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"Because of past studies chemical engineers are 
prone to accept, as a general rule the previous 
conclusion, that different theoretical models 
predict almost the same reaction effects on
overall mass transfer rate....................
The selection of a correct model is indeed very 
important,.."

C.J. Huang and C.H. Kuo
A.I.Ch.E.J. 11, 901 
(1965) in a discussion 
on the effects of 
diffusivities.
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ABSTRACT

A two step non-linear complex reaction scheme
2M]--- ^2M2--- *~M3 has been used to establish the need for
a careful selection of a mass transfer model for counter 
diffusing systems. By comparing the Penetration Theory and 
Film Theory selectivity parameters, it is shown that the 
two fluid-mechanical models do not predict the same results. 
It is also shown that the deviations between the results 
predicted by the two models do not appear to be directly 
related to increasing complexity in the reaction kinectics. 
In addition, the effect of reaction order on the selectivity 
parameter, has been examined by varying the order of the 
second step reaction.

ii
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CHAPTEB I 
INTRODUCTION

The solution to the problem of predicting the 
effect of a liquid phase chemical reaction on gas absorption 
or vice versa, has been attempted by proposing a hydro- 
dynamic model of the gas-liquid interface and the liquid 
flow pattern. Amongst the various models suggested, the 
so called film theory model‘postulated by Nernst (25),
Lewis and Whitman (24) and the penetration-surface renewal 
theory model proposed by'Higbie (14), Kishineveskii (17) and 
Danckwerts (9 ), are the two that are most commonly used. 
When the diffusion coefficients of various reacting species
are the same, the results predicted by the film theory and

LIthe laminar and turbulent boundry layer theories are found 
to be in remarkable agreement with each other. This 
interesting fact has been pointed out by Brian and 
Beaverstock (4), Kishineveskii and Armash (18), Astarita 
( 1 ), and a few others. Basing their conclusions on the 
results available -in the literature, Brian et al ( 4) 
concluded, " This insensitivity to the fluid mechanical 
models used suggests that the theoratical predictions will 
be good approximations even for physical systems which 
depart considerably from the idealised models." In a 
similar vein, Astarita ( 1 ) stated that in most cases

1
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the mass transfer model invoked has little influence on the 
predicted ratio of the mass transfer coefficient with 
chemical reaction to the physical mass transfer coefficient. 
Conclusions of this nature, have led in the past to 
a rather indiscriminate selection of models for the
prediction of the transfer coefficient ratio

[mass transfer with chemical reaction *| , . .--------------------------------------- in heterogeneous
mass transfer without chemical reactionj 

fluid-fluid systems. It is to be noted that the conclusion
regarding the insensitivity of predicted results to the
hydrodynamic model used, is of fundamental importance; but,
it has been arrived at on the basis of results obtained
from studies dealing with relatively simple systems in which,
the products of chemical reaction can never cross the phase
boundary. The lone exception is the work of Szekely and
Bridgewater (31.) . On the basis of their investigations of
a linear kinetic system with a volatile intermediate, they
questioned this alleged insensitivity of predicted results
to the model selected. It was decided therefore, to
undertake a detailed study with a view to determine,
whether or not, the predicted transfer coefficient ratio
is always insensitive to the hydrodynamic models used.
In order to do so, it was proposed to compare the film and
penetration model selectivity of an intermediate, Ivl2,
formed during a complex reaction described below:
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kl2M1 + [3] ------ 2 M2

k22M2 +[g]     M3 (ii)

(i)

(iii)

[irr] = 2k2 [f° ' 2kl ^  0
(iv)

The component Ml diffuses from a fluid 'a1
into another fluid 1 g* where it reacts to form an intermediate 
M2. It is further assumed that M2 can either react to form 
M 3 or diffuse back into fluid’a*. The stipulation that 
M2 can diffuse back across the interface makes this study 
different from thi© ones conducted thus far. According to 
Bridgewater ( 5 ) systems of this type are encountered in the 
liquid phase oxidation of hydrocarbons by absorbed oxygen.
As mentioned before, the commonly used index for comparing 
various hydrodynamic models is the transfer coefficient 
ratio; but, in this case it was decided to use an'equivalent 
parameter - the Selectivity.
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CHAPTER II 
REVIEW OF LITERATURE

Peaceman (27). in 1951. compared the film 
and penetration theory solutions for several kinds of 
chemical reactions and found that these solutions were in 
close agreement with each other, as long as the diffusion 
coefficients of the various reacting species did not differ 
significantly from each other. Similar results were reported 
later by Danckwerts and Kennedy (11). The reactions treated 
by these authors however, were one-step reactions. Brian and 
Beaverstock ( ^ ), analysed a two step reaction of the type:

A (gas) ^ ..  A (liquid)

Liquid Phase:

A + C (already in liquid) ► B (nonvolatile)
B + C - ■ - ► D (nonvolatile),

and found that if the diffusion coefficients for various 
components were similar, the results from the penetration 
theory and film theory would not differ significantly.
The components, 1B*,*C ' and 'D* were assumed to be 
nonvolatile and thus could not cross the liquid-gas 
phase boundary.

k
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Huang and Kuo (15). using the film and 
penetration - surface renewal theories, derived equations 
for the ratio of interphase mass transfer accompanied by 
a first order reversible reaction. They found that when the 
diffusivities of the reactants and the products are nearly 
equal, the effect of chemical reaction on the overall mass 
transfer ratio is insensitive to the model adopted for 
calculations. Kishineveskii et al (18) and Astarita ( 1 ) 
reached similar conclusions from their analysis. It must be 
emphasized again that in all these studies, the products of 
the chemical reaction could not cross the phase boundary.

Szekely and Bridgewater (31) investigated the 
fluid - fluid system,

kn k2
A --- -— ► B ------ ► C (1)
dC
dr 1A
dC ,

= k-p (2)

= *2CB - klCA (3)dr
in which, both A and B are volatile ( A diffuses from 
a fluid a into fluid 3, where it reacts to form B, which 
in turn can either diffuse back into a or can get converted 
to C ), Because the product of reaction fB’ could cross the 
phase boundary, it was possible to compare the transfer 
coefficient ratio for 'B' instead of- ’A'. Szekely et al (3D 
found that the selectivity of the intermediate B, as 
calculated by the film and penetration - surface renewal
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models, differed by as much as 22%. .Th’e difference in the
results obtained by Szekely et al (31) and Brian et al (4),
can be attributed to the different assumptions made in these 
studies concerning the nature of the intermediate 'B'. Thus,
whereas in Brian et al's ( ) investigation, 'B' could not
cross the phase boundary, in Szekely et al's (31) 
investigation, 'B' could diffuse through the fluid - fluid 
phase boundary.

In reporting their results, Szekely et al (31) 
conjectured that other counter diffusing fluid - fluid 
systems involving more complicated kinetics would display 
the effect of hydrodynamic patterns more severely. Since 
the kinetic scheme they investigated involved only first 
order reactions, the resulting equations for both the film 
theory model and the penetration models were linear and 
hence quite easy to solve.

Useful as Szekely et al's (31) results are, 
their conclusions have the following shortcomings:
i. Linear reactions are an exception rather than a rule in 

actual chemical engineering practice, and Szekely et al's 
(31) conclusions are certainly not applicable to cases 
of nonlinear kinetics. They could only make conjectures 
regarding the effects of " more complicated kinetics", 

ii. Szekely et al (3D have investigated only one case and 
it can be thought of as an isolated example rather than
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as a general conclusion.

It is obvious that in order to show the 
relative importance of model selection for the prediction 
of the transfer coefficient ratio in a counter diffusing 
heterogeneous fluid - fluid system, it is necessary to 
undertake a much more extensive investigation. This study 
was primarily undertaken with that purpose in mind. Its 
major objectives are listed below;

i. To establish the relative importance of model selection 
for heterogeneous counter diffusing fluid - fluid 

: systems with nonlinear kinetics; that is, to
quantitatively establish the sensitivity of predicted 
transfer coefficient ratio to the hydrodynamic model 
used,

ii. To check Szekely et al's (31) conjectures about the
effect of more complicated kinetics on the sensitivity 
of predictions to the hydrodynamic model used.
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CHAPTER III 
THEORETICAL MODEL OF THE SYSTEM

The system considered is one in which a fluid 
species Ml. present in a fluid medium 'a1, diffuses into 
a fluid »£•,

Ml( fluid a )- — ■ ^ mi ( fluid £ ) 
where it reacts with the fluid ’g1,

2Ml + [p]---- ► 2M2 .
The fluid component M2 then either diffuses back into the 
medium ’a1 or undergoes another irreversible reaction :

2M2 + [g]----- ► M3 .
In this analysis Ml and M2 were treated as gases, whereas 
(5 was assumed to be a liquid. However, this treatment is 
equally valid for liquid - liquid systems. It was assumed 
that R was in such an excess that its concentration could be 
considered constant. As Danckwerts (10) and Carberry (7 ) 
have shown, absorption into liquids can generally be 
regarded as an isothermal process. Physical and chemical 
properties of the system were assumed to be constant. It 
was also assumed that the diffusive fluxes of species Ml 
and M2 did not interact. Some further simplifying 
assumptions that were made in the course of this study are 
listed below s

i. The diffusion coefficients of Ml and M2 are equal.
This assumption is realistic in light of the fact that

8
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in most cases the diffusivity in a given medium 

depends only very slightly on the solute concentration,
ii. There is no resistance to mass transfer in the gas phase. 

Thus the concentration of species Ml at the gas liquid 
interface, corresponds to the equilibrium partial 
pressure of Ml in the bulk gas phase. This assumption 
does not in any way limit the scope of the problem.
The equilibrium assumption is also made for species M2,

iii. The back pressure of the species M2 in the gas phase 
is zero. This assumption was made for the sake of 
simplicity and standardisation, 

iv. No appreciable change in volume takes place as a result 
of the chemical reaction, 

v. Fluxes of MU and M2 from the gas phase towards the 
liquid phase are positive.

The assumptions listed above apply equally 
well to gas liquid contacting, in packed towers, in wetted 
wall columns, and to gas absorption into stagnant liquids.

For the system under investigation, 
selectivity was defined as the ratio of the rate of 
formation of the intermediate M2, to the rate of depletion 
of the reactant jvjq. Selectivity defined in this vray is 
equivalent to the ratio of the surface flux of M2 to that 
of the surface flux of Ml. This definition has been used 
both by Butt ( 6 ) and Bridgewater ( 5 ).
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CHAPTER IV 
DIFFUSION EQUATION

A. General Diffusion Equation

For a reacting species i, the mass balance 
over a moving small element of liquid, near the gas liquid 
interface, is described by the partial differential 
equation :

Molecular Transport = Convection + Accumulation
+ Reaction Rate.

The Lagrangian System of Coordinates is used 
for the derivation of this equation.

The diffusion equation as written above is of 
very little practical value and is generally simplified by 
making one or more of the following assumptions t

i. D̂  , the diffusivity is constant. This assumption is 
a good approximation except in the case of polymer 
solutions, where D^ is strongly dependent on the 
concentration of various species,

ii. The velocity U is constant over the moving small 
element of the fluid under consideration.
Equation (4) can therefore be written as

(5)

10
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. Each liquid element moves as a single whole with a 
constant velocity, like a plug in a plug flow reactor. 
It is implied that there is no motion in a direction 
perpendicular to the interface, or U=0. With U=0, 
equation (5) is reduced to

Equation (6) is a mathematical statement of the 
penetration - surface renewal model.

. The concentration profile of a species i in the
element is independent of time. This assumption leads 
to the statement of the so-called film theory model. 
Thus,

Equations (6) and (7) can he further simplified by 
assuming that the radius of curvature of the gas 
liquid interface is very large in comparison to the 
depth of the diffusion / penetration layer, and thus 
the diffusion process is one-dimensional. According to 
Levich (23), this condition is almost always fulfilled 
in real cases. In Cartesian Coordinates, equations (6) 
and (7) can accordingly be written as

Di A ci = + r (6)61

DiACi r (7)

(9)

(8)
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B. Mathematical Statement of Penetration Theory

Equation (8) is a statement of mass balance 
over a small element of liquid in contact with the 
interface. This equation has been derived under the 
assumption of a zero velocity gradient in a direction 
normal to the interface. If the chemical reaction term is 
dropped, equation (8) can be written as

If the element of liquid under consideration 
can be assumed to have :

i. the characteristics of a plug of an infinite depth 
moving as a whole with a constant velocity, or can be 
treated as a stagnant element of infinite depth i.e.:

The derivation of equation (12) is described in Appendix IA.

6Ci
6t •

(10)

0 < x < co (11a)
ii. a uniform initial concentration Ci :

Ci = Ci; t = 0 0 < x < oo
■ 0 (lib)Ci = Ci ; t > 0 X — >• oo

*iii, an interfacial concentration Ci :
* (llcc)Ci = Ci ; t > 0 x = 0

then, the flux X(t) at exposure time t and at the 
interface can be expressed as

X(t) = - Di (12)
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~  *

The average flux, X(t), for an exposure or
penetration time of t* is given as

o (Dl^ l )x=0 dtX(t )

I

(13)

where, K^p = 2

ilk)
\  TT t

J dt
o

In accepted chemical engineering terminology 
~/ o , * o .X(t#) = KLp ( Ci - Ci ) (15)

(15a)
T nt

Kj(p is the penetration theory liquid phase mass transfer 
coefficient without chemical reaction.

Equation (12) has been derived with the help 
of assumptions (11). These assumptions are very stringent 
and are strictly true in rare cases only. Under the 
conditions imposed by assumptions (11), equation (12) can 
have only very limited applicability. Danckwerts (9 ) has 
listed the conditions under which equation (12) can be 
applied as a close approximation to : 

i. liquid layers of restricted depth, and
ii. liquid moving parallel to the surface with a velocity 

that varies with depth.
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The necessary condition for (i) is that the
time of exposure should be so short that the depth of
penetration is less than the depth of the liquid; for (ii),
it must be so short that the depth of penetration is less
than the depth at which the velocity is appreciably
different from that at the surface. By the term depth of
penetration is meant the distance from the interface over

owhich Ci is appreciably different from Ci. Danckwerts (9 ) 
has arbitrarily defined the penetration depth as the 
distance from the interface at which the rise in 
concentration is 1/100 that at the surface.

Equation (12) has. been extensively used for 
describing mass transfer for situations comparable to 
conditions (i) and (ii). The resulting models are of great 
help in understanding the phenomena occuring in industrial 
equipment. Thus, Brian et al (3 )# have described the 
phenomena of mass transfer in a packed absorption column 
by assuming that the liquid flows down over a piece of 
absorber packing in slug laminar flow. Absorption is 
thought to take place by unsteady molecular diffusion and 
accumulation within a slug of liquid as it flows down the 
packing and is exposed to the gas phase for a given contact 
time interval. The liquid is assumed to be instantaneously 
and completely mixed in flowing from one piece of packing 
to the other, and to be free of velocity gradients and
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turbulence near enough to the surface to affect the 
transport process adjacent to the gas liquid interface. 
Thus, each new contact time interval is begun in each slug 
with a flat concentration profile for all components. The 
contact time between successive mixing points is so short 
that the absorbed species never penetrates deeply enough 
to approach the wall of the piece of packing. Therefore, 
the liquid depth can be taken as infinite for the sake of 
mathematical simplicity. The descriptions for spray and 
bubble absorbers as well as for wetted wall columns that 
satisfy considerations (i) and/or (ii), have been given by 
Higbie (14).

C. System Equations According to the Penetration Theory

1. Chemical Rate Equations :

Ml (gas) < Ml (liquid) (16)
Liquid Phase:

. kl - (1?)2 mi f a 2 M2

M2 (liquid)— i M2 (gas) (13)

Liquid Phase:

k2 (19)2M2 + 0 M3

The rate equation for step (17) is,

( 2 0 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If p is present in large excess, its concentration can 
be assumed to be constant. Thus equations (20) and (21) 
can be written as

-^Ml n
=  2 k ^  C j q  ( 2 2 )d r

dC.jrx m u
' ~ & f  = 2 M2 1 M1 (23)

2. Mass Balance Equations s

For the reacting system described by equations 
(16 - 23), the following mass balance can be written:

n 6 ^41 SCMi n ^
Ml T T  • 1 Ml 1 J

DM2 if** = ! ! k  t Z ^ S z . k i C ^ )  (25)
6x^ 51

The appropriate initial and boundary conditions are 
as follows :

t = 0 0 < x < 00 = 0 (26a)
t > 0 x = 0 CH1 = 4  ^ (26b)
t > 0 x —*• 00 Cĵ  —*. 0, bounded (26cc)

t = 0 0 < x < co q42 = 0 (27a)
t > 0 x. = 0 ~ 0 (2?b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



t > 0 x —* co CM2 -*■ 0 bounded. (2?cc)

In equations (2^ - 27) 't* refers to the instantaneous 
time in the life of a liquid element. The boundary 
conditions (26) and (27), are mathematical statements 
of the underlying assumptions of the penetration theory.

Boundary conditions (26a, 27a) were chosen for 
convenience only. Any other bulk concentration can be 
used. The boundary condition (27b) states that though 
'M2’-can diffuse back into the gas, its concentration 
at the interface is zero. This numerical value was 
chosen for convenience. It should be noted that this 
boundary condition is different from the normally

The equations (2^ - 2?) were non-dlmensionalised to :

0 ¥9assumed condition ( — —  )x-0 = 0 ( which express the6x
6CM2

nonvolatility of the species M2 ).

62a 6a + an (28)
6y2 60

(29)

e > o
e > o
0 = 0 0 < y < oc

y — oc a -► 0 bounded
a = 1
a = 0 (30a)

(30b)
(30cc)
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0 = 0  0 < y < oc b = 0
0 > 0 y = 0 b = 0

(31a)
(31b)

(31cc)0 > 0 y -* oc b -►0 bounded.

The transformations used to obtained these dimensionless 
equations are listed under the mass transfer section of

t
the nomenclature ( Page 1Q0 ).

3. Reaction Diffusion Modulus :

Equations (2^ - 2?) have to be solved with a view 
to determining the average value of the expression

time. One index of this predetermined time that is 
often used in mass transfer literature is the reaction 
diffusion modulus ^  derived by making a suitable

, over a predetermined period of

substitution for t oin the expression for KLip

In this . is chosen. ( See the
transformation used for non dimensionlising t ).

LMlp (33)
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1

TT

where %  = / K?„LMlp

The definition of selectivity iBAp' leads to

6c
<rBAp' = Average of _ D ( — *-2 )M2 6x x=°

Average of r f ^  Ml \
- l m i  ̂ 57“ x=o

over

predetermined value of the exposure time 't'.

<r
BAp

v f  ̂ “ 6CM2 //6x ^x=0 dt o________________________
£
f  ( - 6^ / S x  )X=Q dt

In non dimensional terms
6

BAp = v Jk
i /  ( - 6b/6y ) d0

f ( - 6a/6y ) de 
o Y=0

For v - 1, equation (37) is some times written as,

aBAp =
/  ( - 6b/6y )y=Qd9

y[n/kQ J ( - 6a/6y )y=0A'

In this form,

(34)

(35)

(36)

(37)

(37a)
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<rBAi
Mass Transfer Coefficient with chemical reaction „for M2Mass Transfer Coefficient without chemical reaction 

Mass Transfer Coefficient with chemical reaction for MlJMass Transfer Coefficient without chemical reaction
(3?b)

D. Solution of Penetration Model System Equations

<rIn order to evaluate ABp (equation 37) for 
various values of 9 ( or corresponding values of ) ,
it is necessary to solve equations (28) and. (29) along 
with the Initial and boundary conditions (30) and (31). 
Closed solutions for these equations, except for the case 
m = n = 1, are not known. For mathematical simplicity 
and because of limitation on computer time, only the 
following cases were considered ;

1. v - 1, m = 1, n = 1
2. v = 1, m = 1,5. n = 1
3. 1/ = 1, m = 2 ,  n = 1.

Detailed description of the methods used in 
solving these .special cases of equations (28) and (29), 
follow on the succeeding pages.

** n = 1 was chosen because of limitation on computer time. 
The numerical methods described on the following pages 
apply equally well to cases where n ^ 1.
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1. v =1, m=l, n=l.
Equations (28) and (29), with initial and 

boundary conditions (30) and (31), were solved with the 
help of the Laplace Transform Tables (28), the step by step 
procedure is given in Appendix (IA). Szekely et al (31) 
erlve the final solution as

a = 1 f e yerfc / y - V1T\ + e^erfc/ v + Vtft]
\2V T  ) \2V^ /J (38)

(A) -yvT yVTe ,>VAerfc / y - VT0 j + e erfc^ y +

e ^erfc /_y - VfT\ + e^erfc/ y + VIH 
V

and

(39)

e
/ /-6a\ d9 =
^  \ fiyyy=o-

(4o)

CDerf'VtT” + ft)e
7T

-0 /evT+ _ i \
\ 2VT/erf

C^/xe) i ^ / n  ~e
-xe (4i)
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BAp =

(i-x) 1-

4 0 VT + 1 jerf (20
. 7T 2vry •/i) 4

2 %  (v»j V*-;

, 2  . v ,20V 20
/a0 + i\erf/ P\ +  P

P [yfiT/ tt

. (k/ny

(42)

2 and 3* General Procedure for Numerical Solutions
For n=l, and */=l, equation (29) can be written as,

59 m'b = 6b + Xb -1
6Y 69

-y y \1e erfc( y - + e erfc( y + ^ j j
\2Ve

(43)
An analytic solution of equation (43), is not known for
when m / 1. However, numerical techniques employing finite
difference methods are available. Out of the two types of
finite difference schemes, explicit and implicit, an implicit
scheme was chosen. This was done because implicit schemes

2are inherently stable for all values of A 9/Ay > 0
(see equation 1?C Appendix C). On the other hand explicit
schemes are easier to operate, though they are time consuming

2because of stability condition A 9/Ay <1/2 (see equation 
13C Appendix C). The boundary condition (31C) is always a 
problem in numerical calculations as it involves the division 
of a semi-infinite length into a finite number of mesh 
divisions. As mentioned by Secor et al (29) this difficulty 
can be dealt with in several ways, A practical infinity can
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be defined and the region 0 < y < oo practicai can be 
divided into a uniform mesh. This approach results in a 
coarse grid in the region of interest (close to the 
interface i.e. y = 0) and results in a corresponding lack 
of accuracy. However, by using a non-uniform mesh (fine 
mesh in the region of rapid change and a coarse grid far 
away from the surface), or a very fine mesh, this difficulty 
can be overcome. The latter method is time consuming; whereas 
lack of precise knowledge about the location of the regions
of rapid change makes the method of non-uniform grids unwork
able .

The space "0 < y < oo , 0 < 6 " was there
fore mapped onto a semi-infinite ( in 0) rectangle
”0 < z < 1,0 < 0", by the transformation

y = cz
1—z ( W .

Thus at y=0, z=0 and at y=oo, z=l. The constant, c is used 
to distribute the grid according to the experimenter's needs.
A larger c means a finer grid near the interface and a coarser 
grid at the other end of the space coordinate. A proper value 
-of c can be selected only after experimentation. A value of
c = 0.98 was chosen, after comparing the analytical and
numerical results for the case of m = 1.
Equation {k'}) can be rewritten as:
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m
6 /6b dz \ 6b + Xb -1 
6^6- dy' =§9 2

-cz/(l-z) .e erfc / cz _vo
(t u

cz
1-z + e erfc

z)2vo- ) 

+ VeT"/ cz + V&i
\TlTzT2Vf /

6Jb dz = 6_b (1-z) 
5z dy §z c

(45)

(46)

26 /6b dz \ = 6 dz (6b dz\ = 6 '̂b /dz\ + 6b dz 6 Idz\ 
fiyVfiz dy/ 6  ̂ dy \62 dy/. 5z2 \d3y $z dy 6"z \dy/

Equation (47) leads to,

(Z{ 1-z) \6ZV c2 )
? 2 4 36 b = 6 b (1-z) - 6b/2(l-z) ‘---

6y oz c

(47)

(48)

With these transformations, equation (43) is changed to,

m 3 2 46b = a - Xb - 26b (1-z) + 6 b (1-z) (49)
69
where,

a = 1 
2

iz c2 Oz C

-cz,/(l-z)erfc( cz - v r
z)2Vd )

+ e
cz/(l-z)

erfc ̂  cz + Ve“
(i-z)2va )

with the boundary and the initial conditions:
9 > 0
6 = 0

z = 0 b=0
0 > z > 1 b=0

(50a)
(50b)
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9 > 0 z — ► 1 b = 0  (5Occ)
The implicit finite difference approximation for the equation 
(49) can he written as,

mb b a lbi. .1+1 - i, .1 = i,j+l - i» j 
A 0

-
b b \ . 3

1*3+1/ "l+l, j+1__-
AZ

(1 - Az(i-l) )' 
„2

b 2b b
+ I i+1,3+1 - i, .1+1+ 1-1, .1+1

A Z

where,

(l-(i-l) A z ) , ,

i=l,2,..,N-1
3=1,2, , ,M-1 (51a)

a
1*3+1 V (l-(i-l)Az'yT^

c( (i-l)Az)/(l-(i-l)Az)

erfc / c( ic( i-1 )Az + i/jA9
l)Az ) 2.fT^Q

i=2,3, .. . N-l 
3=1,2,...M-l

(51b).

2 3 1 8 9 :
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The equations (50a, 50b, 50cc), in the form useful for 
digital computations, are:

b ^ ^ j j = 0,0 j = 1,2,.., M (52a)

b(i = 0.0 i = 1,2,... N (52b)

k(N,j) =  ̂= ^ (52cc)

where,
M = A0 + 1 (53)

0
N = _1 + 1 (54)

Az

The following values of A 9 andAz were used:
0 < 0.02 A 6 = 0.0001
6 > 0.02 A 6 = 0.018
Az = 0.02

Equation (51a) can be written as,

r 3bi+l,j+l 1 2(1-( 1-1 )a z ) A9 - (l-(i-l)Az) A 0
[ A z °2 a z 2 c 2 J

. _ ........... . 3 .. ^+ b, . .V ri-2(l-(i-l)AZ)A0 + 2(l-(i-l)Az) A9 1i,j+l ------— -----   2-2------
L AZ c AZ C J

= AQa. . _ - A0Xb“ . + b. . 1,0+1 i,0 i,j
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i = 2,3,... N-l
j = 1,2,3,... M-i (55)

Equation (55) has the following triangular form,

SB2pb2,j+l + SC2pb3,j+l = SD2p

SA3pb2,j+l + SB3pb3,j+l + SC3pb4,j+i = sD3p

SA^pb3, j+1 + W \ j +i + Sc^Pb5,j+l = SD3p

!AN-2pbN-3, 3+1 + SBN-2pbN-2, i+1 + SCN-2pbN-l, j+1 “ SDN-2

SAN-lpbN_2, j+1 + SBN-lpbN-l,J+l“ SDN-lp

(56)

where,

sAlp =
Az c

i = 3,4,;.. N-l (57a)

3-n. = 1  ■2(l-(i-l)Az)"Ae +' 2(l-(i-l)Az) A0jjlp x-------- p-------  p-p---2 2 2 AZ c AZ c
i = 2,3,...N-l (57b)

3 - 4
_ 2 (1- ( i-1 )az ) A9 - (l-(i-l)Az) A9U J-P — p 9 9

AZC AZ C
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N-2

(5?cc)

N-l 
M-l

(57d)
Equations (56), and hence, (55), can be solved by Gaussian
elimination to obtain the values of b on the line j + 1
(for details of the method, see Appendix D).

Douglas (12) has shown that the round-off error
for this numerical method is less than the discretisation
error for the usual choice of Az and A0 . It is to

mbe noted that the term, (X b ) was evaluated on the line
•j1 instead of 1 j + 1*. This was suggested by Lees (22),
who showed that equally accurate results can be obtained

mif terms such as, (b ), are evaluated on the line 1j1
instead of the line ’j + l1. This modification of the
usual implicit finite difference scheme, however, results
in a linear triangular system of equations, instead of

m- the non linear ones that would result if (b ) was
evaluated on the line ’ j + l1, Lees (22) has indicated
that there vrould be a five to six fold reduction in machine
tine as a consequence of this modification. As an

/ mexperimental check, the results for (b .), were compared
i  * .1

i = 2,3 * * •«

SCN-lp “ 0

mS = A9a - A0Xb. . + b. .Dip i,j+1 i.J i,j
i = 2,3,... 
j = 1,2,.,, 

and m = 1.5,2...
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/ x / m “ 1with the results for, ( b ^  + No significant
improvement was found, and all further calculations, were

' mtherefore done for (bi j). As a test of convergence for
the solution, calculations were repeated, with half the
normal values of time and space increments. The improvemen
was found to be less than 1 fa. In order to calculate ?rBAp
according to equation (3?)» the values of the term

e
6b\ d0 and / (- d0 are needed.
by)y=o o \ fly/y=°

0
f  (- ̂ a i 80 » was by using equation (̂ 4-0), whereas
JQ \ 6y/y=o

0
6b\ d0 , was evaluated as follows 
6y/ y=o

0 / 2 \ 0 
f6 /_ 6b\ d© = f (_ 6b\ f-(l-z) ) d© = l /  / 6b\
s ^ fiy/y=0 o \ fiz/ \ O / z=0 c o ^ $z/z=0

(58)
The integration for (58), was done by Simpson’s rule.
(see Appendix A).
Knowing,

6 <r
f L 80 and C  ( _6b\ d0, BAp was calculated for

J ^ iy )y = o  J0 V by)y=o

various values of m,\, and ^ (or the corresponding 0). The
P

results are tabulated in Tables (1-2/0.
. /
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E. Quantitative Aspects of the Film Theory:
The Nernst (25), Lewis and Whitman (2 )̂ film 

theory, although earlier in its origin, can be treated as a 
special case of Higbie’s (l^) penetration theory, if it is 
assumed that the small element of liquid referred to in 
Higbie’s model attains its final concentration profile 
instantaneously. This amounts to a stagnant film of 
thickness, b̂  , next to the gas liquid interface. A similar
film can be visualised on the gas side of the interface.
The other assumptions of Higbie’s theory are retained. In 
the context of the film theory, the assumptions made can be 
stated ass

. . i. Outside the two films, the concentration of 
reactants in the bulk of the two phases is uniform.

ii. The velocity profile in the film is flat. This 
corresponds to the penetration theory assumption of zero 
velocity gradient in a direction normal to the interface. 
Stagnant liquids and liquids moving under laminar flow 
conditions approximate this situation closely.

iii. The resistence to mass transfer is totally within 
the film, wherein molecular transport takes place by Pick’s 
law.
If the term ’r ' is neglected in the equation (9)> the 
resulting equation can be written as
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D, d C1 = 0 
dx2

= C^ ; X=0 

; X =

/ dC\ D /•» o\ o /* o \
X  ■ X =  (- V ) , 0  = i p  -  ^  i0 ^ )  « ° > ’

where, §Lf = D ^ f  (6l)

is the liquid side mass transfer coefficient without 
chemical reaction.
F. System Equations for Film Theory:

- Equations (16-23) which describe the chemical 
processes occuring in the gas liquid system are valid for 
the film theory as well. The mass balance equations for 
the film theory are however different. These will now be 
enumerated:

1. Mass Balance Equations According to the Film Theory
For a reacting species i 

2d C n . . .
Mi— = l Ml (62)

dx

2 d C m n% 2 ------= 2k C 2k c
• dx2

2V'M2“ - k i^M1 (63)
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The boundary conditions chosen are
*

x = 0 CM1 = CM1 (64a)

x = *f CM1 = 0 (64b)

x = 0 CM2 = 0 (65a)

x = ^  cM2 = ° (65b)

x > ^ a - b = 0 (65cc)
Boundary conditions (65a) is a suitable boundary condition
for a volatile substance. The value (x = 0 = 0) for
(65a) was chosen for convenience. These boundary 
conditons match the boundary conditions for the penetration 
model. Equations (62-65) can be non dimensionalised to

2 2 nd a _ </> a (66)
,2 ^dy

2 2 m 2 n
d b i / A ^ b  V& a (67)
. 2 “ f " fdy

y = 0 a = 1 (68a)
y = 1 a = 0 (68b)
y = 0 b = 0 (69a)
y = 1 b = 0 (69b)

The selectivity £ according to film theory is defined asi5A
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dC
-D M2 M2 ----

O' r] yBAf = ax
x=0
  (70)

- DMldCMl 
dx

In non-dimensional form,
x=0

BAf = 1 (-db/dy) y=0 (71)
v (-da/dy) y=0

For if = 1, equation (71) can also be written as
<r
BAf

(mass transfer coefficient with chemical reaction ' • for M2]
mass transfer coefficient without chemical reaction ' j

(mass transfer coefficient with chemical reaction for Ml]
raass transfer coefficient without chemical reaction /

(71a)
G. Solution of Film Model System Equations

Like the penetration model equations, equationss 
(66-69) can be solved analytically only for the special /
case of i = n = 1, Solutions for cases corresponding to 
(a, b, c) of the penetration theory were attempted.

1, v = 1, m - n - 1  
The solution of equations (66, 68a,b) is,

( i l f  - \ b  y\ / \ ^ Cosh^a = Sinh I f  1  ) , (da\ f f
Sinh Vdy/y=° Sinh^f
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b =
' ' tanh 3inh (73)

,-D dC .
_ M2__M2 / \
BAf = J dx I = \-db/dy/y=Q

"DMldCMl /-da/dy \y=0
✓3 T T  \ /3x

aBAf = - / 1 Vl- VjT tanh#f
tanh 0 VT - - f

(7*0.

2, and 3• Numerical Solutions for
v — l,n = 1, m = 1.5* 2.0

Like it's counterpart in the penetration equation, 
equation (67) when written as,

2 m 2
2 b - \p Sinh ib -\b y

d b = f _f_____ f f (75),
, 2 Sinh \Jj

f
has not been solved analytically for the boundary conditions

(69a and 69b) unless m = 1. As equation (75), (69a and 69b)
pose a two point non linear boundary value problem j they
cannot be solved by any of the usual numerical techniques
involving superposition of two solutions. The
Quasilineurisation technique due to Bellman ( 2 ) and
Kalaba (l6) was selected. This technique coupled with the

✓
fourth order Runge-Kutta integration method has been used 

by Lee (20) for the solution of the axial diffusion model

iT = 1 was adopted to save computer time. Quasilinearisation 
* can take care of any n/ 1.
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tubular reactor problem, and by Lee (20) and Lapidus et al 
0.3 ) for optimisation and control problems. Instead of 
directly solving the non linear differential equation, the 
solution, when it exists, is obtained as a limit of a 
sequence of functions representing solutions of linear 
differential equations. Quasilinearisation provides a 
technique for the construction of this monotone sequence 
of functions which converge to the solution of the non 
linear equation. This representation is achieved by the 
use of the ’maximum operation’ . The linear differential 
equations, whose solutions constitute the elements of the 
monotone sequence, can be easily solved with the help of 
the principle of superposition. The progress towards 
convergence is quadratic in the sense that each iteration 
doubles the number of digits of accuracy. The method is 
briefly outlined in the Appendix (XC) and its application 
to equation (75) is given in the following pages.

.a, Quasillnearisation
The right hand side of equation (75) is a 

continuous function of b and y for all y € D(0 < y < 1). 
It is twice differentiable with respect to b over the 
domain of interest and has a bounded second partial 
derivative with respect to b. It is also clear that this 
expression is a strictly convex function of b over the 
domain D. Moreover b = 0 over B, the boundary of domain 
D. It follows therefore, (see Appendix L) that the
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solution of equation (75) can be obtained as the least 
upperbound of the sequence generated by the recursion 
relations

l M  - x* f ( V 7,)B 'L ° J \ / Sinh ̂

+ ^bQ(y) - vQ(y)^ (y)j (76)

where,

l [ ] = V [ ]
L J dy2 <??>

2r . r\ ,2 m - \l> SinhU  - j)L |b, (y)| = 0.Xb (y) - f V'f /+L 1 J f 0 — nTTvny;-------Sinĥ >

^ ( y )  - bQ(y)\ ^  '|b”_1(y)^ (78)

and,

r t 2 m 2 / \
L [bn+l(y ĵ = ^fXbn(y) " ^ Sinh^f-^fyJ

Sinh \b *f

+

(bn+l<y) - Vy)) ( 1 (y))
El = 1.5, 2 (79)

The boundary conditions for both (76) and (78) are

bn(0) = °  bn ( l j = °
n - 0, l,,,,n

vo( 0) = °  vo (1) = 0 (80)
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Equation (76) and (79)1 with boundary conditions (80) 
are second order linear differential equations with 
variable coefficients. In order to start the generation 
of the sequence, all that is heeded is a guess at the 
function v (y) . From a knowledege of the physical 
situation, and for the purpose of computational 
convenience, v (y) was assumed to be

0 = vQ(y)j 0 < y< 1 (81) 
With the assumption stated in equation (81), equation 
(76) can be solved analytically to give
bo(y);0<y < 1. Two methods the fourth order
Runge-Kutta technique and the finite difference formulations
 are available for the solution of equation (78) and
similar equations that follow. Since b (y) is found 
analytically it is possible to store values of 
bQ(y),0 < y < l  , in the computer memory, but the same is 
not true for b^(y). Values of b^(y) can be calculated and 
stored at discrete intervals of Ay only. If the Runge-Kutta 
integration procedure is adopted for the evaluation of 
b2(y), the step size has to be increased to 2 Ay, as the 
values of b^(y) at points halfway between b^(y) and 
"b̂ (y + Ay) are required. Thus, if no interpolation 
polynomial is used, each iteration doubles the step size 
for a Runge-Kutta integration method. Therefore, without 
interpolation in five iterations, an eighty division mesh 
is reduced to a ten division mesh. This can introduce
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gross errors. Other stability problems commonly associated 
with marching integration techniques also reduce the 
efficacy of the Runge-Kutta method. During computations 
for this problem, for example, it was found that for 
X >0.1, the Runge-Kutta technique yielded unstable 
results for m = 1.5 and 2. Despite these difficulties 
encountered in the use of the Runge-Kutta method, the 
marching technique has been used by Bellman ( 2),
Kalaba (16), and Lee (20).

Sylvester et al (30) were the first to use the 
finite difference scheme in conjunction with 
quasilinearisation. Lee (21) has recently solved his old 
axial diffusion model tubular reactor problem using the 
finite difference method. The finite difference formulation 
being less accurate than the Runge-Kutta techniques, it 
(the finite difference scheme) must use a smaller step 
size for integration. This in turn results in the use of 
more computer time. Equations (76-80) can be described 
in the finite difference form as follows:
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2

Ay2

, \p Sinh ^ - ^ ( i ~ l )  Ayj
Sinh^

( b0(i) - ',„ ( i ) ) ( ml^ o ( S ) '

i = 2,3,... N-l (82)

bo(ir° 5 bo(N)=0 and N= ~Ay + 1 (82a)

Equation (82) can also be written as

( 2 2 m-1 \ . J  2 2 m \
2+Ay mi K ( i ) j bo(i)+bo(i+l) = (1"m)(A y X V o ( i ) j “

Ay^Sinh ^  (i- 1)av ̂  
Sinh^

1=2,3,... N-l (83),

l(i-l) “ l(i) + l(i+1) _ x J hm
--------------  ̂  ~ X f̂bo(i)

Ay
^Sinh V̂ ( i-l)Ay^

('

Sinh^

2 m-1
’K l ) “bo(i)j^ ^  *fb°0)' ■ 

1=2,3,.'.. N-l (8k)
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51 o r  bl(N)= bo(l)= bo(N)= 0 (8^a)

and, 
bn-HO-l) n-fl(l) n+l(n-l) _ ^2\b^ .j-0 Sinh 0„(i-l)Ayj 

Ay2 f n i   1------- /
Sinh 0 f

+ (bn+l(l)-bnd)) 4 \ T i ) t

i=2,3,... N-l (85)

bn+l(l)=bn+l(Nrbn(l)=bn(N)=0 (85a)

Equation (85) can also be written as

/ 2 2 m-1 \b - ( 2+ Ay mX 0■ b , . . lb , 4 +b ,n+l(i-1) V ^f n(i)/ n+1(1) n+l(i+l;

(l-m)^Ay20\ b“ (i)j- Ay202sinh |0f- ^(i-l)Ayj ,
Sinh "0

i = 2,3,... N-l (86)
Equations (83, 84, and 86), along with the boundary conditions 
(82a, 84a, and 85a), represent a triangular system of 
equations of the form:
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SB2fbn(2) + SC2fbn(3) = SD2f

SA3fbn(2) + SB3fbn(3) + SC3fbn(4) = SD3f

SA^fbn(3) + SB4fbn(4) + Sc4fbn(5) = sD4f

SA(^-2)fbn(N-3) + SB(M-2)fbn(N-2) + SC(N-2)fbn(N-l)“ SD(N-2)f

SA(N-l)fbn(N-2) + SB(N-l)f.bn(N-l) = SD(M_l)f
(87)

with,
SA. = 1, i = 3,4,... n-l (88)

/ 2 2 m-1 \
SBif = ~(2 + A y  mX^ bn(i)) ’ 1 = 2«3.... N-l (89)
Sc,f = 1 , i = 2,3,... N-2 (90)

( 2 2 m \ 2 2  /, \
Ay %  Xbn(i)) “ Ay ^fSinh( (i“1) A y) t

- ' s Sinh $

i= 2,3,... N-l (91)
These equations can be solved by Gaussian elimination (see
Appendix D). In calculating the concentration profile of
' b', the interval 0 < y < 1 was divided into two-hundred

2parts. For X < 10 , with seven iterations (n = 6), five
2 4digit accuracy could be obtained. For 10 < X < 10 , in 

order to obtain the same accuracy, ten iterations were 
needed. Experiments were made with Ay = .0025, but no 
improvement in accuracy could be made. Knowing (da/^y)y = 0f 
and the concentration profile of fb* , can be easily
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calculated for various values of m,\ and ip. The results 
are presented in tables (1-2*0,
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CHAPTER V 
RESULTS 
TABLE I

Reaction Ml *~M2 is of 1.0 order and M2 ► M3 is also of
1.0 order.
^ (the reaction diffusion modulus) = 0.100000E+00
$ (the time)= 

X

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+03 

0.100000E+05

0.127272E-01

FILM MODEL

- % kf 

-0.331990E-02 
-0.327012E-02 
-0.331848E-02 
-0.3H793E-02

-O.896769E-O3

PENETRATION
MODEL
aBAp

-0.421910E-02
-0.421902E-02
-0.^21919E-02
-0.376804E-02.
- 0.899782E-03

RATIO

aBAf/?Ap 
0.786873E+00 
0.775091B+00 
0.786521E+00 
0.827467E+00 
0.996651E+00
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TABLE II
M2 is of 1.0 order and M2 *-M3 is also of

reaction diffusion modulus) - O.931358E+OO

Reaction Ml
1.0 order. 
ip (the 
6 (the time) = 

\

0 .100000E-05 
0 .100000E-03 
0 .100000E-01 
0 .100000E+03 

0..100000E+05

0.110400E+01 
FILM MODEL

aBAf
-0.21^832E'+00 
-0.21^-87^E+00 
-0.21^760E+00 
-0.637602E-01 
-0.721298E-02

PENETRATION
MODEL
aBAp

-0.2i|-9920E+00 
-0.2^9917E+00 
_o.2̂ 9659E-}-oo 
-0,60783 -̂E-oi 
-0 .688693E-02

RATIO

a aBAf/BAp
0.859602E+00
O.85978OE+OO
0.860212E+00
0.104897E+01

0.10^73^2+01
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TABLE III 
■M2 is of 1.0 order and M2-Reaction Ml—

1.0 order.
(the reaction diffusion modulus) = 0.100000E+01 

9 (the time) = 0.1272?23+01

M3 is also of

0.100000E-05 

0.100000E-03 
0.lOOOOOE-Ol 
0.100000E+03 

0.100000E+05

FILM MODEL

- aBAf
-0.238367E+00 
-0.238403E+00 
-0.238251E+00 
-0.668276E-01 
-0.751669E-02

PENETRATION
MODEL
aBAp

-0.274760E+00
-0.274757E+00
-0.274431E+00
-0.634432E-01
-0.715339E-02

RATIO

a aBAf/ BAp
0.867546E+00 
O.867686E+OO 
0.8681623+00 
0.105334E+01 
0.105078E+01
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Reaction Ml- 
1.0 order.

TABLE IV 
■M2 is of 1.0 order and M2- •M3 is also of

ip (the reaction diffusion modulus) = 0.200000E+01 
0 (the time) = 0.509090E+01

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+03 
0,100000E+0 5

FILM MODEL

aBAf
-0.5179735+00 
-0.517972E+00 
-0.5l67^3E+00
-0.8727552-01
-0.95^122E-02

PENETRATION
MODEL
aBAp

-0.5^7075+00 
-0.5^684E+00 
-0.5A2^4E+00 
-O.8I9676E-OI 
-0.900683E-02

RATIO

a aBAf/ BAp
0.9509215+00
0.9509595+00
0.952620E+00
0.106A75E+01
0.1059335+01
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TABLE V 
-M2 is of 1.0 order and M2-Reaction Mi

lt 0 order.
ip (the reaction diffusion modulus) = 0.206439E+01 
6 (the time) = 0.542400E+01

M3 is also of

0.100000E-05 
0.100000E-03 
0,100000E-01 
0.100000E+03 
0.100000E+05

FILM MODEL

aBAf
-0.530950E+00
-0.53093^E+00
-0.529600E+00 
-0.877076E-.01 
-0.95840IE-02

PENETRATION
MODEL
a
BAp

-0.556475E+00 
-0.556451E+00 
-0.554040E+00 
-0.824698E-01 
-0.905706E-02

RATIO

a aBAf/ BAp
0.954130E+00
0.954143E+00
0.955887E+00
0.106351E+01
0.105818E+01
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TABLE VI
Reaction Ml— ►M2 is of 1.0 order and M2— ^M3 is 
1.0 order.

(the reaction diffusion modulus) = 0.582766s 
6 (the time) = 0.432240E+02

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+03

FILM MODEL 

a
BAf

-0.828405E+00 
-0.828296E+00 
-0.817584E+00 
-0.909073E-01

0.100000E+05 .-0.990081E-02

PENETRATION
MODEL
aBAp

-0.830365E+00
-0.830205E+00
-0.815028E+00
-0.897655E-01
-0.978663E-02

also of 

+01

RATIO

a a
BAf/ BAp

0.997639E+00
0.997700E+00
0.100313E+01
0.101271E+01
0.101666E+01
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TABLE VII 
-M2 is of 1.0 order and M2- -M3 is also ofReaction Mi

lt 0 order.
\l> (the reaction diffusion modulus) = 0.600000E+01 
6 (the time) = 0.458181E+02

0.100000E-05 
0.100000E-03 
0,100000E-01 
0.100000E+03 
0.100000E+05

FILM MODEL 

a
BAf

-0.833334E+00
-0.833218E+00
-0.822019E+00
-0.909078E-01
-O.99OO86E-.O2

PENETRATION
MODEL
a
BAp

RATIO

a t a BAf/ BAp
-0.835130E+00 0.997849E+00
-0.834964E+00 0.997909E+00
-0.819185E+00 0.100345E+01
-0.898295E-01 0.101200E+01
-0.979303E-02 0.101101E+01
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TABLE VIII 
•M2 is of 1.0 order and M2- M3 is also ofReaction Ml

1.0 order.
ip (the reaction diffusion modulus) = 0.100000E+02 
9 (the time) = 0.127272E+03

FILM MODEL

aBAf

PENETRATION
MODEL
aBAp

RATIO

a a
BAf/ BAp

0.100000E-05 -o.899997E+00
0.100000E-03 -0.89^756e+00
0.100000E-01 -0.877^71E+00
0.100000E+03 -O.9O9O9OE-OI 
0.100000E+05 -0.990098E-02

-0.900388E+00 0.999566E+00
-0.900059E+00 0.99^108E+00
-0.871367E+00 0.100700E+01
-0.905177E-01 0.100432E+01
-0.986185E-02 0.100396E+01
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TABLE IX
Reaction Ml— ►M2 is of 1.0 order and M2 *-M3 is of
1.5 order.
ip (the reaction diffusion modulus) = O.II8923E+OO
0 (the time) = 0.180000E-01

X FILM MODEL PENETRATION
MODEL

RATIO

a a 0 0BAf BAp BAf/ BAp
0.100000E-05 -0.if65200E-.02 -0.502903E-02 0.925028E+00
0.100000E-03 -0.465200E-02 -0.502903E-02 0.925028E+00
0.100000E-01 -0.465200E-02 -0.502902E-02 0.925029E+00
0.100000E+01 -0.465206E-02 -0.502860E-02 0.925H9E+00
0.100000E+03 -0.464096E-02 -0.498702E-02 0.930608E+00
0.100000E+05 -0.387170E-02 -0.324587E-02 0.119280+01
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TABLE X

Reaction Ml *-M2 is of 1.0 order and M2— >- M3 is of
r. $ order.
^ (the reaction diffusion modulus) = O.931358E+OO 
6 (the time) = 0.1-lO^OOE+Ol.

0.100000E-05
0.100000E-03
0.100000E-01
0.100000E+01

0.100000E+03
O.IOOOOOE+O5

FILM MODEL. 

aBAf
-0,21315^+60
-0 .21315^+00
-O.2I 3166E+OO
-0.210797E+00
-0.133653E+00
-0.338163E-01

PENETRATION 
. . MODEL 

a
BAp

-0.251173E+00
-0.251172E+00
-0.251098E+00
-0.2^l85E+00
-0.127098E+00
-.0.491727E-01

RATIO

a a
. aAf/ bap .

0.8^8632E+00
0.848635E+00
0.848933E+00
O.863265E+OO
o.i05i57E+or:
0.687704E+00
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TABLE XI
Reaction Ml ► MB is of 1.0 order and M2— ►M3 is of
1,5 order.
ip (the reaction diffusion modulus) = 0.206^39E+01
6 (the time) = 0,5^2^-OOE+Ol

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 

0.100000E+03 
0.100000E+05

FILM MODEL 

aBAf
-0.525899E+00
-0.525901E+00
-0.525^ 6E+00
-0.^-828^?E+00
-0.190^52E+00
-0.^27100E-01

PENETRATION
MODEL
a
BAp

-O.56525OE+OO 
-O.565237E+OO 
-0.564018E+00 
-0 ,^-8^880E+00 
-0.178973E+00 
-0.677118E-01

RATIO

o a
BAf/ BAp

0.930382E+00
0.930^07E+00
0.931612E+00
0.995807E+00
0.106413E+01
0.630762E+00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5k

TABLE XII
Reaction Ml ►M2 is of 1.0 order and M2 ^M3

1.5 order.
4> (the reaction diffusion modulus) = 0.291625E+01 
6 (the time) = 0.1082i|-0E+02 

X

0.100000E-05 
O.IOOOOOE-O3 
0.100000E-01 
0 ,100000E+01 
0.100000E+03 
0.100000E+05

FILM MODEL 

a
BAf

-0.651801E+00
-0.651808E+00
-0.65036^+00
-0.554022E+00
-0.19^646E+00
-0.^19237E-01

PENETRATION
MODEL
aBAp

-0.68^553E+00
-0.68^523E+00
-0 .68156^+00 
-0.541663E+00 
-0.188601E+00 
-0.711512E-01

is of

RATIO

o a
BAf/ BAp

0.95215^+00
0.952207E+00 
0.95^222E+00 
0.102281E+01
0.103205E+01
0 .589219E+00
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TABLE XIII
Reaction Ml ►M2 is of 1.0 order M2 ►M3 is of
1,5 order.
^ (the reaction diffusion modulus) = 0.^12192E+01 
6 (the time) = 0.2l62^0E+02

0.100000E-05 
0.100000E-03 
0,100000E-01 
0.100000E+01 
0.100000E+03 
0.100000E+05

FILM MODEL

aBAf
-0.7^71932+00 
>0.7^7211E+00 
-0.7^37552+00 
■0.579572E+00
.0.192977E+00
•0.394591E-01

PENETRATION
MODEL
aBAp

-0 .778^36e+00
-0.7783732+00
-0.772270E+00
-0.572484E+00
-0.193758E+00
-0.729936E-01

RATIO

a # aBAf/ BAp
0.959865E+00 
0.9599652+00 
0.963076E+00 
0.101237E+01 
0.995970E+00 
0.5^05832+00
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TABLE XIV
Reaction Ml ►M2 is of 1.0 order and M2 ►M3 is of
1.5 order.
ip (the reaction diffusion modulus) = 0.50^737E+01 
6 (the time) = 0.324239E+02

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 
0.100000E+03 
0.100000E+05

FILM MODEL

aBAf
.O.78927OE+OO
.0.789297E+00
-0.783962E+00
• 0.582A05E+00
■0.190835E+00
•0.375011E-01

PENETRATION
MODEL
aBAp

-0.822378E+00 
-0.822286E+00 
-0.813^81E+00 
-0.583095E+00
-o.195532E+00
-0.736272E-01

RATIO

a aBAf/ BAp
0.9597^+00
0.959881E+00
O.963712E+OO
0.998815E+00
0.975980E+00
0.509337E+00
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TABLE XV
Reaction Ml *-M2 is of 1.0 order and M2 *-M3 is of
1.5 order.
^ (the reaction diffusion modulus) = O.582766E+OI
0 (the time) 

X

0.1OOOOOE-O5 
0.100000E-03 
0.100000E-01 
0,100000E+01 
0.100000E+03 
0.100000E+05

= 0.432240E+02

FILM MODEL 

aBAf
-0.813855E+00
-0.813891E+00
-0.806852E+00
-0.581930E+00
-O.I88967E+OO
-0.359067E-01

PENETRATION
MODEL
aBAp

-0.8^93^2E+00
-0.849223E+00
-0.838019E+00
-0.588464E+00
-0.196^29E+00
-0.739^79E-01

RATIO

a aBAf/ BAp
0.958218E+00 
0.958395E+00 
0.962808E+00 
0.988895E+00 
0.962010E+00 
0.^85567E+00
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TABLE XVI
Reaction Ml ►M2 is of 1.0 order and M2--- ►M3 is of
1.5 order.
i/'Cthe reaction diffusion modulus) = 0.683302E+01 
6 (the time) = 0 .59^2i|-0E+02

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 
0.100000E+03 
0.100000E+05

FILM MODEL 

aBAf
.O.836619E+OO
-O.836562E+OO
.0.827362E+00
-0.580129E+00 
.O.I8656OE+OO 
•0.339^7 5E-01

PENETRATION
MODEL
aBAp

-O.875E56E+OO 
-0.875301E+00 
-0,86093^E+00 
-0.592888E+00 
-0.197169E+00 
-0.7^2121E-01

RATIO

a aBAf/ BAp
O.955638E+OO 
0.9557^2E+00 
0.961005E+00 
0.978E79E+00 
0.9^6l91E+00 
0.^57^393+00
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TABLE XVII
Reaction Ml— ►M2 is of 1.0 order and M2
2,0 order.
^(the reaction diffusion modulus)

M3 is of 

0.118923E+00

RATIO

6 (the time) = 

\

O.lOOOOOE-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 
0.100000E+03 
0.100000E+05

0.180000E-01

FILM MODEL 

a
BAf

-0.468774E-02 
-0.468774E-02 
-0.468774E-02 
-0.465200E-02 
-0.465232E-02 
-0.462080E-02

PENETRATION
MODEL
a
BAp

-0.502903E-02 
-0.502903E-02 
-0.502903E-02
-0.502901E-02
-0.502724E-02
-0.486582E-02

BAf/ BAp 
0.932135E+00 
0.932135E+00 
0.932135E+00 
0.925032E+00 
0.925421E+00 
0.949645E+00
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TABLE XVIII
Reaction Ml— ►M2 is of 1.0 order and M2 ^M3 is of
2.0 order.
^(the reaction diffusion modulus) = 0.931358E+00
0 (the time) ' = 

X

0 .100000E-05 
0.100000E-03 
0.100000E-01 
0.1000003+01
O.100000E+03
0.100000E+05

0.110^00E+01 

FILM MODEL

O’BAf
-0.21^88lE+00 
-0.214881E+00
-0.21 -̂8763+00
-0.212677E+00
-0.182366E+00
-0.758907E-01

PENETRATION
MODEL
aBAp

-0.251173E+00’
-0.251173E+00
-0.251151E+00
-0.2^9020E+00
-0.181657E+00
-0 .701529S-01

RATIO

<r aBAf/ BAp
0.855511E+00
0.8555HE+00
0.855566E+00 
0.854056S+00 
0 .100390S+01
0.108178E+01
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TABLE XIX
Reaction Ml ^M2 is of 1.0 order and M2 >M3 is of
2.0 order,
^(the reaction diffusion modulus) - 0.206^39^4-01 
0 (the time) = 0. 5^2399E-K)1

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 
0 .100000E+03 
0 .100000E+05

FILM MODE I.

aBAf
-0.5309.50E+00
■0.5309^82+00
■0.530738S+00 
.0.507111E+00 
•0.285607E+00 
• 0,100282E+00

PENETRATION
MODEL
aBAp

-0.565250E+00 
-0.565243E+00 
-0.564618E+00 
-0.519583E+00 
-0.268579E+00 
-0.9^5728E-01

RATIO

a aBAf/ BAp
0.93931SE4-00 
0.939325E+00 
0.93999^e+00 
0.9759952+00
0.1063^02+01
0 .106036E+01
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TABLE XX
Reaction Ml ►•M2 is of 1.0 order and M2 >u)3 is of
2,0 order.
ip (the reaction diffusion modulus) = 0.291625E+01 
6 (the time) = 0.108240E+02

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 
0.100000E+03 
0.100000E-i-05

FILM MODEL 

a
BAf

-0 .65910^+00 
-0 .659096E+00 
.0 .658356E+00 
-0.596959E+00 
■0.29^l89E+00 
•0.IOIO89E+OO

PENETRATION
MODEL
aBAp

-O.68E553E+OO 
-0.684536E+00 
-0.682766E+00 
-0.590022E+00 
-0.284705E+00 
-0.990919E-01

RATIO

BAf/ BAp 
0.962822E+00 
0.962837E+00 
0 .96i|-2L7E+00 
0.101175E+01 
0.103331E+01 
0.102016E+01
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TABLE XXI
Reaction Ml > JA2 is of 1.0 order and M2 ►M3 is of
2.0 order.
^(the reaction diffusion modulus) = 0.^12192E+01 
6 (the time) = 0.2l62^0E+02

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.1000002+01 
0.100000E+03 
0 .100000E+05

FILM MODEL 

a
BAf

-0.757539E+00
•0.757519E+00
-o.755^57E+oo
.0.63596IE+00
.0.293372E+00
■0.9875^9E-0l

PENETRATION
MODEL
<rBAp

-0.778436E+00
-0.77839^E+00
-0.77it-309E+00
-0.629165E+00
-O.293343E+OO
-0.101512E+00

RATIO

BAf/ BAp 
0.973155E+00 
0.973181E+00 
0.975652E+00 
0.1010803+01 
0.100009E+01 
0 .97283^2+00
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TABLE XXII
Reaction Ml--—> M2 is of 1.0 order and M2 
2.0 order. 
ip (the reaction diffusion modulus)

0.3242392+02

>M3 is 

0.504737E+01
6 (the time) = 

X

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 
0.100000E+03 
0.100000E+05

FILM MODEL 

<rBAf
-0 .801928E+00 
-0.801892E+00 
-0.798495E+00 
-0.642955E+00 
-0.291279E+00 
-0.9658772-01

PENETRATION
MODEL
BAp

-0.822378E+00
-0.822314E+00
-0.8l6l06E+00
-0.642725E+00
-0.296314E+00
-0.102345E+00

RATIO

a <r
BAf/ BAp

0.975132E+00 
0.975165E+00 
0.978421E+00 
0.100035^+01 
0.983007E+00 
0.943744E+00
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TABLE XXIII
Reaction Ml >412 is of 1.0 order and M2 >413 is of
2.0 order.
xp (the reaction diffusion modu.lus) = O.582766E+OI
6) (the time) := 0.4322^0E+02

X FILM MODEL PENETRATION RATIO
MODEL

a a a , aBAf BAp BAf/ BAp
0.100000E-05 -0.828if67E+00 -0 .8^93^2E+00 o.975^22E+oo
O.lOOOOOE-03 -0.828^17E+00 -0.8^9256E+00 0.975^62E+00

0.100000E-01 -0.823753E+00 -0 .8 -̂10992+00 0 .979376E+00

0.100000E+01 -0.6*s4i95E+oo -0 .649590E+00 0 .991694S+00

O.IOOOOOE+O3 -0.289397E+00 -0 .297817S+00 0 .971727E+00

0.100000E+05 -0 .9 4 7 W E - 01 -0 .102766E+00 0 .921939E+00
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TABLE XXIV
Reaction Ml >M2 is of 1.0 order and M2 >M3 is of
2,0 order.
^ (the reaction diffusion modulus) = 0.683302E+01 
6 (the time) = 0,59^2^0E+02

0.100000E-05 
0.100000E-03 
0.100000E-01 
0.100000E+01 
0.100000E+03 

0.100000E+05

FILM MODEL

aBAf
■O.853756E+OO 
.O.853694E+OO 
-0.8il-7277E+00 
•0.6^3^97E+00 
• 0.286955E+00 
.O.923865E-OI

PENETRATION
MODEL
aBAp

-0.875^56e+00
-0.8753^0E-f00
-0.86W9E+00
-0.655247E+00
-0.299056E+00
-0 .103113E+00

RATIO

BAf/ BAp 
0.975212E+00 
0.975271E+00 
0.980021E+00 
0.982068E+00 
0.95953^+00
0.895967E+00
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;• CHAPTER VI 
DISCUSSION OF RESULTS

The penetration theory and film model
selectivities, as well as the ratio for variousBAf/BAp
values of m (1, 1.5* and 2), are presented in tables (1-8)
for m = 1, tables (9-16) for m = 1.5 and in tables (17-2^)
for m = 2. All calculations were done for n = V = 1. The
penetration theory equations were integrated over a wide
range of 9, ^he variations of 9 were

0 £ 9 £ 127 for m ~ 1 and
0,0001 £ 9 ^ 60 for m - 1,5 and 2,

The corresponding range of p was
0 £ ip -£ 10 and
0.07 4  P 4 6.8.-

Both penetration and film theory equations were integrated
with X as a parameter. The parameter was varied between 

- 6 t±10 to 10 , All computations were done in double precision 
arithmetic and consumed about four hours on an IBM 709^ II
computer. Figures 1.1, 1.2 and 1,3 show plots of the ratio
(BAf/BAp) against X for different values of P . Figure 1.1
is for m = 1, 1.2 for m = 1.5 and 1.3 for m = 2. These
figures represent the tabulated values and any maxima 
they display cannot be considered positionally accurate.

67
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107
•0 ORDER 

•0 ORDER

0-97

0 -87  1

0 -7 7

LOG X

FIG I I COMPARISON OF FILM AND 

PENETRATION MODELS FOR THE TWO 

STEP REACTION M,— -M2— M3
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It is clear from figures 1.1, 1.2 and 1.3 that 

the ratio (BAf/BAp) deviates from unity over a wide range 
of ̂  and X.. It is also apparent that these deviations are 
considerable. In fact the deviation of (BAf/BAp) ^rom 
unity in some cases is as much as 55^«

These observations cast doubt on the validity of 
the argument that the insensitivity of the transfer 
coefficient ratio to the hydrodynamic model makes it 
impossible to gain an insight into the fluid dynamics of 
the process. With deviations as large as S5% no such 
insensitivity can be claimed. The large deviations also 
point out the need for a careful selection of the mass 
transfer model for a given physical situation. It is 
obvious that an indiscriminate selection of a mass transfer 
model, ( a practice based on the concept that the predicted 
transfer coefficient ratio is insensitive to the model 
used) can lead to erroneous results.

Results presented in tables (1-2̂ -) and figures 
(1.1, 1.2, and 1.3) clearly lead one to the conclusion 
that the film and penetration theory models do not predict 
the same transfer coefficient ratio for a two step chemical 
reaction involving a volatile intermediate. However, if 
the system is not a counter diffusing one, the two models 
predict almost the same results. This difference in the 
behavior of the two systems is essentially caused by the 
entirely different behavior of the intermediate M2 at the
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1*25

115

1-05

0 -95

bi \ 0 - 8  5

0 -7 5

0 -6 5

0*55

Mj— ►Mg i :o

1-5

ORDER

ORDER

0 = 0118
0 = 0-931

0 = 2 064  .

0 = 2-916 .
0 = 4-121 .
0 = 5-047 ,

0 = 5-827 .

0 = 6-833 ,

0-45
2

LOG X

FIG 1-2 COMPARISON OF FILM AND

PENETRATION MODELS FOR THE TWO 
STEP REACTION M, ►M2— >M3
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10 ORDER 

2 0  ORDER

1*10

1-05
<p = 5-047

0-95

0 -90 \p =0-931

0-85
422 046

LOG X

FIG 1-3 COMPARISON OF FILM AND 
PENETRATION MODELS FOR THE TWO 

STEP REACTION M, t-Mj— <-M3
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gas liguid interface. Thus, whereas for a non-volatile 
intermediate the film and penetration theory boundary 
conditions are given as

dC.M2 fic= 0 and M2
x = 0 jx = 0 ,

x = 0dx
the corresponding boundary conditions for a volatile 
intermediate are given as

-*
CM2 = CM2 J x = 0.

Figures 1.1, 1.2, and 1.3 are also helpful in examining the 
effects of the complexity of kinetics on the deviations of 

(bAf/BAr))* 5-s clear that more complex kinetics does
not necessarily result in a greater deviation. Thus, the 

maximum deviations of /BAo^ are - f'or m ~ -1-’ - 5^°
for m = 1.5 and < 16% for m = 2, As a matter of fact, for 
m = 2, the deviations do not exceed 10% except for very 
small values of ^ , These facts contradict Szekely et al's 
(31) speculations. These authors had anticipated greater 
deviations with more complex kinetics.

Plots of (gAf/BAp^ a-gainst X, with ^ as a 
parameter, display another interesting fact about the 
hydrodynamic models used. It is clear that for X < 1, the 
film theory model predicts results which are lower than the 
ones computed by the use of the penetration model. There is

pthen a transition regime, 1 < A < 10 , in which the
results from the two models tend to be the same, followed by

2another regime with A > 10 , for which the film model
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results again tend to fall below the results predicted by
the penetration theory.

Figure 1,4 displays the effect of various system
parameters ( ip, X and m ) on the film model selectivity of
the intermediate M2. A similar plot for the penetration
theory reveals identical trends and hence is not included
here. It is apparent from figure 1.4 that at a fixed
value of <p , whereas selectivity decreases with the

_3increasing value of m in the regime X > 10 , for the
_3regime X < 10 the order of the second reaction has no

effect on This is not a surprising result. It simply
means that when the selectivity of the intermediate depends
only on it's rate of formation (X < 10“-̂ ), the order of
the second reaction is unimportant. That, in this regime,
selectivity increases with increasing values of ^ further
justifies this conclusion. On the other hand when the

3concentration of the intermediate is low (X > 1 0  ), the
lower order second reaction consumes more of the 
intermediate than a higher order second reaction. This

3explains why for X > 1C , selectivity increases with 
'dncrea.sing values of m.
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CHAPTER VII 
CONCLUSIONS

i. For the counter diffusing systems, the film 
and penetration theory models do not predict identical 
results. The gap between the predictions of the two 
models can be more than 50%. For systems with no counter 
diffusion, this gap has not been found to exceed 6%.
A need for a careful selection of a mass transfer model 
for counter diffusing systems has therefore been 
established.

ii. Deviations between the results predicted by 
the two models do not appear to be directly related to 
increasing complexity in the reaction kinetics. Szekely 
et al's (31) conjecture that more complex kinetics 
should accentuate the difference in the results predicted 
by the two models, is not substantiated.

iii. The ratio (g^f^g^p) deviates considerably from 
unity over a wide range of  ̂and X. This is in contrast 
to Astarita's ( 1 ) argument that the various mass 
transfer models would display their differences, if any, 
at >P = 1. However, it should be mentioned that Astarita 
( 1 ) had linear non diffusing systems in mind.

iv. The selectivity parameter is sensitive to the

75
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order of the second reaction in the X >10 regime.
However, the order of the second step reaction does not

-3
affect the parameter for values of X <10

v. The disparity between the results obtained from 
the film and penetration models, brings out the need 
for a criterion that may aid the selection of a more 
appropriate model for a given physical situation. Such 
a criterion will undoubtedly require the juxtaposition 
of fresh experimental work with existent theory. To 
date no concerted effort in this direction can be 
detected. A search for such a criterion is therefore 
recommended.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A 
MISCELLANEOUS

A. Instantaneous Surface Plux for Higbie's (1*0 
Model:

The transformations

C1 = Ci"Ci ’ D1 = Di '
change equation (10) and It's initial and boundary conditions
to

D 52C 6C 1 I 1 (1A)

Cp = C C ̂ i t > o, x = o (2A),

. 2 fit fix

C p - o  ; t = 0 , o < x < oo (3A) ,

C —► o or finite; t > o ; x —. oo (^A).

A Laplace transformation of equation (1A) yields:

03 -pt OO -Pt■fiC. e . dt r fio e dt ,
n o -o ^ 2  o  fit

2 _
d C1

Dl - 4  = *=!
dx

Boundary conditions (2A) and (AA) lead to

7?
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=
1

#
C^e (5A).

Inversion by the use of standard tables (28) gives

■ ! > - 9

x/[z^DTt)
.-2 f  ' v ' e d£
7T ,«/

(6A),

or,

° i =  ( v ?J [ 3- er f (x / (2 V v ) ) "

The flux at x - 0 and t - 't' is given as 
X(t) = - D

+ Ci

- M S\ 6 x/x-0 \ 1 *7Tt

(7A).

(8A).

B, Derivation of the Expression for BAp for v =na=n=l

6 a = 6a + a 
4 y2 50

(28), (p 17).

The transformation
-ea = e A(y,0) suggested by Carslaw et al 

( $ ) changes (28) to:

6 A = 6A 
6y2

A Laplace transformation on equation (9A) yields

(9A)

d A = pA .
 ̂ 2 dy

Using the boundary conditions (30a and 30b)
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can be obtained.
Inversion according to the Standard tables (28) yields,

A = le 
2

a = 1 
2

e e~yerfc^_y _ VIT^

-y ^ _ / „ ■>rn~ \ . _y

V^vf
+“erfc / y + Ve-

.Svf

e ' erfc / y V H j  + e erfc I y + VHM
Uvr / \2vr

The instantaneous value of ( 6a/6y)y=0 is
- 0fia\ = erf V q~ + e

6Y k=°
and,

/  / fiâ  d0 = f  (e r f 0 + e~6 \ 
•6ft \ fiy/y=o •£ \ 1 /

d0

f (  6a\ d0 =/©+l\erf Ve~+ fT e“6
V 6y/ y=:0 \ 2/

Equation (29), p. (17),
6 b = fib + Xb - a 
6 ?  ?e

is transformed into 12
2 - - - -y(p+l)d b = pb + Xb - 2e_______
- 2 “ Pdy

(11A)

(12A)

(13A)

(14A)

(29)

(15A)

The complimentary function is,
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b = Cge fjp+r A - y j p u  
y + c^e \ (16A),

and the particular integral is,

s-y^fp+ib = 2 e
p(1—X )

therefore,

- Ab = C2©yjp+i a -y J p + T"H C-| 6 _ 2  e " ^  (17A,
p(l-X)

The use of boundary conditions (31cc, p,l8 ) and (31b, p.18) 
leads to,

A Ac2 = 0 and AC =
1 p(l-X)

•2 .  2 
pHuIT p(i-x)'

(18A)

Inversion yields,

b == -y^X"— V Y A r1 1 y V X r,‘-/__1 \ e erfc / y - \\9 \ -f e erfc / y + \ \ 0  \
\l-^/L \2V0- / \2V0 /.

-*[
-ye erfc / y _ V W  \ + e erfc / y + VW~ \ 

\ 2VeT ) \2Vd- )
(19A)

(- b ) «  ■ - (rir) ~6-e + erf Ve-- VXerf yj\ 8
7T0

(20A)
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6

f  /_ de = ( 1 | (q+ AJ  \ fiy/y=o V--V\ 2 /
erfV^T + [W e"9

7T
6 + 1 \ erf J T ?  + fd~

2V\j -■
-xe' (21A)

If 0 = MLe» is substituted in equations (lAA and 21A)
7r

aBAp
/ ay y=o 

*6 ______
e

y* - 6a
o fiy y=o

<rBAp-
" ( n r )  I 1-

can be simplified to
2

)X0

tp

(}±\p + i V rf/'2̂ Yf2i/'e" ̂ ’//7r' ̂ p 
LV  P 2/ VtF/ tt

(22A)

C. Error Function
The error function erf ( ) needed for equation

(40 ) can be computed on a digital computer with the help of
the following expression given by Hastings(13)

x. 2
erf(x) = 2__ /e dt

W o

1A I < 0 . 32 = __2x
VJF

{ 2 A 6 3 \M _ x  , x x x \
~  + To m +— )

>0.32 = 1-(b *£ i-b-£ + a -vb.'JL 4-a ) 2e\ j. 2 3 M- C I —

I'- - 5 \  -2

A
wnere,

1+0.3275911|x|

(23A)

(2AA)

(25A)

(2 6 A )

and
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al~ 0 .2258368^6

a = -0 .2 5 2 1 2 8 6 6 8

a = 1.259695130

a^- -1.287822^53

and a = 0.9^06460?

(27A)

(28A)

D. Simpson's Rule
Integration of equally spaced data is best

performed by the use of Simpson's rule given here as equation
(2CA). A 

XN
'(x.)- J' f(x)= h

where

:f0+f!.T)+2 (f2+V " -  Tu-Zy

h= x . - x .i+1 i

f ) N-l

and N is even.

(29A)
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APPENDIX B
DIFFERENCE APPROXIMATIONS FOR DERIVATIVES

Derivative approximations used for the 
solution of various equations, are listed below:

a) Second Derivatives

2d f .

f(x + Ax, t) = f(.X,t) +AXf(x,t) + A X 2 f (x,t)-----(13)
21

2.

6 f = f (x,t) = f(x + Ax.t) - 2f(x,t) + f(x - Ax,t) (33)X X   9-----------

2
Equation (3B) is modified for d. f to

2 *d f = f (x) f(x -i- Ax) - 2f(x) -i- f(x - Ax)

b) First Derivative
5f(x,t), df(x) 
5t fix

83
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f ( X , At-f-t) = f (x, t) +Atf (x, t) + (5B)

6f = f,(x,t) = f (x, At+t) — f(x,t)
fit At (6B)

Sirailarly, 

df = f (x+Ax) - f (x )
dx a x  (7B)
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APPENDIX C
STABILITY ANALYSIS FOR FINITE DIFFERENCE SCHEMES

Implicit finite difference schemes were chosen in 
preference to the explicit schemes for the solution of 
equations (28 and 29P*T7). Although the explanations 
given below are generally true only for linear equations 
with constant coefficients and for a certain class of 
boundary conditions, in practice such arguments are taken 
to be true for non linear cases also*

Definitions refer to the parabolic equation,

0 u = J>u
6x2 6t (ic)

Implicit Approximation:
Equation (1C) can be written in the finite 

difference form as

Up-i-l, q+1 ” 2Up,q+l + UP-1» q+1 ~ Upfq+1 "_  _ (zc)

where,
h = Ax
k = At

■ 2r = k/h

85
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(2r+l) U

p — (1,2,... (3C)
Equation (3C) represents a set of simultaneous equations 
similar to the one described in Appendix D(equations ID). 
It is obvious that the calculation of the values of

solution of a set of simultaneous equations, A scheme 
that involves the solution of a set of simultaneous 
equations to evaluate the unknown pivotal values, is 
called an implicit scheme.
Explicit Approximation:

Another approximation for equation (1C) can be
written as

step by step method. The computation of this value does 
not involve a solution of a set of simultaneous equations. 
Such a scheme is called an explicit finite difference 
scheme.
Discretisation Error:

If 'U1 represents the exact solution to the 
partial differential equation (1C), and Q, the exact

Up~l,q+1 * Up,q+1 and up+l.q+i etc<’ necessitates the

Up+l,q “ 2Up,q+Up-l,q (4C)

P» Q+1 = P» q ^ iVUp+l,q ~ 
the unknown pivotal value U

T «i 7 • «*• * A wilX up,q p-1 , q
n can be found through a
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solution of the difference equations used to approximate the 
P.D.E., then (U-U), is called the discretisation error.

Discretisation error e^ = U - U (5c)

Round-Off Error:
The equations that are actually solved on a 

digital computer are the finite difference equations, and 
if it were possible to carry out all the calculations to 
an infinite number of decimal places, the exact solution 
U can be obtained. In practice however, each calculation 
is carried out to a finite number' of decimal places— — a 
procedure that introduces a "round-off" error every time

■vr

it is used. The solution that is obtained is U, the 
numerical solution and is not *U'.

Round-Off Error er = U-U (6c)
Total Error = er + (70)

Stability:
A difference system is said to be stable, if 

small errors occuring in its earlier computational steps 
do not give rise to errors of increasing magnitude or 
possible oscillations during the remainder of the 
'computations. The treatment due to VonNeuman, as extended 
by O'Brien et al (26), is used to develop a criterion for 
stability. This criterion is used later on to show the 
stability of the implicit scheme used for the solution of 
equation (2 9 ). It is assumed that errors at the pivotal
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points along t = 0 between x = 0 , and x *Jl eNh, can be 
represented by a finite Fourier expansion:

N //> Nin7rx/£_£ i/Snph
n=0 n P = (0,1 (8C)

where
i = vCT
and.

n nrr/Nh
ph = x

Then, the (N+l) equations are sufficient to determine 
the (N+l) unknowns A ,A-̂ ,... An uniquely, showing that 
an arbitrary distribution of initial errors can be 
expressed in this complex exponential form.. As finite 
difference equations are assumed to be linear (separate 
solutions of linear equations are additive) considerations 
of the propagation of an error due to a single term such

i 6 ehas e should suffice. The coefficient A is a constant
and can be neglected. It is further assumed that the 
"error function" is the product of a 11 1 term and. an 
'x' term, similar to the ones used for deriving analytical 
solutions of partial differential equations. Therefore , at

t = t, the term * becomes Thus, at t = 0
i. ftthis term is still e * . If t = qk
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i B x  at 1 Bx)h aqk i/?ph . .q S = e e = e  e = e  (?)
p.q

akwhere, £ = e and a is a constant. It is obvious that
as a increases E will not increase providedp.q

89

(9C)

doc).{ | < i
Stabilty Analysis of An Explicit Scheme:
Equation (Ac) which approximates equation (1C) should 
also aonroximate the "error function ", Substitutionp.q
of U = E = e ^ X  £ )P in (Ac) leads to,U | Q U y

e i « h ( )Q+i = eiffh( y + r r i^(tLeP + D h ( ^

2e ^ Ph ( § )q+e1/?(p-1)h( £ )°-

(11C)

(12C)

2£ = 1-Arc in (p A xj

Since, for stability | £|< 1
l-A rSin Axj j < 1

In general, components of all frequencies 10' may be 
present, if they are not present in the initial conditions 
or brought in by. boundary conditions, then they are likely 
to be introduced by round-off error. Since the unbounded
vrowth of E (or in effect e°*°) is to be guarded against

p,q 2 / , \ ■and for some P , Sin fpAx/pi is going to be unity, it
becomes cles.r that for (12C) to be true,

r < 1/2 (13C)
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Stability Analysis of An Implicit Scheme:

i/?ph qSubstitution of U = S = e (£ ) in equation (3C)p, a p,q  ̂ H J

leads to

reW(p-l}h( ̂  ,«* (2r+1)e^ - * ( K ,°-+1+r e ^ (5+1>h( ( )°-+1 „

-e1^  i, }'- ,

or,
| - ( 2 r + l ) r e  - -1 (1 0̂ )

$ (150)
b r " 1 n (yS A x/ <)

Since fo'r stability Ĵ J < 1,

_______1_______ < 1 (16c)
?A r -in (^Ar/?.)

Therefore, the implicit scheme is stable provided
r > 0 (17C).
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APPENDIX D

GAUSSIAN ELIMINATION FOR TRIANGULAR EQUATIONS

The.following triangular system of equations 
was frequently encountered in the course of finite 
difference solutions for various partial differential 
equations:

V l  + °lv2 = dl

a2vl + b2v2 + °2V3 = d2

a3v2 + b3v3 + °3V1̂ = d3

aM-2VM-3 + bM-2vM-2 + CM-2VM-1 = dM-2

aM-2VM-2 + bM-lVM-l = dM_l
(ID)

where, a.,b. ,c.,d. are known quantities, and v* are the 1 ' 1 ’ 1 1 ^ !
unknown variables.
The solution of these linear algebraic equations can be
readily obtained by Gaussian elimination and back
-substitution. The first equation can be used to eliminate
v-̂  from the second, the new second equation used to
eliminate Vp from the third and so on, until finally, the
new last but one eauation can be used to eliminate v,, „i'l- 2
from the last equation, giving one equation with only one

91
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v„ . The unknowns v,, 0, vr, v ,v can then be foundh-l M—£ r'l-0 2 1
in turn, by ba.ck substitution. Noting that coefficient 
*c» in each new equation is the same as in the corresponding 
old equation, assume that the following stage of the 
elimination has been reached:

f3. v. + c. v. = S (2D)l- l  l-l l - l  l 1- 1 I

a-v- + b.v. + c.v. = d. (3 0)l i - l  ' i i  i l+l l w

where,
^ ^  Sq = dx (̂ D)

Eliminating v. between (2D and 30) leads to,

,.v. + c.v. _ = d.-a.S. n 
1 1- J-1 i l i+l i i i-l/h - ai°i-iVi 

\ ^i-i (50)
p.v. + c.v. = S. (to)Ki i l l+l i

Pi ^ b i "a ici-1
Pi-1

'i " " i "~iSi-l
Pi-1

(7D)

(SD)

( i = 2,31 • • • 1)
The last pair of simultaneous equations are:

fl « V 2  + = *1-1-2 (9B)
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aK-2VM-2 + bM-lVM-l = dM-l (10D).

Eliminating v 0 between equations (9D, and 10D) gives,i'i— &

b,, -a- 0c„ o\v,, „ = d - S«_1 i-i-2 M-2 \ iui Ml M-2
PM-2 / PM-2 1̂1D)

"a-lVl “ V i  (12D)'
V l = i l  = " h.i (13D)-

gM_l

From (6D) it folloX'TS that,
P. v, + c. v. _ = S, ,Ki i l l+l i

v. = S.-c.v. _ s= - c.v. ,i i i  i+l —  v i i+l
h  1 h

i = (ii- 2, M- 3,,,, 1) .
Form equation (8p),v can be shown to be,

Si a V. _ d . a. v i = v _ 1 - i i-l - i- i i
fil 1 P. 0*

(i = 2,3,... M-l) (15E)).
Similarily (^D) leads to,

V = dl (i6d).
1 7 7

For the purpose of digital computation , these equations 
can be summed uu as:
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APPENDIX E 
QUASILINEARISATION

The non linear equations considered are 
of the form L[u] - f(u,y) =0 (IE)
where, L is a linear opera.tor (differential or partial 
differential) possessing certain additional properties 
such as positivity, y is a vector, and u is the unknown 
function, whose value as a function of ~y is to be 
determined. The function f(u,y) is a strictly convex 
(or concave) function of 'u1 for all y ( D, is continuous 
in U and y and has a bounded second partial derivative 
with respect to *u' for all u and "y €D. In addition, it 
is further assumed that on the boundary B of domain,

u = 0 B. (2E) .
The domain D is supposed to be sufficiently small to 
ensure the existence and uniqueness of the solution of 
equation (IE).
1f* is strictly convex as a function of !u* if,

f (u) >0 (33) •
"if 'f* is a strictly convex function of 'u* and is twice 
differentiable, by the mean value theorem, equation (IE) 
can be written as

2
l[u] ■== f(u,"y) = f(vt~y) + (u-v)f (v,y\) + 1 (u-v) f (v,y) (5E)v ^ w
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or,

f(u,y)- [f(v,y) + (u-v)fv (v,y)] > 0 (6e)
The equality holding for u=v ■
It is obvious that,
L [u] = f(u,y) = |f(v,y) + (u-v) f^v/y )j

max v
If the function w(v,"y) is the solution of the. equation,

(7E)

L [u] = JVtv/y) + (u-v)fv(v,'y)j (83),
len
[w] - £f(v,y) + (w-v)fv(v,y)̂ j (9 2 ),

then 
L _

with w=0 on B •
Equation (8E) which is equation (7E) without the ’max v ’ 
is called the associated linear equation.
Equation (7E) can also be written as
L[u] ^ f(u/y) = f(v,y) + (u-v)fv(v,‘y)+ |d| (102),
Equations (9E) and (10E) when combined with the linearity 
property of the operator L, yield:
L [u-w] = (u-w)f (v.y^ |g| (HE),
or
L |Zj- Zf (v,y) > 0 (123),
where, Z=u~w. Z obviously is zero on B, If Z, which is
zero on B, satisfies the inequality,

L [z] - Zfv (v) > 0  (132),
throughout the domain D, for all admissable functions ’v ’ 

then,
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. z > o ( l « ,

provided the operator L possesses the positivity property.
It follows therefore that,

u > w(v,y) (153).
Also, if v is chosen equal_to fu* , equation (93) becomes 
L [w] - wf^(u/y) = f(u,y?) - uf^Cu/y) (l6s),
which has a unique solution if

w (v,y)= u(y) (173)
If u > w(v,y) and w(v,y) = u(y) for v ^u , then it is 
obvious that

w(v,y) (18E),u = max v

This establishes a least upper bound on the sequence w .
Kalaba et al (16) have shown that this sequence is uniformly
bounded and converges uniformly and monotonously to 'u1.
This convergence has been shown to be quadratic in the
sense that each new element of this sequence approximately
doubles the digits of accuracy.
Construction of the Monotone Sequence

An arbitrary function v (y) is chosen, and used
to solve equation (93) for w. This w is called uQ(y)»
Thus, iTwl = ifu (yjl = f(v (y) ,y) + (\i (y) _ v (y))f (v (y),v)LJ l ° J  o \o o / v o

(193)
Equation (193), is a linear equation with variable
coefficients and hence can be solved for u (y). The
functions, u (v) and v (v) have the same boundary’ o o
conditions as the function u. on B. The new function
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u (y) is subsequently used to determine an improved 
function v^(y), as the function which maximises the 
expression (?S) .

f(v) + (u-v)f (v,y) throughout the 
max v L v

domain D. Since 1fT is strictly convex, the expression
is maximised when

%(y) - v (y) .
With a new v^(y) the whole cycle is repeated. Thus the 
following recurrence relationship can be written*.

L ju0(y)̂J = f (v0^ ,y) + (UQ^  _ v0^ )  fv(v0(y),y)

L [11(y = f(v!<y)»y) ‘ (u!̂y) -vl(y)) fv(Vy),y)
but v (y) = u (v)] o

therefore,

b  ( y  ) j  =  f  ( u . q  ( y ) , y j  +  ( v -  ( y )  ( y ) )  f Y ('-l Q  ( B ) » l r )  ( 2 1 E )

By induction, therefore

= f ( V y)-y) + («0(y)-v0(y)) :• ) <80E>

L'[1n+l(y)] =r(un(y)'y) + ( Vl(y,-Un(y)i V"n(y),y) (22B)
n = 0 , . . . n .
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The actual calculations involve only the setting up of 
equation (203 and 22E) and the solution of these linear 
equations.
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NOMENCLATURE

Latin Letters
* o

ss concentration of species i, C^,C^ 
interface and bulk concentrations 
respectively 

* liquid phase diffusivity of 
species i

o = mass transfer coefficient without 
chemical reaction. Equations 0-5a),. 
and (6l)

L = linear operator
M = number of increments along * 6’

- coordinate
M^ = system component
N = number of increments along ’distance

coordinates’

SAi,SBi*SCi’SDi = coefficients in, a triangular system
of equations

U = velocity
Z = dimensionless transformed distance,

equation (*J4)

= dimensionless concentration Cj^ 

100

|
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0

= dimensionless concentration

c = a transformation constant, equation

. W )
erf, erfc = error function and complimentary

error function 
k^ = specific reaction rate constant

m = order of the second step reaction
n = order of the first step reaction

= reaction rate for the ith reaction 
*  't = time, t a specified time. Equation

.(15a)
v = a first approximation for b.

Equation (80) 
x = distance coordinate
y a dimensionless space coordinate

for penetration theory model 
equations =

■ f a i  C i 1/ DM1

for film theory model equations 
= (x/5f)

Greek Letters
a ss a fluid phase

a fluid phase in which reactions 
take place
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A
V
e

V

I

Ax,Ay ,Az ,A0 
6. f

Subscripts

P
f

= Laplacian Operator 
= Gradiant Operator

*n-l= dimensionless time' =
m*

= specific reaction ratio k0 CT£ r i J_

= distance coordinate
= selectivity of M2 with respect to Ml 

= instantaneous flux.,equations (12)

= reaction diffusion modulus,

penetration theory equation (33)

= increments along respective axis 
= film thickness

= penetration theory 
= film theory

= average

diffusivity ratio D.
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EFFECT OF CATALYST POISONING ON
SELECTIVITY----- A MODELLESS

APPROACH
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ABSTRACT

The effect of independent poisoning on the 
selectivity for an intermediate B in a complex reaction
A *~B---- *-F, catalysed by porous spherical pellets has
been investigated by solving the relevent partial 
differential equations, instead of by the use of a 
restrictive model, like the Shell Poisoning Model. The 
results indicate that when the catalyst is poisoned for the
reaction A  ►B only, the selectivity either does not
change significantly or decreases as the catalyst pellets 
age. On the other hand when the catalyst is poisoned for
both the reaction A H3 and the reaction B  »-F, the
selectivity either remains constant or increases with 
Increasing poisoning. Although, the effect of the Poison 
Thiele Modulus h^ on the selectivity could not be explained 
qualitatively for the case when the catalyst is poisoned 

_ for both the reactions, selectivity for B was found to 
decrease with increasing values of hp, when the catalyst is 
poisoned for the reaction A— _^B only. It has also been 
shown that selectivity for B increases with increasing 
values of the intrinsic selectivity parameter kg).

ii
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CHAPTER I 
INTRODUCTION

In spite of the great care taken in purifying the 
feed streams to a catalytic reactor, these streams are
usually contaminated with small amounts of impurities 
which can act as poisons for the catalyst particles. Such 
poisoning can drastically affect the activity and selectivity 
characteristics of the catalyst, thus altering considerably 
the distribution and quality of the products.

In studying the behavior of a catalyst poison, it 
has become cttstomary to approach the problem from two opposite 
and extreme positions. According to one, the poison is 
uniformly distributed at all times throughout the catalyst 
particle. The other extreme position is based on the 
assumption that the poison molecules are adsorbed in such a 
way that the outside pore structure of a catalyst pellet 
becomes completely poisoned before the interior loses any 
activity. Wheeler (48) has called the first type of 
poisoning the 'homogeneous* poisoning, the second type of 
poisoning the 'pore mouth' poisoning. It is obvious that 
real catalyst particles will seldom behave according to 
either of these two idealised models. It is very unlikely 
that the catalyst particle will be homogeneously deactivated, ,

1
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2
nor is it very likely that the catalyst pellet will be
sharply divided by a definite poison front into a fully
poisoned zone and a completely non-poisoned region. On the
other hand, as Masmune and Smith (26) have pointed out, the
extent of deactivation in general will depend upon time and
the radial position within the pellet. A model of catalyst
poisoning based on such realistic ideas can be called a
'Modified Homogeneous Poisoning Model', The 'Homogeneous
Poisoning Model'--based on the uniform distribution of
poison throughout the pellet, and the 'Shell' or the 'Pore
Mouth Poisoning Model'— based on the existence of sharply
defined poisoned and non poisoned zones in the pellet, are

*then the two limiting cases of the 'Modified Homogeneous 
Poisoning Model'. When the intraparticle resistence to 
diffusion of the poison molecules is negligible, the poison 
will be uniformly distributed and the 'Modified Homogeneous 
Poisoning Model' ('M.H.P. Model') would behave like the 
'Homogeneous Poisoning Model*. But in contrast, when the 
diffusion resistance is very large in comparison to the 
resistence of the poisoning process, the poison would be 
concentrated in a shell of the catalyst, and the 'M.H.P. 
Model' will approach the 'Shell Poisoning Model' (or the 
'Pore Mouth Poisoning Model'). In the case of the 'Shell 
Poisoning Model*, the thickness of the poisoned shell will 
grow with process time, until the entire pellet is

^Abbreviated as 'M.H.P. ModelT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



deactivated.
Although during the past few years, a number of

studies (5,26,3^» and 4-0) based on the ’M.H.P. Model' have
been published, these studies have invariably dealt with
the effect of ’fouling' on the activity and effectiveness
factor of the catalyst. But ’fouling' and poisoning affect
the catalyst in different ways, 'Fouling' is caused by the
deposition of carbonacious material (the so-called 'coke')
on the pellet and thus results in deactivation of the
catalyst for all reactions. Thus, it is but logical that
'fouling* studies ought to deal mainly with activity and
effectiveness factor of the catalyst. Poisoning on the
other hand sometimes involves irreversible adsorption of
impurities on the catalyst surface. Thus, a catalyst may
be progressively poisoned by small molecules of a certain
species to such an extent that the reversible adsorption of
certain other reactant (or intermediate) species,
particularly ones with larger molecules, can no longer take
place. However the same surface may still accomodate other
reactants (or intermediates) with smaller molecules by
reversible adsorption in the space between the poison
molecules. Thus in a process involving two or more than
two simultaneous reactions (exclusive of the poisoning
reaction), it is better to study the effect of poisoning on 

* / 
the selectivity characteristics of the catalyst rather than
on its activity or effectiveness factor.
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With the solitary exception of a study by Sada 
and Wen (37) who investigated the effect of ’Pore Mouth 
Poisoning’ of a catalyst on the overall selectivity in a 
complex kinetic scheme, the effect of catalyst poisoning on 
the overall selectivity for a complex reaction scheme has 
not been investigated. It was therefore decided to study 
the effect of catalyst poisoning on the selectivity ’ SBp’ 
of an intermediate B by using a realistic model like the 
’M.H.P. Model’ and not the limiting ’Shell' or the 
'Homogeneous Poisoning Model'. For the sake of model 
comparison however, it was decided to investigate the 
'Shell Model' as well. The consecutive reaction
A ►B ►? was chosen for investigation, as it is a
fairly common reaction in industrial practice. It was 
planned to study the poisoning when:

i. The catalyst is poisoned for the reaction
A ►B and not for the reaction B -*-F.

ii. The catalyst is poisoned for the reaction 
A ►B as well as the reaction B *-F.
It was assumed that the poisoning of the catalyst would be 
caused by an independent reaction between the impurities 
in the feed streams and the active sites of the catalyst 
particles.
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CHAPTER II 
REVIEW OF LITERATURE

The important problem of the effect of diffusional 
transport on the activity and selectivity of a porous 
catalyst has been a subject of study for quite a number of 

years. Frank-Kamenetskii (17) has treated in detail the 
activity and selectivity alterations caused by intraparticle 
mass transport under isothermal conditions. Wheeler (4-8) 
classified the various types of selectivities and derived
an expression for the type III isothermal selectivity of

k l k2an intermediate B in a complex reaction system, A  »-C ,
catalysed by a porous cylindrical catalyst particle. The 
relationship derived by Wheeler (48) expressed selectivity 
(number of moles of B formed per mole of A reacted) in 
terras of the ratio (k^/kg) and the Thiele Modulus L
^Stergaard (32) analysed a more complex first order

k2 k3reaction system-—  Ml HYI2 *-M3-• # • Mn- and derived
expressions for conversion to the first intermediate as a
function of the Thiele Modulus and various specific rate 
constants. 03tergaard based his analysis on spherical
catalyst particles, Carberry (12) and Beek ( 6 ) have 
reported the effect of nonisothermal conditions on the 
selectivity of the intermediate B in the catalysed reaction

5
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A — -*-B A treatment of selectivity is at least
implicit in the work of Schilson and Amundson (38) who 
investigated the mass and heat transport effects on a complex 
reaction system. Carberry (13) has also extended Wheeler's 
(48) selectivity analysis for catalysts with simple 
cylindrical pores to catalysts having a bimodal pore size 
distribution in which diffusion is assumed to occur in the 
macro and micro pores in series. 03tergaard (33) has
recently published a study dealing with the mass and heat 
transport effects on the selectivity of the desired product 
formed in a catalysed first order parallel reaction. In a 
study dealing with the effects of heat and mass transport 
on the activity, selectivity and yield in the consecutive
reaction system A , Butt (11) has extended and
generalised the treatment given in Carberry1s (12) and 
Beek's ( 6 ) papers.

In addition to these theoretical studies, a few 
experimental studies on catalyst selectivity have also been 
made. Weisz and Swegler (47) cracked cyclohexane to 
cyclohexene and thence to benzene on a chrome alumina 
catalyst, and found that the selectivity of cyclohexene 
increased with decreasing particle size. This was in 
agreement with the theoretical results predicted by 
Wheeler (48). Johnson et al (21) in their study of gas 
oil cracking on silica alumina catalyst of various sizes
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have also reported that selectivity to form gasoline 
Increased with decreasing particle size. Investigation of 
palladium catalyst for selectivity studies of the 
hydrogenation of acetylene also yielded results which 
confirmed the theoretical predictions made by Wheeler (48). 
Palladium catalyst studies were done by Mars and Gorgels 
(25).

The poisoning of the catalyst particles was 
discussed systematically for the first time by Wheeler (48) 
who described the two different ways— the ’homogeneous1 
poisoning and the ’Pore Mouth’ poisoning— by which the 
catalyst pellet can get poisoned. In ’homogeneous’ 
poisoning it is assumed that the poison molecule makes many 
collisions with the catalyst surface before adsorption 
occurs. Thus the poison molecules have an opportunity to 
diffuse deep into the catalyst pellet prior to being 
"cleaned up" by the pore walls. Wheeler ( 8̂) assumed that 
such a poison will be evenly distributed at all times 
throughout the catalyst pellet. Assuming that the intrinsic 
activity k of the pore wall decreases to k(l-Of), that is 
linearly with the fraction of the surface poisoned,
Wheeler ( 48) derived an expression for the fall in the 
activity of the whole pore. According to Wheeler (̂ -8), in 
’pore mouth' poisoning the poison is so strongly adsorbed 
that the outer region of the pore becomes completely poisoned
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before any alteration occurs in the activity of the interior 
of the pore. In developing their unreacted-core shrinking 
model, Yagi and Kunii (50) also had assumed the existence 
of a completely reacted region and a completely unreacted 
region in a solid reacting particle. They had assumed that 
a sharp interface separated these two regions. Yagi and 
Kunii (51 ) , Levenspiel (24) and Narsimhan (30) have also 
suggested that the rate of movement of this interface is 
very much slower than the rate of any gaseous diffusion 
process. The interface therefore, can be taken to be 
stationary at any time and the steady state diffusion 
problem solved to find the concentration profile. The mass 
flux, as found from this expression, can then be equated to 
the rate of disappearance of the unreacted solid in order to 
locate the interface as a function of time. Bischoff (7*8) 
and Bowen (10) have established the validity of the 
'pseudo-steady state* assumption made in describing this so 
called unreacted-core shrinking model. Weisz and Goodwin 
(46) used Yagi and Kunii* s (51) mod̂ el in a study dealing 
with the burn-off time of carbonaceous deposits within 
porous catalyst particles, Ausman and Watson ( 5 ) used the 
same model for treating the regeneration of the fouled 
catalyst particles during a part of the regeneration period.. 
Carberry et al (14) used Weisz and Goodwin’s (46) 
treatment to analyse the time dependent 'pore mouth’
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poisoning problem. As Carberry et al (Ik) have pointed out, 
this is an extension of the concept of ’pore mouth’ 
poisoning as outlined by Wheeler (48). According to 
Carberry et al (14) "Wheeler’s treatment embraces only those 
circumstances in which a quantity of poison is imposed upon 
the system for a period of time sufficient to cause a fixed 
and thereafter time independent deactivation. More 
commonly, a poison or coke bearing agent is fed to the 
catalyst system in continuous though often small supply.". 
The continuous poisoning obviously leads to a time dependent 
regime. In this treatment, Carberry et al (14) have 
relaxed the restriction in the original Yagi and Kunii’s 
(50) and Wheeler's (48) models that the fouling process is 
controlled by the diffusion through the poisoned layer. 
Carberry et al (14) were primarily concerned with predicting 
the position of the poison front in a spherical ca.talyst 
particle, Petersen (35) has also dealt with the effect of 
'pore mouth' poisoning on the activity and
effectiveness factor of a catalyst particle. Experimental 
conclusions of Schwab et al (39) and Anderson et al ( 3 ) 
have also been explained on the basis of the 'Fare Mouth 
Poisoning' or the 'Shell Poisoning Model'. Recently Olson 
(31) has extended Carberry's (14) analysis of a ’pore 
mouth’ poisoned catalyst particle to poisoning of fixed 
bed reactors. Olson (31) has treated the case of a fixed
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bed reactor which develops "Pore Mouth Poisoning" of a 
variable extent throughout the system. He has also dealt 
with the problem of poisoning of a guard bed reactor. The 
time dependent activity of these reactors was evaluated.

Without Invoking the ’Shell Poisoning Model’, 
Ausman and Watson (5 ) studied mass transfer in a catalyst 
pellet during regeneration. It was the first time that a 
poisoning (or fouling) study had been done without using 
the very restrictive ’Shell Poisoning Model’, As Carberry 
et al (1*0 have pointed out the ’Shell Poisoning Model’ is 
valid only if the Thiele Modulus (based on the specific 
reaction rate for burning) exceeds a certain critical 
value. Ausman and Watson ( 5) assumed that the local rate 
of regeneration reaction was independent of the carbon 
content and depended only on the partial pressure of 
oxygen, They calculated the intraparticle distribution of 
the deposit (coke) as a function of time and the radial 
position. As has been suggested before (page 2), for the 
sake of convenience Ausman and Watson (5 ) type analysis 
can be called the "Modified Homogeneous Poisoning Model" 
analysis.* The ’Shell Poisoning Model’ is one extreme 
case (Thiele Modulus ̂  Critical Thiele Modulus) of the 
’M.H.P, Model’. The other extreme case is the ’Homogeneous 
Poisoning Model’. Froment and BIschoff (18) analysed the 
effects of catalyst fouling (coke deposition) on the

*To be more exact, in the case of regeneration problems^ the 
term "Modified Homogeneous Regeneration Model" should be 
used.
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activity of a fixed bed reactor. The coke was formed as a 
result of either the reactions A— *-B — ►Coke or the 
reactions A—— ►B. The rate of coke forming reaction was

oke
assumed to be negligible compared to the rate of formation 
of the main product B. They also suggested that change in 
the rate of the main reaction, caused by the fouling 
reaction, should be directly related to the amount of 
fouling material present (or coke - deposited), rather than to 
process time as assumed by Voorhies (44), Blanding ( 9 ), 
Wilson et al (49), Watson et al (45) and Katsobashili (22). 
This suggestion by Froment and Bischoff (18) has lead to 
the use of several forms of the deactivation function ft . 
Froment and Bischoff (18) assumed an exponential form
ft = exp(- aq) and a hyperbolic form ft = 1/(1 + 0q) where 

a  and (3 are constants. Anderson, and Whitehouse ( 4 ) used 
four forms of ft function for poisoning of the catalyst; 
ft = l-aSx, ft = exp(-aSx), ft = (l+aSx) and 
ft = ^(l-aSx), where a is a constant and Sx is the

relative poison conentration. It should be mentioned that 
netiher Froment and Bischoff (18) nor Anderson and 
Whitehouse ( 4 ) included the effects of mass or heat 
transport in their analyses. VanZoonen (43) used the form 
ft = a . / q, for studying the effect of coke deposition on 

hydroisomerisation of olefins over silica alumina-nickel
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sulphide catalyst. The reactions in VanZoonen's (̂ 3) 
study can be described as A ►B (desired product). Like

JCoke
Froment and Bischoff (18) and Anderson and Whitehouse ( 4 ), 
VanZoonen (If.3 ) did not consider the effect of mass transport 
inside the catalyst particles. Levenspiel et al (2*0 have 
recently generalised the deactivation rate equation and 
have shown how the' various forms of ft can be derived 
form the general equation. Masmune and Smith (26) using 
the 'M.H.P. Model' in a treatment similar to the one used 
by Ausman and Watson ( 5 )> derived equations to describe
the bulk rate of gaseous reaction oh a spherical porous
catalyst whose activity changes because of a fouling reaction. 
The reactions investigated by these authors were:
A — ►B(desired) ►Coke, A  ►B(desired) , A ►B(d.esired),

I
Coke S ►Coke

All reactions were of first order, and in all cases, the
fouling reaction was assumed to be much slower than the 
main reaction. A deactivation function of the form 
ft = (1- x } / ) was used. ^  K . f - Q . / Q . Q y  supposed to be a

function of time and radial position. Masmune and Smith 
(26,27) took into account the effects of intraparticle heat 
and mass transport by using effectiveness factors. A similar 
study by Takeuchi et al (*H) has also been reported.

A few experimental studies based on the 'M.H.P. 
Model' (Ausman-Watson (5 ) treatment) have also appeared
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recently. Suga et al (40) have reported the effect of coke 
deposition on the activity of solid catalysts and of 
diffusion in particles. Their study is modeled on Masmune 
and Smith's (26) treatment, except that the deposition of 
coke inside the particle was taken to be independent of 
radial position. Thus, Suga et al (40) solved ordinary 
differential equations instead of the partial differential 
equations proposed by Masmune and Smith (26). Suga et al's 
(40) experimental work dealt with the reactions:
A(n-C^H-^o) ► BCthe desired product n-C^Hg) ►Coke

D(Gas)
The coke forming raction was assumed to be very slow. Ozawa 
and Bischoff (34) using an 'M.H.P. Model' studied the effect 
of coke formation on the reactions:

C0H;. ►Products
\

Coke

They also analysed Eberly et al's ( 16) data. Ozawa and 
Bischoff's (34) treatment is essentially the same as that of 
Masmune et al (26). Murakami et al (29) have reported an 
-experimental study dealing with the effectiveness factors 
for porous spherical catalyst particles on which the 
folloitfing reactions are taking place:

Alcohol— ► Aldehyde--► Coke
or Toulene ►Xylene(desired) + Benzene

I
Coke + Benzene,
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Unlike other investigators Murakami et al (29) have assumed 
that the coke forming reactions proceeded at an appreciable 
rate.

From a review of the work done thus far, it is 
apparent that very little attention has been paid to the 
study of the effects of catalyst poisoning on the selectivity 
of a desirable product formed during the course of a complex 
reaction. The exceptions are a study by Froment and

r

Bischoff (19) and a study by Sada and Wen (37). Although 
Froment and Bischoff (19) dealt with the effect of fouling 
on the product distribution from fixed bed catalytic 
reactors, they ignored the effects of intraparticle mass 
and heat transport. Sada and Wen’s (37) investigation does 
take into account the intraparticle mass transport and is 
comprehensive in its treatment of the effects of catalyst 
poisoning on the selectivities of a desirable product, but 
the analysis is based on the very restrictive 'Shell 
Poisoning Model’.

It is the purpose of this study to examine how 
an independent poisoning reaction due to impurities in 
the feed streams affects the overall selectivity of spherical
porous catalyst systems. The main reactions considered ares

k. kA. BA — *-B(desired product) ►F.
The poisoning is assumed to be caused by a reaction between 
the active sites of the catalyst particles and the impurities
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in the feed stream. The most important feature is the 
consideration of the effects of intraparticle mass 
transport, not by assuming the 'Shell Poisoning Model' 
(though the 'Shell Poisoning Model' is used for 
comparison purposes) but by using the 'Modified Homogeneous 
Poisoning Model' ('M.H.P. Model'). The poisoning is 
studied when:

i. the poison deactivates the catalyst for the
t

reaction A only,
ii.' the poison deactivates the catalyst for the 

reaction A  *~B as well as the reaction B *-F.
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CHAPTER III 
THEORETICAL CONSIDERATIONS

A. General
There are a number of ways a catalyst can get 

poisoned and. foul’ed. Of the various causes and types of 
poisoning and fouling, only the independent poisoning due to 
impurities in the feed streams, is treated in this study. 
Independent poisoning implies that the deactivation of the 
active sites in the catalyst is caused only by the 
impurities in the feed stream, and that the presence of 
other compounds does not affect at all the activity of 
the catalyst. For the purpose of this study it is assumed 
that poisoning is caused by an irreversible adsorption of 
poison molecules on the active sites. The main reactions 
proceed by the reversible adsorption on the fresh sites.
It is conceivable that because of the different sizes of 
the reactant (or Intermediate) molecules, the catalyst can
be poisoned either for the reaction A ►B, or for both the
reactions A ►B and B ►F of a complex scheme
A  *-B(desired product) ►F.

It is usually assumed that the adsorption leading 
to poisoning of the active sites is a very fast process, and

16
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this in turn has led to the use of the so called 'Shell 
Poisoning Model', but the adsorption of poison molecules 
on the active sites may not be' that strong or fast, in which 
case the 'Shell Poisoning Model* is no longer valid. On the 
other hand the 'Modified Homogeneous Poisoning Model' can be 
used for all situations.

The 'M.H.P. Model' is characterised by two 
assumptions regarding the process of poisoning:

i. that the extent of poisoning depends on time and 
radial positions within the pellet and

ii, that the poisoning process does not divide the 
catalyst pellet into two sharply defined regions^ a poisoned 
zone and a fresh zone.
The first assumption distinguishes the 'M.H.P. Model* from 
the 'Homogeneous Poisoning Model* in which the extent of 
poisoning is assumed to be independent of radial position 
(the actual assumption is zero diffusion resistence). The 
second assumption differentiates the 'M.H.P. Model' from 
the 'Shell Poisoning Model'. The 'Shell Poisoning Model' is 
based on the stipulation that a poisoned catalyst consists 

' of a completely poisoned region and an entirelj/- non-poisoned 
region separated by a sharp interface. The so called 
'Psuedo Steady State* assumption helps to locate the position 
of this interface. According to this assumption the rate of 
movement of this interface is very much slower than the rate
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at which the poison diffuses inside the pellet (this amounts 
to the statement that the diffusional resistance is

to be stationary at any time, and the steady state 
diffusion problem solved to find the concentration profile 
for the poison. The mass flux of poison as found from 
this expression is then equa.ted to the rate of disappearance 
of the non poisoned part of the pellet in order to determine 
the location of the poison front in time. Though this 
study is primarily concerned with the ’M.H.P. Model’, the 
’Shell Poisoning Model’ is also included for the purposes of 
comparison. In order to avoid undue mathematical 
difficulties, uniform temperature across the pellet was 
assumed (this is a limiting assumption; because temperature 
is very seldom constant across a pellet). The catalyst 
pellet was assumed to be spherical in shape. The 
description of chemical reactions and isothermal mass 
balances for the two models are given in section (B) and (C) 
of this chapter.
B. The 'Modified Homogeneous Poisoning Model’ (’M.H.P.Model') 

1. Description of chemical reactions!

controlling i,e.,hp— ► oo). Thus the interface can be taken

The main reactions
considered in this study are of the form

A B(desired products) (1)

kB
F  (undesired products) (2 )B
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It was assumed that the following two types of poisoning 
could occur:

i. the poison could affect the active sites in such 
a way that the catalyst is deactivated with respect to the
reaction A only.

ii. the deactivation of the catalyst particle could
occur with respect to the reaction A  ►B as well as the
reaction B —
Equation (3) describes the poisoning reaction

* kpP + 5 — > -5P (3)

The reactions (1), (2) and (3) were assumed to be of the 
first order with respect to A, B, and P, respectively. The 
effect of poisoning on the rates of reactions (l) and (3) 
or reactions (1), (2) and (3) is assumed to be linear in 
form.** The deactivation function ft is given as,

ft = 1- (q/q ) = 1-* (3a)o
where, (q/q } is the fraction of sites that have been 
deactivated,
- _ Corresponding to cases (i) and (ii), the reaction
rate and mass balance equations for spherical porous 
catalysts can be written as follows:

**Levenspiel et "al (2^) have summed up other forms of ft 7
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2. Intraparticle concentration equations (the HI.H.

P. Model'):
a. Case I: Poisoning of catalyst for reaction

(1) only.
i, for the poison Ps- 

the reaction rate is given by equation (4)
Rp = kp(l -0)Cp (4)

2nd the isothermal mass balance by equation (5)
V ( D p V C p W p 8Cp + kpp(l - i^)Cp

w  (5)
molecular transport = accumulation + reaction 

The deactivation of active sites of the catalyst particle is 
described as:

- - A U q  - q) = kp(l - 0 )Cp (6)fit
The partial derivative of q in equation (6), has been used 
to describe the relationship

q = f(r,t) (7)
ii. For the reactant A:-

the reaction rate and the isothermal mass balance are
respectively given by,

RA = kACA (1 " (8)

V(daV ca) = <p fiCA + pkA(i -^) cA (9)
fit
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iii. For the intermediate 3s similiar equations 

for the intermediate ’ B* can. be written:

RB = kBCB ” kA (l " ̂ *CA (10)

V ( D BV C B) = €p6CB + pkBCB - pkA (l - i j j )cA . (11)
fit

b. Case 2: Poisoning of catalyst for reactions
(l) and (2)

Equations (^-9 ) adequately describe the 
reaction rates and mass balances of the species A and P 
for this case as well. Equations (10) and (11) have to be 
modified to,

HB = kBc i . 0 )CB . y i  -*)cA

V i  V :  = y g ,  + p(i - 0 ) [*BcB -kAcA ]
fit _

3. Boundary and initial conditions (’Modified 
Homogeneous Poisoning Model1)

It can be safely assumed that the dea.ctiva.tion 
function does not vary sharply with time. Thus it follows 
that the time necessary to reach steady state with respect 
to the accumulation of mass in the void spaces of the 
pellet is negligible in comparison to the time required for 
the cats.lyst deactivation function ft to change significantly. 
This permits the dropping of the accumulation term from 
equations (5)*(9)>(H) attd (13)* It is also clean that at

(12) 

(13).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

t = 5 (where 5=0), the deactivation function fi will 
be unity. The spherical symmetry of the particle implies 
a zero concentration gradient at the centre of the 
particle. The mass balance equations can be simplified by 
assuming that the effective diffusivities, are constant. 
This assumption, though apparently unrealistic, holds true 
for a number of situations. When the poisoning process is 
due to the adsorption of poisoning molecules on the active 
sites of the catalyst surface, poisoning will not alter 
the physical structure of the pores in the catalyst. 
Therefore, under such conditions it is valid to treat the 
effective diffusivities as constant.

For the sake of mathematical simplicity, the 
resistence to diffusion in the gas phase around the 
spherical pellet was assumed to be negligible. With these 
assumptions the isothermal intraparticle concentration 
equation for case (1) and case (2) can be written as
follows:

a. Simplified concentration equation for Case 1:
• Dp^ C p  =pkp(l- » C p (14)

JJi = fp(i- tfOCp (15)
6t qQ

DaA.Ca =pkA (l- $ )CA (16)
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Db A ° b  = P’<bcb - P V 1 - * ,CA (1?>

The initial and boundary conditions for
i. equations (1^ and 15) are:

0 = 0; rQ> r A 0 ; t ~ 0 (18)

Cp = r = r0 1 t - 0

5CP = 0  r = 0 ; t > 0 (20)
6 r and
Dp'^kCp = Php Cp f t = 0 (21)

ii. equation (16) are,

CA = 5 r = r0 '* t ~ 0

60 A = 0; r = 0 ; t > 0 (23)
ir

\ A C A = PlcACA ; t = 0 (2b)

iii. equation (17) are,
CB = ?B = 0 r = rQ ; t > 0 (25)

^"b = 0  r = 0 ; t > 0 (26)
6 r
BB A c B = P k BC B - P ' r . A C A  ; t =  0 (27)
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The condition

•»
Cg = Cg = 0 was chosed for simplicity. Any 

other value would have been equally good
b. Simplified concentration equations for

case 2.
Except for equation (17)» equations 

(14-27) are valid for case 2 as Well, equation (17) is 
modified to

DB A C B = PkB(l - ^)CB - PxA (l-0l)CA (28).

4. Non-dimensional intraparticle concentration 
equations (the ’M.H.P. Model’)

The intraparticle concentration equations 
(14-28) can be described in the non-dimensional form as 
follows:

a. non-dimensional equations for case 1.
i. Poison P:

2
& <t> 6 <b 2 ,P + _2 P = hp (1 - 4>) (29)

2= h (1 - ^)0p (30)
'69
fr 0 ! 1 > ? > 0 0 ~ 0 (31)

0p = 1 ; « = 1 0 > 0 (32)
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= o  « = o e > o (33)
6* or <f>p = finite 9 > 0

and

P + _2____p = hp 0p . 9 ~ 0 (3̂ )
6^2 t 6<

The solution to equation (3^) describes the distribution 
of poison in the catalyst particles at 0 s  j s: 0. 5
represents the extremely small interval of time required for 
bringing the voids of the catalyst pellet to a "psuedo 
steady" state for the first time. Equation (35) is a 
solution for equation (3 )̂

^P= Slnh hp * at 0 = 0 (35)
( -Sinh hp

ii. reactant A:

2
^ A  -t 2 %  = h 2 (1 - 0)0 (36)
aj2 f ■

^ 0 = 0 ;  1 >: ( z . 0 0 ~ . 0 (37)
d  - 1 ; * = 1 0 > 0 (38)A

6<̂ A = 0 £ = 0 0 > 0 (39)
and
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6<̂ k + 2 6*A = h2 0.
a?2 ♦

A A 0 =  0 (40)

Equation (^1) is the solution of equation ( 0̂) and 
describes the initial concentration of A at 8 -  J ~ 0

i Sinh hA £ ' ■a = ______A _  » 0 ~ 0 (41)
* Sinh hA

iii. Intermediate ’ B1

6<f>B + _2_ ^ B _  = hg 0B - l/h2 ( 1 - ^ ) ^ A
. d *2 « #< (^2) 

^ = o o < ? < i e > o  (43}
0 = 0 1 = 1  e > 0 (44)

60 B = 0 * = 0 0 > o  (45)
61

and

2
^  6 <i 2 2 ■ B + 2_____B = h <f> - v h. 0. : 0 ~ 0 ( 6̂)- o --------  B B A A6f2 < m  b A •

Equation (46) can be solved bv substituting equationn
(41) for 4> . The solution is

p 2 /
t/h /sinh h { \ v h / Sinh h £

^  = A ( B \ - A I A
h / -  hjf I * Slnn b3 J V  - nA

(47)
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b. non-dimensional equations for case 2:
With the exception of equation (42), equations

(29-4?) describe equally well the non-dimensional 
intraparticle concentration of the various species in a 
catalyst pellet deactivated for the reaction

the ratio of the flux of the desired product to that of the 
undesirable product at the surface of the catalyst particle. 
Since in the present study the catalyst particle is 
assumed to be getting progressively poisoned, Petersen’s 
(35) selectivity is equivalent to an instantaneous 
selectivity for the purposes of the present investigation. 
Equation (49) gives this instantaneous selectivity;

A +-B (1),
as well as the reaction

B ► F (2)
Equation (42) is replaced by equation (48)j

2
<50,B + 2 b <t> 2B = h0 (1 - 0 )* Vhk (1 -0)0 (48)
2 6 *

5. Selectivity ’Modified Homogeneous Poisoning
Model’

Petersen (35) has defined selectivity, Sg-, as

t = t (49)
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Equation (Ĵ 9) can also be written as,

S.BFh 1

B J (50).
C . *Shell Poisoning Model’

1. Description of chemical reactions:- The 
description of chemical reactions for the 'Modified 
Homogeneous Poisoning Model’ given in section (Bl), is 
generally valid for the ’Shell Poisoning Model’ also. The 
difference, as pointed out before (page 2), lies in the 
approach to poisoning of the catalyst particles. Whereas, 
in the ’Shell Poisoning Model' it is supposed that there is 
a sharp boundary between the completely fouled and fresh 
catalyst (at a position which changes with time), no such 
sharp distinction of boundaries is assumed for the 
’Modified Homogeneous Poisoning Model'. The intraparticle 
concentration equations for case 1, (catalyst particle
poisoned only for the reaction A *~B) and case 2 (catalyst
particle poisoned for both reaction A ►B and reaction
 *~F), are derived in the following pages. In dealing

with the 'Shell Poisoning Model', a "pseudo steady" state 
treatment for the movement of the poison front is assumed.

2. Intraparticle concentration equations (’Shell 
Poisoning Model')

^Treatment for case 1 follows that of Sada and Wen (37 ).

*a. Case 1: Poisoning of catalyst for the reaction
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i. The following set of mass balance equations 
can be written for the poisoned region of the catalyst 
pelleti

V ( D p V C p )  = 0  (51)

V (da V ca ) = °  (52)

V ( DB V C B) = PkBcB (53)

ii. The set of equations that describe the 
intraparticle conentration of the various species in the 
unpoisoned (or fresh) region of the catalyst pellet are,

C p = 0 (54)

(55)

V ( d b V cb) = pkBcB - p^a^a (56)

b. Case 2i Poisoning of catalyst for both 
reaction A -B and reaction B— -F
Equations (57*58,59) describe the mass balance of P , A and 
B respectively, in the poisoned shell of the catalyst 
pellet.

V ( D p V C p )  = 0 (57)

V ( da V ca ) = 0 (58)

V ( d b V c b) = 0 (59)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

Similar equations for the non-poisoned core are,

Cp = 0  ̂ (60)

V ( d 1 v c a > = (’V i  (6l)

v < 4 v 4 > = (62)
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3. Initial and boundary conditions for the * Shell 
Poisoning Model’ t

Equations (51-62) show the concentration of the 
various reacting species in the pellet. Since the poisoning 
process is assumed to proceed from the outer surface 
towards the inner region with a clear boundary between the 
poisoned and the unpoisoned regions of the catalyst, it is 
reasonable to equate the concentration of *p* to zero at 
the boundary separating the fouled and the fresh parts of 
the catalyst pellet. The 'Shell Poisoning Model' also 
postulates that the poison front will move towards the centre 
of the pellet with the passage of time. Thus, if at a 
given instance of time 't', the . position of the poison 
front is rp, the concentration of 'P1 at the poison front 
is given by equation (63)

Cp = 0 r = rp (t) (63).

It is also apparent that since no poison is present in the 
unspoiled core, the rate at which the poison diffuses into 
the fresh core equals the rate at which the active sites are 

- lost. Thus,
I L V C  - - p% , r = rp , (6*0

dt
also, rp = Tq ; t = 0 (65).

If the resistance to diffusion in the gas phase is assumed 
to be negligible, then,
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Cp = Cp ; r = r0 (66)

Boundary conditions for the concentration profiles of 'A* 
and *B' inside the pellet are obvious. Equations (67-73) 
are the mathematical statements for these conditions. Thus,

CA “ °A ! r = rP

V C A = V C a  s r = rp (68)
/V CA = 0 ; r = 0

or C, = finite; r = 0 A
and for negligible diffusion resistence in the gas phase,

°A " °A r = r0 (69)-

Similarly,
sCg — Cg r = Tp (70) >

V C B = v 4  r = rP (71)*

'B
✓and V cn = 0 r = 0 (72).

✓or C = finite; r = 0J3

The concentration of ’ B’ in the gas phase outside the 
catalyst pellet was assumed to be zero for the ’M.H.P. 
Model’. The same assumption is made here. Thus,

CB = 0 r = rQ (73)

As pointed out earlier (p.22), under certain conditions the 
poisoning of the catalyst does not alter its physical
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characteristics. Thus,
= constant (74)

4. Non-dimensionalised intraparticle concentration 
equations. (’Shell Poisoning Model’)
Assuming ’’pseudo steady” state treatment, the intraparticle 
concentration equations (51-73) can he non-dimensionalised 
to yield the following equations:

a. Case It (catalyst is poisoned for the reaction
A — ►B)

i. Equations for the poisoned region:
Poison P

(75)

0p = 1 ; £ = 1
<*>d = 0 |= £P

(76)
(77)

€ = IP (78)

Beactant A

(79)

€ = 1 (80)

(81)
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d*A = { = i (82)51“ “51 ?

Intermendiate B

d + 2 = h 2 <*B (83)
d?2 « d r

= 0 <■« 1 ■ (8if)

<t>B - */ «= <p <85)

d*B/d«' 4^ d <  '= (86)

ii. Equations for the non-poisoned cores
Poison P

> p = 0 * > * > 0 (8?) 

^  = 1 !p < = e (?8)
d £ d0 P

P
Reactant A

d2<}>' , 0 dd , 2A + _2_ _Zk = h/ £  (88)d ^2 5 d£

< =  « 5 = * p  (8D

d(?A = d<iA ; ? = ? (92)
d* d£ P
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& = finite j £ = 0A

and
/
= 0 , { = 0 (89)

d£
Intermediate B

d̂ 4> d<£ 2 v 2 *B + 2 B = h h *A (90)
- ^ 5  1  3T B B - A A

*B = *B ' f= «p (85>

= (86) 
d£ d£ ? *P

*'B = finite ; Z = 0 (95)
and

d E = 0 ; £ = 0 (91)
d£

b. Case 2t (catalyst is poisoned for reaction 
-B, as well as for reaction B -P).

With the exception of equation (83)» equations (75-91) of 
subsection (^a) describe the non-dimensional intraparticle 
concentration of the species P,A, and B, for this case also. 
Equation (83) is replaced by

d2tf d 4>B + _2_ B = 0 (83a).
d£ * d*
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5. Selectivity Sgps

In the context of the ’Shell Model' for the 
poisoning of the catalyst pellet, instantaneous selevtlvity, 
SBFs’ at a ®iven instance of time *t*f is defined as the 
ratio of the surface flux of the desired product ’B1, to 
the surface flux of the undesired product ’F*, The given 
instance of time *t', fixes the position of the poison front 
in the spherical pellet. Thus, 'Shell Model' selectivity 
can be calculated at various positions ( of the poison
front, instead of various instances of time *t'.
Simultaneous solution of equations (75-78) and equation (87), 
can yield an expression relating 0 to £ , and thus fix the 
position of the poison front in time. As in the case of the 
'M.H.P, Model, the 'Shell Poisoning Model* instantaneous 
selectivity, Sgps, is given as

BFs
1 + v a *A

A* B

for £ = £ (50).
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CHAPTER IV
SOLUTIONS OP 'MODIFIED HOMOGENEOUS POISONING MODEL'

AND 'SHELL POISONING MODEL' EQUATIONS

For the sake of mathematical convenience v was 
assumed to be unity in the treatment of both the models.

A. Numerical calculations for the 'M.H.P. Model' 
selectivity SBph

1. Selectivity calculations for Case 1: (catalyst
poisoned for reaction A -B only).

In order to evaluate the r,h.s of equation (50), 
non-dimensional equations (29-^7) have to be solved 
simultaneously. It is not possible to obtain analytical 
solutions describing the Intraparticle concentration of P,
A and B as functions of time and position. Numerical finite 
difference techniques however, are available, and were used 
for computing the terms of the r.h.s of equation (50) in 
order to calculate SBFh. The procedure used is outlined 
below.
Procedure:

i. Solution of poison equations:
The poison equation (30) is simulated first. In the finite 
difference form it can be written as,

37
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m,n+l - ^mtn = h2p (1 - ^m »n) <£p(m>n)
Ae

or,
,n+l = ĵ1 “ A0hp ^p(m,n) J ̂ m,n + A0hp ^p(m,n),

m — 1,2,...M
n = 1,2,...N (93),

where, A 0 is an increment along the non-dimensional time
axis. The 0 axis can be divided into a number of
subdivisions,^ N-l) in this instance^, with 0 « 0 position
being labeled as 1. Similarly the Z axis can be
divided into (M-l) subdivisions. In this instance the
position I = 0 was labeled as 1 and I = 1 as M. In
order to initiate the equation on the computer, values of

rf-ot \" 0 and  ̂ are needed. These values can bePlm,l), m,l P(M,n)
found from equations (35), (31) and (32), respectively.
For example, except for m = 1, equation (35) leads to

Sinh h p(m“l) A *
0p(m,1) _ , „u m=2,3,...M (94).(m-l) A I Sinhhp

Fqtiation (35) as stated on page (25) fails at m = 1, since
at £ = 0 it gives a value of of the form 0 .

^ 0
However, with the help of L ’Hopital's rule,

equation (35) yields

*P(1,1) = hp (95).
Sinhhp
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Equation (31) leads to
rp

and equation (32) becomes
m,l = 0

6 =  1 P(M,n)

(96)

(97)

The next equation to be simulated is the poison equation 
(29). In the finite difference form equation (29) becomes

d> . 20 d>- P(m-l,n) - P(m,n) + P(m+l,n)

(m-l) A l

- hp |l-^f,ij ̂ p(mfn)

(98a)
or

+ (-1) fm-ll ^P(m-l,n) + 
[m+lj

{̂ P(mtn) + (-l)<̂P(m+l,n) = 0,0  h2 fm-ll fl- rp ~}+2m \
\ P |m+lj L m,nJ m+1 /

m = 2,...M-2
n = 2,..,N (98b),

Where A* is the increment along the ? axis. As   0,
the„ second term on the /.h.s of the equation assumes the 
form 2 (0/0). This is also reflected in the second term of 
the H, h.s of equation (98a) for m = 1, if

2 LyP(m+l,n) - ^P(m,n)]
2  '(m-l) A i.

is expressed as,
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A£ [P̂(nn-l.n) - ^P(m.n) M
(m-l)

The L’Hopital rule can again be used to overcome this 
difficulty. By this rule

6 <b 2 __P
s hi (99).

With this modification, equation (29) can be written as,

(100)

and can be simulated as,

^ ( 2 , n f 2^(l,n)^P(-2,n)
AS2

= hp(1-^l,n) ^p(i,n) (101).

Equation (101) can be further simplified by taking into 
account the spherical symmetry of the concentration 
profiles. Thus,

^P(2,n) = ^P(-2 ,n) (102).
Equation (102) when substituted Into equation (101) yields

«+ 4 hp K . n ) \  ^P(l.n) - *P(2,„) = 0
n = 2,3....N

(103).

Other equations needed for starting the solution of 
equation (98b) are
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*P(1,1) = hP
Sinh h. (95)

<t> Sinh (m-l) A £ h
p(m,l) p-

A£(m-l)Sinh
m = 2,3...M (£4)

and P(M,n) = 1  n=l,2,...N (97).
Equations (9?)» (98b) and (103) constitute a triangular set 
of simultaneous equations of the form,

SBlP*P(i,n) + SC1P ^P(2,n) = SDIP

SA2P <*P(l,n) + SB2P ̂ P(2,n) + SC2P*P(3,n) = SD2P

SA3P^P(2,n) + SB3P(3,n) + SC3P*P(4,n) “ SD3P

SA(M-2)P *P(M-3,n) + SB(M-2)P *P(M-2,n)

+SC(M-2)P ^P(M-1,n) = S.D(M-2)P

SA(M-l)P*P(M-2,n) ^B (M-1) P ̂P (M-1, n) = SD(M-1)P

■where,

sAiP = - (1=1)A1^ (i+1)

B1P ~ ‘ + 3  hp h i , . .

n = 2,3,...N (104)

i = 2,3,...M-l (105)

n = 2,3,...N (106)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BiP
2 2Af h* (1-1) 

P 0+1) + 21 i+1

SCiP = _1

S„1 T = 0 DIP

SD(M-l)P " 1

and
i = 1,2,3,...M-2

i = 1,2,3,...M-2

bz

1 = 2,3,...M-l 
n = 2,3,... N 

(10?) 
(108)

(109)

(110).

The Intraparticle concentration profile of the species fP* 
for n = 1 is given by equations (9^»95 and 97). Solution 
of equations { 1 0 b )  yields values of n)»

i = 1,2,...M-l 
n = 2,3,..,N .

Such a solution can be obtained by the use of the 
Gaussian elimination process (for details see Part 1, 
Appendix D). Douglas (15) has shown that the round-off 
error for this type of Gaussian elimination is less than the 
discretisation error involved in writing the difference 
equations for differential equations. Thus, equations 
(93-97) and (10*0 can be solved simultaneously to get '/'as a 
function of £ and 0.

ii. Solution of equations for the reactant Ai 
By using a treatment similar to the one 

discussed in the preceding subsection, p.d.e's (36-*H) can 
also be written in the finite difference form. The
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difference equations for the reactant A are summarised 

belowj

A(1
h ft 

,1) = A/
SinhhA

a Sinh(m-l) A $ h
A (m , 1) = _____________i

(m-l)A £ Sinhh.
m = 2,3,...M

(111)

(112)

*A(2,n) J 6 + A * hA \}~ ^l,n]^A(i,n) ; n = 2,3,...N (113)

h^ I m-lWl- ip \\ 2m
k vz+T)\ m »n;y+ iTi

4>A(m+l,n) =
r 2A I <t>A(m,n) +

(-1)(m-l)*
(m+1) A(m-l,n)

m = 2,3,...M-2 
n = 2,3,...N (114)

and
A(M,n) = 1 n=l,2,3,...N (115).

Equations (113-115) constitute another set of triangular 
simultaneous algebraic equations. These can be written as

SBlA*A(l,n)+SClA*A(2,n) = ^lA

SA 2 A *A (1, n )+^2 A *A (2, n) + SC 2 A 0A (3, n) = S.D2A

SA3A*A(2,n)+SB3A*A(3,n)+SC3A*A(4,n) = SD3A

SA(M-2)A^(M-3,n)+sB(M-2)A*A(M-2,n)+SC(M-2)A*A(M-l,n) = SD(M-2)A 

SA(M-l)A*A(M-2,n)+SB(M-l)A*A(M-l,n) = SD(M-1)A,

n = 2,3,...N (116).
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where,

SA1A = -(1-1) 
i+1

SB1A = 6+A? hA (1“ ^l,n)

3bia = 21
1+1

SC1A = -1 5

SD1A = 0 ?

SD(M-1)A = 1

i = 2,3 ,...M-l (117) 

n = 2,31 • •.N (118)

, 1 = 2,3,...M-l
n = 2,3*...N (119) 
1 = 1,2,...M-2 (120)

1 = 1,2,...M-2 (121)

(122)

Equations (111), (112) and (115) describe the concentration 
profile of <t>̂ in the particle, for n = 1. If ^m,n is 
known, ^ ( i tn)J 1 = 1,2,...M-l can be easily found. From

n = 2,3,., ,N
a knowledge of nj» at any value of 0 can be

easily computed. Equation (123) gives the required 
expression

V<*>A 0 = 0  
s = 1

1- <*>A (M-l,n) 
A Z

n = 1,2,...N (123)
iii. Solution of equations for the intermediate

B j

Finite difference equations corresponding 

to equations (111-123) for A, can also be written for B.
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Solutions for these finite difference equations are also

found similarly. The difference equations for B are

listed belowi

hA "hB

<t> / hB(mf 1) =( A

h.B h - A
Sinh hg Sinh h^

Slnhh (m-l)A£ Sinh h (m-l)A£_____ B s -  A____
(m-l)AS Sinh h (m-l)A£Sinh hAB A

' B(2,n) J &+ ̂  \  \ W ) +(-D I " hA

(124)

m = 2.3,...M (125)
2 2

1-^.
:__ 11$

B(m+l,n) =
2 2A $ h (m-l)+2m

B (m+1) m+T

+(-1) A* h

n = 2,3,...N (126a)
0 +(-1)(m-l)0B(m,n) (m+1) B(m-l,n)

|"a « h (m-l)/l-^ ^
[  A (5ST)\ m-n/J A(n,n) ’

m = 2,3,...M-2
n = 2,3,..,N (127a)

0 , % - 0 B(M,n)
n = 1,2,...N (128).

The corresponding set of triangular algebraic equations 
resulting from equations (126a-128) are as follows:
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SBlB*B(l,n)+SClB*B(2,n) = SD1B

SA2B*B(l,n)+SB2B*B(2,n)+SC2B*B(3,n) = SD2B

SA3B0B(2,n)+SB3B0B(3,n)+SC3B^B(4,n) = SD3B

SA(M-2)B*B(M-.3,n)+SB(M-2)B*B(M-2)+SC(M-2)B*B(M-l,n)= SD(M-2)B 

SA(M-l)B*B(M-2,n)+SB(M-l)B*B(M-l,n) = SD(M-1)B

n = 2,3,...N (129)
where,

SA1B - 1^1

SBiB +A< hB

SBiB = ( ^  £  (1-1) + 21 ] \ B U 1  1+1/

SC1B = "1

SD1B = A! hA I U *< - 1 *-

i = 2,3,...M-.1 (130)

(131a)

i = 2,3, • • • M-l (132a)

i = 1,2,... M-2 (133)

n = 2,3,••• N
(134)
(135)

i = 2,3,••• M-l (136)
n = 2,3,t.. N

The intraparticle concentration of intermediate B at n=l
is given by equations (124), (125) and (128), Once
and 4>m . . are known, equations (129) can be solved toA(i,n)
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obtain

*B(i,n)*
n=2,3»«»» ^

Having found , it is easy to compute

0=0 . Equation (13?) can be used for this purpose. 
£=1

V *  | 0=e= a^B 0=9 = *B(M-l,n) n = 2,3,... N(137).
B I £=1 61 £=1 A£

It is obvious that the knowledge of the terms on the-£.h. 
sides of equations (123) and (137). is all that is required 
for computing 'from equation (50).£5r 11
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2. Selectivity Calculations for Case 2. ( Catalyst
is poisoned for both reaction A -B and reaction B -F )»-

Equations (93-13?) of the previous section, with 
the exception of equations (126a),(127a),(131a), and (132a) 
describe equally well, the intraparticle concentration of 
various species when the catalyst pellet has been poisoned
for both the reaction A  -B and the reaction B -F.
Equations (126a),(127a),(131a) and (132a) are replaced 
respectively, by equations (126b), (127b), (131b) and (132b) 
The new equations are given belowi

2 2 2 2
4, = /6+a£ h /l-0 )\ 0 _  /a £ h ' ( l - t  \\ * ,B (2, n) ^______B V l,n/j *B(l,n) A(1

n = 2,3,... N (126b)
N.

/ 2
<f> ( h2 (l- ip \ (m-l)+2m \ . ̂  - (m-l) $
3 (m+1 ,n)=y B V m,ny (m+T) m+1 J B(m,n) ( ^ )  B(m-l,n)

(&Z K  & I ) ( l - ^  )\ * ,~ y A \m+l/ ' m »n/y A(m,n)

m = 2,3,••. M-2
n = 2,3,... N (12?b)

SB1B= / 6+A * hB ^"^l.n/j * n a 2,3,.,. U (131b)

2 2
SBiB =/A  ̂ hB (l- V. )/i-l)+ 2i \ ;

l T+lj

i = 2,3,... M-l
n = 2,3,... N (132b).
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B. Analytical Expressions for the Shell Poisoning 
Model Selectivity SBFs

1« Intraparticle Concentration Profiles of P. A 
*and B for Case 1 ( Catalyst is poisoned for the reaction

A -B only ) :-
a. Concentration Profile for Species P

i. Poisoned Region:
Equations (75-77) can be solved 

simultaneously to get the ̂ pseudo-steady state’ concentration 
profile of *P* in the poisoned shell of the pellet.
Equation (138) gives such a profile

= till I <(„< 1 (138)
ttuy

ii. Non-Poisoned Region:
= 0 0 < I < (87)

iii. Location of the Poison Front,
The simultaneous solution of equations 

(78) and (138) yields an expression relating, $ — the 
dimensionless time, and *p—• the position of the poison 
front, inside the catalyst pellet.
Equation (139) shows this relationship

*This treatment follows that of Sada and" Wen (37)•

= ) ( 1+2 (139).
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Concentration Profile for Reactant A»- 
A simultaneous solution of equations (79-82) and 

(88, 89 and 92) gives the concentration profiles for the 
reactant A.

i . The poisoned region profile is given as,

1 £!P- 1 (140)p) + tanhV i  
Ll ( hA ( 1- lp)+ tanhhA S^

ii . The non-poisoned region concentration is
given by equation (1^1)

= Sinh hA^
fCoSh hA«p(hA tanhhA £p)

0 <<S«p (1^1)

Concentration Profile for the Intermediate B>- 
The intraparticle concentration profile of B for 

both the poisoned and the non-poisoned regions of the catalyst 
can be obtained by solving the equations (83-86) and 
(90, 91, and 95).

. The profile for the poisoned region is 
given by equation (1^2).

g Sinh(1-Oh0 = 1  B , i <*<:! (142)
B K Sinh hB P

where,
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g, = -/_________________ A
V IK2' hBi) ( tanh hA £P+hd.(1- Sp))C0Sh Yl

feinh hB— Cosh( hB — hgSp) Sinh hB Spj hB Sinh hA £p\
hg Sinh(l- *p)hg 

hA Sinh(hB p̂) Cosh(hA $p) Sinh(l- p)hg
h„ Sinh(l- U h „
B P B (143)

ii. Similarly the profile for the non-poisoned 
region can he written as,
J  u 2
* * > • - ( _________________A_______________________ \ .

V(hA 2- hB2)(tanh hA £P + ^a(1_ Sp)) C°Sh \  V

^Sinh hA§ ^ _  g^Sinh hfi4 ^
(144)

where,

g2 = (hA Coah(hKK̂ lriĥ1'm p)hB + hB Cosh ĥB - hB y sinh(hA fp)

0 < *p (145).
hg Sinh hg
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2. Concentration profiles for Case 2t (catalyst 

poisoned for both the reactions A ►B and B ►?).
As far as the concentration profiles of ' P* 

and ’A 1 are concerned, equations (138-141) and (8?) 
describe them for case 2, as well. Only the profile 
of 'B' is different. The concentration profile of 1B*, 
pertinent to this case, is given by the equations listed 
belowt

i. Poisoned region profilet

♦b = e3(̂
where,

,(hA B )(S1”hhA<P + hA (1- (P> Oosh hA*p)

hACosh(hA fp) Sinh hp !p - hBCosh(hB «p)Sinh(hA «p)
Sirhh^p + (1- «p)hBCosh hp ̂

0<«<«p
ii. Non-poisoned region profilet 

hA2
M hA - V)(Sinh V p +(1- P)hAC0Sh(hA fp)) 
Sinh h^ £p - g^ Sinh hp{

0<<<<r

(146)

(147)

(148)
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where,
glt = Sinh hA fp + (l-<p)hACosh hA(p

1̂- £pj h^Cosh h-D?T, + Sinh ĥ S.

3, Selectivity S^^
a. Selectivity for Case 1:

An expression for the term,

([d*A/d,]*-1/ t d * B / d,] <“1)

can be easily derived, from equations (1*1-0) and (1*1-2). 
expression, when substituted in equation (50)»

SBFsl ~ -■i +rv«*>Ai « =i
L n J 4 =4j

i+ (d / d ̂ ) ? =l] 11( d<*>B /d O  £ =lj « -*P

yields, 

SBFsl =
[<hB/hA > - < V hB>] \  - 1

where,
/tanh hA «p _ 4p \ Sinh hfi

*  =  V  )^  —  .  ---------------
tarfo hA «p _ hA tanh hB «p\Cosh hB*p

hB

(149).

This

(50)

(150)

(151).
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b . Selectivity for Case 2 .

The corresponding expression for for
the case where the catalyst has been poisoned for both the 
reaction A HB and the reaction B  is given as,

BFs2 = 

where,

h  -  _

-  [ t ^ \

' - tanh ^

(1_ ?p )+ tanh hA ?P]

(152),

(153)

and g-̂ is the same as defined by the equation (1^3).
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CHAPTER V 
RESULTS

TABLE 1.1

Catalyst is poisoned for the reaction A- 
(Thiele Modulus) for A = 2.5 

hg (Thiele Modulus) for B = 1.0

SHELL POISONING MODEL 

NO 0 SBF

1 0.0172 10.132
2 0.0344 8.64-9
3 0.0516 7.804
4 0.0688 7.230
5 0.0860 6.822
6 0.1032 6.487
7 0.1204 6.217
8 0.1376 5.996
9 0.1548 5.813

55

only.
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TABLE 1.2
Catalyst is poisoned for the reaction A ►B only

(Thiele Modulus) for A = 2.5
hB (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 1.0

‘M.H.P. MODEL'

NO e SBF

1 0.0172 16.707
2 0.0334 16.671
3 0.0516 16.636
4 0.0688 16.601

5 0.0860 16.567
6 0.1032 16.533
7 0.1204 16.500
8 0.1376 16.467
9 0.1548 16.435
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TABLE 1.3

Catalyst Is poisoned for the reaction A ►E only
h^ (Thiele Modulus) for A = 2.5
hg (Thiele Modulus) for B = 1.0
hD (Thiele Modulus) for P = *f.O

x

•M.H.P. MODEL1

NO 0 SBF
1 0.0172 15-9*42
2 0.03*14 15.213
3 0.0516 1*4-. 553

0.0688 13.957
5 0.0860 13.*4-23
6 0.1032 12.9*46

7 0.120*1- 12 .52*4-
8 0.1376 12.153
9 0.15*4-8 11.829
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TABLE l.*f

Catalyst is poisoned for the reaction A ►
(Thiele Modulus) for A = 2.5

hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 10.0

*M.H.P. MODEL*

NO 0

1 0.01?2 13.173

2 0.03*14 10.960
3 0.0516 9.580
*t- 0.0688 8.668
5 0.0860 8.028
6 0.1032 7.555

7 0.120*1- 7.196
8 0.1376 6.92*1-
9 0.15*̂ 8 6.727

only
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TABLE 1.5

Catalyst is poisoned for reaction A-
hA (Thiele Modulus) for A = 2.5
hB(Thiele Modulus) for B = 1.0
hp(Thiele Modulus) for P = 50

■*M.H.P. MODEL' 
NO 9

1 0.01?2
2 0.03^
3 0.0516
^ 0.0688
5 0.0860
6 0.1032
7 0.1204-
8 0.1376
9 9.15^3

B only

‘“’BF

10.404 
8.861 

7.991 
7.405 
6.974 
6. 64 3 
6.380 
6.169
5.968
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TABLE 1.6

Catalyst Is poisoned for the reaction A only
(Thiele Modulus) for A = $ . 0  

hg (Thiele Modulus) for B = 1.0

SHELL POISONING MODEL

NO 0 Sgp

1 0.0172 11.012

2 0.03^ 9.08 5

3 0.0516 8.0^9

h 0.0688 7.371

5 0.0860 6.905
6 0.1032 6.531
7 0.120L 6.237

8 0.1376 6.003

9 0.15^8 5.81^
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TABLE 1.7
Catalyst is poisoned for reaction A- 

(Thiele Modulus) for A = 5»0
hB (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 1.00

'M.H.P. MODEL* 

NO 0

1 0.01?2
2 0.03^
3 0.0516
^ 0.0688
5 0.0860
6 0.1032
7 0.120^
8 0.13?6
9 0.15^8

B only

SBF

21.256
21.170
21.08L
21.000
20.915
20.831
20.7^9
20.667 
20.586
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TABLE 1.8

Catalyst Is poisoned for the reaction A ►B only
(Thiele Modulus) for A = 5.0

hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 4.0

*M.H.P. MODEL1
NO 0 SBF

1 0.0172 20.007
2 0.0344 I8.786
3 0.0516 17.675
4 0.0688 16.669
5 0.0860 15.763
6 0.1032 14.952
7 0.1204 14.230
8 0.1376 13.592
9 0.1548 13.033
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T A B LE  1 . 9

Catalyst is poisoned for the reaction A--
(Thiele Modulus) for A = 5*°

hp (Thiele Modulus) for B = 1,0
hp (Thiele Modulus) for P = 10.0

•M.H.P. MODEL'

no e sp.ror

1 0 .0 1 7 2 15.852
2 0.0344 1 2 .5 1 1

3 0 .0 5 1 6 1 0 .5 0 9

4 0 .0 6 8 8 9.2440
5 0.0860 8.3894
6 O.1032 7.7798
7 0.1204 7 .3 3 0 1

8 0 .1 3 7 6 6 .9 9 6 3

9 0.1548 6.7$94

only
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TA B LE  1 . 1 0

Catalyst is poisoned for the reaction A--
h. (Thiele Modulus) for A = 5.0 A
hg (Thiele Modulus) for B = 1.0 
hp (Thiele Modulus) for P = 50*0

•M.H.P. MODEL’

NO 9 Sgp

1 0.0172 11.353
2 0.0344 9.326
3 0.0516 8.250
4 0.0688 7.552
5 0.0860 7.056
6 0.1032 6.685
7 0.1204 6.398

8 0.1376 6.175
9 0.1548 5.965

only
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TA B LE  1 . 1 1

Catalsyt Is poisoned for the reaction A ►B only
hA (Thiele Modulus) for A = 10.0 
hg (Thiele Modulus) for B = 1.0

SHELL POISONING MODEL
NO 0 sBP

1 0.0172 12.532
2 0.0344 9.864

3 0.0516 8.515
4 0.0688 7.662

5 0.0860 7.089
6 0.1032 6.638

7 0.1204 6.293
8 0.1376 6.025

9 0.1548 5.818
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TABLE 1.12

Catalyst is poisoned for reaction A 
(Thiele Modulus) for A = 10.0

hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 1.0

•M.H.P. MODEL'

NO e

1 0.0172
2 0.0344
3 0.0516
4 0.0688
5 0.0860
6 0.1032
7 0.1204
8 0.1376
9 0.1548

B only

31.208
31.048
30.889

30.731
30.57^
30.418
30.262
30.108
29.95^
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T A B IE  1 . 1 3

Catalyst is poisoned for the reaction A *-3 only
h^ (Thiele Modulus) for A = 10.0
hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = A.O

‘M.H.P. MODEL*

NO e <3‘“BP

1 0.0172 29.117
2 0.0334 27.016

3 0.0516 25,069
0.0688 23.277

5 0.0860 21.637
6 0.1032 20.1^3

7 0.12,0h 18.789

8 0.1376 17.570
9 0.15^8 16.A77
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T A B LE  1 . 1 4

Catalyst is poisoned for the reaction A only
h^ (Thiele Modulus) for A = 10.0
hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 10.0

•M.H.P. MODEL*

1 0.0172 21.936
2 0.0334 16.078
3 0.0516 12.672
^ 0.0688 10.619
5 0.0860 9.293
6 0.1032 8.376
7 0.1204 7.713
8 0.1376 7.2.23
9 0.15^8 6.872
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TABLE 1.15

Catalyst is poisoned for the reaction A  ►!
h& (Thiele Modulus) for A = 10,0
h_ (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 50*0

*M.H.P. MODEL*

NO 9 SBp

1 0.0172 13.071
2 0.033^ 10.196
3 0.0516 8.764
4 0.0688 7.S69
5 0.0860 7.249
6 0.1032 6.796
7 0.1204 6.454
8 0.1376 6.193
9 0.1548 5.954

only
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TABLE 2.1

Catalyst Is poisoned for both the reaction A'
the reaction B--
h^ (Thiele Modulus) for A = 2.5 
h (Thiele Modulus) for B = 1.0D

SHELL POISONING MODEL
NO 0 SBp

1 0.0172 12.4.63
2 0.0344 12.679
3 0.0516 13.668
4 0.0688 15.344
5 0.0860 17.796
6 0.1032 21.893
7 0.1204 29.164
8 0.1376 45.118
9 0.1548 106.848

B and
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T A B LE  2 . 2

Catalyst Is poisoned for both the reaction A-
the reaction B--
h^ (Thiele Modulus) for A = 2.5 
h„ (Thiele Modulus) for B = 1.0.D
hp (Thiele Modulus) for P = 1.0

•M.H.P. MODEL’

NO 0 SBF

1 0.0172 16.965
2 0.0344 17.192

3 O.0516 17.422

4 0.0688 17.657

5 0.0860 17.895
6 0.1032 18.137

7 0.1204 18.384

8 .0.1376 18.635

9 0.1548 18.890

■B and
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TABLE 2.3

Catalyst Is poisoned for both the reaction A-
the .. B--
h^ (Thiele Modulus) for A = 2.5
hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 4.0

•M.H.P. MODEL*

n o  e s Bf

1 0.0172 17.935
2 0.0344 19.3^5
3 0.0516 21.024
4 0.0688 23.044
5 0.0860 25.500
6 0.1032 28.513
7 0.1204 32.244
8 0.1376 36.905
9 0.1548 42.781

B and
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T A B LE  2 .4 -

Catalyst is poisoned for both the reaction A*
the reaction B—
h^ (Thiele Modulus) for A = 2.5
h_ (Thiele Modulus) for B = 1.0B
hp (Thiele Modulus) for P = 10,0

•M.H.P. MODEL1
no e sBF

1 0.0172 16.062
2 0.0344 16.134
3 0.0516 17.086
4 0.0688 19.008
5 0.0860 22.221
6 0.1032 27.544
7 0.1204 37.005
8 0.1376 56.374-
9 0.1548 106.694

B and
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TA B LE  2 . 5

Catalyst Is poisoned for both the reaction A-
the reaction B *-F
h^ (Thiele Modulus) for A = 2.5
hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 50*0

•M.H.P. MODEL*
NO 0 SBF

1 0.0172 12.771
2 0.0344 13.005
3 .0.0516 14.074
4- 0.0688 15.906

5 0.0860 18.814
6 0.1032 23.644

7 0.1204 32.744
8 0.1376 55.^93
9 0.1548 208.206

B and
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T A B LE  2 . 6

Catalyst is poisoned for both the reaction A-

the reaction B ►
h^ (Thiele Modulus) for A - 5*°
h„ (Thiele Modulus) for B = 1.0 B

SHELL POISONING MODEL
NO 0 SBF

1 0.0172 13.796
2 0.0344 13.604-

3 0.0516 14.398

4 0.0688 15.952

5 0.0860 13.321

6 0.1032 22.3^9

7 0.1204 29.563
8 0.1376 4-5.4-65

9 0.1548 107.141

B and
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TA B LE  2 . 7

Catalyst is poisoned for both the reaction A *-3
the reaction E--
h^ (Thiele Modulus) for A = 5*°
h.g (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 1.0

•M.H.P. MODEL*

NO 6 Sgp

1 0.0172 21.584
2 0.0344 21.829
3 0.0516 22.077
4 0.0688 22.329
5 0.0860 22.585
6 0.1032 22.845
7 0.1204 23.IIO
8 0.1376 23.378
9 0.1548 23.651
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TABLE 2.8

Catalyst is poisoned for both the reaction A-
the reaction B ►?
hA (Thiele Modulus) for A = 5*0
hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = b.O

•M.H.P. MODEL*

NO 0 SBF

1 0.0172 22.615
2 0.03bb - 2b.091

3 0.0516 25.827
0.0688 27.898

5 0.0860 30.398
6 0.1032 33.450

7 0.120b 37.217
8 0.1376 41.912

9 0.l5b8 b7,819

B and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE 2.9

Catalyst is poisoned for both the reaction A
the reaction B --
h. (Thiele Modulus) for A = 5*0 A
h (Thiele Modulus) for B = 1.0 B
hp (Thiele Modulus) for P = 10.0

•M.H.P. MODEL’

NO 9 SBF

1 0.0172 19.723
2 0.03^ - 18.975

3 0.0516 19.38^
it 0.0688 20.970

5 0.0860 23.978
6 0.1032 29.179
7 0.120^ 38.573
8 0.1376 57.918
os 0.15^8 108.2^5
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TABLE 2.10

Catalyst is poisoned for both the reaction A
the reaction B-—
h. (Thiele Modulus) for A = 5>0 A
hg (Thiele Modulus) for B = 1.0 
h-o (Thiele Modulus) for P = 5°.0

x

•M.H.P. MODEL'

NO 0 SBF

1 0.0172 1A.201

2 0 .03^ 13.992

3 0.0516 lif.8A9

k 0.0688 16.550

5 0.0860 19.367
6 0.1032 2A.130

7 0.120k 33.178

8 0.1376 55.885

9 0.15^8 208.^9?
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TA B LE  2 . 1 1

Catalyst is poisoned for both the reaction A
the reaction B--
h^ (Thiele Modulus) for A = 10.0 
h-g (Thiele Modultis) for 3 = 1.0

SHELL POISONING MODEL

NO 0 ^BP
1 0 .0 1 7 2 1 6 .2 1 9

2 0.034-4- 15.361
3 0 .0 5 1 6 1 5 .874-
4- 0 .0 6 8 8 1 7 .2 7 8

5 0 .0 8 6 0 1 9 .5 6 1

6 0 .1 0 3 2 2 3 .5 3 3

7 0.1204- 30 .7 1 0

8 0 .1 3 7 6 4-6 .5 8 1

9 0.154-8 108.208

B and
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TABLE 2.12

Catalyst is poisoned for both the reaction A

the reaction B--
hA (Thiele Modulus) for A = 10.0
hg (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 1.0

•M.H.P. MODEL*

1 0.0172 31.689
2 0.0344 32.013
3 0.0516 32.342
4 0.0688 32.675
5 0.0860 33.013
6 0,1032 33.355
7 0.1204 33.701
8 0.1376 3^.052
9 0.1548 34.407

B and
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TA B LE  2 . 1 3

Catalyst is poisoned for both the reaction A
the reaction 3--
h (Thiele Modulus) for A = 10.0 A
hg (Thiele Modulus) for B = 1.0 
hp (Thiele Modtilus) for P « 4.0

*M.H.P. MODEL*

NO 9

1 0.0172 33.178
2 0.0344 3 5 .1 8 2

3 0.0516 37.442
4 0.0688 40.038
5 0.0860 43.071
6 0 .1 0 3 2 46.671
7 0.1204 5 1 .0 0 2

8 0 .1 3 7 6 5 6 .2 8 1

9 0 .1 5 4 8 62.791
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TABLE 2.1*4-

Catalyst is poisoned for both the reaction A ►B and
the reaction B--
h (Thiele Modulus) for A = 10.0 A
hg (Thiele Modulus) for B = 1.0 
hp (Thiele Modulus) for P = 10,0

•M.H.P. MODEL*

NO 0 SBP

1 0.0172 28.355
2 0.03*44 25.872

3 O.0516 25.080

if 0.0688 25.987

5 0.0860 28.678

6 0.1032 33.815

7 0 .120*4- *4-3. 3*4-8

8 0.1376 63.01*4-

9 0.15^3 113.809
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T A B LE  2 . 1 5

Catalyst Is poisoned for both the reaction A-
the reaction B--
h^ (Thiele Modulus) for A = 10.0
h_ (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P = 50.0

•M.H.P. MODEL*

NO 9 BP

1 0 .0 1 7 2 1 6 .9 2 9

2 0.0344 15.959
3 0 . 0 5 1 6 1 6 .5 0 0

4 0 . 0 6 8 8 1 8 .0 3 0

5 0 .0 8 6 0 2 0 .7 5 2

6 0 .1 0 3 2 2 5 .4 7 0

7 0.1204 3 4 .5 0 5

8 0 .1 3 7 6 57.224

9 0.1548 209.593
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*
TABLE 3.1

Catalyst is poisoned for the reaction A ►B only.
0 = 0.0516 hB = 1.0

NO. RADIAL
POSITION V

1 1.000 1.0000
2 0.800 0.7619
3 0.600 0.6059
4 0.400 0.5090
5 0.200 0.4571
6 0.000 0.4417

= 2.5 hp = 1.0

<f>P $

0.0000 1.0000 0.0503
0.2209 0.9481 0.0470
0.3594 0.9091 0.0457
0.4421 0.8822 0.0443
0.4851 0,8666 0.0436

0.4977 0.8618 0.0433

■^Tables (3*l-3*36) display results based on the ’M.H.P. Model^
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TABLE 3.2

Catalyst is poisoned for the reaction A ►B only.
0 = 0.0860 hB = 1.0 hA = 2.5 hp = l.Q

NO. RADIAL
POSITION ■S 4>

1 1.000 1.0000 0.0000 1.0000 0.0824
2 0.800 0.7672 0.2160 - 0.9496 0.0783
3 0.600 0.6735 0.3522 0.9117 0.0751
4 0.400 0.5182, 0.4339 0.8855 0.0730
5 0.200 0.4667 0.4766 0.8703 0.0717
6 0.000 0.4514 0.4891 0.8657 0.0713
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TABLE 3.3

Catalyst is poisoned for the reaction A ►B only .
0 = 0.1204 hB = 1.0 hA = 2.5 hp = 1.0

NO. RADIAL
POSITION <t>B 0

1 1.000 1.0000 0.0000 1.0000 0.1134
2 0.800 0.7724 0.2110 0.9511 0.1079
3 0.600 0.6218 0.3450 0.9142 0.1037
4 0.400 0.5273 0.4258 0.8887 0.1000

5 0.200 0.4763 0.4681 0.8739 0.0992
6 0.000 0.4612 0.4805 0.8694 0.0986
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TA B LE  3 . 4

Catalyst is poisoned for the reaction A-— only .

0 = 0.1548 hB = 1.0 hA = 2.5 hp = 1.0

NO RADIAL
POSITION \ - 0

1 1.000 1.0000 0.0000 1.0000 0.1434
2 0.800 0.7776 0.2062 0.9525 0.1367

3 0.600 0.6296 0.3379 0.9167 0.1315
4 0.400 0.5364 0.4176 0.8918 0.1280

5 0.200 0.4860 0.4595 0.8775 0.1259
6 0.000 0.4710 0.4718 0.8730 0.1253
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TABLE 3.5

Catalyst is poisoned for the reaction A-— ►B only »

e = 0.0516 h£ = 1.0 hA = 2.5 hp = 4.0

NO RADIAL
POSITION "a . *

1 1.000 1.0000 0.0000 1.0000 0.5645
2 0.800 0.8218 0.164-5 0.6685 0.4007
■3U 0.600 0.684-5 0.2876 0.4-4-99 O.2782
4 0.4-00 0.5905 0.3697 0.3202 0.2004
e 0.200 0.5373 0.4-153 0.254-3 0.1596
6 0.000 0.5212 0.4-289 0.2354 0.1477

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

TABLE 3.6

Catalyst is poisoned for the reaction A-— ►B only.

6 = 0 ,0860 hg = 1.0 hA = 2.5 hp = 4.0

NO RADIAL
POSITION

<t>P 0

1 1.000 1.0000 0.0000 1.0000 0.7498

2 0.800 0.8615 0.1275 0.7315 0.5930

3 0.600 0 .7440 0.2332 0.5293 0.4488

4 0.400 0.6578 0.3095 0.3971 0.3433

5 0.200 0.6070 0.3538 0.3259 0.2830

6 0.000 0.5913 0.3674 0.3049 0.2648
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TABLE 3.7

Catalyst Is poisoned for the reactipn A — ►B only*

0 = 0.1204 hB = 1.0 •CMIIX
* hp = 4.0

NO RADIAL
POSITION 0P 0

1 1.000 1.0000 0.0000 1.0000 0.8562

2 0.800 0.8960 0.0954 0.7893 0.7327

3 0.600 0.8003 0.1818 0.6119 0.5976

0.400 0.7255 0.2487 0.4849 0.4846

5 0.200 0.6793 0.2895 0.4122 0.4144

6 0.000 0.6648 0.3023 0.3902 0.3923
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TABLE 3.8

Catalyst is poisoned for the reaction A-— *-B only *
e = 0.15^8 h =£5 1.0 11 ro • hp = if.O

NO HADIAL
POSITION <t>B % *

1 1.000 1.0000 0.0000 1.0000 0.9174-
2 0.800 0 .924-8 0.0687' 0 .84-07 0.8298

3 0.600 0.8511 0.1355 0.6939 0.719^
4- 0.4-00 0.7900 0.1905 0.5800 0.6156

5 0.200 0.7507 0.2256 0.5109 0.54-56
6 0.000 0.7381 0.2368 0.4-893 0.5227
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TABLE 3.9

Catalyst is poisoned for the reaction A-— — 3 only.

6 = 0.0516 hB = X
*

0•H = 2,5 hp = 10.0

NO RADIAL
POSITION P

1 1.000 1.0000 0.0000 1.0000 0.9954-
2 0.800 0.8861 0.1034- 0.5373 0.8398

3 0.600 0.74-87 0.2289 0.1716 0.364-7
if 0.400 0.6364- 0.3305 0.04-32 0.1003

5 0.200 0.5712 0.3886 0.0130 0.0307
6 0.000 0.5515 0.4-060 0.0078 0.0186
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TABLE 3.10

Catalyst is poisoned for the reaction A---►B only.
0 = 0.0860 hB = 1.0 hk A = 2.5 ►d 11 M 0 • 0

NO RADIAL
POSITION 4>p *

1 1.000 1.0000 0.0000 1.0000 O.9998
2 0.800 0.9387 0.0548 0.7244 0.9831
3 0.600 0.8477 0.1379 0.3655 0.7430
4 0.400 0.7462 0.2318 0.1209 0.3060
5 0.200 o.6768 0.2959 0.0401 0.1070
6 0.000 0.6547 0.3162 0.0249 0.0666
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TA B LE  3 . 1 1

Catalyst Is poisoned for the reaction A---►B only.

0 = 0 . 120b h_ =JD 1.0 hA = 2.5 h = 10.0 P

NO RADIAL
POSITION  ̂..

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.9720 0.0247 0.8425 0.9989

3 0.600 0.9275 0.0651 0.5977 0.9522

4 o', too 0.8618 0.1266 0.3013 0.6506

5 0.200 0.8014 0.1836 0.1273 0.3086

6 0.000 0.7797 0.2042 0.0851 0 .2082
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TABLE 3.12

Catalyst is poisoned for the reaction A *-3 only.
6 = 0.1548 hB - 1.0 hA = 2.5 hp = 10.0

NO RADIAL
POSITION V *

1 1.000 1.0000 0 .0000 1.0000 0.9999
2 0.800 0.9921 0.0068 0.9297 0.9999
3 0.600 0.9795 0.0182 0.8162 0.9960

4- 0.400 0.9578 0.0386 0.6285 0.9277

5 0.200 0.9296 0.0655 0.4-197 0.7023
£ 0.000 0.9167 0.0781 0.3388 0.5744-
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TABLE 3.13

Catalyst is poisoned for the reaction A---►B only*

0 = 0.0516 hB = 1.0 11 • 0 hp = 1.0

NO RADIAL
POSITION V <f>P

1 1.000 1.0000 0.0000 1.0000 0.0503
2 0.300 0.4786 0.4876 0.9481 0.0477

3 0.600 0.2442 0.6898 0.9091 0.0457

4 0.400 0.1385 0.7709 0.8822 0.0443

5 0.200 0.0937 0.8007 0.8666 0.0436

6 0.000 0.0820 O.8O78 0.8618 0.0433
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TABLE 3.14

Catalyst is poisoned for the reaction A only.
e = 0.0860 h = l'.o hA = 5.0 hp = l.o

NO RADIAL
POSITION *

0B 0

1 1.000 1.0000 0.0000 1.0000 0,0824

2 0.800 0.4860 0.4805 0.9496 0.0783

3 0.600 0.2516 0.6830 0.9117 0.0751
4 0.400 0.1446 O .7656 0.8855 0.0730
5 0.200 0.0988 0.7965 0.8703 0.0717
6 0.000 0.0868 0.8039 0.8657 0.0713
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TABLE 3.15

Catalyst is poisoned, for the reaction A-— ►B only*

6 = 0.120^ hB = 1.0 hA = 5.0 hp = 1.0

NO RADIAL
POSITION <t>B *p

1 1.000 1.0000 0.0000 1.0000 0.11311

2 0.800 0.4934 0.4735 0.9511 0.1079

3 0.600 0.2592 0.6762 0.9142 0.103?

k 0.400 0.1509 0.7601 0.8887 0.1003

5 0.200 o.io42 0.7921 0.8739 0.0992

6 0.000 0.0918 0.7998 0.8694 0.0986
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TABLE 3.16

Catalyst is poisoned for the reaction A— — ►B only. 
0 = 0.1548 hB = 1.0 hA = 5.0 hp = 1.0

NO RADIAL
POSITION <t>B <t>p rp

1 1.000 1.0000 0.0000 1.0000 0.1434

2 0 .800 0.5009 0.4664 0.9525 0.1367

3 0.600 0,2668 0.6692 0.9167 0.1315
4 0.400 0.1573 0.75^5 0.8918 0.1280

5 0.200 0.1097 0.7875 0.8775 0.1259

6 0.000 0.0970 0.7956 0.8730 0.1253
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TABLE 3.17

Catalyst is poisoned for the reaction A—— ►B only .

e = O.0516 hB = 1.0 h = 5.0 A hp = 4.0

NO RADIAL
POSITION <t>B <f>P *

1 1.000 1.0000 0.0000 1.0000 0.5645
2 0.800 0.5795 0.3914 0.6685 0.4007

3 0.600 0.3341 0.6079 0.4499 0.2782

ii- 0.400 0.2046 0.7145 0.3202 0.2004

5 0.200 0.1448 0.7602 0.2543 0.1596

6 0.000 0.1285 0.7721 0.2354 0.1477
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TABLE 3.18

Catalyst is poisoned for the reaction A only.
e = 0.0860 hB = 1.0 hA = 5.0 hp - 4.0

NO RADIAL
POSITION <t>B <f>P *

1 1.000 1.0000 0.0000 1.0000 0.7498

2 0.800 0.6521 0.3226 0.7315 0.5930

3 0.600 0.4140 0.53^9 0.5293 0.4488

4 0.400 0.2727 0.6551 0.3971 0.3433

5 0.200 0.2024 0.7122 0.3259 0.2830

6 0.000 0.1826 0.7279 0.3049 0.2648
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TABLE 3.19

Catalyst is poisoned for the reaction A-— ►B only .

9 = 0 . 1204 hB = 1.0 II • 0 hp = 4.0

NO RADIAL
POSITION

\
<t> P

1 1.000 1.0000 0.0000 1.0000 0.8562

2 0.800 0.7206 0.2580 0.7893 0.7327

3 0.600 0.5017 0.4545 0.6119 0.5976

4 0.400 0.3567 0.5809 0.4849 0.4846

5 0.200 0.2788 0.6469 0.4122 0.4144

6 0.000 0.2560 0.6658 0.3902 0.3923
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TABLE 3.20

Catalyst is poisoned for the reaction.A-— ►B only.

0 = 0.1548 hB = 1.0 11 • O hp = 4.0

NO RADIAL
POSITION *P *

1 1.000 1.0000 0.0000 1.0000 o .9174

2 0.800 0.7833 0.1993 0.8407 0.8298

3 0.600 0.5939 0.3702 0.6939 0.7194

4 0.400 0.4552 0.4930 0.5800 0.6156

5 0.200 0.3751 0.5628 0.5109 0.5456

6 0.000 0.3508 0.5837 0.4893 0.5227
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Catalyst Is poisoned for the reaction A---►B only.

9 = 0.0516 hB = 1.0 11 • 0 hp = 10.0

NO RADIAL
POSITION V *

1 1.000 1.0000 0.0000 1.0000 0.9954
2 0.800 0.7342 - 0.2431 0.5373 0.8398

3 0.600 0.4499 0.5025 0.1716 0.3647
4 0.400 0.2651 0.6659 0.0432 0.1003

5 0.200 0.1792 0.7382 0.0130 0.0307
6 0.000 0.1563 0.7568 0.0078 0.0186
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TABLE 3.22

Catalyst is poisoned for the reaction A-— only.

9 = 0.0860 hB = 1.0 11 v_n • 0 hp = 10.0

NO RADIAL
POSITION V 4>B 4>p *

1 1.000 1.0000 0.0000 1.0000 0.9993

2 0.800 0.8469 0.1375 0.7244 0.9831

3 0.600 0.6273 0.3386 0.3655 0.7430

4 0.400 0.4122 0.5364 0.1209 0.3060

5 0.200 0.2887 0.6481 0.0401 0.1070

6 0.000 0.2536 0.6793 0.0249 0.0666
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TABLE 3.23

Catalyst is poisoned for the reaction A-— only ,
0 = 0.1204 hB = 1.0 II • 0 hp = 10.0

NO RADIAL
POSITION <t>3 % <!>

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.9207 0.0701 0.8425 0.9989
3 0.600 0.7952 0.1843 0.5977 0.9522
4 0.400 0.6188 0.3491 0.3013 0.6506

5 0.200 ' 0.4728 0.4864 0.1273 0.3086
6 0.000 0.4245 0.5318 0.0851 0.2082
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TABLE 3.24

Catalyst is poisoned for the reaction A---►B only.

0 = 0.1548 hB = 1.0 hA = 5.0 hp = 10.0

NO RADIAL
POSITION <f>B % 0

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.9731 0.0235 0.9297 0.9999

3 0.600 0.9297 0.0626 0.8162 0.9960

it- o.koo 0.8556 0.1321 0.6285 0.9277

5 0.200 0.7628 0.2211 0.4197 0.7023

6 0.000 0.7216 0.2608 0.3388 0.5744
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TABLE 3.25

Catalyst is poisoned for the reaction A—— ►B only.
6 = 0.0512 h = B 1—1 0 = 10.0 hp = 1.0

NO RADIAL
POSITION <t> P

1 1.000 1.0000 0.0000 1.0000 0.0503
2 0.800 0.1861 0.7677 0.9481 0.0477

3 0.600 0.0371 0.8772 0.9091 O . O t + 5 7

4 0.400 0.0084 0.8779 0.8822 0.0443

5 0.200 0.0025 0.8675 0.8666 0.0^36
6 0.000 0.0015 0.8635 0.8618 0.0433
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TABLE 3.26

Catalyst is poisoned for the reaction A—— ►B only.

e = 0.0860 h = B 1.0 00HII hp = 1.0

NO RADIAL
POSITION 3 % 0

1 1.000 1.0000 0.0000 1.0000 0.0824

2 0.800 0 .1 9 1 9 0.7621 0 .9^96 0.0783

3 0 .6 0 0 0 . 0 3 9 4 0.8752 0 .9 1 1 7 0.0751
4 0.400 0 .0 0 9 1 0.8774 0 .8 8 5 5 0.0730

5 0.200 0.0028 0.8675 0 .8 7 0 3 0.0717
6 0.000 0 .0 0 1 7 O .8636 0 .8 6 5 7 0.0713
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TABLE 3.27

Catalyst is poisoned for the reaction A ►B only .
6 = 0.120*4- = 1.0 h = 10.0 hD = 1.0B A  B

NO RADIAL
POSITION <t> i f

1 1.000 1.0000 0.0000 1.0000 0.1134
2 ’0.8OO 0.1978 0 . 756b 0.9511 0.1079

3 0.600 0.04l8 0.8730 0.9142 0.1037
4 0.400 0.0100 0.8769 0.8887 0.1008

5 0.200 0.0031 0.8674 0.8739 0.0992

6 0.000 0.0019 0.8636 0.8694 0.0986
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TABLE 3.28

Catalyst is poisoned for the reaction A ►B only.
e = 0 .15^8 hB = 1 ’ ° hA = 10.0 hP = 1

NO RADIAL
POSITION ^ k  _ <t>B

1 1.000 1.0000 0.0000 1.0000
2 0.800 0.2038 0 . 7 5 0 6 0 .9 5 2 5

*5, 0 .6 0 0 0.0443 0.8708 0 .9 1 6 7

0.400 0.0109 0.8763 0 .8 9 1 8

e; 0.200 0 .0 0 3 5 0.8674 0 .8 7 7 5

6 0.000 0.0022 O .8637 0 .8 7 3 0
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TABLE 3.29

Catalyst is poisoned for the reaction A-— ►B only.

9 = 0.0516 hB = 1.0 h A= 10.0 h = 4-.0 P

NO RADIAL
POSITION <t>B % *

1 1.000 1.0000 0.0000 1.0000 0 .5645

2 0.800 0.2846 0 .6 7 2 7 0 .6 6 8 5 0.4007

3 0 .6 0 0 0.07^4 0.84-4-6 0 . 4499 0 .2 7 8 2

4 0.400 0 .0 2 0 0 0 .8 7 1 2 0 .3 2 0 2 0.2004

5 0 .2 0 0 0 .0 0 6 8 0.8682 0 .2 5 4 3 0.1596

6 0 .0 0 0 0.004-3 0 .8 6 5 6 0 . 2 3 5 4 0.1477
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TABLE 3.30

Catalsyt is poisoned for the reaction A ►B only «
0 = 0.0860 = B 1.0 h A = 10.0 hp = 4.0

NO RADIAL
POSITION <f>B %

1 1.000 1.0000 0.0000 1.0000 0.7498
2 0.800 0.3681 0.5923 0.7315 0.5930
3 0.600 0.1187 0.8049 0.5293 0.4488
4 0.400 0.0377 0.8584 0.3971 0.3433
5 0.200 0.0145 0.8655 0.3259 0.2830
6 0.000 0.0099 0.8652 0.3049 0.2648
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TABLE 3.31
Catalyst Is poisoned for the reaction A---*-B only %
0 = 0.1204 hB = 1.0 h, =10.0 A =4.0r

NO RADIAL 
• POSITION * 4 *

1 1.000 1.0000 0.0000 1.0000 0.8562
2 0.800 0 .4 5 6 5 0 .5 0 7 5 0 .7 8 9 3 0.7327
2 0.600 0 .1 8 0 3 0,7489 0 .6 1 1 9 0.5976

4 0.400 0.0684 0.8342 0.4849 0.4846

5 0.200 0.0304 0.8563 0.4122 0.4144

6 o.ooo’ 0.0220 0.8597 0.3902 0.3923
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TABLE 3 .3 2

Catalyst Is poisoned for the reaction A-— ►B only.

0 = 0.1548 hB = 1.0 h = 10.0 A

0•-3-II&

NO RADIAL
POSITION B <f> 0

1 1.000 1.0000 0.0000 1.0000 0.9174
2 0.800 0.5457 0.4224 0.8407 0.8298

3 0 . 6 0 0 0 .2 6 0 3 0.6758 0.6939 0.7194

if 0.400 0 .1 1 8 3 0.7924 0 .5 8 0 0 0 .6 1 5 6

5 0.200 0 . 0 6 1 3 0.8340 0.5109 0.5456

6 0.000 0 .0474 0.8430 0.4893 0.5227
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TABLE 3.33

Catalyst is poisoned for the reaction A--- ►B only.

0 = 0 .0 5 1 6 h = 1 .0 h. = 10.0 A hp - 10.0

NO RADIAL
POSITION V <f> &

1 1.000 1.0000 0.0000 1.0000 0 . 9 9 5 4

2 0.800 0 .5 3 7 3 0.4285 0.5373 0 .8 3 9 8

3 0 .6 0 0 0 .1 7 1 6 0.7591 0 .1 7 1 6 0 .3 6 4 7

4 0.400 0 .0 4 3 2 0 . 8 6 0 1 0 .0 4 3 2 0 .1 0 0 3

5 0.200 0 .0 1 3 0 0.8740 0 .0 1 3 0 0 .0 3 0 7

6 0.000 0 .0 0 7 8 0.8741 0 .0 0 7 3 0.0186
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TABLE 3 .3 ^

Catalyst is poisoned for the reaction A-— ►B only

0 = 0.0860 h_ -  1ij .0 h = 10.0 A h = 10.0 P

NO BADIAL
POSITION % <t>

1 1.000 1.0000 0.0000 1.0000 0.9998

2 0.800 0.72 V- 0.2500 0 .72 Vi- 0.9831

3 0.600 0.3655 0.5793 0.3655 0 .7  V o

k 0 . V 0 0.1209 0.7990 0.1209 0.3060

5 0.200 0.0  V )1 0.8637 O.OVl 0.1070

6 0.000 0.02A9 0 .87  V 0.02  V 0.0666
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TABLE 3.35

Catalyst is poisoned for the reaction A only.

0 = 0.1203 hB = 1.0 h A = 10.0 hp - 10.0

NO RADIAL
POSITION <t>B

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.8425 0.1402 0.8425 0.9989
3 0.600 0.597? 0.3640 0.5977 0.9522
4 0.400 0.3013 0.6397 0.3013 0.6506

5 0.200 0.1273 0.7991 0.1273 0.3086
6 0.000 0.0851 0.8366 0.0851 0.2082
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TABLE 3.36

Catalyst is poisoned for the reaction A only
0 = 0.1548 h s= 1.0 h^ = 10.0 hp = 10.0

NO RADIAL
POSITION 0B 0o. i. 0

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.9297 0.6172 0.9297 0.9999
3 0.600 0.8162 0.1643 0.8162 0.9960
4 0.400 0.6285 0.3^03 0.6285 0.9277
5 0.200 0.419? 0.5396 0.4197 0.7023
6 0.000 0.3388 0.6170 0.3388 0.5744
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CHAPTER VI 
DISCUSSION OP RESULTS

A. General
The intraparticle concentration equations (29-43) 

for the ’Modified Homogeneous Poisoning Model’ were 
integrated on an IBM 360-40 computer. The total computer 
time consumed was about two hours. Numerical solutions 
were tested for convergence by decreasing the step size along 
the 0 axis as well as along the £ axis. A step size of
o.o2 along the dimensionless space coordinate and a step size 
of o.00086 along the demensionless time coordinate were 
found to be satisfactory. All calculations were done in 
double precision arithmetic.

The intraparticle concentration profiles of the 
species A, B, P and the deactivation profile ^ in the 
catalyst particle are tabulated in Tables (3*1 - 3*36 and

■JcR.l - R.36 ). Tables (3.1 - 3«36) are for the case when 
 ̂the catalyst is poisoned for the reaction A — >• B only, and 
tables (R.l - R.36) are for the case when the catalyst is 
poisoned for the reaction A — ► B as well as the reaction 
B — F, The concentration and deactivation profiles were 
calculated for various values of the ratio (h^/hg), 0, and

♦Tables (R.l-R.36) constitute Appendix I.
121
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'hp'.
Tables (1.1 - 1.15) and figures (1.1 - 1.4) 

show the effects of '6', 'hp' and the ratio (h^/hg), on 
the selectivity parameter ’Sgp', for the case when the 
catalyst is poisoned for the reaction A — ► B only. 
Corresponding results for the case when the catalyst is 
poisoned for the reaction A — ► B as well as the reaction 
B — *~F are shown in tables (2.1 - 2.15) and figures 
(2.1 - 2.4).
B. Catalyst Poisoned for the Reaction A >-3 Only.

From a consideration of figures (1.1 - 1.3)» it 
is apparent that when the catalyst is poisoned for the 
reaction A— •-B only, an increase in pellet poisoning 
(resulting from an increase in 0) either causes an 
insignificant change in the value of the parameter 'Sgp' or 
caiises a fall in the magnitude of the selectivity 'Sgp’. For 
a small value of 'hp1 (Thiele Modulus for the poison species ?)
i.e. hp = 1, the decrease in the value of 'Sgp is 
insignificant, but for higher values of'hp1 i.e : hp > 4,
'Sgp' decreases appreciably as the poisoning of the pellet 

' progresses. Figure (3*1) helps to explain why this is so.
For hp = 1, the catalyst deactivation is insignifioent over 
the range of '91 shown; whereas, for hp ^ 4, the catalyst
deactivation is considerable and increases significantly 
with time. Increasing deactivation of the catalyst pellet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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causes a fall in the rate of formation of 'B' (the rate of
decompostion of 'B', being completely unaffected), thus,
lowering the selectivity of 'Sgp'. Figure (3.3) which shows
the concentration profile of »B» for various values of ’hp*,
confirms this explanation. It is to be noted that the
curves for 0 = 0.0516 and 0 = 0,15^8 at hp = 1 are almost
identical (hence only one of them can be shown).

Figure (3*2) displays the concentration profile
of species 'A'. It is clear from this figure that as 'hp*
increases, the concentration of 'A1 inside the particle
also increases. But a look at figure (3.1)» reveals that
the catalyst activity has also fallen significantly. Since
selectivity ' S _ . '  falls with increasing 'h* (figures 1.1 - 

r>r f

1.3), it seems that a fall in the activity of the catalyst
more than compensates for the increased concentration of
'A* in the pellet.

Figure (l.ty) displays the effect of the ratio
(h^/hg) on the parameter 'Sgp'. For v = 1» the ratio
(Vy/hp) is an index of the ratio (k&/kg) . Thus the higher
the (k /k ) ratio is, the himher would be the value of the A B
parameter 'Sgp1*

At high values of ’hp’, the 'Modified Homogeneous 
Poisoning Model' is expected to resemble the 'Shell 
Poisoning Model'. Thus, in figures (1.1 - 1.3) the 'Shell 
Poisoning Model' plot and the plot for hp = f>0, are almost
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identical.
C. Catalyst Poisoned For the Reaction A — -B as Well as 

For the Reaction B — -F.
Figures (2.1 - 2,k) lead one to conclude that when 

the catalyst is poisoned for the reaction A — -B as well as 
for the reaction B — -F, the selectivity Parameter BF
either increases with the passage of process time, or there 
is no significant change in the value of this parameter.
The insensitivity of ’Sgp* to the age of the catalyst particle 
operating at low values of ’hp’, has already been explained 
in subsection B. The increase in the selectivity of the 
desired product, with the aging (increased poisoning) of 
the catalyst appears to be paradoxical. However, as Kaxted 
(28) has mentioned, such a conclusion has been found to be
experimentally true in a number of cases (1,2,20,and 3 6).
With the passage of time (and increase in deactivation)
the rate of formation of the intermediate ’B* falls in
the outer shell of the pellet. Since the catalyst is 
deactivated more on the outside than it is on the inside, 
the concentration of the reactant ’A ’ in the inner core 
of the pellet increases with the passage of time 6 
(deactivation of the core also increases but this process 
is not so fast). Consequently, whereas, with increasing 9, 
the rate of formation of *B 1 decreases in the outer shell 
of the pellet, this same rate increases in the inside core
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of the particle as the pellet ages. If the catalyst particle 
is poisoned for the reaction A — B only, the effect of 
this increased rate of formation of ’B* in the inner core 
of the pellet is negligible. This however, is not the case 
when the catalyst is poisoned for both the reactions. The 
increasing deactivation of the catalyst decreases the rate 
of decomposition of the intermediate ’B* in the inside core 
as well as in the outer shell, Tbe combination of 
increased rate of formation ’B* in the inside core and a 
decreased rate of decomposition of *B’ throughout the 
catalyst gives a higher value for the parameter 'Sgp1. In 
the case when the catalyst is poisoned for the reaction 
A — -B as well as for the reaction B-— -F, the selectivity 
parameter ’S i s  not affected in a straightforward manner.Dr
by changes in 'hp'. Thus, as is clear from figures 
(2.1 - 2.3), the value of the parameter ’ Sgp' can decrease 
or increase with increasing ’ hp*, depending upon the 
magnitude of ’hp' and ’S’. It seems to be virtually 
impossible to draw a general conclusion.

When the catalyst is poisoned for both reactions, 
increasing the ratio (h^/hp) at v =1, results in higher 
selectivity fSpp’ for the intermediate 'B', This is well 
displayed by figure (2.̂ -). Figure (1.^) displays similar 
trends for the case When the catalyst is poisoned for the 
reaction A — — E only.
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As was the case in subsection B (catalyst poisoned

for the reaction A only), the ’Shell Poisoning Model’
plot and the *M,H.P. Model' plot for hp = 50 are identical 
over the greater part of the range of ’0'. As ’0' 
approaches 0.15» the value of ' S_' predicted by the curve 
for hp = 50 is much higher than the one predicted by the 
curve for the 'Shell Poisoning Model'. It is likely that 
at this high value of 'hp', the size of the unpoisoned core 
predicted by the hp = 50 curve is slightly larger than the 
size predicted by the 'Shell Poisoning Model', This 
difference can explain the gap found between the values of 
'Sgp' predicted by the 'Shell Poisoning Model' and the 
'M.H.P. Model' with h^ = 50. However, it should be 
mentioned that the 'Shell Poisoning Model' plot represents 
a closed analytical solution, whereas the plot for hp = 50, 
represents a numerical solution subject to discritisation 
and other errors. Since the region over which the 
differences appear is so narrow, a final conclusion 
concerning the exact cause of this difference seems to be 
very difficult to arrive at.
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CHAPTER VII 
CONCLUSIONS

For a heterogeneous consecutive reaction
k -- -B— — F, catalysed by porous spherical particles subject
to poisoning by impurities in the feed stream, the selectivity 
’SgF f as predicted by the ’Modified Homogeneous Poisoning 
Model' behaves differently, depending on whether one or both 
reactions in the kinetic scheme are affected by the poisoning.
When only the reaction A -B is poisoned, the selectivity
either does not change significantly or decreases as the 
catalyst pellets age. At lower values of hp, aging does not 
produce any significant change in the magnitude of ’Sgp', 
whereas, appreciable decrease is observed at higher values 
of hp. On the other hand if both the reactions in the
scheme A -3— — F are poisoned, the 'M.H.P. Model' predicts,
that 'Sgp' will either, remain constant or increase.

The effect, increasing values of hp have on 
'SBP1, also differentiates the two cases. For the case
where the catalyst is poisoned for the reaction A only,
selectivity decreases considerably as the Thiele Modulus hp 
for the species P increases. This conclusion suggests that 
selectivity 1Sgp' can be increased by the use of smaller 
spherical pellets. The effect of increasing hp on 'Sg-,'
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for the case when the catalyst is poisoned for both the 
reactions, is more complex, and not subject to easy 
qualitative interpretation.

There are some common features in the selectivity 
behavior for the two cases. The selectivity is seen to 
increase markedly as the ratio (k^/k^) increases. Also, at 
higher values of hp selectivity values predicted by the 
’M.H.P. Model’ are in almost complete agreement with values 
of ’Sgp1 predicted by the ’Shell Poisoning Model’.

Useful, though the conclusions from this study 
are, they have been arrived at on the basis of the 
assumption that isothermal conditions prevail inside the 
pellet. As has been pointed out in a number of studies 
(11,12,38,^8), such an assumption is very seldom true in 
actual practice. Temperature gradients are usually found to 
exist in the catalyst pellets and a thorough study of 
poisoning should take into account the temperature gradients 
prevailing inside the pellet. Because a study along these 
suggested lines will require very difficult and lengthy 
numerical calculations, it can be justified only if it is 

- done for an actual reaction scheme, rather than for a 
hypothetical scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX I

*
TABLE R.l

Catalyst is poisoned for the reaction A-— ►B as well as

the reaction B— ►-F.

e = 0.0516 hB = 1.0 hA - 2.5 hp = 1.0

NO RADIAL
POSITION “a *P

1 1.000 1.0000 0.0000 1.0000 0.0503

2 0.800 0.7619 0.2216 0.9481 0.0477

3 0.600 0.6059 0.3609 0.9091 0.0457
4 0.400 0.5090 0.4441 0.8822 0.0443

5 0.200 0.4571 0.4875 0.8666 0.0436

6 0.000 0.441? 0.5001 0.8618 0.0433

^Tables (R.l-R.36) show results based on the ‘M.H.P. Model1
140
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TABLE R.2

Catalyst is poisoned for the reaction A-— as well as

the reaction B— ► T?— •
0 = 0.0860 hB = 1.0 hA = 2.5 hp = 1.0

NO RADIAL
POSITION *A <t>B ^P 0

1 1.000 1.0000 0.0000 1.0000 0.0824

2 0.800 0.7672 0.2171 0.9496 0.0783

3 0.600 0.6139 0.3545 0.9117 0.0751
4 0.400 0.5182 0.4372 0.8855 0.0730

5 0.200 0.4667 0.4804 0.8703 0.0717

6 0.000 0.4514 0.4931 0.8657 0.0713
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TABLE R • 3

Catalyst is poisoned for the reaction A-— ►B as well as

the reaction B — ►■F.
0 - 0.120^ hB = 1.0 hA = 2 -5 hp = 1.0

NO RADIAL
POSITION K <t>P

*

1 1.000 1.0000 0.0000 1.0000 0.1134

2 0.800 0.7724 0,2126 0.9511 0.1079

3 0.600 0.6218 0.3481 0.9142 0.1037

4 0.4-00 0.5273 0.4302 0.8887 0.1008

5 0.200 0.4763 0.4732 0.8739 0.0992

6 0.000 0.4612 0.4859 0.8649 0.0986
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TABLE R.4

Catalyst is poisoned for the reaction A *-B as well as
the reaction B  + -F .

e = 0.1548 hB = 1.0 II ro • hp = 1.0

NO RADIAL
POSITION <t>B <t>

i 1.000 1.0000 0.0000 1.0000 0.1434
2 0.800 0.7776 0.2082 0.9525 0.1367

3 0.600 0.6296 0.3418 0.9167 0.1315
4 0.400 0.5364 0.4231 0.8918 0.1280

5 0.200 0.4860 0.4660 0.8775 0.1259
6 0.000 0.4710 0.4786 0.8730 0.1253
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TABLE R.5

Catalyst is poisoned for the reaction A-— *-B as well as

the reaction B--►-P.

e = 0.0516 hB = 1.0 hA = 2*5 hp = I-,0

wo RADIAL
POSITION A ' *P

l 1.000 1.0000 0.0000 1.0000 0.562+5

2 0,800 0.8218 0.1683 0.6685 0.2+007

3 0.600 0.682+5 0 .292+6 0 .2+2+99 0.2782

2+ 0.2+00 0.5905 0.3788 0.3202 0.2002+

5 0.2 00 0.5373 0.2+255 0.252+3 0.1596

6 0.000 0.5212 0.2+39*+ 0.2352+ 0 .12+77
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TABLE R.6

Catalyst is poisoned for the reaction A-— ►B as well as

the reaction B — ►.•p

0 = 0.0860 = 1.0 hA = 2.5 hp = 4-,.0

NO RADIAL
POSITION 4> ** $

1 1.000 1.0000 0.0000 1.0000 0.7498

2 0.800 0.8615 0.1323 0.7315 0.5930

3 0.600 0 .7440 0.2424 0.5293 0.4488

4 0.4-00 0.6578 0.3217 0.3971 0.3^33

5 0.200 0.6070 O.3678 0.3259 0.2330

6 0.000 0.5913 0.3319 0.3049 0.2643
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TABLE R.7

Catalyst is poisoned for the reaction A as well as

the reaction B--►-F.

0 = 0.1204 hB = 1.0 , 2.5 hp = 4.0

NO RADIAL
POSITION <t>k <t> *

1 1.000 1.0000 0.0000 1.0000 0.8562

2 0.800 0.8960 0.1003 0.7893 0.7327

3 0.600 0.8003 0.1915 0.6119 0.5976

4 0.400 0.7255 0.2620 0.4849 0.4846

5 0.200 0.6793 0.3049 0.4122 0.4l4L

6 0.000 0.6648 0.3183 0.3902 0.3923

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE R.8

Catalyst is poisoned for the reaction A ►B as well as
the reaction B—
0 = 0.158*4- hg = 1.0 hA = 2.5 hp = 4.0

NO RADIAL
POSITION <t>B

1 1.000 1.0000 0 .0000 1.0000 0.9174
2 0.800 0.9248 0.0731 0.8407 0.8293

3 0 .6 0 0 0 .8 5 1 1 0.1444 0 .6 9 3 9 0.7194

4 0.400 0.7900 0.2029 0 .5 8 0 0 0 .6 1 5 6

5 0.200 0.7507 0.2402 0 .5 1 0 9 0 .5 4 5 6

6 0.000 0.7381 0 .2 5 2 1 0.4893 0 .5 2 2 7
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TABLE R.9

Catalyst is poisoned for the reaction A-— as well as

the reaction B — ►-F.
e = 0.0516 hB = 1.0 hA = 2.5 h =10 P .0

NO RADIAL
POSITION 0k *8 0

1 1.000 1.0000 0.0000 1.0000 0.995^
2 0.800 0.8861 0.107^ 0.5373 0.8398

3 0.600 0.7L8? 0.2355 0.1716 0.36^7
4 O.if-OO O.636L 0.3381 0.0^32 0.1003

5 0.200 0.5712 0.3963 0.0130 0.0307

6 0.000 0.5515 0.^136 0.0078 0.0136
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Catalyst is poisoned for the reaction A- 
the reaction B--►f »

— ► B as well as

9 = 0.0860 h13 = 1.0 hA = 2.5 hp = 10 .0

NO RADIAL
POSITION r *

1 1.000 1.0000 0.0000 1,0000 0.9998

2 0.800 0.938? 0.0586 0.7244 0.9331

3 0.600 0.84-7? 0.1454 0.3855 0.7430

4 0.400 0.?4-62 0.2412 0.1209 0.3060

5 0.200 0.6768 0.3059 0.0401 0.1070

6 0.000 0.654-7 0.3262 0.0249 0.0666
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TABLE R.ll

Catalyst is poisoned for the reaction A ►B as well as

the reaction B-- ►-F.

e = 0 .120i-f hB = 1.0

NO RADIAL
POSITION

1 1.000 1.0000

2 0.800 0.9?20

3 0,600 0.9275
O.ifOO 0.8618

5 0.200 0.801*4-

'6 0.000 0.779?

= 2.5 h =10.0 P

B </> vp *

0.0000 1.0000 0.9999
0.0272 0.8*1-25 0.9989
0.0705 0.5977 0.9522

0.13^3 0.3013 0.6506

0.192*4- 0.1273 0.3086

0.2132 0.0851 0.2082
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tabib r,12

Catalyst is poisoned for the reaction A os >rell as
the reaction B *-F

e = 0.1548 hB = 1.0 hA = 2.5 h = 10.0 P

NO RADIAL
POSITION <f>k *e <t> *

1 1.000 1.0000 0,0000 1.0000 0 .9999

2 0.800 0.9921 0.0077 0.9297 0 .9999

3 0.600 0.9795 0.0202 0.8162 0.9960

4 0.400 0.9578 0.0417 0.6285 0.9277

5 0.200 0.9296 0.0695 0.4197 O.7023

6 0.000 0.9167 0.0823 0.3388 0.5744
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Catalyst is poisoned for the reaction A-— ►£ as well as

the reaction B — - F.
0 = 0.0516 hB = 1.0 hA - 5‘° h p - i . 0

NO RADIAL
POSITION <t>*A *

1 1.000 1.0000 0.0000 1.0000 0.0503
2 0.800 0.4786 0.4890 0.9481 0.0477

3 0.600 0.2442 0,6926 0.9091 0.0457

if 0.400 0.1385 0.7746 0.8822 0.0443

5 0.200 0.0937 0.8051 0.8666 0.0436

6 0.000 0.0820 0.8123 O.8618 O.OL33
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TAELS R.l4

Catalyst is poisoned for the reaction A ►B as well as
the reaction B ►?
e = 0.0860 hB = 1.0 0•U-iIIc hp = 1.0

NO RADIAL
POSITION *k <t>*p

1 1.000 1.0000 0.0000 1.0000 0.082^
2 0.800 0.^860 0. ̂ 828 0.9^96 0.0783

3 0.600 o .2516 0.6875 0.9117 0.0751
4 o.koo 0.1^46 0.7717 0.8855 0.0730
5 0.200 0.0988 0.8036 0.8703 0.0717
6 0.000 0.0868 0.8113 0.8657 0.0713
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TABLE R.15

Catalyst Is poisoned for the reaction A ►B as well as
the reaction B--
e = 0.1204 hB = 1.0 it 0 hp = 1.0

NO RADIAL
POSITION 0B 0 0

1 1.000 1.0000 0.0000 1.0000 0.1134

2 0.800 0.4934 0.4767 0.9511 0.1079

3 0.600 0.2592 0.6823 0.9142 0.10 37

.4 0.400 0.1509 0.7085 0.8887 0 .1008

5 0.200 0.1042 0.8018 0.8739 0.0992

6 0 .000 0.0918 0.8099 0.8694 0.0986
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TABLE H 16

Catalyst is poisoned for the reaction A ►B as well as
the reaction B— *~F.

(3 = 0.15^8 h0 = 1.0 hA = 5.0 hp = 1.0

NO RADIAL
POSITION *3 0

1 1.000 1.0000 0.0000 1.0000 0.1434

2 0.800 0.5009 0.470 5 0.9525 0.136?

3 0.600 0.2668 0.6769 0.9167 0.1315
if O.ifOO 0.1573 0.7650 0.8918 0.1280

5 0.200 0.1097 0.7997 0.8775 0.1259

6 0.000 0.9708 0.8083 0.8730 0.1253
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TABLE' R.17

Catalyst is poisoned for the reaction A-- ►B as well as
the reaction B--►-F.
9 = 0.0516 hB =1.0 0II hp = 4.0

NO RADIAL
POSITION 4>p

1 1.000 1.0000 0.0000 1.0000 0.5645
2 0.800 0.5795 0.3997 0.6685 0.4007
3 0.600 0.3341 0.6228 0.4499 0.2782
4 0.400 0.204-6 0.7334 0.3202 0.2004

5 0.200 0.144-8 0.7812 0.2543 0.1596
6 0.000 0.1285 0.7936 0.2354 0.1477
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TABLE R.18

Catalyst is poisoned for the reaction A *-3 as well as
the reaction B  *-F.
0 = 0.0860 h = B 1.0 3*

>
11 0 hp = 4.0

NO RADIAL
POSITION <t>Li <i>-p 4>

1 1.000 1.0000 0.0000 1.0000 0.7498

2 0.800 0.6521 0.3338 0 .7 3 1 5 0.5930

3 0 .6 0 0 0 .4i4o 0 .5 5 6 0 0 .5 2 9 3 0.4488

4 0.400 0 .272? 0.682? 0 .3 9 7 1 0.3433

5 0.200 0.2024 0.7^33 0 .3 2 5 9 0.2.330

6 0.000 0 .1826 0.7599 0.3049 0.2648
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TABLE R.19

Catalyst is poisoned for the reaction A as well as
the reaction B .
9 = 0.1204 h = 1.0 hA = 5.0 hp = 4.0

NO RADIAL
POSITION 4>B *p *

1 1.000 1.0000 0.0000 1.0000 0.8562

2 0.800 0.7206 0.2705 0.7893 0.7327

3 0.600 0.5017 0.4786 0.6119 0.5976

4 0.400 0.3567 0.6134 0.4849 0.4846

5 0.200 0.2788 0.6840 0.4122 0.4144

6 0.000 0.2560 0.7043 0.3902 0.3923
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TABLE R.20

Catalyst is poisoned for the reaction A— ►B as well as 
the reaction B ►
0 = 0.1548 h^ = 1.0 hA = 5.0 hp =4.0

NO RADIAL
POSITION A *3 4> <l>

1 1.000 1.0000 0.0000 1.0000 0.917^
2 0.800 0.7833 0.2114 0.8407 O.8298

3 0.600 0.5939 0.3943 0.6939 0.719^
4 0.400 0.4552 0.5263 0.5800 0.6156

5 0.200 0.3751 0.6015 0.5109 0.5456

6 0.000 0.3508 0.6241 0.4893 0.5227
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TABLE R. 21

Catalyst is poisoned for the reaction A-— ►B as well as
the reaction B — ►-P.
0 - 0.0516 hg = 1.0 h = 5-0 A hp = 10.0

NO RADIAL
POSITION <t> <t>B <f>P *

1 1.000 1.0000 0.0000 1.0000 0.995^
2 0.800 0.7343 0.2521 0.5374 0.8393

3 0.600 0.4499 0.5174 0.1716 0.3648
h. 0.400 0.2651 0.6825 0.0432 0.1003

5 0.200 0.1792 0.7550 0.0130 0.0307
6 0.000 0.1563 0.7736 0.0078 0.0186
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TABLE R. 22

Catalyst is poisoned for the reaction A ►B as well as

the reaction B — ► ?.
e = 0.0860 hB = 1.0 !! 0 hp = 10.0

NO RADIAL
POSITION <t> <t> *

1 1.000 1.0000 0.0000 1.0000 0.9993

2 0.800 0.8469 0.1469 0.7244 0.9831

3 0.600 0.6274 0,3568 0.3655 0.7430

4 0.400 0.4122 0.5590 0.1209 0.3060

5 0.200 0.2887 0.6719 0.0402 0.1070

6 0.000 0.2536 0.7032 0.0249 0.0666
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TABLE 3.23

Catalyst is poisoned for the reaction A—— *-B as well as
the reaction B — ► ■p

0 = 0.1204 hB = 1.0 hA = 5.0 hp = 10.0

NO RADIAL
POSITION <f>P 0

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.9207 0,0772 0.8425 0.99S9

3 0.600 0.7952 0.1994 0.5977 0.9522

4 0.400 0.6188 0.3705 0.3013 0.6506

5 0.200 0.4728 0.5106 0.1273 0.3086

6 0.000 0.4245 0.5566 0.0851 0.2082
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TABLE R . 2 if

Catalyst is poisoned for the reaction A-— ► 3 as well. as
t he reaction B--►-F.
9 = 0.15^8 . hg = 1.0 hA . 5.0 hp = 10.0

NO RADIAL
POSITION <t> <f>P *

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.9731 0.0265 0.9297 0.9999

3 0.600 0.9297 0.0695 0.8162 0.9961

if 0.400 0.8556 0.1429 0.6285 0.9277

5 0.200 0.7628 0.2346 0.4198 0.7023

6 0.000 0.7216 0.2752 0.3388 0.5744
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TABLE R.25

Catalyst is poisoned for the reaction A — ► B as well as

the reaction B— ►-F.

0 = 0.0512 hDId = 1.0 h. = 10.0 A hp = 1.0

NO RADIAL
POSITION <t>£ *

1 1.000 1.0000 0.0000 1.0000 0.0503
2 0.800 0.1861 O.7696 0.9481 0.0477

3 0.600 0.0371 0.8808 0.9091 0.0457

if 0.400 0.0084 0.8826 0.8822 0.0443

5 0.200 0.0025 0.8728 0.8666 0.0436

6 0 .000 0.0015 0.8690 0.8618 0.0433
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TABLE Px.26

Catalyst is poisoned for the reaction A-— as well as

the reaction B — ► F.

0 = 0.0860 hB = 1.0 h =10.0 A hp = 1.0

NO RADIAL
POSITION 0A. 0B *P 0

1 1.000 1.0000 0.0000 1.0000 0.0824

2 0.800 0.1919 0.7653 0.9496 0.0783

3 0.600 0.0394 0.8811 0.9117 0.0751

4 0.400 0.0091 0.8851 0.8855 0.0730

5 0.200 0 .0028 O.8762 0.8703 0.0717

6 0.000 0.0017 O.8726 0.8657 0.0713
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TABLE R.27-

Catalyst is poisoned for the reaction A—— ►B as well as

the reaction 3 — ►"m1x

0 = 0.1204 hB = 1.0 h = 10.0 A hp = 1.0

NO RADIAL
POSITION V % %  0

1 1.000 1.0000 0.0000 1.0000 0.1134

2 0.800 0.1978 0.7608 0.9511 0.1079

3 0.600 0.0418 0.8812 0.9142 0.1037

4 0.400 0.1003 0.8875 O.8887 0.1008

5 0.200 0.0031 0.8795 0.8739 0.0992
A 0.000 0.0099 0.8761 0.8694 0.0987
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TABLE R.28

Catalyst Is poisoned for the reaction A -— ►B as !•;‘ell as

the reaction E-- ► T?— *

0 = 0.1548 hB = 1.0 hA - 10.0 hp = 1 .0

NO RADIAL
POSITION A <t> *

1 1.000 1.0000 0 . 0000 1.0000 0.1434

2 0.800 0.2038 0.7563 0.9525 0 .1 3 6 7

3 0 .6 0 0 0.0443 0.8811 0.916? 0.1315
4 0.400 0 .0 1 0 9 O .8898 0.8918 0.1230

5 0.200 0.0035 0.8827 0.8775 0 .1 2 6 0

6 0.000 0.0026 0 . 8 7 9 6 0.873-0 0 .1 2 5 3
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Catalyst is roisoned for the reaction A ►B as vrell as
the reaction B — ►. T?—  »
0 = 0 .0 5 1 6 h„t) = 1.0

NO RADIAL
POSITION <f>hi

1 1.000 1.0000
2, o.aoo 0.2846

3 0 .6 0 0 0.0744
0 .400 0.0200

5 0.200 0 .0 0 6 8

6 0.000 0.0043

= 10.0 hp = 4.0

<f> <t>

0.0000 1.0000 0 .5 6 4 5

0.6854 0 .6 6 8 5 0.4007
0 .8 6 6 3 0 .4 4 9 9 0 .2 7 8 2

0 .8 9 7 7 0 .3 2 0 2 0.2004
0 .8 9 6 9 0 .2 5 4 3 0 .1 5 9 6

0.8950 0 . 2 3 5 4 0.1477
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TABLE B

Catalyst is poisoned for the

.30

reaction A-— ►B as well. as
the 
0 =

reaction B — ► 
0.0860 h„

T?* *
= 1.0 0■0HII 0•-3-11

NO

1

B

RADIAL
POSITION
1.000

<t>*A
1.0000

A

*3

0.0000

P

1.0000 0 .7 4 9 8

2 0.800 0.3681 0 .6 1 0 7 0 .7 3 1 5 O .5930

3

ooVO•o 0 .118? 0 .8373 0 .5 2 9 3 0.4488
4 0.400 0.03?? 0 . 8 9 9 4 0 .3 9 7 1 0.3433

5 0.200 0.0145 0 .9 1 0 5 0 .3 2 5 9 0.2830

6 0.000 0 .0 0 9 9 0 .9 1 1 3 0 .3 0 4 9 0.2648
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TABLE R.31

Catalyst Is poisoned for the reaction A— ►B as well as 
the reaction B— *-F.
0 = 0.1204 h = 1.0 hA = 10.0 A hp = 4.00

NO RADIAL
POSITION <t> *

1 1.000 1.0000 0.0000 1.0000 0.8562
2 0.800 0 .4 5 6 5 0 .5 2 9 1 0 .7 8 9 3 0.7327

3 0 .6 0 0 0.1803 0.7888 0 .6 1 1 9 0.5976

it- 0.400 0.0684 0 .8 8 6 0 0.4849 0.4846

5 0.200 0 .0 3 0 4 0.9142 0.4122 0.4l44

6 0.000 0.0220 0.919^ O .3902 0 .3 9 2 3
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TABLE H .32

Catalyst is poisoned for the reaction A—— ►B as well. as

the reaction 3--►
0 = 0 .15^8 hB = 1.0 h. = 10.0 A hp = L.O

NO RADIAL
POSITION < * z

ip

1 1.000 1.0000 0.0000 1.0000 O.9 1 7L
2 0.800 0.5^57 0 .LL50 0 .8L07 0 .8 2 9 8

3 0 .6 0 0 0 .2 6 0 3 0 .7 1 9 3 0 .6 9 3 9 0 .719^
L O.it-OO 0 .1 1 8 3 0 .8 5 0 6 0 .5 3 0 0 0 .6 1 5 6

5 0.200 0 .6 1 3 2 0 .9 0 0 2 0 .5 1 0 9 0 .5^56

6 0.000 o.b7^5 0 .9 1 1 6 0 .L893 0 .5 2 2 7
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TABLE R .33

Catalyst is poisoned for the reaction A-— ►B as well, as
the reaction B— *-P.
e = 0.0516 hB = 1.0 hk = 10.0 A hp = 10.0

NO RADIAL
POSITION *A. ** 0

i 1.000 1.0000 0.0000 1.0000 0.995^
2 0.800 0 .5 3 7 3 0 .4 4 3 4 0.5373 0.8398

3 0 .6 0 0 0 .1 7 1 6 0.7828 0 .1 7 1 6 0.3647
L 0.400 0 .0 4 3 2 0 .8 8 6 0 0 .0^32 0 .1 0 0 3

5 0.200 0 .0 1 3 0 0 .9 0 0 0 0 .0 1 3 0 0.0307
6 0.000 0 .0 0 7 8 0 .9 0 0 1 0 .0 0 7 8 0 .0186
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TABLE R.3^

Catalyst is poisoned for th,e reaction A-— *-3 as well as
the reaction B--►. I?

0 = 0.0860 h
3
= 1.0 o•orHII hp - 10.0

NO RADIAL
POSITION *3 <f>Da. *

1 1 . 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 0.9998
2 0.800 0.7 2.44 0.2661 0.7244 0.9831

3 0.600 0.3655 0.6104- 0.3655 0.7^30

k 0.4-00 0.1209 0.8363 0.1209 0.3060

0.200 0.04*01 0.9026 0 .04-01 0.1070
0 .000 0.024-9 0.9130 0.024-9 0.0666
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TABLE R.35

Catalyst is poisoned for the reaction A  ►B as well as
the reaction B ---
0 = 0.1203 h = 1.0 hA = 10.0 hp = 10.0

NO . RADIAL
POSITION 0

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.8425 0.1539 0.8425 0.9989

3 0.600 0.5977 0.3929 0.5977 0.9522

0.400 0.3013 0.6800 0.3013 0.6506

5 0.200 0.1273 0.8441 0.1273 0.3086

6 0.000 0.8510 0.8825 0.0851 0,2082
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TABLE R.36

Catalyst is poisoned for the reaction A-— *-B as well as

the reaction B — ► F,
e = 0.1548 hfi = 1.0 h = 10.0 A hp = 10.0

NO RADIAL
POSITION <f> <f>LP

1 1.000 1.0000 0.0000 1.0000 0.9999

2 0.800 0 .9 2 9 7 O.O696 0 .9 2 9 7 0.9999

3 0 .6 0 0 0 .8 1 6 2 0.1821 0 .8 1 6 2 0 .9 9 6 0

4- 0,400 0.6285 0.3680 0.6285 0.9277

5 0.200 0.4197 0.5740 0.4197 0 .7 0 2 3

6 0.000 0.3388 0.6535 0 .3 3 8 8 0.5744
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NOMENCALTURE

Latin Letters
« concentration of species i in the 

pores of the catalyst, gm moles/cc 
= effective diffusivity for the species 

i
M = number of increments + 1# along

the I axis
N = number of increments + 1, along

the 0 axis
*S = active sites

= j = A,B,C,D, Ji = A,B,P coefficients 
used in Gaussian elimination 

g.. .g-tg^.g,, = defined by equations (1^3). (1^5).1 2 3 ^
(1^7) and (1^9) respectively 

h^ = Thiele Modulus for the species i

k, P r 2
i = A,B,P

Di

k = specific reaction rate constant,
1 Icc /<sec, gm catalyst> 

i = A.B.P

176
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q = concentration of poisoned sites
(gm moles/gm catalyst) 

s concentration of sites corresponding 
to complete deactivation 

r = radial position in the catalyst
pellet

rQ ' « radius of catalyst particles cms .
t = time (secs)
Greek Letters 

£> = Laplace Operator
as increment along 0 axis 

^  as increment along ? axis
V  = gradient operator

i as A,B, dimensionless concentration 

Ci / CA
■JT

<f> — dimensionless concentration

* = i/io
n = i -
S B  = defined by equations (151) and

2
(153) respectively

5 =s small time, sec.
€ s void fraction in the catalyst
P

pellet
3 as dimensionless time

*t C D P P

ro2io p
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£ =s dimensionless distance (t/ tq)

t a= position of the poison front in
the ’Shell Poisoning Model1 

p a= density of the catalyst (gms/cc)
Superscripts
/• as refers to conditions in the

non-poisoned core in the 'Shell 
Poisoning Model*

* = refers to bulk
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SELECTIVITY OPTIMISATION FOR COMPLEX 
NON-LINEAR REACTION SCHEMES
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ABSTRACT

Selectivity optimisation for a complex 
reaction scheme has been Investigated. From single reactor 
considerations, conditions under which selectivity maxima 
occur at conversions greater than zero are determined. For 
a cascade of c.s.t.rs. the discrete version of Pontryagin’s 
Maximum Principle has been employed to establish the optimal 
conditions. The results indicate that the requirements 
for maximum selectivity are frequently at variance with 
those for maximum yield. The need for the use of 
selectivity as a performance criterion different from the 
yield is thus established.
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CHAPTER I 
INTRODUCTION

An important consideration in the performance 
of chemical reactors for multiple reaction schemes is 
selectivity with respect to the desired product. In as 
much as the economics of the operation is affected by 
wastage of raw materials as well as by separation costs, 
selectivity considerations can occasionally be the key 
factors in reactor design and operation. This aspect of 
reactor design has not received the attention it deserves, 
primarily because most of the kinetic schemes that have 
been studied thus far are relatively simple first order 
schemes, and for first order schemes, maximum selectivity 
occurs at zero conversion of the key reactant. Reactor 
design based on selectivity maximisation was thus not a 
feasible objective.

In many situations, however, the reaction
schemes are more complex and one or more steps are of
an order other than one. Information about the behavior
of selectivity in such cases is virtually nonexistent and
the criteria for reactor design are yield oriented. It
is conceivable that for such complex non-linear reaction

1
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schemes, maximum selectivity might not occur at zero 
conversion of the key reactant, in which case the 
criteria for designing a reactor, with yield as the 
objective, can be different from the criteria for a 
selectivity oriented design.

The present study was undertaken to.establish 
whether or not for complex non-linear kinetic schemess

i. selectivity maxima can occur at conversion levels 
greater than zero

ii. optimal policies for selectivity maximisation are 
the same as the ones for yield maximisation.
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CHAPTER II 
. REVIEW OF LITERATURE

A. Yield Studies
A review of literature in the field of design 

of chemical reactors for carrying out complex chemical 
reactions must begin with K.G. Denbigh’s work (9 ). He 
showed that for a given conversion the stirred tank 
required a much greater volume than the tubular reactor 
because of the lower reaction rate that prevails in the 
presence of complete mixing. The use of a multistage 
tank reactor system was therefore suggested to effect a 
saving in the reactor volume. Denbigh ( 9 ) also described 
design criteria for selection of reactor systems to 
carry out various complex reactions. By assuming that 
the yield of a product depended on the concentration of 
a single reactant and the reactor operating temperature, 
Denbigh (9 ) had concluded that in order to achieve the 
optimum yield, a reaction parameter such as temperature 
should be varied continuously along a reaction path. He 
recommended that the parameter should be adjusted to 
maximise the local reaction rate. Denbigh’s (9 ) conclusion 
regarding adjustment of a parameter to maximise the local

. 3
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reaction rate (the so-called disjoint policy) is valid only 
for single reactions. For multiple reactions, where the 
yield is a function of the concentration of a number of 
reactants and the reactor operating temperature, such a 
conclusion is not necessarily true. Both Amundson ( 1 ) 
and Horn (22) have pointed this out.

Bilous and Amundson’s (4 ) work points out 
the pitfalls encountered during optimisation for reactor 
design. In their study of the consecutive reaction

E E 1 2A  -B -D, occuring in a tubular reactor, they concluded
ri r2

that no matter what the ratio (E /E ) is, the temperature

profile should have a negative gradient. This is a 
justifiable conclusion for the case when (E^/E2) <1, 
but is incongruous for the case (E^/Eg) >1. Amundson 
et al ( if- ) had expressed doubts about the validity of 
the conclusion as regards the case (E^/Eg) > 1, and 

pointed out that their conclusions were based on the 
properties of the first derivative, and that their optima 
might not be global optima. As Aris ( 3) later showed, 
Amundson et al ( 4 ) had run into a local extremum in dealing 
with the case (E^/Eg) > 1.

A landmark in the history of optimum reactor 
design was Denbigh’s (10) paper at the first European
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Symposium on Chemical Reaction Engineering. He considered 
the complex first order scheme:

k k
1 3-X -YE.

k2 E4

E.

Q

in which Y is the desirable product, X is an intermediate 
and P and Q are waste products. For different values of 
the ratios (E^/E^) and (E^/E^) Denbigh showed how to choose

optimum temperature profiles for two equal sized c.s.t.rs.

Piret and Trambouze (28) used graphical 
methods for the determination of the preferred type ( or 
combination of types) and optimum sizes of the reactors 
needed for the desired level of conversion of some key 
reactant. The triangular diagrams Piret et al (28 ) used 
for this purpose could deal with reaction systems such as 
A -B(desired)^=^Q (first order scheme) (i)

A -B(desired)
r2
D (ii)
In scheme (ii) one of the reactions was of the first order and
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' the other was of the second order. Piret and Trambouze (28) 
dealt only with those reactions which needed three or less 
than three chemical species to characterise them. Moreover, 
temperature effects were completely ignored.

Prom 1959 onwards, the interest in reactor 
design for multiple reactions shifted towards the application 
of newly developed optimisation techniques . With the help 
of these techniques far more complex systems could be 
analysed than had been possible before. Using Dynamic 
programming, Aris ( 2 ) optimised the yield for Denbigh’s 
reaction. Aris used interpolation and tabulation to find 
the maximum for each stage. Dynamic programming is based 

on the concept of imbedding the given problem in a class of 
similar problems and choosing a particular solution from the 
general solution. This requires a computer system with an 
exceptionally large memory and thus the utility of this 
algorithm is rather limited. Aris ( 2 ) had assumed that 
the minimisation of the unwanted products and the 
maximisation of the desirable products can be achieved by 
the same design. This probably is true in the case of 
Denbigh’s reaction but can not be considered a valid 
principle in general. Pis’man and Ioffe (29) used Dynamic 
Programming to compute the optimum temperature and sizes 
for a complex first order reaction scheme occurring in a 
series of c.s.t.rs. They used the properties of the first
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7
derivative to maximise the objective function at each 
stage. This procedure does save core space, but it is 
based on the assumption that there is only one stationary 
point for each stage and this point is a maximum,

C

Denbigh (U- ) developed the concepts of 
instantaneous yield and the overall yield in a paper 
presented at the Second Symposium on Chemical Reaction 
Engineering, He showed how the relationship between the 
instantaneous yield and the extent of the reaction could 
be used graphically for the optimum design of a series of 
c.s.t.rs. However, as Zwietering (36) pointed out, the 
method is useful as long as the extent of reaction can be 
expressed as a function of the concentration of a single 
species. Obviously the applicability of the method is rather 
limited.

Katz (24) developed the discrete version of
* / VPontryagin’s maximum principle and later (25) showed how to 

optimise the operating conditions for the production of an 
intermediate B formed in the reaction,

A^=^rB— -(unwanted products) 
taking place in a cascade of H tanks, Katz (25)» in bis 
later paper, extended the discrete version of the maximum 
principle to cover many new situations. Fan et al (16) 
generalised the ’D.M.P,1 to cover arbitrary and complex 
topologies. Almost all of Fan et al’s (16) work deals

^Abbreviated as ’D.H.P.1
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with systems in which the objective function is linear in 
state variables. Denn and Aris (12) have derived a weak 
version of the 'Discrete Maximum Principle’ using Green's 
function* They determined the optimum temperature policy 
for a train of three equal sized c.s.t.rs in which a second 
order complex reaction, A — — B — -C, was taking place.

Katz’s (24) version of the ’D.M.P.’ has been 
severly criticised by Horn and Jackson (23 ). Denn (13), 
Holtzman ( 19) and Holtzman and Halkin (20) have also 
criticised Katz's version. Horn et al (23) pointed out that 
Katz (24) and Fan et al (16) had deduced the nature of the 
stationary values from a consideration of first order 
variations only. Thus, Katz's (24-) sufficient conditions 
were actually only the necessary conditions. Holtzman ( 1 9 ) 
and Holtzman and Halkin (20) have stated the conditions 
under which 'D.M.P.* can be used. Instead of considering 
the evolution of the system in a discrete manner with stage 
number, Gurel and Lapidus (18) considered the simultaneous 
evolution of all stages in the time domain. Variables from 
each stage are thus transformed into elements of an overall 
state vector at a given time.

By treating the optimal policy for the discrete 
system as the optimal steady-state policy for the 
transformed problem, the 'Continuous Maximum Principle' can 

be used. Gurel et al (18) have thus used the time and its
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9
evolution as a continuum to avoid the difficulties arising 
out of the essentially discontinuous nature of the 'D.M.P.', 
It is apparent that the number of state and control variables 
(n stage process) which must be handled in the continuous 
form are not s and q, but (s x n) and (q x n) respectively.

only by the very restrictive conditions under which it can 
be used, but the algorithm also suffers from convergence 
difficulties. The 'Maximum Principle' poses a two point 
boundary value problem and when the objective function is 
not linear in its arguments, matching the boundary conditions 
can be a very difficult task. Denn (14) and Paynter and 
Bankoff (27) have reported serious convergence difficulties 
encountered by them in applying the 'Maximum Principle'.

yield optimisation studies. Storey and Rosenbrock (33) have 
compared various optimisation techniques and have 
recommended the use of Rosenbrock's (31) direct search 
technique. They used as a test case the problem of finding 
the optimum operating conditions for the production of the 
spescies C formed by schemes

Reed and Stevens (30) used a gradient method (another direct

The applicability of 'D.M.P.' is limited not

A number of other techniques have been used in

A -B -C ~D

P Q
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technique) to study the yield optimisation problem for a 
system which had a tank reactor as its reaction unit.
Later DiBella and Stevens (15) used ’Non-Linear Programming* 
to solve the same problem. Most direct search methods are 
time consuming, occupy a lot of core space and do not 
guarantee the global nature of the computed optimum.
Recently Fine and Bankoff (17) have used a second variational 
technique to optimise the yield of an intermediate in a 
consecutive reaction. This technique was first suggested 
by Merriam (26) • Because the treatment is based on the 
considerations of second variations, it is apparent that 
both .necessary and sufficient conditions have been fulfilled 
in locating the optimum.

B. Selectivity Studies
Denbigh (H) plotted differential selectivity 

10 ’ against the extent of reaction (degree of conversion) 
to obtain ’0 ' curves which he used to optimise the 
reactor sizes for a series of c.s.t.rs. From a consideration 
of the ’0 ' curves he concluded that if the 10 1 curve had 
a negative gradient, better selectivity could be obtained 
by lowering the concentration of the key reactant, as 
slowly as possible. On the other hand if the ’0 1 curve had 
a positive slope, concentration of the key reactant should 
be lowered as quickly as possible, in order to obtain 
better selectivity. As has been pointed out before,
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Denbigh’s (ll) treatment is valid for only those reactions 
which can be characterised by the degree of conversion of 
a single species. Also the treatment is based on the 
assumption that the reactors are operated at the same 
temperature. Chermin and Van Krevelen ( 7 ) plotted the 
maximum yield of an intermediate B against a parameter

’S’ m-n 
S = CA0 ^1 

k2

-— called the selectivity parameter for a consecutive
reaction

mth order _ nth order „ „ , _A -------- ► B ---------- D m = 0,1,2,
kl k21 2 n = 0,1,2.

Chermin et al ( 7) found that the maximum yield of B
increased with the increasing values of ’S’. Since for
a consecutive reaction, yield and selectivity design
criteria are the same, Chermin et al’s (7 ) work is
useful as a selectivity study; otherwise their study is
of a limited value. Van de Vusse and Voetter (3*0 did a
study with the aim of deciding the optimum operating
conditions for carrying out the reactions

A + B HD (desirable)
kl

A + A ►X (undesirable)
k2
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They studied the effects of the selectivity parameter,

' \j , on the yield of D at a given level of
A X

conversion for various types of reactors, and concluded 
that at higher values of conversion, yield is optimum if 
the selectivity is optimum, whereas at lower levels of 
conversion, the yield is more and more determined by 
conversion and is less dependent on selectivity.
Van de Vusse (35) has also discussed the relative merits of 
a plug flow and a tank reactor for the reaction scheme:

A + A  ►X .
k3

It is apparent that for high yields of B, a reactor with 
a short residence time is the best choice and hence a 
plug flow reactor should be chosen. However, the concentration 
of A in the plug flow reactor will be relatively high and 
this should favour the undesirable reaction. Thus, higher 
yield can be obtained only at the cost of selectivity. On 
the other hand in a tank reactor, where the concentration of 
A is relatively low and selectivity for B is much better, 
longer residence time will help the decomposition of B

*Fg and* are flow rates "of A and B.

<il<i - PBk2
F k
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and thus lower the yield of B. Van de Vusse (35) has shown

maximum at conversions greater than zero. Though 
Van de Vusse’s (35) paper does not specify the conversions 
at which the yield and selectivity optima occur, the 
treatment does lead one to suspect that perhaps the yield 
and selectivity maxima do not occur at the same level of 
conversion of A. Also, one is tempted to speculate about 
the use of a series of c.s.t.rs to overcome the dilemma of 
the choice between a c.s.t.r and a plug flow reactor.
Van de Vusse’s study also gives rise to the following 
questions*

i. How many tanks are needed in a series of c.s.t.rs 
and what should be their sizes, Carberry and Gillespie 
( 5 *6 ) have suggested that for selectivity sensitive 
reactions (such as the Van de Vusse scheme), the use of a 
plug flow reactor with product recirculation can provide 
a way out of the dilemma of the choice between a plug 
flow reactor and a c.s.t.r. From a study of the 

' ’Recirculation Model Reactor’, Carberry et al ( 5 , 6 )  
conjectured that a 2-3 tank train of c.s.t.rs should 
suffice.

ii. Does maximum selectivity occur at meaningful 
levels of yield and if it does, are the same policies

that the selectivity of B will be
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(tank sizes and operating temperatures) needed for yield 
and selectivity optimisation?

In addition to these theoretical studies, a 
number of experimental studies dealing with selectivity 
have also been done. Demaria, Longfieid and Butler ( 8 ) 
conducted an experimental study to investigate selectivity 
of phthalic anhydride in the napthalene oxidation reaction. 
Spielman (32) did an experimental study of the oxidation 
of hydrocarbons according to the following schemes 1

(U, Y and Z) are the desirable products in the first scheme 
and B is the desirable one in the second scheme. Spielman 
(32) concluded that if the desirable products are 
degradable intermediates in a sequence of first order 
irreversible reactions, then

i. Selectivity in batch or plug flow reactors is 
higher than in a continuous stirred tank reactor for any 
conversion level.

ii. High conversion operation may be useless. An 
optimum practical yield of intermediate is obtained at
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relatively low conversion.
In case the desired products are terminal ones in a 
sequence of first order irreversible reactions, the above 
mentioned conclusions are reversed. It should be mentioned 
here that maximum selectivity in either of Splelman's (32) 
schemes occurs at zero conversion of the key reactant.

It is apparent that selectivity oriented 
reaction design has not received much attention thus far. 
Existence of optimal conditions for selectivity maxima as 
different from yield maxima has not been established. It 
is conceivable that optimal policies for selectiivty 
differ from those for yield. In this study certain complex 
schemes are explored for such possibilities.
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CHAPTER III 
SYSTEM DESCRIPTION

A. Kinetic Considerations 
The reaction scheme,

Y

A ---*~D

M
was chosen because it is complex enough to include most of 
the irreversible reactions met in industrial practice. B
is the desired product in the scheme. Yield and selectivity 
with respect to B are defined by the following equations:

rj = yield of B = Amount of B Produced
B “ Amount of A Fed (1)

<7 = selectivity for B = Amount of B Produced 
- , ® Amount of A Consumed (2).
The effect of operating conditions on the selectivity and
yield of B is first considered in a single reactor and then
in a cascade of c.s.t.ps. Temperature and space time are
the control variables. The objective is the optimisation 
*-Systera parameters and E^ are listed in Appendix A

16
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of yield/selectivity. In addition, the order of certain
reactions in the reaction scheme is varied to study its
effect on the optimal conditions. It was decided to try
first, ordinary calculus methods, and in case they failed,

*to use the ’Discrete Maximum Principle’ . Because Halkin
(20) and Holtzman's (19) criteria for using ’D.M.P.’ are
rather complicated, it was decided not to make an a priori
check,but to verify the ’D.M.P.' optima by comparing them
with optima obtained by a direct search method. The
Hooke and Jeeves (21) method was chosen for this purpose.

For the sake of analytical simplicity, the
following assumptions were made*

i. The tank reactors are ideal back mix reactors.
Each can be maintained at any required temperature.

ii. The feed to the first tank consists of pure A.
Initial feed concentration of A is = 1.0 gm moles/liter.

iii. There are no volume changes as a result of
chemical reactions.

iv. There is no bypassing or recirculation of any
stream.

B. Optimal Considerations
Case 1, reaction A is of the second order. All the
other reactions are of the first order.

a. Single c.s.t.rs
For a single reactor with feed consisting

* Derivation of ’D.M.P.' (the weak version) as stated by 
Denn (12) is given in Appendix B .
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of pure A, selectivity and yield of B are given by 
equations (3) and (̂ ) respectively,

a =B V i
2 0 (k1+k2)x1 + + (kyt-k̂ ) (x1-x1) (3)

W v V
S1 j"(k1+k2)x1 + + (kj+k^) (4)

Maximum selectivity is given by equation (5) and the space 
time corresponding to this selectivity value is given by 
equation (7).

max
(k-j+k,,) + k̂ x-jtf'U-̂ )

2 owhere, {ip) = (kjt-k^/fk^)

(5)

(6 )

b ] max 1-^
-fky+k2)^ + k (7).

The maximum selectivity occurs at a conversion of A > 0 
if and only if

(8).
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The conversion of A corresponding to maximum is given

as 0 ,x, = x. \p
1 1  (9).

The maximum yield of B is obtained when

0 , %x^ = Xx^ (10)

where,
x . V n  \

+ ^ ki+k2+k6^1 

The corresponding expressions for [v "I and T["„ i
L B-Jmax L BJ .

are t

M k X(l-X)

max (kx+k2)X + k6x1(X)2+(k3+k^)(l-X) (12)

and,
T_

1~XHL BJmax
X { (kx+k2) + kJLjx} (13)

b. Series of c.s.t.rs;
1, System equationss The material balance 

for the nth reactor of the cascade is given by the 
following set of non-linear difference equations;
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n_l
X1

i. Component A

n 
*1 + [,n n .n n 21 n

+ k 6 1 J r (1«

n-1
X2

n 
x2 +

11. Component B

[n n n n n 1 n
< V V X2 - V i  J T (15)

where,
n
k i = koi e

-Ei/tRT) (16).

Equations (17) and (18) based on equations (14) and (15) 
respectively describe the evolution of the system:

nX, =
n n n-1f, n .n n . \  ̂/, n n n ^  n n n-

- |l+r ( K^g) | +V{1+ r(kl+k27 + 4k6T X1

n =1,2,... (1?)

n n-1 n 2K6X2 +kx*i -I 1 + T
n / n n L n ,n n A =2 . n n n-1
T ( kl+k2 )J +\ [ 1+ T (kl+ 2 ] +kK6T X1

n / n n n \ 2K6  ̂l + r t k ^ )  j
,n =1,2,... (18).

Equation (19) redefines selectivity in a form useful for 
stage wise calculations,

n
X3

n
X
n

1-Xn
n =1,2,... (19)
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It should be mentioned here that equation (18) gives yield 
of B according to equation (1).

2. Statement of the’Discrete Maximum Principle’»
In the operation and design of a cascade of tank 

reactors, the two important parameters are the holding time 
and the operating temperature for the reactors. In order 
to compute these control variables for the optimal 
performance of the tank reactor train, two objective 
functions can be chosen. The selectivity’̂ ' is one and the 
yield'^g’is the other. The 'Discrete Maximum Principle' 
described in the following pages can be used to decide 
the optimal policies for both of these objective functions. 

For an N stage sequential process characterised 
by the transformation equations (20) and (21)

x = f ( x 1,q) n=l,2,...N (20),

x =-£; (21),

the optimisation problem consists of maximisation (or 
minimisation) of a specified objective function.

T N N . .c x = 2^ c,x. (22)
i=l 1 1

For an optimal choice of the nth stage decision vector 
1T nq, the stage wise Hamiltonian H, should be stationary with

nrespect to the interior components of the vector q and
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maximum with respect to the components of q that lie on a 
constraint. This is the so-called weak maximum principle 
(12t 23 ), The stage wise Hamiltonian is defined ass

H =  E  x.z, , n=l,2,3,...N (23)
i=l

The vector z is defined by the adjoint equations

n-1 nz = bH i =1,2,...S
6n-lx. n =1,2,..,N (2^),

with the boundary conditions

(25).

T  [- p (g-1. ? JThe vector x |= f (x , q )| is usually called a state 
vector.

3» The 'D.M.P.1 algorithm equations for 
selectivity optimisations

For the system of c.s.t.rs under consideration, 
the state equations for selectivity optimisation process are 
given as

[n n n "Il+Tfk^+k^J +0

2K, ? n = 1,2,..,N (1?)6
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n
X.

n  n - 1  n  f / n  n  n  \ ~\

= 2K6X2 + k x * I - | l + T ( k 1 + k 2 )| +  <f>\

n  f n  n  n  1  
2 K 6 I 1 +  r ( k 3 + k 4 )

n = 1,2,...N (18)
and

n n n n_i n-1 n n  f  / n n n  \ 1X^ = 2Kg  X 3 (1-X-l )+k1T * - I l + r ( k 1+k2 )l + 0

n n n 
1+ r(k3+k^)

n n 2K.T 6
/ n n n ^1+ t (k^kg) - >n = 1,2,...N (26),

where,

<t>
f t n n n 

= \  1+ r (k1+k2)
2 n n n-1 
+ te6r Xx

n = 1,2,...N (27).
The initial conditions for these state vectors ares

xi = 1.0 (28)

X2 = °-° (29)

X3 = 0.0

Condition (30) though not mathematically correct 
is physically reasonable.
The Hamiltonian is

n n n n n n n
Hsel = 3 3

(30).

0 formj 
0 /

n = 1,2,.,.N (31).
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N

The performance index is X y  and the adjoint vector 
components are:

n n-1, n-1 n n v /n-1 / n-1 \Z x  =  Z l  Z 2 ( ^ r  ). ^  /(l.Xl ) j * n n n-̂ 1 ' ( k^ )-X^ <f> +

n

n n n-1, n-1 n n 
2K,r Xo (1-X., )-k,r6 3  l

n n n '  1+ r (k1+k2) n n +^T <f)

n n 2K6t +

n-1= z2 1+

r n 1+t (k1+

n n n 'r(k3+k4)

V 
1

CM 1

II 
II (32)

(33)

n n-1 Z0 = Z„3 3 1+
n n n *1 I" n n n n nT(kjFk^) * 2K^t + 1+t (k-j+kg) -</>

n n n.i 2K6t  (l.Xl )
n = 1,2,...N (34)

The boundary conditions for these adjoint vector components 
are

N
\  = 0 (35),
N

and
Z2 " 0
N
z3 = 1

(36),

(37).

nn n
The decision variables areT and T. 
as k^ = kQi -Ei/(RT) t

4. ‘D.M.P. algorithm for yield optimisation:

T enters the equations
(16)
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Equations (17) and (18) are the only state 

equations needed for yield optimisation. The initial 
conditions for these equations are

X. = 1.0 (38)

o
x2 = 0 (39).

The Hamiltonian for this case is

n n n n n
Hyie = X1Z1 + X2Z2

n = 1,2,...N (40).
N

The performance index is X2 and the adjoint vector 
components are

n n-1 n n n-1
Zx = <f>Zi - (kx t)Z2

n = 1,2,...N (41)
and

n  n _ i  f n n n  
Z_ = Z„ I 1+ 'r(k~+kij 
2 *• 3 4 Jn = 1,2,...N (42).

The boundary conditions for these adjoint vector components 
are

NZx = 0 (43)

NZ2 = 1 (44).
n n

The control vector components are again Tand T.
5. Computational procedure for determination of
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In order to determine the optimum reactor 
policies for the various objectives (selectivity or yield), 
it is necessary to find the stationary points for the 
stage wise Hamiltonian as defined in equations (31) and 
(*W) with the help of the corresponding state and adjoint 
equations. It Is apparent that this involves the solution 
of a two point non-linear boundary value problem. Whereas 
the state vectors are known at n = 0, the adjoint vectors 
are known at n = N.

The optimal policies have meaning only if the 
control vector components do not exceed certain practical 
limits. For example the operating temperatures are 
usually limited by the nature of the material used in 
equipment construction. Therefore, it was decided to limit 
the operating temperature such that

50K < T < 1,000 K. 
Restrictions on the size of the reactors were also placed. 
However it should be mentioned that in the case of reactor 
size, optimal policies were determined for various upper 
limits of the reactor size. (A negligible holding time 
was taken as the lower limit for the reactor size). These 
upper limits on the holding size of the reactors are listed 
in tables (1-6).

The non linear two point boundary value problem 
can be solved by the boundary condition iteration technique.
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A brief description of this method is given belowj
o1. Initial values Zif for the components of the 

adjoint vector are assumed.
ii. The available decision space is divided into a 

grid.
1

iii. The first stage Hamiltonian H is calculated at
1 1 1various grid points. The values of T and r at which H 

attains its maximum, are stored. The step (ii) and (Hi) 
can be replaced by any other steps permitting calculation 
of the maximum of a function in a constrained decision 
space.

n n N Niv. The tentative optimal policies (T,r T,r ) and
n Nthe corresponding adjoint vector components Z^ Z  ̂are

computed and stored similarly.
N

v. If the computed Z. match the given 
N

values of Z^ (for selectivity optimisation, equations
(35-37) and for yield optimisation, equations (^3-^) ),

n nthe optimal policies are(T, T n = 1,2,...N), and in case
N Nthe computed values of Z^and the given values of Z^ do not

match, an error function G,
i=2or3

G = £i=l
’N NZ^(computed)-Z^(given)

(^5).
is minimised by any of the direct search techniques. In 
this study the Hooke-Jeeves (21) pattern search method was
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used, and when G < € , the iteration on the boundary 
conditions was stopped'. The results are tabulated in tables 

(1-6).
Case 2, Reaction A 1 B is of the second order. All other 
reactions are of the first order. For a single reactor, 
the selectivity with respect to B is given by equation (46)

i 2a k xB = 1 1
2 o(kg+k^^ + k ^  + (x1-x1) (ky-k^) (46).

In order that °g is maximum at a conversion of A>0, it is 
necessary that

(k^+k^) + (k2+k^) < 0  (4?).

It is obvious that it is impossible to physically fulfill 
condition (4?). This case was therefore not investigated 
any further.
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CHAPTER IV 
RESULTS

TABLE I

Optimal policies for selectivity optimisation, single

CiSit#r•

tu-l = 1’000* t l-l = 5

T(K) T (min) ^(^b ),
TU-L(min) XVIV; V C/max

512.000 229.843 442.055 99.506
64.000 240.000 58.035 99.350
32.000 245.468 31.264 99.275
16.000 249.062 15.^39 99.208
8.000 256.250 7.624 99.055

29
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TABLE 2

Optimal policies for selectivity optimisation, two
c.s.t.rs.

TU-L - 000K tl-l  = 50K

t (min) 
U-L

1 o 
T (K) 1r(min)

2 0 
T (K)

2
T(min) % ( aB)max

512,000 233.700 512.000 247.225 102.366 99.409
64.000 249.877 61.337 253.522 40.814 99.202
32.000 251.578 29.668 262.521 6.543 99.054
16.000 257.433 15.856 265.370 3.256 98.978
8.000 245.066 2.583 256.226 4.306 97.524
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s: ox; • • • • •■P O O rH -3-COEh -3" vo NO NO NO•k CN) CNJ CM CM CMcO•H ._. 00 CO O O O■P o 1—1 O On OeS •H -3- o O CO NO(0 g • • • • ••H ON 00 CM VO NOa CM t- o CO CM rH•H ox; CM•p oa VOo NO -3- CO CM VOt! _. CO co O IN CN.>» ox; CNJ 00 ON ■cj- CO-p i-3 • • • • •■H 1 CNJ rH CN CM co
r» M CM Eh -3- vo VO NO vo•H EH CNI CNJ CM CM CM-POd> _„ O rH O Oi—1 O -3- O 00 VOd> •H 00 -3" 00 CM CM
01 g • • • • •o o 00 VO INFt rH t- o NO CM i—1O co<M
CO CM CM co ONd> ,—. o CNJ NO IN CO•H ox; o- -3- o CO rHO ow • • • • ••H o NO CM CO CO ONf—I o r 11C t CO vo vo voo o CNJ CM CM CM CM
ft • —̂.rH arH -H ' o O O O Ocd II a o O o O Oa o O o O O•H • • • • •■P 1 i CNJ -=}• CM NO 00ft D . J3 rH NO CO rHo Eh K VO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

TABLE 4

Optimal policies for yield optimisation, single

o
T = 50K L-L

1 o T (K) %{nB>

CiS«tfI*i
T = 1,0008U-L

T (min)
U-L

512.000

64.000
32.000  

16.000  

8.000

275.000

296.953
304.921

313.359
322.187

1
t  (min)

512.000

63.981
31.991
15.997
8.000

max

93.929
89.664
87.658
85.282
82.475
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TABLE 5

Optimal policies for yield optimisation, two 
c.s.t.rs.
T = 1, U-L

r (min) 
U-L

000K

1 o T (K)

TL-L
1
'r(min)

050K
2 0 
T (K) r(min) max

512,000 261.170 509.107 265.613 447.213 97.787
64.000 285.689 61.542 285.051 61.656 95.804

32.000 293.363 32.000 292.794 31.986 94.776

16,000 302.401 15.776 301.954 15.300 93.318

8.000 310.381 7.872 310.023 7.970 91.610
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CHAPTER V
DISCUSSION OF RESULTS AND CONCLUSIONS

A. Discussion of Resuitst
The optimal conditions for a single reactor

were calculated by the pattern search technique (21),
Also, the results obtained by using the ^.M.P,’ were
compared with those obtained by direct pattern search.
The results obtained through these two different methods
were in agreement with each other within 2%, Since
reactions are more sensitive to temperature than they
are to the size of a reactor , the ratio (AT/Ar) = ^.0
was used in constructing the grid for locating the
maximum of a stage wise Hamiltonian. The same ratio was
used in pattern search movements. The value of e (p.28)

-7was chosen as 0.1*10 , It should be mentioned here that
the boundary condition iteration technique was found to
be rather an inefficient method. The total IBM 1620 II
time consumed for this study was about ten hours.

It is apparent from equations(7) and (13) that
different reactor sizes are needed for optimising
selectivity as opposed to yield. A consideration of
tables (1-6) shows clearly that optimal policies (T, t  )for

35
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yield and selectivity optimisation are different from each 

other.
A consideration of tables (1-6) also shows that 

whereas the yield with respect to B increases with the 
Increasing number of reactors, the selectivity with respect 
to B displays an opposite trend. This confirms 
Van de Vusse's (35) observation that in selectivity 
sensitive reactions (such as Case 1 of this^study), it is 
good to use a tank reactor for selectivity optimisation 
and a plug flow reactor for yield optimisation.
B. Conclusions{

1. For a complex reaction scheme, in which the 
maximum selectivity with respect to an intermediate 
corresponds to a positive definite conversion of the key 
reactant; the optimal policies for yield and selectivity 
maximisation are distinctly different. Thus it is erroneous 
to consider yield as the sole performance criterion.

2. The boundary condition iteration technique was 
found to work for the solution of the non linear 
optimisation problem, but convergence difficulties resulted 
in the consumption of a large amount of computer time.
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APPENDIX A 
SYSTEM PARAMETERS

Kj, = K ie~Ei^RT Kqi = Liters, gm moles or
Minutes

K = 28.e13*7^ E. = 11.000 Kcal01 1
Kq2 = 0.8e16*25 E2 = 13.000 Kcal

KQ3 = 0.8^e31'25 E^ = 25.000 Kcal

Kok = 3.e25, = 20.000 Kcal
22 ^Kq6 _ s.e °  E6 = 18.000 Kcal

37
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APPENDIX B
DISCRETE MAXIMUM PRINCIPLE (WEAK VERSION)

Let x = P(x \q) n = 1,2,...N (1A)
describe the evolution of a discrete system, x is an s 
dimensional state vector and q is a t dimensional decision 
vector. Let x, n = 1,2,...N represent the state resulting 
from the optimum decisions q, n = 1,2,.,,N, then

X  = Ptx"1,?) n = 1,2,...N (2A).
If the following independent small perturbations of 
§ are made at each stage,

q = q + e? n = 1,2,...N (3A),
the disturbance then will alter x to

n n n „ 2x = x + e y + 0(f ) (**A),
n nwhere is a t dimensional vector, y is an s dimensional

vector,€ is a positive parameter of first order smallness, 
2and 0( € ) represents quantities of an order of smallness 

- greater than one. It is also assumed that y and <p are 
independent of e. From equation (1A), (2A) and (4A) one 
can write

n nn-1 nv- nn-1 fi. n ,*Z\ fy = P(x ,q) - P(x ,q) + 0(f) (5A).
38
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Equation 5̂a) can be expanded in Taylor series to give 
equation (fikj,
n s n-1 

ey,- L  e y 1 j=l j

6P /n-1 n i I x , q
a"-1
l6x i

n fn-1 n + PjJ* , q

n /n-1 n> 
- P ^ x ♦ °(£)

i=l,2, ... s, n=l,2,...N (6A).
If the equation (6a ) is multiplied by ( the ith component

nof an s dimensional vector Z) and summed up over i=l to i=s, 
the resulting equation can be written as
s n n s s n-1 JP / n 4 n \ n  s n\n
E  «y z = E  E«y,  L_\x .q./z, + E  pA* ,q/zi=l 1 1 1=1 j=l J n-1 1 i=l 1 1fix.

/ n-1 n\n /2\II PiU .qjZi + 0(€j (?A).

If, nn-1 s jp /n_i n\ n
z s E  _i\x .qjZi1=1 fixJ

(8A)

Equation (7A) can be written as
s
Ei=l

n n n-ln-1 
£yizi - £yi zi

s
= Ei=l

n-1 n in rn-l n nP, I x ,q / Zi- P1(x ,q / Z

°(«) (9A).

Summing over n=l to n=N yields
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•£, (’A  - SA)-1,1,1'.P'O- '.p-s)K
+ 0 (e) (10A)

Since the initial conditions are fixed, y^= 0, equation 
(10A) becomes

s N N N s / / — | n\ /nil n\\n ,2
£i?i 'A ■ n?i &(piVx ,4' - P4X • q)/zi+ 0 (£)

(11A),
NIt can be postulated that Z^= c^ 

where c. is defined as,
s nObjective function O.F. = £  c.x. (12A)

i=l 1 1
Equation (12A) when substituted in equation (11A) gives v 

y  N N s r /-̂ ~2 n v / H U  n"\]n , 2
V i  = „ ? !!? ! M *  >9) - Pl ( X • 9 ) Zi + 0 ( t )

(13A)
The objective function, O.F. as a result of the perturbation
described by equation C3A), can be described as

s n s N .2
O.F. = £  c x + £  6c y + 0(e )

i=l 1 1 i=l 1 1  x '

n
n=l,2,... N (14a ).

Since q,n=l,2,... N is the optimal trajectory i.e. it 
maximizes O.F. the effect of perturbation represented by 
equation (3A) can only be to make

23 € c y < 0 i=l i i (15A)
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If equation (13A). is expanded in Taylor series and combined 
with equation (15A) one can obtain

n / n-l n\N t / n \ s n jp x , q / , 2 v
E  E \ « *>,) E  Z j i i  - + ° ( « )n=l 3=l' J 1=1 1 s ' ’

n=l|2|1««
Equation (l6A) can also be written as

n /n-l n\ / 2 \N t /n n \  s n J P  x ,q + 0  [e ) <
E  E  U  - qj E  zt 1  ....n=l jal x 3 j7 i=l 1 -

dq,J n=l,2,... N

< 0

N (16A)

3 n=l121•t•
n

(17A)
NSince the perturbated decision vectors q, n=l,2,...

are assumed to be Independent of each other, therefore,
n / n-l z \

t / *. -\ s n 6P \x » q/ + 0 \ € I
e ( S - 1 )  e  s, !!i
3=1 i=l i —  nfiq

If S ^  ~ T, (n~1H 2 E  z p \x . q/i—1

< 0

N (18A)
(19A),

equation (18A) can be written as

* - n o(?)n n
E  f ̂  s 6H +
j=l J ~n 

6q3

< 0 (20A).

For the stage where the condition ( s h / ^ )  = 0 gives the
nvalue of q outside the admissable region, the optimal

decision policy usually occurs at the boundary points, 
n

Since 6H v 0, the sign of the^.h.s, of the equation 
nfiq
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(20A) is decided by the term £  e .̂fiH which is of the

J=1 A?jorder e. It is obvious, therefore, that the condition 
t / n \ n
^  e <p( 6H \ < 0 is equivalent to the condition H= maximum.

J=1 L s  \6<1 .
J n n

When the Hamiltonian H is stationary i.e. 6H = 0 , the sign
nfiq

of the JL%h. side of the equation (20A) is decided by the 
(2 )term 0\e J , which can be negative , zero or positive,

n
However, it is apparent that a stationary value of H
corresponds to a stationary value of the Objective Function.
This conclusion led Jackson et al(23) to state in general

nthe nature of the stationary values of the O.F. and the H
are unrelated; in other words it is not generally true that
n _ „H must be maximised to maximise the O.F.f
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NOMENCLATURE

Latin Letters - •
E = energy of activation, K. cal,
H = Hamiltonian,^ defined in equation

(23)

K6 " *6*1
N = maximum number of stages in a

sequential process 
Xi = (x/ xi) i=l,2

= selectivity component of the
state vector, defined in equation 
(19) oT = temperature K

Z = adjoint vector, defined in equation
(2*0

k = specific reaction rate constant
kQl = pre-exponential factor
q = decision vector

Greek Letters
€ = a small number
V = yield of B, defined in equationIi

(i)
X = dimensionless parameter, defined

in equation (11)
4 3
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oB = selectivity with respect to B,

defined in equation (2) 
r = reactor space time, minutes

<p = dimensionless parameter, defined
in equation (2?)

& = dimensionless parameter, defined
in equation (6)

Superscripts
T = transpose of a vector
n = nth stage
0 = Initial condition
s = number of components in a vector
t = number of components in a vector

Subscripts
sel = selectivity
yie = yield
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PART I V
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REACTOR SIMULATION FOR THE HYDROGEN
FLOUR IDE REACTION----- FLOURSPAR +

SULPHURIC ACID ----► PRODUCTS.
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ABSTRACT

A model has been proposed to simulate the 
Hydrogen Flouride reaction—  Flourspar + H2S0i|>occurring 
in an externally heated, centrally stirred, rotary tubular 
reactor. The model takes into account the diffusional 
transport of Mass and Heat inside flourspar particles of 
various sizes, It is proposed to compare the theoretically 
predicted consumption of with the experimentally
determined consumption of the sulphuric acid.

ii
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CHAPTER I
INTRODUCTION

Although the Hydrogen Flouride reaction—  
Flourspar + H^SO^ —  is of commercial importance, there is 
very little information available about it in the published 
literature. An experimental investigation is being carried 
out with the objective of establishing the optimal design 
conditions required for the production of HF from this 
reaction.

The reaction is usually carried out in a rotary
tubular reactor fitted with a central stirrer. The
externally heated reactor is continuously fed at one end
with finely ground flourspar and preheated sulphuric acid.
At the other end, the products of the reaction are taken out;
the gaseous products being sent to the HF Scrubber and the
solid ones being dumped.

As a preliminary step in establishing the
optimum conditions for the production of HF, it was decided
to simulate the reactor mathematically, and to compare the
predicted consumption of HgSO^ with the experimentally
deterimed consumption of the sulphuric acid. In case an
agreement is achieved between the theoretical and experimental
consumption of H^SO^, the simulation process can be
extended to predict the yield of HF and finally to establish
the optimum operating conditions required for the production

1
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of HF.
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CHAPTER II
REACTOR SIMULATION

A. Kinetic Considerations
The commercial Hydrogen Flouride reaction 

can be written as,

CaP2 + H2S0^.---------- *~CaS(\  + 2HF + AH1 (1)

CaC03 + H2S0^---------- ^CaS\  + H2° + C02 + (”a H2} (2)

4HP + Si02 ---------- *~SiPij. + 2H20 + (-AH^) (3)

The reactions (2) and (3) are exothermic, 
whereas (1) is endothermic. The heats of reaction data are 
available in (2). It has been established (1) that reactions 
(1) and (2) are of first order with respect to H2S0^ and 
are of zero order with respect to the solids involved. It 
is assumed that flourspar is present in the form of porous 
spherical particles of various sizes* and that the reaction 
is not limited to any reaction front, but takes place 
throughout the body of the particle. The last assumption 
provides the theoretical investigator considerable flexibility 
in fitting the experimental data to theoretical models, by 
simply varying the required Thiele modulus.

* For size analysis, see (2).

3
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B. Thermal Considerations

The design of the experimental set-up does 
not lend itself to a detailed sketching of the thermal 
regime prevailing inside the reactor. However, after 
examining the experimental data available, the following 
assuptions can be made;

i. The ambient temperature across a cross-section of 
the reactor is constant but thermal gradients exist inside 
the porous solids. This assumption can be justified on 
the ground that the rotary movement of the reactor produces 
a thorough mixing of the materials across any cross-section 
of the tubular reactor.
li. The axial variation of temperature along the reactor

length can be represented by a step function.
C. Reactor Model

Residence time studies (3) reveal that the 
reactor behavior falls in between the ideal plug flow 
reactor and an ideal c.s.t.r. behavior. It was decided 
therefore to use an axial diffusion model for simulating 
the reactor, and to adjust the Peclet number to conform 
with the actual behavior of the reactor,

D. Mass and Heat Balance Equations for the Reactor
With these assumptions, the mass balance for

a differential length 0f the reactor under steady state
conditions can be written as,
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A N  -6 Z
Convective
transport

_! 'D 
6Z Aax "J

<5 C \
_A)<5z/

= o <*0.

axial
diffusion

chemical
reaction

where R is given as
m

and

R = 47TNY) D n r^ 6Ck 
1=1 Ai 1 lo T ?

m
X > i  = 1i=l 1

r=rio (5)

(6)

The boundary conditions for equation (4) have been suggested 
by Wehner and Wilhelm (4) to be

Z = 0, 

and,

Z = L,

UC (oJ= UC (o+) - D (60,
Aaxl 6Z/Z=o

/6C.
Aaxl = uca (l+)

6 Z/Z=L
For all practical purposes these boundary conditions can be 
written as

Z = 0 ;

Z = L ,

o
CA = CA

,CA
6 Z

= 0

(7)

(8)
Z=L

The term R in equation (̂ ) can be evaluated with the help 
of mass and heat balances over the various spherical particles. 
The resulting equations for steady state conditions are 
given on the next page:
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^°A = 0 or, C = finite at r = 0  i=l,2,.., m (11).
6 r A

Equation (10) states the assumption that there is no 
resistance to diffusion of HgSO^ to the outer surface of the 

particles.
The specific reaction rate constants k , .3=1,2J

are defined as

k , = v e-E3/ (RT> (12)J O j /

where T = T(r^,Z)
A differential heat balance can be written for the spherical 
particle as followst ■

1=1,2,... m (13)
The boundary conditions for equation (13) are

T =s T(Z) r = riQ
i=l,2,... m (l*f)

5T = 0 or T = finite at r =0
i=l,2,... m (15)

Although p has been assumed to be constant in" this analysis 
it could very well be a function of reactor length in the 
actual case.
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B. Non-dlmenslonal Equations for Reactor Simulation
If the coefficient for axial diffusion, E^ax;

and the effective diffusivities (D..) and effectiveAi
conductivities (K ) can be assumed constant, equationsci
(4 - 15) can be non-dimensionalised. These non-dimensionalised 
equations are listed below.

1, Overall Reactor Mass Balance
Equations (16 - 19) describe the over-all 

mass balance for the reactor
m<50

A - N
<5X Pe

, , . £  2 ** A + M N D . L t ) £n.y. AA A
dx‘ i=l io 67* y=yio

= 0 (16)

m
X) n

i = l  '

= 1 (17)

0A = 1
X = 0 (18)

60 = °
<5X

X = 1 (19) .

2. Mass Balances for Individual Particles;
Equations (20 - 22) represent the mass balance

over individual particles. 
2
6 & <5 0  -X 2A
67

+
71 <5yi

2
X
j=i

1=1,2,... m (20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

and
60A = 0 or 0 = finite at = 0, 1=1,2 m (22)

3. Heat Balance Equations for Individual Particlest

F. Solution of the Non-dimensional Equations!
Solution of equations (16 - 19) with the help 

of equations (20 - 25) can be attempted numerically. Such

the reactor. A comparison with the experimental results 
can then be used for the validification of the theoretical 
model. It should be mentioned here that if the energy 
balance equations (2J - 25) are neglected, the solution for 
the resulting isothermal case can be found easily by using

Equations (23 - 25) give the heat balance over
individual particles in non-dimensional form.

1= 1,2 9 • • • m (23)

e = e(x) (24)

0 = finite , J50 = 0 at y
ay

oi
1= 1,2 9 • • • m (25)

a solution can predict the exit concentration of from
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the standard finite difference techniques (5). The 
simultaneous solution of equations (16 - 25) is however 
much more difficult.

The theoretical considerations presented in 
this part will form the basis for the interpretation of 
the forthcoming experimental data.
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NOMENCLATURE

3= Concentration of HgSO^ (gm moles/cm of 
the bed material)

2D^ax = Axial diffusion coefficient (cm /sec)

D = Effective diffusivlty of 'Af in the
A1 2spherical particles (cm /sec)

Ej = Energy of activation for the jth
reaction (Cal/gm moles)

Hj = Heat of reaction for the jth reaction
(Cal/gm moles)

K = Effective thermal conductivity of ’A'c
in the solid particle
Cal/(cm)(sec)(K°)

L = Reactor length (cms)
N = Number of particles in a unit volume

3of the reactor bed (1/cm )

NPe = < > W UL>
R = Chemical reaction term

oT = Reactor temperature K
U = Linear velocity of solids in the

reactor cm/sec

10
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(Z/L) dimensionless coordinate along 
the reactor length
Coordinate along the reactor length

hj = Thiele Modulus L -^pk^/D^ for the
jth reaction

k, = Specific reaction rate constant for
3the jth reaction cm /(sec, gms solids) 

kQj = Pre-exponential factor for the jth
reaction

^  = Fraction of a certain size of particles

r^Q = Radius of the ith group of particles

ss Dimensionless coordinate (r^/L)

Greek Letters
o6 = Dimensionless temperature (T/T)

P = Density of the bed (gm/cnP )
= (L/U) the reactor residence time
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