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Abstract 

This thesis work deals with curve reconstruction problem, which contains two parts: 

experimental comparison and certification. 

In the first part we establish the effectiveness of the simple RNG-based algorithm by 

experimental comparisons with two leading algorithms: the NN-crust and the 

Conservative-crust. By comparing the outputs of these three algorithms on different 

samples of increasing complexity, we demonstrate that the RNG-based algorithm 

performs as well or better. 

Since there is no way to verify that a given sample from some unknown curve 

satisfies the sampling condition, in the second part of this thesis we propose a novel 

approach that bypasses this problem by certifying to the accuracy of the 

reconstruction. We smooth the polygonal output of a reconstruction algorithm and 

sample the smoothed curve. The closeness of the original sample set and resampled 

set is an indication of the accuracy of the curve-reconstruction algorithm. 

Keywords: curve-reconstruction, comparison, certification, resampling. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

Research on the Curve Reconstruction problem has been conducted for almost 30 

years. Given a point set which is from a smooth open and closed curve, the Curve 

Reconstruction problem is to compute the polygonal reconstruction graph, where 

this point set is the vertex set of the graph and each of the edges exactly connects 

adjacent sample points on the original curve. 

Figure 1 displays a simple scenario for the curve reconstruction problem. A set of 

samples are given from an original curve and the polygonal graph is produced to 

describe the shape by connecting the samples (See Fig. 1). 

I \ i 

\ 

V 

Figure 1: The original curve, sample points and the reconstructed curve 

Due to its wide applications in image processing, pattern recognition and 

computer vision, it has received a lot of attention from researchers over the last 

decade. Another reason for this attention is that it provides a basis for solving the 

more difficult problem of surface reconstruction in three dimensions. 



1.2 Classification 

There are two main types of approaches for Two-Dimensional Curve Reconstruction: 

• Voronoi Diagram & Delaunay Triangulation based approaches. 

• Non-Voronoi Diagram & Delaunay Triangulation based approaches. 

In this thesis, we put an emphasis on approaches based on the Voronoi Diagram 

& Delaunay Triangulation technique. 

In recent years, with the fast development of 3D techniques, people have become 

more interested in developing Three-Dimensional Surface Reconstruction 

applications. Although Curve Reconstruction is restricted to two dimensions, the 

research in two dimensions establishes a theoretical basis for work on the surface 

reconstruction problem in three dimensions. 

1.3 Application areas 

Three typical applications of the Curve Reconstruction problem are shown below: 

• Image processing. 

• Pattern recognition. 

• Computer vision. 

More importantly, some applications of Three-Dimensional Surface 

Reconstruction are based on the theory of Two-Dimensional Curve Reconstruction. 

There are two applications to 3D surfaces of the information obtained from a set 

of planar contours: 
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In Biology: biologists try to understand the shape of microscopic objects from 

serial sections through the object. 

In Computer Aided Design (CAD): lofting techniques specify the geometry of 

an object by means of a set of contours. 

1.4 Terminology 

1.4.1 Delaunay Triangulation & Voronoi Diagram 

In computational geometry, a Delaunay Triangulation (DT) of a sample set in two 

dimensions is a triangulation, where the circumcircle of any triangle does not contain 

any other point of the sample set (See Fig. 2). 
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Figure 2: Delaunay Triangulation of a set of points 

Voronoi Diagram (VD), as the dual graph of the Delaunay Triangulation, is also 

used in various areas. The Voronoi Diagram of n points in two dimensional space 



divides the plane into a set of convex regions. In each convex region, there is exactly 

one generating point. Every point in one region is closer to its generating point than to 

any other generating point in the plane (See Fig. 3). 

/ ^ ~ , i 
< 

r v. 

• \ ' i / 

v • r 
i y \ \ 
• \ / ' 

Figure 3: Voronoi Diagram on a set of points 

Both the Delaunay Triangulation and Voronoi Diagram are very significant data 

structures in the Curve Reconstruction area. It is straightforward to obtain one from 

the other (See Fig. 4). 
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Figure 4: Transformation of DT and VD 

From Delaunay Triangulation, connecting the centers of the circumcircles of all 

the triangles produces the corresponding Voronoi Diagram. From Voronoi Diagram, 

connecting the generating points of two convex regions that share a common edge 

produces the corresponding Delaunay Triangulation. 

1.4.2 Medial Axis & Local Feature Size 

The concept of the medial axis, introduced by Blum [8], is an important tool for 

Curve Reconstruction. It approximates the shape of a curve. 

Amenta et al. [3] introduced the concept of the local feature size, which 

determines the sampling density in the neighbourhood of a sample point. 

The medial axis of a smooth curve is the locus of the centers of the topological 

1-disks which touch more than one point of the curve (See Fig. 5). Every point on the 

medial axis has two or more closest points on the curve. 
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Figure 5: Medial axis of a curve 

The local feature size of one point on the curve is the distance between this 

point and the nearest point on the medial axis (See Fig. 6). 

Figure 6: Local feature size f(p) at point p 

1.4.3 Sampling conditions (e-sample) 

In order to guarantee the correctness of reconstruction, a sampling condition is 

6 



necessary. Some algorithms for curve reconstruction require uniform sampling while 

some other can allow non-uniform sampling. Here we introduce the notion of an 

e-sample which is non-uniform sampling. 

An e-sample is defined as follows: for any point p on the curve, the distance to 

its nearest sample point is at most e * f(p), where f(p) is the local feature size of point 

p (See Fig. 7). 

* 

Figure 7: Sample points of Curve showing variable sampling density 

Based on this non-uniform sampling, we need more samples at some parts with 

more details (like sharp corners, intersections etc.) and fewer samples at other parts 

with less detail. 

1.4.4 Relative neighbourhood graph (RNG) 

The Relative Neighbourhood Graph (RNG) is also an important data structure in the 



Curve Reconstruction area. For a set of n distinct points on the plane, the edge pq, 

where p and q are from the point set, is defined as an RNG edge if and only if these 

two points p and q are relatively close (See Fig. 8). 

Figure 8: Relative neighbourhood graph of points 

Lankford [32] defines two points p and q as being relatively close if d(p, q) ^ 

max[d(p, r), d(q, r)], where r is one of n points and r ^ p , q. In addition, it is shown 

that RNG is a subgraph of the Delaunay Triangulation on the same point set. 

1.4.5 Gabriel graph 

The Gabriel graph is another important data structure in the Curve Reconstruction 

area. For a set of points on the plane, the edge pq is defined as a Gabriel edge if and 

only if the diametral circle on this edge dose not contain any other points from the 

point set (See Fig. 9). 



p / 

Figure 9: Gabriel graph of points 

In addition, it is shown that the Gabriel graph is a subgraph of the Delaunay 

Triangulation and a supergraph of the RNG on the same point set. 

1.4.6 Types of curves 

Different curve reconstruction algorithms could handle different types of curves. Here 

we show four kinds of typical curves (See Fig. 10). 

(a) Smooth closed curve (b) Curve with sharp corner 
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(c) Curve with endpoints (d) Curve with intersection 

Figure 10: Types of curves 

Smooth curves satisfy one condition: for any points on the curve, it has the same 

left and right tangent. 

Curves with corners, also called non-smooth curves, satisfy one condition: the 

point in the corner has different left and right tangents. In this situation, the medial 

axis will go through the corners such that the areas near corners need an infinite 

number of points to satisfy the sampling density. 

Curves with endpoints are called open curves. 

Curves with intersections are also called self-intersecting curves. 

10 



Chapter 2 

Literature Review 

2.1 Voronoi Diagram & Delaunay Triangulation 

Based Approaches 

Many approaches to the curve reconstruction problem compute the Voronoi diagram 

and Delaunay triangulation of the given point set as their first step since it is shown 

that the polygonal reconstruction is the subgraph of the Delaunay triangulation when 

point set is dense enough. Then some heuristic is used to make a local test of all the 

Delaunay edges and to check which edges are redundant. 

In this thesis, we mainly discuss the Voronoi Diagram & Delaunay Triangulation 

based approaches, which have been sorted into 4 groups as follows: the first group 

handles smooth curves, the second group handles curves with corners, the third group 

handles curves with noisy samples, and the fourth group handles curves with multiple 

features. 

2.1.1 Approaches for Smooth Curves 

Smooth curves satisfy one condition: the left and right tangents of every point in the 

curve are the same. 

Five papers in this subsection provide approaches for smooth curves. The first 

paper was written in 1997 and the last in 2006. 

l i 



Amenta et al. [3] presented a method for obtaining the reconstruction of a 

smooth curve from a non-uniform sample. Earlier Kirkpatrick and Radke [31] defined 

the concept of a p-skeleton, where the (3 value must be found. Amenta et al. [3] do not 

identify any shortcomings of previous work, but they stated that they made the 

P-skeleton approach work by giving a proper value to the parameter p as long as the 

sample density is satisfied. In addition, they made two contributions: One is proposing 

an approach to find the crust graph. The other one is that they introduce the concept of 

local feature size such that the density in the neighbourhood of a sample point can be 

determined. With the introduction of a non-uniform sampling condition, three other 

algorithms by Dey and Kumar [13], Gold [21] and Dey et al. [14] were proposed to 

handle for smooth curves with different features. 

Dey and Kumar [13] proposed an approach that is able to handle smooth closed 

curves in higher dimensions. The authors in this paper did not identify any 

shortcomings of Amenta et al. [3], but they improved the sampling density from 0.252 

in Amenta et al. [3] to 1/3. 

Gold [21] appears to be the first to present a one-step algorithm to find two 

graphs called the crust and the skeleton, which are used to deal with map input 

problems. The author refers to the approach by Gold et al. [22], which is able to 

obtain a skeleton from the Voronoi diagram. But it has two drawbacks: first, labelled 

points are needed; secondly, this approach is restricted to polygon map problems. 

Although Gold [20] directly generated topologically correct maps when the quality of 

scanned input is sufficiently high, labelled points are still required. Thereafter, he 

12 



developed a new method to obtain the skeleton from unlabelled points, which is based 

on the approach proposed by Amenta et al. [3]. 

Dey et al. [14] refer to algorithm CRUST by Amenta et al. [3] and algorithm 

NN-CRUST by Dey and Kumar [13], but neither of them is able to handle an 

e-sample from an open curve. Hence, they developed the algorithm 

CONSERVATIVE-CRUST (P, p), where p is a non-negative real parameter, that could 

deal with either closed curves or open curves as long as the sample is sufficiently 

dense. 

Hiyoshi [23] refers to the work by O'Rourke et al. [41] and he identifies one 

shortcoming for their work: the method based on minimal spanning Voronoi tree 

(MSVT) is not able to handle the curve with multiple connected components. Then 

the author in this paper presents an approach called ZERO-ONE which is able to 

reconstruct a set of sample set from closed curves. It is claimed that every edge of 

polygonal reconstruction exactly connects adjacent points on the original curve. 

Under the assumption that the smooth closed curve consists of many separate pieces, 

the cases of circular arcs and line segments can be ignored. Therefore, the author 

derives a linear function to handle the minimization problem, which can be directly 

transferred to zero-one programming problem. On the other hand, because the running 

time of ZERO-ONE algorithm is quite high, another two heuristics, SCISSORS and 

PASTE, are proposed to reduce the complexity. As a result, SCISSORS and PASTE 

work well for large input cases and polygonal reconstruction is correctly produced as 

the sample density is sufficient. In addition, the author presents the comparison of 

13 



outputs of ZERO-ONE, SCISSORS, PASTE, the crust and P-skeleton algorithms 

performed on Computational Geometry Algorithm Library. For the samples from 

letter U, both ZERO-ONE and PASTE are successful to obtain the reconstruction, but 

there are several errors in the crust, SCISSOR and p-skeleton algorithms. For the 

samples from letters ABC, all the algorithms could not output the correct polygonal 

reconstruction as the sampling density is not sufficient. It is claimed that the time 

complexity of either SCISSORS or PASTE algorithm is 0(n log n) and ZERO-ONE 

needs the smallest sample density among all the proposed algorithms. Moreover, a 

slightly modified SCISSORS method is still able to handle open curves. 

2.1.2 Approaches for Curves with Corners 

Curves with corners, also called non-smooth curves, satisfy one condition: the left and 

right tangents of the points near or in the corners are different. In this situation, the 

medial axis will go through the corners, which means that the areas near corners need 

infinite points to satisfy the sample density. As a result, the approaches for smooth 

curves presented in section 2.2.1 could not work for curves with sharp corners. It has 

been shown that they not only fail theoretically but also in practice. 

Four papers in this subsection provide approaches for curves with corners. The 

first paper was written in 1999 and the last in 2001. 

Giesen [18] appears to be the first to present an approach to reconstruct a single 

curve with sharp corners. For most Voronoi diagram and Delaunay triangulation 

based algorithms, the sampling density is controlled by the parameter e such that the 
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distance from one point p on the original curve to its nearest sample point is at most 

e*f(p), where f(p) is the local feature size of point p. It is shown that those approaches 

based on that sample condition are able to handle smooth open curves or smooth 

closed curves. However, their approaches have one common drawback: it may fail to 

deal with the curves with sharp corners. Because the corner points are on the medial 

axis, the parts close to the corners of curves need infinite samples. Therefore, Giesen 

proposes one method to overcome above drawback. His algorithm is derived from 

Travelling Salesman problem and the author uses two corollaries of Menger's 

theorem to further develop the local property to the global such that a shortest 

polygonal graph, which connects all the points by order, represents the curve 

reconstruction. In addition, the necessary and sufficient sample conditions are defined 

to guarantee that the travelling salesman path (TSP) algorithm is able to obtain the 

correct reconstruction. 

Althaus and Melhorn [1] indicate that they use Giesen's theory [18] as a basis for 

their work. However, there are two shortcomings in Giesen's work as follows: first, 

the travelling salesman tour or path algorithm could only handle a uniformly 

distributed point set from smooth closed curves, smooth open curves or semi regular 

curves, secondly, the sample density is not explicitly defined for different types of 

curves. Hence, the authors in this paper further develop Giesen's work in three 

directions: first, different sampling densities are given respectively according to the 

types of curves. It is found that smooth curves have similar sampling condition to that 

in the works by Amenta et al. [3], Dey and Kumar [13], Gold [21] and Dey et al. [14]. 
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In addition, the travelling salesman tour or path approach is successful to reconstruct 

the curves when it is a non-uniformly distributed sample set; secondly, when the 

sample density is sufficiently high, the computation time of travelling salesman tour 

or path is polynomial; thirdly, based on some powerful theorems and reasonable 

assumptions, the travelling salesman tour or path is given a guarantee for the 

correctness of curve reconstruction. 

Although the above algorithm was proposed to work for curves with corners, it 

could only handle single, closed curves. Dey and Wenger [15] present an approach 

called GATHAN that is able to reconstruct a collection of curves with corners. Their 

approach is derived from NN-CRUST by Dey and Kumar [13]. However, the 

previous sample density condition does not satisfy with non-smooth curves since the 

parts close to the corners need infinite samples, so Dey and Kumar introduce the 

angle condition, ratio condition and topological condition at the same time such that 

the appearance of incorrect or redundant edges will be avoided. The authors state that 

GATHAN algorithm handles curves with sharp corners, boundary points and multiple 

components quite effectively in comparison with the other algorithms. In addition, all 

steps in their algorithm could be extended to three dimensions. However, the unsolved 

problem is that they can not provide a proof for the correctness of their algorithm. 

Subsequently, it was found that the algorithm GATHAN by Dey and Wenger [15] 

may fail for some special cases. In 2001, Funke and Ramos [17] propose an approach 

that is able to obtain the polygonal reconstruction of a set of samples from the curves 

which have corners and endpoints. The authors indicate that they use the same ideas 
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as Dey and Wenger [15], which is first detecting smooth places and then probing 

sharp comers or endpoints. However, they have different conditions that decide 

whether the corners are found. By modifying their approach slightly, they could also 

produce the correct reconstruction of the sample set from curves with multiple 

components as long as the sample density is sufficient. In addition, the authors state 

that, with the theoretical parameters for sampling conditions, their algorithm gives 

better output than both the CRUST and CONSERVATIVE-CRUST approaches. 

2.1.3 Approaches for Curve Reconstruction from Noisy 

Samples 

All of the approaches presented in the other subsections can only handle the curves 

from a noise-free sample, but no heuristic is proposed to effectively deal with curves 

when noisy samples occur. Noise usually comes from input sample set. For instance, 

scanning an image may produce some noisy points. Typically, there are two different 

types of noisy samples. However, researchers often make an assumption that all the 

noisy samples, which are discussed in this subsection, are uniformly distributed 

around every actual point. 

Two papers in this subsection provide approaches for Curve Reconstruction from 

Noisy Samples. The first paper was written in 2003 and the last in 2007. 

Cheng et al. [12] appear to be the first to propose an approach that is able to 

construct the polygonal reconstruction of smooth closed curves with multiple 

components from noisy samples. The authors refer to many previous approaches by 
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Amenta et al. [3], Dey and Kumar [13] and Dey et al. [14], and it is shown that none 

of all the existing algorithms could handle curves from the noisy samples. The authors 

in this paper claim that they use method coarse() to put the samples from a relatively 

smooth area together as a group. The main idea of this algorithm is generally based on 

three steps as follows: first, drawing a circle based on every sample point such that the 

neighbourhood coarse() decides a strip which is relatively narrow to the 

neighbourhood size, secondly, using function refined() to delete all the noisy samples 

in a certain neighbourhood which is defined from above, thirdly, taking any existed 

approach for curve reconstruction, like NN-CRUST, to perform on noisy-free samples 

obtained from step2, and then the polygonal reconstruction is produced. In addition, 

the authors provide a proof for the correctness of their algorithm. 

Subsequently, Mukhopadhyay and Das [38] also present an approach which is 

able to handle curves from a noisy sample. The authors refer to RNG-based heuristic 

proposed by themselves in 2006, which works well for curves with multiple features. 

However, it has a shortcoming that the approach will fail when there exists noisy 

samples in the given sample set. The authors indicate that their algorithm is based on 

the RNG heuristic that they had presented earlier. First, the useful samples are 

extracted by a filtering way; secondly, RNG heuristic is used to perform on the 

noisy-free samples to obtain polygonal reconstruction. In addition, the authors present 

five groups of the normal sample set and its corresponding noisy sample set from 

closed curve, curve with endpoints, curves with sharp corners, nested curves and 

multiple curves respectively. By performing their CRWN algorithm on the noisy 
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sample set, the filtered point set is correctly shown. However, they indicate that the 

correctness of the output of the CRWN algorithm has not been supported by 

theoretical guarantees. 

2.1.4 Approaches for Curves with Multiple Features 

Three papers in this subsection provide approaches for Curves with Multiple Features. 

The first paper was written in 2006 and the last in 2007. The approaches presented in 

subsection 2.1.1 and 2.1.2 can only handle curves with one or two features. Since 

2006, researchers have started to find approaches for curves with multiple features. 

Lenz [34] extends the NN-CRUST algorithm [13]. By improving the sampling 

density from 1/3 to 0.48, the modified algorithm is able to handle the sample set from 

smooth closed curves. In addition, the author further develops an approach such that it 

could deal with many types of curves, including open curves, closed curves, smooth 

curves, curves with sharp corners and curves with intersections. Given a particular 

figure from form L(t)-^ (sin47it, cos67it), the author presents the comparison of three 

outputs of the reconstructions based on three different numbers of randomly 

distributed samples. The author states that the number of randomly distributed 

samples affects the output of the reconstruction. However, their algorithm has one 

shortcoming: when a single incorrect edge occurs, many subsequent edges may fail. 

Moreover, it is shown that the bad results could not happen as long as the sampling 

density is sufficiently high. 

Mukhopadhyay and Das [37] state that the approaches by Dey and Kumar [13] 
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and Dey et al. [14] are able to handle simple curves only. And the approaches by 

Giesen [18] and Dey and Wenger [15] can only handle curves with corners. The 

authors claim that the shortcoming of previous work is that each existing approach 

can not deal with curves with multiple features. Hence, they propose a new curve 

reconstruction algorithm which is an RNG-based heuristic. The first step is to construct 

a Relative Neighbourhood Graph (RNG) on the input sample set, which is a subgraph 

of the Delaunay triangulation. They show that the RNG contains all edges joining 

adjacent points on the original curve when the sampling density is less than 1/5. The 

second step is to remove redundant edges by a heuristic. Because the approximation of 

the medial axis of a Voronoi diagram is often crossed by non-adjacent edges, the 

heuristic computes the maximum distance between one endpoint and the Voronoi 

vertex of its Voronoi polygon to estimate the distance between this point and the 

medial axis. The authors state that the algorithm complexity is 0(n log n), and this 

algorithm is able to handle simple curves, nested curves, curves with sharp corners, a 

set of curves as well as the curves which have end points. In addition, they claim that 

the sampling density at a normal smooth curve should be lower than that at the sharp 

corners. 

Zeng et al. [49] state that CRUST [3], NN-CRUST [13] and 

CONSERVATIVE-CRUST [14] need a parameter to control the sampling density. 

However, a single fixed sample density is hard to satisfy for all different features of 

the curve, like endpoints and corners. Hence, they present a parameter free, human 

visual system based algorithm called DISCUR. It is shown that their approach is able 

20 



to handle a sample set from curves with multiple features, including open curves, 

closed curves and curves with endpoints or sharp corners. This approach has two main 

advantages. On one hand, the parameter free algorithm is easier to handle for those 

curves with many different features. On the other hand, this algorithm is more suitable 

for unknown curves. Based on the human visual system, adjacent points on the 

original curve could be always correctly connected. 
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Chapter 3 

Experimental Comparison 
Mukhpadhyay and Das [37] proposed a simple but effective algorithm for curve 

reconstruction by constructing a Relative Neighbourhood Graph on the sample and 

then pruning non-curve adjacent edges. In the first part of this thesis we establish the 

effectiveness of this algorithm by experimental comparisons with two leading 

algorithms: the NN-crust [13] and the Conservative-crust [14]. By comparing the 

outputs of these three algorithms on a variety of different samples of increasing 

complexity, we demonstrate that the simple RNG-based algorithm performs as well or 

better. 

3.1 Three Main Algorithms 

3.1.1 RNG-based Algorithm 

The RNG-based algorithm [37] starts with the Delaunay triangulation on the sample 

points and retains only the RNG-edges. This is shown to be a supergraph of the graph 

obtained by joining curve-adjacent pairs. The redundant edges (that is, edges joining 

pairs of points that are not adjacent on the unknown curve) are removed by a simple 

and effective heuristic. 

It goes as follows. We construct the Voronoi diagram on the given samples. For 

each RNG edge p; pj, we compute the maximum distance from pi to the vertices of its 

Voronoi polygon. Let this distance be d,; do the same for the point pj5 obtaining a 

distance dj. We delete the edge p; pj if its length is greater than the maximum of d, and 
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dj. 

Here is a formal description of the algorithm. 

Algorithm curveReconstruction 

Input: A set of sample points S from an unknown smooth curve C 

Output: A polygonal reconstruction of C 

Step 1. Compute the Delaunay Triangulation, DT on S. 

Step 2. Extract the RNG from the DT. 

Step 3. Compute the Voronoi Diagram, VD, as the dual of the DT obtained in 

Step 1. 

Step 4. For each edge p; pj of the RNG computed in Step 2 do: 

Step 4.1 Compute the maximum distance dj from pj to the vertices of its 

Voronoi polygon. 

Step 4.2 Compute the maximum distance dj from pj to the vertices of its 

Voronoi polygon. 

Step 4.3 Set dmax = max (db dj). 

Step 4.4 If dmax< length (p; pj), delete edge p; pj. 

Step 5. Output the remaining set of edges. 

3.1.2 CONSERVATIVE-CRUST Algorithm 

This algorithm [14] also starts with the Delaunay triangulation, DT, and goes through 

the following three filtration steps. Let p > 0 be a real-valued parameter. 

Step 1. From the DT obtain the Gabriel graph, GG. 
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Step 2. From the GG, remove an edge e if the ball, B(e, l(e)/p), contains a 

Voronoi vertex. Let G' be the output graph after this step. 

Step 3. From G' remove an edge e if the ball, B(e, l(e)/4p), contains a sample 

point of degree 0 or a sample point of degree 1 whose incident edge is not 

connected to e. Let G be the output graph after this step. 

3.1.3 NEAREST NEIGHBOUR-CRUST Algorithm 

Like the previous two algorithms, this one [13] also starts with the Delaunay 

triangulation on the sample set and extracts the Nearest Neighbour graph from it. 

However, unlike the previous two algorithms it now adds edges to this graph to obtain 

a reconstruction. 

For this reason it is able to show that under a sampling condition (e=Sl/3) the 

reconstruction has exactly the edge joining curve-adjacent points. 

Step 1. Extract from the DT the nearest neighbour graph NN. 

Step 2. Loop over the sample points in arbitrary order; if a sample point p is of 

degree 1, then consider the half-space, H, defined by a line through p 

orthogonal to the edge e incident on p that does not contain e. Choose a 

shortest edge incident on p that lies in H and add it to NN. 

3.2 Experimental Results 

As we did not have access to the source code for RNG-based, Conservative-Crust and 

Nearest Neighbour-Crust algorithms, and we were only interested in comparing the 

outputs of the three algorithms, we did brute-force implementations of these 

algorithms in Java programming language. We ran these three algorithms on 10 
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samples from different types of curves, such as simple curves, curves with sharp 

corners, curves with end points, nested curves and collection of curves (See Figs. 

11-20). 

(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 11: Sample 1, comparison of polygonal reconstructions 

(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 12: Sample 2, comparison of polygonal reconstructions 
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(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 13: Sample 3, comparison of polygonal reconstructions 
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(a) NN-Crus t (b)RNG (c) Conservative-Crust 

Figure 14: Sample 4, comparison of polygonal reconstructions 
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(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 15: Sample 5, comparison of polygonal reconstructions 

(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 16: Sample 6, comparison of polygonal reconstructions 
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(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 17: Sample 7, comparison of polygonal reconstructions 

(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 18: Sample 8, comparison of polygonal reconstructions 
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(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 19: Sample 9, comparison of polygonal reconstructions 
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(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 20: Sample 10, comparison of polygonal reconstructions 
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The samples above show clearly the superiority of the simple RNG-based heuristic. 

The Nearest Neighbour-Crust algorithm seems to perform the worst. This is 

somewhat intriguing as it comes with an iff-guarantee for the reconstruction provided 

we have an e-sample with e*Sl/3. We can observe that the NN-Crust algorithm 

always produces bad reconstructions for open curves; the RNG method, like 

Conservative-Crust algorithm, on the other hand does not come with an iff-guarantee 

and requires an e-sample with e^ l /5 . It is simple and works very well for the 

samples from different types of curves; The Conservative-Crust algorithm is 

troublesome to use. We had to fine-tune the parameter p to obtain an output to match 

the one produced by the RNG method. Particularly in the case of curves of varying 

features corresponding to their different parts, different parameters should be used for 

those different parts for the ideal sampling of the curves. Hence, the parameter is not 

always easy to be determined. 
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Chapter 4 

Certification for Reconstruction 
All the proposed algorithms can guarantee the correctness of the reconstruction 

provided the sample satisfies the sampling condition. But in practice we are just given 

a sample from some unknown curve and we can't verify a given sample is an 

e-sample, therefore we are not sure whether or not the reconstruction produced by 

some algorithm is good. 

In the second part of this thesis we propose a novel approach that bypasses this 

problem by certifying to the accuracy of the reconstruction. 

4.1 Certification Algorithm 

Let A be any curve-reconstruction algorithm. Our certification algorithm has the 

following four steps. 

Algorithm CERTIFICATION 

Stepl. Run a reconstruction algorithm A on the sample S. 

Step2. Smooth the resulting polygonal reconstruction into a set of curves C. 

Step3. Resample the curves in C so that we have a sample point from each 

segment of a curve in C, which corresponds to an edge of the polygonal 

reconstruction. 

Let 5" be the resampled point set. 

Step4. Match the point sets S and S'. 

The closeness of the match in the last step is an indication of the accuracy of the 
31 



curve-reconstruction algorithm. 

4.1.1 Polygonal reconstruction 

There are a number of reconstruction algorithms [3, 13, 14, 21, 37] that take an 

e-sample as input and produce a provably correct reconstruction under suitable 

restrictions on the parameter e. In this thesis, we use the RNG-based algorithm [37], 

the Nearest Neighbour-Crust algorithm [13] and Conservative-Crust algorithm [14] as 

A. 

4.1.2 Smooth the reconstruction 

Let us assume that the polygonal reconstruction, P, consists of chains and cycles of 

varying sizes and isolated vertices. We smooth P, based on ideas suggested in [14]. 

The direction of the tangent to the smooth curve that passes through a vertex, p, 

of degree 2 is set to the direction of the tangent at p to the circumcircle, defined by p 

and its two neighbours. We fix the smooth curve piecewise for each edge pq as 

follows: 

1. If both p and q are of degree 1, we retain this edge as part of our smooth curve. 

2. If p is of degree 1 and q is of degree 2, then the piece of the smooth curve for 

this part is part of the circumcircle that is used to define the tangent at q (See 

Fig. 21). 



P 

Figure 21: p is of degree 1 and q is of degree 2 

3. If both p and q are of degree 2, we do this. Let up and qv be incident on p and 

q respectively. Two cases arise: 

• If u and v are on opposite sides of the supporting line of pq (See Fig. 22), 

the smooth curve through pq consists of 4 sub-pieces that are joined 

together to form a single piece. In the subpiece px, the circle section 

satisfies the tangent constraint at p and the tangent at x (1/4 location of 

pq) is parallel to pq. Similarly, in the subpiece qy, the circle section 

satisfies the tangent constraint at q and the tangent at y (3/4 location of 

pq) is parallel to pq. For the two middle subpieces, w is the midpoint of 

xy. zC2 is the perpendicular bisector of xw, while sC3 is the perpendicular 

bisector of wy. 
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Figure 22: p and q are of degree 2 and the neighbors are on opposite sides 

• If u and v are on the same side of the supporting line of pq (See Fig. 23), 

the smooth curve through pq consists of 2 sub-pieces that are joined 

together to form a single piece. Kp is the angle bisector of Zmpq and 

Kq is the angle bisector of Znqp. The tangent b at K is perpendicular to 

line d. pCi is perpendicular to um and qC2 is perpendicular to vn. 
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Figure 23: p and q are of degree 2 and the neighbors are on the same side 

4.1.3 Sampling the smoothened curve 

We sample the smooth curves in C constructed in the last section by choosing a 

random point from each section of a curve in C that corresponds to an edge in the 

polygonal reconstruction. 

4.1.4 Matching the two samples 

We discuss Hausdorff distance for quantifying the "distance" between the original 

sample S and the sample obtained from C. We contend that the accuracy of the 

reconstruction algorithm A is reflected by this "distance". 

The Hausdorff distance between two non-empty subsets X and Y of a metric 

space (M, d) is defined thus: 

DH(X, Y) = max { Slip x e X i n f y e Y d(x, y), 

SUp y e Y i n f x e X d(x, y) } 
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We demonstrate the Hausdorff distance between two sets by three examples. 

Example 1 : X={1 ,3 , 5}, Y={9, 12, 15}. 

a B B § g $ 

1 3 5 9 12 15 

sup x ex infyEY d(x, y) = Slipxex d(x, Y) = SUpxex {8, 6, 4} = 8 

supyey infxeX d(x, y) = SlipyEY d(X, y) = supyey {4, 7, 10} = 10 

hence, DH(X, Y) = max {8, 10} = 10 

Example 2 : X={1 ,3 , 5}, Y={2,4 ,6} . 

g Q g Q g Q 

1 2 3 4 5 6 

SupxexinfyeydCx, y) = SUpxexd(x, Y) = SUpxex {1, 1, 1} = 1 

SUpyeY in f x ex d(x, y) = SUpyey <*(X, y) = s u p y e Y {1, 1, 1} = 1 

hence, DH(X, Y) = max {1, 1 } = 1 

Example 3 : X={1 ,3 , 5}, Y={2,4, 15}. 

B 0 9 Q B 9-

1 2 3 4 5 15 

SUpXGxinfyeYd(x, y) = SUpxexd(x, Y) = SUpxex {1, 1, 1} = 1 

SUPyEY infx£X d(x, y) = SUpyEY d(X, y) = SUPyEY {1, 1, 10} = 10 

hence, DH(X,Y) = max {1, 10} = 10 
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4.2 Experimental Results 

4.2.1 Part I 

In this part, we ran our certification algorithm on the outputs of the 

RNG-reconstructions prior to and after removal of the non-curve adjacent edges. For 

each non-curve adjacent edge, we retain it as the smooth part through that polygonal 

edge and we choose a random point from that straight edge as a resampled point. 

To test our RNG-algorithm [37], we measured DH(X, Y) for 10 different samples 

by screen coordinates (See Figs. 24-33). The entries in the second and third columns 

of Table 1, are respectively the values of DH(X, Y) prior to and after the removal of 

non-curve adjacent edges. 

Sample 

SI 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

Without Remove-edges 

18.00 

32.38 

27.31 

42.30 

35.60 

20.30 

39.82 

39.61 

29.15 

119.05 

Remove-edges 

13.99 

11.24 

10.62 

11.06 

10.95 

13.97 

11.72 

12.32 

16.28 

13.09 

Table 1: Comparing Hausdorff distance between without/with Remove-edges 
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Since the reconstruction can be construed as being poor prior to the removal of 

the non-curve adjacent edges, the entries in the third column of Table 1 are smaller 

than those in the second. 

x 

Figure 24: Sample 11, without Remove-edges, with Remove-edges 

.,--..../ "\ *~:..y 

Figure 25: Sample 12, without Remove-edges, with Remove-edges 

38 



,< * v . . '••' > #*%„».* ) 
i \ i ' \ 
* • v s -. 

Figure 26: Sample 13, without Remove-edges, with Remove-edges 
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Figure 27: Sample 14, without Remove-edges, with Remove-edges 
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Figure 28: Sample 15, without Remove-edges, with Remove-edges 
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Figure 29: Sample 16, without Remove-edges, with Remove-edges 

40 



Figure 30: Sample 17, without Remove-edges, with Remove-edges 

Figure 31: Sample 18, without Remove-edges, with Remove-edges 
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Figure 32: Sample 19, without Remove-edges, with Remove-edges 

Figure 33: Sample 20, without Remove-edges, with Remove-edges 
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4.2.2 Part II 

We have also used our RNG-based reconstruction to simulate some bad 

reconstructions. Instead of removing the non-curve adjacent edges that appear before 

the clean-up stage, we make use of these to break up the polygonal graph into cycles 

and isolated edges (See Fig. 34). 

(a) Samples (b) RNG graph 

(c) Break-up (d) Remove-edges 

Figure 34: Simulating a bad reconstruction 

We ran our Certification Algorithm to compare this "poor" reconstruction with 

the "good" reconstruction that we get after removing the non-curve adjacent edges. 

We compared DH(X, Y) for 10 different samples (See Figs. 35-44). The results 

are shown in the Table 2. The entries in the second and third columns of Table 2, are 

respectively the values of DH(X, Y) with Break-Up operation and after the removal of 

non-curve adjacent edges. 
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Sample 

SI 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

Break-up 

22.83 

27.74 

74.98 

48.37 

42.58 

28.03 

32.40 

25.74 

31.83 

31.36 

Remove-edges 

11.68 

11.53 

10.95 

16.41 

12.84 

12.73 

13.54 

10.32 

11.89 

13.66 

Table 2: Comparing Hausdorff distance between Break-up and Remove edges 

Again we see that the reconstruction with the Break-Up operation is worse than 

that after the removal of the non-curve adjacent edges as the entries in the third 

column are smaller than those in the second. 
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Figure 35: Sample 21, with Break-up, with Remove-edges 

Figure 36: Sample 22, with Break-up, with Remove-edges 

45 



Figure 37: Sample 23, with Break-up, with Remove-edges 

Figure 38: Sample 24, with Break-up, with Remove-edges 



Figure 39: Sample 25, with Break-up, with Remove-edges 
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Figure 40: Sample 26, with Break-up, with Remove-edges 
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Figure 41: Sample 27, with Break-up, with Remove-edges 
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Figure 42: Sample 28, with Break-up, with Remove-edges 
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Figure 43: Sample 29, with Break-up, with Remove-edges 

Figure 44: Sample 30, with Break-up, with Remove-edges 
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4.2.3 Part Et 

Finally, and most importantly, we compared our RNG-based algorithm [37] with two 

leading algorithms: the Nearest Neighbour-Crust [13] and Conservative-Crust [14]. 

We ran our certification algorithm on the outputs of these three algorithms on 10 

different samples, which have already been shown in the Chapter 3. When either 

endpoint of an edge of the polygonal reconstructions has a degree more than 2, we 

retain that edge as the smooth part and we choose a random point from it as a 

resampled point. The entries in the second, third and fourth columns of Table 3, are 

respectively the values of DH(X, Y) for the Nearest Neighbour-Crust, RNG-based 

algorithm and Conservative-Crust. 

Sample 

SI 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

NN-Curst 

30.50 

107.74 

48.95 

50.27 

49.25 

27.67 

58.60 

33.37 

92.99 

29.80 

RNG-based 

12.27 

13.02 

13.49 

14.79 

15.63 

13.46 

13.15 

14.95 

15.60 

12.65 

Conservative-Crust 

12.87 (p=2.4) 

13.47 (p=2.4) 

13.45 (p=2.4) 

15.13 (p=3.4) 

15.75 (p=3.4) 

14.28 (p=3.4) 

13.53 (p=3.4) 

14.45 (p=2.8) 

15.37 (p=3.4) 

21.06 (p=4.7) 

Table 3: Comparing Hausdorff distance among three algorithms 
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In the Conservative-Crust, we choose a suitable p value to produce the best 

reconstruction, which matches the one produced by the RNG method. We can claim 

that the outputs of RNG-based algorithm and Conservative-Crust are better than that 

of NN-Crust since the entries in the third and fourth columns are much smaller than 

those in the second. In addition, it shows very tiny differences between the entries of 

the third and fourth columns from SI to S9. However, in S10, a non-curve adjacent 

edge at the bottom of the reconstruction in the Conservative-Crust leads to a bigger 

mismatch than that in the RNG-based algorithm. The figures below (See Figs. 45-54) 

appear to confirm the difference. 
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(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 45: Sample 1, comparison of smooth curves 

t 

(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 46: Sample 2, comparison of smooth curves 
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(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 47: Sample 3, comparison of smooth curves 

(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 48: Sample 4, comparison of smooth curves 
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(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 49: Sample 5, comparison of smooth curves 

(a) NN-Crust (b)RNG (c) Conservative-Crust 

Figure 50: Sample 6, comparison of smooth curves 
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(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 51: Sample 7, comparison of smooth curves 

i 

(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 52: Sample 8, comparison of smooth curves 
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(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 53: Sample 9, comparison of smooth curves 

(a) NN-Crust (b) RNG (c) Conservative-Crust 

Figure 54: Sample 10, comparison of smooth curves 
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Chapter 5 

Conclusions and Future Work 
Many algorithms for curve reconstruction have been proposed, some of which are only able 

to handle curves with particular features. In chapter 3 of this thesis, by comparing the 

polygonal reconstructions of RNG-based algorithm, NN-Crust and Conservative-Crust on a 

set of samples from different types of curves with multiple features, we establish the 

superiority of the simple RNG-based heuristic over the other two algorithms, where the 

RNG-based algorithm could reconstruct more types of curves with higher quality. However, 

the comparison is just based on visual inspection. 

Although most algorithms guarantee the quality of the reconstruction when sampling 

condition is satisfied, we are not sure whether or not the given sample set is an e-sample 

since the local feature size of any point on the curve can not be computed. In chapter 4, 

therefore, we propose a novel approach that bypasses this problem by certifying to the 

accuracy of the reconstruction. By smoothing the polygonal output of a reconstruction 

algorithm, we obtain a good approximation to the original curve. Then we sample the 

smoothened curve and compute the Hausdorff distance between the original sample and 

resampled set. We argue that the closeness of the match is an indication of the accuracy of 

the curve reconstruction algorithm. The experimental results show that the Hausdorff 

distance metric works quite well. Actually, the value of the Hausdorff distance depends on 

the longest redundant edge of the polygonal reconstruction. Hence, a longer redundant edge 

leads to a bigger mismatch for the Hausdorff distance. Finally and most importantly, we ran 

our certification algorithm on the polygonal outputs of the same samples that we have 
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shown at the end of chapter 3. This approach further verifies the same conclusion that 

RNG-based algorithm is better than the other two algorithms. On one hand, NN-Crust 

always causes the biggest mismatch among these three algorithms. On the other hand, 

although we find that RNG-based algorithm and Conservative-Crust usually produce very 

close values of Hausdorff distance, for the Conservative-Crust, we have to fine-tune the 

parameter to obtain an output to match the one produced by the RNG method. 

In addition, we are convinced the certification algorithm can also be extended to three 

dimensions. This is an avenue worth exploring. Moreover, with the requirement of massive 

data in the advanced technologies, the whole data can not be held in the limited memory. It 

might be interesting to study the curve reconstruction problem in the streaming model. 
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