -f ( c o n v . i n t e g e r ( r o w _ i n _ 2 2 
) — c o n v . i n t e g e r ( r o w _ i n . 0 2 ) ) / 2 ; 

i f Dl < t h r e s h o l d l t h e n 

e l s e 

end i f; 

P I 
c l 

P I 
c l 

:= t P l ; 
:= 1; 

:= 0; 
:= 0; 

t P 2 := c o n v . i n t e g e r ( r o w _ i n _ 2 3 ) + ( c o n v . i n t e g e r ( r o w . i n . 2 2 
) — c o n v . i n t e g e r ( r o w . i n . 2 4 ) ) / 2 ; 

i f D2 < t h r e s h o l d l then 
P2 := t P 2 ; 
c2 : - 1; 

e l s e 

end 

t P 3 

i f ; 

_ 

P2 := 0; 
cl := 0; 

conv . in te ( r o w . i n - 3 2 ) + ( c o n v . i n t e g e r ( r o w . i n . 2 2 
) — c o n v . i n t e g e r ( row_in_42 ) ) / 2 ; 

i f D3 < t h r e s h o l d l t h e n 
P3 := t P 3 ; 
c3 := 1; 

e l s e 
P3 := 0; 
c3 := 0; 

end i f; 

t P 4 := c o n v . i n t e g e r ( r o w . i n . 2 1 ) + ( c o n v . i n t e g e r ( r o w . i n . 2 2 
) — c o n v . i n t e g e r ( r ow_in_20 ) ) / 2 ; 

i f D4 < t h r e s h o l d l t h e n 
P4 := t P 4 ; 
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P4 := 0; 
c4 := 0; 

end i f; 

suml := P I + P2 + P3 + P4 ; 
sum2 := c l + c2 + c3 + c 4 ; 

— Fill in the missing Green Pixel 
i f sum2 = 0 t h e n 

e 

e 

e 

s i f 

s i f 

s i f 

G := ( t P l + t P 2 + t P 3 + t P 4 ) / 4 ; 
sum2 — 1 t h e n 

G := s u m l ; 
sum2 = 2 t h e n 

G := s u m l / 2 ; 
sum2 = 3 t h e n 

G := s u m l » 2 1 / 6 4 ; 
1/3 

— 21/64 

e l s e 
suml / 4 ; 

end i f; 

— Find missing Red or Blue Pixel 

t P 5 := (( ( con v _ i n t ege r ( r o w _ i n _ l l ) 4- c o n v - i n t e g e r ( 
row_in_3 1 ) ) / 2 + G — c o n v _ i n t e g e r ( r o w . i n . 2 1 ) ) + 

( ( c o n v - i n t e g e r ( r o w - i n - 1 3 ) -f-
c o n v _ i n t e g e r ( row_in_33 ) ) / 2 
+ G — c o n v - i n t e g e r ( 

r o w _ i n - 2 3 ) ) ) / 2; 
i f (Dl < t h r e s h o l d 2 ) or (D3 < t h r e s h o l d 2 ) t h e n 

P5 := t P 5 ; 
c5 := 1; 

e l s e 
P5 := 0; 
c5 := 0; 

end i f; 

t P 6 :— ( ( ( c o n v _ i n t e g e r ( r o w . i n . l l ) 4- c o n v - i n t e g e r ( 
r ow_ in_13 ) ) / 2 + G — c o n v - i n t e g e r ( r o w - i n _ 1 2 ) ) 4-

( ( con v _ i n t e g e r ( r o w _ i n _ 3 1 ) + 
c o n v - i n t e g e r ( row_in_33 ) ) / 2 
+ G — c o n v - i n t e g e r ( 

r o w . i n . 3 2 ) ) ) / 2; 
i f (D2 < t h r e s h o l d 2 ) o r (D4 < t h r e s h o l d 2 ) t h e n 

P6 := t P 6 ; 
c6 := 1; 

e l s e 
P6 := 0; 
c6 := 0; 

end i f; 

sum3 := P5 + P 6 ; 
sum4 :— c5 + c6 ; 

if sum4 = 0 then 
if (Dl <= D2 and Dl <= D4) or (D3 <= D2 and D3 <= 

D4) then 
P7 := tP5; 

else 
P7 := tP6; 

e n a 1 
e l s if sum4 = 

P7 : = 
e l s e 

P7 : = 
end i f; 

i f r o w . c n t (0) 
R : = 
B : = 

e l s e Blue 
R : = 
B : = 

end i f; 

Green Center 

I ; 

1 t h e n 
sum3 ; 

s u m 3 / 2 ; 

= ' 0 ' t h e n 
c o n v - i n t e g e r 
P 7 ; 
Center 
P 7 ; 
c o n v - i n t e g e r 

Pixel 

Red 
( r o w . i n . 2 2 ) ; 

( r o w - i n _ 2 2 ) ; 

Center 
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North Edge Detect 
Dl := abs ( c o n v . i n t e g e r ( r o w _ i n _ 0 2 ) — c o n v . i n t e g e r ( 

r o w , i n . 2 2 ) ) + 
abs( c o n v . i n t e g e r ( r o w . i n . 1 2 ) — 

c o n v . i n t e g e r ( r o w . i n . 3 2 ) ) + 
( a b s ( c o n v . i n t e g e r ( r o w . i n . l l ) — 

c o n v . i n t e g e r ( r o w . i n . 2 2 ) ) + 
abs ( c o n v . i n t e g e r ( r o w . i n . 1 3 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 2 2 ) ) ) / 2 ; 

— Bast Edge Detect 
D2 := abs ( c o n v . i n t e g e r ( r o w _ i n _ 2 4 ) — c o n v . i n t e g e r ( 

r o w . i n . 2 2 ) ) + 
abs ( c o n v . i n t e g e r ( r o w _ i n _ 2 3 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) ) + 
( a b s ( con v . i n t e g e r ( r o w _ i n _ 1 3 ) — 

c o n v . i n t e g e r ( r o w . i n . 2 2 ) ) + 
abs ( c o n v . i n t e g e r ( r o w . i n . 3 3 ) — 

c o n v . i n t e g e r ( row_in_22 ) ) ) / 2 ; 

South Edge Detect 
D3 := a b s ( c o n v . i n t e g e r ( r o w _ i n _ 4 2 ) — c o n v . i n t e g e r ( 

r o w _ i n _ 2 2 ) ) -f 
abs ( c o n v . i n t e g e r ( r o w _ i n _ 3 2 ) — 

c o n v . i n t e g e r ( r o w . i n . 1 2 ) ) + 
( abs ( con v . i n t e g e r ( r o w . i n . 3 3 ) — 

c o n v . i n t e g e r ( r o w _ i n _ 2 2 ) ) + 
abs( c o n v . i n t e g e r ( r o w _ i n _ 3 1 ) — 

c o n v . i n t e g e r ( row_in_22 ) ) ) / 2 ; 

West Edge Detect 
D4 := a b s ( c o n v . i n t e g e r ( r o w _ i n _ 2 0 ) — c o n v . i n t e g e r ( 

r o w . i n . 2 2 ) ) + 
abs ( c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) — 

c o n v . i n t e g e r ( r o w . i n . 2 3 ) ) + 
( a b s ( c o n v . i n t e g e r ( r o w . i n . 3 1 ) — 

c o n v . i n t e g e r ( r o w . i n . 2 2 ) ) + 
abs( c o n v . i n t e g e r ( r o w . i n . l l ) — 

c o n v . i n t e g e r ( r o w . i n . 2 2 ) ) ) / 2 ; 

i f (Dl <= D2) and (Dl <= D3) and (Dl < = D4) t h e n — Dl is 
minimum 

P I := c o n v . i n t e g e r ( r o w _ i n _ 1 2 ) + ( c o n v . i n t e g e r ( 
r o w _ i n _ 2 2 ) — c o n v . i n t e g e r ( r o w _ i n _ 0 2 ) ) / 2 ; 

i f D2 < = D4 t h e n 
P2 := c o n v . i n t e g e r ( r o w . i n . 2 3 ) + 

( c o n v . i n t e g e r ( r o w . i n . 2 2 ) — ( 
c o n v . i n t e g e r ( r o w _ i n _ 1 3 ) + 
c o n v . i n t e g e r ( r o w . i n . 3 3 ) ) / 2 ) 

e l s e 
P2 := c o n v . i n t e g e r ( r o w _ i n _ 2 1 ) + 

( c o n v . i n t e g e r ( r o w . i n . 2 2 ) — ( 
c o n v . i n t e g e r ( r o w . i n . l l ) + 
c o n v . i n t e g e r ( row_in_31 ) ) / 2 ) 

end i f; 
e l s i f D2 < = D3 and D2 < = D4 t h e n — D2 in minimum 

P2 :— c o n v . i n t e g e r ( r o w . i n . 2 3 ) + ( c o n v . i n t e g e r ( 
r o w . i n . 2 2 ) — c o n v . i n t e g e r ( r o w . i n . 2 4 ) ) / 2 ; 

i f Dl < = D3 t h e n 
P I :== c o n v . i n t e g e r ( r o w . i n . 1 2 ) + 

( c o n v . i n t e g e r ( r o w . i n . 2 2 ) — ( 
c o n v . i n t e g e r ( r o w . i n . l l ) + 
c o n v . i n t e g e r ( r o w _ i n _ 1 3 ) ) / 2 ) 

e l s e 
PI := c o n v . i n t e g e r ( r o w . i n . 3 2 ) + 

( c o n v . i n t e g e r ( r o w . i n . 2 2 ) — ( 
c o n v . i n t e g e r ( r o w _ i n _ 3 1 ) + 
c o n v . i n t e g e r ( r o w . i n . 3 3 ) ) / 2 ) 

end i f; 
e l s i f D3 < = D4 t h e n 

P I := c o n v . i n t e g e r ( r o w _ i n _ 3 2 ) -f ( c o n v . i n t e g e r ( 
r o w . i n . 2 2 ) — c o n v . i n t e g e r ( r o w . i n . 4 2 ) ) / 2 ; 

i f D2 <— D4 then 
P2 := c o n v . i n t e g e r ( r o w _ i n _ 2 3 ) + 

( c o n v . i n t e g e r ( r o w _ i n _ 2 2 ) — ( 
c o n v . i n t e g e r ( r o w _ i n _ 1 3 ) + 
c o n v . i n t e g e r ( r o w . i n . 3 3 ) ) / 2 ) 

118 

http://row.in.12
http://row.in.32
http://row.in.22
http://row.in.13
http://row.in.22
http://row.in.22
http://row.in.33
http://row.in.12
http://row.in.33
http://row.in.22
http://row.in.23
http://row.in.31
http://row.in.22
http://row.in.22
http://row.in.23
http://row.in.22
http://row.in.33
http://row.in.22
http://row.in.23
http://row.in.22
http://row.in.24
http://row.in.12
http://row.in.22
http://row.in.32
http://row.in.22
http://row.in.33
http://row.in.22
http://row.in.42
http://row.in.33


C. VHDL CODE 

c o n v _ i n t e g e r ( r o w _ i n _ 2 1 ) -\-
( c o n v _ i n t e g e r ( r o w . i n . 2 2 ) — ( 

c o n v . i n t e g e r ( r o w . i n . l l ) + 
c o n v - i n t e g e r ( row_in_31 ) ) / 2 ) 

end i f; 

P2 := c o n v . i n t e g e r ( r o w . i n . 2 1 ) + ( c o n v . i n t e g e r ( 
r o w . i n . 2 2 ) — c o n v . i n t e g e r ( r o w _ i n _ 2 0 ) ) / 2 ; 

if Dl < = D3 then 
PI := c o n v . i n t e g e r ( r o w _ i n _ 1 2 ) + 

( c o n v . i n t e g e r ( r o w . i n . 2 2 ) — ( 
c o n v . i n t e g e r ( r o w . i n . l l ) + 
c o n v . i n t e g e r ( r ow_ in_13 ) ) / 2 ) 

c o n v . i n t e g e r ( r o w . i n . 3 2 ) + 
( c o n v . i n t e g e r ( r o w . i n . 2 2 ) — ( 

c o n v . i n t e g e r ( r o w _ i n _ 3 1 ) + 
c o n v . i n t e g e r ( r o w . i n . 3 3 ) ) / 2 ) 

end i f ; 
end i f; 

end i f; 
l e r s —> 
R := 0; 
G := 0; 
B := 0; 

G := c o n v . i n t e g e r ( r o w . i n . 2 2 ) ; 
i f r o w . c n t ( O ) — ' 0 ' t h e n Red 

R := P2; 
B := PI ; 

e l s e 
R := P I ; 
B := P2; 

end i f; 

row 

end c a s e ; 

if d a t a . m o d e = " 0 0 0 " or d a t a - m o d e = " 0 0 1 " t h e n 

e l s e 

Yt 
Ut 
Vt 
Y < 

= c o n v_s t d - l o g i c _ v e c t or (R, 32) 
= c o n v _ s t d _ l o g i c _ v e c t o r (G, 32) 
= c o n v _ s t d _ l o g i c _ v e c t o r (B , 32) 

" 0 0 " & Y t ( 7 downto 0) ; 

e n d 

U < = U t ( 7 downto 4) ; 
V < = V t ( 7 downto 4) ; 

Yi := ( ( ( 6 6 * R ) + ( 1 2 9 * G ) ) + ( ( 2 5 * B ) + 4 2 2 4 ) ) ; 
Ui := ( ( ( - 3 8 * R ) + ( - 7 4 * G ) ) + ( ( 1 1 2 * B ) + 3 2 8 9 6 ) ) : 
Vi := ( ( ( 1 1 2 * R ) + ( - 9 4 * G ) ) + ( ( 1 8 * B ) + 3 2 8 9 6 ) ) ; 
Yt := c o n v _ s t d _ l o g i c _ v e c t o r ( Y i , 3 2 ) ; 
Ut := c o n v_s t d _ l o g i c _ v e c t or ( Ui , 3 2 ) ; 
Vt := c o n v . s t d _ l o g i c _ v e c t or (Vi , 3 2 ) ; 
V < = " 0 0 " & Y t ( 1 5 downto 8 ) ; 
U < = U t ( 1 5 downto 1 2 ) ; 
V < = V t ( 1 5 downto 1 2 ) ; 

end i f; 
end process GET-RGB; 

end Behavioral : 

Listing C.4: Image_Processor_TB.vhd 

Company: 
Engineer : 

Create Date : 
Design Name : 
Module Name: 
Project Name: 
Target Device: 
Tool versions : 
Description ; 

12:42:31 03/12/2008 
ImageProcessor 
/home/akarloff /pill-machine/hdl/Spartan-FG-v2/Image-Processor-TB . vhd 
Spartan-FG-v2 
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VHDL Test Bench Created by ISE for module : ImageProcessor 

Dependencies : 

Revision : 
Revision 0.01 — File Created 
Additional Comments: 

Notes : 
— This testb ench has been automatically generated using types std-logic and 

std-logic -vector for the ports of the unit under t e s t . Xilinx recommends 
that these types always be used for the top—lev el I/O of a design in order 
to guarantee that the testb ench will bind correctly to the post — implementation 

— simulation model. 

LIBRARY ieee ; 
USE ieee . st d_logic_l 1 64 .ALL; 
USE ieee . s t d _ l o g i c _ u n s i g n e d . a l l ; 
USE ieee . numer ic_s td .ALL; 
USE IEEE . STD.LOGIC-ARITH . ALL; 
USE s td . t e x t i o .ALL; 

l ibrary t e x t u t i l ; — Synposys Text I/O package 
use t e x t u t i l . s t d _ l o g i c _ t e x t i o . a l l ; 
use t e x t u t i l . t x t - u t i l . a l l ; 

ENTITY Image_Processor_TB_vhd IS 
END Image_Proces8or .TB.vhd ; 

ARCHITECTURE behavior OF Image_Processor_TB_vhd IS 

Component Declaration for the Unit Under Test (UUT) 
COMPONENT ImageProcessor 
PORT( 

CLK : IN s t d - l o g i c ; 
RESET : IN s t d - l o g i c ; 
EN : IN s t d - l o g i c ; 
DIN : IN s t d _ l o g i c _ v e c t o r ( 7 downto 0) ; 
ROW : IN s t d _ l o g i c _ v e c t o r (10 downto 0 ) ; 
COL : IN s t d _ l o g i c _ v e c t o r (10 downto 0 ) ; 
FRAME : IN s t d - l o g i c ; 
ROW-SIZE : IN s t d _ l o g i c _ v e c t o r (10 downto 0 ) ; 
COL.SIZE : IN s t d . l o g i c . v e c t o r (10 downto 0 ) ; 
DATA-MODE : IN s t d - l o g i c v e c t or (2 downto 0 ) ; 
COLOR-BIT : IN s t d - l o g i c ; 
DOUT : OUT s t d - l o g i c _vect or (15 downto 0 ) ; 
RAM-WEN : OUT s t d _ l o g i c ; 
IP_DEBUG : OUT s t d - l o g i c 

) ; 
END COVIPCNENT; 

Simulation parameters 
constant c lk_high : t ime := 10 ns ; ns 
constant e lk- low : t ime := 10 n s ; ns 
constant r o w . p x l . s i z e : i n t e g e r :— 60; 768; pxls 
constant c o l . p x L s i z e : i n t e g e r := 40; 512; pxls 
constant h_blank : i n t e g e r := 4; pxls 
constant v_blank : i n t e g e r :== 12; pxls 
constant r e s e t - d e l a y : t ime 
constant l i n e - t i m e ..0 : t ime 
constant l i ne_ t i rne_ l : t ime 
constant frame_time_0 : t ime 

) ; 
constant f r a m e - t i m e . l : t ime 
constant frame_time_2 : t ime 

100 * ( e l k . h i g h + e l k . l o w ) ; 
= c o l . p x l . s i z e * ( c l k . h i g h + e l k . l o w ) ; 
= l i n e . t i m e . O + h-b lank * ( c lk . l ow + c l k . h i g h ) ; 
:— l i n e . t i m e . l * r o w . p x l . s i z e + h-blank * ( c l k . l o w + c l k . h i g h 

l i n e . t i m e . l * 2; / / / Times number of row buffers t i l l 
f rame. t ime.O + f r a m e . t i m e . l ; 

Inputs 
SIGNAL PIXCLKJN : s t d . l o g i c r= ' 0 ' ; 
SIGNAL USBCLKJN : s t d - l o g i c := ' 0 ' ; 
SIGNAL RESET-IN : s t d - l o g i c := * 1 ' ; 
SIGNAL LINE.VAL1DJN i s t d - l o g i c := ' 0 ' ; 
SIGNAL PRAME-VALIDJN : s t d - l o g i c := ' 0 ' ; 
SIGNAL USB-FULL-IN : s t d - l o g i c := ' 0 ' ; 
SIGNAL CCD-DATAJN : s t d - log i c -vec t or (9 downto 0) 

Inputs 
SIGNAL EN : s t d - l o g i c := ' 0 ' ; 
SIGNAL FRAME : s t d - l o g i c := ' 1 ' ; 
SIGNAL COLOR-BIT : s t d - l o g i c := ' 0 ' ; 

( o t h s r s = > '0 ') ; 
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SIGNAL ROW : s t d . l o g i c . v e c t o r (10 downto 0) := ( o t h e r s = > ' 0 ' ) 
SIGNAL COL : s t d . l o g i c . v e c t o r (10 d o w n t o 0) : = ( o t h e r s ^ > ' 0 ' ) 
SIGNAL ROW.SIZE : s t d . l o g i c . v e c t o r (10 downto 0) 

1 , 11) ; "00000001011"; "10111111111"; 
SIGNAL COL.SIZE : s t d . l o g i c . v e c t o r (10 downto 0) 

1, 1 1 ) ; "00000001011"; "11111111111"; 
SIGNAL DATAMODE : s t d . l o g i c . v e c t o r (2 downto 0) := " 0 1 1 " ; 

Outputs 
SIGNAL USB_BUS_OUT : s t d . l o g i c . v e c t o r (15 downto 0 ) ; 
SIGNAL USB_SLWR_OUT : s t d „ l o g i c ; 
SIGNAL IP .DEBUG : s t d . l o g i c ; 

con v . s t d . l o g i c . v e c t o r ( r o w . p x l . s i z e 

c o n v . s t d . l o g i c v e c t o r ( c o l . p x l . s i z e 

s i g n a l i n c . d a t a s t d . l o g i c 

File IO 
s h a r e d v a r i a b l e VALUE J n , VALUE-out : c h a r a c t e r ; — 

s h a r e d v a r i a b l e iVALUEJn : i n t e g e r ; 
s h a r e d v a r i a b l e L . in , L-out : LINE; 
s h a r e d v a r i a b l e GOOD : b o o l e a n ; 
f i l e FIN : TEXT i s in " t b . raw" ; "image.raw' 
f i l e FOUT : TEXT i s o u t " o u t p u t . raw" ; 

-BIT-VECTOR (7 downto 0) ; 

BEGIN 

Test Bench Variables 
s h a r e d v a r i a b l e p x l . d a t a 
s h a r e d v a r i a b l e p x l . r o w : 
s h a r e d v a r i a b l e p x l . c o l : 

s t d . l o g i c . v e c t o r (9 downto 0) : 
s t d . l o g i c . v e c t o r (10 downto 0) 
s t d . l o g i c . v e c t o r (10 downto 0) 

= ( o t h e r s => '0 ' ) ; 
:= ( o t h e r s => '0 ' ) ; 
:— ( o t h e r s => ' 0 ' ) ; 

): 

Instantiate the Unit Under Test (UUT) 
b: I m a g e P r o c e s s o r PORT MAP( 

CLK => PIXCLKJN, 
RESET => RESET J N , 
EN => EN, 
DIN => CCDJDATAJN (7 downto 0) , 
ROW => ROW, 
COL => COL, 
FRAME => FRAME, 
ROW-SIZE => ROW-SIZE, 
COL.SIZE => COL-SIZE, 
DATA-MODE => DATA-MODE, 
COLOR-BIT => COLOR-BIT, 
BOOT => USB-BUS-OUT, 
RAM-WEN => USB-SLWR-OUT, 
IP-DEBUG => IP-DEBUG 

c lock : PROCESS 
b e g i n 

PIXCLKJN < = ' 1 ' 
w a i t for c lk_ low 
PIXCLKJN < = '0 ' 
w a i t for c l k _ h i g h ; 

end p r o c e s s c l o c k ; 

d a t a - o u t 
b e g i n 

p r o c e s s (USB-SLWR-OUT) 

if (USB-SLWR-OUT'Event and USB-SLWR-OUT = ' 1 ' ) t h e n 
— hwrite(L-out , USB-BUS-OUT); — t o - b i t Vector (USB-BUS-OUT) , left, 

16); 
w r i t e ( L - o u t , a t r ( c o n v - i n t e g e r (USBJ3US-OUT (15 downto 8 ) ) ) &"_"& 

s t r ( c o n v . i n t e g e r (USBJ3US-OUT (7 downto 0 ) ) ) ) ; 
— write (L-out, string ' (CONVJNTEGERf USB-BUS-OUT (7 downto 0) ) ) ) ; 
— write (L-out, string ' (CONVJNTEGERf USB-BUS.OUT (IS downto 8)))); 
w r i t e l i n e (FOUT, L . o u t ) ; 

end i f; 
end p r o c e s s ; 

EN < = FRAME-VALIDJN and LINE-VALID J N ; 

t b : PROCESS 
BEGIN 

Wait 100 ns for global reset to finish 
w a i t for 100 n s ; 
RESETJN < = '0 ' ; 
w a i t for 98 ns ; 
FRAME-VALIDJN < = ' 1 ' ; 
w a i t for 100 ns ; — ( v-blank * ( clk-high-hclk-low ) ) ; 
for p x l - r o w s in 0 t o r o w . p x l . s i z e — 1 l o o p 

w a i t for ( h - b l a n k * ( c l k - h i g h + c l k - l o w ) ) ; 

121 



C. VHDL CODE 

l oop 

l i n e _ v a l i d _ i n < = ' 1 ' ; 
r e a d l i n e (F IN , L - i n ) ; 
for p x l - c o l s in 0 t o c o l . p x L s i z e — 1 

— read (L-in , VALUE.in ,GOOD) ; 
r e a d ( L _ i n , iVALUE_in , GOOD); 
CCD_DATA_IN < = c o n v . s t d . l o g i c . v e c t o r ( iVALUE.in , 10) ; 
—CCD-DATA.IN <= conv.Std.Logic-Vector ( character ' pos (VALUEJ,n) . 

10); 
—COL < ~ COL + 1; 
ROW < = c o n v . s t d . l o g i c . v e c t o r ( p x l . r o w s , 11) ; 
COL < = c o n v _ s t d _ l o g i c _ v e c t o r ( p x l _ c o l s , 11) ; 
wai t for ( c l k . h i g h + e l k - l o w ) ; 

end loop ; 
—ROW <= ROW + 1; 
—COL <= (others -> '0'); 
l i n e _ v a l i d _ i n < = ' 0 ' ; 
w a i t for ( h _ b l a n k * ( c l k _ h i g h + c l k _ l o w ) ) ; 

end l o o p ; 
w a i t for ( v _ b l a n k * ( c l k _ h i g h + c l k _ l o w ) ) ; 
f r a m e . v a l i d . i n <= '0 ' ; 

ROW<= ( o t h e r s => ' 0 ' ) ; 
COL <= ( o t h e r s - > ' 0 ' ) ; 
w a i t for 20000 n s ; 
RESET-IN < = ' 1 ' ; 

w a i t ; 
END PROCESS; 

will wait forever 

END; 

Listing C.5: frame-grabber.vl.ucf 
# T iming C o n t r a i n t s 
NET "PIXCLK" PERIOD = 2 0 n s ; 
NET "USBCLK{" PERIOD = 2 0 n s ; 

IIIIIIIIII till IIIIIIIIIIIIIIIIIIIIIIII It II It II It IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII tl-
# # V e r s i o n 2 PCB I / O Pin A s s i g n m e n t s 
IIII It IIIIIIIIIIIIIIIIIIIIIIIIIIIIII It II It IIIIIIIIIIIIIIIIII It It I! IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII It IIIIIIIIIIIIIIII 
NET "PIXCLKJN" LOC = "D8" ; 
NET "IFCLK-IN" LOC = "E10" | IOSTANDARD = LVCMOS33 | SLEW = FAST ; 
NET " R E S E T J N " LOC = "D2" | IOSTANDARD = LVCMOS33 ; 
NET "LINE-VALID-IN" LOC = " D l l " I IOSTANDARD = LVCMOS33 ; 

" E7" 
" A14" 
"A12" 
"B13" 

NET " FRAME-VALIDJN" LOC 
NET "CCD-DATAJN<0>" LOC 
NET "CCD.DATAJN<1>" LOC 
NET "CCD-DATAJN<2>" LOC 
NET "CCDJDATAJN<3>" LOC = " C l l " 
NET "CCDJDATAJN<4>" LOC = "B10" 
NET "CCD_DATAJN<5>" LOC = "B6" 
NET "CCDJDATAJN<6>" LOC = "B7" 
NET "CCDJ3ATAJN<7>" LOC 
NET "CCD_DATAJN<8>" LOC 
NET "CCDJ3ATAJN<9>" LOC = " C3" | IOSTANDARD = LVCMOS33 
NET "GSHT.CTL.OUT" LOC = "G13" | IOSTANDARD = LVCMOS33 
NET "USB-FULLJN" LOC = "R2" | IOSTANDARD = LVCMOS33 ; 
NET "USB-BUS-OUT<0>" LOC = " J l " | IOSTANDARD = LVCMOS33 

IOSTANDARD = LVCMOS33 
| IOSTANDARD = LVCMOS33 
I IOSTANDARD = LVCMOS33 
j IOSTANDARD = LVCMOS33 
| IOSTANDARD = LVCMOS33 
| IOSTANDARD = LVCMOS33 
IOSTANDARD = LVCMOS33 
IOSTANDARD = LVCMOS33 

"C4" | IOSTANDARD = LVCMOS33 
"C6" j IOSTANDARD = LVCMOS33 

| DRIVE = 16 FAST 

NET "USB_BUS-OUT<l>" 
NET "USB.BUS-OUT<2>" 
NET "USB-BUS-OUT<3>" 
NET "USB-BUS-OUT<4>" 
NET "USB_BUS.OUT<5>" 
NET "USB_BUS.OUT<6>" 
NET "USB_BUS-OUT<7>" 
NET "USB_BUS.OUT<8>" 
NET "USB-BUS-OUT<9>" 
NET "USB_BUS.OUT<10>" 
NET "USB-BUS.OUT<ll>" 
NET "USB-BUS-OUT<12>" 
NET "USB_BUS.OUT<13>" 
NET "USB-BUS-OUT<14>" 
NET "USB_BUS-OUT<15>" 
NET "USB.ADR0.OUT" LOC 
NET "USB.ADRl.OUT" LOC 

LOC = "R6" | IOSTANDARD = LVCMOS33 ; 
LOC = " T 5 " | IOSTANDARD = LVCMOS33 ; 
LOC = "P12" | IOSTANDARD = LVCMOS33 ; 
LOC = "N12" j IOSTANDARD = LVCMOS33 ; 
LOC = "G3" | IOSTANDARD = LVCMOS33 ; 
LOC = "T13" | IOSTANDARD = LVCMOS33 ; 
LOC = "R13" | IOSTANDARD = LVCMOS33 ; 
LOC = "G2" | IOSTANDARD = LVCMOS33 ; 
LOC = "A5" j IOSTANDARD = LVCMOS33 ; 

LOC = "A7" | IOSTANDARD = LVCMOS33 ; 
LOC = "B4" I IOSTANDARD = LVCMOS33 ; 
LOC = "K13" | IOSTANDARD = LVCMOS33 
LOC = " L I 2 " | IOSTANDARD = LVCMOS33 
LOC = "L13" I IOSTANDARD = LVCMOS33 
LOC = "K15" | IOSTANDARD = LVCMOS33 

" F 5 " | IOSTANDARD = LVCMOS33 ; 
"E4" I IOSTANDARD = LVCMOS33 ; 

NET "USB-SLRD.OUT" LOC = "L14" | IOSTANDARD = LVCMOS33 ; 
NET " U S B - S L W R J O U T " LOC = "L15" | IOSTANDARD = LVCMOS33 | SLEW = FAST 
NET " U S B - P C K T E N D J O U T " LOC = " E l " | IOSTANDARD = LVCMOS33; 
NET "NSENSOR.RST" LOC = " E 1 3 " | IOSTANDARD = LVCMOS33 ; 
#NET "FS.EN" LOC = " J l " | IOSTANDARD = LVCMOS33 ; 
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#4ET "PSO" LOC = "G3" | IOSTANDARD = LVCMOS33 ; 
#NET " F S 1 " LOC = "G2" | IOSTANDARD = LVCMOS33 ; 
NET "MCLK" LOC = " L 8 " | IOSTANDARD = LVCMOS33 ; 
NET "SCL" LOC = "P9" | IOSTANDARD = LVCMOS33 ; 
NET "SDA" LOC = "N16" | IOSTANDARD = LVCMOS33 ; 
NET "CLOCKJN" LOC = "N8" | IOSTANDARD = LVCMOS33 ; 
NET " N l " LOC = "N14" | IOSTANDARD = LVCMOS33 | DRIVE = 16 | SLEW = FAST ; # T r i g g e r Out T2 
NET " P I " LOC = "M14" I IOSTANDARD = LVCMOS33 ; # T r i g g e r I n T l 
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Appendix D 

MATLAB Code 

Listing D.l: demosaic.test.m 

% Camera Board Demosaicing 

% FILENAME: demosaic-test .m 
% DESCRIPTION: Computes the output for an image interp olated using the 
% Edge Enhanced method and compares to Nearest Neighbour and 
% Bilinear. 
% DATE: July 24, 2007 
% AUTHOR: Anthony Karloff , University of Windsor 
% = = = = = = — — ~- = = = 

f i l e n a m e — ' l i g h t h o u s e . j p g ' ; 

% Read the image file 
im = d o u b l e ( i m r e a d ( f i l e n a m e ) ) ; 
M = s i z e ( i m , l ) ; %h eight (rows — y) 
N = s i z e ( i m , 2 ) ; %width (cols — x) 

% Create the RAW data 
b a y e r = RGB2RAW ( i m ) ; 
r a w . d a t a = b a y e r ( : , : , 1 ) . * r epmat ( [0 1; 0 0 ] , M / 2 , N / 2 ) + baye r ( : , : , 2) . * repmat ( [1 0; 0 1 ] , M/2 , N / 2 ) 

+ b a y e r (: , : , 3 ) . * r e p m a t ([0 0; 1 0] , M / 2 , N / 2 ) ; 

% Process as Nearest Neighbour and Bilinear for comparison. 
imNN =DEMOSAIC( bayer , ' n e a r e s t - n e i g h b o u r ' ) ; 
im B i l i n e a r ~ DEMOSAIC( bayer , ' b i l i n e a r ' ) ; 
% De-mosaic using the Edge Enhanced Method 
imEE = e e . d e m o s a i c ( r a w . d a t a ) ; 

% Compute Peak Signal to Noise Ratio (PSNR) 
e r r o r ~ imRR ( 3 : M - 2 , 3 : N - 2 , : ) - i m ( 3 : M - 2 , 3 : N - 2 , : ) ; 
im_MSE = M S E ( i m E E ( 3 : M - 2 , 3 : N - 2 ,:) , i m ( 3 : M - 2 , 3 : N - 2 ,:) ) ; 
im_PSNR = 10 * log lO(65025 / im_MSE) 

% Create a Grayscale for comparison 
yuv = RGB2YUV(imEE) ; 

%Display images , 
i m t o o l ( u i n t S ( i m B i l i n e a r ) ) ; 
i m t o o l ( u i n t 8 (imNN) ) ; 
imview ( u i n t 8 (imEE) ) ; 
i m t o o l ( u i n t 8 (yuv (: , : , 1 ) ) ) 

^ 
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Listing D.2: ee_demosaic.m 

% Camera Board Demosaicing 

% FILENAME: ee-demosaic .m 
% DESCRIPTION: A cheap hardware demosaic 
% DATE: June 3, 2008 
% AUTHOR: Anthony Karloff , University of Windsor 

f u n c t i o n ic ( irn_in ) 

s i z e ( i m . i n , 1 ) ; 
s i z e ( i m . i n , 2 ) ; 

%roius 
%cols 

- d a t a i m _ i n ; 

t h r e s h o l d l = 2 5 ; %95; 
t h r e s h o l d 2 = 55 ; 
t h r e s h o l d 3 = 0; 
t h r e s h o l d 4 = 0; 

% Initialize the Output Matrix 
m . d e m o s a i c ( 
m . d e m o s a i c ( 
m . d e m o s a i c ( 

1) = i m - d a t a .* repmat ( [0 1; 0 0] , M / 2 , N / 2 ) 
, 2 ) = i m _ d a t a . * repmat ( [1 0; 0 1 ] , M / 2 , N / 2 ) 
, 3 ) = i m _ d a t a . * repmat ( [0 0; 1 0 ] , M / 2 , N / 2 ) 

% Red Channel 
% Green Channel 
% Blue Channel 

%Define Vectors for inter p olating neighbouring pixels 

I]-, 

v ( l • 
v ( 2 , 
v ( 3 , 
v ( 4 , 
v ( 5 , 
v ( 6 , 
v ( 7 , 
v ( 8 , 

) = l - i o] 
) = [0 1 ] ; 
) = [1 0 ] ; 
) = [0 - 1 
) = [ -1 11 
) = [1 l ] i 
) = [1 - 1 
) = [ - ! -

i m _ d a t a ( i , j ) ) -f a b s ( i m - d a t a ( i-j-v ( k , 1 ) , j 

i = 3 : M - 2 
for j = 3 : N - 2 

% Red or Blue Center 
if mod(i ,2 ) "== mod(j ,2 ) % RED or BLUE 

f o r k = l :4 
D ( k ) = a b s ( i m _ d a t a ( i + 2 * v ( k , 1) , j + 2 * v ( k , 2 ) ) 

+ v ( k , 2 ) ) - i m _ d a t a ( i - v ( k , l ) , j - v ( k , 2 ) ) ) -f ( a b s ( 2* i m . d a t a ( i+v ( k , 1) , j + v ( k , 2 ) ) -
i m _ d a t a ( i - v ( k , 2 ) , j - v ( k , l ) ) - i m - d a t a ( i + v ( k , 2 ) , j+v ( k , 1 ) ) ) ) / 2 ; 

end 

% Complete the missing GREEN value 
sum = 0; 
sum2 = 0; 

i m _ d a t a ( i + 2 * v ( k , l ) , j + 2 * 

c n t = 

for k = l:4 
sum2 — sum2 + i m - d a t a ( i + v ( k , 1 ) , j + v ( k , 2 ) ) + ( i m _ d a t a ( i , j ) 

v ( k , 2 ) ) ) / 2 ; 
i f D ( k ) < t h r e s h o l d l 

sum = sum + i m _ d a t a ( i + v ( k , 1 ) , j + v ( k ,2) ) + ( i m _ d a t a ( i , j ) — i m _ d a t a ( i + 2 * v ( k , 1 ) , j 
+ 2 * v ( k , 2 ) ) ) / 2 ; 

cn t = cn t + 1; 
end 

end 
if c n t = 0 

i m . d e m o s a i c ( i , j ,2 ) = s u m 2 / 4 ; 
e l s e 

i m _ d e m o s a i c ( i , j , 2 ) = s u m / c n t ; 
end 

% Complete the missing RED or BLUE value 
sum — 0; 
sum2 — 0; 
cn t = 0; 
sum2 — ( ( ( i m _ d a t a ( i — l , j — 1 ) + i m _ d a t a ( i 4 - l , j — 1 ) ) / 2 + i m _ d e m o s a i c ( i , j , 2 ) 

) + ... 
(( i m - d a t a ( i - l , j +1) + i m - d a t a ( i + 1 , j + 1 ) ) / 2 + i m . d e m o s a i c ( i , j , 2 ) - i m _ d a t a ( i , j -

)) / 2 + . . . 
( ( ( i m - d a t a ( i - l , j - 1 ) + i m - d a t a ( i - l , j +1) ) / 2 + i m . d e m o s a i c ( i , j ,2 ) - i m . d a t a ( I - 1 , j ) 

(( i m . d a t a ( i + l , j - 1 ) + i m . d a t a ( i + 1 , j + 1 ) ) / 2 + i m . d e m o s a i c ( i , j , 2 ) - i m . d a t a ( i + 1 , j ) 

) ) / 2 ; 

if ( D ( l ) < t h r e s h o l d 2 | | D(3) < t h r e s h o l d 2 ) 

i m . d a t a ( i , j —1) 

-1) 
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e n d 

sum = ( ( ( i m - d a t a ( i - l , j - 1 ) + i m _ d a t a ( i + l , j - l ) ) / 2 + i m . d e m o s a i c ( i , j ,2 ) - i m _ d a t a ( i , j 
-1 ) ) + . . . 

(( i m - d a t a ( i — l , j +1) + i m . d a t a ( i + 1 , j +1) ) / 2 + i m . d e m o s a i c ( i , j , 2) — i m . d a t a ( i , j 
+ 1 ) ) ) / 2 ; 

cn t = cn t 4- 1; 

if (D(2) < t h r e s h o l d 2 | | D(4 ) < t h r e a h o l d 2 ) 
sum — sum + . . . 

( ( ( i m _ d a t a ( i —l,j —1) + i m . d a t a ( i — l , j + 1 ) ) / 2 + i m . d e m o s a i c ( i , j , 2 ) — i m . d a t a ( i 
- l , j ) ) + ••• 

(( i m . d a t a ( i + l , j —1) + i m . d a t a ( i + 1 , j +1) ) / 2 + i m . d e m o s a i c ( i , j , 2 ) — i m . d a t a ( i 
+ l , j ) ) ) / 2 ; 

cn t = cn t + 1; 
end 

i f cn t ==0 
[Yl I I ] = m i n ( D ( l : 4 ) ) ; 
if I I = 1 | | 11 = 3 

i m . d e m o s a i c ( i , j , l + 2*mod(i , 2 ) ) = ( ( ( i m - d a t a ( i - 1 , j - 1 ) + i m . d a t a ( i + 1 , j - 1 ) ) / 2 + 
i m _ d e m o s a i c ( i , j , 2 ) — i m _ d a t a ( i , j — 1)) + . . . 

( ( i m . d a t a ( i - l , j + l ) + i m - d a t a ( i + 1 , j + 1 ) ) / 2 + 
i m _ d e m o s a i c ( i , j , 2 ) — i m _ d a t a ( i , j - ( - l ) ) ) / 2; 

e l s e 
i m . d e m o s a i c ( i , j , l + 2*mod( i , 2 ) ) = ( ( ( i m - d a t a ( i - 1 ,j - 1 ) + i m - d a t a ( i - l , j + 1 ) ) / 2 + 

i m _ d e m o s a i c ( i , j , 2 ) — i m _ d a t a ( i — l , j ) ) + . . . 
( ( i m - d a t a ( i + l , j - 1 ) + i m . d a t a ( i + 1 , j + 1 ) ) / 2 + 

i m _ d e m o s a i c ( i , j , 2 ) — i m _ d a t a ( i + l , j ) ) ) / 2 ; 

i m . d e 
e n d 

sa ic ( i , j , l + 2*mod( i , 2 ) ) = s u m / c n t ; 

e l s e %GREBN Pixel 
fo r k = l :4 

D p ( k ) = i m . d a t a ( i + v ( k , 1 ) + v ( k , 2 ) , j - v (k , 1 ) + v ( k , 2 ) ) - i m . d a t a ( i , j ) ; 
end 

for k = l :4 
D ( k ) = a b s ( i m - d a t a ( i + 2 * v ( k , l ) , j + 2 * v ( k , 2 ) ) - i m . d a t a ( i , j ) ) + a b s ( i m . d a t a ( i+v (k , 1 ) , j 

+ v ( k , 2 ) ) - i m _ d a t a ( i - v ( k , l ) , j - v ( k , 2 ) ) ) + ( a b s ( D p ( k ) ) + a b s (Dp(mod ( k + 2 , 4 )+1) ) ) / 2 ; 
end 

[Yl I I ] = m i n ( D ( l : 4 ) ) ; 
i f I I = 1 

[Y2 12] = m i n ( [ D ( 2 ) D ( 4 ) ] ) 
e l s e i f I I = 2 

[Y2 12) = m i n ( [ D ( l ) D ( 3 ) ] ) 
e l s e i f I I = 3 

[Y2 12] = m l n ( [ D ( 2 ) D(4 ) ] ) 
e l s e 

[Y2 12] = m i n ( [ D ( l ) D(3) ]) 
end 

if I I = 1 
i m _ d e m o s a i c ( i , j , l + 2*mod( i , 2 ) ) = i m _ d a t a ( i+v ( I I , 1 ) , j+v ( 1 1 , 2 ) ) + ( i m _ d a t a ( i , j ) — 

i m . d a t a ( i + 2 * v ( I l ,1 ) , j + 2 * v ( I l , 2 ) ) ) / 2 ; 

if 12 = 1 
i m _ d e m o s a i c ( i , j ,3 —2* mod ( i , 2 ) ) = i m - d a t a ( i , j + l ) + ( i m _ d a t a ( i , j ) — ( i m - d a t a ( i — 1 , 

j + 1 ) + i m - d a t a ( i + l , j + l ) ) / 2 ) ; 

e n d 

i m _ d e m o s a i c ( i , j ,3 —2* mod ( i , 2 ) ) = i m _ d a t a ( i , j — l ) + ( i m - d a t a ( i , j ) — ( i m _ d a t a ( i — 1 , 
j - 1 ) + i m - d a t a ( i + l , j - l ) ) / 2 ) ; 

e l s e i f I I = 3 
i m . d e m o s a i c ( i , j , l + 2*mod( i , 2 ) ) = i m . d a t a ( i+v( II , 1 ) , j + v ( I I , 2 ) ) + ( i m . d a t a ( i , j ) 

i m . d a t a ( i + 2 * v ( I l , 1 ) , j + 2 » v ( I l , 2 ) ) ) / 2 ; 

if 12 = 1 
i m . d e m o s a i c ( i , j ,3 —2* mod ( i , 2 ) ) = i m _ d a t a ( i , j + l ) + ( i m _ d a t a ( i , j ) — ( i m _ d a t a ( i — 1, 

j + 1 ) + i m . d a t a ( i + l , j + l ) ) / 2 ) ; 
e l s e 

e n d 

i m _ d e m o s a i c ( i , j ,3 —2* mod ( i , 2 ) ) = i m _ d a t a ( i , j — 1 ) + ( i m _ d a t a ( i , j ) — ( i m _ d a t a ( i — 1 , 
j - 1 ) + i m - d a t a ( i + l , j - l ) ) / 2 ) i 

e l s e i f I I = 2 
i m . d e m o s a i c ( i , j ,3 —2*mod( i ,2 ) ) = i m . d a t a ( i+v ( I I , 1 ) , j + v ( I I , 2 ) ) + ( i m . d a t a ( i , j ) 

i m - d a t a ( i + 2 * v ( I l , 1 ) , j + 2 * v ( I l , 2 ) ) ) / 2 ; 
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i f 12 = 1 
i m . d e m o s a i c ( i , j , l + 2*mod( i , 2 ) ) = i m - d a t a ( i—l , j ) •+- i m - d a t a ( i , j ) — ( i r a - d a t a ( i — 1, j 

- 1 ) + i m . d a t a ( i - l , j + l ) ) / 2 ; 
e l s e 

i m . d e m o s a i c ( i , j , l + 2*mod(i , 2 ) ) = i m . d a t a ( i + 1 , j ) + i m - d a t a ( i , j ) — ( i m . d a t a ( i + 1 , j 
- 1 ) + i r a . d a t a ( i + l , j + l ) ) / 2 ; 

end 

i m . d e m o s a i c ( i , j ,3— 2*mod( i ,2 ) ) = i m - d a t a ( i+v ( I I , 1) , j+v ( I I ,2 ) ) + ( i m - d a t a ( i , j ) — 
i m - d a t a ( i + 2 * v ( I l ,1 ) , j + 2 * v ( I l , 2 ) ) ) / 2 ; 

if 12 = 1 
i m . d e m o s a i c ( i , j , l - f2*mod( i , 2 ) ) = i m - d a t a ( i — l , j ) + i m _ d a t a ( i , j ) — ( i m . d a t a ( i — 1, j 

- 1 ) + i m - d a t a ( i - l , j + l ) ) / 2 ; 
e l s e 

i m . d e m o s a i c ( i , j , l + 2*mod( i , 2 ) ) = i m - d a t a ( i + 1 , j ) + i m - d a t a ( i , j ) — ( i m - d a t a ( i + 1 , j 
- 1 ) + i m . d a t a ( i + l , j + l ) ) / 2 ; 

end 
e n d 

end 
end 

end 

i m . o u t — i m . d e m o s a i c ; 

Listing D.3: demosaic.m 

% Camera Board Demosaicing 

% FILENAME: DEMOSAIC.m 
% DESCRIPTION: Performs Various Interpolations in a RAW Bayer Pattern image 
% DATE: March 25, 2008 
% AUTHOR: Anthony Karloff , University of Windsor 

f u n c t i o n [ i m . d e m o s a i c ] = DEMOSAIC ( i m . r a w , mode) 

if s i z e ( s i z e ( i m . r a w ) ,2) = 3 
R = i m _ r a w ( : , : , l ) ; 
G = i m . r a w ( : , : , 2 ) ; 
B = i m . r a w ( : , : , 3 ) ; 

s w i t c h mode 
case ' n e a r e s t . n e i g h bou r ' 

i m . d e m o s a i c ( : , : , 1 ) = R + c i r c s h i f t (R, [ 0 - 1 ] ) + c i r c s h i f t ( R , [1 

i m . d e m o s a i c ( : , : , 2 ) = G + c i r c s h i f t (G, [ 0 1 ] ) ; 
i m . d e m o s a i c ( : , : , 3 ) = B - ) ~ c i r c s h i f t (B , [ 0 1]) + c i r c s h i f t ( B , [ - 1 

i ] ) ; 

c a s e ' b i l i n e a r ' 
%Interp olate Green Channel 
G = G + i m f i l t e r (G, [0 1 0; 1 0 1; 0 1 0 ] / 4 ) ; 

%Interpolate Blue at Reds 
Br = i m f i l t e r ( B , [1 0 1; 0 0 0; 1 0 l ] / 4 ) ; 
%Interpolate Blue at Greens 
Bg = i m f i l t e r (B+Br, [0 1 0; 1 0 1; 0 1 0 ] / 4 ) ; 

%Interpolate Red at Blues; 
Rb = i m f i l t e r (R, [1 0 1; 0 0 0; 1 0 l ] / 4 ) ; 
%Interpolate Red at Greens; 
Rg = i m f i l t e r (R + Rb, [0 1 0; 1 0 1; 0 1 0 ] / 4 ) ; 

i m . d e m o s a i c (: , : , 1 ) = R + Rb + Rg; 
i m . d e m o s a i c (: , : , 2 ) — G; 
i m . d e m o s a i c (: , : , 3 ) = B + Br + Bg; 

ot he r w i s e 
i m . d e m o s a i c — 0; 

end 
e n d 

0]) 

0 ] ) 

+ 

+ 

c i r c s h i ft (R, 

c i r c s h i f t ( B , 

[1 

[ - 1 

Listing D.4: RGB2RAW.m 
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D. MATLAB CODE 

% Camera Board Demosaicing 

% FILENAME: RGB2RAW.m 
% DESCRIPTION: Converts the 3 channels of an RGB image to RAW image format 
% along with the 3 seperate color channels . 
% DATE: July 24, 2007 
% AUTHOR: Anthony Karloff , University of Windsor 

f u n c t i o n [ i m . r a w ] = RGB2RAW ( i n p u t ) 

i f s i z e ( s i z e ( i n p u t ) ,2 ) = 3 
i m g . i n = d o u b l e ( i n p u t ) ; 

R = i m g . i n ( 
G = i m g . i n ( 
B = i m g . i n ( 

,2) 
,3) 

M = s i z e ( i m g _ i n ,1) ; 
N = s i z e ( i m g _ i n , 2 ) ; 

im-raw ( 
i m . r a w ( 
im_raw ( 

, 1) = R . * r e p m a t ( [0 1 
, 2 ) = G . * r e p m a t ( [1 0 
, 3 ) = B . * r e p m a t ( [0 0 

0 0] , M / 2 , N / 2 ) 
0 1] , M / 2 , N / 2 ) 
1 0] , M / 2 , N / 2 ) 

Listing D.5: RGB2YUV m 

% 
% 
% 

Camera Board Demosaicing 

FILENAME: RGB2RAW.m 
DESCRIPTION: Converts th 

% along with 
% DATE: July 24, 2007 
% AUTHOR: Anthony Karloff , 

fu 

i f 

e 

n o t i o n 

s i z e I 
img 

R = 
G = 
B = 

II 
II 

II 

img . 
img . 
img . 

s e 
ling­

erie! 

e 3 channels of an RGB 
the 3 seperate color c 

University of Windsor 

[ i m g . y u v ] = RGB2YUV ( i n p u t ) 

s i z e ( i n p u t ) ,2 ) = 
. in = d o u b l e ( i n p u t ) 

i m g . i n (: , : , 1 ) ; 
i m g . i n (: , : , 2 ) ; 
i m g . i n ( : , : , 3 ) ; 

3 

( 6 6 . * R + 1 2 9 . » G + 2 5 . * B + 1 2 8 + 4 0 9 6 ) . / 2 5 6 ; 
( - 3 8 . * R - 7 4 . * G + 1 1 2 . * B + 1 2 8 + 3 2 7 6 8 ) . / 2 5 6 ; 
(112»R-94*G+18*B+128 + 3 2 7 6 8 ) . / 2 5 6 ; 

y u v ( : , : , 1 ) = Y; 
y u v ( : ,: , 2 ) = U; 
y u v ( : , : , 3 ) = V; 

yuv = 0; 

image to 
hannels . 

YUV image format 
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