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"Because of past studies chemical engineers are
prone to accept, as a general rule the previous
conclusion, that different theoretical models
predict almost the same reaction effects on
overall mass transfer rat€iceeeceeesssceecess
The selection of a correct model is indeed very
important..."

C.J. Huang and C.H. Kuo
A, I,Ch,E,J. 11, 901
(1965) in a discussion
on the effects of
diffusivities,
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ABSTRACT

A two step non-linear complex reaction scheme

2M1 > 2M2 ~M3 has been used to establish the need for
a careful selection.of a mass transfer model for counter
diffusing systems. By comparing the Penetration Theory and
Film Theory selectivity parameters,_it is shown that the

two fluid-mechanical models do not predict the same results,
It is also shown that the deviations between the results
predicted by the two models do not abpear to be directly
related to increasing complexity in the reaction kinectics.
In addition, the effect of reaction order oh the selectivity
parameter, has beenrexamined by varying the order of the

second step reaction,

11
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CHAPTER I

INTRODUCTION

The solution to the problem of predicting the
effect of a liquid phase chemical reaction on gas absorption
or vice versa, has been attempted by proposing a hydro-
dynamic model of the gas-liquidlihterface and the liquid
Tlow pattern. Amongst the varioﬁs models suggested, the
so called film theory model postulated by Nernst (25),

Lewis and Whitmen (24) and the penetration-surface renewal
theory model proposed by Higbie (14), Kishineveskii (17) and
Danckwerts (9 ), are the two that are most commonly used.
When the diffusion coefficients of various reacting species
are the same, the results predicted by the film theory and
the 1aminar and turbulent bound%y layer theories are found vt
to be in remarkable agreement with each other, This
interesting fact has been pointed out by Brian and
Beaverstock ( 4), Kishinéveskii and Armash (18), Astarita
{1), and a few others. Basing their conclusions on the
results avéilable,ih the literature, Brian et al ( 4)

‘ concluded, " This insensitivity to the fluid mechanical
models used suggests that the theoratical predictions will
be good approximations even for physical systems which
depart considerably from the idealised models," In a
similar vein, Astarita (1) stated that in most caseé

1
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2

the mass transfer model invéked has 1little influence on the
predicted ratio of the mass transfer coefficlent with
chemical reaction t§ the physical mass transfer coefficient.
Conclusions of this nature, have led in the past to

a rather indiscriminate selection of models for the

prediction of the transfer coefficient ratio

] in heterogeneous
mass transfer without chemical reaction

fluid~fluid systems, It is to ‘be noted that the conclusion

{mass transfer with chemical reaction

regarding the insensitivity of predicted results to the
hydrodynamic model used, is of fundamental importance; but,
it has been arrived at on fhe Basis of results obtained
from studies dealing with relatively simple systems in which,
the products of chemical reaction can never cross the phase
boundary. The lone excepfion_is the work of Szekely and
Bridgewater (31). On the basis of their investigations of
a linear kinetic systen withva volatile intermediate, they
questioned this alleged insensitivity of predicted results
to the model selected, It was decided therefore, to
undertake a detailed study with a view to determing,
whether or not, the‘bredicted transfer coefficient ratio
~  is always insensitive to the hydrodynamic models used.
In order to do so, it was proposed to compare the film and
penetration model selectivity of an intermediate, M2, |

formed during a complex reaction described below:
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k .
2ML + [3) — 1 om (1)
2M2 +[f] ——— M3 (11)
(aCy;y c® |
s ?kl[cm] El | : (111)
- |5 = 2k [sz] [ - 2Ky [CM]] B (1v)

The component M1 diffuses from a fluid 'a!
into another fiuid '8! where it reacts to form an intermediate
M2, It is further assumed that M2 can either react to form
M3 or diffuse back into fluid 'q'. The stipulation that
M? can diffuse back across the interface makes this study
different fronm thérones conducted thﬁs far., According to
Bridgewater ( 5) systems of this type are encountered in the
liquid phase oxidation of hydrboarbons by absorbed oxygen.
As mentioned befqre, the commonly used index for comparing
various hydrodyﬁamic models 1s the transfer coefficlent
ratio; but, in this case it was decided to use an equivalent

parameter - the Selectivity.
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 CHAPTER II

REVIEW OF LITERATURE

Peaceman (27), in 1951; compared the film

and penetration theory solutions for seversl kinds of
chemical reactions and found that these solutions were in
close_agreement'with each other, as long asvthe diffusion
coefficients of the various reacting specles did not differ
significantly from each other. Similar results were reported
later by Danckwerté and Kennedy (11l). The reactions treated
by fhxe autﬂors however, were one-step reactions. Brian and

Beaverstock ( %), analysed a two step reaction of the type:
A (gas) /= A (1iquid)
Liquid Phase:

A + C (already in liquid) —— B (nonvolatile)

B + C =—— D (nonvolatile),

and found that if the diffusion cbefficients for various
'components were similar, the results from the penetration
theory and film theory would not differ significantly.
The components, 'Bt,!'C! and 1Dt were assumed to be
nonvolatile and thﬁs could not cross the liquid-gas

phase boundary.
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Huang and Kué (15), using the film snd
penetration - surface renewal theqries, derived equations
for the ratio of interphaée mass transfer accompanied by
g first order reversible reaction, They founq that when the
dif fuslvities of the reactants and the products are nearly
equal, the effect of chémical reaction on the overall mass
transfer ratio is insensitive to the model adopted for
calculations._Kishiﬁeveskii et al (18) and Astarita (1)
feached similar cbnclusibns from their analyé%s. It must be &=
emphasized again that in ail fhese studies, the products of

the chemical reaction could not cross the phase boundary.

Szekely and Bridgewater (31) investigated the

fluid - fluid systen,

'k ko
A LR B - C (1)
ac :
A
- — = C :

dr = X7 : (2)
ac . . _

e == = k,Cp, - k.C . (3)
aT 2B 17A

in which, both A and B are volatile ( A diffuses from

a fluid o into fluid 8, where it reacts to form B, whicﬂ

in turn can either diffuse back into o or can get converted
to C ). Because the product of reaction.'B' could cross the
phase bouﬁdary, it was possible to compare the transfer
coefficient ratio for 'B' instead of. 'A', Szekely et al (31)
found that the selectivity of the intermediate B, as |

calculated by the film and penetration - surface renewel
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models, differed by as much as 22%..The difference in the
results obtained by Szekely et al (31) and Brian et al ( 4),
can be attributed ﬁo_the different assumptions made in these
studies concerning the nature of the intermediate 'B', Thus,
whereas in Brian et al's (4 ) investigation, 'B' could not
cross the phase boundary, in Szekely et al's (31)
investigation, 'B! could diffuse through thé fluid'- fluid

phase boundary.

In réporting their results, Szekely et al (31)
conjectured that other counter diffusing fluid - fluid
systems involving more complicated kinetics would display
the effect of hydrodynasmic patterns more severely. Since
the kinetic scheme they investigated involved only first
order reactions, the resﬁlting equations for both the film
theory model and the penetration models were linear and

hence quite easy to solve.

Useful as Szekely et al's (31) results are,
their conclusions have the following shortcomings:

i. Linear reactions are an exception rather than a rule In
actual chemical engineering practice, and Szekely et al's
(31) conclusions are certainly not applicable to cases
of nonlinear kinetics, They could only make conjectures

~regarding the effects of " more complicated kinetics",
11, Szekely et al (31) have investigated only one case and

it can be thought of as ah isolated example rather than
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as a general conclusion,

It is obvious that in order to show the
relative importance of model selection for the prediction
of the transfer coefficient ratio in a'coﬁnter diffusing
heterogeneous fluid - fluid system, it is necessary to
undertake a much more extensive investigation. This study
was primarily undertaken with that purpose in mind. Its

ma jor objectives are listed below:

i. To establish the relative importénce of model'selection
for heterogeneous counter diffusing fluid - fluid
systems with nonlinear kinetics; that is, to
guantitatively establish the sensitivity of predicted
transfer‘coefficienﬁ ratio to the hydrodynamic model
used., |

ii. To check Szekely et al's (31) conjectures about the
effect of more complicated kinetics on the sensitivity

of predictions to the hydrodynamic model used,
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CHAPTER III
THECRETICAL MODEL OF THE SYSTEM
‘The system considered is one in which a fluid
species M1 . present in a fluid medium 'a',ldiffuses into
a fluid 'g?*, ' |
M1( fluid o )g=—==M1( fluid 8 )
where it reacts with the fluid '8°,
2Ml + [B}— 2m2.
The fluid component M2 then either diffuses back inté the
medium 'q' or undergoes another irreversible reaction :
2v2 + [g]— N3,
AIn this analysis Ml and M2 were treated as gases, whereas
B was assumed to be a liquid; However, this treatment 1is
equally valid for liquid - liquid systems.‘It was assumed
that B was in such an excess that 1ts concentration could be
considered constant. As Danckwerts (10} and Carberry (7 )
have shown, absorption into liquids can generally be
regarded as an isothermal process. Physical and chemical
properties of the system were assumed to be constant. It
- was also assumed that the diffusive fluxes of species MMl
and ¥2 did not interact. Some further simplifying
assumptions that were made in the course of this study are
listed below :
i, The diffusion coefficients of M1l and M2 are equal,.
This assumption is realistic in light of the fact that
A N
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in most cases the diffusivity in a given medium
depends only very slightly on the solute concentration,
ii, There is no resistance to mass transfer in the gas rhase.
Thus the concentration of species M1 at the gas liquid
interface, corresponds to the equilibrium partial
pressure of M1 in the bulk gas phase., This assumption
.does not in any way limit the scope of the problem,
The equilibrium assumption is also made for species V2.
iii, The back pressure of the species M2 in the gas phase
is zero, This assumption was made for the sake of
simplicity and standardisation,
iv. No appreciable change in volume takes place as a result

of the chemical reaction,

v. Fluxes of M1l and M2 from the gas phase towards the
liquid phase are positivé.
The assumptions listed above apply equally
well to gas liquid contacting, in packed towers, in wetted

wall columns, and to gas absorption into stagnant liquids.

| For the system under investigation,
selectivity was defined as the ratio of the rate of
férmation of the intermediate }M2, to the rate of depletion
of the reactant pj. Selectivity defined in this way is
eguivalent to the ratié of the surface flux of M2 to that
of the surface flux of Ml. This definition has been used

both by Butt ( 6) and Brideewater (5).
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CHAPTER IV

DIFFUSION EQUATION

A. General Diffusion Equation

For a reacting species i, the mass balance
over a moving small element of liquid, near the gas liquid

interface, is described by the partial differential

equation :
&6C
v(uci)+—l+r (&)

‘7( Di§7ci ) ot

Molecular Transport = Convection + Accumulation

+ Reaction Rate,.
The Lagrangian System of Coordinates 1s used

for the derivation of this equation.

The diffusion equation as written above is of
very little practical value and is generally simplified by
making one or more of the following assumptions

i. D, the diffusivity 1s constant, This assumption 1s
a good approximation excent in the case of polymer
solutions, where D.l ;s strongly dependent on the
concentration of various specles,.

1i, The velocity U is constant>over the moving small
element of the fluid under consideration,

Equation (4) can therefore be written as

. : . 6Ci
DiACi = UG + = + 1 (5)

&t
10
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iii, Fach liquid element mo?es as a single whole with a
constant velocity, like a plug in a plug flow reactor;
It is implied that there is no motion in a direction
perpendicularvto the interface, or U=0. With U=O,
équation_(S) is reduced to
pilNcy = 8% 4 r (6)
ot
Equation (6) is a mathematical statement of the
penetration - surface renewal model,
iv. The concentratidn profile of a species 1 in the
element 1s independent of time. This assumptidn leads
- to the statement of the so-called film‘theory model.
Thus,
DBAC = T | (7)
v, Equations (6)7and (7) can be further simplified by
assuming that the radius of curvature of the gas
liquid interface 1is very large in comparison to the
depth of the diffusion / penetration layer, and thus
the diffusion brocess is one-dimensional. According to
Levich (23), this condition is almost always fulfilled
in real cases. In Cartesian Coordinates, equations (6)

and (7) can accordingly be written as

2
d°c. 6C, ,
D, L - % 4 » (8)
552 5t
2
. dCy
~Di > = r (9)
dx
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12

B. Mathematical Statement of Penetration Theory

Equation (8) is a statement of mass balance
oVer a small element of liquid in contact with the
interface. This equation has beeh derived under the
assumption of a zero velocity gradient in a direction

normal tp the interface., If the chemical reaction term is

dropped, equation (8) can be written as'

1Y = %G ' (10)

D3
6x2 -0t

If the elemént_of liquid under consideration

can be assumed to have : '
i, the characteristics of a plug of an infinite depth
~moving as a whole with a constant velocity, or can be
treated‘as a stagnhant element of infinite depth i.e.:

0 £ x £ ® (11a)

ii. a uniform initial concentration Cg :

, t=0 0<x £ ®

Cj_ =

PO e

c
Ci = Ci; t20  X-—> o (11b)

*
iii., an interfacial concentration Ci :

% :
Ci = Ci ; t 20 X =20 (1lce)

then, the flux X (t) at exposure time t and at the

interface can be expressed as

5C £ O
X(t) 2 - D1 (=% )g0 = (Ci-Cs )‘/% (12)

The derivation of equation (12) is described in Appendix IA.
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, oy
The average flux, X(t), for an exposure or

penetration time q{ tg is given as
K _

' 8Ci, ’

~ 3% .
X(t) = = (13)

J[dt

-4 g
VD3 c¥ 8 / at
1( i i)o Vﬁ?

~ 3% 3 O D
X(t)= = 2(ci - Ci)g[-1 (1%4)
% £
. t ‘¥ nt
fas
o
In accepted chemical engineering terminology
~ o * o
X(t") = Kpp (C1-c1) (15)
o D,
nt

K%p is the penetration theory liquid phase mass transfer

coefficient without chemical reaction.

Equation (12) has been derived with the help
~of assumptions (11) . These assumptions are very stringent
and are strictly true in rare cases only. Under the
conditions imposed by assumptions (11), equation (12) can
have only very limited applicability. Danckwerts (9 ) has
listed the conditions under which equation (12) can be
applied as a close approximation to J

1. liquid layers of restricted depth, and

ii. liquid moving parallel to the surface with a velocity

that varies with depth.
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The necessary condition for (i) is that the
time of exposure should be so short that the depth of
penetration is less than the depth of the liquid; for (ii),
1t must be so short that the depth of penetration is less
than the depth at which the velocity is appreciably
different from that at the surface., By the term depth of
penetration is meant the distance from the interface over
which C; is appreclabdbly different from Cg. Danckwerts (g )
has arbitrarily defined the penetration depth as the
distance from the interface at which the rise in -

concentration is 1/100 that at the surface.

Equation (12) has_been extensively used for
describing mass transfer for situations comparable to
conditions (i) and (ii). The resulﬁing models are of great
help in understanding the phenomena occuring in industrial
equipment. Thus, Brian et al (3 ), have described the
phenomena of mass transfer in a packed absorption column
by assuming that the 11quid7flows down over a piece of
absorber packing in slug laminar flow, Absqrption is
thought to take place by unsteady molecular diffusion and
accunulation within a siug of liquid as it flows down the
packing and is exposed to the gas phase for a given contact
time interval. The liquid is assumed to be instantaneously
and completely mixed in flowing from one pieée of packing

to the other, and to be free of velocity gradients and
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turbulence near enough to‘the'surface to affect the
tfansport process ad jacent to the gas liquid interface.
Thus, each.new contact time interval 1s begun in each slug
with a flat concentration profile for all components. The
contact time,between successive mixing pdints is so short
. that the absorbed species never penetrates deeply enough
to approach the wall of the piece of packing. Thefefore,
the liquid depth can be taken as infinite for the.sake of
mathematical simplicify{'The descriptions for spray and
bubble absorbers asbﬁell as for wetted wall columhs that
satisfy considerations (i) and/or (ii), have been given by

Higbie (14).

C. System Equétions According to the Penetration Theory

1. Chemical Rate Equations :

Ml (gas) === M1 (liquid) (1€)
Liquid Phase: |
ky

2M1 + B o 2M2 (17)
T : '
1

M2 (1liquid)———=12 (gas) (18)

\ Liquid Phase: "
‘ ko _
2M2 + B ———— 13 _ - (19)
N of) . ' :

The rate equation for step (17) is,

8C,. n
M1 - 20
- -4 =2k ( Cyy ) [ | (20)
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and for the step (19)‘18,
dC,,,
M2 m n
If 8 is present in large excess, its concentration can

be assumed to be constant. Thus equations (20) and (21)

can be written as

ac
STML n
-—= =2%] C 22
iT 1*m . (22)
4C, 4 m n
“—aﬂ.;z' = 2kz Cyp - 2k3 Cyy (23)

2. Mass Balance Equations :

For the reacting system described by equations

(16 - 23), the following mass balance can be written:

8%C.- - 8C,,- n
M1 Mi v
e B v (28)
D 8%Gy, 8Gyz | 2 (ko 1 n
M2 — = — + ( 202 - <ICMl) (25)
X

The appropriate iﬁitial and boundary conditions are

as follows :

t =0 0< X<® Gy =0 (26a)
T %*
2 = = C 2€b
t 20 X =0 G = Ga 2 (2€b)
t 20 X > Gy -+ 0, bounded (26cc)
t =0 0 <x<® Gy =0 (27=)
t 20 X = 0 Chp = O (27b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

t >0 X — o C., —> 0 bounded. (27cc)

M2

In equations (24 - 27) 't' refers to the instantaneous
time in the life of a liquid element. The boundary
conditions (26) and (27), are mathematical statements

of the\underlying assumptions of the penetraﬁion theory,

‘_Boundary conditions (26a, 27a) were chosen for
convenience only. Any other bulk concentration can be
used. The boundary condition (27b) states that though
1M21.can diffuse back into the gas, 1its concentration
at the interface is zero. This numerical Value was
chosen for convenience. It should be noted that this
boundary condition is different from the normally
assumed condition ( i;gg 0 = O ( which express the

nonvolatility of the species M2 ).

The equations (24 - 27) were non-dimensionalised to :

) ,

%2 _ % (28)
Sy 50 :

5% b m n
——-2 = y + VAb - YVa (29)
oy .
8 =0 0<y<L a =20 (30a)
6 >0 y =0 a =1 (301)
6 20 Yy - « a -+ 0 bounded. (30cc)
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0 = 0 Ocy<e« b=20" (31a)
820  y=0 b =20 (31b)
® >0 y — oc b —+0 Dbounded, (31ce)

The transformations used to obtalned these dimensionless
equations are listed under the mass transfer section of

!

the nomenclature ( Page_ibo ).
3. Reaction Diffusion Modulus :

Equations (24 - '27) have to be solved with a view

to determining the average value of the expression

[ éC T
Y UM2
‘DMZ (3§f*)x=o

, over a predetermined period of
’ CMl) x=0

e

L 6% J
time. One index of thls predetermined time that is

=Dy (

often used in mass transfer literature is the reaction

diffusion modulus ¢b derived by making a sultable
o
substitution for t in the expression for KLip

K‘iip = 2‘f Dy /mt (15a)

A%

In this case, t = e/(2klc§il') is chosen. ( See the
< transformation used for non dimensionlising t ).
a1
: k.C
2 of LML (32)
0

(¢}
K =

T _ #n.] 2
I = P Cy1 =¥

o
K rmip , (33)
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| #¢% .
0 = (34)
*n_l [o)
where ¢b =¥201k1%my / Krwip (35)

g
The definition of selectivity 'BAp' leads to

' M2
o Average of - D, —%=-%)
BAp' =f— : M2 Ox over a
Average of - D¢ OCM; )
X _ ML 5% X=0 ]

predetermined value of the exposure time t't?,

| £ |
o 5 - 6Gg /ox )y at
BAp = -2 (36)

J (- 8gyy /8% )y dt
o

In non dimensional terms

8
- 1 f( - 8b/6y )y_od0
Bap =7 Oe (37)
f( - %a/6y ) de
o y=0

For v = 1, equation (37) is some times written as,

)
- N/ [ (- eb/6y )y_,ae
BAp = 09

\/ﬂ/ue (,)f( - da/8y )y=ode

(37a)

In this form,
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s
BAp =

Mass Transfer Coefficient with chemical reaction
Mass Transfer Coefficient without chemical reaction

for }12]

r

lass Transfer Coefficient with chemical reaction for}ﬂ
LMass Transfer Coefficient without chemical reaction )

(370)

D. Solution of Penetration Model System Equations

In order to evaluate KBp (equation 37) for
various values of 8 ( or correéponding values of wp ),
it is necessary to‘solve equations (28) and (29) along
with the initial and boundary conditions (30) and (31).
Closed solutions for these equations, except fof the case
m=n = 1,'g£gygg£;known,‘ For mathematical simplicity
and because of limitation on computer time, only the

following cases were consldered :

: 3%
1. V= 1, m = 1, n =1
2. V = 1’ m = 1.5' n = 1

3. v=1, m= 2, n =1,
Detalled description of the methods used in
. solving these .special cases of equations (28) and (29),

follow on the succeeding pages.

*% n = 1 was chosen because of limitation on computer time.
The numerical methods described on the followlng pages

apply equally well to cases where n # 1.
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1. A v=1, m=1l, n=1.

' Equatioﬁs (28) and (29),‘w1th initial and
boundary conditions (30)‘and (31), were solved with the
help of the ILaplace Transform Tables (28), the step by step
procedure is given in Appendix (IA). Szekely et al (31)

give the final solution as

a=1 [e-yerfc v -VE\+ elerfe v+ V?ﬂ (38)
2 2Ve . Ve
b = (_l_) e Vherso _zw'-'vqﬁ ) + eyvxérfc( y o+ VT?)
1-X 2Ve 2vs
- e Verfe [y - VB + eyerfc(_lm +V3o (39)
(%) -
and
0
R | '
Lo2)  de = o, L\erf Vi + [B e (40)
J () [T

1
2 fo)erf

.

f -0b) a8 = - 1_ | 6

J  \8y)v=0 \I-x (e+l)erfv5—+ ‘JEé' - [(GVT}
‘ : T

o) \e/m B° ] (41)
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- | (42)

2 and 3. General Procedure for Numerical Solutions

For n=1, and v=1, equation (29) can be written as,

. m [ - o
fqb = 6o + Ab -1]e Verte vy - V?) + eyerfc(_g_ + ‘V?)
5 50 2 (2\/’5 : ave

ol

4 (43)
An analytic solution of eqﬁation (43), is not known for
when m # 1, However, numerical techniqués employing finite
difference methods éfe available. Out of the two types of
finite differeﬁcé schemés, explicit and implicit, an implicit
scheme waé chosenrz This was done.because implicit'schemes
aré inherently stable for alllvalﬁes of A€U’Ay2 >0
(see equation 17C Appendix C). On the other hand explicit
schemes are easier to opefate, though they are time consuming
because of stability condition AGL/Ayz.Sl/Z (see equation

>lBC Apvendix C), The boundary condition (31C) is always a

problem in numerical calculations as it involves the division
of a semi-infinite length into a finite number of mesh
divisions., As mentioned by Secor et al (29) this difficulty

can be dealt with in several ways. A practical infinity can
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be defined and the region 0 < y £ ® practical Ccan be
divided into a uniform mesh. This approach results in a
coarse grid in the region of interest (close to the
interface 1.e. ¥ = 0) and results iﬁ a corresponding lack
of accuracy. However, by using a non-uniform mesh (fine
mesh in the region of rapid change and a coarse grid far
away from the surface), or a very fine mesh, this difficulty
can be overcome, The latter method is time consuming; whereas
lack of precise knowledge about the location of the regions
of rapid change makes the me%hod of non-uniform grids unwork-
able,

The spabe " <y .S @ , 0 £ 0" was there-
fore mapped'onto a semi-infinite‘( in Q) rectangle

"0 < z £ 1, 0 < 6", by the transformation

y = _c :
T2 (4h) .

Thus at y=0, z=0 and at y=o, z=1, The constant, ¢ is used

to distribute the grid according to the experimenter's needs,
A larger ¢ meané a finer’grid near the interface and a coarser
grid at the othef end of the space coordinate., A proper value.
~of ¢ can be selected only after experimentation, A value of

¢c = 0,98 was chosen, after comparing the analytical and
numerical results for the case of m = 1,

Equation (43) can be rewritten as:
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m - -
b(8>dzy s +ab-1le °2/(1-2) (1po( oz -VE
§y ez dy’ = 2 (1-z)2y7
-cz
+ el_zerfc cz o+ V?)
(1-z)2vy
' ' (&5)
2 |
8 dz = 8b  (1-z) (46)
6z dv 02 c
| | 2 2
b gdbdzy = b gz (b dz\ =08 bfdz\ + 8bgz b (dz
'by 6z dy 8z dy \6z dv/ 6z2 dy 3z dy 6z \dy
(47)
Equation (47) leads to,
2 b 3
8°b = b (1-z) - §_13(2(1-z) ) (48)
T2 . 2 2 52z 2
L 3% bz c c

With these transformations, equation (43) is changed to,

m 3 2 L
b = a - Ab - 28b (1-z) + 8 b (1-2) (49)
60 6z 02 622 02
where, '
a =1 e'cz/(l'z)erfc cz - Ve
2 Zl-z$2y§
: cz/(1-2) - :
. + e / erfec (- (o34 + Ve ’
T (1I-z)2v3
with the boundary and the initial conditions:
6 = 0 z =0 b=0 (502)

8 =0 0 >z > 1 b=0 (500)
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6 > 0 z — 1 b =0 (50ce)
The implicit finite difference approximation for the equation

(49) can be written as, )

b b a b

A9
b b 3
- 2( i41,j+1 i,j+l> (1 -Az(i-1))
AZ 02
b 2b b
+ i+41,J+1 - i, i+1+4 1-1, i+1
AZ2
L
(1-(i-1) AZ) ’
c2
i":lizi s e nN-l
J=1,2, «c.M-1 (51a)
where,
a . =1 e-C( (i-l)Az)/(l-(i-l)Az)erfc( c(i-1)Az
1,+1 2 (1-(i-1)Az)2_[ia?

- ) + _o( (1-1)a7)/(1-(1-1)az)

(1-(i-1)Aaz)2 TAD

erfc( c(i-1)Aaz + fiA3 )

1=2,3,...N-1
i=1,2,...M-1
(51b).

231897
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The equations (50a, 50b, 50cc), in the form useful for

digital computations,-ére:‘

] By gy = 00 i=1,2,,0. N | (522)
By 1) = 0.0 1=1,2,... W (52b)
b(N,j) = 0,0 J=1,2,00. M (52cc)
where,
M=A0 +1 (53)
0
Az :

v A v
-
The following values of A9 and Az were used:

0 < 0.02 A6 = 0,0001
6 > 0.02 : A® = 0.018

Equation (5la) can be written as,

L
bi+1,j+l [2(]-(1-1)A2)3A9 - (1—(1—1)AZ) Ae]

Azc? A2202
' ' 3 , L
+ b, . | 12(1-(i-1)AZIAD + 2(1-(i=-1)AZ) A"
1,741 5 52
“AZ ¢ Az ¢
N oo | .
+ (‘-l)bi—l,j-f-l (l—(i-l)AZ) AS
’ Azfe?
A9 AoAD. 5
= ai’j+1 -' i’j + j‘lj ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

1 =2,3, ... N-1
J=1,2,3,... N1 (55)

Equation (55) has the following triangulér forn,

Sszb2,3+1 + SCZp 3, 3+1 _ SD2p
b, . Se, b, . . +5S..b ' =

SABP 2, j+1 * B3p 3, j+1 C3p 4, j+1 SD3p
S,, b, ..4 + Sg,.b + Sepnbe . =

Alp-3,3+1 T PBbp 4,541 T VCHPUS5, j+l °p3p

San-2p™N-3, 341 T Smno2pPioz, 341t Son-2pPn-1, 3 = Soiz

Spy_ P =

(56)
where,
SA2p =0 ,
- )
SAip _._(1-(1512Az) AD
AZ ¢

i = 3,4,... No1  (572)

: 3 i
- : - : s \

SBip"l—Z(l-(i-%)Az) LD+ 2(1-(1-1éAz) Af
- AZ c - Az ¢

) 1 = 2,3.-.0}1—1 (57b)
3 . L

Spip = 2(1-(i-1)az) A0 - (1-(i-1)Az) A%

b= 2 )
Azc AZ ¢
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i=2’3,|oc N-2

Scn-1p = ©
(57ce)
fe Aekbm
SDlp Adai,j-}-l - i, + bivj
1 = 2,3,--. N"l
j = 1,2"tl I\,I-l
and m = 1.5,2-'- (S?d)

Equations (56), and hence, (55), can be solved by Gaussian
elimination to obtain the values of b on the line j + 1
(for details of the method, see Appendix D),

Douglas (12) has shown that the round-off error
for this numerical method 1s less than the discretisation
error for the usual cholce of Az and A6 ., It is to
be noted that the term, (x;bm) was evaluated on the line
1j' instead of 'j + 1'. This was suggested by Lees.(22),
who showed that equally accurate results can be obtained
if terms such as, (bm), are evaluated on the line !'j!
instead of the line 'j + 17, Tﬁis modification of the
usuzl implicit finite difference scheme, however, results
in a linear triangular system of equations, instead »f

' m
the non linear ones that would result if (b ) wses

/

evaluated on the line 'j + 1', Lees (22) has indicated
that there would be a five to six fold reduction in machine
tine as a consequence of this modification, As an

s m
experimental check, the results for (bi j)' were compared
: i,
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: m-1
with the results for, (bi,j . 1)(b.1 j)' No significant

improvement was found and all further calculatlons, were
therefore done for (bi J) As a test of convergence for

the solutlon, calculations were repeated with half the
normal values of time and space increments, The improvement
was found to be less than 1%. 1In order to calculate ghp

according to equation (37), the values of the term

2 )
f(.._{)__) - de and f -_Q_a_.) dé are needed.
s y=0 s dv/]y=0

[(.Qé) de , was found by using equation (40), whereas
y=0

0
-j' _ o de , was evaluated as follows:-
0 y=0

0 2 o
y=0 o 8z c z:O c o 6z z=0

B

The integration for (58), was done by Simpson's rule.

(see Appendix A).

Knowing,
\f’ b2 de and f de, BAp was calculated for
J\ v )y= 6J y=0 ’

various values of m,A, and wp (or the corresponding 6). The

results are tabulated in Tables (1-24).
o

/
{

e
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E. Quantitative Aspects of the Film Theory:
The Nernst (25), Lewis and Whitman (24) film

ﬁheory, although earlier in its origin, can be treated as a
special case of Higbie's (14) penetration theory, if it is
assumed that the small élement of liquid referred to in
Higbie's model attains its finai concentration profile
instantaneously, This amounts to a stagnant film of
thickness, Gf , next to the gas liquid interface. A similar
film can be visualised on the gas side of the interface.
The other assumptions of Higbie's theory are retained, In
the context of the film theory, the assumptions made can be.
stated as:

i, Outside the two films, the concentration of
reactants in the bulk of the two phases is uniform.

ii, The velocity profile in the film is flat., This
corresponds to the penetration theory assumption of zero
velocity gradient in a direction normal to the interface,
Stagnhant liquids and liquids moving under laminar flow
conditions approximate this sitﬁation closely.

1ii., The resistence to mass transfer is totally within
the film, wherein molecular transport takes place by Fick's
law,
If the term 'z ' is neglected in the equation (9), the

resulting equation can be written as
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2
p. % _o
1
ax
% .
C1=C1:X=o
¢, =@ 8
A_i=_. ‘1"X=f

X (60),

I
b
il
P i
)
=
d
] Q
\.H./
»
1)
(@]
Il
ol
Q%
W)
|
QO
Nl
i1
=
|
]
A
[@F:
HI
QO
<

o) p |
where, K;. = Di/ f | (61)

%Lf is the liquid side mass transfer coefficient without

chemical reaction.

F. System Equations for Film Theory:

-Equations.(16-23) which describe the chemical
processes occuring iﬁ the gas liquid system are valid for
the film theory as well., The mass halance equations for
the film theory are however different., These will now be

enumerated:

1. Mass Balance Equations According to the Film Theory

For a reacting species i

2 .
: d C n
.- Dy 2M1 = 2k,Cp. : (62)
' dx
2
d. C m n
D, M2 = 21 -
”2;-2——~ “2Chp = 2k Cyy (63)
- dx _ _
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The boundary conditions chosen are

3*
x =0 CMl = CM]. : (6[}3.)
x =20 CMZ =0 (65&)
x= % C.. =0 | (65b)
= M2 =
S 0
x 2 T a=b=20 (6500)

Boundary conditions (65a) is a suitable boundary condition
for a volatile substance. The value (x = 0 Cyo = 0) fof
(65a) was chosen for convenience, These boundary

conditons match the boundary conditions for the penetration

model., Equations (62-65) can be non dimensionalised to

2 2 n
s _ ¥ (66)
dy2
2 2 m 2
db_vAYdb _v¥a (67)
2 - f f
dy
.y =0 a =1 (682a)
) y=0 b=20 (69a)
y =1 b=20 » (69b)
The selectivity o  according to film theory is defined as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

-D M2
M2
4 ax x=0 )
BAf = (70)
a
- P %%m
dX> x=0
In non-dimensional form,
o ‘ ' : '
BAf = 1 (-db/dy) y=0 | (71)
v (-da/dy) y=0
For vy= 1, equation (71) can also be written as
-
BAT
mass transfer coefficlent with chemical reaction " for L2
mass transfer coefficient without chemical reaction
;iass transfer coefficient with chemical reaction for Pﬂ)
nass transfer coefficient without chemical reaction
(71a)

G. Solution of FilvaQdel System Equations

Like the penetration model equations, equations|
(66;69) can be solved analytically only for the special /
case of m = n = 1, Solutions for cases corresponding to
(a, b, ¢) of the penetration theory were attempted.
1. V =1, m =n =1

The solution of equations (66, 68a,b) ié,

Yy C‘ h
o = sion (V%) : (_d@_ = _wf osh¥, (72)
Sinh v dy/ y=0 Sinh¢%
£ .
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P — —

1-2 ~ tanh <¢f ﬁ) Sinh y,

b = ( 1 ) Cosh(wa W) Sinh (W’fﬁ) Sinh (‘/’f"”fy) (73)

[-D dc
M2 M2 ( )
$ar = | T = \av/ay)y=0
.DMldCM1 (-da/dy)y:O
ax
%ar - _._( 1 \1- VX tanh¥y | (74)
M\ TRanRg VR | <

2, and 3. Numerical Solutions for

V = 1,};1 = l" m = 1.5, 2.0

Like it's counterpart in the penetration equation,
equation (67) when written as,
2 )\zpzbm - ¢125‘1nh Yy
d b= f f f f
dyz Sinh wf

has not been solved analytically for the boundary conditions

(75),

(692 and A9b) unless m = 1, As equatidn (75), (69a and 69b)
vose a two poinf non linear boundary value problem ; they
cannot be solved by any of the usual numerical techniaues
involving superposition of two sblutions. The
Quasilinearisation technigue due to Bellman (2) and

¥alaba (16) was selected. This teéhnique couvnled with the

fourth order Runge-Xutfa integration method has been used

by Lee (20) for the solution of the axial diffusion rodel

‘n = 1 was adopted to save computer time. Quasilinearisation
*  can take care of any n#£ 1.
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tubular ieagtor-problan,and by Leé (20) and Lapidus et al
12 ) for optimisation and control problems, Insteéd of
directly solving the non linear differential equation, the
solution, when it exists, is obtained as a limit of a
sequence of functions fepresenting solutions of linear
differential equations. GQuasilinearisation provides a
technique for the construction of this monotone sequence
of functions which converge to the solution of the non
linear equation. This representation is achieved by the
use of the 'maximum operation' , The linear differentisl
equations, whose solutions constitute the'elements_of the
monotone sequence, canvbe easily solved with the helnp of
‘the principle of superposition. The progress towards
convergence 1is quadratic in the sense that each iteration
doubles the nunber of'digits of accuracy. The method is
briefly outlined in the Appendix (E) and its applicetion
to equation (75) is given in the following paces.

.a, Quasilinearisation

The right hand side of equation (75) is a
continuous function of b and y for 211 vy € D(0 £ v £ 1).
It is twice differentiszble with respect to b over the
domain of interest and has a bounded second_partiél
derivative with respect to b, It is alsc clear that this
expression is a strictly convex function of b ovér the
domain D, Horeover b = 0 over B, the boundary of domain

D. It follows therefore, (see Avpendix T) that the
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solution of equation (75) can be obtained as the least

upperbound of the seguence generated by the recursion

relations
. 2, m 2
L[bo(y)] = Wf(vo(y)) T ¥ Simn (wf'wf”)
' ‘Sinh.wf
o > m-1 ’
; (bo(Y) ; vo<y>) (mx Vo <_y)) (76)
Where, |

o[ ]- g"22"” ‘ | (77)

dy
- 2
2 . Sinh{y, - ¢ 3
. [b](ﬁ’)] = YD (y) - Ve ml“f (/}fdr)'i'
: r o sinhg
| 2 n-1 ,
(bl(y) - bo(_y)) (~x *@bo (y)) (78)

and,,

2 m 2 o
L [bn+l(y)]. = YAp (y) - ¥ sinn (wf-wfs-') +
Sinh wf

. . 2 m-1
: (bn+l(5') - bnm)(mwfbn <y>)
m = 1.5, 2 (79)

The boundary conditions for both (76) and (78) are

qq(o): O bn(l)::o
n=20, 1,...n

Vb “))z 0 VO(]J =0 (80)
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Equation (76) and (79), with beundary conditions (80)

are second order linear differential equations witﬁ

variable coefficients. In order to start tﬁe generation

of the sequence, all thet 1s needed is a guess at the
function vo(y). "From a knowledege of fhe physical
situation, and for the purpose of computational"
convenience, vo(y)-was assumed to be

0 =v,(y); 0<y<g1 (81)

With the assumption stated in equation (81), equation

(76) can be solved analytically to give

bo(y);O:Ey < 1. Two methods —the fourth ordef
Runge-Kutta'techhique and the finite difference formulations

——are avallable for the solution of equation (78) and
similar equations that follow. Since bo(y) is found
analytically it 1is possible to store values of
bo(y)AJS:fS]., in the computer memory, but the same is
not true for bl(y). Values of bl(y) can be calculated and
stored at discrete intervals of Ay only. If the Runge-Kutta
integration procedure is adopted for the evaluation ef |
bz(y), the step size has to be iﬁcreased to 2Ay, as the
_values of bl(y) at points halfway between bl(y) and

bl(y + A y) are required., Thus, if no interpolation
prolynomial is used, eaeh iteratjon'doublee‘the step size

for a Runge-Kutta integretion method. Therefore, without
interpolation in five iterations, an eighty division mesh

is reduced to a ten division mesh., This can introduce

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38
gross errors., Other stabllity problems commonly associated
with marching integration techniques also reduce the
efficacy of the Bunge-Kutta method. During'computations
for this problem, for example, it was fouﬁd'thaf for
A =2 0.1, the Runge-Kutta technique yielded unstable
results for m = 1.5 and 2; DeSpite these difficulties
‘encountered in the use of the  Runge-Kutta method, the
marching technique has been used by Bellman ( 2),

Kalaba (16), and Lee (20). |

Sylvester et al (30) were the first to use the
finite difference scheme in conjunction with
quasilinearisatibn. Lee (21) has recently solved his old
axial diffusion model tubular reactér problem using the
finite differénceAmethOd.' The finite difference formulation
being less accurate than the‘Runge-Kutta techniques, it
(the finite difference scheme) must use a smaller step
size for integration. This in turn results in the use of
more computer time., Equations (76-80) can be described

in the finite difference form as follows:
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2 m
Bo(i-1) = 2Po(1) * Po(i-1) = W (Vo(i)> -

f ™
Sinhy
2 m-1
(bo(l) vo(i))(m)\"bf 0(1))
i =2,3... N-1 (82)
n _ _1 .1 |
b(1)=0 bO(N)fO Cend W= 4 (822)

Equation (82) can also be written as
2 A @ b +b (1- A ¥
bo(i-].) +Ay m M (l o(i)+ o(i+l) ~ mi Ay V0(1)>

i, ( Y i- nAv)

i

Sinh ;pf

1=2,3,... N-1 (83),

Pr(ao1) - PPy Y b1(1+1) X¢?bm -
2 r o(i) .
Ay v
Y Sinh l/lﬁw(fl(i-l)AV)
r T 4
- Sinh
311"”//:{‘-
2 m-1
(1(1\ o(i)) " lpf o(i)] '
1=2,3, 40, N1 (84)
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Py(1)= P1(0)= Po(1)= Pow)= O | ) (84a)

and,

Bt (1-1)"%Pn1 (1) TP (341) - ¢Xb )" l[/ull‘lh(lll ¥.(1-1)a )

Ay
Sinh ¢%
| b b m-1
’+ ( n+1(1)" n(i)) "bfbn(l)>
i=2.39c-- N-1 (85)
P (1) 0 (1) () By =0 (852)

Equation (85) can also be written as

2 m-1
b -~ 2+ Ay mAyY_ b +b .
n+1(i-1) < J w (1)> n+1(i) n+1(i+l) -

, 2 2 '
(Lem) <Ay (p A bn(1)> Ay :[/fSinh <¢f- llilﬂ(i-l) AY> '
Sinh ¢%

v i = 2,3,.-. N“'l . (86)
Equations (83, 84,'and 86), along with the boundary conditions
(822, 8L4a, and 85a), represent a triangular system of

equations of the’form:
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Sp2ePn(2) * ScarPn(3) ’ | = Spor
' S b ‘ -
Su3ePn(2) * %83 n(3) T So3r’n(u) = Sp3¢
SanePy(3) * SeurPn(s) * ScurPn(s) = Spur
Spna2)rPn(n-3) * _SB(N-Z)f'bn(N_Z) * SC(N-Z)fbn(N-l)= Sp(n-2)r

SA(N-l)fbn(N-Z) + SB(N_l)fbn(N-1)= SD(N_l)f

(87)
with, ‘
Alf‘ = 1, 2 ;.. ; iy“‘,n.v. .Vn—l (88)
SBif :-(2 + Ay m)\ll:lf:bn(i)) y i o= 2,35¢0. N=1 (89)
SCi’.f = 1 ] i = 273"" . N—2 (90)
2.2 .m 22 . . .
SD:‘:_f‘ - (1-m) (Ay l/f' )\bn(i)) - Ay tﬁfulnh(l!/f-_t/lf(l-l) Ay.r) ,
Sinh ¢%
i= 21'39'-0 N-1 (91)

These equations can be solved by Gaussian elimination (see
Appenﬁix D)., In calculatiﬂg fhe concéntration profile of
'b', the interval 0 £ v £ 1 was divided into two-hundred
parts, For A £ 102, with seven iterations (n = 6), five
digit accuracy could be obtained., For 102 < A £ 10, in
order to obtain the same accuraéy, teh iterations were
needed, Expériments were made wifh Ay = ,0025, but no
1mprévement in accuracy could be made. Knowing (da/dy)y =0,

and the concentration profile of 'b!, %Af can be easily
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caiculated for various values of m,\ and ¥. The results

are presented in tables (1-24),
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CHAPTER V

RESULTS

TABLE I

Reaction M1——M2 is of 1,0 order and M2—=M3 is also of

1.0 order.

¥ (the reaction diffusion modulus) = 0,100000E+00

@ (the time)= 0,127272E-01

0.100000E-05
0.100000E~-03
0.100000E-01
0.100000E+03

0.100000E+05

FILM MODEL

- %Bar
~0.331990E-02
~0,327012E-02
-0.331848E-02
-0.311793E-02
~0.896769E-03

th

. PENETRATION
" MODEL

%Mp
-0.421910E-02
-0.421902E-02
-0.421919E-02
-0.3768045-02
_0.899782E-d3

RATIO

"BA:/ TAp
0.786873E400
0.775091E+00
0.786521E+00

0.827467E+00

'0.9966513+OO
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TABLE II

Reaction Ml——12 is of 1.0 order and M2-—>M3 is also of

1.0 order,

¥ (the reaction diffusion modulus) = 0,9313583+00'

6 (the time) = 0.110400E+01

A

0.,100000E-05
0,100000E-03
0.100000E-01
0.,100000E+03

0..100000E+05

FILM MODEL

ag
BAT
-0.214832E+00

-0.21487LE+00

-0.,214760E+00
-0,637602E-01

-0,721298E-02

" PENETRATION

MODEL

(14

BAp
-0.249920E+00
-0.2L9917E+00
-0,249659E+00
-0,607834E-01
~-0.688693E-02

RATIO

Bar/Bap
0.859602%+00
0.859780E+00
0.860212E+00
0.104897E+01

0.1047345E+01
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TABLE IIT

us

Reaction Ml——M2 is of 1,0 order and M2—»!3 is also of

1.0 order,

Y (the reaction diffusion modulus) = 0,100000E+01

® (the time) = 0,1272725+01

A

0.100000E~05
0.100000E-03
0.100000E-01
0,100000E+03

0.100000E+05

FILM MODEL

. Bar
~0.238367E+00
-0.238403E+00
~0.238251E+00
-0.668276E-01
~0.751669E-02

PENETRATION
MODEL

%Ap
-0.274760E+60
-0.274757E+00
-0.274431E+00
-0.634432E-01
~-0.715339E-02

BATIO

%Af/ %Ap
0.867546E+00
0.867686E+00
0.8681625+00
0.105334E+01
0.105078%+01
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TABLE IV
Reaction Ml——>M2 is of 1.0 order and M2—>M3 is also of
1.0 order. |
i (the reaction diffusion modulus) = 0,200000E+01

@ (the time) = 0,509090E+01

A FILM MODEL PENETRATION RATIO
MODEL
g g g c
BAT BAp BAT/ BAp
0.,100000E-05 -0.517973E+00 -0.544707E+00  0.950921E+00
0.100000E-03 -0.517972E+00 -0.54L684E+00  0.9509595+00
0.100000E-01 -0, 516743E+00 -0,5428LLE+00 0.952620%+00
0.100000E+03 -0.8727558-01 -0.819676E-01  0.106475E+01

0.100000E+05  -0.954122E-02  -0.900683E-02  0,1059335+01
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TABLE V

by

Reaction Ml—lM2 is of 1.0 order and M2—»l13 is also of

1.0 order.

¥ (the reaction diffusion modulus) = 0,206439E+01

@ (the time)

A

0.100000E-05
0.100000E-03
0.100000E-01
0.100000E+03

0.100000E+05

0.542400E+01

FILM MODEL

s
~0.530950E+00
-0.530934E+00
-0.529600E+00
~0.,877076E~01
~0.958401E~02

PENETRATION
MODEL

%mp
~0.55647 58400
-0.556451E+00
-0.554040E+00
-0.82L698E-01
~0.905706E-02

 RATIO

%Af/ %Ap
0.954130E+00
0.954143E+00
0.955887E+00
0.106351E+01
0.105818E+01
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TABLE VI

48

Reaction M1—=¥2 is of 1.0 order and M2—=M3 is also of

1,0 order.

Y (the reaction diffusion modulus) = 0.582766E+01

6 (the time) = 0,4322L0E+02

A

0.100000E-05
0.100000E-03
0.100000E~01
0.100000E+03
O.ldOOOOE+O5

FILM MODEL

Bar
~0.828405E+00
-0.8282962+00
~0.817584E+00
-0.909073E-01
-0.990081E-02

PENETRATION
MODEL

gAp
-0.830365E+00
-0.830205E+00
-0.815028E+00
-0.897655E-01
-0.978663E-02

RATIO

%Af/ %Ap
0.997639E+00
O.9977OOE+OO
0.100313E+01
0.101271E+01
0.10166€E+01
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TABIE VII

Reaction Ml—M2 is of 1.0 order and M2—=I13 is also of

1.0 order.

Y (the reaction diffusion modulus) = 0.,600000E+01
6 (the time) = 0,458181E+02
A FILM MODEL PENETRATION RATIO
MODEL
c c o c
BAT BAp BAf/ BApD
0.100000E-05 -0.833334E+400 -0.835130E+00 0.997849E+OO
0.100000E-03 '-0.833218E+00 -0.834964E+00 0.997909E+00
0,100000E-01 -0,822019E+00 -0,819185E+00v 0.100345E+01
0.100000E+03 . -0.909078E-01 -0.898295E~-01 0,1012005+01

0,100000E+05

-0.990086E-02

-0.979303E-02

0.101101E+01
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TABLE VIII
Reaction Hl—=12 is of 1.0 order and M2—=M3 is also of
1.0 order,
Y (the reaction diffusion modulus) =0,100000E+02

6 (the time) =0,127272E+03

A FILM MODEL PENETRATION BRATIO
MODEL
g ag (42 (o4
BAF BAp BAf/ BAD
0.100000E-05 ~-0.899997E+00 -0.900388E+00 0.999566E+00
0.100000E-03 -0.894756E+00 -0.900059E4+00 0.994108E+00
0.100000E-01 -0.,877471E+00 -0.871367E+00 0.100700E+01
0.,100000E+03 ~-0.909090E-01 -0.905177E-01 0.100432E+01
0.100000E+05 -0.990098E-02 -0.,986185E-02 0,100396E+01
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TABLE IX

51

Reaction Ml—-}M2 is of 1.0 order and M2—M3 is of

1.5 order,

Y (the reaction diffusion modulus) = 0.118923E+00

6 (the time) = 0,180000E-01

A

0.100000E-05
0.100000E-03
0.100000E-01
0.100000E+01
0.100000E+03
0.100000E+05

FILM MODEL

| BAT
-0.465200E-02
-0.465200E-02
-0.,465200E-02
~0.465206E-02
-0, 46L096E-02
-0.387170E~02

PENETBATION
MODEL

Eap
-0.502903E~02
~0.502903E-~02
-0.502902E-02
-0.502860E-02
-0.498702E-02

~0.3245875-02

RATIO

o (14
BAf/ BAp
0.925028E+00
0.925028E+00
0.925029E+00
0.925119E+00
0.930608E+00

0,119280+01
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TABLE X

52

Reaction Ml——=!2 is of 1.0 order and M2—=M3 is of

1.5 order.

¢ (the reaction diffusion modulps) = 0,931358E+00

6 (the time) = 0,110400E+01.

A

'0.100000E-05
0.100000E-03

0.100000E-01

0.100000E+01
0.100000E+03

0.100000E+05

FILM MODEL
far
,0.21315ME+50
-0.2131548+00

.~O.213166E+00

-0,210797E+00
-0.133653E+00
-0.338163E-01

PENETRATION
.. MODEL

o
" BAp
-0.251173E+00

_0.251172E+00
©-0,251098E+00

-0,244185E+00
-0.127098E+00
-0.491727E-01

BATIO

Bar/ Bap
O.848632E+00‘
0.8486355+00
0.8489335+00
0.863265%+00

10.105157E+01"

0.687704E+00
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TABLE XI-

53

Reaction M1l=—>112 is of 1.0 order and M2—s143 is of

1.5 order,

- ¥ (the reaction diffusion modulus) =

 (the time) = ' 0,542400E+01

A

0.100000E-05
0.100000E~03

0.100000E-01

0,100000E+01
0.100000E+03

0.100000E+05

FILM MODEL

%Af
-0.525899E+00
-0.525901E+00
~0.525446E+00
-0.482847E+00
-0.190452E+QO
-0.427100E-01

-0.677118E-01

0.206439E+01
PENETRATION RATIO
MODEL

o (4 0]

BAD BAf/ BAp
-0.565250E+00 0,930382E+00
' -0.565237E+00  0.930407E+00
-0.56L018E+00  0.931612E+00
-0.484880E+00  0,995807E+00
-0.178973E+00  0.106413E+01

0.630762E+00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE XII

.Su

Reaction M1l—=1}2 is of 1.0 order and M2——=113 is of

1.5 order.,

Y (the reaction diffusion modulus) = 0,291625E+01

6 (the time) = 0.1082L0E+02

A

0.100000E-05
0.100000E=03
0.100000E-01
0.,100000E+01
0.100000E+03
0,100000E+05

FILM MODEL

Bar
-0.651801E+00
-0,651808E+00
-0.65036LE+00
~0,554022E+00
-0.1946L46E+00
-0.419237E-61

PENETRATION
MODEL

o
BAp
-0.684553E+00

- -0,684523E4+00

~0,681564E+00
-0.541663E+00
-0.188601E+00
-0.711512E-01

RATIO

%Af/ gAp
0.952154E+00
0.952207E+00
0.954222E+00
0.102281E+01
0.103205E+01

0.589219E+00
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TABLE XIII
Reaction Ml=—M2 is of 1.0 order M2—=—>IM3 is of
1l.5 order.
¥ (the reaction diffusi'oryl modulus) = 0,412192E+01

f (the time) = 0.216240E+02

0.100000E-05
0.100000E-03
0.100000E-01
0.100000E+01
0.100000E+03

0.100000E+05

FILM MODEL
%
-0.747193E+00
~0.747211E+00

~0.,743755E+00
-0.5795723+oo

~-0.192977E+400

-0.394591E-01

PENETRATION
MODEL

gﬁp
-0.778L36E+00
-0.778373E+00
-0.772270E+00
_0;57248ME+00
-0.193758E+00
-0.729936E-01

RATIO

gAf/ gAp
0.959865E+00
0.959965E+00
0.9630765+00
0.101237E+01
0.99597OE+OO
0.540583E+00
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TABLE XIV
Reaction M1— 12 is of 1.0 order and M2~——>1}3 is of
1.5 order.
Y (the reaction diffusion modulus) = 0.504737E+01

6 {(the time) = 0.32L4239E+02

A FILN MODEL PENETRATION RATIO
MODEL

4 o 4 g
BAT : BAp BAf/ BAp
0.100000E-05 -0.789270E400 -0.822378E+00  0.959740E+00
0.100000E-073 ~0.789297E+00 -0.822286E+00 0.959881E+00
10.100000E-01 -0.783962E+00 -0.813481E+00 0.963712E+00
0.100000E+01 -0.582405E+00 -0.583095E400  0.998815E+00
0.100000E+03  -0,190835E+00 -0.195532E+00  0.975980E+00
0.100000E+05 -0.375011E-01 -0.7362728-01  0.509337E+00
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TABLE XV

57

Reaction M1l—>=M2 is of 1.0 order and M2—=M3 is of

1.5 order.

Y (the reaction diffusion modiliis) = 0,582766E+01

6 (the time) = 0.432240E+02

0.100000%E-05
0.100000E-03
0.100000E-01
0.100000E+01
0,100000E+03

0.100000E+05

FILM MODEL

PAt
~0.813855E+00
-0.813891E+00
-0.806852E+00
-0,581930E+00

 -0.188967E+00

-0.359067E-01

PENETRATION
MODEL

BAp
-0.8L49342E+00
-0.849223E+00
-0.838019E+00
-0. 588L464E+00

_0.196429E+00

-0.739479E-01

RATIO

gAf/ gAp

0.9582188+00
0.958395E+00
0.962808E+00
0.988895E+00
0.962010%E+00
0.485567E+00
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TABLE XVI

58

Reaction Ml—=M2 is of 1.0 order and M2=——»1}i3 is of

1.5 order,

¥ (the reaction diffusion modulus) = 0.683302E+01

0 (the time)

0.100000E-05
0.100000E-03
0.100000E-01
0.100000E+01
0.100000E+03

0.100000E+05

0.594240E+02
FILM MODEL

BAT ‘
-0.836619E+00
-0.836562E+00
~0.827362E+00
~0.580129E+00
-0.186560E+00

-0.339475E-01

PENETRATION
MODEL

g
BAp

-0.875456E+00

-0.875301E+00

-0.860934E+00

-0.592888E+00
-0.197169E+00
-0.742121E-01

RATIO

gAf/ gAp

0.955638E+00
0.955742E+00
0.961005E+00
0.978479E+00
0.946191E+00
0.4574395+00
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TABLE XVII

59

Reaction M1l—112 is of 1.0 order and M2 —»1{3 is of

2.0 order,

¥ (the reaction diffusion modulus) = 0.118923E+00

6 (the time)

0.100000E-05
0.100000E-03
0.100000E-01
0.100000E+01
0.100000E+03

0.100000E+05

.0.18000OE-01

FILM MODEL

Bar
-0, 46877LE-02
-0.46877LE-02
-0.,46877LE-02
-0, 465200E-02

-0.1465232E-02

-0.462080E-02

PENETRATION
MODEL

%Ap
-0.502903E-02
-0.502903E-62
-0,502903E-02
-0.502901E-02
-0,50272458-02
~-0.486582E-02

RATIO

%Af/ gAp
0.932135E+00
0.932135E+00
0.932135E+00
0.925032E+00
0,925421E+00

0.9496L5E+00
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TABLE XVIII

60

Reaction Mi—=Il2 is of 1.0 order and M2=—13 is of

2.0 order.

¥ (the reaction diffusion modulus) = 0.931358E+00

6 (the time) = 0.110400E+01

0.100000E-05
0.100000E-03
0.100000E-01
0.100000E+01
0.100000E+03
0.100000E+05

FIIM MODEL

Bar
-0.214881E+oo
fo.2148813+oo
-0.214876E+00
-0.212677E+00
-0.182366E+00
-0.7589078~01

PENETRATION
MODEL

[
BAD

~0.,251173E+00

-0.251173E+00
-0.251151E+00
-0.249020E+00
-0.181657E+00

-0.,7015298-01

RATIO

BAT/ BAp
0.8555115+00
0.8555117+00
08555661400
0.8540562+00
0.1003905+01

0.108178E+01
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TABLE XIX

61

Reaction Ml——M2 is of 1.0 order and M2——»i3 is of

2.0 order,

Y (the reaction diffusion modulus) = 0,206430%+01

6 (the time) = 0,542399E+01

0.1.00000E-05
0.1.00000E~03

0.100000E-01

0.200000E+01
0.100000E+03

0.100000E+05

FILM MODET,

o
PAT
-0.530950E+00

© _0.530948E+00

-0.530738E+00
-0.507111E+00

© ~0.285607E+00

-0,100282E+00

PENETRATION
MODEL

g
BAp

»-0.565250E+oo
-0.565243E+00

-0.564618E+00
~0.519583E+00
-0.268579E+00
-0.945728E-01

RATTO

BAT/ BAo
0.939318E+00
0.9393255+00
0.93999LE+00
0.975995E+00
0.106340E+01
0.106036E+01
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TABLE XX

62

Reaction Ml—»12 is of 1.0 order and M2=—»13 is of

2,0 order.

Y (the reaction diffusion modulus) = 0.291625E+01

6 (the time) = 0.1082L0E+02

0.100000E-05

0.100000E~03
0.100000E-01
0.100000E+01

0.100000E+03

0.100000E+05 -

FILM MODEL

12
- BAT
-0,659104E+00

-0,659096E+00

~0.658356E+00
-0.596959E+00
-0.294189E+00

~-0.101089E+00

PENETRBATION
MODEL

gAp
-0.68L5537+00
~0.684536E+00
-0.682766E+00
-0.590022E+00
-0.284705E+00

' -0.990919E-01

RATIO

'gAf/ %Ap
0.9628228+00
0.962837E+00
0.9642L754+00
0.101175E+01
0.103331E+01

0.102016E+01
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TABLE XXI

63

Reaction M1l—>M2 is of 1.0 order and M2—»HM3 is of

2.0 order.

¥ (the reaction diffusion modulus) = 0.412192E+01

6 (the time) = 0.2162MOE+02

0.1000002-05
0.1.00000E-03
0.100000E-01
0.100000E+01
0.100000E+03

0.100000E+05

FILMN MODEL
BAT
-0.757539E+00
-0.757519E+00

-0.755457E+00
-0.635961E+00

-0.293372E+00
~0.9875L9E-01

PENETRATION
MODEL

gAp
-0.778L36E+00
-0.7783942+00
-0.774309E+00
-0.629165E+00
-0.2933431+00
-0.101512E+00

BATIO

%Af/ }%Ap
0.973155E+00
0.973181E+00
0.9756528-+00
0,101080E+01
0.100009E+01
o.97283u3+oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE XXII

64

Reaction Ml=—>M2 is of 1.0 order and M2~—>»M¥3 is of

2.0 order.,

¥ (the reaction diffusion modulus) = 0.504737E+01

6 (the time) =

0.100000E~05
0.100000E-03
0.100000E-01
0.100000E+01
0.100000E+03

0.100000E+05

0.3242395402
FIIH MODEL
BAT
-0.801928F+00
-0.801892E-+00
-0.798L95E+00
-0.6429558+00

-0.291279E+00

-0.9658775-01

PENZTRATION
MODEL

gAp
-0.822378E+00
-0.822314E+00
;0.816106E+OO
-0.6L2725E+00
-0.296314E+00
-0.102345E+00

RATIO

BAT/ BAp
0.9751325+00
0.9751655+00
0.978L215+00
0.100035E+01
0.983007E+00
0.943744E+00
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TABLE XXIII

65

- Reaction !l—>l2 is of 1,0 order and ¥2—ii3 is of

2,0 order,

Y (the reaction diffusion modulus) = 0.582766%+01

0 (the time)

A

0.100000E-05
0.100000E~03
0.100000E-01
0.100000E+01
0.100000E+03

O.lOOOOQE+05

0.4322L0E+02
FILM MODEL

gAf
-0.828L67E+00
-0.828417E+00
-0.823753E+00
-0.644195E+00
-0,289397E+00
~0.,947LLLE-. 0]

PENETRATION
MODET,

gAp
-0.849342%+00
-0.849256E+00
-0.841099E+00
-0.649590E+00
-0.297817E+00
-0.102766E4+00

RATIO

Bar/ Pap
0.975422E+00
0.975462E+00
0.979376E+00
6.99169uE+oo
0.971727E+00

0.921939E+00
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Reaction Ml—»M2 is of 1.0 order and MZ2——>»M3 is of

2.0 order,

¥ (the reaction diffusion modulus) = 0.,683302E+01

6 (the time) = 0.59L42L0E+02

0.,100000E~05
0.100000E-03
O.iOOOOOE-Ol
0.100000E+01
0.100000E+03

0.100000E+05

FILM MODEL

Bar
-0.853756E+00
-0.85369LE+00
~0.8L7277E4+00
-0.643497E+00
-0.286955E+00
-0.923865E-01

PENETRATION
MODEL

gAp
-0.875456E+00
-0.875340E400
-0.8645L9E+00
~0.655247E+00
-0.299056E+00
-0.103113E+00

BATIO

Baf/ BAp
0.975212E+00
0.975271E+00
0.980021E+00
0.982068E+00
0.959534E+00
0.895967E+00
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"CHAPTER VI

DISCUSSION OF RESULTS

The penetration theory and film model

- o
selectivities, as well as the ratio BAﬂ/gAp for various

values of m (1, 1.5, and 2), are presented in tables (1-8)

for m 1, tables (9-16) for m = 1.5 and in tables (17-24)

It}

for m = 2, All calculations were done for n =V=1, The
penetration theory equations ﬁeré integrpted’over a wide
.raﬂge of 8, The variatioms of 6 were
0 <.06 £ 127 for m = 1 and
0.0001 £ 86 g 60 form=1,5 and 2,
The corresponding range of '¢ was
0 S 1) £ 10 and
0.07 5 ¥ < 6.8..
Poth penetration and film theory equations were integrated
with-k as a parameter, The parameter was varied between
10-6 to 10%. A1l computations were done in doubie precision
arithmetic and consumed about four hours on an IBM 7094 T
“computer., Figures 1.1, 1.2 and 1.3 show plots of the ratio
(gAf/gﬁp) against \ forAdifferent values of ¥, Figure 1.1
is for m = 1, 1.2 for m = 1,5 and 1.3 for m = 2. These

figures represent the tabulated values and any maxima

they display cannot be considered positionally accurate.

67
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1-:07
M,—M, |-O ORDER

-0 ORDER

0:97T

o
BAf /&
BAP

0-87¢f

077 .
— 2 0 2 4

LOG N\

ol
DIr

FIG Il COMPARISON OF FILM AND
PENETRATION MODELS FOR THE TWwO
STEP REACTION M,—-M,—M,
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It is clear from figures 1.1, 1.2 and 1.3 that
the ratio (gkf/gkp) deviates from unity over a wide range
of ¥ and A. It is also apparent that these deviations are
considerable. In fact the deviation of (gkf/gkp) from
unity in some cases is as much as 55%.

These observations cast doubt on the validity of
the argument that the insensitivity of the transfer - |
coefficient ratio to the hydrodynamic model makes it
imoossible to gain an insight into the fluid dynamics of
the process, With deviations as large as 55% no such
insensitivity can be blaimed. The large deviations also
point out the need for =a careful.selectibn of the mass
transfer model for a given pﬁysical situatioh. It is
obvious that an indiscriminéte selection of a mass transfer
model, ( a practice based on the concept that the predicted
transfer coefficient ratio is insensitive to the model
used) can lead to erroneous results,

Results presented in tables (1-24) and figures
(1.1, 1.2, and 1.,3) clearly lead one to the conclusion
that the film and penetration theory models do not predict
-the same transfer coefficient ratio for a two step chemical
resction involving a volatile intermediate. Howevér, if
the system is not a counter diffusing one, the two models
predict almost the same results, This difference-in the
behavior of the tﬁo systems is essentially caused by the

enlirely different behavior of the intermediate M2 at the
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"25'M—M, 1-0 ORDER
M;—M; =I5 ORDER
I-15} :
Y=:0-118
1105} Y= 0-93I
0-95
»EN0-835] Y=2.064
Y=2916 \
$=4-121
O-75¢ Y = 5.047
Y=5827 ﬁ
Y= 6833
0-65¢
0-55¢}
0-45 4 . A 0
6 4 2 0 2 4

LOG X

FIG 1-2 COMPARISON OF FILM AND
PENETRATION MODELS FOR THE TWO

STEP REACTION

M—>Ms—>M
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M—M, |0 ORDER
Ms—M 20 ORDER
1-10}
Y=2.064
¥=2-916 -
-O5¢t V=421 ’
: Y =5-047
Y =5-827 ’
¥ =6-833 ‘L'
0F |0 b—— U XAINY
= /t
0-95¢
b
’ /|
Y =0:118
0-90; Y =0-93|
0-85LC =« T L L
6 4 2 0] 2 4q
LOG X\
FIG I'3 COMPARISON OF FILM AND

PENETRATION MODELS

FOR THE TWO

STEP REACTION M,—>M,—>M;
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gas liguid interface. Thus, whereas for a non-volatile
intermediate the film and penetration theory boundary
conditions are given as

C
12 =0 and 2% o,
dx lx =0 X | x =0

the corresponding boundary conditions for a volatile

intermediate are given as

(@}
»

Cyz = Cyp = 0.

Figures 1.1, 1.2, and 1.3 are also helpful in examining the
effects'of the complexity-of kinetics on the deviations of
(Zar/Bap) . It is clear that more complex kinetics does
not necessarily result in a greater deviation, Thus, the
maximum deviations of (gkf/gkp) are £ 22% for m = 1, < 55%
form = 1,5 and £ 16% for m = 2, As a matter of fact, for
m = 2, the deviations do not exceed 10% except for very
small values of ¥, These facts contradict Szekely et al's
(31) speculations., These authors had anticipated greater
deviations with more compléx kinetics,
Plots of (gAf/gkp) against A, with ¥ as a

parameter, display another interesting fact about the

-~ hydrodynamic models used. It is clear that for A < 1, the
film theory model predicts results which are lower than the
ones computed by the use of the penetration model, There is
then a transition regime, 1 < A < 102, in which the
results from the two models tend to be the same, followed by

ariother regime with A > 102, for which the film model
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FIG I-4 EFFECT OF SYSTEM PARAMETERS
ON SELECTIVITY
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results again tend to fall below the results predicted by
the penetration theory,.

Figure 1,4 displays the effect of various system
parameters ( ¥, A and m ) on the film model selectivity of
the intermediate M2, A similar plot for the penetration
theory reveals identical trends and hence is not included
here, It is apparent from figure 1.4 that at a fixed-
value of ¢ , whereas selectivity decreases with the

3

increasing value of m in the regime A > 10 ~°, for the

3

regime X < 10 ” the order of the second reaction has no
effect on gkf' This is noﬁ a surprising result., It simply
means that when the selectivity of the intermediate depends
only on it's rate of formation (A < 10"3), the order of
the second reaction is unimportant. That, in this regime,
selectivity increases with increasing values of ¥ further
justifies this conclusion, O©On the other hand when the
concentration of the intermediate is low (x> lO3 ), the
lower order second reaction consumes more of the
intermediate than a higher order second reacﬁion. This
explains why for x» > 103 , Selectivity increases with

“increasing values of m,
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CHAPTER VII

CONCLUSIONS

i. For the‘counter diffusing systems, the film
and penetration theory models do not predict identical
results, The gap between the predictions of the two
models can be more than 50%. For systems with no counter
diffusion, this gap has not been found to exceed 6%.
A need for a careful selection of a mass transfer model
for counter diffusing systems has therefore been
established.
ii, Deviations between the results predicted by
the two models do not appeér to be directly related to
increasing complexity in the reaction kinetics. Szekely
et al's (31) coﬁjecture that more conmplex kinetics
should accentuate the difference in the results predicted
by the twe models, is not substantiated,
iii. The ratio (%mf/gkp) deviates considerably from
unity over a wide range of ¥ and A, This is in contrast
- to Astarita's (1) argument that the various mass
transfer models would display their differences, if any,
at Y= 1, However, it should be mentioned that Astarita
( 1) had linear non diffusing systems in mind.

ive The selectivity parameter is sensitive to the

75
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order of the second reaction in the A\ >10f3 regime,
However, the order of the second step reaction does not
affect the parameter Y%, for values of A <10;3.

v. The disparity between the results obtained from
the film and penetratibn models, brings out the need
for a criterion that may aid the selection of a more
appropriate model for a given physical situation. Such
a criterion will undoubtedly require the Jjuxtaposition
of fresh experimental work with existent theory. To
date no concerted effort in this direction can be

detected., A search for such a criterion is therefore

recommended .,
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APPENDIX A
MISCELLANEOUS

A, TInstantaneous Surface Flux for Higbie's (14)
lodel:
The transformations

o}
C, = C,-C, ’ D, =D, ,
1 1 1

1 1
chenge equation (10) and it's initial and boundary conditions

to
2
D 8¢ 86C | .
) | (1)
6X2 ot
3% 3 le)
Cl = Ci-Ci H t 2 O, X =0 (ZA),
Clz o i t =0, o<x< o (34),
Cl —+0 or finite; t 2 0o ; X — o (La),

A Taplace transformation of equation (1A) yields:

-pt -1

R e at Pen e T at
D 1 _ f 1
194 B’ T o Tt

\ d25

1. -
D - D .
1 = 1

dx2

Boundary conditions (2A) snd (LA) lead to

77
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¥*
C, =Cqe (54).

Inversion by the use of standard tables (28 ) gives

*/ (2403F) -§

B3 fo)
Cy = (c.l-ci) 1-2 f ' € at (61),
Ty o
or,
* o o
- (c.-c. )|21- 2 ‘[ t)) . c,
C,1 ( N Ci) [ erf(x/( Dil ] + Cy (78).
The flux at Xx = 0 and t = 't' is given as
] fsc * o\ [D |
X(t) = - D, 1) = (C-Cl)q 1 (84).
‘ _ 5% J%x=0 i T ,
B. Derivation of the Expression for‘éAp for vy =n=n=1
2 ' _
b a = _6_(’2_‘5‘8- (28)s(p17)c
+2 L
0y

The transformstion
-0
a=-¢ &(y,9) suggested by Carslaw et al

(¢ ) changes (28) to:

O A = bA (on) -
-~ 6:\[2 80

A Lavlace transformation on equation (9A) yields

o:lm
e N
i)
' It
e
B

Using the boundary conditions (30a and 30b)
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(104)

| can be obtained.

Inversion according to the Standard tables (28) yields,

o[ -y y i
A =1le | e Yerfc _ Vo) +'erfe + Vo (114)
[ e ) e ()

a =1 e Verfe ¥y _Vel+ eerfe iz_ + Vo (124)
2 Vo Vo i
The instantaneous value of ( 3a/8y)y=0 is
_ b2 = erf Ve + é‘e (134)
3y Jy=0 NED)
and, ' :
9 -0
j_g_a d9=ferf46+§__ de
0, 8y Jy=0 5 mo .
J/'_.gg e =fe+llerf Ve + [o e ? (144)
3 8y ) y=0 2 : "
Equation (29), p.(17), ’
2
g_g = 0b + A\b - a (29)
A
is transformed into
1
<2
- - - -y(p+l)
d°b = pb 4+ Ab -2ey(p
p (154)

The complimentary function 1s,
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- Yy p+A - ,, +X
b =8 VO < e NP (164),

and the particular integral 1is,

-y\fp+1

p(1-})
therefore,
- \/ A - DA - \[ +1
b = ezey LA @le Y - 2 e INP (174)

pl1-A

The use of boundary conditions (3lce, p,18) and (31b, p,18)

leads to,

62 = 0 ang. 8. = 2

1 pExy
- ’ - A -y 1
b = 2 ¥ P+ - 2 e * ot (184)
p(1-)) PlL-A

Inversion yields,

-y Va VA
b= (_1 \]e v erfc v ..QXe e’ lerfe Y —FVKG

1 e-yerfc<_;g_ VB - eyerfc(_Jg_ + ‘Vﬁ—) (194)
) 7

(_ 6b> = ; ( 1 )[e"e-e‘-)\e + erf VB - Vierf \/xe] (204)
Y= 0 .
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L ,
v\ de = (1 (e+_1_)erf\fe—+J§e'°
dv/]y=0 1A 2 T _
o -\6
BVL + 1 \erf4fis + [6 e (21A)
(7T ) )

T _
f viV=0
_ 0
%mp g,
[ -
0 v| vy=0 can be simplified to
2 - (4/m) w2
p- }\ T
L Vit 1 Jerf (2 g
- (im0 vr 3 Jors (2uT77) 22 :
BAp= _( 1 ) 1— - 2V
T\ _ 5 (224)
(/)
(; pl)nrf 2y k2¢b (4/ '¢b
C. Error Function

- The error function erf ( ) needed for equation

(40 ) can be computed on a digital computer with the help of

the following expression given by Hastings(13):
: y tz
erf(x) =2 [e ~dt (231)
T %
2 L 46 8
|>: < 0.32 = 2% 1-X X ¥ X (2L4)
v 3770 L2216
2
: 2 y L ~X
[x| >0.32 = 1-(2d 1oL wa ki £'+a,€5 2e” " (254)
il 2 3 i 5 N
where,
£ = 1 (264)
1-+0 3275911' '|

and
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32: -0,252128668 8y, = -1.287822Q§3‘ (274)
and a5='0.9b06M607 (284)
D. Simpson's Rule

Integration of equally spaced data is best
performed by the use of Simpson's rule given here as equation

(2CA). aA
X
N _ '
(Y )= )= ‘, -] f +ees +
P (x) >‘c/f(f) %[f°+f3@) 2Lyt T2
5 \

4(f1+f3+f5+... fN-l) ] (204)

where
h= x, _- x. and N is even.
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APPENDIX B
DIFFERENCE APPROXIMATIONS FOR DERIVATIVES

Derivative appréximations used for the

soiution of various equations, are listed below:

a) Second Derivstives

2 2
d f(x,t), d f .

8 %2 dx2
/ ' 2
f(x +A¥%,t) = f(x,t) +Aaxf(x,t) +ax f (x,t)----(12B
2!
. _ / 2
flx -ax,t) = f£(x,t) - axf(x,t) + Ax. £ (x,t)=-m=(2B)
2%

2 ; . _
87 = fxx(x’t) = f(x + A¥,t) - 2Ff(x,t) + f(x -~ ax,t) (3B)
dx sz

‘ 2
Eguation (3B) is modified for d to
dx2 '
2 4 ‘
A f =°f (x) = f(x+ax) - 2f(x) + f(x - AX) (LB)
2 2

dx’ AX

b) First Derivative
0f(x,t), af(x)
&t . 0x

83
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f(x,At+t) = £(x,t) +atf (x,t) + (5B)
= £ (x,t) = f(X,At+t) - fx,t)

5t At - (6B)
Sinilarly,

af = f(x+Ax) - f(x)

ax - Ax (7B)
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APPENDIX C
STABILITY ANALYSIS FOR FINITE DIFFERENCE SCHEMES

Implicit finite difference schemes were chosen in
- preference to the explicit schemes for the solution of
equations (28 and 29p.17). Although the explanations
given below are generally true only for linear equations
with constant coefficients and for a certain class of
boundary conditions, in practice such érguments are taken
to be true for non linear cases also.

Definitions refer to the parabolic equation,

2
87y = Bu
0x> 8% (10)
Implicit Approximation:
Equation (1C) can be written in the finite
difference form as
U - = - U
p+ly g+l 2Up,q+1 *Up1, qa1 Up,q+1 Pya
h2 k - (2¢)
where,
h = Ax
k = At
-2
I‘:k/h

85A
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_ u _ -
p-1,04+1 , p,a+l T T p+l,q+1 Up.q '

p = (1,2,... ) (3¢)
Equation (3C) represents a set of simultaneous equations
similar to the one described in Appendix D{equations 1D). -
It is obvious that the calculation of the values of
U

1 and U etc., necessitates the

Up-l.q+l’ Pya+ P+l.q+1

solution of a»set of simulﬁaneous equations, A scheme
that involves the solution of a set of simultaneous
equations to evaluate the unknown pivotal values, is
called an implicit schemé.‘
Exolicit Approximation:

Another approximation for equation (1C) can be
written as. |
~ 2U U U

+ - -U
pya’p-1,0 T p,a+l” Pha (4c)

h2 k

p+l,q

+ U ), In this case

p+l,q = “Vp,q p-1,q
can be found through a

U + r(U

p,q+1 = Up,q
the unknown pivotal wvalue Up,q+l
step by step method. The computation of this value does
not involve a solution of a set of simultaneous equations,
Suzh a scheme 1s called an explicit finite difference
scneme,

Discretisation Error:

If 'U' represents the exact solution to the

partial differential equation (1C), and U, the exact
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solution of the difference equations used to approximate the
P.D.E., then (U-ﬁ), is called the discretisation error.

Discretisation error édfz U-T (5¢)
Rouvnd-Off Error:

The equations that are actually solved on a

digital computer are the finite difference equations, and
if it were possible to carry out all the calculations to
an infinite number of decimal places, the exact solution
U can be obtained., In practice however, each calculation
is carried out to a finite nunber of decimal places——a
precedure that introduces a "round-off" error every time

¥*

it is used. The solution that is obtained is U, the
numerical solution and is not 'U!,

Round-Off Error e = 5-5 (6C)

Total ETroT = e, + eq | (7¢)
Stebility:

A difference system is sz2id to be stable, if

smallierrofs occuring in its earlier cbmputational steps
do not give rise to errors of increasing magnituvde or
-possible oscillations during the remainder of the
computations., The treatment due to Vonleuman, és extended
by O'Brien‘et a2l (26), is used to develop a criterion for
stability, This criterion ié used later on to show the

stability of the implicit scheme used for the solution of

equation (29), Tt is assumed that errors at the pivotal
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points along t = 0 between x = 0, and x £ &1h, can be

rerresented by a finite Fourier expansion:

N . N
inmx/4 1Bnph
F =X A =2
=0 “n° n=0 2n®

P p=(0,1,40. 1) (8c)
where,
i = VOO
and
B, = "7/ih _
ph = X

Iy

Then, the (N+1) equations are sufficient to determine

the (N+1) unknowns AO,A A_ uniquely, showing that

preee n
an arbitrary distribution of initial errors can be

expressed in this compiex exponential form.; As finite
differenoe equations are assumed to be linear (separate

solutions of linear equations are additive) considerations

of the propzgation of an error due to a single term such

ig»h

as e - should suffice. The coefficient An is a constant
and can be neglected, It is further assumed that the
“terror function" is the product of a 't! term and an

'x! term, sinilar to the ones used for deriving analytical

solutions of vpartial differential equations., Therefore , at

1goh,

iBrh _ab
t = t, the term 'e ', becomes elB* @, Thus, at t = 0,

ignh

this term is still e If t = qk,
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iBx at i Boh aqk ignh q
5 = e B e = € x e = e B (&) (9C)

k ; : s
where, § = ea and oo is a constant. It is obvious that

as q increases Ep will not increase provided

|¢| < , (10C)
Stabilty Analysis of An Explicit Schene:

Equation (4C) which aporoximates equation (1C) should

also abproximate the "error functioﬁ'En q"' Substitution
Pt }
of U = E JBU% £)* in (4C) leads to,
D,a P,a
iBoh +1 1BDh i8(p+1l)h
B A (&) [e . () =
igoh a ig(p-1)h q
20PN (g T ARy ]
or,
.2
¢ = 1-Lr3in (B A___f_) (11cC)
2
since, for stability |§]<

<2 (12¢C)

2
1-4 rsin (aggg)
2
In ceneral, components of all frequencles '8! may be

nragent, 1f they are not present in the 1initial conditions
or brought in by. boundary conditions, then they 2re likely
to be introduced by round-off error., Since the unbounded
' : at, . X

crowth of Ep (or in effect e ~) is to be guarded against
) 3 -

i 2 | . : . .
anc. for some B, Sin BAX/?)ls coing to be unity, 1t

beconmes clear that for (12C) to be true,
r < 1/2 - (13C)
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Stability Analysis of An Implicit Scheme:

ipph  \a .
Substitution of U =B = e (&) in equation (3C)
Dya b,a
leads to
i 8(p- a+l igoh a+l  1B8(»p+1)h a+l
retB(-D e )87 (oni1)e PPN (4 )T e AIPT (g
et BT
or,
i/ i gh e
re e L (2ri1) g e TP - 1 (o)
1 = ¢ (1s2)
' 2
Lrain™ (BAX/?)
Since for stability IE, <,
1 < 1 (16C)
5 .
Lrain (ga~/2)
Therefore, the implicit scheme is stable provided
r > 0 . (17¢).
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APPENDIX D

GAUSSIAN ELIMINATION FOR TRIANGUIAR EQUATIONS

The following triangular system of equatidns_
was frequently encountered in the course of finite
difference solutions for various partial differential

equations;

blvl + C1Vo = dl
a,Vy + b2v2 + cZV3 = d2

—— a———— . ———

ey 2VM.3 F Puo2Vm.2 T Cu_2Vuol = dy o
8y-2"M-2 * Pu-1Vi-1 = dy 5
" (1D)
where, ai'bi’ci’di are known quentities, and vy are the

unknovn variables.

The solution 6f these linear algebraic equations can be
reedily obtained by Gaussian elimination and bhack
substitution., The first equation can be used to eliminate
vy from the second, Sthe new second equation used to
eliminate Vs from the third and so on, until finally, the

new last but one equation can be used To eliminate Vﬂ 5

-

frem the last equation, giving one equation with only one

921

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

The unknowns v, o goes vz,vl can then be found

V.,
Vi.1® ; Y- 3
in turn, by back substitution. DNoting that coefficient
te! in each new equation is the same as in the corresponding
0lé equation, assume that the following stage of the

elimination has been reached:

BiiVi1 * %1% = 55 o (2D)
a3jvi_q *+ bivi +CyV5 4 = di (3D)
where,

B =y 5 =4y (D)

Eliminating Vi1 between (2D and 3D) leads to,

(bi - aioi-])vi FeVi T 47?50

fi-—l ' Bi_1 (5D)
- S (6D)
ByVi ¥ C3Vip T %3
By = by =235 4 (7
Bi 1
L S (5D)
\Si - di -aiui_l D
Bio1

(1 = 2,3,...08=1)

The least pair of simultaneous equations are:
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2y 2Vie2 T PriiViey T Yyl (10D).
Eliminating Vi o between equations (9D, and 10D) gives,
1 Pe2Cu-2\"iny T Y T So
PV T Suaa | N (12D),
v = S = A D).
ma1 T w1 = Vi | (13D)
Broa
From (6D) it follows that,
BiVy + 03V5.9 = S5
Vv, = S.-c.,V, = - C.V-
i 1717341 =y i7i+1 . (14D)
By By _
i = (M-2,4-3,,,.1).
Form equation (83»3),11.1 can be shown to be,
S. a a y a ]
R o N o R s T 3 I
Bs < By * ﬁi ﬂi
(j- = 2,3,0'0 I':—l) (157_)).
Similarily (4D) leads to,
T d
1 B -

1
For the vpurvose of digital computation , <these equations

can be summed ubn as:
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ey Va1
c. Vv , -
Vs = V.~ 1 1+1 y (i = 11—2, l"l—B’ncc 1)
i i 5
i
b 14 d1/
c
8. =b,-1i-1 (1 = 2,304 1-1),
i i —a— .
S P |
and
o .
V = di—ai j.-l, i = 2,3,... I’I—‘l.
i Bi .
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APPENDIX E
QUASILINEARISATION

The non linear equations considered are

of the form_L[n] - f(u,EB =0 v (1%)
where, L is a linear operator (differential or partial
differential) possessing certain additional properties
such as positivity, §’is a vector, and v is the unknowm
function, whose value as a function of ¥ is to be
determined., The function f(u;y) is a strictiy convex
(or concave) function of 'u! for 21l ¥ €D, is continuous
in U and E?and has a bounded second partial derivative
with respect to 'u! for all u and YED, In addition, it
is further assumed that on fhe boundary B of domain,

u=0 YEB, (21).
The domain D is supposed to be sufficiently small to
ensure the existence and unigueness of the solution of
equation (1E),
'f1 is strictly convex as a function of 'u' if,

£ o (3

{3

).
TIf 'ft is a strictly convex function of 'u!' and is twice
differentiable, by the mean value theorem, eguation (1%)

can be written as

LLv] = £(0,5) = £(v,7) + ()T (v,7,) +_%_.(u-v)2fw(v3/) (5E)
95
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or,
f(u,y)- [f(vj?) + (u-v)f, (v{?)] 20 | (6E)
The equality holding for u=v. |
It is obvious that,
L [u] = flu,y) = [%(v[?) + (u-v)fv(v,Eﬂ] (7E)
max v

If the function w(v,¥) is the solution of the. equation,

L [U] = [f(vs_y’) + (u-v)fv(v,Sr')] (83),
then : :
L [v] = [f(v,y) + (W-V)fv(v,_:?)] (9%),

with w=0 on B
Equation (8E) which is equation (7E) without the 'max v!
is called the associated linear equation,
Equation (7E) can also be written as
L[] = f(u,y) = f(v,y)+(u—v)fv(v;§)+ 161 (108),
Equations (9E) and (10E) when combined with the linearity

property of the operstor L, yield:

L [u-w] = (u-w)fv(v{§)+ IG" (11®),
or
L [z]- va(v,ir’) >0 (122),

where, Z=u-w. Z obviously is zero on B, If Z, which 1s
zero on B, satisfies the inequality,

L [z] Sz (v) 20 (131),
throughout the domain D, for all admissable functions 'v!'

then,

1
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| Z 20 : (14E),

provided the operator L possesses the positivity property.
It follows therefore that;

u 2 w(v,y) (158).
Also, if v is chosen equal to 'u', equation (9E) becomes
L [%] - wfu(ufﬁ) = f(u,y) - ufu(u{y) ' (16E),
which has a unique solution if

w(v,y)= u(y) (17E)
If  u 2w(v,y) and w(v,y) = u(y) for v =u , then it is

obvious that ) )
w(v,y) (18E).
u o= max v

Thils establishes a least upper bound on the sequence w.
Kalaba et al (16) have shown that this sequence is uniformly
bounded and converges uniformly and monotonously to tuf,
This convergence has been shown to be quadratic in the
sense that each new element of this sequence approximately
doubles tﬁe digits of accuracy.
Construction of the Monotone Sequence

An arbitrary function vo(y) is chosen, and used
to solve equation (9L) for w. This w is called uo(y).
Thus, T[U] = L[uo(y)] = Tl _(3),7) + (3 () - v () (v (v),v)

| (19E)

Equation (19E), is a linear equation with variable
coefficlents and hencé can be solved for uo(y). The
functions, uo(y) and vo(y) have the same boundary

conditions as the function u. on B. The new function
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uo(y) is subsequently used to determine an improved
function vl(y), as the function which maxinmises the

expression (7Z). ' -

[f(v) + (u-v)f‘(v;y)] throughout the
max v - d

domain D, Since 'f' is strictly convex, the expression
is maximisad when
u (y) =v_{y}).
o(¥) = v (¥)
Yith a new vl(y) the whole cycle is repested. Thus the

following recurrence relationship can be written:

o

I;Eﬁﬂbﬂ]: f (vo(y),y) + (uo(y) - v (y)) fv<vo(y),y) (20E)

Ll (:J)]-:- f‘(vw(r:f),:f) + (vl(;v) vy (1) i‘v(vl(:f),:f)

trhereTore,
By induction, therefore

o] = ) o (o) 2 frhe) eom

L{lng_(i’)] = (v (v),7) +[ uml(y)-un(y)]fv(un(zr);y) (228)
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The actual calculations involve only the setting up of
equation (207 and 22%) and the solution of these linear

equations,
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NOMENCIATURE

ILatin Letters

Ci = concentration of.species i, 31’81
interface and bulk concentrations
respectively

Dy = 1liquid phase diffusivity of
species 1

ﬁL = mass transfer coefficient without
chemical reaction. Equations (15a).
and (61)

L = linear operator

M ) = number of increments along 101

-coordinate

Mi = system component

N = number of increments along 'distance
coordinates!

sAi,SBi'SCi’SDi = coefficients in a triangular systen
of equations |

U = velocity

Z = diménsionless transformed distance,
equation (L&)

a = dimensionless concentration'CMll éMl

100
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erf, erfc

Greek Letters

o

B

]

101

dimensionless concentration CMZI éMl

g transformation constant, equation

(44)

error function and complimentary

error function

specific reaction rate constant

order of the second'steé reaction
order of the first step reaction

reaction rate for the ith reaction

time, g‘a sﬁecified time, Equation
{15a)

a first approiimation.fdr b.
Equation (80)

distance coordinafe

dimensionléss space coordinate

for penetration theory model

equations = #n-1
x4/2k, C
. 1 "M l DMl

for film theory model equations

= (x/6f)

a fluid phase

a fluid phase in which reactions

take place
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= Laplacian Operator

Gradiasnt Operator

- J D

) o #n-1
= dimensionless time = Ztkchl
. . m¥*
— i 3 3 3
A = specific reactlon_ratlo Ky CMl
n¥%
% Cm
v = diffusivity ratio D
Ml/n
M2
= distance coordinate
,q% = selectivity of M2 with respect to Ml
X = 1instantaneous flux,equations (12)
(60)
4 = reaction diffusion modulus,
op. w607t /R
in general P11 %18y L
penetration theory equation (33)
AX,AY,AZ ,AD = 1Iincrements along respective axis
_% = film thickness
éubscripts
P _ = penetration theory
= film theory
Suprerscripts
i~ = average
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EFFECT OF CATALYST POISONING ON
SELECTIVITY A MODELILESS
APPROACH
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ABSTRACT

The effect of independent polsoning on the

selectivity for an intermediate B in a complex reaction

A >B —F, catalysed by porous spherical pellets has
been investigated by solving the relevent partial
differential equafions, instead of by the use of a
restrictive mddel. like the Shell Poisoning Model, The
results indicate that when the catalyst is poisoned for the
reaction A ——>B only, the selectivity either does not
change significantly or decreases as the catalyst pellets
age. On the other hand when the catalyst is poisoned for
both the reaction A———B and the reaction B—F, the
selectivity elther remains constant or increases with
increasing poisoning, Although, the effect of the Poison
Thiele Modulus-hP on the selectivity could not be explained
qualitatively for the case when the catalyst is poisoned

. Tor both the reactions, selectivity for B was found to
decrease with increasing vélues of hP' when the catalyst 1is

poisoned for the reaction A———>B only. It has also been

shown that selectivity for B increases with increasing

values of the intrinsic selectivity parameter (kA/ kB).

ii
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CHAPTER I

INTRODUCTION

In spite of the great care taken in purifying the
feed streams to a catalytic reactor, these streams are
usually contaminated with small amounts of impurities
which can act as poisons for the catalyst particles., Such
poisoning can drastically affect the activity and selectivity
characteristics of théfcatalyst, thus altering considerably
the distribution and quality of the products,

In studying the behavior of a catalyst poison,‘it
has become clustomary to approach the problem from two opposite
ard extreme positions. According to one, thé polison is
uniformly distributed at all tiﬁes throughout the catalyst
particle, The other extreme position is based on the
assumption that the poison molecules are adsorbed in such a
way that the outside pore structure of a catalyst pellet
becomes completely poisoned before the interior loses any
activity. Wheeler (48) has called the first type of
poisoniﬁg the 'homogeneous'! poisoning, the second type of
poisoning the 'pore mouth' poisoning. It is obvious-that
real Catalyst particles will seldom behave according to
either of these two idealised models, It is very unlikely

that the catalyst particle will be homogeneously deactivated, .

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nor is it very likely that the catalyst pellet will be
sharply divided by a definite poison front into a fully
poisoned zone and a completely non-poisoned region. On the
other hand, as Masmune and Smith (26) have pointed out, the
extent of deactivation iﬁ general will depend upon time gnd
the radial position within the pellet., A model of catalyst
poisoning based on such realistic ideas can be called a
'Modified Homogeneous Poisoning Model', The 'Homogeneous
Poisoning Model'--based on the uniform distribution of
poison throughout the pellet, and the !'Shell! or the 'Pore
Mouth Poisoning Model'--based on the existence of sharply
defined poisoned and non poisoned zones in the pellet, are
then the two limiting cases of the*'Modified Homogeneous
Poisoning lodel', When the intraparticle resistence to
diffusion of the polson molecules is negligible, the poison
will be uniformly distributed and the 'Modified Homogeneous
Poisoning Model! (rM.H.Pf Model') would behave like the
'Homogeneous Poisoning Model', But in contrasﬁ, when the
diffusion resistance is very large in comparison to the
resistence of thé poisoning process, the poison would be
concentrated in a shell of the catalyst, and the "M H.P,
Model' will approach the 'Shell Poisoning Model! (or the
'Pore lMouth Poisoning lodel'). In the case of the 'Shell
Poisoning Model!, the thickness of the poisoned shell will

grow with process time, until the entire pellet 1is

*Abbreviated as 'M,H.,P. Modell
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deactivated.

Althqugh during the past few years, a number of
studies (5.26,3#, and40)} based on the 'M.,H.P. Model' have
been published, these studies have inVariably dealt with
the effect of 'fduling' on the activity and effectiﬁeness
factor of the catalyst. But 'fouling' and polsoning afféect
the catalyst in different ways., 'Fouling' is caused by the
deposition of carbonacious materiai (the so-called 'coke!)
on the pellet and thus results in deactivation of the
catalyst for all reactions. Thus, it is but logical thaf
Tfouling! studies ought to deal mainly with activity and
effectiveness factor of the catalyst. Poisoning on the
other hand sometimes involves irreversible adsorption of
impurities on the catalyst surface. Thus, a catalyst may
be vrogressively poisoned by sma11>molecules of a certain
gspecies to such an extent that the reversible adsorption of
certain other reactant (or intermediate) species,
particularly ones with larger molecules, can no longer take
place, However the same surface may still accomddate other
reactants (or intermediates) with smaller molecules by
\reversible adsorption in the space between the poison
mélecules. 'Thus in a process involving two or more thah
two simnltaneous reactions (exclusive of the poisoning
reaction), it is better to study the effect of poisoning on
thé selectivity characéeristics of the catalyst rather than

on its z¢ctivity or effectiveness factor,
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» With the soiitary exception of a study by Sada
and'Wen (37) who 1nvestigatéd the effect of,'Pére Mouth |
Poisoning"of a catalyst on the overall sélectivity in a
complex kinetic scheme, the effect of catalyst boisoniﬁg on
the overall selecfivity for a complex reacfion scheme has
not been investigated., It was therefore decided to study
the effect of catalyét poisoning 6n the selectivity 'Spp!
of an intermediate B by using a realistic model like the
'M.H.P., Model' and not the limiting 'Shell!' or the
'Homogeneous Poisoniﬂg Model!'., For the sake of model
comparison however, 1t was decided'to investigate the
'Shell Model!' as well. The consecutive reaction
Ar;—>B-——>F was chosen for investigation, as it is a
fairly common rezction in iﬁdustrial practice, It was
planned to study the poisoning when:

i, The catalyst i1s poisoned for the reaction
A——>B and not for the reaction B—F,
ii, The catalyst is poisoned for the reaction.
A——B as well as the reaction B—F,
It was assumed that the poisoning of ﬁhe catalyst would be
caused by an independent reaction between the impurities
in the feed étreams and the active sites of the catalyst

particles,
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CHAPTER II

REVIEW OF LITERATURE

Thé'important problem of the effect of diffusional
transport on the activity and selectivity of a porous

catalyst has been a subject of study for quite a number of

years, Frank-Kamenetskii (17) has treated in detail the
activity and selectivity alterations caused by intraparticle

mass transport under 1sothermal conditions, Wheeler (48)

classified the various types of selectivities and derived
an expression for the type IIT isothermal selectivitj.of

an intermediate B in a compiex reaction system, A——>B—C,
catalysed by é porous_éylindrical catalyst pafticle. The
relationship derived by Wheeler (48) expressed selectivity

(number of.moles of B formed per mole of A reacted) in

terms of the ratio (kl/kz) and the Thiele Modulus L ;El

’ : rD
¢Stergaard (32) analyi?d a more complex first order 1
reaction system M1 2‘M2 3:M3 »eee¢ o Mheee and derived

gxpressions for conversion to the first intermediate as a
\fuﬁotion of the Thiele Modulus and various specific rate
constants,  @3tergaard .~ based his analysis on spherical
catalyst pafticles. Carberry (12) and Beek ( ) have
reported the effect of nonisothermal conditions on the

selectivity of the intermediate B in the catalysed reaction

5
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A-—é»B-——»C.’ A treatment.of'selectivity is at least
implicit in ‘the work of Schilson and Amundson (38) who
investigated the mass and heat transport éffecté on a complex
reaction system. Carberry (13) has aléo extended wheeler's
(48 ) selectivity analysis for cgtalysts with simple
cylindrical pores to catalysts having a bimodal pore size
distribution in which diffusion is assumed to occur in the
macro and micro pores iﬁ series., '¢3tergaard (33) has
recently published a study dealing with the mass and heat
transport effects on the selactivity of the desired product
formed in a catalyséd first 6rder parallel reaction, 1In a
study dealing with the effects of heat and mass transport
on the activity, selectivity and yield in the consecutive
reaction system A—>B——C, Butt (11) has extended and
generalised the treatment given in Carberry's (12) and
Beek's ( 6 ) papers.

In addition to these theoretical studies, a few
experimental studies on catalyst selectiviiy have also been
made., Weisz and Swegler (47 ) cracked cyclohexane to
cyclohexene and thence to benzene on a chrome alumina
catalyst, and found that the selectivity of cyclohexene
increased with-decreasing particle size, This was in
agreement with the theoretical results predicted by
Wheeler (48), Johnson et al (21) in their study of gas

0il cracking on silica alumina catalyst of various sizes
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haﬁebalso reported that selectivity to form gasoline
increased with decreasing pérficle»size. Investigation Qf
palladium éatalyst for selectivity studies of the |
hydrogenation of acetylene also yielded results which
confirmed the theoreticél predictions made by Wheeler (48),
Palladium catalyst.studies were done by Mars and Gorgels
(25).

The poisoning of the catalyst particles was
discussed systematicallj for the first time by Wheeler (48)
th described the two differént ways-—the 'homogeneous!
poisoning and the 'Pore Mquth' poiséning-—-by which the
catalyst pellet can get poisoned. In 'homogeneous!'
poisoning it is assumed that the poison molecule makes meny
collisions with the catalyst surface before adsorption
occurs., Thus the poison molecules have an opportunity to
diffuse deep into the catalyst pellet prior to being
"cleaned up" by the pore walls. Wheeler (U48) assumed that
such a poison will be evenly distributed at all times
throughout the catalyst péllet. Assuning that the intrinsic
activity k of the vore wall decfeases to k(1- &), that is
linearly with the fractidn‘of the surface polsoned,
Wheeler (48) derived an expression for the fall in the
activity of the whole pore. According to Wheeler (48), in
'vore mouth' poisoning the pecison is so strongly adsorbed

that the outer rezion of the nore becomes completely voisoned
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before any alteration occurs 1in the activity of the interior
of the pore; In developing their unreacted-core shrinking
model, Yagi and Kunii (50) also had assumed the existence
.of a compietely reacted_region and a completely unreacted
region in a solid reaéting varticle, They had assumed that
a sharp intérfaéé separated these twb regions, Yagi and
Kunii (51),Levenspiel (24) and Narsimhan (30) have also
suggested that the rate of movement of this inferface is
very much slower than the rate of any gaseous diffusion
process. The interface therefore, can be taken to be
stationafy at any time and the stéady state diffusion
problem solved to find tﬁe concentration profile, The mass
flux, as found from this expressioﬁ, can then be equated to
the rate of disappearance of the unreacted solid in order to
locate the interface as a function of time. Bischoff (7,8)
and Bowen (10) have established the validity of the
'pseudo-steady state! assumption made in describinz cthis so
called unreacted-core shrinking model. Weisz and Goodwin
(46) used Yagi and Kunii's (51) model in a study desling
with the burn-off time of carbonaceous deposits within
porous catalyst particles. Ausman and Watson (5) used the
same model for treatiﬁg the regeneration of the fouled
catalyst particles during a part of the regeneration period,
Carberry et al (14) used Weisz and Goodwin's (46)

treatment to analyse the time devendent 'pore mouth’
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poisoning problem. As Carberry et al (14).have pointed out,
-this is an extensi§n_of the corncept of 'pore mouth!
pqisoning as outlined by Wheeler (48). According to
Carverry et al (14) "Wheeler's treatment embracés only those
circumstances in which a quantity of poison is imposéd upon
the system fbr a péfiod of time sufficiént to cause a fixed
and thereafter time 1ndépendent deactivation, More
commonly, a voison or coke bearing agent is fed to the
catalyst system in continuous though often small supply."“.
The continuous poisdning obvioﬁsly leads to a time dépendent
regime. In this treatment, Carberry et al (14) nave ,
relaxed the restriction in the original Yagi and Kunii's
(50) and Wheeler's (48) models that the fouling process is
controlled by the diffusion through the poisoned layer,
Carberry et al (14) were primarily concerned with predicting
the position of the poison front in a_ spherical catalyst
particle., Petersen (35)vhas also dezalt With»the effect of
'pore mouth'! poisoning ‘ - on the activity and
effectiveness factor of a catalyst particle.' EXpérimental
conclusions of Schwab et al (39) and Anderson et al (3)
have aléo been explained on the basis of the 'Fare louth
Poisoning! or the 'Shell Poisoning lodel!'. Recently Olson
(31) has extended Carberry's (14) analysis of a !'pore

mouth' poisoned catalyst particle to poisoning of fixed

bed reactors. Olson (31) has treated the case of a fixed
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bed reactor which develops "Pore Mouth Poisoning" of a

variable extent throughout the system; He has also dealt
with the problem'oflpqisoning of a guard_ped reéctor. The
time dependent activity of these reacﬁors was evaluated,
Without invoking the !'Shell Poisoning Model?,
Ausman and Watson (5 ) studied mass transfer in a catalyst
pellet during regeneratidn. It was the first time that a
poisoning (or fouling) study had been done without using
the very restrictive 'Shell Pbiséning Model', As Carberry
et al (14) have pointed qut the !'Shell Poisoning Model' 1is
valid only if the Thiele Modulus (based on the specific
reacfion rate for burning) exceeds a certain critical
value, Ausman and Watson ( 5) assumed-that the local rate
of regeneration reaction was independent of the carbon
content and depended only én the partial pressure of
oxygen, They calculated the intraparticle distribution of
the deposit (coke) as a function of time and the radial.
position., As has been suggested before (page 2), for the
sake of‘convenience‘Ausman and Watson (5 ) type analysis
can be called the "Modified Homogeneous Poisoning Model”
analysis.®* The 'Shell Poisoning Model!' is one extreme
\case (Thiele Modulu:'>»Critica1 Thiele Modulus) of the
*tM,H,P, Model', The other extreme case is the 'Homogeneous
Poisoning Model!, Froment and Bischoff (18) analysed the

effects of catalyst fouling (coke deposition) on the

¥To be more exact, in the case of regeneration problems, the

term "lModified Homogeneous Regeneration lModel" should be
used.
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activity of a fixed bed reactor. The coke was formed as a
result of eilther the reactions A-—-$I3——>Coke‘or the
reactions A-——QB. The rate of cOke‘forming reaction was
oke

assumed to be negligible compared to the rate of formation
of the main product B. They also suggested that change in
the rate of the main reaction, caused by the fouling
réaction, should be directly related to the amount of
fouling matérial-present (or coke-deposited), rather than to
process time as assumed by Voorhies (44), Blanding (9),
Wilson et al (49), Watson et al (45) and Katsobashili (22).
This suggéstion by Froment and Bischoff (18) has lead to
the use of several forms of the deactivation function £ ,
Froment and Bischoff (18) assuﬁed an exponential form

Q@ = exp(- aq) and a hypérbolio form @ = 1/(1 + Bq) where
a a2nd B are constants,  Anderson and Whitehouse (4 ) used

four forms of Q function for poisoning of the catalyst:

0 1-28,, Q = exp(-28,), Q = (1+aSX)-1 and

Q = \REZZEQSZ where a 1s a constant and S, is the
relative poison conentration; It should be mentioned that
netiher Froment'and Bischoff (18) nor Anderson and
Whitehouse (%) included the effects of mass or heat
transport in their analyses., VanZoonen (43) used the form

Q = a/q, for studying the effect of coke deposition on

hydroisomerisation of olefins over silica alumina-nickel
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suiphide catalyst. The reactions in VanZoonen's (43)
study can be described as A—sD (desired'product). Like
Cdke
Froment and Bischoff (18) and Anderson and Yhitehouse (4 ),
‘VanZoonen (43) did not consider the effecf of-masé transocort
inside the catalyst particles. Levenspiel et a2l (24) have
recently generalised the deactivation rate equation and
have shown how the various forms of £ can be derived
form the general equation. Masmune and Smith (26) using
the 'M.,H.P, lodel! in.a treatment similar to the one used
- by Ausman and Watson (5), derived equations to describe
the hulk rate of gaseous reaction on a spherical porous
cataiyst whose-activity changes becsuse of a fouling reaction,
The reaétidns investigated by.these authors were:
A éE(desired)ﬁCoké, AA—»B(desirgd) , A—>T3(desiredy
A
‘ Coke S— Coke
All reactions were of first 6rder, end in all cases, the
fouling feaction was assumed to be much slower than the
ﬁain‘reaction. A deactivation function of the form
\/Q.;:(], ¥) was usedf ¥ <¢=q/qo> was supposed to be a
function of time and radial position. Masmune and Smith
(26, 27) took intd‘acqount the effects of intraparticlé heat
and mass transport by using effectiveness factors; A similar
study by Takeuchi et al (41) has also been reported.
A Tew experimental studies based on_the THLE.P.

Fodel! (Ausman-Yatson (5 ) treatment) have also appeared
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'récently. Suga et al (40) have reported the effect of coke
~deposition on the activity of solid catalysts and of
diffusion in particles. Their study ié modeled on Masmune
and Smith's (26) treatment, except that the deposition of
coke inside the particle was taken to be independent of
radisl position, Thué, Suga et al (B#0) solved ordinary
differentiallequations instead of the partial differential
eqﬁations provosed by Masmune and Smith (26), Suga et al's
(40) experiméntal work déalt with the reactions:

A(n-Cquo)——a»B(the desi?edvproduct n-Q4H8)-——>Coke

D(Gas) :
The coke forming raction was assumed to be very slow., Ozawa

and Bischoff (34) using an 'M,H.P. Model! studied the effect
of coke formation on the reactions: |

CZHu———>Pr0ducts

Coke
They also analysed Eberly et al's»(l6} data. Ozawa and
Bischoff's Oﬁf) treatment is eséentially the same as that of
Masmune et al (26). Murakami et al (29) have reported an
~experimental study dealing with the effectiveness factors
for poroﬁs spheriéal catalyst particles on which the
foilowing reactions are taking place: |

Alcohol—= Aldehyde— CoXke

or Toulene— Xylene(desired) + Benzene

Coke + Benzene,
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Unliké other investigatbré Murakaﬁi et al (29) have assumed
that the coke forming reactions proceeded at an appreciable
rate, )

From a feview of the work done thus far, it is
apparenﬁ that veryllittle attention has been paid t§ the
study of the effects of catalyst poisoning on.the selectivity |
of a desirable product formed during the course of a complex
réaction. The'exceptions are a study by Froment and
Bischoff (19) and a study by Sada and Wen (37)., Although
Froment and Bischoff (19) dealt with the effect of.fouling
on the product distriﬁution from fixed bed catalytic
reactors, they ignored the effects of intraparticle mass
and heat transport. Sada and Wen's (37) investigétion does
take iﬁto account theiintraparticle mass traﬁsport and is
comprehensive in its treatment of the effects of catalyst
poisoning on the selectivities of a desirable produCt, but
the analysis is based on the very restrictive 'Shell
Poisoning Model!,

It is the purpose of this study to examine how
an independent poisoning reaction due to impurities in

_the feed streams affects the overall selectivity of spherical

porous catalyst systems. The main reactions considered are:
k ' k
A . B
A —>B(desired product)—F,

The poisoning is assumed to be caused by a reaction between

the active sites of the catalyst particles and the impurities
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in the feed strean. 'The most important feature is the
consideration of'the effects of intraparticle mass
transport, ndt by assuming the 'Shell Poisoning Model!
(though the !'Shell Poisoning Model! is used for

' comparison purposes) but by using the 'Modified Homogeneous
Poisoning Model' ('M.H.P, Model!'), The poisoning is
étudied when:

i, the poison deactivates the catalyst for the
reaction A—/>B énly, |
ii. the poison deéctiVates the catalyst for the

reaction A—>B as well as the reactioﬁ Be——»F,
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CHAPTER III
-THEORETICAL CONSIDERATIONS

A. General

There are a number of ways a catalyst can get
poisonéd and. fouled. Of the various causes and types of
poisoning and fouling, dnly the independent poisoning due to
impurities'in the feed streams, is treated in this study.
Independent poisoning implies that the deactivation of the
éctive sites in the catalyst 1is caused only by the
impurities in the feed stream, and that the presence of
other compounds does not affect at all the activity of
the catalyst. For the purpose of this study it 1is assumed
that poisoning is caused by an irreversible adsorption of
poison molecules on the active sites. The main reactions
proceed by the reversible adsorption on the fresh sites,

It is conceivable that because of the different sizes of
the reactant (or intermediatej molecules, the catalyst can
be poisoned either for the reaction A—2, or for both the
reactions A—>BE and B—>TF of a complex schemne

A —>B(desired product)—>F,

It is usually assumed that the adsorption leading
to poisoning of the active sites is a very fast process, and

16
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this in turn hés,led to the use of the so called 'Shell
Poisoning Modsl', but the adsorption of poison molecules
on the active sites may not be that strsng or fast, in which“
case the 'Shell PoisoningvModél' is no longer valid. On the
other hand the 'Modified Homogeneous Polsoning Model' can be
used for all situations, |
The *M,H.P. Model! 1s characterised by two

assumptions regarding the process of poisoning:

1. that the extent of poisoning depends on time and
radial positions within the pellet and

i1, that the pqisoning process does not divide the

catalyst pellet into two sharply defined regions, a poisoned

)
zone and a fresh zone,
Tﬁe first assumption disﬁiﬁguishes the 'M,H.P. Model! fron
thé"Homogeneous Poisoning Model'bin_which the extsht of
poisoning is assumed to be independént of radial position
(the actual assunption is zero diffusion resiétence). The
second assumption differentiatss the 'M,H.P. Model' from
the 'Shell Poisoning Model', The 'Shell Poisoning Hodel!' is
based on the stipulétion ﬁhat a psisoned catalyst consists
- of a completely poisoned region and an entirely non-pcisonaed
- region separated by a sharp interfase. The so called
1Psuedo Steady State! assumption helps to locate the position
£

of this interface., According to this assumption the rate of

movement of this interface is very much slower than the rate
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L

at which the poison diffuses inside the pellet (this amounts
to the statement that the diffusional resistance is

controlling 1.e;,h —> o). Thus the iﬁterface can be taken

P
to be stationary atlany time, and the steady state

diffusion problem solved to find thé concentrafion profile
for the poison., The mass flux of poison as found fron

this expression is then equated to the rate of disappearance
of the non poisoned part of the pellet in order to determine
the location of the roison front in time. Though this

study 1s primarily concerned with the "ML H.P. Modelt, the
'Shell Poisoning Model!' is also included fdr the purposes of
comparison. In order to avoid undue mathematical
difficulties, uniform temperature across the péllet was
assumed (this is a limifiné assunptlon; because femperature
is very seldom counstant across a pellet). The catéljst
pellet was assumed to be spherical in shape. The
description of chemical reactions and isothermal mass
balances for the two models are given in section (B) and (C)
of this chapter.

B. The 'Modified Homogeneous Poisonine Model! ('M,H,P,Model!)

1. Description of chemical reactions:

The main reactions

considered in this study are of the form

K

A—>32(desired oroducts) (1)
kB

B—>7 (undesired products) (2)
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It was assumed that the'following two types of poisoning
could occur: | |
i, the poison could affect the active sites in such

a way that the catalyst is deactivated with respeét to the |
reaction A—3 only.

ii. the deactivation of the catalyst particle‘could
occur with respect to the reaction A—B as well as the
reaction B——F,

‘Fquation (3) describes the poisoning reaction

x Kp s X
P 4 S—»SP | (3)

The reactions (1), (2) and (3) were assumed to be of the
first order with respect to A, B, and P, respeétively. The
effect of poisoning on the rates of reactions (1) and (3)
of reactions (1), (2) and (3) is assumed to be linear in

form, ™ The deactivation function @ is given as,

Q = 1- (q/qo) = 1-¥ (32)
where, (q/qo) is the fraction of sites that have been
deactivated,
< Corresponding to cases (i) and (ii), the reaction
rate and mass balance equaﬁions for spherical porous

catalysts can be written as follows:

**lLevenspiel et al (24) have summed up other forms of Q .
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2, Intraparticle concentration equations (tﬁe '1.H,
F, Model!):
2., Cgse I: Poisoﬁing of catélyst for reaction
(1) only.
i, for the poison P:-

the reaction rate is given by equation (4)
Ry = kp(1 -¥)Cp (4)

end the isothermal mass balance by equation (5)

Y= ; 1 -
V(DpWCp)=€p 8Cp + kpp(l - ¥)Cy
B 3T - (5)
molecular transport = accumulation + reaction
The deactivation of active sites of the catalyst particle is

described as:

- T5%(% - a) = x,(1 -9, - (6)

The partizl derivative of q in equation (6), has been used
to describe‘the reiationship
q = f(r,t) (7)
11, For the reactant A:- |
the reaction rate and the isothermal mass balance are

respectively given by,

Ry = k,Cp(1 - zp)_ (8)
VoNc,) =6 6Cy + pkp(1 -9) Cy (9)
6t
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1i1, For the intermediate B: similiar equations

for the intermediate 'B! can be written:

Rp = kglp - kA(l - 1,(/)0A (10)
V(DBVCB) = €00 + Pkl - pky (1 - Y)C, (11)
ot

b. 'Case 2: Poisoning of catalyst for reactions
(1) and (2)

' Equations (4-9 ) adequately describe the
reaction rates snd mass balances of the species A and P
for this case as well. Equations (10) and (11) have to be
modified to,

R, = ky(l-9)Cy- k(1 -y, | (12)

Vi(o;Vey) = epscyy +o(1 - y) [chB-kAcA] (13).
3. Boundary and initial conditions ('Modified
Homogeneous Poisoning Hodel')

It can be safely assumed that the deactivation
function does not vary sharply with time., Thus it follows
that thé time necessary to reach steady state with respect
to the accunulation of mass‘in the void spvaces of tThe
vellet is negligible in compsrison to the time regquired Tor
the cafalyst deactivation function € to change sicnificantly,
This permits the dropping of the accumulation term fron

equations (5),(9),(11) and (13). It is also clear tha® ot
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t = 6 (where 0=0), the deactivation function 0 will
be unity. The sbherical symmetry of the particle implies
e zero concentration gradient at the centre of the
particle, The mass balance equationé can be simplified by

© assuming that the effective diffusivities, Di' are constant,
This assumption, though apparenfly unrealistic; holds true
for a number of situations, When the polsoning process is
due to the adsorption of polsoning molecules on/%he active
sites of the catalyst surface, polsoning will not alter
the physical structure of the.pores in the catalyst.
Therefore; under such conditions it is valid to treat the
effective diffusivities as constant.

For the sake of mathematical simplicity, the
resistence to diffusion in the gas phase around the
spherical pellet was assumed to be negligible, With these
assumptions the isothermal 1ntrapartic1e concentration
equation for case (1) and case (2) can be written as
follows: |

a. Simplified concentration equation for Case 1:

DpNCp =pkp(l- ¥)Cp (14)
= 89 = Bpa- picy (15)
6t aq,
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DBACB_pchB p‘{A(] zp)A

The initial and boundary conditions for

i.b equations (14 and 15) are:

ot
N
o

1/ :IO; r.2r >0

- and )
DPACP = ka CP ’ t : 0

ii. equatidn (16) are,

CA = CA : T =Ty t 2 0
€y - 0 r=03 t20
éor
Dy ANC, = PK,C, t = 0
i1i. equation (17) are,
) —_CB“_‘SB:O -r=ro;t20
\ if@ =0 r =203 t 20
ﬁr
Dy ACy =pchB»_ P7Cp st =0
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(17)

(18)

(19)

(20)

(21)

(22)

(23)

(21)

(25)

(2€)

(27)
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The condition
Cg = SB = 0 was chosed for simplicity. Any
other value would have been equally‘goodr
- b, Simﬁlified concentration equations for
case 2,
_ Except for equation (17), equations
(14-27) are valid for case 2 as well, equation (17) is

modified to

Dp&cy = Pyl -¥)cy - P, (1 -y)c,  (28),

L, Non-dimensional intraparticle concentrétion
equations (the 'M.H.P. lModel!')
The intraparticle concentration equatibns

.(1h-28) can be described in the non-dimensional form as

~follows:
a., non-dimensional equations for case 1.
i, Poison P:
2
é® & -2
e 2 %o 1-we (29)
> P P
5¢ ¢ 8¢
9 - n % (30)
33 - P (1 -9 P 3
Y=0; 12 &2 0 6 = 0 - (31)
¢P =1 ; £ =1 6 20 (32)
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3¢5 _ o £ =0 T 8-2 0 (33)
6 or ¢P=finite 8 > 0

and
2

2 ‘
‘5¢P+__2___ffbg=hP¢P. 0 = 0 (34)
§e2 ¢ 8¢

The solution to eguation (34) describes the distribution

of vpoison in the catalyst particles at é:: 6 = O, $
reoresents the extremely small interval of time required for
bringing the voids of the catalyst pellet to 2 "psuedo
steady" state for the first time. Equation (35) is a

solution for equationi(}h)

$p. Sinh hp ¢ at 8 = 0 , | (35)

ii, reactant A:

2
%y w2 Y in2age (36)
582 ¢ 0t . :

Y=0; 12§20 8 =0 (37)

¢ -1 £ =1 : 6 2 0 (38)

% o s-o0 o 2 ¢ (39)
8¢
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g 6¢A + 2 6¢k = h2 ¢ 8 = 0 (40)
2 5¢ AA
Equation (41) is the solution of equation (40) and
describes the initial concentration of A at 6= 8§ ~ O .
.* e
¢, = Sinh h, s 0 = 0 | (41)
¢ Sinh h
A
i;i. Intermediate !'B!?
% 36 2 2 |
6B+ 2 B:hB¢B-VhA (1"*")"5.&
2 & 8¢ (L2)
- 0¢ , )
Y =0 0<¢ <1 6 2 0 (43)
¢y = 0 ¢=1 8 > 0 (14)
00 :
B=0 ¢=0 8 20 (45)
6¢ ‘
and
2 _
8% 2 2
B+ 2 6¢B=h¢- vh ¢ :0 =0 (L6)
2 T Tae BB AR |
6¢ . ‘
-~ Hauestion (46) can be solved by substituting equation
(L1) for ¢A. The solution is
yhz 3imh h ¢ v?? Sinh h ¢
¢B= A 3 - A A
, = \ — e
hAa-héi fdlm1b8 sz wa) £ inn N,
(47)
8 & 0
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b. non-dimensional equations for case 2}
With the exception of equation (42), equationé
(29-47) describe equally well the non-diﬁensional
“intraparticle concentration of the various species in a

catalyst pellet deactivated for the reaction

as well as the reszction
B=——>7 (2) .

Equation (42) is replaced by equation (48):

2 : _ ,
&¢ ] 2 2
B o+ 2 % - (1 -9)% - vh, (1-P¢ (48)
2 £ B : A
5é E b
5. Selectivity SBFh: 'Modified Homogeneous Poisoning
¥odel?

Petersen (35) has.defined selectivity, SBF’ as
the ratio of the flux of the desired product to that of the
undesirasble product at the surface of the catalyst varticle.
Since in the present study the catalyst particle is
assumed to be getting progressively polsoned, Petersen's
(35) selectivity is equivalenﬁ to an instantaneous
/selectivity for the vurposes of the present investigation.

Fquation (49) gives this instantaneous selectivity;

BFh | 'DF‘C7Cf surface, t =t (49)
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Equation (49) can also be written as,

. - . : )
SBFh=— | o
1 +p ‘C7¢A
! ,vq&.’a_ - (50).

C; 'Shell Poiséning Model!

1. Description of chemical reactions:- The
description of chemical reactions for the 'Modified
Homogeneous Poisoning Model! given in section (Bl), is
gene?ally valid for the 'Shell Poisoning Model' also. The
difference, as pointed ouf before (page 2), lies in the

_/approach td polsoning of the catalyst particles. Whereas,
in the 'Shell Poisoning Model'! it is supposed that there is
a sharp boundary between the completely fouled and fresh
catalyst (at a position which changes with time), no such
sharp distinction of boundaries 1is assumed fér the
'Modified Homogeneous Poisoning Model!. The intraparticle
concentration equations for case 1, (catalyst particle
polsoned only for the reaction A—>B) and case 2 (catalyst
particle poisoned for both reaction A——B and reaction

\Be——>F), are derived in the following pages. In dealing
with the 'Shell Poisoning Model!', a "pseudo steady" state
treatment for the movemenf 6f the poison front is assumed.

2. Intraparticle concentration equations ('Shell
Poisoning Model!)

#*
a. Case 1l: Poisoning of catalyst for the reaction

%Treatment for case 1 follows that of Sada and Wen (37 J.
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A—B only:
1. The followlng set of mass balance equations

can be written for the poisoned fegion of the catalyst

- pellet:
V(DpVCp) =0 (51)
V(p, Vvc,) =0 | - (52)
V(D WCg) = PkCy - (53)

11, The set of equations that describe the
intraparticle conentration of the various species in the

B unpoisoned (or fresh)-region of the catalyst pellet are,

Cp=0 | | (54)
V(D’A VCZ) - pkAC,A “(55)
V(b5 = prgly - oy6y (56)

b. Case 23 Poisoning of catalyst for both
reaction A——=B and reaction B——F
Equations (57,58,59) describe the mass balance of P, A and

B respectively, in the polsoned shell of the catalyst

" pellet.
(D, VCp) =0 (57)
(D, VC,) =0 (58)
V(Dy V¢ =0 (59)
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Similar equations for the non-poisoned core are,

CP‘ |
P
(5, 7&,) = oGy (61)
- pxglp - p1,Cy (62).

(B Ep)
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3. Initial and boundary conditions for the 'Shell

Polsoning Model!': _ _A
Equationé (51-62) show the concentration of the

various reacting species in the péllet; Since the poisoning
process 1s assuméd to proceed from the outer surface
towards the inner region with a clear boundary between the
poisoned and the unpoisonéd regions of the catalyst, it is
reasonable to equate the concentration of 1pt to zero at
the boundary separating the fouled and the fresh parts of
the catalyét pellet; The,'Shell_Poisoning Model' also |
postulates that the polson front will move towards the centre
of the pellet with the passage of time, Thus, if at a
given instance of time 't', the position of the polson

front is r the concentration of 'P!' at the poison front

P'
is given by equation (63)

Cp =0 T = rP(t) (63).

It is also apparent that since no poison is present in the
unspoiled core, the rate at which the poison diffuses into
the fresh core equals the rate at which the active sites are

-~ lost. Thus,

DPV CP = - qu drP_ y I = rP ’ (64)
dt
also, Tp = Ty t =0 - (65).

If the Tresistance to diffusion in the gas phase is assumed

to be negligible, then,
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C, =¢C I‘=I‘O | . (66)

Boundary conditions for the concentration profiles of 'A!
and 'B' inside the pellet are obvious, Equations (67-73)

are the mathematical statements for these conditions; Thus,

/ .
/ . ‘
Ve, =VCy 1+ T=1p (63)
/
VCA =0 H r=20
/
or CA = finite; r = 0
and for negligible diffusion resistence in the gas phase;
. ¥* - ’
Cy =Cy r =T, (69).
Similarly,
/
CB = CB T = rP (70)’
7/
Vg =V Cp r =T f (7)),
v
and Veg=0 ) r=20 (72).
or CB = finite; r =0
The concentration of 'B! in the gas phase outside the
_catalyst pellet was assumed to be zero for the 'M.H,P.
Model!, The same assumption is made here, Thus,

As pointed out earlier (P.22, under certain conditions the

polsoning of the catalyst does not alter its physical
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characteristics., Thus,

7

D, =D, = constant (74).

I, Non-dimensionalised intraparticle concentration
equations. (!'Shell Poisoning Model!)
Assuming "pseudo steady" state treatment, the intraparticle
concentration equations (51-73) can be non-dimensionalised
to yield the following equationsé

a. Case 1: (catalyst is poisoned for the reaction

A— B)
1, Equations for the polsoned region¥
Poison E ,
d% a4 -
_1% + 2 P =0 12 EP_>_5 (75)
ds £ at
¢iP' = 1 H £= 1 (76)
¢p =0 £= EP . (?7) |
b at
it S
ag de £ = £ (78)
Reactant A
- 2 |
Yh v 2% oo (79)
qt 2 3 d¢
¢g =1 t=1 (80)
h=¢/ =g, (81)
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. 4 V
40 =29 E= ¢ (82)
at GY: P '
Intermendiate B
424 aé 2
__B +_2 _B=nhydy | (83)
2 ¢ df co .
at '
¢B =<0_ {'= 1 : - (84)
= ¢/ =
¢y = &3 g= t (85)
ao. ag.7, '
B/di— ¢B/d£ §= iP . (86)
i1, Equations for the non-poisoned core:
Poison P
-¢P=o ‘ szzzo | - (87)
o o 8 4oy (78)
dz de P
P
Reactant A
24/ ’
¢, o, 99, _ n? ¢; (88)
d.£2 ¢ d¢
/7
¢’  d
- 2% = (92)
£ £ p
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r N
= finit : =0
¢A nite 3
and
ad
A=0 g =0 (89)
dt
Intermediate B
2.7 a ’ 2 2 ,
1% + 2 B¢ ne (90)
dsz t dt B A
¢B = ¢B H (= EP (85)
a7 .
deg _ 4% , =k (86)
d& dg P .
¢}'3 = finite ; E=0 (95)
and
d U4
%o £=0 (91)
ag

B. Case 2: (catalyst is poisoned for reaction

A B, as well as for reaction B——F),

With the exception of equation (83), equations (75-91) of

subsection (la) describe the non-dimensional intraparticle

concentration of the species P,A, and B, for this case also.

Equation (83) is feplaced by |
a¢ d¢

5 ey , - (83a)
ag
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5. Selectivity SBFS

In the context of the !'Shell Model' for the
poisoning of the catalyst pellet, instantaneous selevtivity,

S y at a given instance of time 't!', is defined as the

BFs
ratio of the surface flux of the desired product *'B!, to

the surface flux of the undesired product 'F!, The given
instance of time 't', fixes the position of the poison front
in the spherical pellet; Thus, 'Shell Model' selectivity
can be calculated at various positions ( iP) of the poison
front; instead of various instances of time 't!?,

Simultaneous solution of equations (75-78) and equation (87),
can yleld an expression relating 6 to ZP, and thus fix the
position of the poison front in time. As in the case of the
‘tM.H.P, Model, the 'Shell Poisoning Model! instantaneous

selectivity, SBFs’ is given as

i ]

1 +v B4y for ¢ (50).

il
ooy
‘o

N
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. CHAPTER IV

SOLUTIONS OF 'MODIFIED HOMOGENEOUS fOISONING MODEL?*
~ AND 'SHELL POISONING MODEL®' EQUATIONS

For the sake of mathematical coﬁvenience v Wwas

assumed to be unity in the treatment of both the models,

A, Numerical calculations for the *M.,H.P. Model?!

selectivity S

BFh

1; Selectivity calculations for Case 1: (catalyst

B Only) .

poisoned for reaction A
| In order to evaluate the r,h.,s of equation (50),
non-dimensional equations (29-47) have to be solved
§imultaneously. It is not possible to obtain analytical
solutions describing the intraparticle concentration of P,
A and B as functions of time and position. Numerical finite
difference technlques however, are available, and were used
for computing the terms of the r.h.s of equation (50) in
order to calculate Spgy,. The procedure used 1ls outlined
below, J

Procedure:

i. Solution of poison equations:
The poison equation (30) 1is simulated first, In the finite

difference form 1t can be written as,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

Yt - Yon = ﬁ; (- wm,n)¢¥(m’n)
A9 |

or,
2 2
Yo, ne1 = [1 - Abhp c‘bP(m.n) ]wm.n * Adnp ¢P(m.n).

m=1,2,es.M

n=1,2,...N (93),
where, A6 is an increment along the non-dimensional time
axis. The 6 aXxis can be divided into a number of
subdivisions,((N-l) in this ins;canée), with 6 =~ O position
being labeled as 1., Similarly the  { axis can be
divided into (M-1) subdivisions. In this instance the
position & = 0 was labeled as 1 and § = 1 as M, VIn
order to initiate = the equation on the computer, values of
¢?(ﬁ,l);¢ﬁ,l and ¢b(M,n) are needed. These values can be
found from equations (35), (31) and (32), respectively.

For example, except for m = 1, equation (35) leads to

_ Sinh hP(m-l)Az
¢§0n,1) = -
(m-1) A¥Sinhh,

mo=2,3,...0 (94,

Equation (35) as stated on page (25) fails at m = 1, since

at ¢ =0 it gives a value of ¢b of the form 0 .
: 0

Hoﬁever, with the help of L'Hopital's rule,

eQuation (35) yields

%1,1) = Bp (95).
STnnh - |
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Equation (31) leads to
'/’m,l = 0 (96)

and equatlion (32) becomes
_ .,
¢%(M,n) (9?)-

The next equatlion to be simulated is the poison equation

(29)., In the finite difference form equation (29) becomes

: ¢P(m;1,n) - 2(;é’P(m,n) + ¢'P(m+1,n)
| A% |
o2 [¢P(m+%,n)  Yown)l| - o [-"’m,n]¢P(m,n)
(m-1) A%
| (982)
or
+ (-1) [__-_];] ¢P(m-1,n) +
m+1 .
G h2 n-11[1-¥  {+2m ¢P(m.n)+(~1)¢'P(m+1,n) = 0,
I s | L s
M = 2,., M2
n= 2,..0N (98b).
Where Af is the increment along the § axis, As & 0,

the second term on the £.h.s of the equation assumes the
form 2 (0/0). This is also reflected in the second term of
the £. h,s of equation (98a) for m = 1, if

2 B%(m+1,n)2- ¢%(m,n£] is expressed as,
(m1) A E
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? d :
2 [ P(m+l,n) - P(m,n)} //{;_1)
AL At |

The L'Hopital rule can again be used to overcome this

difficulty. By this rule

24 .
2 2% -2 5%
£ E E: o 652 I£= o. (99).

With this modification, equation (29) can be written as,

38% -0 k=0 (100)
2 . .
5t

end can be simulated as,

2¢ . K (1-v ¢
3 ¢%(2,n) ¢%(1,n)+¢%(-2,n) = P( - l.n) P(1,n)
’ AEZ (101)|

Equation (101) can be further simplified by taking into
account the spherical symmetry of the concentration
profiles, Thus,

v¢%(2,n) = ¢%(-2,n) (102).
Equation (102) when substituted into equation (101) ylields

2 2
6+ Af hP(1-¢i,n) ¢?(l,n) - ¢b(2,n) =0
6 ' n=2,3,...N

(103).

,

Other equations needed for starting the solution of

equation (98b) are
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%p(1,1) = p ‘ (95)
Siohn |
i hp
%(m,1) = Siob(m-1)4th, m=2,3...0  (o4)
AE(m-l)Sinth o
and ¢iP(M,n) =1 A n=1,2,...8 (97),

Equations (97), (98b) and (103) constitute a triangular set

of simultaneous equations of the fornm,

SBlP"’P('i,n) + S¢1p ¢P(2,n) : . : = Sp1p

]
()

' ®
SAZP ¢P(1,n)+ SBZP¢P(2,n) + Sczpl P(3,n) D2P

Sp3p®%(2,n) * SB3P(3,n) * Sc3p%(4,n) = Sp3p

Sa(m-2)p ®2(1-3,n) *+ \SB(M-Z)PéP(M-Z,n)
BSem-2)p *p(-1,m) ~ = Sp(u-2)p

Sy (-1)p%(M-2,n)  SB(M-1)P®P(1-1,m) = SD(M-1)P

n=2,3,¢¢.N (104)
where,
T g = - (i-1) 1 = 2,3,00.M=1 (105)
AL® (IF1)
2 2
SBlP:. 6 +At hP [1"”1,11] n=2,3,.s.N (106)
| 6
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S... = |At hS (1) [1_ ¥ _]
BiP P g i,n} + g;_
(if ) ' 1+l
ﬁscip = -1 1 = 1’2’3300;M-2
and
SDiP = 0 1 = 1;2,3.0.0M—2

.

Spm-1)p = 1

The intraparticle concentration profile of the

for n = 1 is given by equations (94,95 and 97).

of equations (104) yields values °f'¢P(1,n)’

i

n

42

2,3,0-.M~1

= 2,3,...N
(107)
(108)
(109)

(110).

species 'P!

Solution

= 1’2,00-M-1
= 2’3,000N .

Such a solution can be obtained by the use of the

Gaussian elimination process (for details see Part 1,

Appendix D).

Douglas (15) has shown that the round-off

error for this type of Gaussian elimination is less than the

discretisation error involved in writing the difference

equations for differential equations,

Thus, equations

- (93-97) and (104) can be solved simultaneously to get ¥Yas a

function of ¢ and 6.

11,

Solution of equations for the reactant A:

By using a treatment similar to the one

discussed in the preceding subsection, p.d.e's (36-41) can

also be written in the finite difference form.,

The
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difference equations for the reactant A are summarised

below:
N » )
% (1,1) = "a/Ss (111)
Sinh(m-1)Ath
¢A(m,l) = i A H m= 21390-0M (112)
' (m-1)4 £ Sinhh,
2 2 .
bz (6% By [1- AV 5+ n = 203een (129)
4 6
2 4 2 '
alm1,n) =[AE <hA ﬁ;i)(l' wm.n)>+ % ]¢A(m.n) +
(-1)(m-1) ¢ |
- (m+1) A(m-1,n)
m = 2.3,-..M"2
n = 2,3’000N (lll",’)
and
% (M,n) = 1 .. n=1,2,3..8 (115).

Equations (113-115) constitute another set of triangular

simultaneous algebraic equations., These can be written as

Sp1a°%a(1,n)+5c14%(2,n) ‘ = Spia
Sa2a % (1,n)+5828 %A (2,n)+ 28 %4 (3,n) = Spoa
5a38°%A(2,n)+°B3A %A (3,n)+°C38 %A (4, n) = Spap

Sp(M-2)A"A(M-3,1)+5B(M-2)A %A (M-2,n)+5C (M-2)A %A (M-1,n)= SD(H-2)A

S S
Sp(M-1)A *A(M-2,n)+ B(M-1)A %A (M-1,n) = “D(M-1)A,

n = 2’3'000N (116).
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where,
Sa1a = -(1-1) L= 2,3,...0-1 (117)
i+1 -
é i K (1 Y ) o
i

' 2 2 '
SB].A — <A€hA E—:l; (l- l/}i,n)-'- %) ’ i= 253,.--M-1

ns= 2,3.'00|N (119)
Scia = -l 1=1,2,...M-2 (120)
Spia = O 1=1,2,,..8-2 (121)
Sp(M-1)a =1 (122)

Equations (111), (112) and (115) describe the concentration

profile of ?A in the particle, for n = 1, If wh,n is

known; ?h(i,n)‘ 1= 1,2,;Q;M-1 can be easily found, From
n = 2'3;0~'N

a knowledge of ?k(i,n)’ VQA[E_ L at any value of 6 can be

easily computed, Equation (123) gives the required

expression
=0 d = 0 -® .
alpziz Za ] = Dh@anm
. £ Y
n=1,2,...8N (123)
111, Solution of equations for the intermediate
B:

FPinite difference equations corresponding

to equations (111-123) for A, can also be written for B.
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Solutions for these finite difference equations are also

found similarly. The difference equations for B are

listed below:

N _ ‘
h, h h

*8(1,1) <[ "a i B - _A
\py -t/ [Sinh np  Sink by s (124)
h?' rSinhh ] 1) Sinhh. (m-1)A¢
Bm,1) ={_a plm-llat A
EE -h2 | (m-1)88Sinhh_  (m-1)AfSinhn,
mo=2.,3,...0 (125)
o . ferse i o f"z[w
Bz,n) [T A s S, myacen) [ A0 B (1%L,
6 6
o  n=2,3,...N (126a)
2 2 o
% At h (m-1)+2m g +(-1)(m-1) g
B(m+l,n) = B (%:j) m+1| B(m,n) (m+1) B(m-1,n)
2 2 o
+('1)[Ae A gz—;%g(l'wm.n) ¢A(_m.n) ;
‘ m=2,3,...M-2
n = 2.3,0.'N (lz?a)
éB(M,n) =0

n = 1,2,0'¢N (128)0
The corresponding set of triangular algebraic equations

resulting from equations (126a-128) are as follows:
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SB1B¢B(1.n)+SClB¢B(2,n) = Sp1B
8p25%(1,n)+ B2B®B(2,1)4+5c28%8(3,n) = Sp2n
Sa38%B(2,n)+°B38%8(3,n)+°C38%B(4,n) - Sp3B
— R S - V .
S (11-2)B®B(M-3,n) + B(M-2)B*B(M-2)+ ¢ (M-2)B*B(M-1,n)= SD(M-2)B
s
Sp(M-1)B%B(M-2,n)+ B(M-1)B*B(M-1,n) - Spor-1)B
n=2,3,¢s.N (129)
where, '
S = 1-1 1 =2,3,00.M=1 (130)
2 2
Spyp =[6 +A%¢ hp | (131a)
6
S hg (1-1) + 21 1=2,3,... M1 (132a)
BiB iyl 1:1 | | |
- =1,2,... M2 (133)
Seip = -1 1=1 33)
2 2
Sp1B =(Ae by [1" wi.n]>¢A(l.-h) (134)
é | A=2,3,000 N (135)
& n? (1  (1.1) | |
"pip =4 Hy ( Vi) ) 4 CasL, w (136)

n=2,3,... N

The intraparticle concentration of intermediate B at n=1

is given by equations (124), (125) and (128), Once wi,n

and ¢A(i ) are known, equations (129) can be solved to
N : o .
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obtain |
' 1=1,2,000 M-1.
¢B(1,n)' | g *
n = 2,3,-:0 N
Having found ¢B(1 n)’ it is easy to compute
’ .
¢1¢BI Z=i,. Equation (137) can be used for this purpose.
|9=9= B = _ ®B(m1,m) n=2,3,... N (137).
g: §=1" 3¢ f- I

Tt is obvious that the knowledge of the terms on the .£.h,
sides of equations (123) and (137), ls all that is required

for computing S__. from equation (50),

BFh
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2, Selectivity Calculations for Case 2. ( Catalyst

is poisoned for both reaction A B and reaction B——F )i-
Equations (93-137) of the previous section, with

the exception of équations (126a),(1272),(1312a), and (132a)

describe équally well, the intraparticle cohcentr;tion of

various species when the catalyst pellet has been poisoned

for both the reaction A B and the reaction B B,
Equations (126a),(1272),(131a) and (132a) are replaced
respectively, by equations (126b), (127b), (131b) and (132b).

The new equations are glven below:

.2 2 . : 2 2
%8(2,n) <6+A£ " <1-¢1,n)> B(1,n) ‘-<AE By (l"pl,n)> “a(1,n)
6 , 6
n=2,3... N (126b)

~

2 2
- -1)+2 . -{m-1
¢B(m+1»n)=<A£ n, (2 %;n)gﬁnrﬁﬁ) *a(myn)” (5T) *B(me1,m)

2 2 L
_ <%$ h, (ﬁi%)<l—¢h-n)> fA(m,n)

M= 2y3yee0 M-2
n=2,3000 N (127v)
. 2 2
- = [6+2 % h™ (1~ ; ‘
SB:LB ( e B ( ) wl,n)) ! n = 2!39 co e N (131b)
6
S =[o & hp (1. ¥ V/1-1 + 21 ;
BiB ( B ( . 1'n)(1+1) E:3>

1 =2,3,000 M-1
n = 2,3,..- N (132b)-
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B, Analytical Expressions for the Shell Poisoning

Model Se;ectivity SBES

l. Intraparticle VCgpggntration_Profiles of P, A
. * .
and B for Case 1 ( Catalyst is poisoned for the reaction

A B only ) i-

‘a. Concentration Profile for Species P
'_1; Polsoned Regilon:
Equations (75-77) can be solved
simultaneously to get the‘pseudo-steady staté concéntration

profile of 'P' in the polisoned shell of the pellet,

Equation (138) gives such a profile

s, = £-%p £ 1 (138)
EQJ%)
11, anfPoisbned Region:
o, o '
d% = 0 0 < E—S EP (87)

1ii, Location of the Poison Front,
The simultaneous solution of equations

(78) and (138) yields an expressionlrelating, ¢ — the

dimensionless time, and §P- the position of the poison

front, inside the catalyst pellet,
' Equation (139) shows this relationship

0 = ;~ <(1- gP)z (1+2:zp)> (139).

6

*This treatment follows that of Sada and Wen (37).
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Concentration Profile for Reactant As-
A simultaneous solution of equations (79-82) and

(88, 89 and 92) gives the concentration profiles for the

reactant A.

1 ., The poisoned region profile is given as,

% = NG _:P\) ,  vennh EP‘ » £—"SEPSI (1%0)
| E(hA ( 1- EP)+ ' 1:'amhhA EP)J

11 . The non-poisoned region concentration is
given by equation (141)
4 ,
4 - Sinh hyZ

ECosh hAgp(hA (1- zp>+ ' tghhlhAEP)

Concentration Profile for the Intermediate B:s-
The intraparticle Eéncentration profile of B for
both the poisoned and the non-poisoned regions of the catalyst

can be obtained by solving the equations (83-86) and
(90, 91, and 95).

« The profile for the poisoned region is
given by equation (142).

~ Sinh(1-£)h
= & (1-8)h, ¢ <<l (142)
T Simn ng 3

B

where,
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h2
A

g
e - ( -hb 2)(tanh By £P+hé. (1' EI))COHS'?I hAEP>

¥*

AP

<(31nh hB- Cosh( hy —' hp EPj ‘ smh hB EP) hg Sinh h, ¢ )__'

hg ‘Sinh(1- %)hyg

;
(hA Sinh(hg &) Cosh(h, ;) Sinh(1- P)hB>

Sinh(1l- &)h
B PR (143)

1i. Similarly the profile for the non-poisoned

reglon can be written as,

/ , - 2
¢B =- ( — hA )*
(hA - hg )(tanh n, & + hA(l- sP)) Cosh h &,
Sinh h g./Sinh h_¢& \
__ﬁf_.) - 2(_____3__.) (144)
£ £ |
where,

Cosh(h - h 3 )Sinh(

P)

- -E)h +h
g, = (1 Cosh(lqAII;Sinh(l S)hy + hy

hp Sinh hB
0L EsEy (145).
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2. Concentration prdfiles for Case 21 (cafalyst
poisoned for both the reactions A——B and B—F),
As far as the concentration profiles of 'P!
and 'A' are concerned, equations (138-141) and (8?)
describe them fér case 2, as Weli; Only the pfofile
of 'B' is different. The concentration profile cof 'B?,

pertinent to this case, is given by the eQuations listed

below¥

1. Pdisbned région profile:
: *s = 852 (146)
where,
h 2
83 = ~ 2. - A *
(hA -hg )(SinhhAGP + h,(1- &) Cosh hy fP)

e . g :
h,Cosh(h, &) Sinh hy¢, - hCosh(h_ P)Sinh(hA eP)

Sirhh_BﬁP + (1- §P)hBCosh hB fP

0Lt (147)
ii, Non-poisohed reglion profile:
! 2
0sB - o~ hA #*
N 2 ”
- _ % ¢
L(hA hy )(Sinh h, & +(1- )b Cosh (n, P))
Sinh hy ¢, - g, Sinh thl )
¢ J
: o<e<t,  (148)
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where,

= h ¢ (1~ b,
gy, Sinh h, p* (1 €P)hACosh ﬁAeP

(l-éP)hBCosh hpép + Sinh hypty

(149),

-3¢ --Selectivity SBFS

a; Selectivity for Case 1:

An expression for the tern,

(e 0,

can be easily derived.from equations (140) and (142). This

 _§§?§9§§1on, when substituted in equation (50),

SBFsl="" 1
1 +]Ve ¢ =1
[—-—-A] ¢ =¢
Vﬁb P
= — ; 1 | :
1+<[(d¢A/de)€=1]“(dd>B/d€)E=1] ¢ =t (50)
yields, 7
SBFsl - 1 v : (150)

[tha/my) - my/ng)] s, - 2

where, , .
tanh bAgP' - €P Sinh hB
—————HK——

-—

o
n

< tath h,ép _ b, tanh hB€P>Cosh hBeP
h

B (151),
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" b. Selectivity for Case 2 .
The corresponding expression for SBFs for
the case where the catalyst has been poisoned for both the

reaction A—B and the reaction B—F is given as,

S = 1 ' :
BFsz & - [‘iwz] | (152),
where, : ' : ‘
- tanh ,
By = E_,P L | (153)

| 53[% ( -$P)+ tanh hy ép]

and g31s the same as defined by the equation (143),
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CHAPTER V .

RESULTS

TABIE 1.1

Catalyst is poisoned for the reaction A—>3 only.
hA (Thiele Modulus) for A = 2.5

hp (Thiele Modulus) for B = 1.0
SHELL POISONING MODEL

NO 6 , S

- °BF

1 0.0172 10.132
2 0.034L4 8,649
3 0.0516 7.80L
4 0.0688 7.230
) 5 0.0860 6.822
6 0.1032 6.487
7 0.1204 6.217
8 0.1376 5.996
9 0.1548 5.813

55
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TABLE 1.2

Catalyst is poisoned for the reaction A—B only

hA (Thiele Modulus) for A = 2.5
hB (Thiele Fodulus) for B = 1.0

hP (Thiele Modulus) for P = 1.0

'‘M.H.P, MODEL!

e

=
o,

0.0172
0.0334
0.0516
0.0688
0.0860
0.1032
0.1204
0.1376

V0 N o oW

0.,1548

SgR

16,707
16.671
16.636
16,601
16.567
16.533
16.500
16,467
16.435

56
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TABLE 1.3

Catalyst is poisoned for the reaction A—3D only

hy (Thiele Mndulus) for A = 2.5
hB (Thiele Modulus) for B = 1.0

h, (Thiele Modulus) for P = 4,0

'M.H.P. MODEL!

]

2
O

0.0172
0.0344
0.0516
0.0688
0.0860
0.1032
0.1204

0.1376

O 0N 0N Wy

0.1548

SBF

15.942
15.213
14,553
13.957
13.423
12,946
12,524
12,153

11.829

57
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TABLE 1.4

Catalyst is poisoned for the reaction A—=E only
hy (Thiele Modulus) for A = 2.5
1.0

hg (Thiele Modulus) for B

]

hP (Thiele Modulus) for P 10.0

*M,H.P. MODEL!'

NO 0 Sgp
1 10,0172 13.173
2 0.0344 10.960
3 0.0516 9.580
b 0.0688 8.668
5 0.0860 8,028
6 0.1032 74555
7 0.120L 7.196
y 8 0.1376 6.924
9 0.1548 6.727
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TABLE 1.5

Catalyst is poisoned for reaction A—2 only

hA(Thiele Modulus) for A = 2.5

]

hB(Thiele Modulus) for B 1.0

hP(Thiele Modulus) for P

50.0

*M,H.P. MODEL!

NO e

SBF
1 0.0172 10,40k
2 0,034k 8.861
3 0.0516 7.991
L 0.0638 7.405
5 0.0860 6.974
6 0.1032 6.643
7 0.1204 6.380
8 0.1376 6.169
\ 9 9.1548 5.968
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TABLE 1.6

Catalyst is poisoned for the reaction A—=3 only
hy (Thiele Modulus) for A = 5.0

1.0

hg (Thiele Modulus) for B

SHELL POISONING HODEL

NO 0 Spw

1 0.0172 11.012

2 0,03k 9.085

3 0.0516 8.049

I 0.0683 ©7.371

5 0.0860 6.905

6 0.1032 - 6531

7 0.120L 6.237

8 0.1376 6,003

- 9 0.1548 5.81L
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TABIE 1.7
Catalyst is poisoned for reaction A—3B only
hA (Thiele hodulus)_for A =5,0
hy (Thiele Yodulus) for B = 1.0
1.00

hP (Thiele Modulus) for P

'M.H.P. MODEL!

NO 0 Spp
1 0.0172 21,256
2 0.03bk 21.170
3 0.0516 _ 21,08
4 0.0688 21.000
5 0.0860 20.915
6 0.1032 © 20.831
7 0.1204 20.749
8 0.1376 20.667
\ 9 0.1548 20.586
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TABLE 1.8

Catalyst is poisoned for the reaction A—3 only

hA (Thiele lodulus) for A = 5,0

hB (Thiele HModulus) for B 1.0

hP (Thiele Modulus) for P = 4.0

'M.H.P. MODEL!

NO ) Spp

1 0.0172 20.007
2 0,0344 18.786
3 0.0516 17.675
b 0.0688 16,669
5 0.0860 15.763
6 0.1032 14,952
7 0.1204 14,230
8 0.1376 13.592
9 0.1548 13.033
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TABLE 1.9

Catalyst is poisoned for the reaction A—3 only
hA (Thiele Modulus) for A = 5.0
hy (Thiele HModulus) for B = 1.0

hp (Thiele Modulus) for P = 10.0

'M.H.P., MODEL!

NO G : Spm
1 6.0172 15,852
2 0.03kk 12,511
3 0.0516 | 10.509
L 0.0658 9e24140
5 0.0860 863894
6 0,1032 747738
7 0.1204 763301
8 0.,1376 649963
9

0.1.548 6e759L
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TABLE 1,10

Catalyst is poisoned for the reaction A—3 only
h, (Thiele Modulus) for A = 5.0
hy (Thiele Modulus) for B = 1.0

hP (Thiele Modulus) for P = 50,0

'M.H.P. MODEL'

NO 0 Spp

1 0.0172 11.353

2 0.03u4k 9.326

3 0.0516 8.250

b 0.0688 7.552

5 0.0860 7.056

6 0.1032 6.685

7 0,120k 6.398

) 8 0.1376 6.175
9 0.1548 5.965
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TABIE 1,11

Catalsyt is poisoned for the reaction A——E only
hA (Thiele Modulus) for A = 10.0

1.0

hB (Thiele ¥Modulus) for B

SHELL POISONING MODEL

=]
O

] S

BF
1 0.0172 12,532
2 0.0344 9,864
3 0.0516 8,515
L 0.0688  7.662
5 0.0860 7.089
6 0.1032  6.638
7 N.1204 6,293
8 0.1376 6.025
9 0.1548 5.818
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TABLE 1.12

Catalyst is poisoned for reaction A——3 only

hy (Thiele Modulus) for A = 10,0
hg (Thiele Modulus) for B = 1.0

hp (Thiele Modulus) for P = 1.0

'*M.H.P. MODEL!®

NO 0
1 0.0172
2 00,0344
3 0.0516
4 0.0688
5 0.0860
6 0.1032
7 0.1204
] 8 0.1376
9 0.1548

Sgpp

31.208
31.048
30.889
30.731
30.574
30,418
30.262
30.108
29,954

66
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TABLE 1,13

Catalvst is poisoned for the resction A—32 only
hA (Thiele Modulus) for A = 10,0

1.0

hy (Thiele Modulus) for B

hp (Thiele Modulusg) for P = 4,0

‘M.H.,P. MODEL!

NO 0 Spr
1 0.0172 29,117
2 | 0.0334 27,016
3 0.0516 25,069
L 0.0688 23.277
5 0.0860 21,637
6 0.1032 20,143
7 0.1204 18,789
8 0.1376 17.570
\ 9 0,1548 16,077
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TABIE 1.1L4

Catalyst is poisoned for the reaction A——32 only
hy (Thiele Modulus) for A = 10.0
1.0

hB (Thiele Modulus) for B

hP (Thiele Modulus) for P = 10.0

'M,H.P. MODEL!

NO 6 Spw
1 0.0172 21.936
2 0.0334 16,078
3 0.0516 12,672
b 0.0688 10.619
5 0.0860 9.293
6 0.1032 8.376
7 0.1204 7.713
8 0.1376 7.223
- 9 0.1548 6.872
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TABLE 1.15

Catalyst is poisoned for the reaction A —3 only

10,0

h, (Thiele Modulus) for A

1.0

hB (Thiele Modulus) for B

hP (Thiele Modulus) for P = 50,0

*M.H.P. MODEL!

] S

=
o

BF
1 0.0172 13.071

2 0.0334 10,196

3 0.0516 8.76L

L 0.0688 7.869

5 0.0860 7.249

] 6 0.1032 6.796

7 0.1204 6.454

\ 8 0.1376 6.193
9 0.1548 5.954
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TABIE 2.1

Catalyst is poisoned for both the reasction A——2 and
the reaction B—>T

h, (Thiele Modulus) for A = 2.5

A

hB (Thiele Modulus) for B 1.0

SHELL POISONING MODEL

NO 0 Spr
1 0.0172 12.463
2 0.034k 12,679
3 0.0516 13.668
L 0.0688 15.344
5 0.0860 17.796
6 0.1032 21.893
7 0.1204 29.164
8 0.1376 45,118
) 9 0.1548 106,848
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TABLE 2.2
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Catalyst is polsoned for both the reaction A——B and

the resction B—F

hA (Thiele Modulus) for A

hB (Thiele Modulus) for B

hP (Thiele Modulus) for P = 1.0

‘M.H.P., MODEL!

2
o

e

0.0172
0.0344
0.0516
0.0688
0.0860
0.1032
0.1204

0.1376

O O N O W oW N

0.1548

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5
1.0

BF

16.965
17.192
17422
17.657
17.895
18,137
18,384
18,635
18.890



"TABLE 2,3

72

Catalyst is poisoned for both the reaction A~—>B and

the . B——T

.

h, (Thiele Modulus) for A

hB (Thiele Modulus) for B

i

hP (Thiele Modulus) for P = 4.0

*M.H.P. MODEL'

=
o

e

0.0172
0.0344
0.0516
0.0688
0.0860
0.1032
0.1204

0.1376

O 00 NN o WD

0.1548
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2.5
1.0

Spr

17.935
19.345
21.024
23.044
25.500
28.513
32,244
36.905

42,781
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TABLE 2.4

Catalyst is poisoned for both the reaction A——B and
the reaction B—>TF

hA (Thiele Modulus) for A

i

2.5
hB (Thiele Modulus) for B = 1.0

hP (Thiele Modulus) for P = 10.0

*M.H.P. MODEL!

NO 0 Spp
1 0.0172 16.062
2 0,034k 16,134
3 0.0516 17.086
4 0.0688 19,008
5 0.0860 22,221
6 0.1032 27,54
7 0.1204 37.005

- 8 0.1376 56.374
9 0.1548 106,694
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TABLE 2.5
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Catalyst is poisoned for both the reaction A—>RB and

the reaction B——T
hA (Thiele Hodulus) for A
hy, (Thiele Modulus) for B

hP (Thiele Modulus) for P

—

2.5
1.0
50,0

'M,H.P. MODEL!

NO Sgp
1 0.0172 12,771
2 0,034l 13.005
3 .0.0516 14,074
4 0.0688 15.906
5 0.0860 18.814
6 0.1032 23,644
7 0.1204 32,744

- 8 0.1376 55.493
9 0.1548 208.206
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TABLE 2.6
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Catalyst is poisoned for both the reaction A—=3 and

the reaction BE—TF,

hA (Thiele Modulus) for A = 5.0

hy (Thiele ¥odulus) for B = 1.0

SHELL POISONING MODEL

]

=
o

0.0172
0,034k
0.0516
0.0688
0.0860

0.1032

0.1376

W O ~ o8 v oW DD

0.1548

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.1204

Spp

13.796
13.604
14.398
15.952
18.321
22,349
29.563
L5, LES
107.14
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TABLE 2,7

Catalyst is poisoned for both the reaction A—3 and
the reaction BT
hy (Thiele tlodulus) for A = 5.0

B

h. (Thiele Modulus) for B = 1.0
hp (Thiele Modulus) for P

= 1-0

'M.H.P. MODEL!

NO 0 Sgp
1 0.,0172 21.584
2 0.0344 21.829
3 0.0516 22,077
L 0.0688 22,329
5 0.0860 22,585
6 0.1032 22,845
7 0.1204 23,110
\ 8 0.1376 23,378
9 0.1548 23.651
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TABLE 2.8

Catalyst is poisoned for both the reaction A——3 and
the reaction B——T7

hy (Thiele lModulus) for A = 5.0

1.0
L.,o

hB (Thiele Modulus) for B

-

hP (Thiéle Yodulus) for P

*M.H.P. MODEL!

NO 0 Sgy
1 0.0172 22,615
2 0,0344 - 24,091
3 ’0.0516 25,827
b4 0.0688 27.898
5 0.0860 30,398
6 0.1032 33.450
7 0.1204 37.217
\ 8 0.1376 | 41,912
9 0.1548 47,819
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TABIE 2.9

Catalyst is poisoned for both the reaction A——2 an
the reaction B=—T

hA (Thiele Nodulus) for A = 5.0
hB (Thiele Modulus) for B = 1.0
hy (Thiele lModulus) for P = 10.0

*M.H.P. MODEL!

NO 0 Sgp
1 0.0172 19.723
2 0.0344 - 18.975
3 0.051¢€ 19,384
L 0.0688 20.970
5 0.0860 23,978
6 0.1032 29.179
Vi 0.1204 38.573
\ 8 0.1376 57.918
9 | 0.1548 108,245
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TABLE 2,10

Catalyst is voiscned for both the reaction A—>1 and
the reaction B—>T
hA (Thiele Modulus) for A 5.0

hB (Thiele Modulus) for B = 1.0

i

hy (Thiele lModulus) for P = 50.0

'M.H.P. MODEL!

NO 0 SBF
1 0.0172 14,201
2 0.0344 13.992
3 0.0516 14,849
L 0.0688 16.550
5 0.0860 19.367
6 6.1032 24,130
. 7 10,1204 33.178
8 0.1376 55.885
9 0.,1548 208.497
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TABLE 2,11

Catalyst is poisoned for both the reaction A—=3 gngd
the reaction B—sT

hA (Thiele ¥Modulus) for A = 10.0

hB (Thiele Modulus) for B = 1.0

SHELL POISONING IODEL

b
O

0 S

1 0.0172 16?219
2 0.0344 15.361
3 0.0516 15.874
b 0.0688 17.278
5 0.0860 19.561
6 0.1032 23.533
7 0.120L4 30.710
8 0.1376 46,581
9 0.1548 108,208
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2,12

Catalyst is poisbned for both the reaction A——3 and

the reaction B——>T
hA (Thiele Modulus) for A
hB (Thiele Modulus) for B

hy, (Thiele Modulus) for P

'M.H.

NOC
1 0.
2 0.
3 0.
b 0.
5 0.
6 0.
- 7 0.
8 0.
0.

\O

= 10.0
= 1.0
= 1.0
P. MODEL!

® - Spp
0172 31.689
03k 32,013
0516 32,342
0688 32,675
0860 33,013
1032 33.355
1204 33.701
1376 34,052

1548 34,407
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TABLE 2,13

Catalyst is poisoned for both the reaction A—2 and
the reaction B—>F
hA (Thiele Modulus) for A = 10.0

hp (Thiele Modulus) for B = 1.0

h, (Thiele Modulus) for P = 4,0

'M.H.P. MODEL!

NO 8 Spp

1 0.0172 33.178

2 0.034% ) 35,182

3 0.0516 37,442

b 0.0688 - 40.038

5 0.0860 43,071

| 6 0.1032 16,671

- 7 0.1204 51,002
8 0.1376 56,281

9 0.1548 62,791
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TABLE 2,14

Catalyst is poisoned for both the reaction A—— 2 and
the reaction B—>7T

10.0

hA (Thiele Modulus) for A
hB (Thiele Modulus) for B = 1.0

hP (Thiele Yodulus) for P = 10,0

'M.H.P, MODEL'

2
o
@
(2]

BF
1 0.0172 28,355
2 0.034L 25.872
3 0.0516 25,080
b 0.0688 25,987
5 0.0860 28,678
é 0.1032 33.815
7 0.1204 43,348

\ 8 0.1376 63,014
9 0.1543 113.809
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TABLE 2.15

Catalyst is poisoned for both the reaction A——3 and
the reaction B—T

hA (Thiele Modulus) for A = 10.0

i
[
o

hB (Thiele ¥odulus) for B

i
63

O

o

hP (Thiele Modulus) for P

'M.H.P, MODEL!

NO 0 Spm
1 0.0172 16.929
2 0.034L 15.959
3 0.0516 16.500
L 0.0688 | 18,030
5 0.0860 20,752
6 0.1032 25.470
7 0.1204 34,505
) 8 0.1376 57,224
9 0.1548 209.593
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*
TABLE 3.1

Catalyst is poisoned for the reaction A——3B only.

6 = 0.0516 hg = 1.0 hy = 2.5 h, = 1.0

W OsTTIoN ?A‘_ % % v

1 1.000 1.0000 0.0000 1.0000 0.0503
2 0.800 0.7619 0.2209 0.9481 0.0470
3 0.600 0.6059 0.3594 0.9091 0.0L57
b 0.400 0.5090 0.4421 0.8822 0.0443
5 0.200 0.4571 0.4851 0.8666 0.0436
6 0.000 0.4417 0.4977 0.8618 0.0433

*Tables (3.,1-3.36) display results based on the 'M,H,P. Model!?
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Catalyst is poisoned for the reaction A—3 only.

NO.

RADIAL

h

POSITION

N W N e

Reproduced with permission

1.000
0,800
0.600
0.400
o.éoo

0.000

B

TABLE 3.2

= 1,0

%

1.,0000
0.7672
0.6735

10,5182,

00,4667
0.4514

hA = 2.5

éB

0.0000

0.2160 -

0.3522
074339

0.4766

0.4891

hP = 1,0

A

1.0000
0.9496
0.9117
0.8855
0,8703
0,8657

86

¥

0.0824
0.0783
0.0751
0.0730
0.0717
0.0713
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Catalyst is poisoned for the reaction A— B only .

NO. RADIAL
POSITION

1.000
0.800
0.600
0.400

0.200

N \n = W \V] -4

0,000

TABLE 3.3

- l.o

ék

1.0000

0.772k4
0.6218
0.5273
0.4763
0.4612

fy

= 2.5

@
B

0.0000
0.2110
0.3450
0.4258
0.4681

0.4805

h, = 1.0

p =

%
1.0000
0.9511
0.9142
0.3887
0.8739
0.8694

87

!/

0.1134

0.1079
0.1037
0.1000
0.0992
0.0986
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Catalyst is poisoned for the reaction A——3 only .

TABLE 3.4

6 = 0,1548 hg = 1.0

o momr o g
1 1.000 1.0000
2 0.800 0.7776
3 0.600 0.6296
I 0.400 0,536k
5 0.200 0.4860
6 0.000 0.4710

= 2.5

%

0.0000
0.2062

0.3379

0.4176
0.4595

0.4718

hp = 1.0

¢

P
1.0000
0.9525
0.9167
0.8918
0.8775
0.8730

88

Y

0.1434
0.1367
0.1315
0.1280
0.1259
0.1253
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Catalyst is poisoned for the reaction A—3 only

¢ = 0.0516 hB

NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

L 0.400

5 0.200

€ 0.000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 3.5

= 100

?Q_

1,0000
0.8218
0.6845
0.5905
0.5373
0.5212

~

h, = 2.5

0.0000
0.1645
0.2876
0.3697
0.4153
0.4289

h = 4,0

P

1.0000
0.6685
0.,4499
0.3202
0.2543
0.2354

89

¥

 0.56L5

0.4007
0.2782
0.2004
0.1596
0.,1477



TABLE 3.6

Catalyst is poisoned for the reaction

B

8 = 0,0860 h. = 1.0

NO RADIAL
POSITION

1.000
0.800
0,600
0.400

0.200

N W oo

0.000

1.0000

0.8615
0. 7440
0.6578
0.6070
0.5913

hy

= 2,5

¢

0.0000
0.1275
0.2332
0.3095
0.3538
0.3674

A—>3B only,

hP = 14,0

o -
P

1.0000
0.7315
0.5293
0.3971
0.3259
0.3049
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2

0.7498
0.5930
0.4438
0.3433
0.2830
0.2648



Catalyst is poisoned for the reaction A—=B only.

NO RADIAL
: POSITION

1.000
0.800
0.600
0.400

0.200

(o NN S = U B VN

0.000

TABLE 3.7

v= 100

;!

1:oooo
0.8960
0.8003
0.7255
0.6793
0.6648

h, = 2.5

%

0.0000
0.0954
0.1818
0.2487
0.2895
0,3023

hP = LL.O

b

1.0000
0.7893
0.6119
0.4849
0.4122
0.3902

91

Y
0.8562
0.7327
0.5976
0.4846
0,414k
0.3923
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TABLE 3.8

Catalyst is poisoned for the reaction A —B only-

0 = 0.1548  nh = 1.0 hy = 2.5 . hp = 4.0

Y mostrion % % % v

1 1.000 1.0000 0.0000  1.0000 0.917L
2 0.800 0.,9248 0.0687°  0.8407 0.8298
3 0.600 0.8511 0.1355  0.6939 0.719%
4 0.400  0.7900 0.1905  0,5800 0.6156
5 0.200 0.7507 0.2256  0.5109 0.5456
6 0.000 0.7381 0.2368  0.4893  0.5227
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TABLE 3.9

Catalyst is poisoned for the reaction A——= 3 only.

68 = 0.,0516 hg = 1.0 h, = 2.5 ‘ hy = 10.0
Y postoton A % % v
1 1.000 1.0000  0.0000  1.0000  0.9954
2 0.800 0.8861 0.1034%  0.5373 0.8398
3 0.600  0.7487 0.2289  0,1716 0.3647
L 0.400 0.6364 0.3305  0.0432 0.1003
5 0.200 0.5712 0.3886  0.0130 0.0307
6 0.000 0.5515 0.4060  0.0078 0.0186
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TABLE 3.10

Catelyst is poisoned for the reaction A~—3 only.

8 = 0.0860 hp = 1.0 hA

o mem
1 1.000 1.0000
2 0.800  0.9387
3 0.600 0.8477
4 0.400 0.7462
5 0.200 0.6768
6 0.000 0.6547

= 2.5

%

0.0000
0.0548
0.1379
0.2318
0.2959
0.3162

P = 10.0

%

1.0000
0.7244
0.3655
0.1209
0.0401
0.02u9v

94

0.9998
0.9831
0.7430
0.3060
0.1070
0.0666
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TABLE 3,11

Catalyst is poisoned for the reaction A—3 only,

6 = 0.1204 hy = 1.0 hy = 2.5 h, = 10.0

He ng?%igN %ﬁ 3 ¢% ¢¥ 4

1 1.000 1.0000 0.0000 1,0000 0.9999
2 0.800 0.9720 0.0247 0.8425 0.9989
3 0,600 0.9275 0.0651 0.5977 0.9522
L 0.400 0.8618 0.1266 0.3013 0.6506
5 0.200 0.801L4 0.1836 0.1273 0.3088
6 0.000 0.7797  0.2042 0.0851 0.2082

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

TABLE 3.12

Catalyst is poisoned for the reaction A=—>2 only.

0= 0.1548  hy = 1.0 h, = 2.5 hp = 10.0

T postrion % % v

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.9921 0.0068 0.9297 0.9999
3 0.600 0.9795 0.0182 0.8162 0.99€0
b 0.400 0.9578\ 0.0386 0.6285 0.9277
5 0.200 0.9296 0.0655 0.4197 0.7023
£ 0.000 0.9167 0.0781 0.3388 0.57Lk4
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TABLE 3.13

Catalyst is poisoned for the reaction A—E only,

0 = 0,0516  hy = 1.0 h, = 5.0 hy = 1.0

o ng¥%%gN B % % % 4

1 1,000 1.0000 0.0000  1.0000 0.0503

2 0.800 0.4786 0.4876  0.9481 0.0477

3 0.600 0.2442 0.6898  0.9091 0.0457

L 0.400 0.1385 0.7709  0.8822 0.04L3
| ; 0.200 0.0937 0.8007  0.8666 0.0436

; 0.000 0.0820 - 0.8078  0.8618 0.0433
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TABLE 3.14

Catalyst is poisoned for the reaction A—>3 only.

& = 0,0860 hy = 1.0 h, = 5.0 hp = 1.0

S A A
1 1.000 1.0000 0.0000 1.0000 0.0824
2 0.800 0.4860 0.4805 0.9496 0.0763
3 0.600 0.2516 0.6830 0.9117 0.0751
4 0.400 0.,14L46 0.7656 0.8855 0.0730
5 0.200 0.0983 0.7965 0,8703 0.0717
6 0.000  0.0868 0.8039  0.8657 0.0713
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TABLE 3.15

Catalyst is voisoned for the reaction A—3 only,

6 = 0.1204 hy = 1.0 hy = 5.0 hp = 1.0

e ng?%ggw Qx ¢% ¢% 4

1 1.000 1.0000 0.0000 1.0000 0.113L
2 0.800 0.4934 0.4735 0.9511 0.1079
3 0.600 0.2592 0.6762 0.9142 0.1037
b .o.uoo 0.1509 0.7601 0.8887 0.1003
5 0.200 0.1042 0.7921 0.8739 0.0092
4 0.000 . 0Q0918 0.7993 0.8694 0.0936
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Catalyst is poisoned for the reaction A—3 only.

TABLE 3.16

6 = 0,1548 hg = 1.0

NO RADIAL
POSITION

1 1,000

2 0.800

3 - 0.600

L 0.400

5 0,200

6 0.000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%

1.0000

0.5009
0.2668
0.1573
0.1097
0.0970

A = 5.0

%

0,0000

0.L66L

0.6692
0.7545
0.7875
0.7956

h, = 1,0

P

100



Catalyst is poisoned for the reaction A——3B only.

TABLE 3.17

6 = 0.0516 hg = 1.0

NO RADIAL
POSITION

1.000
0.800
0.600
0.400

0.200

N W £ w N

0.000

A

1.0000
0.5795
0.3341
0.20L46
0.1448
0.1285

h
A

= 5.0

¢

0.0000
0.3914
0.6079
0.7145
0.7602

0.7721

hy = 4.o

¢

1.0000
0.6685
0.4499
0.3202
0.2543
0.2354

101

Y

'0.5645
0.4007
0.2782
0.2004
0.1596
0.1477
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Catalyst is poisoned for the reaction A——>B only,.

a =50

NO RADIAL
POSITION

1 1.000
0.800

NS

0.600
0.400

0.200

N n & W

0.000

TABLE 3.18

1.0

¢,

1.0000
0.6521
0.4140
0.2727
0.2024
0.1826

%

0.0000

0.3226 -

0.5349
0.6551
0.7122
0.7279

hP = 4.0

P

1,0000
0.7315
0.5293
0.3971
0.3259
0.3049

102

¥
0.7k98
0.5930
0.4L488
0.3433
0.2830

0.,26L48
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Catalyst is poisoned for the reaction A—B only.

TABLE 3.19

@ = 0.1204  hp = 1.0

NO RADIAL
POSITION

1 1,000

2 0.800

3 0.600

L 0.400

5 0.200

é 0.000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
1.0000
0.7206
0.5017
0.3567
0.2788

0.2560

h, = 5.0

¢B
0.0000
0.2580
0.4545
0.5809
0.6469
0.6658

= L".O
hP

%

1.0000
0.7893
0.6119
0.4849
0.4122

0.3902

103

¥

0.8562
0.7327
0.5976
0.4846
0.4144

0.3923
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TABLE 3.20

Catalyst is poisoned for the reaction A——3B only.

6 = 0.,1548 hy = 1.0 h, = 5.0 h, = 4.0

S P N
1 1.000 1.0000 0.0000 1.0000 0.9174
2 0.800 0.7833 0.1993 0.8407 0.8298
3 0.600 0.5939 0.3702 0.6939 0.7194
L 0.400 0.4552 0.4930 0.5800 0.6156
5 0.200 0.3751 0.5628 0.5109 0.5456
é 0.000 0.3508 = 0.5837 0.4893 0.5227
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'TABLE 3.21

Catalyst is poisoned for the reaction A——E only.

6 = 0.0516  hy = 1.0 hy = 5.0  hp = 10.0

"0 postrron % 4 % v
1 1.000 1.0000 0.0000  1.0000 0.9954
2 0.800 0.7342 -~ 0.2431  0.5373 0.8398
3 0.600 0.4499 0.5025  0.1716 0.3647
4 0.400 0.2651 0.6659  0.0432 0.1003
5 0.200 0.1792 0.7382  0.0130 0.0307
6 0.000 0.1563 0.7568  0.0078 0.0186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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TABLE 3.22

Catalyst is poisoned for the reaction A——3 only.

6 = 0,0860 hg =1.0  h, = 5.0 h, = 10.0

He POSITION 9 % % 4

1 1.000 1.0000 0.0000  1.0000 0.9998
2 0.800 0.8469 0.1375  0.7244 0.9831
3 0.600 0.6273 0.3386 0.3655 0.7430
L 0.400 0.4122 0.5364  0.1209 0.3060
5 0.200 0.2887  0.6481  0.0401 0.1070
6 0.000 0.2536 0.6793  0.0249 0.0666
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Catalyst is poisoned for the reaction A~——>B only.

6 = 0,1204 h

B

NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

b 0.400

5 0.200

é 0.000

TABLE 3,23

1.0

%

1.0000
0.9207
0.7952
0.6188
0.4728
0.4245

= 5,0

%

0.0000
0.0701
0.1843
0.3491
0.4864
0.5318

hP = 10.0

%

1.0000
0.8425
0.5977
0.3013
0.1273
0.0851

107

¢

- 0.9999

0.9989
0.9522
0.6506
0.3086
0.2082
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TABLE 3,24

Catalyst is poisoned for the reaction A—3 only.

0 = 0.1548  hg = 1.0 hy = 5.0 h, = 10.0
" ostrIon % % % v

1 1.000 1.0000 0.0000  1.0000 0.9999
2 0.800 0.9731 0.0235  0.9297 0.9999
3 0.600 0.9297 . 0,0626  0.8162 0.9960
L 0,400 0.8556 0.1321  0.6285 0.9277
5 0.200 0.7628 0.2211  0.4197 0.7023
6 0.000 0.7216 0.2608  0.3388 0.5744
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TABLE 3.25

Catalyst is polsoned for the reaction A—3B only,

6 = 06,0512 hB =1.0 hA = 10.0 hP = 1.0

N ng?%%gN ék éé éP 4

1 1.000 ﬁl.OOOO 0.0000 1,0000 0.0503
2 0.800 0.1861 0.7677 0.9481 0.0477
3 0.600 0.0371 0.8772 0.9091 0.0457
L 0.400 0.0084 0.8779 0.8822 0.0LL3
5 0.200 0.0025 0.8675 0.8666 0.0436
6 0,000 | - 0.,0015 0.8635 0.8618 -0.0433

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Catalyst is poisoned for the reaction A——32 only.

B

NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

L 0.400

5 0.200

6 0.000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

TABLE 3.26

= 1.0

é.

1.0000

0.1919
0.0394
0.0091
0.0028

0.0017

= 10,0

%

0.0000
0.7621
0.8752
0.8774
0.8675
0.8636

hP =1,0

%

1.0000
0.9496
0.9117
0.8855
0.8703
0.8657

110

¥

0.082k
0.0783
0.0751
0.0730
0.0717
0.0713
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TABLE 3.27

Catalyst is poisoned for the reaction A—3B only .

0 = 0.1204  hy = 1.0 h, = 10.0 hy = 1.0

" POSTTION A b5 %o v

1 1.000 1.0000 0.0000 ~ 1.0000 0.1134
2 0,800 0.1978 0.7564  0.9511 0.1079
3 0.600 0.0418 0.8730  0.91L42 0.1037
L 0100 0.0100 0.8769  0.8887 0.1008
5 0.200 0.0031 0.8674  0.8739 0.0992
6 0.000  0,0019 0.8636  0.8694 0.0986
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Catalyst is poisoned for the reaction A—3 only.

& = 0,1548 hB

NO RADIAL

POSITION
1 1.000
2 0.800
b 0.600
b 0.400
) 0.200
€ 0.000

TABLE 3,28

= 1,0

1.0000
0.2038
0.0443
0.0109
0.0035

0.0022

= 10,0

%5

0.0000
0.7506
0.8708
0.8763
0.8674
0.8637

h, =1.0

P

%
1.0000
0.9525
0.9167
0.8918

0.8775
0.8730

112

0.1434
0.1367
0.1315
0.1280
0.1259
0.1253
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Catalyst is poisoned for the reaction A—=B only.

9 = 0.0516 h

B
NO RADIAL
POSITION
1 1,000
2 0.800
3 0,600
L 0.400
5 0.200
é 0.000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

TABLE 3.29

= 1,0

%g,
1.0000
0.,2846
0.0744
0,0200
0.0068

0.,0043

h = 10,0

%

0,0000
0.6727
0.8446
0.,8712
0.8682
0.8656

h
- P

1.0000
0.6685
0.4499
0.3202
0.2543
0.2354

= Li“oo

113

¥

0.5645
0.4007
0.2782
0.2004
0.15%96
0.1477



Catalsyt is poisoned for the reaction A—2 only .

e = 0.0860 h

NO

N WD -

B

RADIAL
POSITION

1,000
0.800
0.600
0.5400
0.200
o;ooo

TABLE 3,30

= llo

P
1.0000
0.3681
0.1187
0.0377
0.0145
0.0099

= 10.0

%

0.0000

0.5923
0.8049
0.8584
0.8655
0.8652

hy, = h,o

¢,

1.0000
0.7315
0.5293
0.3971
0.3259
0,3049

114

W

- 0.7498
0.5930
0.4488
0.3433
0.2830
0.2648
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TABLE 3,21

§o]
Catalyst is poisoned for the reaction A——B only |

o = 0,1204 hg = 1.0 hA = 10.0 h, = 4.0

" postTiow B % 25 ¢o v

1 1,000 i.oooo 0.0000  1.,0000  0.8562
2 0.800 0.4565 0.5075  0.7893 0.7327
3 0.600 0.1803 0.7489  0.6119 0.5976
. 0,400 0.0684  0.83b2  0.48ho  0.48L6
g 10,200 0.0304 0.8563  0.4122 0. L1kl
; 0.000 0.0220 - 0.8597  0.3902 0.3923
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TABLE 3 . 32

Catalyst is poisoned for the reaction A——I only,

6 = 0.1548 hg = 1.0 h, =10.0 hp = 4.0

o ng?%%gN ?& % % v

1 1.000 “‘1.0000 0.0000 1.0000 0.9174
2 0.800 0,5457 0.4224 0.8L407 0.8298
3 0.600 0.2603 0.6758 0.6939 0.719L
4 0.400 0.1183 0.792L 0.5800 0.6156
5 0.200 0.0613 0.8340 0.5109 C.5456
6 0.000 0.047L 0.8430 0.4893 0.5227
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Catalyst is voisoned for the reaction A—Z2 only.

o = 0,0516

NO BADIAL
POSITION

1.000
0.800
0.600
0.400

0.200

o oW N

0.000

TABLE 3.33

= 1,0 h =

A

%

1,0000
0.5373
0.1716
0.0432
0.0130
0.0078

10.0

%

0.0000
0.4285
0.7591
0.8601
0.8740
0.8741

p = 10.0

%

1.0000
0.5373
0.1716
0.0432
0.0130
0.0078

117

Y

0.9954
0.8393
0,3647
0.1003
0.0307

0.0186
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Catalyst is poisoned for the reaction A—31 only

® = 0.0860 hB

NO '~ RADTAL
POSITION

1.000

0.800

0.600
\0.400_

0,200

O W

0.000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 3,3k

= 1-0

%

1.0000
0,724
0.3655
0.1209
0,0401

0.02L9

= 10,0

¢

0.0000
0.2500
0.5798
0.7990
0.8637
0.8740

= 10.0
P

122
1.0000
0.724L4
0.3655
0.1209
0.0401
0.02L49
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¥
0.9998
0.,9831
0.7430
0.3060
0.1070
0.0666
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TABLE 3.35

. X . .
Catalyst is poisoned for the reaction A—=3I only.

6 = 0.1203 hy = 1.0 h, =10.0 hy = 10.0
= % ? ¢, v

1 1.000 1.0000 0.0000 1.0000 0.9999
2 0.800 0.8425 0.1402 0.8425 0.9989
3 0.600 0.5977 0.3640 0.5977 0.9522
L 0.400 0.3013 0.6397 0.3013 0.6506
5 0.200 0.1273 0.7991 0.1273 0.3086
é 0.000 0.0851 0.8366 0.0851 0.2082
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TABLE 3.36

Catalyst is poisoned for the reaction A——E only

8 = 0,1548 h

NO RADIAL

POSITION
1 1.000
2 0.800
3 0.600
b 0.400
5 0.200
6 0.000

= 1.0

1.0000

0.9297
0.8162
0.6285
0.4197

0.3388

= 10,0

%

0.0000
0,6172
0.1643
0.3403
0.5396
0.6170

p = 10.0

5
1.0000
0.9297
0.8162
0.6285
0.4197

0.3388
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¥
0.9999

0.9999
0.99€0
0.9277
0.7023
0.57L4



CHAPTER VI

DISCUSSION OF RESULTS

A, General

The intraparticle concentration equations (29-48)
for the 'Modified Homogeneous Polsoning Model' were
integrated on an IBM 360-40 computer., The total computer
time consumed was about two hours. Numerical solutions
were tested for convergence by decreasing the step size along
the 6 axis as well as along the § axis. A step size of
0.02 along the dimensionless space coordinate and a step size
of 0.00086 along the demensionless time coordinate were
found to be satisfactory. A1l calculations were done in
double precision arithmetic.

The intraparticle concéntration profiles of the
species A, B, P and the deaqtivation profile ¥ in the
catalyst particle are tabulated in Tables (3.1 - 3.36 and
R.1 - R.36*). Tables (3.1 - 3.36) are for the case when
the catalyst is poisoned for the reaction A — B only, and
tables (R.1 -~ R.36) are for the case when the catalyst is
poisoned for the reaction A-—> B as well as the reaction
B — F, The concentration and deactivation profiles were

calculated for various values of the ratio (hA/hB), 8, and

*#Tables (R.1-R.36) constitute Appendix I.
121
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'hp'.
Tables (1.1 - 1.15) and figures (1.1 -« 1.4)
show the effects of '6', 'hp' and the ratio (h,/hg), on
the selectivity parameter SBﬁ' for the case when the
catalyst is poisoned for the reaction A — B only,
Corresponding results for the case when the catalyst is
poisoned for the reaction A — B as well as the reaction
B —=T are shown in tables (2.1 - 2.15) and figures

(2.1 - 2.4),

B, Catalyst Poisoned for the Reaction A—>32 Only}

From a consideration of figures (1.1 - 1.3), it
is apparent'that when the catalyst 1s poisoned for the
reaction A—— B only, an increase in pellet poisoning
(resulting from an increaéé in ) either causes an
insignificant change in the value of the parameter;SBﬁ or
Vcauses a fall in the magnitude of the selectivity 'Sgg. For
a small value of'hﬁ (Thiele Modulus for the poison species P)
i.e, hp = 1, the decrease in the value of‘SBﬁ is
insignificant, but for higher values of'hg i.e: hP 2 L,
'SBﬁ decreases appreciably.as the poisoning of the pellet

-~ progresses., Figure (3.1) helps to explain why this is so.
For hP = 1, tﬁe catalyst deactivation is insignificent over
the range of '6' shown; whereas, for h; 2 4, the catalyst

deactivation is considerable and increases significantly

with time. Increasing deactivation of the catalyst pellet
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causes a fall in the rate of formation of 'B!' (the rate of

decompostion of 'B!, being completely upaffected), thus,

lowering the selectivity of 'Sgn'. Figure (3.3) which shows
. the concentration profile of 'B! for various values of 'hP'.
confirms this explanation., It is to be noted that the
curves for 6 = 0,0516 and 6 = 0,1548 at hp = 1 are almost
identical (hence only one of them can be shown),

Figure (3.2) displays the concentration profile
of species fA', It is clear from this figure that as 'HP'
increases, the concentration of 'A' inside the particle
also increases. But a look at figure (3.1), reveals that
the catalyst activity has also fallen significantly. Since
selectivity 'SBF' falls with increasing 'hP’ (figures 1.1 -
1.3), it seems that a fall in the activity of the catalyst
more than compensates for the incregsed concentration of
;A' in the pvellet,

Figure (1.4) displays ths effect of the ratio
(hy/hg) on the parameter "Spp' - For v = 1, the ratio
(hA/hB) is an index of the ratio (kA/kB). Thus the higher
the (gA/kB) ratio is, the higher would be the value of the
varameter 'SBF'.

At high values of ‘hP', the 'lMpdified Homozeneous
Poisoning lModel' is expected to resemble the 'Shell

Yoisoning Model!, Thus, in figures (1.1 - 1.3) the 'Shell

Poisoning lModel' plot and the plot for hP = 50, are almost
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identical,

C. Cataljst Poisoned For the Reaction A —=B as Well as

For the Reaction B — F,

Pigures (2.1 - 2.4) lead one to conclude that when
the catalyst 1s poisoned for the reaction A——= B as well as
for the reaction B-f*—F, the selectivity paraﬁeter 'SBF'
eilther increases with the passage of process time, or there
is no significant change in the value of this parameter,

The insensitivity of 'S__' to the age of the catalyst particle

BF
overating at low values of 'hP', has already been explained
in subsection B, The increase in the selectivity of the
désired product, with the aging (increased poisoning) of
the catalyst appears_to be paradoxical. However, as Maxted
(28 ) has mentioned, such s conclusion has been found to be
experimentally true in a numbér of cases (1,2,20,and 36).
Vith the passage of time (and increase in deactivation)
the rate of formation of the intermediate 'B!' falls in
the outer shell of the pellet. Since the catalyst is
deactivated more on the outside than it is on the inside,

 the concentration of the reactant 'A' in the inner core

- of the pellet increases with the passage of time @
(desctivation of the core also increases but this précess
is not so fast), Consequently, whereas, with increasinz 2,
the rate of formation of 'B' decreases in the outer shellr

of the pellet, this same rate increases in the inside core
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of the particle as the pellet ages, If the catalyst particle
is poisoned for the reaction A-QH—B only, the effect of
this inéreased rate of formation of 'B!' in the inner core
of the pellet is negligible. This however, is not the case
when the catalyét is poisoned for both the reactions. The
increasing deactivation of the catalyst'decreases the rate
of decomposition of the intermediate 'B' in the inside core
as well as in the outer shell, The combination of
increased rate of formation 'B!' in the inside core and a
decreased rate of decomposition of 'B! throughout the
catalyst gives a higher value for the parameter 'SBF'. In
the case when the Catalyst is poisoned for the reaction
A—= B as well as for the reaction B——=TF, the selectivity
parametér 'SBF’ is not affected in a straightforward manner
by changes in 'hP'. Thus, as is clear from figures

(2.1 - 2.3), the value of the parameter 'Spn' can decrease
or increase with increasing 'hP', depending upon the
magnitude of ‘hP' and '6', It seems to be virtually
impossible to draw a general conclusion,

When the catalyst is poisoned for both reactions,
increasing the ratio (hA/hB) at v = 1, results in higher
selectivity 'SBF' for the intermediate 'Bf, This is well
displayed by figure (2.4), Figure (1.4) displays similar
trends for the case When the catalyst is poisoned for the

reaction A—=2 only.
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As was the case in subsection B (catalyst poisoned
for the reaction A——3 bnly), the 'Shell Poisoning Model!
plot and the *M,H,P, Model! plot for hP>= 50 are identical
over the greater part of the range of '6', As 19!

'approaches 0.15, the valﬁe cf 'SBF' predicted by the curve
for hP = 50 1s much higher than the one predicted by the
curve for the 1Shell Polsoning Model', It is likely that
at this high value of 'hP', the size of the unpoisoned core
predicted by the hP = 50 curve 1s slightly larger than the
size predicted by the 'Shell Poisohing Model!', This
difference can explain the gap found between the values of
'SBF' predicted by the 'Shell Poisoning Model! and the

tM,H.P, Model!' with h_ = 50, However, it should be

P
mentioned that tﬁe *Shell Poisoning Model! plot represents
e closed analytical solution, wherea§ the plot for hP = 50,
represents a numerical solution subject to discritisation
and other errors. Since the region over which the
differences appear 1s»so narrow, a final conclusion

concerning the exact cause of this difference seems to be

very difficult to arrive at.
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CHAPTER VII

‘CONCLUSIONS

For a heterogeneous consecutive feaction
A——=B—-=TF, catalysed by porous spherical particles subject
to poisoning by impurities in the feedAstream, the selectivity
'SBF' as predicted by the 'Hodified Homqgeneogs Poisoning
Vodel' behaves differently, depending on whether one or botn

reactions in the kinetic scheme are affected by the poisoning,

When only the reaction A B is polisoned, the selectivity
either does not change significantly or deéreases as the
catalyst pellets age., At lower values of hP' aging does not
produce any significgnt change in the magnitude ofl'SBF',
whereas, appreciable decrease 1s observed at higher wvalues

of hP‘ On the other hand if both the reactions in the

scheme A 3—T are poisoned, the 'M,H,P, lModel' predicts,
that 'SBF' will either. remaln constant or incresase,

The effect, increasing values of hp have on
'Spp's a2lso differentiates the two cases, TFor the case
where the catalyst is poisoned for the reaction A——2 only,
selectivity decreases considerably as the Thiele Iodulus hP
for the species P increases. This conclusion suggests that

selectlvity 'Spp' can be increased by the use of smaller

svherical vellets. The effect of increasing hP on 'SBF'

138
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for £he case when the cétaiystyis poisoned for both the
_ reactlions, 1s more complex, and not subject‘to easy
qualitative interpretatioﬁ. -
There are some common features in the selectivity
behavior.for the two cases. The selectivity is seen to
increase markedly as the ratio (kA/kB) increases. Also, at

higher values of h selectivity values predicted by the

P
'M,H.P, Modeli are in almost cdmplete agreement with values
of 'SBF' predicted by the 'Shell Poiéoning Model?,

Useful, though the conclusions from this study
are, they have been arrived at on the basis of the
aSsumption that isothermal conditions prevail inside the
pellet. As has been pointed out in a number of studies
(11,12,38,48), éuch an assﬁmption is very seldom true in
actual practice, Tenperature gradients are usually found to
exist in the catalyst pellets and a thorough study of
poisoning should take into account the temperature gradients
prevailing inside the pellet, Becauée a study along these
suggested lines will require very difficult and lengthy
numerical calculations, it can be justified only if it is

~ done for an actual reaction scheme, rather than for a

hypothetical scheme,
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APPENDIX T -

*
TABLE R.1

Catalyst is poisoned for the reactlion A—>3 as well as

the reaction B—>T.

6 = 0,0516 hy, = 1.0 h, = 2.5 hy = 1.0

o sosrrror % % % e

1 1.000 1.0000 0.0000 1.0000 0.0503

2 0.800 0.7619 0.2216 0.9481 0.0477

3 0.600 0.6059 0.3609  0.9091 0.0457

L 0.400 0.5090 0.4441  0.8822 0.0443

5 0.200 0.4571 0.4875 0.8666 0.0L3€
N 6 0,000 0.40L17 0.5001 0.8618 0.0433

¥Tgbles (R.1-R.36) show results based on the 'M.H.P. Model!
140
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TABLE R.Z2

Catalyst is polsoned for the reaction A—3 as well as

the reaction B—>T,

o = 0.0860 hy = 1.0 hy = 2.5 hp = 1.0

YO postrron % ® b ¥

1 1.000 1.0000 0.0000 1.0000 0.0824
2 0,800 0.7672 0.2171 0.9496 0.0783
3 - 0.600 0.6139 0.3545 0.9117 0.0751
4 0.400 0.5182 0.4372 0.8855 0.0730
5 0.200 0.4667  0.4804 0.8703 0.0717
6 0.000 0.L51L 0.4931 0.8657  0.0713
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142

Catalyst is poisoned for the reaction A——2 as well as

the reaction B—T",

6 = 0,1204 hB

NO RADTAL
POSITION

1 1.000

AN

0.800
0,600
0.400

w F\W

0.200

0.000

ON

= loo

%

1.0000
0.7724
0.6218
0.5273
0.4763
0.4612

hy = 2.5

%

0,0000
0,2126
0.3481
0.4302
0.4732
o.&859

hp = 1.0

9,
1.0000
0.9511
0.9142
0.8887
0.8739
0.8649

¥

0.1134
0.1079
0.1037
0.1008
0.0992
0.0986

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE R4
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Catalyst is poisoned for the reaction A—— 3 as well as

the reaction B—>F,

6 = 0,1548 hg = 1.0 hy = 2.5
Y sttior . % ¢
1 1.000 1.0000 0.0000
2 0.800 0.7776 0.2082
3 0.600 0.6296 0.3418
Ly 0.400 0.5364 0.4231
5 0.200 0.4860 0.4660
€ 0.000 0.4710 0.4786

1.0000 |
0.9525
0.9167
0.8918
0.8775
0.8730
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TABLE R.S

Catalyst is poisoned for the reaction A—I as well as

the reaction B—T,

6 =0,0516  hp = 1.0 hy = 2.5 hy = 1.0

" ng?%égN ¢k 43 S 4
1 1.000 1.0000 0.0000 1.0000  0.5645
2 0.800 0.8218 0.1683 0.6685 0.4007
3 0.600 0.6845 0.2946 0.4499 0.2782
L 0.400 oQ5905 0.3788 0.3202 0.200L
5, 0.200 0.5373 0.4255 0.2543 0.1596
6 0.000 0.5212  0.439k 0.2354  0.1477

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



145

TABLE R.6

Catalyst is poisoned for the reaction A—=B as well as

the reaction B=—>T,

6 = 0.,0860 hy = 1.0 h, = 2.5 hp = 4.0

"o Pgé?%égN ¢ ¢ $p | v
1 1.000  1,0000 0.,0000 1.0000 0.7498
2 0.800 0.8615 0.1323 0.7315 0.5930
3 0.600 0.74040 0.2424 0.5293 0.4L88
L 0.400  0.6578 0.3217 0.3971 0.3433
5 0.200 0.6070 0.3678 0.3259 0,2330
6 0.000 6.5913 0.3819 - 0.3049 0.26L48
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TABLE R.7
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Catalyst is poisoned for the reaction A——B as well as

the reaction B—F.

6 = 0.1204 h

NO RADIAL
' POSITION

1.000
0.800
0.600
0.400

0.200

NN £ W A) =

0.000
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5 = 1.0
¢,
1.0000
0.8960
0.8003
0.7255

0.6793
0.6A€L8

h

A

= 2.5

2

0.0000

10,1003

0.1915

0.2620
0.3049
0.3183

1.0000
0.7893
0.6119
0.4849
0.4122

0,3902



TABLE R.8
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Catalyst is poisoned for the reaction A—B as well as

the reaction B—=—T

1]

8 = 0.1584 h

B

NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

I 0.400

5 0.200

6 0.000
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1.0

¢?
1.0000
0.9248
0.8511
0.7900
0.7507

0.7381

¢B
0.0000
0.0731
0,144
0.2029
0.2402

0.2521

1.0000
0.8407
0.6939
0.5800
0.5109

0.4893

0.9174
- 0.82983
0.719L
0.615¢6

0.5456

&N

0.5227



TABLE R.9
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Catalyst 1s poisoned for the reaction A—=B as well as

the reaction B—>TF

# = 0.0516 hy =
NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

L 0.400

5 0.200

é 0.000
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.

1.0

¢k
1.0000

0.8861
0.7487

0.6364

¢F‘§
0.0000
0.1074
0.2355
0.3381
0.3963
0.4136

=
!

¢

1.0000
0.5373
0.1716
0.0432

~ 0,0130

0.0078

10.0

4
0.9954
0.8398
0.36L47
0.1003
0.0307
0.0186



TABLE R.10
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Catalyst is poisoned for the reaction A—32 as well as

the reaction B—>F,

@ = 0.0860 hB

NO RADIAL
POSITION

1 1,000

N

0.800
0.600
0.400

0.200

N W FOW

0.000
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= 2.5

g
0.0000
0.0586
0.1454
0,2412
0.3059
0.3262

h_ = 10,0
p 1

%

1.0000
0.724L
0.3655
0.1209
0.0401

0.0249

Y

0.9998
0.9831
0.7430
0.3060
0.1070

0.0668€



TABLE R.11
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Catalyst is polsoned for the reaction A——>B as well as

the reaction B~—TF

0 = 0,1204 hB =
NO RADIAL
POSITION
1 1.000
2 0.800
3 0.600
L 0.400 -
5 0.200
.6 0.000
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1.0

1.0000
0.9720
0.9275
0.8618
0.801L

0.7797

= 2.5

%

0.0000

0.0272

0.0705

0.1343
0.1924

0.2132

10.0

¢

0.9999
0.9939
0.9522
0.6506

0.2086

0.2082



TARBL® R,12

151

Catalvst is voisored for the reaction A—>T ns well as

the reaction B—>-F

o = 0.1548 hy = 1.0 hy = 2.5
Y et % 2

1 1.000 1.0000 0.0000
2 0.800 0.0021  0.0077
3 0.600 0.9795 0.0202
I 0.400 0.9578 0,0417
5 0.200  0.9296  0.0695
€ 0.000 0.9167  0.0823

h = 10,0
P

%
1.0000
0.9297
0.8162
0.6285

0.4197
0.3388
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152

Catalyst is poisoned for the reaction A—>D as well as

the reactionB —F,

o = 0.0516 hy =
NO RADIAL
POSIT ION

1 1.000

2 0.800

3 0.600

L 0.400

5 0.200

€ 0,000
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1.0
¢A
1.0000
0.47856
0.2442
0.1385
0.0937
0.0820

0.0000
0.4890
0.6926
0.7746
0.8051
0.8123

1.0000
0.,9481
0.9091
0.8822
0.8666
0,8618

0.0503
0.0L477
0.0457
0.0L43
0.043%
0.0L33
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Catalyst is poisoned for the reaction A——E azs well as

the reaction B—F

6 = 0.0860 hy = 1.0 h, = 5.0
Y sty ¢

1 1.000 1.0000 0.0000
2 0.800 0.4860 0.4828
3 0.600 0.2516 0.6875
? 0.400  0.1446  0.7717
5 0.200 0.0988 0.8036
6 0.000 0.0868 0.8113

¢

P
1.0000
0.9496
0.9117
0.8855
0.8703
0.8657
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TABLE R.,15

154

Catalvst is poisoned for the reaction A—=32 gs well gs
y I

the resction B—>TF

6 = 0.1204 hy =
NO RADIAL
POSITION

1 1,000

2 0.800

3 0.600

L 0.5400

5 0.200

¢ 0.000

.

A
1.0000
0.4934
0.2592
0.1509
0.1042
0.0918

0.0000
0.,L767
0.6823
0.7085
0.8018

0.8099

1.0000
0.9511
0.9142
0.8887
0.8739

0.869L

0.113L
0.1079
0.1037
0.1008
0.0992

0.098¢&
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16

155

Catalyst 1s poisoned for the reaction A—>3 as well as

the reaction B=—TF.

9 = 0,1548 hy =
WO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

L 0.5400

5 0.200

€ 0.000

2
1.0000
0.5009
0.2668
0.1573
0.1097
0.9708

4,
0.0000
0.4705
0.6769
0.7650
0.7997

1.0000
0.9525
0.9167
0.8918
0.8775
0.8730

0.1434
0.1367
0.13'5
0.1280
0.1259

0.1253
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TABLE  R,17

156

Catalyst 1is poisoned for the reaction A——2 as well as

the reaction BR=——>I',

0 = 9.0516 h_
NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

4 0.L00

5 0.200

3 0.000

=1,0

%

1.0000

0.5795
0.3341
0.2046
0.1448
0.1285

¢B
0.0000

0.3997
0.6228
0.7334
0.7812

0.7936

1.0000
0.6685
0.4499
0.3202
0.2543
0.2354

Y

0.5645
0.4007
0.2782
0.2004
0.1596

0.1477
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TABLE R.18

157

Catalyst is poisoned for the reasction A—=E as well as

the reaction B—T.

8 = 0,0860 h =
B

NO RADIAL
POSITION

1.000
0.800

N

0.600
0.400

0.200

N AN R V]

0.000
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1.0

%

1.0000
0.6521
0.4140
0.2727
0.2024

0.1826

0.0000

o
‘)
‘)
)

o0

(@]

-
\Un
N

N
O

0.6827
0.7433

0.7599

hP = LI'.O

bo
1.0000
0.7315
0.5293
0.3971
0.3259
0.3049
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TABIE R.19

Catalyst is poisoned for the reaction A——3 as well as

the reaction B—F.

5 = 0.1204 hy = 1.0 hy = 5.0  hp = 4.0

e ng?%%gN ) % % o Y
1 1.000 1.0000 0.0000 1.0000 0.8562
2 0.800 0.7206 0.2705 0.7893 0.7327
3 1 0.600 0.5017 0.4786 0.6119 0.5976
b 0.400 0.3567 0.6134 0.4849 0.48L6€
5 0.200 0,2788 0.6840 0.4122 0.L14y
€ 0.000 0.2560 0.7043 0.3902 10,3923

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE R.20

159

Catalyst is poisoned for the reaction A——>RB as well as

the reaction B—T,

6 = 0,1548
NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

1 0.400

5 0.200

€ 0.000
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= 1,0
B

%
1.0000
0.7833
0.5939
0.4552

0.3751
0.3508

b5
0.0000
0.2114
0.3943
0.5263
0.6015
0.6241

¢P
1.,0000
0.8L407

0.6939
0.5800
0.5109
0.4893

¥

0.9174
0.8298
0.7194
0.6156
0.5456
0.5227
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TABIE R.21

Catalyst is poisoned for the reaction A—R as well as

the reaction B—>F,

6 - 0.0516 hy = 1.0 h, = 5.0 hp = 10.0

He ng?%égw A % ¢p 4
1 1.000 1.0000 0.0000 1.,0000 0.995k4
2 0.800 0.7343 0.2521 0.537L 0.8395
3 1 0.600 0.4499 0.5174 0.1716 0.3648
L 0.400 0.2651  0.6825 0.0432 0.1003
5 0.200 0.1792 0.7550 0.0130 0.0307
6 0.000 0.1563 0.7736 0.0078 0.0186
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TABLE R.22

161

Catalyst is poisoned for the reaction A——3 as well as

the reaction B—>F,

o = 0.0860 h, =

5 =

NO RADIAL
POSITION

1 1.000

2 0.800

3 0,600

L 0.400

5 0,200

é 0.000
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%

1.0000
0.8469
0.6274
0.4122
0.2887
0.2536

0.0000
0.14%9
0.3568
0.5590
0.6719
0.7032

10.0

%

1.0000
0.724L
0.3655
0.1209
0.0402
0,0249



162

TAEIE R.23

Catalyst is poisoned for the reaction A——3 as well as
the reaction B—>F,

= 1.0 h = 5.0 h = 10.0

6 = 0.1204 hy A= p

Ho ng?‘%‘%gbl % ¢B % v

1 1.000 1.0000 0.0000 1.0000  0.9999
2 0.800 0.9207 0.0772 0.8425 0.9939
3 0,600 0.7952 0.1994 0.5977 0.9522
L 0.400 0.6188 0.3705 0.3013 0.6506
5 0.200 0.4728 0.5106 0.1273 0.3086
6 0.000 0.424s 0.5566 0.0851 0,2082
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TABLE R.24

163

Catalyst is poisoned for the reaction A— 3 as well as

the reaction B—>F,

6 = 0.1548

NO RADTAL
POSITION

1.000
0.800
0.600
0.400

0.200

N =W H

0.000

1.0

¢A
1.0000
0.9731
0.9297
0.8556
0.7628
0.7216

0.0000
0.0265
0.0695
0.1429
0.2346
0.2752

1.0000
0.9297
0.8162
0.6285

0.4198"

0.3338
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0.9277
0.7023
0.574bL



TABLE R.25

164

Catalyst is poisoned for the reaction A—B as well as

the reaction B—F
8 = 0,0512 hB =

NO RADIAL
POSITICN

1.000
0.800
0.600
0.400

0.200

N N £ W N [

0.000

1.0

A
1.0000
0.1861
0.0371
0.008%4
0.0025

0.0015

5
0.0000
0,7696
0.8808
0.8826
0.8728
0.8690

1.0000
0.9481
0.9091
0.8822
0.8666
0.8618

0.0503
0.0477
0.0L457
0.04L3
0.0436
0.0433

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE R.26
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Catalyst is poisoned for the reaction A—>31 as well as

the reaction B—F
0 0 B

NO RADIAL
POSITION

1.000
0.800
0.600
0.400
0,200

0.000

ol W N

1.0

¢
1.0000
0.1919
0.0394
0.0091
0.0028

0.0017

= 10.0

¢

0.0000
0.7€53
0.8811
0.8851
0.8762

0.8726

h. = 1.0

P

3
1.0000
0.9496
0.,9117
0.8855
0.8703
0.8657
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0.0824L
0.0783
0.0751
0.0730
0.0717
0.0713



TABLE R.27

Catalyst is voisoned for

™
-

the treaction B —

6 = 0.1204 hy =
NO RADIAL
POSITION

1 1.000

2 0.800

3 0.600

L 0.400

5 0,200

£ 0.000

.

A
1.0000
0.1978
0.0418
0,1003
0.0031

0.0099

0.0000
0,7608
0.8812
0.8875
0.8795
0.87561

166

the reaction A— D3 as well as

h, = 1.0
éb Y

1.0000 0.113%4
0.9511 0.1079
0.9142 0.1037
0.8887 0.1008
0.8739 0.0992
0.8604 0.0987
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TABLE R,.28

167

Catalvst is poisoned for the reaction A=—>35 as well as

the reaction Bes T,

0 = 0.1548 hy =
NO RADIAL
POSITION

1 1.000

2 0.800

3 0.4600

B 0.400

5 0.200

6 0,000
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1.0

%
1.0000
0.2038
0.0L43
0.0109

0.0035

0.0026

= 1000

¢B
0.0000

0.7563
0.8811

0.8898

0.8827

0.8796

1.0000
0.9525
0.9167
0.8918
0.8775
0.8730



168

TARLE 2,29

9]
5
o
I~
]—_l
)
03]

Catalyst is vnoisoned for the reaction A—=D a:

the reaction B=—sI,

0 = 0.0516 ng = 1.0 h, = 10,0 h, = 4.0

e POSTTION 4 % % v
1 1.000 1.0000 0.0000 1.0000 0.5645
2 0.800  0.2846  0.6854  0.6685  0.4007
3 0.600 0,074k 0.8663 0.4499 0.2782
Iy 0.400 0.0200 0,8977 0.3202 0.2004
5 0.200 0.0068 0.8969 0.2543 0.1596
¢ 0.000 0.0043 0.8950 0.2354 0.1477
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TABILE

R, 30

169

Catalyst is poisoned for the reaction A—s3 as well as

the resction B =T
h

e = 0,0860 s =
NO RADIAL
POSITION

1 1.000

2 0.8C0

3 0.600

L 0.400

5 0.200

€ 0.000
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1.0
¢A
1.0000
0.3481
0.1187
0.0377
0.0145

0.0099

?;
0.0000
0.,6107
0.8373
0.8994
0.9105

0.9113

P
¢s
1.0000 - 0,749o8
0.7315 0.5930
0.5293 0,488
0.3971 0.3433
0.3259 0.2830
0.3049 - 0,2648



TABIE R,.31

170

Catalyst is poisoned for the reaction A— B as well as

the reaction B—F

NO RADIAL
POSITION

1.000
0.800
0.600

0.400

W FWw o=

0.200

[0)Y

0.000

1.0

%
1.0000
0.4565
0.1803
0,068L4
0.,030L

0.0220

= 10.0

5
0.0000
0,5291
0.7888
0.8860
0.9142

0.9194

hP = 4,00
¢ Y
1.,0000 0.8562°
0.7893 0.7327
0.6119 0.5976
0.4849 0.,4846
0.4122 0. 41kl
0.3902 0.3923
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TABLE 2,32

171

Catalyst is poisoned for the reaction A——2 2s well as

the reaction 3—F

6 = 0,1548 hy =
NO RADTAL
POSITION

1 1.000

2 0.800

3 0.600

N 0.400

[ 0.200

¢ 0.000

1.0

s
1.0000
0.5k57
0.2603
0.1183
0.6132

0.b7L5

I

¢,
0.0000
0.4450
0.7193
0.8506
0.9002

0.9116

10.0

hP = Lb,0
¢ Y

1,0000 0.917L4
0.8L07 0.8298
0.6939 0.,7194
0.5800 0.6156
0.5109 0.5456
0.4893 0.5227
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TABIE R.33

172

Catalyst is polisoned for the reaction A——3 as well as

the reaction B—I,

® = 0,0516 h

B
NO RADIAL
POSTITION
1 1.000
2 0.800
3 0.600
L 0.400
g 0.200
€ 0.000

= 1.0

N
1.0000
0.5373
0.1716
0.0432
0.0130
0.0078

s
0.0000
0.,4430
0.7828
0.8860
0.9000

0.9001

h, = 10.0

¢ Y
1.0000 0.9954
0.5373 10,8393
0,1716 0.3647
0.0432 0.1003
0.0130 0.0307
0.0078 0.0186
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TARIE R,34

173

Catalyst is poisoned for fthe reaction A—>2 25 well as

the reaction Be—»T7

o = 0,0860
MO RADTAT,
POSITION

1 1.000

2 0.800

3 0.600
L, 0.400

5 0.200

£ 0.000
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1.0

%
1.0000
0,724k
0.3655
0,1209
0.0401

0.02L9

4 10.0

2

0.0000
0.2661
0.6104
0.8363
0.9026

0.9130

h_ = 10,0

P
¢
P

1,0000
0,724
0;3655
0.,1209
0.0401

0.0249

////



TABLE 2.35

174

Catalyst is poisoned for the reaction A——3 as well as

the reaction B ——-T,

0 = 0.1203

NO | RADIAL
POSITION

1 1.000

2 ©0.800

. 0,600

L 0.400

5 0.200

6 0.000

1.0

%

1.0000
0.8425
0.5977
0.3013
0.1273

0.8510

93
0.0000
0.1539
0.3929
0.6800
0.8L41
0.8825

h

¢P
1.0000
0.8425
0.5977
0.3013

0.1273

0.0851

p =

10.0

Y
0.9999
0.9989
0.9522
0.6506
0.3086

0.,2082
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TABLE R.36

the reaction B—>1,

o = 0.1548 h
NO ~ RADIAL
POSITION
1.000
0.800
0.600
0.400

0.200

o N R N N

0.000
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%

- 1.0000

0.9297
0.8162
0.6285
0.4197
0.3388

¢

0.0000
0.0696
0.1821
0.3680
0.5740
0.6535

,
1.0000
0.9297
0.8162
0.6285
0.4197
0.3388

175

Catalyst is poisoned for the reaction A——E as well as

10.0

Y

0.9999
0.9999
0.9960
0.,9277
0.7023
0.574%4



NOMENCALTURE

Latin Letters
Cy = 'concentrétion of species 1 in the
pores of the catalyst, gm moles/cc

effective diffusivity for the species

D1 =
i
M = number of increments + 1, along
the § axis
N = number of increments + 1, along
the € axls S o
§ = active sites
5412 = J'=A,B,C,D, £ = 4,B,P coefficlents
used in Gaussian elimination
81-82'83.84 = defined by equations (143), (145),
(147) and (149) respectively
h1 : = Thlele Modulus for the species 1
El_f_i‘f. , 1=A,BP
Dy
/ k1 = specific reaction rate constant,

ce /<sec, gm catalyst)

i1 =A,B,P

176
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rq

t

Greek Letters
a

A€
At T

S

’S,U'&

it

T

it

N

]

ft

177

concentration of poisoned sites

(gm moles/gm catalyst)
concentrafion of sites corresponding
fo complete deactivation |

radial position in the catalyst
pellet

radius of catalyst particles cms .,

time (secs)

Laplace Operator
increment along & axis
increment along £ axis
gradlient operator

1 = A,B, dimensionless concentration
*
€/ Cy

%
dimensionless concentration CP/CP

a/q,

11 y

defined by equations (151) and
(153) respectively

small time, sec.

void fraction in the catalyst
pellet

_ #
dimensionless time t CP DP

2
rO qOP
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178

g | S (DAIDB)
£ = dimensionless distance (r/r;)
gP ' = poslition of the poisQn front in
the 'Shell Poisoning Model!
p = densit.y of the catalyst (gms/cc)
Superscripts
/7 = refers to conditions in the

non-poisoned core in the !Shell
Poisoning Model?

* = Trefers to bulk
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SELECTIVITY OPTIMISATION FOR COMPLEX
NON-LINEAR REACTION SCHEMES
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ABSTRACT

”Selectivity optimisation for a complex
reaction scheme has been investigated. Fronm single reactor
conéiderations, conditions under which selectivity maxima
occur at converslons greater than zero are determined. For
a cascade of c.s.t.rs, the discrete version of Pontryagin's
Maximum Principle has been employed to establish the optimal
conditions, The results indicate that the requirements
for maximum selectivity are frequently at variance with
those for maximum yield.. The need for the use of
selectivity as a performance criterion different-from the

yYield is thus established.

11
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CHAPTER I
INTRODUCTION

An important consideration in the performance
of chemical reactors for multiple reaction schemes 15,
selectivity with respect to the desired pfoduct. In as
much as the economics of the operation is affected by
wastage of raw materials as well as by separation costs,
selectivity considerations can occasiOnaliy be the key
factors 1in reactor design and_operation. This aspect of
reactor design has not received thevattention it deserves,
primarily because most of the kinetic schemes that have
been studied thus far are relatively simple first ofder
schemes, énd for first order schemes, maximum selectivity
ocdurs at zero conversion of the key réactant. Reactor
design based on selectivity maximisation was thus not a
feasible objective,

In many situations, however, the reaction
schemes are more complex and one or more steps are of
an order other than one, Information about the behavior
of selectivity in such cases is virtually nonexistent and
the criteria for reacéor deslign are yield oriented. It

is conceivable that for such complex non-linear reaction
1l
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échemes, maximum selectivity might not occur at zero
conversion of the key reactant, in which case the
criteria for designing a reactor, with &ield as the
objective, can be different from the criteria for a
selectivity oriented design:

. " The present study was undertaken to.establish
\whether or not for complex non-linear kinetic schemes:

1. selectivity maxima can occur at conversion levels

greater than zero

11, optimal policies for selectivity maximisation are

the same as the ones for yield maximisation.
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CHAPTER II -
- REVIEW OF LITERATURE

A, Yield Studies

N A review of literature 1h the field of design
of chemical reactors fof carrying out complex chemical
reactions must begin with K;G. Denbigh's work (9 ), He
showed that for a glven conversion the stirred tank
required a much greater volume than the tubular reactor
because of the lower reaction rate that prevalls in the
presence of complete mixing. The use of a multistage
tank reactor system was therefore suggested to effect a
saving in the reactor volume, Denbigh (5?) also described
design criteria for selection of reaétor systems to
carry out various complex reactions. By assuming that
the yileld of a product depended on the concentration of
a single reactant and the reactor operating temperature,
Denbigh (g ) had concluded that in order to achieve the

“optimum yield, a reaction parameter such as temperature
should be varied continuously along a reaction path, He
recommended that the parameter should be adjusted to
maximise the local reaction rate., Denbigh's (9 ) conclusion

regarding ad justment of a parameter to maximise the local

-3
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I
reaction rate (the so-called disjoint policy) is valid only
for single réactioné. For multiple reactions, where the
yield is a function of the_concentratioh of a number of
reactants and the reactor operatling temperature, such a
conclusion 1s not.necessarily true. Both Amundson (1)
and Horn (22) have pointed this out,

Bilous and Amundson's (l?) work points out
the pitfalls encountered during optimisation for reactor

design. In their study of the consecutive reaction

E E
1l : '
A—B——D, occuring in a tubular reactor, they concluded
r r
1 2

that no matter what the ratio (El/EZ) is, the temperature

profile should have a negative gradient., This is a
justifiable conclusion for the case when (El/E2)<Il,

but is incongruous for the case (El/EZ) >1, Amundson

et al (4 ) had expressed doubts about the validity of

the conclusion as regards the case (El/Ez) > 1, and
pointed out that theirﬂconclusions were based on the
properties of the first derivative, and that their optima
‘might not be global optima. As Aris ( 3) later showed,
Amundson et al (4 ) had run into a local extremum in dealing
with the case (El/E2)>>l.

A iandmark’in.the history of optimum reactor

design was Denbights (10) paper at the first European
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, 5
Symposium on Chemical Reaction Engineering. He considered

the complex first order scheme:

kl k3
A 5 - X = Y
1 | 73
E2 k2 El} kLP
p Q

in which Y is the desirable product, X is an intermediate
and P and Q are waste products. For different values of

the ratios (Ez/El) and (EA/E3) Denbigh showed how to choose

optimum temperature profiles for two equal sized c.s.t.rs.

| Piret and Trambouze (28) ﬁsed graphical
methods for the determination of fhe preferred type ( or
combination of types) and optimum siges of the reactors
needed for thé desired level of conversion of some key
reactant. The triangular diagrams Piret et al (28) used

for this purpose could deal with reaction systems such as

A B(desired)i::EQ (first order scheme) (1)
D
rl
A B(desired)
r
= |
D | : (11)

In scheme (ii) one of the reactions was of the first order and
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6

' the other was of the second order. Piret and Trambouze (28)
dealt only with thcse reactions which needed thrée or less
than three chemical species to characterise them, Moreover,
temperature effects were completely ignored.

From 1959 onwards, the interest in reactor
design for multiple reactlons shifted towards the application
6f newly developed optimisation téchniques « With the help
of these techniques far more complex systems could be
analysed than had been possible before, Using Dynamic
programming, Aris (2 ) optimised the yield for Denbigh's

vreaction. Aris used interpolation and tabulation to find‘
the maximum for each stage; Dyngmic programming is based

"on the concept of imbedding the given problem in a class of

similar problems and choosing a particular solution from the

general solution. This requires a computer system with an

exceptionally large memory and thus the utlility of this
algorithm is rather limited. Aris ( 2) had assumed that
the minimisation of the unwanted products and the
maximisation of the desirable products can be achleved by
‘ the same design., This probably is true in the case of
Denblgh's reaction but can not be considered a valld
principle in general, Pis'man and Ioffe (29) used Dynamic
Programming to compute the optimum temperature and sizes
for a complex first order reaction scheme occurring in a

~series of c.s.t.rs, AThey used the properties of the first
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derivative to maximlise the'objective function at each
stage., This procedure does save core‘space; but it 1is
based on the assumption that there is only one stationary
point for each stage and this poiht is a ﬁaximgm..

| Denbigh (11 ) developed the concepts of
instantaneous yield and the overall yield in a paper
presented at the Second Symposium on Chemical Reaction
Engineering, He showed how the relationship between the
Instantaneous yield and the extent of the reaction could
be used graphically for the optimum design of a series of
c.s.t.rs, However, as Zwietering (36) pointed out, the
method is useful asAlong as the extent of reaction can be
expressed as a function of the concehtration of a single
species, Obviously the apblicability of the method is rather

limited. ‘ ~
Ketz (24) developed the discrete version of
Pontrysgin's maximum principle* and later (25) showed how to
optimise the'operating conditions for the production of an
1ntermediate B formed in the reactlon,
A =—B — (unwanted products)

~ taking place in a cascade of N tanks, Katz (25), in his
later paper, extended the discrete version of the maximum
principle to cover many new situations, Fan et al (16)

generalised the 'D,M,P,!' to cover arbitrary and complex

topologies, Almost all of Fan et al's (16) work deals

*Abbreviated as 'D.M,P.!
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with systems in which the objective function is linear in
state variables. Denn and Aris (12) have derived a weak
version of the 'Disdrete'Maximum Principle! uSing Green's
.function;. They determined the optimum temperature policy
for a train of three equal sized c.s.t.rs in which a second
order complex reaction, A——F>B——a—C, was taking place,

Katz's (24) version of the 'D,M.P.' has been
severly criticised by Horn and Jackson (23). Denn (13),
Holtzman ( 19) and Holtzman and Halkin (20) havevalso
cri%icised Katz's version. Horn et al (23) pointed out that
Katz (24) and Fan et al (16) had deduced the nature of the
statlonary valueé from a consideration of first order
variations only., Thus, Katz's (24) sufficient conditions
were actually dnly the necessary conditions. Holtzman (19)
and Holtzman and Halkin (20) have stated the conditions
under which 'D.M.P.' can be used. Instead of considering
the evolution of the system in a discrete manner with stage
number, Gurel,and Lapidus (18) considered the simultaneous
evolution of all stages in the time domain, Variables from
each stage are thus transformed into elements of an overall
state vector at a given time.

By treating the optimal policy‘for the discrete
system as the optimal steady-state policy for the
transformed problem, the 'Continuous Maximum Principle' can

be used., Gurel et al (18) have thus used the time and its
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-9
evolutionvas a continuum to avoid the difficulties arising
out of the essentially discontinuous nature of the 'D.M.P,°',
It is apparent that the number of state and control variables
(n stage process) which must be handled in the continuous

_ form are not s and q, but (s x n) and (q X n) respectively.

The applicability of 'D.M.P.! is limited not
only by the'very restrictive conditions under which it can
be used, but the algorithm also suffers from convergence
difficulties. The 'MaximumvPrinciple' poses a two point
boundary value problem and when the objective function is
not linear in its arguments, matching the boundary conditions
can be a very difficult task. Denn (14) and Paynter and
Bankoff (27 ) have reported serious convergence difficulties
encountered by them in applying the 'Maximum Principlef,

A number 6f other techniques have been used in
yield optimisation‘studies. Storey ahd Rosenbrock (33) have
compared various optimisation techniques and have
zecommendéd the use of Rosenbrock's (31) direct search
technique. They used as a test case the problem of finding
the optimum operating conditions for the production of the

species C formed by the fifst order scheme:
.~ A—=B
P Q

Reed and Stevens (30) used a gradient method (another direct

C D
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technique) to study the yield optimisation problem for a
systen whicﬁ had a tank reactor as its reaction uhit.
Later DiBella and Stevens (15) used 'Non;Linear Programming!?
to solve the same problem, Most direct search methods are
time consuming, 6ccupy a lot of cofe space and do not
guarantee the global nature of the computed optimum,
Recently Fine and Bankoff (17) have used a second variational
technique to optimise the yield of an intermediate in a
consecutive reaction. This techﬁique was first suggested
by Merriam (26). Because the treatment 1s based on the
consideratlons éf second variations, it 1s apparent that
both necessary and sufficient conditions have been fulfilled
. in locating the optimum, T -
B, Selectivity Studiles

Denbigh (11) plotted differential selectivity
td!' against the extent of reaction (degree of conversion)
to obtain "¢ ' curves which he used to optimise the
reactor sizes for a series of c.s.t.rs. From a consideration
of the '@ ' curves he concluded that if the '@ ' curve had
a negative gradient, better selectivity could be obtained
by lowering the concentration of the key reactant, as
slowly as possible, On the other hand if the '@ ' curve had
a positive slope, concentration of the key reactant should
be lowered as quickly as possible, in order to.obtain

better selectivity. As has been pointed out before,
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Denbigh's (11) treatment is valid for only those reactions
which can be characterised by the degree_of conversion of
a single species; Also the treatment is based on the
assumption that the reaétors are operated at the same
temperature, Chermin and Van Krevelen (7 ) plotted the

maximum yield of an intermediate B against a parameter

M=
a0 *1
k,

151 | s =

-«-called the selectivity parameter---for a consecutive

reaction

t rder nth order s
mth o Q;:B o} e: D

ky -k

m = 0,1’2,

A

n=0,1,2,
Chermin et al ( 7) found that the maximum yield of B
increased with the increasing values of 'S', Since for
e consecutive reaction, yield and selectivity design
criteria are the same, Chermin et él's (7)) wofk is
usefui as a selectivity study; otherwise their study is

~ of a limited value. Van de Vusse and Voetter (34) did a
study with the aim of deciding the optimum operating
conditions for carrying out the reaction:

A+ B-£Z>D (desirable)

A + A—>X (undesirable)
k
2
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They studlied the effects of the selectivity parameter;

* _

F X
Al

, on the yield of D at a given level of

conversion for varioﬁs types of reactors, end concluded
that at higher values of conversion, yleld is optimum if
the selectivity is optimum, whereas at lower levels of
conversion, the yield is more and more determined by
conversion and 1is 1eés depéndent on selectivity.

Van de Vusse (35) has also discussed the relative merits of

a plug flow and a tank reactor for the reaction scheme :

It is apparent that for high yilelds of B, a reactor with

a short residence time is the best choice and hence a
plugrflow reactor should be chosen. However, the concentration
of A in the plug flow reactor will be relatively high and
this should favour the undesirable reaction. Thus, higher
yield can be obtained only at the cost of selectivity. On

the other hand in a tank reactor, where the concentration of
A is reletively low and selectivity for B is much better,

longer residence time will help the decomposition of B

*FB and FA are flow rates of A and B,
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and thus lower the yield of B, Van dekVusse (35) has shown

o .
that for RBCA//k1>'k%/&l , the selectivity of B will be

maximum at cohvérsions greater than zero. Though
Van de Vusse's (35) paper does not specify the conveisions
at which the yleld and selectivity optima occﬁr, the
treatment does lead one to suspect that perhaps the yield
and selectivity_maxima do not occur at the same level of
conversion of A. Also, one is tempted ﬁo speculate about
the use of a serles of c.s.f,rs to overcome the dilemma of
the choice between a c.s.t.r and a plug flow reactor.
Vén de Vusse's study also gives rise to the following
questions: |
i. How many tanks arelneeded in a series of c.s.t.rs
and what should be thelr sizes, Carberry and Gillespie
(5, 6 ) have suggested that for selectivity sensitive
reactions (such as the Van de Vusse scheme), the use of a
plug flow reactor with product recirculation can provide
a way out of the dilemma of the choice between a plug
flow reactor and a c.s.t.r.' From a study of the |
- tRecirculation Model Reactor!, Carberry et al ( 5, 6)
conjectured that a 2-3 tank train of c¢.s.t.rs should |
suffice,
i1, Does maximum selectivity occur at méaningful

levels of yield and 1if it does, are the same policiles
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(tank sizes and operating temperatures) needed for yield
and selectivity optimisation? | .
In addition to these theoretical studies, a
number of experimental studies dealing with selectivity
'have also been done, Demaria, Longfield and Butler (8)
conducted an experimental study to investigate selectivity
of phthalic anhydride in the napthalene oxidation reaction.
Spielman (32) did an experimental study of the oxidation

of hydrocarbons according to the following schemes:

X and.A——f-B-—a—D

(U, Y and Z) are the desirable products in the first scheme
and B is the desirable one in the second scheme, Spielman
(32) concluded that if the desirable products are
degradable intermediates in a sequence of first order
irreversible reactions, then

1. Selectivity in batch or plug flow reactors is
higher than in a continuous stirred tank reactor for any

conversion level,
ii. High conversion operation may be useless, An

optimum practical yield of intermediate is obtained at
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relatively low conversion,

In case the desired.products are terminal ones in a
sequence of first order irreversible reaﬁtions, the above
mentioned conclusions are reversed, It should be mentioned
here that maximum selectivity in either of Spielman's'(32)
schemes occurs at zero conversion of the key reactant,

It 1s apparent that selectivity oriented
reactioﬁ design'has not received much attenﬁion thus far,
Existence of optlimal conditions for selectivity maxima as
different from yield maxima.has not been established. It
1s conceivable that optimal policies for selectiivty
differ from those for yield. 1In this study certain complex

schemes are explored for such possibilities;
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CHAPTER III

SYSTEM DESCRIPTION

A. Kinetic Considerations

’ *
The reactlon schemne,

Y L
A
kg ]ku
A——=B—>D
kl k3
sz
M

was chosen because it is complex enough to include most of
the irreversible reactions met in industrial practice. B
is the desired product in the scheme, Yield and selectivity

with respect to B are defined by the following equations:

n = yleld of B = Amount of B Produced
B~ = Amount of A Fed (1)

o = selectivity for B = Amount of B Produced
B

- B " Amount of A Consumed (2).‘

The effect of operating conditions on the selectivity and
yleld of B is first conslidered in a single reactor and then
in a cascade of c.s.t.rs. Temperature and space time are

the control variables, The objective is the optimisation

#System parameters koi and Ei are listed in Appendix A

16
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. 17
of yield/sélectivity. In addition, the order of certain
reactions in the reaction scheme is varied to study its
effect on the optimal conditions. It was decided to try
first, ordinary calculus methods, and in case they falled,
to use the 'Discrete Maximum Principle;*. Because Halkin
(20) and Holtzman'sv(lg) criteria for using 'D.M.P.' are
rather complicated, it was decidéd not to make an a priori
check, but to verify the 'D.M.P.' optima by comparing them
with optima obtained by a direct search method. The
Hooke and Jeeves (21 ) method was chosen for this purpose;

For the sake-of analytical simplicity; the

following assumptions were made:

1. The tank reactors are ideal back mik reacﬁorsQ
Each can be maintained at any required temperature.

1i. The feed to the first tank consists of pure A.
Initial feed concentration of A is = 1.0 gm moles/liter,

iii., There are no volume changes as a result of

chemical reactions,

iv., There is no bypassing or recirculation of any
stream, |

B. Optimal Considerations

Case 1, reaction A——Y is of the second order, All the
other reactions are of the first order,
a. Single c.s.t.r:

For a single reactor with feed consisting

* Derivation of 'D.M,P,' (the weak version) as stated by
Denn (12) is given in Appendix B .
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of pure A, selectivity and yield of B are given by -

" equations (3)»and.(4) respectively,

o = | k%
B 2 0 )
(k1+k2)xl + ké(xl) + (k3fk4)(x1-x1) (3)
UB _ _ k x (x1 xl)
xl[(kl+k2)xl # aglay)” 4 ey (x| ()

Maximum selectivity is given by equation (35) and the space
time corresponding to this selectivity value is given by

equation (7).

o k
[é]max = 1 5 '
(k+,) + kX P(2-9) (5)
2 . *
where, (yY) = (k3+k4)/(k6x ) (6)
-
o
- [B]max = 1-¥ 5 >
—‘—€k1+k2)$ + kéxi(w) (7).

The maximum selectivity occurs at a conversion of A > 0

if andronly if

0 .
Kgxy > (kgtky) an (8).
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The conversion of A corresponding to maximum 0£ is given

as 0 " v
X, = X ' —
T (9).
The meximum yield of B is obtained when
o .
= 10
x, lxl‘ - (10)
where,
k k
A = 3 " %y
"k k Jk K, +k 9 (11)
3+ L + R tE Xy .
The corresponding expressiohs for P?] and 'TP7]
“max LB nax
are:
' k B
[,7] RYESY
*nax KoK )h + K R (V) “4(katky,) (1-1) 2)
(k+k,)N + X1 +{kq+ky ) (1- (1
and,
r
[n] _ 12
Blmax { 0 }
M (kg k) + k X\ (13).

b, Series of c.s.t.rsg
1, System equations: The material balance
for the nth reactor of the cascade is given by the

following set of non-linear difference eguatilons:
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i. Component A

n.l n n n.n n 2] n :
= - . )4,
x; x, + [(k1+k2)xl + k6(x1) ] T : | (14)
ii. Component B
n-1 n [ n n n nn ] n
X, = X. + k +k Jx - k.x T
where, n
n -Ei/(RT) v
ky = kyy © » (16).

Equations (17) and (18) based on equations (14) and (15)

respectively describe the evolution of the system:

: 2
n n nn n nnn-1
§(1 _ |- {1+T (El-i-xz)} +J{1+ ‘r(kl+k2)} + U4 6'r Xl
1
nn
2K6T - .
’ n ‘=1'2.ooo (17) o
nnln n,n n n.n n_.2.nnn-l
n 2K6X2 +kl -[1+T( kl+k2)] + [l+7‘(kl+k2)] +MK67'X1
X. =
2 -

2?(1 ‘rrl(f«:lﬁ)) (1
6\ ~F 3Ty o =1,2,... (18).

Equation (19) redefines selectivity in a form useful for

stage wise calculations,

X
3% —=— n=1,2,... (19)
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It should be mentioned here that eduation (18) gives yield
of B accofding to equation (1). _
2., Statement of the'Discrete Maximum Principle?:

In the operation and design of a cascade of tank
reactors, the twp important parameters are the holding time
and the operating temperature for the reactors.A In order
to compute these control variables for the optimal
performance of the tank reasctor train, two objective
functions can be chosen. The selectivity'%' is one and thé
yieldt'"'is the other. The 'Discrete Maximum Principle!
described in the followlng pages can be used to decide
the optimal policies for both of these objective functions,

For an N stage sequential pfocess characterised

by the transformation equations (20) and (21)

—_—

T n n.1 W |

X = f (X ’ q) n= 1|2’.00N (20)’
°

X =-é,-; (21)9

the optimisation problem consists of maximisation (or

minimisation) of a specified objective function.

—— a—--

S .
- TN N
_ c X = ;Z& ¢ Xy (22)

For an optimal choice of the nth stage decision vector
n ' n
q, the stage wise Hamiltonian H, should be statlonary with

n
respect to the interior components of the vector q and
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—

n
maximum with respect to the components of q that lie on a
constraint. This is the so-called weak maximum principle
(12, 23 ), The stage wise Hamiltonian is defined as:
S .

rfll = Z rllcini ’ n =1,2,3,...N (23)
i=1 o '

The vector % is defined by the adjoint equatidns

n-1
2y

s
o

= _b
5

=1,2”o OQS

-1
i n =1'2’000N (2)4’))

s

with the boundary conditions

(25).
—— s Sl o
n ? -1 n '
The vector x |= (x , @ )] is usually called a state
vector,
3. The 'D,M.P.,' algorithm equations for
selectivity optimisation:
For the system of c.s.t.rs under consideration,

the state equations fdr selectivity optimisation process are

-~ glven as
nnn

- l+‘T(k1+k2) + @

%
1:

n n
2K6T . n = 1’21000N (17)
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n nn-1ln nn n
X, = 2Rty x| - {107 (ki) o ¢]

g [1 Py |
+ T +

6 3 L,’ n = 1.2.oo-N (18)

n nn n-1‘ n-l n h nn .n |

X, = 2K7 X4 (1-X3 )+ 7 * | - | L+ 7 (ky+ky) f+¢

nn n n n nnan
[1+'r(k3+k4ﬂ* [2K6T‘ (1+7'(k1+k2) - ¢ )]

n = 1,2..0.N (26)’

nn n 2 nnn-l
¢ = [1+fT(kl+k2) + hKéT X

The initial conditions for'these state vectors arei

n = 1,2’ o‘o !N (2?)0

X | 8
, = 1.0 (28)
0

x2 = 0.0 (29)
(o] ,

X3 = 0,0 : (30).

" Condition (30) though not mathematically correct <g form>
0
is physically reasonable,

The Bamiltonian 1is
Hoe1 = %1%+

n
222+ §3E3

n = l,zpoonN (31)0
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N .
The performance index is X3, and the ad joint vector

components aret

n n-1 n-1 nn n-1 n-1 nn _ n-1l -
Z, = zl ¢ - 22 (kl‘r )= <23 /(1..)(1 ))* (kl'r ).X3 ¢ +

nnn-l n-1 nn nn n nn
2K T X_ (1-X )-kl'r [1+ T(kl+k2)]+k1-r¢

nn n n n

2K,T + [ 1+7T (k1+k2)]- ¢

. n = 1’2’.00‘N » (32)
n-1 nn n

o = Z2 [1+ T(k3+ku) n = ?—,29 es o N (33)

N
l

n-1 nn n ] [ nn ﬂ n n
3 = Z3 [1+ T(k3+k4) 2K67'+ 1+7‘(k1+k2) -¢
28 7 (- -
6 1 | n=1,2,...8  (34)

The boundary conditions for these adjoint vector components

are
N 4 . ,
Z, =0 | (35),
N
Z, =0 (36),
and N
Z, = .
- 3 1 . (37)
n n n
The decision variables areT and T. T enters the equations
n ‘ ) n
as k, = k_, -E1/(RT) | - (16)

i o1l e

-,

4, 'D.M.P. algorithm for yield optimisation:
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" Equations (17) and (18) are the only state
equations needed for yield optimisation, The initial

conditlions for these equations are

X, = 1.0 | | - (38)

o 4 _ :
X, =0 , (39).

The Hamiltonian for thils case is

nn nn

n
Hyie :
n = lgzgoonN (40)0

N .
The performance index is X2 and the adjoint vector

components are

n n-1 n n n-1l
n=1,2,...N (41)
and
n n.l nn n
Z, = Z, [1+ T(k3+k4) .

= 1|2’.'-N (42)0

The boundary conditions for these adjoint vector components

are

=0 (43)

= 1 . | (44)0
n n
The control vector components are again 7and T,

5. Computationél procedure for determination of
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In order to determine the optimum reactor
policlies for the various objectives (selectivity or yield),
it is necessary to find the stationary ﬁoints for the |
stage wise Hamlltonian as defilned 1n‘equations (31) and
.(UO) with the help of the corresponding state and adjoint
equations, It is apparent that this involves the solution
of a two point non;linear-boundary value problem. Whereas
the state vectors are known at n = 0, the adjoint vectors
are known at n = N, |
The optimal pblicies have meaning only 1f the
control vector components do not exceed certain practical
limits. For example the operating temperatures are
usually limited by the nature of the materlal used in
equipment construction, Thereforé, it was decided to limit
the operating temperature such that )
' ' 50K <T <1,000 K.
Restrictions on the slize of the reactors were also placed.
However it should be mentioned that in the case of reactor
size, optimal policies were determined for various upper
limits of the reactor size. (A negliéible holding time
- was taken as the lower limit for the reactor size). These
upper limits on the holding size of the reactofs are listed
in tables (1-6).
The non linear two point boundary value problem -

can be solved by the boundary condition iteration technique.
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A brief description of this method is given below:
1. 1Initial values Zi' for the components of the
adjoint vector are assumed,
ii, The available decision space is divided into a
:grid.
1
'1ii, The first stage Hamiltonlan H is calculated at
various grid points.. The values of % and } at which %
attains 1té méximum,‘are stored., The step (ii) and (iii)

can be replaced by any other steps permitting calculation

of the maximum of a function 1in a constrained decision

space.,
iin N N
iv, The tentative optimal policies (T,T ---T,7 ) and
_ n N
the corresponding ad joint vector components Z.l.....Zi are

computed and stored similafly.

N
Ve If the computed 2 match the given

i~
N
values of Z1 (for selectivity optimisation, equations
(35-37) and for yield optimi ation, equations (43-44) ),
R
the optimal policies are(T, T n=1,2,...N), and in case

N N
the computed values of Ziand the given values of Zi do not

match, an error function G, N Y
o i=20r3 [y ‘ N 2 '
G = ) Z (computed)-Z (given)
~ i i
i=1
(45),

is minimised by ény of the direct search techniques. In

this study the Hooke-Jeeves (21) pattern search method was
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used, and when G £ € , the iteration on the boundary
conditions was stopped. The results are tabulated in tables

(1'6) .

Case 2, Reaction A——B is of the second order. All other

reactions are of the first order. For a single reactor,

the selectivity with respect to B is given by equation (46)

2
% - 1%
2 .
(k2+k6)x1 + kyxq + (gl'xl)(k3+k4) (46).

In order that Oé is maximum at a conversion of AD>0, it is
necessary that
(k3+k4) + (k2+k6) <0 (47).

It is obvious that it is impossible to physically fulfill
condition (47). This case was therefore not investigated

any further,
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CHAPTER IV

'RESULTS

TABLE 1

Optimal policies for selectivity optimisation, single

c.S.t.r.

o]
T = 1,000K

U-L

7 _(min)

512,000
64,000
32,000
16,000
8.000

T(K)

Ty 1

1

- 508

229.843

240,000
245,468
249,062
256.250

29

i (min)
b2 ,055
58.035
31.264
15.439
7.624
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TABLE 2

Optimal policies for selectivity optimisation, two

c.s;t.rs.
o ' o)
TU-L = 1,000K Ty 1 = 50K
1 : 1 2 o 2
r . (min) T (}%) 7(min) T (K) T(min) %(UB)
u-L . mex
512,000 233,700 512,000 247,225 102,366 99,409
64,000 249,877 61.337 253,522 40,814 99,202
32,000 251,578 29,668 262,521 6.543 99.054
16,000 257,433 15.856 265,370 3.256 98.978
8.000 245,066 2.583  256.226 4.306  97.524
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Optimal policies for yield optimlsation, single

CeSeter

o)
T = 1,000K
U-L

T (min)
UL

512.000
64,000
32,000
16,000

8.000
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TABLE 4

o

L-.L

l o
T (K)
275,000
296.953

304,921

313.359
322,187

o
= 50K
T (min)

512,000
63.981
31,991
15,997

8.000

32
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TABLE 5

Optimal policies for yield optimisation, two

c.s.t.rs.
’ K ‘T 5o§
TU_L = 1,000K _— (2
1l o 1 2 o 2 % B) max
+ (min) T (X) T(min) T (K) 7(min)
U-L :

512,000 261,170 509.107 265.613 447,213 97.787
64,000 285,689 61.542 285,051 61.656 95.804
32,000 293,363 32,000 292,794 31,986 94,776
16,000 302,401 15.776 301,954 15,300 93,318

8.000 310{381 7,872 310,023 7.970 91.610
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CHAPTEER V )

DISCUSSION OF RESULTS AND CONCLUSIONS

A, Discussion of Results:

The optimal conditions for a single reactor
were calculated by the pattern search technique (21),
Also, the results obtained by using the 'D,M,P,' were
compared with those obtalned by direct pattern search.
The results obtained through these two different methods
were in agreement with each other within 2%, Since
reactions are more sensitive to temperature than they
are to the size of a reacfor , the ratio (AT/AT) = 4.0
was used in constructing the grid for locating the
maximum of a stage wise Hamiltonian., The same ratio was
used in pattern search movements. The value of € (p.28)
was chosen as 0.1*157. It Shoqld be mentioned here that
the boundary condition iteration technique was found to
bé rather én inefficient method, The total IBM 1620 II
time consumed for this study was about ten hours.

It is apparent from equations(7) and (13) that
different reactor sizes are needed for optimising
sélectivity as opposed to yileld. A.consideration of

tables (1-6) shows clearly that optimal policies (T, 7 )for
35 |
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yield and selectivity optimisation are different from each
~ other. | 7

| A consideration of tables (1-6) also shows that
whereas the yield with respect to B increases with the
increasing number of reactors, the selectivity with respect
to B displays an opposite trend, This confirms
Van de Vusse's (35) observation that in selectivity
sensitive reactions (such as Case 1 of thié/study), it is
good to use a tank reactor for éelectivity optimisation
and a plug flow reactor for yield optimisation.

B, Conclusions:

1. For a complex reaction scheme, in which the
maximum selectivity with respect to an intermedlate
corresponds to a positive definite conversion of the key
reactant; the optimal policies fér yield and selectivity
maximisation are distihctly different, Thus it is erroneous
to consider yield as the sole performance criterion.

2, The boundary condition iteration technique was
found to work for the solution of the non linear
optimisation pfoblem, but conﬁergence difficulties resulted

" In the consumption of a large amount of computer time,
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APPENDIX A
SYSTEM PARAMETERS

-Ey/RT - Liters, gm moles oy 1
Ki - KOie ' K01 Minutes Minutes
-
K _ = 28.e13'75 E; = 11,000 Keal
01
16.25
= E, = 13.000 Kcal
K02 = 0.8e 2 '
31.25
= E_ = 25,000 Kcal
KOB‘_ Ble 3
25. = 20.000 Kcal
22,5
= E, = 18,000 Kecal

37
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- APPENDIX B

DISCRETE MAXIMUM PRINCIPLE (WEAK VERSION)

Ca n
Let X = P(X 'q) n= l,z,...N (lA)

describe the evolution of a discrete system, X is an s

dimensional state vector and q is a t dimensional decislon

vector. Let ?, n=1,2,...N represent the state resulting

from the optimum decisions 3. n=1,2,,,.N, then

e —

n - - .
= P(rxl l.g) n = 1.2.000N (ZA)'

Mol

If the following independent small perturbations of

-

8 are made at each stage,

n .
g-_—q + 62 n=1’2’c-|N ) (BA)D

the disturbance then will alter % to

X=X +ey + 0(5) (4a),
where 2 is a t dimensional vector, ? is an s dimensional
vector, € is a positive parameter of first order smallness,
and 0( € ) represents quantities of an order of smallness

- greater than one, It is also assumed that y and ¢ are

independent of €, From equation (1A), (2A) and (4A) one

can write

' — = 2
?'l.gf - BELD + oce) (54).

38

n n
€y = P(
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Equation (SA) can be expanded in Taylor series to give

equatién(éA)
n —_
n S n-1{3p n-1 n n /ncl n
eyi= ) eyj i X ,q + Pi X , qQ
=1 n-1
bxj

- gi<§:i, g) + 0(3)

If the equation (6A) is multiplied by Z ( the ith component

i—l 2’-01 Sp n=l’2,.’.oN (6A)'

of an s dimensional vector Z) and summed up over 1=l to i=s,

the resulting equation can be written as

£ o (FT0E,

'S nn s s n-1 0P (mln)n
>, €y,2,= 12 Zey 1 \x7,q, Z, +

1 _J=l 6;’1{-1 i=1
J
s, (m1inye 2 |
2 P(x .q)Zi + 0(6) (74).
izl 1 i
1f, n _
n-1 S 8P [n-1l n\n
zJ = 2 1<x ,q)z_,L (84)
i=1 jx :
8%
Equation (7A) can be written as
- S nn n-ln-l S n-1n n n-1n n
Z, - Z = Z-P ,
géi €v,%, - €y, 2, £§£ P, \x a2~ Plx ha) 2,
2 .
+0(¢) (94).

Summing over n=1 to n=N ylelds
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n-1 n n-1 n\|n
P, lx q)- P(x qﬂz
n=1 i=1 [ 1h ’ 1 ’ i
_ 2
! v + 0 (€> (104)

Since the initial cdnditions are fixed, §i='0, equation

N s

4o
S N N o ©
Z, - =
e1§1 (yi 1 yizi)— 2 2

(104) becomes

s N N s — n-i1 n 2
N n-1n n- n\\n
€. ¥ 2, = ZZ(P(X q)-P(x q)>z + 0 (€
e e N S s B v AN ' N (¢)
(114).
N
It can be postulated that Zi= cy
where ¢, 1s defined as,
1 s N
Objective function O0.F. = D, c X, (124)
. i=1

Equation (12A) when substituted in equation (11A) gives

él [Pi (%1'3) . pi(’é_'i.g)]fz‘i +0 (i)
(134)

The objective function, 0.F. as a result of the perturbation

N N

n=1

described by equation(34), can be described as

2

8 N
O.F. = ). ¢ + 1§1€ ciy1 + O(e.)

S
1=1 11

n=1,2,... N . (IL"A).
T
Since q,n=1,2,... N is the optimal trajectory i.e., it
maXimizes O.F. the effect of perturbation represented by

equation (3A) can only be to make

,

s .
2ec Y <
i3 €0y, =0 (154)
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If equation (13A) is expanded in Taylor serles and combined

with equation (15A) one can obtain

n=1,2,+.. N (16A)

Equation (16A) can also be written as

Nt 5 (n°l n) 0 (?) < 0
n n S, n P X .,q)+ <
2, X (q -q ) 2, 2y
n=1 Jj=1'4dJ4d J° i=1 o
6d ‘ ,
J n=l.2,.oo N (17A)
Since the perturbated declsion vectors 3, N=1,2,¢00 N
are assumed to be independent of each other, therefore,
n (n-1 & 2\ ]
) 2\a - Q. 2: V<
= 1= L0
i ) a&
. j o
n:l,z,... N (18A)
n s n -1 n
IfrH= Y zp(?c ,q) (194),
f=1 11 .
equation (18A) can be written as
t n, n 2)
{ D ev,. dH + O\eJ] <0 (204).
' = 3 m
da .
J

n /n
For the stage where the condition (bH//;q)<= 0 gives the
ﬁ .
value of q outside the admissable region, the optimal
decislion policy usually occurs at the boundary points.

n
Since §H # 0y the sign of the £.h.s, of the equation

n '

da
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: t n n ' b2
(20A) is decided by the term ) e ngg which 1s of the
: J=1 n
éq'j '
order €, It is obvious therefore, that the condition

t ., n 4 n
> e¢<g§ > < 0 is equivalent to the condition H= maximum,

j=1 n
6qj

n
When the Hamiltonian H is stationary i.e, = 0 , the sign

O |On
»023".3:”3

of the £,h. side of the equation (20A) is decided by the
term O ?) , which can be negative , zero or positive,
However, it iz appérent that a stationary value of ﬁ
corresponds to a stationary value of the Objective Function,
This conclusion led Jackson et al(23) to state "- in general
the nature of the stationary values of the 0.F. and the ﬁ
are unrelated; in other words it 1s not generally true that

n
H must be maximised to maximise the O.F."
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NOMENCIATURE

Latin letters ‘ -

E1 ‘ = energy of activatlion, K. cal.

H = Hamiltonlan, defined in equation
(23)

K, | - kégl |

N = maXimum number of stages in a
sequential process

X, = (x/?:i). 1=1,2

X3 = selectivity component of the
state vector, defined in equation
(19)

o

T : = temperature K

Z | = ad joint vector, defined 1in equation
(24)

k1 = specific reaction rate constant

k01 = pre-exponential factor

] = decislon vector

Greek lLetters

€ = a small number
UB = Yyleld of B, defined in equation
(1)
X ' = dimensionless parsmeter, defined

in equation (11)
43
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Lk

B = selectivity with respect to B,
defined in equation (2)

T _ - = reactor space time, minutes

¢ = dimensionless parameter, defined
in equation (27) |

Y = dimensionless parameter, defined
in equation (6)

Superscripts

T = transpose of.a vector

n = nth stage

0 - = 1initial condition

s = number of components in a vector

t ' = number of components in a vector

Subscripts

sel = .selectivity

yie = yleld
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REACTOR SIMULATION FOR THE HYDROGEN
FLOURIDE REACTION FLOURSPAR +
SULPHURIC ACID —— PRODUCTS.,
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ABSTRACT

A model has been proposed to simulate the
Hydrogen Flouride reaction— Flourspar + stou,._ occurring
in an externally heated, centrally stirred, rotary tubular
feactor. The model takes into account the diffusional
transport of Mass and Heat inside flourspar\particles of
various sizes. It is proposed to compare the theoretically
predicted consumption of H2804 with the experimentally

~determined consumption of the sulphuric acid,

11
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CHAPTER 1

INTRODUCTION

Although the Hydrogen Flouride reactlon-
Flourspar + stou — 1s of commercisl importance, there is
very little information available about it in the published
literature, An experimental 1nvest1gation is being carried
out with the objective of establishing the optimal design
conditions required for the prbduction‘of HF from this
reaction,

The reaction is usually carried out in a rotary
tubular reactor fitted with a central stirrer., The
externally heated reactor 1s continuously fed at one end
with finely ground flourspar and preheéted sulphuric acid,
At the other end, the‘products of the reaction are taken outj
the gaseous products being sent to the HF Scrubber and the
s0lid ones being dﬁmped.

As a preliminary step in establishing the
optimum conditions for the production of HF, 1t was decided
to simulate the resctor matﬁematically, and to compare the

predicted consumption of HZSO with the experimentally

i
deterimed consumption of the sulphuric acid. In case an
agreement 1s achieved between the theoretical and experimental
consumption of stou, the simulation process can be

extended to predict the yield of HF and finally to establish

the optimum operating conditions required for the production
1
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of HF,
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CHAPTER II
REACTOR SIMULATION

A, Kinetic = Considerations

The commercial Hydrogen Flouride reaction

can be written as,

CaF2 + ston _¥Ca§04 + 2HF +AHl (1)

CaCO,_, + H_SO —-CaS0, + H20 + CO

3 550, L + (-AH2) (2)

2

LHF + S10, . ~S1Fy + 2H,0 + (-AH,) (3)

The reactions (2) and (3) are exothermic,
whereas (1) is endothermic., The heats of reaction data are
available in (2)., It has been established (1) that reactions
(1) and (2) are of firsﬁ'order with respect to HZSOu and
are of zero order with respect to the solids involved. It
is assumed that flourspar is present in the form of porous
spherical particles of various sizes* and that the reaction
is not limited to any reaction front, but takes place
throughout the body of the particle. The last assumption

_provides the theoretical investigator considerable flexibility
in fitting the experimental data to theoretical models, by

simply varying the required Thiele modulus,

¥ For size analysis, see (2).
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B, Thermal Considerations

The design of the experimental set-up does
not lend itself to a deﬁailéd sketching of the thermal
régime prevailing inside the reactor. However, after
examining the experimental data avallable, the following
assuptions can be madej

i, The ambient'temperature across a cross-section of
the reactor is constant but thermal gradients exist inside
the porous solids, This assumptlion can be Jjustified on
the grdund‘that the rotary movgment of the reactor produces
a thoroughlmixing of the materials across any cross-section
of the tubular reactor. ‘ |

ii. The axial variation of temperature along the reactor

length can be represented by a step function.

C. BResctor Model

Residence time studies (3) reveal that the
reactor behavior falls in between the ideal plug flow
reactor and an ideal c.s.t.r. behavior, It was declded
therefore to use an axial diffusion model for simulating
the reactor, and to adjust the Peclet number to conform

with the actual behavior of the reactor,

D. Mass and Heat Balance Equations for the Reactor

With these assumptions, the mass balance for
a differential length of the reactor under steady state

conditions can be written as,
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J(UC )- s [, Ay + ®E =0 (L)

3Z\ A 37 <Aax 6Z> S '
Convective axial chemical

transport diffusion reaction

where R 1is glven as

~ n 2 §c
R=U4nN) D, ,nr A
{=h Al 1 o 3T

rer, (5)

and m ,

Eni =1 (6)
i=1 ,

The boundary conditions for equation (4) have been suggested

by Wehner and Wilhelm (4) to be

- 5C
Z =0 Uc, (o )= UC,(0,) - D A
' A ATTH hax\ 57 )7=0,
and,
7 =L ve (L) - p. (%% - uc. (L,)
’ A" AaxﬁZ:L AT+

‘For all practical purposes these boundary conditions can be

written as

0
CA=CA | (7)
Z:L. dA

———

- S ¥/

=0 (8)
Z=L

The term R in equation (4) can be evaluated with the hélp
of mass and heat balances over the various spherical particles.
The resulting equationsvfor steady state conditions are

given on the next page:
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c 6C 2 g : '
# 6 A + _g _‘A_ — p ___j_ CA = 0 1:‘-1'2,000 m (9)'

"rz1 Ty 8%y 5=l Py |

C, = CA(Z) . r, = ‘rio 1=1,2,... m (10)

JUA =0 or, C = finite atr, =0 1=1,2,... m (11).

3T A

Equation (10) states the assumption that there is no
resistance to diffusion of H2804 to the outer surface of the
particles,

The specific reaction rate constants k j=1,2

J.

are defined as o :
K =k e'EJ/(RT) | (12)
J oJ

where T = T(rl,Z)
A differential heat balance can be written for the spherical

particle as follows: -

o

K. 6T +K.. 2 2 k <-E3/BT>
ci —5 T Rt = %% - EZRAHj oje, CA =
6r1 i 1 j:l .
1:1'2,000 m (13)
The boundary conditions for equation (13) are

T = T(Z) I = rio

1=1,2,+.. m (14)

=0 or T = finite at r1=0

i=1,2,... m (15)

9T
6T

¥ KITthough p has been assumed to be constant 1n this analysis

1t could very well be a function of reactor length in the
actual case,
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E, Non-dimensional Equations for Reactor Simulation

If the coefficient fo; axial diffusion, DAax
and the effective diffusivities (DAi) and effective
conductivities (Kci) can be assumed constant, equations
(4 - 15) caen be non-dimensionalised, These non-dimensionalised
equations are listed below,

1, Overall Reactor Mass Balance

Equations (16 - 19) describe the over-all

mass balance for the reactor

2 m
2
o9 N, T4 . ba(ND,L7) Tngy, °9, -0 . (16)
6 X 6X§ i=1 Gyi y=yio
m
- Znii = 1 (1?)
1=1
=1 X=0 18
dk (18)
0p =0 X =1 (19).

X

2, Mass Balances for Individual Particles:

Equations (20 - 22) represent the mass balance

-~ over individual particles.

2
L) G
2.2 %% v
3=1

2 y 6y 1=1,2,onn m (20)
oy i 1
1

I
o
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= H = = 2 PP 'm 2
?A ¢A(X) H yi Yio i=1,2, (21)
and )
o
A=0 or @ = finite at y,6K =0, 1i=1,2,... m (22)
3?; A i ,

3; Héat Balance Equations for Individual Particleés

Equations (23 - 25) give the heat bélance over

individual particles in non-dimensional form,

o) 2 : , '
52 2 C PAHk L o
____%+g____¢}_g_ (A __Jo) EXP[_ (EJ RT) ol = 0
v, 1 Yy =1 ok
cl
1=112'ooo m (23)
= = ' 2
0 = 0(X) ¥y =Yy, | (24)
6 = finite , 0 =0 at y, =0
37 1
1'-:1'2"0. m (25).

F. Solution of the Non-dimensional Equations:

Solution of equations (16 - 19) with the help
of equations (20 - 25) can be attempted numerically. Such
& solution can predict the exit concentration of stou from
~ the reactor, A comparison with the experimental results
can then be used for the validification of the theoretical
model. It should be mentioned here that 1f the energy
balance equations (23 - 25) are heglected, the solution for

the resulting isothermal case can be found easily by using
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‘ 9
the standard finiteAdifference techniques (5). The
simultaneous solution of equations (16 - 25) is howevér
much more difficult, ' B
The theoretical considerations presented in
this part will form the basis for the interpretation of

the forthcoming experimental data,
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NOMENCL;&TURE

C = Concentration of H2804 (gm moles/cn?of
the bed material)
' 2
= Axial diffusion coefficient (cm /sec)

DAax =

DAi = Effective diffusivity of 'A' in the
spherical particles (c\,m2 /sec)

‘Ej = Energy of activation for the jth
reaction (Cal/gm moles)

Hj = Heat of reactlon for the jth reaction

(Cal/gm moles)

Kc | = Effective thermal conductivity of 'A!
in the solid particle
Cel/(cem) (sec) (K°)

L = Reactor length (cms)

N = Number of particles in a unit volume
of the reactor bed (1/cm3)

NPe = (DAax/UL)

k = Chemlcal reaction term

T , = Reactor temperature oK

U = Linear velocity of solids in the

reactor cm/sec

10
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X = (2/L) dimensionless coordinate along

the reactor length

Coordinate along the reactor length

hJ = Thiele Modulus L ‘}PKJ/DAj for the

Jth reaction

N
it

kJ = Specific reaction rate constant for
the jth reaction cmz/(sec, gms solids)
kOj = Pre-exponential factor for the jth
reaction
n, = Fraction of a certain size of particles
Tso = Radius of the ith group of particles
Yy = Dimensionless coordinate (r;/L)

Greek Letters

o
Dimensionless temperature (T/T)

o
]

= Density of the bed (gm/cn?)

= (L/U) the reactor residence time
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