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Abstract 

Wideline and ultra-wideline (UW) (i.e., > 250 kHz broad) solid-state NMR 

(SSNMR) spectra are acquired for a wide variety of nuclei (i.e., 119Sn, 195Pt, l99Hg, 207Pb, 

27A1,71Ga) using multiple acquisition techniques. The WURST-CPMG pulse sequence is 

shown to acquire such patterns efficiently and without the need for piecewise acquisition. 

Preliminary investigations into the use of optimal control theory (OCT) are also carried 

out, and show promise for future studies. Additionally, a series of Pb(II) thiolate species, 

which exhibit unique Pb bonding environments, are characterized with 207Pb SSNMR. 

Density Functional Theory (DFT) calculations are performed to determine chemical 

shielding (CS) tensor orientations within the molecular frame, which are then correlated 

to the experimental spectra. Finally, several group 13 guanidinates (guan = MeN-

C(N'Pr2)-NMe) are studied via 27A1 and 71Ga SSNMR at 9.4 T and 21.1 T, and 

experimental data is complemented with ab initio calculations, and the CS and electric 

field gradient tensor parameters are found to have a great dependence on metal 

coordination number and the nature of the metal-ligand bond. 
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Chapter 1 

Introduction 

1.1 NMR Spectroscopy 

Nuclear magnetic resonance was first reported simultaneously by the research 

groups of Bloch and Purcell in 1946.12 In the decades that have passed since then, NMR 

has become an indispensable tool for the characterization of structure and dynamics at 

the molecular level in virtually every area of chemical research. The advent of large, 

superconducting magnets, and advancements in hardware and software, have made it 

possible to conduct experiments which would have been considered virtually impossible 

in the past. The field of solid-state nuclear magnetic resonance (SSNMR) has greatly 

benefited from these advancements and has become an area of intense research over the 

past several decades.3"8 SSNMR has been employed to study a wide variety of molecules 

and materials, including proteins,9 polymers,10 inorganic materials"12 and clays and 

minerals.13 In this section, the interactions that give rise to SSNMR spectra are 

examined, along with a variety of techniques employed in their acquisition. 

1.2 NMR Interactions 

In this section, we discuss the physical interactions which give rise to the NMR 

phenomenon, and the informative fine structure observed in NMR spectra, as well as the 

manner in which these interactions are manifested in NMR spectra. In no way is this 
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section meant to be considered a complete treatment of these interactions; rather, the 

reader is presented with a rudimentary background of the basis for NMR. More 

comprehensive descriptions of the interactions which govern NMR are elegantly 

described elsewhere.14"18 

1.2.1 General Considerations 

The nuclear spin, I, is an intrinsic property of the nucleus and gives rise to spin 

angular momentum, described by a vector I, and a nuclear magnetic moment, p, which 

are related through an inherent nuclear property called the gyromagnetic ratio:18 

H = yl (1) 

The spin can interact with a static magnetic field, B0, or an oscillating magnetic field 

induced by a radiofrequency (rf) pulse, B,. In the presence of a magnetic field, \i will 

begin to precess about the axis of the field, B0, which is conventionally taken to be along 

the z-axis. 

Spin is quantized such that the z-component of I, Iz = mh, where m= I, I - 1, ..., 

-7, and represents the spin state of a given spin. The energy of interaction between |u, and 

B0 is given as: 

E = ~f* ' Bo = -V-A = -mfiyB0 (2) 

The rate of precession, co0, is known as the Larmor frequency and is dependent upon the 

magnitude of B0and the gyromagnetic ratio:18 
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co0=-y£0 (3) 

Note, that Levitt's convention for the sign of the gyromagnetic ratio is applied here, and 

that: 

co0 = 2TW0 (4) 

1.2.2 The Zeeman Interaction 

The Zeeman interaction is the fundamental interaction that gives rise to the NMR 

phenomenon. Outside of a magnetic field, the spin states of a nucleus are degenerate. 

This degeneracy is removed when a magnetic field is introduced, resulting in 2(1+ 1/2) 

quantized spin states, which differ in energy by AE = Ao0.
18 The simplest case to 

consider is that of a nucleus with / = 1/2, which has two possible spin states, m, = +1/2 

and m, = -1/2, or a and P, respectively.20 An individual spin can be visualized as a 

magnetic moment which precesses about the external magnetic field, B0 (z-axis) at the 

Larmor frequency. The quantization of spin along B0 dictates that there are a limited 

number of possible states for precession; in the case of the spin-1/2 nucleus, there are two 

possibilities: a and p. Note that for a nucleus with a positive gyromagnetic ratio, the a 

spin state is lower in energy than the p spin state. 

In treating the NMR experiment classically, a large number of spins (i.e., an 

ensemble) is normally considered. The spin states are populated according to the 

Boltzmann distribution: 
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-^ = e kT (5) 

where Na and TVp represent the populations of the a and P spin states, k is the Boltzmann 

constant and T'\s the temperature (in K). The Boltzmann distribution dictates that there 

are more spins in the lower energy a state; therefore, the net magnetization of the 

ensemble is a vector, M, that is parallel to B0 The population difference between the a 

and P states can be increased by increasing B0 or lowering the temperature. Both of these 

actions result in increased sensitivity, as the NMR signal can be shown to be proportional 

to: 

Nfh2B% ital 

AkT 

where N describes the natural abundance of the isotope under study, or the number of 

spins present. 

1.2.3 Response to radiofrequency pulses 

In an NMR experiment, the sample is placed in a coil (normally on a probe head) 

which is inserted into the large external magnetic field. When an oscillating (AC) current 

is passed through the coil, an oscillating magnetic field, B,, is produced along the axis of 

the coil, which is directed perpendicular to B0 (note, that this is the case for a solenoid 

coil; for solution NMR, a Helmholz coil is utilized). In the lab frame, the individual 
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magnetic moments precess about B0 at the Larmor frequency, co0. If B, is applied such 

that it oscillates at a transmitter frequency of corf, and corf ~ co0 then it is possible to "tip" 

the net magnetization away from B0. The reason for this is best considered using the 

rotating frame, which is a frame rotating at corf (corf is the transmitter frequency in this 

case). If corf = co0, corf is said to be "on resonance," and the individual magnetic moments 

appear to be stationary in the rotating frame. Since the magnetic moments are stationary, 

it is as if B0 is absent, and the stationary B, field is present. The magnetization vector, 

M, begins to precess about the stationary B, field at a frequency of co, = -yfi,. which 

known as the nutation frequency, and depends on the magnitude of Bx produced by the rf 

coil. 

The introduction of a pulse with a field magnitude of 5, for a time period xp "tips" 

M, by an angle 9 away from the z-axis: 

0 = Xp • y B } = - T p • CO, ( 7 ) 

Hence, to tip the magnetization into the xy-plane of the rotating frame, xp is set such that 

0 = JI/2. The phase of the pulse dictates the orientation of the magnetization vector 

within this plane, following the right hand rule. For example, a pulse applied along the x-

axis will direct the magnetization vector to the -y-axis. Once the pulse is turned off, B, 

is removed and the magnetic moments once again precess about B0 at the Larmor 

frequency. As M precesses about B0, it induces a current in the sample coil, which is 

recorded and digitized as the free induction decay (FID), which in turn is used to generate 

the NMR spectrum via Fourier transformation. 
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If corf * co0, then the magnetic moments no longer appear stationary in the rotating 

frame, and B0 no longer appears to be absent, but rather, is attenuated by a factor of 

(1 -cOrt/co,)). The result is an effective magnetic field, Beff: 

Beff = (B0 - <*Ji)-Z + BAX (8) 

If (B0 - (Brf/y) » Beff, then corf is considered to be "off resonance", and Beffis ineffective at 

tipping the magnetization into the xy-plane (where the signal is detected). In the case of 

ultra-wideline (UW, i.e., > 250 kHz broad) SSNMR spectra, resonances may be 

separated by hundreds of kHz, or more often, may spread over hundreds of kHz or tens of 

MHz, which makes it difficult (if not impossible) to acquire the entire powder pattern in a 

single experiment with traditional acquisition methods. Hence, specialized techniques 

are employed in such cases (vide infra). 

1.2.4 Relaxation Processes 

There are two types of nuclear spin relaxation that are essential for the NMR 

phenomenon. Spin-lattice relaxation (or longitudinal relaxation) is described by the Tx 

relaxation time constant, and provides a measure of the time required for the 

magnetization to return to equilibrium along B0. The Tx is measured experimentally with 

the inversion recovery pulse sequence.21 Spin-spin relaxation (or transverse relaxation) is 

described by the T2 relaxation time constant, and is a measure of the time required for 

complete dephasing of the magnetization in the xy-plane. The T2 time constant is most 

often measured using the Carr-Purcell Meiboom-Gill (CPMG)22,23 pulse sequence (vide 
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infra). All of the NMR interactions that are discussed in the next few sections can 

contribute to mechanisms which induce nuclear spin relaxation; a detailed discussion of 

relaxation mechanisms is beyond the scope of this introduction, and is well covered 

elsewhere.24 

1.2.5 Chemical Shielding 

The local magnetic field at a nucleus is dependent upon the external magnetic 

field, B0, and the induced magnetic field at the nucleus Bind: 

Bloc = Bind + B0 (9) 

The Bind varies between different nuclei, due to the induced circulation of electrons 

within the surrounding molecular orbitals. The effect that Bind has on B,oc is referred to as 

the chemical shielding or nuclear magnetic shielding of the nucleus; if Bjnd is aligned in 

the same direction as B0, causing Bloca| to increase, it is considered deshielding. If Bind is 

aligned in the opposite direction to B0, causing B|oca] to decrease, it is considered 

shielding. The chemical shielding is reported in ppm with respect to the bare nucleus, 

which is assigned a value of 0 ppm. In practice, one cannot experimentally measure the 

chemical shielding of a bare nucleus for comparison to the chemical shielding of a 

nucleus in a sample of interest. In experimental NMR spectra, the chemical shift (CS) is 

measured which is the shielding of the nucleus, a, with respect to that of a reference 

standard, aref.
25 
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5 = °ref ~ ° 

1 " O. 
" Cref ~ ° (10) 

ref 

An arbitrary standard reference compound is chosen for each nucleus, and all chemical 

shifts are reported with respect to this reference. 

The chemical shielding or nuclear shielding (NS) interaction can be described by 

a second rank tensor (3 x 3 matrix): 

a = 

CT a a 
xx xy xz 

a a a 
yx yy yz 

. a a a , 
\ zx zy zz ) 

(11) 

This tensor is not traceless and is anti-symmetric. It can, however, be broken down into 

symmetric and anti-symmetric components. Only the former contributes to the 

observable chemical shifts, and it is represented by a symmetric second rank tensor 

which, in its own principal axis system (PAS), is written as: 

o„ 0 0 

0 G22 0 

0 0 o 33 

(12) 

a,,, a22, and a33 are referred to as the principal components of the NS tensor, and are 

arranged such that a,, < a22 £ c33 {i.e., a,, is the least shielded component, and a33 is the 

most shielded component). This can be written equivalently in terms of chemical shift 
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as: 

8 = 

fsu o o x 

0 522 0 

0 0 5 

(13) 

' 3 3 ; 

where 8,, > 522 > 833. 

The CS interaction is orientation dependent or anisotropic, meaning the values of 

the tensor components can change depending upon the orientation of the tensor with 

respect to B0. There are several conventions available for describing the chemical shift 

anisotropy (CSA); herein, the Herzfeld-Berger convention26'27 is used to describe the 

CSA. The isotropic shift, 8jso, describes the isotropic or average chemical shift of the 

nucleus, and is found at the centre of gravity of the NMR powder patterns of spin-1/2 

nuclides: 

(511 + 822 + 533> 
(14) 

The span, CI, describes the breadth of the pattern in ppm (often referred to as the 

magnitude of the CSA), 

^ = 511 " 533 (15) 

and the skew, K, gives the position of 822 with respect to 8iso, and describes the axial 

symmetry of the tensor: 
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K =-
3 (522 " §iso) 

Q 
1 < K < -1 (16) 

In solution NMR experiments, the CSA is averaged to zero due to the rapid 

tumbling of the molecules, and as a result, only the isotropic chemical shift is observed. 

In the solid state, where such rapid isotropic motion is absent, the orientation dependence 

of the CS tensor can be observed. Most solid state samples, including microcrystalline 

and amorphous or disordered solids have a vast number of tensor orientations which are 

represented within the bulk sample. The bulk of early SSNMR experiments were 

conducted upon microcrystalline powder samples, and as a result, the patterns arising 

from the distributions of these shifts are commonly referred to as powder patterns. 

Powder patterns represent the weighted sum of all of the resonances arising from 

individual CS tensor orientations (Figure 1.1), and its shape can be directly correlated to 

the principal components of the CS tensor. 

Figure 1.1. Depiction of the distribution of resonances arising from multiple CS tensor 
orientations. 
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1.2.6 The Quadrupolar Interaction 

Nuclei with / > V2 are quadrupolar nuclei, and have an asymmetric distribution of 

the charge in the nucleus. This asymmetry in charge distribution is described by a scalar 

parameter known as the nuclear quadrupole moment (NQM or Q) which has dimensions 

of m2 (or barn = 1028 m2). The nuclear quadrupole moment interacts with the electric 

field gradients (EFGs) in the molecule. The EFG at a nuclear site is described by a 

symmetric, traceless tensor, with principal components arranged such that \vu I < \V2: 2 2 ' 

slK, 3 3 ' 

V EFG 

V n 0 0 x 

0 v22 0 

O O F . 33 

(17) 

The quadrupolar interaction (QI) is typically described by the quadrupolar 

coupling constant, CQ, 

C 
eQK 33 

(18) 

and the asymmetry parameter, r|Q, 

% 
V -V 
y 11 *22 0 < r,Q < 1 (19) 

33 

CQ, which is usually reported in MHz, is a measure of the spherical symmetry of the 
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ground-state electronic environment at the quadrupolar nucleus, and it increases in 

magnitude as the degree of spherical symmetry decreases.13 nQ, which is a dimensionless 

parameter, is a measure of the axial symmetry of the EFG tensor; for an EFG tensor with 

a high degree of axial symmetry, r|Qis near zero or one. The magnitude of the QI is also 

sometimes reported as the quadrupolar frequency, coQ: 

co = 3eQ F33 = ^— (20) 
Q 21(21-I)A 33 21(21-I)A y ' 

The QI is described by the quadrupolar Hamiltonian, which is comprised of first 

and second order terms: 

Under the high-field approximation, where co0 » coQ, it is possible to treat the QI as a 

perturbation on the Zeeman Hamiltonian. To first order, the perturbation is given by:28 

° W i = - ~ 0 ~ 2w)(3cos29 - 1 + r\Qsin2Qcos2q>) (22) 

where 8 and 9 are polar angles which describe the relative orientation of B0 in the PAS of 

the EFG. 

AE does not change for the +1/2 « -1/2 transition (the central transition, CT) 

since the shift in energy is the same for both spin states. The remaining transitions 

(satellite transitions, STs), however, are altered significantly, which causes the NMR 
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signal of the satellite transitions to be broadened, typically over many MHz, so they are 

often not observed. The first order perturbation is also orientation dependent, and can be 

removed through the use of magic angle spinning (MAS) (vide infra). However, the 

second order term:28 

2 

<»+i/2-i/2 = - ^_{ | s i n 2 6[ ( , 4 + £)cos2e - B] 
12co0 2 

rucos2(psin29[(,4 + 5)cos20 + B] . . . . 

+ ^Q-[A - (A + 45)cos2e 

- (A + 5)cos2(p(cos20 - 1)22]} 

where: 

A = 24m(m - 1) - 4/(7+1) + 9 

and B = -[6m(m - 1) - 21(1 + 1) + 3] <24> 
4 

The orientation dependence of the second-order QI is such that MAS cannot 

completely average the pattern to a single sharp peak; rather, averaging of this interaction 

must be accomplished by rotating the sample about two axes simultaneously (e.g., the 

double-rotation or DOR technique),29,30 or by selecting multiple-quantum (MQ) 

coherences in two-dimensional experiments for which the second-order QI can be 

averaged (e.g., dynamic-angle spinning, DAS31"35 and MQ-MAS).36"38 

1.2.7 Euler Angles 

The relative orientation of the EFG and CS tensors can have a profound impact on 
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the appearance of a SSNMR spectrum. To best describe how these two tensors are 

aligned with respect to each other, three Euler angles, a, p, and y, are employed. In this 

work the Euler angles are defined as follows: the two tensors are aligned so that, in a 

standard xyz coordinate system, F33 and a33 are aligned along the z-axis, V22 and o22 are 

aligned along thejy-axis, and Vn and a,, are aligned along the jc-axis. First, the CS tensor 

is rotated about z by an angle, a. The CS tensor orientation is then taken as the reference 

frame, with a33, a22 and a,, becoming x\ y' and z\ respectively. A rotation of the new 

frame by an angle p is then made about the /-axis, yielding a third frame of reference 

with axes of x", y" and z". A rotation by an angle of y is then made about the z" axis, 

resulting in the final orientations of the tensors (Figure 1.2). 

C = ^ > 

4r 

< : 

/ X 

Figure 1.2. Diagram depicting the Euler angle convention used herein to describe the 
relative orientation of the CS and EFG tensors. Appended from Tang (2008).39 
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1.2.8 Dipolar and Scalar Coupling 

Dipolar direct spin-spin coupling (or just dipolar coupling) and indirect spin-spin 

coupling (or scalar or J) coupling are two-spin NMR interactions. The dipolar 

interaction is a through space interaction, described by a traceless second rank tensor. 

Secular effects (i.e., frequency shifts) arising from the dipolar interaction are observed 

only in the solid state (and some oriented samples); in solution, the rapid isotropic motion 

of molecules average dipolar effects to zero.40 For the purposes of this thesis, dipolar 

coupling will not be discussed further, as its effects have largely been removed through 

the use of decoupling schemes where applicable. It is also noted that the dipolar 

interaction is extremely important for the application of cross-polarization NMR 

experiments (vide infra). The interested reader may find a thorough description of the 

dipolar interaction elsewhere.17 

./-coupling occurs between two nuclei, as for dipolar coupling; however, J-

coupling is a through-bond interaction, mediated by electrons within the molecule.41 J-

coupling is described by a anti-symmetric tensor with a non-zero trace. The symmetric 

portion of the tensor makes both isotropic and anisotropic secular contributions, defined 

as the isotropic ./-coupling, J or Jiso, and the J-anisotropy, AJ. While the former is very 

commonly observed in both solution- and solid-state NMR spectra, the latter is only 

observed in solid-state NMR spectra of nuclei which are ./-coupled to heavy nuclei (or 

vice versa).42 In this thesis, we are only concerned with isotropic contributions to J-

couplings. The ./-coupling of a nucleus A of spin / to a nucleus X of spin S results in a 

splitting of the resonance into 2(5'+ Vi) peaks in the spectrum of A, and 2(1+ !/2) peaks in 
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the spectrum of X, with the spacing between the peaks in each spectrum equal to the 

value of the Jiso in Hz. Since ./-coupling is a through-bond interaction, it provides 

valuable structural information about the bonding/connectivity within a given molecule.41 

Except for a few select cases, scalar couplings are not visible in the SSNMR spectra 

presented herein, as their relatively small magnitude (hundreds of Hz) are dwarfed by the 

broad (tens to hundreds of kHz) powder patterns. 

1.3 Acquisition and enhancement techniques 

There are a wide variety of techniques that can be employed to enhance the NMR 

signal and/or spectral resolution. Some involve specialized hardware, though many are 

simply pulse sequences that manipulate the spins in such a way as to increase the 

efficiency of the experiment. In this thesis, we are concerned with rapidly acquiring 

broad powder patterns with high S/N, and hence, will focus on techniques employed to 

that end. 

1.3.1 Frequency-stepped NMR 

The majority of the spectra in this work are either wideline NMR spectra (i.e., 

broad patterns ranging from ca. 20 to 250 kHz in breadth), or much broader spectra we 

designate as ultra-wideline (UW) NMR spectra (i.e. > 250 kHz in breadth).43 UW spectra 

exceed the excitation bandwidths of standard, high-power, rectangular pulses; as such, 

specialized hardware, pulse sequences or acquisition methodologies must be applied. 

Some UW NMR spectra must be acquired as a series of sub-spectra. Initially, this was 
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done with the "point-by-point" method, where the echo intensity of the free induction 

decay was plotted as a function of transmitter frequency44'45 or magnetic field strength.46'4 

More recently, it has become common practice to co-add a series of Fourier transformed 

spectra, which have been acquired at evenly-spaced transmitter frequencies.48'49 The 

acquisition of spectra in much larger frequency increments, combined with spectral 

processing prior to co-addition, greatly reduces experimental times and yields spectra 

with considerably higher S/N than conventional point-by-point acquisitions. This 

technique is known as the variable offset cumulative spectrum (VOCS) method,48 or 

simply as a piecewise spectral acquisition. There are also some specialized pulse 

sequences which can be utilized to acquire UW NMR spectra in a single experiment, as 

well as to acquire extremely broad UW NMR spectra in a piecewise fashion (vide infra). 

1.3.2 Magic-Angle Spinning 

Magic-angle spinning (MAS) NMR spectroscopy50 is a technique that involves 

rotating the sample holder (i.e., rotor) about an axis at an angle of 54.74° from B0, which 

averages the CSA to zero (or at least enough that the effects of CSA are negligible, vide 

infra). The result is observation of solution-like NMR signals from spin-1/2 nuclei, and 

classic second-order quadrupolar lineshapes from quadrupolar nuclei. Hence, MAS 

allows for the isotropic shift and EFG tensor parameters to be determined with great 

accuracy. 

In order for MAS to be most effective, a general rule is that the sample must be 

spun at a rate which is equal to, or greater than, the width of the SSNMR powder pattern. 
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For narrow patterns (i.e., < 15 kHz), this is readily achieved with what have become 

standard NMR probes. However, for broad SSNMR spectra (like most of those 

contained within this work) limitations on NMR hardware make it difficult to spin the 

sample at a high enough rate to average the CSA to zero. Currently, the upper limit on 

spinning speed is ca. 70 kHz, which is attainable on specialized SSNMR probes. 

Vrot ( ^ Z ) 

10 

Magnitude x 5 

Magnitude x 30 
~i 1 r 

15 10 5 0 kHz 
Figure 1.3. Simulation of the effect of MAS on a typical spin-1/2 powder 
pattern. Spinning speed is indicated to the right (urot). 

1.3.3 The Carr-Purcell Meiboom-Gill (CPMG) Pulse Sequence 

The CPMG (Carr-Purcell Meiboom-Gill) pulse sequence,22'23 also called QCPMG 

when applied to quadrupolar nuclei,5'"54 has become widely used in the acquisition of 

both wideline and UW SSNMR spectra. 
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(*/2)x 

00y (7 l ) y 

N 
Figure 1.4. A block diagram of the Carr-Purcell Meiboom-Gill 
(CPMG) pulse sequence. 

The sequence takes advantage of the large T2 relaxation constants exhibited by some 

nuclei by continually refocusing the magnetization with a series of n pulses. As a result, 

a series of spin-echoes (Figure 1.5) is acquired in a single scan, significantly enhancing 

the signal intensity when compared to standard echo experiment,55 in which a single 

refocusing pulse is made. 

M r^:;'';il,:rl^i,f)^l;!'iflti-V!'ifV*:-l;:;t> 

0.005 0.010 0.015 s 

Figure 1.5. A free induction decay composed of multiple spin echoes. 

This "echo train" can be directly processed by FT, results in a series of spikelets, 

the manifold of which takes the shape of a classic powder pattern. The spacings of the 
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spikelets (in Hz) are inversely proportional to the distance between the echoes (in s). 

Equivalently, the spin-echoes can be summed to produce an FID comprised of a single 

echo, which upon Fourier transformation, takes the form of a normal SSNMR powder 

pattern (Figure 1.6). 

Figure 1.6. A comparison of a SSNMR spectrum acquired with a conventional echo 
seqeunce (top) and the CPMG sequence (bottom). 

1.3.4. Wideband Uniform-Rate Smooth Truncation (WURST) QCPMG 

In 2009, O'Dell et al. developed a new pulse sequence, wideband uniform-rate 

smooth truncation (WURST) QCPMG.56 This sequence is a combination of the 

(WURST) pulse sequence57'58 and a CPMG-type train of WURST pulses (Figure 1.7). 

The use of WURST pulses57 in the acquisition of UW SSNMR spectra was proposed by 

Bhattacharyya and Frydman.58 These pulses perform a frequency sweep which generates 

a Beff field that sweeps from the +z direction to the -z (or to the xy-plane), which results 

in broadband excitation.43 The CPMG-type train of WURST pulses then serves to 

refocus the magnetization in the xy-plane, providing significant signal enhancement when 
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compared to a standard echo experiment. This combination of broadband excitation and 

signal enhancement has made the WURST-CPMG sequence a valuable tool in the 

acquisition of UW SSNMR spectra, permitting acquisition of some spectra in a single 

experiment, and increasing the capacity to do UW NMR experiments on extremely broad 

patterns. 
56,59 

WURST 

Pulse 1 

WURST 

Pulse 2 N 
Figure 1.7. A block diagram of the wideband uniform-rate smooth truncation 
(WURST)-CPMG pulse sequence. 

1.3.5. Cross Polarization 

Cross polarization (CP) is employed in the acquisition of SSNMR spectra of 

nuclides which are considered unfavourable for NMR experiments due to a number of 

factors, such as low natural abundance and/or large 71, relaxation constants.60"62 Use of 

CP involves transferring magnetization from an abundant nucleus, I (i.e., "H or 19F), to 

the "dilute" nucleus of interest, S, which can significantly enhance the observed signal, 

by a maximum theoretical factor of y/ys.
63 

A (7i/2)x pulse is first made on the / channel, which is then followed by a lower 

power contact pulse that is made on both the / and S channels. To allow the transfer of 

magnetization to occur under static conditions, the contact pulses have the same rf field 

on both channels, to satisfy the Hartmann-Hahn (H-H) matching condition:63 
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TiBn = TsB is (25) 

The FID is then recorded by observing on the X channel. When MAS is employed, CP 

the H-H match is dependent upon the spinning speed. In addition, the efficiency of CP is 

decreased as spinning speed increases, because the I-S and I-I dipolar couplings are 

averaged when the spinning speed is of comparative magnitude.63 If the combination of 

fast MAS and CP is required, it is possible to alleviate these averaging effects with pulse 

sequences such as variable-amplitude CP (VACP),64'65 ramped-amplitude CP 

(RAMPCP),66 and numerous others. 

1.3.6 Optimal Control Theory 

The most recent version of SIMPSON (Ver. 2.0)67'68 NMR simulation software 

package includes an optimal control theory (OCT) functionality. OCT is capable of 

numerically optimizing a large number of variables, which makes it ideal for generating 

NMR pulses; one can input the spectral parameters of a given spectrum and generate a 

pulse designed specifically for the excitation of that spectrum. OCT studies on the 

optimization of NMR pulses have largely focussed on high-resolution solution 

experiments,69"71 though recently our group examined the effectiveness of OCT at 

generating pulses for use in acquiring the solid-state spectra of quadrupolar nuclei.72 

Currently, the development of SSNMR pulses with OCT is still in its infancy and an in-

depth treatment of the theory behind OCT is beyond the scope of this thesis, however it is 

discussed further in chapter 2, as applied to broad patterns of spin-1/2 nuclides. 
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1.4. Context of Research 

The first research chapter of this thesis, Chapter 2, describes the application of the 

WURST-CPMG pulse sequence to various spin-1/2 nuclides (ll9Sn, 207Pb, 199Hg and 195Pt) 

in order to examine its effectiveness for acquiring wideline SSNMR patterns. WURST-

CPMG is compared to the CP/CPMG and CPMG pulse sequences, and its usefulness in 

acquiring ultra-wideline (UW) SSNMR spectra in a piecewise fashion is explored. 

Additionally, the potential of pulses generated with SIMPSON 2.067'68 using optimal 

control theory (OCT) in acquiring wideline SSNMR spectra is investigated.; pulses 

generated with OCT are compared with standard, rectangular pulses at several pulse 

powers. 

In Chapter 3,207Pb CP/CPMG and WURST-CPMG SSNMR experiments are 

carried out in the characterization of a series of (2,6-Me2C6H3S)2Pb adducts which exhibit 

unique Pb(II) coordination environments. The 207Pb SSNMR spectra are found to exhibit 

extremely large lead CSAs which span several hundred kHz, requiring piecewise 

acquisition with CP/CPMG. WURST-CPMG, however, is capable of exciting the entire 

powder pattern, eliminating the need for multiple subspectra to be acquired. 207Pb NS 

tensor orientations are determined via Amsterdam Density Functional (ADF) 

calculations to examine the molecular origins of the experimentally determined CS tensor 

parameters. 

In Chapter 4, 27A1 and 7lGa solid-state NMR (SSNMR) are employed to examine 

a series of metal guanidinate (guan = MeN-C(N'Pr2)-NMe) complexes at 9.4 T and 21.1 

T, to examine the relationships between the metal coordination environments and the 
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associated NMR interaction tensor parameters. The 27A1 CS and EFG tensor parameters 

are found to be greatly influenced by site symmetry at the metal centre; in particular, the 

magnitude of CQ is determined to be strongly influenced by the nature of the bonding 

ligands, in addition to the aluminum coordination number. 7lGa SSNMR experiments 

indicate that Ga(guan)3 is less spherically symmetric and exhibits a much broader CSA 

than the similar Al analogue. 

Initially, the focus of the study presented in Chapter 4 was to develop a 

methodology for the analysis of oriented surface-bound aluminum materials, which 

would require the application of signal-enhancing UW experiments. However, due to 

low sample loading levels and the inability to establish a lower detection limit, we chose 

to focus on a fundamental structural characterization of these compounds via 27Al 

SSNMR and accompanying first principles calculations. 
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Chapter 2 

New Methods for the Acquisition of Static CSA 
Patterns from Spin-1/2 Nuclides 

2.1 Introduction 

Solid-state NMR (SSNMR) powder patterns can vary in breadth from a few Hz to 

several MHz. In the former extreme, the widths of the spectral lines are on the order of 

those encountered in many solution-state NMR spectra. Such narrow lines occur in 

SSNMR spectra due to the absence of large anisotropic interactions or dipolar couplings, 

low magnetic susceptibility broadening, averaging via mechanical rotation and/or 

specialized pulse sequences, or combinations of these factors. However, the latter 

extreme describes the situation for many nuclides across the periodic table, where large 

anisotropic interactions dominate the appearance of the NMR powder patterns, and 

techniques for averaging (or partially averaging) these interactions are generally 

ineffective. Nonetheless, there is much information to be garnered from the acquisition 

of such patterns; in particular, analysis of the anisotropic NMR interaction tensors which 

give rise to these broad patterns can provide detailed information on structure and 

dynamics at the molecular level. 

Wideline NMR spectroscopy is a term that has been in use since the 1950's to refer 

to NMR experiments conducted on nuclei with broad patterns arising from anisotropic 

dipole-dipole interactions (e.g., 'H, 19F), quadrupolar interactions {e.g., 2H) and large 

chemical shift anisotropies (e.g., 207Pb, l99Hg, etc.). Typically, these patterns range in 
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breadth from tens of kHz to ca. 300 kHz. However, there are numerous nuclei, both 

spin-1/2 and quadrupolar {i.e., spin > 1/2), which can yield NMR patterns with breadths 

of hundreds of kHz to tens of MHz. Acquisition of such NMR spectra can be 

challenging, since (i) the signal intensity is spread over a wide spectral range, thereby 

decreasing the inherent signal to noise ratio (S/N), (ii) standard, high-power rectangular 

pulses are insufficient for uniform excitation of these broad patterns' and (iii) the probe 

detection bandwidths are often very limited. Such spectra cannot be acquired with 

routine NMR experiments, but require specialized methodologies, pulse sequences and/or 

hardware. We have previously suggested the term ultra-wideline (UW) NMR 

spectroscopy to describe the set of techniques designed to ensure uniform excitation of 

such extremely broad patterns.2 Improvements in NMR hardware, the availability of 

ultra-high magnetic fields and the introduction of an array of different pulse sequences 

and experimental schemes have made the acquisition of UW NMR spectra feasible, and 

opened up the periodic table of NMR-active nuclides to investigation via SSNMR.3"9 

Early UW NMR spectra were acquired using a "point-by-point" method, where 

the transmitter is stepped in even increments across the entire spectral range at constant 

magnetic field, and the echo intensity is plotted as a function of the transmitter frequency 

to obtain the total powder pattern.10'1' There are recent reports that feature this 

acquisition technique, or describe experiments in which the magnetic field is 

incrementally stepped while holding the transmitter frequency constant.3'12 This basic 

technique is very time-consuming, since a large number of experiments must be 

conducted to obtain an UW NMR spectrum of reasonable resolution. However, it was 
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later suggested that the total UW NMR experiment can be conducted more efficiently by 

acquiring echoes at evenly spaced transmitter offsets, Fourier transforming the individual 

echoes, and then co-adding13,14 or skyline projecting15 the resulting sub-spectra to produce 

the final pattern. This reduces the number of experiments required to obtain the complete 

powder pattern, and provides spectral resolution more closely associated with the dwell 

time of the echo experiment than the transmitter spacing. 

There have been several modifications to the aforementioned UW NMR 

techniques that involve specialized pulse sequences or hardware. The quadrupolar Carr-

Purcell Meiboom-Gill (QCPMG) pulse sequence, which was reintroduced for the 

acquisition of wideline NMR spectra of half-integer quadrupolar nuclei,16 has been 

particularly useful in enhancing the S/N of individual sub-spectra and reducing total 

acquisition times in UW NMR experiments.15'17"22 Another recently explored method for 

acquiring UW NMR spectra involves the use of microcoils,2'23'24 which typically have a 

1.5 mm inner diameter or less. Microcoils are capable of producing large, homogeneous 

Bx fields from very modest power inputs. This feature partially offsets the loss in S/N 

from reduced sample size and allows for excitation pulses with correspondingly wider 

excitation bandwidths. In addition, the small coil size may also be advantageous in cases 

where only a limited amount of sample is available. 

A recent development in the acquisition of UW spectra was initiated by 

Bhattacharyya and Frydman,25 who proposed the use of WURST (Wideband Uniform 

Rate Smooth Truncation) broadband excitation pulses,26 which greatly increase excitation 

bandwidths without the need for specialized hardware. Our group has recently expanded 
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upon this work with the WURST-QCPMG pulse sequence,22 which utilizes a train of 

WURST pulses and acquisition windows in a fashion similar to the QCPMG sequence. 

The combination of the broad excitation bandwidths of WURST pulses with the signal 

enhancements of the QCPMG sequence has proven useful in the acquisition of NMR 

spectra of both half-integer and integer quadrupolar nuclei.27 

Another potential method for acquiring UW NMR spectra lies in using optimal 

control theory (OCT), which was recently implemented in the SIMPSON (ver. 2.0) 

software package.28'29 OCT can be used to numerically optimize a system composed of a 

very large number of variables, and can therefore be utilized to adjust pulse amplitudes, 

phases, transmitter offsets, etc. in order to obtain an "optimal NMR pulse sequence" in 

which the experimental efficiency is maximized. OCT has been used to generate 

broadband excitation schemes for high-resolution 13C NMR at high fields, with excitation 

profiles of approximately 50 kHz,30"32 as well as spectra of half-integer quadrupolar 

nuclei.33 However, to the best of our knowledge, OCT has not yet been employed to 

optimize broadband excitation pulses for the acquisition of static UW powder patterns. 

UW NMR studies to date have largely focussed on half-integer quadrupolar 

nuclei with broad central-transition NMR spectra resulting from large nuclear quadrupole 

moments and/or low gyromagnetic ratios coupled with sizeable electric field gradients 

(EFGs).8'9'15'19'34"36 However, there are several heavy spin-1/2 nuclei such as ll9Sn, 195Pt, 

'99Hg and 207Pb, which often have large chemical shift anisotropics (CSAs) and 

correspondingly broad patterns that could potentially be acquired efficiently using UW 

NMR experiments. For instance, Slichter and co-workers published several papers in the 
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1980's on 195Pt NMR of catalytic platinum nanoparticles adsorbed on alumina, where the 

stepwise method was used to acquire l95Pt NMR spectra up to 70 kHz in breadth.10'37 

Ellis and coworkers also carried out UW l95Pt NMR experiments, though they employed 

MAS to acquire the extremely broad spectrum of K2PtCl4.
38 MAS techniques have also 

been used to acquire broad ll9Sn39*40 and l99Hg spectra.41 However, we noted in two 

recent papers on UW 207Pb and l95Pt SSNMR42'43 that MAS experiments on nuclei with 

extremely broad patterns are often unreliable, due to slight mis-sets of the magic angle44 

and/or incomplete excitation of the manifold of spinning sidebands, both of which yield 

patterns which do not allow for accurate assessments of the chemical shift tensor 

parameters. 

In 2004, our research group, and Wasylishen et al, examined the effectiveness of 

the CPMG pulse sequence in acquiring the NMR spectra of various spin-1/2 nuclei.45'46 

These experiments are especially useful when cross-polarization (CP)/MAS NMR 

experiments are limited by weak dipolar couplings and poor excitation bandwidths, or 

other complications arising from acquisition of broad powder patterns using MAS 

NMR.44'47'48 'H-X (where X is a heavy spin-1/2 nucleus) CP/CPMG experiments are 

capable of yielding high quality UW NMR spectra from which chemical shift tensors can 

be readily extracted; however, the acquisitions of broad patterns are labour intensive, 

requiring the collection of many sub-spectra due to the limited excitation bandwidth 

associated with CP.42 CPMG can also be used to directly excite the X nuclei with modest 

improvements in bandwidth; however, such experiments still require numerous sub-

spectra to be acquired and are often hampered by large longitudinal (T,) relaxation time 
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constants. 

Herein, we improve upon the efficiency of previous UW NMR experiments on 

heavy spin-1/2 nuclides via application of the WURST-CPMG pulse sequence (WURST-

CPMG is the exact same sequence as WURST-QCPMG, but since this paper does not 

deal with quadrupolar nuclei, we have omitted the "Q" as it does not apply here). UW 

119Sn, 207Pb, 199Hg and 195Pt NMR spectra are acquired for some samples with large 

chemical shift anisotropies, and compared to data from analogous CPMG and CP/CPMG 

experiments, as appropriate. In addition, we also present the first attempt at utilizing 

pulses designed using OCT for uniform excitation of CSA-dominated powder patterns. 

2.2 Experimental Details 

All solid-state NMR experiments were carried out on a Varian InfinityPlus NMR 

spectrometer, equipped with an Oxford 9.4 T (v0('H) = 400 MHz) wide-bore magnet 

operating at v0(
207Pb) = 83.50 MHz, v0(

l95Pt) = 85.76 MHz, v0(
199Hg) = 71.39 MHz and 

v0(
119Sn) = 149.29 MHz. All experiments were performed on a Varian/Chemagnetics 4 

mm HXY triple resonance probe, with samples tightly packed into 4 mm (o.d.) zirconium 

oxide rotors. SnO was purchased from Strem Chemicals, and all other samples 

[Pb(OAc)2-3H20 (where OAc = CH3CHOO), Hg(OAc)2, and K2PtCl4] were purchased 

from Sigma-Aldrich. The Pb(OAc)2-3H20 was recrystallized from aqueous solution, and 

the remaining samples were used without further purification. 

207Pb NMR chemical shifts are reported with respect to tetramethyl lead 

(Pb(CH3)4, 8iso = 0.0 ppm) by using an aqueous solution of 0.5 M lead acetate hydrate 
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(Pb(CH3COO)2-3H20) as a secondary standard with an isotropic chemical shift of-2941 

ppm.49 195Pt chemical shifts are referenced with respect to 1.0 M NaPt(C104)2 (aq) (5iso = 

0.0 ppm).50 l99Hg chemical shifts are reported with respect to Hg(CH3)2 by setting the 

isotropic shift of a saturated aqueous solution of Hg(C104)2 to -2253 ppm.51 Finally, 

tetramethyltin (Sn(CH3)4) was used as a reference standard for u9Sn NMR experiments, 

with its isotropic shift set to 0.0 ppm.52 

WURST-CPMG experiments employed recycle delays of 2, 7, 40 and 1450 s for 

the acquisition of all 119Sn, 207Pb, l95Pt and 199Hg NMR spectra, respectively. 50 us pulse 

widths, and WURST-80 pulse shapes, were used for all WURST-CPMG experiments, 

with nutation frequencies of ca. 30, 67, 46 and 28 kHz for ll9Sn, 195Pt, 207Pb and 199Hg, 

respectively. Between 64 and 250 Meiboom-Gill loops were acquired for the WURST-

CPMG experiments, with an echo size of 200 points, sweep rate of in all cases. Further 

experimental details regarding the WURST-CPMG experiments can be found in the 

Appendix A (Table Al). 

The CPMG pulse sequence was used to acquire the 119Sn SSNMR spectrum of 

SnO. 10 sub-spectra were acquired by stepping the transmitter frequency at 45 kHz 

intervals, then Fourier transformed and co-added to yield the complete powder pattern. 

A 3.33 us 90° pulse was employed, corresponding to an rf field of ca. 75 kHz. 64 

Meiboom-Gill loops of 200 points were acquired for each transient, with a 2 s recycle 

delay. Further experimental details are summarized in Table A2. 

The CP/CPMG sequence45,46 was employed to obtain the 207Pb NMR spectrum of 

Pb(CH300)2-3H20. Nine echoes were acquired in a piecewise manner at 20 kHz offsets, 
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then co-added after being Fourier transformed to yield the complete spectrum. A 

Hartmann-Hahn matching condition of vCP('H) = vCP(
207Pb) ~ 48 kHz was used. Eighty 

Meiboom-Gill loops were acquired per scan, each of which was 200 points in length, and 

a 4 s pulse delay was employed between scans. Further experimental details regarding 

the CP/CPMG experiment can be found in Table A3. 

The TPPM decoupling scheme53 was employed for the acquisition of 207Pb and 

199Hg CP/CPMG and CPMG NMR spectra, respectively, whereas CW decoupling was 

employed in all WURST-CPMG experiments. We note that in previous work by our 

group, we observed no noticeable difference in performance between CW and TPPM 

decoupling methods when recording UW spectra from static samples; therefore, choice of 

decoupling method should have no bearing on comparison of spectra acquired with 

different experiments.54 Unless otherwise indicated, analytical simulations of static 

SSNMR spectra for the extraction of CS tensor parameters are based upon spectra 

produced from the time-domain co-addition of spin echos from WURST-CPMG 

experiments. This involves summing the spin-echoes in the time domain, which 

produces an FID resembling that of a standard echo sequence. This co-added echo is 

Fourier transformed, and a magnitude calculation is applied to obtain a spectrum of 

standard appearance (rather than spikelets), which has an outer manifold that is more 

easily simulated. WURST-CPMG spectra processed in this way can be found in the 

Appendix A (Figure Al), or in the case of Hg(OAc)2, in Figure 2.3. Numerical 

simulations of WURST-CPMG powder patterns were also carried out using 

SIMPSON28'29 to verify and refine the simulated parameter values. Additional 
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simulations of experimental spectra from CPMG and CP/CPMG experiments were also 

carried out using the WSolids simulation package55 and/or DMFit56 simulation software. 

Optimized pulses employed during OCT experiments were generated using 

SIMPSON (ver. 2.0)29 on a desktop computer with the Windows XP operating system. 

SnO was chosen as a test sample for all OCT experiments due to the receptive nature of 

the 119Sn nucleus and its well known CS tensor parameters.40 The CS tensor parameters 

used for the generation of all optimized pulses were Q = 976 ppm and K = 0.96, which 

are based on a simulation of a "9Sn SSNMR spectrum acquired previously using the 

WURST-CPMG sequence. 376 crystallite orientations were used to optimize each pulse, 

and 28,656 crystallite orientations were used to produce corresponding numerical 

simulations. These orientations were calculated using the ZCW method.57"59 Each pulse 

generated using OCT was composed of 200 elements of length 0.25 (as, with constant 

amplitude and phase during each of the constituent elements. The optimized pulses 

resulted from the optimization of initial, random pulse shapes, with the rf field limited by 

a maximum value. The pulse shapes were output as text files and manually converted 

into the P-code format required for use with the Varian Spinsight software. Simulations 

of all spectra related to the OCT portion of this work were carried out using SIMPSON 

(ver. 2.0).28'29 All spectra were processed using NUTS (Acorn NMR). 
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2.3 Results and Discussion 

2.3.1 n9Sn NMR 

Tin has three NMR active isotopes, 115Sn, 117Sn and 119Sn; however, 119Sn is 

generally chosen for tin NMR studies as it has the highest natural abundance (8.58%) and 

highest gyromagnetic ratio (-9.99760 x 107 rad T"1 s"1, corresponding to 149.57 MHz at 

9.4 T). Solid-state U9Sn NMR has been used to study a wide variety of systems, 

including stannates,39'60'61 nanoparticles,62"64 and various organotin materials,65"67 among 

others. We have chosen SnO to test "9Sn WURST-CPMG because of its high tin content 

and its large (975 ppm) span.40 

The n9Sn NMR spectra of SnO acquired using the CPMG and WURST-CPMG 

pulse sequences are depicted in Figure 2.1. The powder patterns are ca. 160 kHz in 

breadth, and clearly indicate that the CS tensor is axially symmetric {vide infra). The 

pattern breadth is beyond the excitation bandwidth of standard rectangular pulses applied 

at commonly attainable rf powers; in this case, the CPMG experiment utilized JI/2 pulses 

of ca. 3.3 u.s (v, ~ 75 kHz). The CPMG spectrum (Figure 2.1 A) was acquired in a 

piecewise frequency-stepped manner, with ten sub-spectra (80 transients per sub-

spectrum) to complete the total pattern. The total spectrum was acquired in 27 minutes, 

not including the time required to retune the probe for each transmitter frequency. The 

WURST-CPMG (Figure 2.IB) spectrum was acquired in a single, 80 scan experiment 

which employed pulses with rf fields of 30 kHz and took ca. 3 minutes to complete; a 

reduction in experimental time of almost an order of magnitude (Table 2.1). In addition, 

there was a further (and substantial) reduction in experimental time, since the probe does 
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not have to be retuned. The S/N is comparable in the CPMG and WURST-CPMG 

spectra, but the latter is better defined in the region of 833 (i.e., the rightmost or low-

frequency edge). There is also a pronounced modulation along the breadth of the CPMG 

spectrum which is not visible in the WURST-CPMG spectrum. 

The CS tensor parameters are obtained by fitting a simulated pattern to either the 

outer manifold of the spikelet spectrum, or to a spectrum produced by Fourier 

transforming an FID produced from the co-addition of the WURST-CPMG spin-echoes 

in the time domain. Our simulation indicates that the CS parameters of SnO are 8iso = 

-208 ppm, Ci. = 988 ppm and K = 0.95 (Table 2.2). These data agree well with the results 

of Cossement et al, 5iso = -208 ppm, Q = 975 ppm and K = l.O.40 A SIMPSON 

simulation of the WURST-CPMG spikelet manifold (Figure 2.1C) confirms the accuracy 

of the simulated parameters. 
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Figure 2.1. (A) "9Sn CPMG NMR spectrum of SnO produced from the co-addition of 
10 sub-spectra, each of which consists of 80 averaged transients. (B) Bottom trace: 
1 l9Sn WURST-CPMG NMR spectrum of SnO. The spectrum consists of 80 averaged 
transients and was acquired in a single experiment. Top trace: analytical simulation 
based on the co-addition of the echoes from the WURST-CPMG experiment. (C) 
SIMPSON simulation of "9Sn WURST-CPMG NMR spectrum of SnO. 
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Table 2.1. Comparison of total experimental times for CPMG, CP/CPMG and WURST-
CPMG experiments. 

Sub-spectra" 

Scans per subspectrum 

Recycle delay (s) 

Step size (kHz) * 

Experimental time c 

(mins) 

SnO 

CPMG 

10 

80 

2 

45 

26.7 

WURST 
-CPMG 

1 

80 

2 

N/A 

2.7 

Pb(OAc) 

CP/CPMG 

9 

192 

4 

20 

115.2 

2-3H20 

WURST 
-CPMG 

1 

248 

7 

N/A 

28.9 

Hg(OAc)2 

WURST-
CPMG 

1 

72 

1450 

N/A 

1740 

K2PtCl4 

WURST 
-CPMG 

5 

40 

40 

400 

133.3 

" Denotes the number of sub-spectra required to collect the entire powder pattern with piecewise 
acquisition. A value of 1 indicates that piecewise acquisition was not required. 
'Denotes the spacing between transmitter frequencies of sub-spectra in piecewise experiments. 
' Experimental times listed do not account for the time required to retune the probe and change the 
transmitter frequency between sub-spectra in piecewise experiments. 

Table 2.2. Comparison of experimental chemical shift parameters with values reported 
in the literature." 

Compound 
5 * 
"iso 

(PPm) (PPm) 
K" ref.' 

SnO (exp.) 

SnO (lit.) 

Pb(OAc)2 (exp.) 

Pb(OAc)2 (lit.) 

Hg(OAc)2 (exp.) 

Hg(OAc)2 (lit.) 

K2PtCl4 (exp.) 

K2PtCl4 (lit.) 

-208 (5) 

-208 

-1890(20) 

-1904 

-2513 (20) 

-2497 

-1510(100) 

-1848 

988 (25) 

975 

1690 (30) 

1728 

1810 (45) 

1826 

10425 (200) 

10414 

0.95 (5) 

1 

0.61 (4) 

0.62 

0.89 (5) 

0.9 

-0.97 (3) 

-1 

40 

68 

69 

38 

"The chemical shielding of each nucleus is represented as a tensor described by three principal components 
calculated from values of 8iso, K, and Q. These principal components are arranged so that S,, z 822 > 833. 
'8 iso = (5,| + 822 + 833)/3. Values are with respect to reference standards given in the experimental section. 
'D = (8n - 833), based upon simulations of static WURST-CPMG spectra. 
"K = 3(S22-8iso)/fi,-1.0<K<1.0. 
"Indicates the relevant reference for values reported in the literature. 
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2.3.2 207PbNMR 

207Pb NMR experiments can be challenging to carry out because of the vast 

chemical shift range of lead, as well as the generally large lead chemical shift 

anisotropics and long T, relaxation times.49'70"73 However, 207Pb NMR is an extremely 

sensitive probe of the local Pb environment and has become an important tool in the 

characterization of lead-containing materials.73 207Pb NMR has recently been applied to 

study technologically advanced materials such as waste disposal media49 and materials 

relevant to lead-based superconductors.49'70 The high sensitivity of the 207Pb chemical 

shifts to small changes in sample temperature has contributed to the use of various lead-

containing samples as "NMR thermometers."74'75 

For lead-containing samples where protons are present, 'H-207Pb CP/MAS NMR 

experiments are typically applied, due to the enhancement afforded from CP and the 

dependence of the experimental recycle time on the T, of the protons (as opposed to the 

Tx constants of 207Pb, which are usually much longer).71 In numerous cases where the CP 

efficiency is greatly reduced under conditions of MAS (even under slow spinning), static 

piecewise 'H-207Pb CP/CPMG NMR experiments are useful for the acquisition of 207Pb 

NMR spectra. However, many 207Pb NMR spectra are far too broad to be obtained in a 

single experiment, even under conditions of MAS.38'42 Pb(OAc)2-3H20 is often used as a 

setup standard for stationary 'H-207Pb CP/CPMG NMR experiments, due to its relatively 

narrow pattern and short 'H Tx (ca. 7 s).45,68'76 However, the breadth of the 207Pb NMR 

spectrum of Pb(OAc)2-3H20 (at 9.4 T) far exceeds the excitation bandwidth of the 

CP/CPMG sequence, which is dependent upon the Hartmann-Hahn matching condition 
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(which can only be achieved across a relatively narrow range of frequencies). Direct 

excitation of the nucleus (i.e., without CP), though also limited in bandwidth, has been 

shown to be more useful for the acquisition of broad NMR patterns.77 Consequently, we 

employed WURST-CPMG to attempt an acquisition of the entire powder pattern of 

Pb(OAc)2-3H20 in a single experiment. 

Figure 2.2 depicts the spectra of Pb(OAc)2-3H20 acquired with CP/CPMG 

(Figure 2.2A) and WURST-CPMG (Figure 2.2B). The spectra are ca. 138 kHz in 

breadth, with clearly defined discontinuities. The CSA-dominated powder pattern is too 

broad to be acquired with a single CP/CPMG experiment, necessitating the use of the 

piecewise frequency-stepped method. A total of nine sub-spectra were acquired to 

construct the complete powder pattern, each of which took just under 13 minutes to 

obtain, requiring ca. 115 minutes to acquire the complete pattern, not including the time 

required to retune the probe (Table 2.1). 
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Figure 2.2 (A) 207Pb CP/CPMG NMR spectrum of Pb(OAc)2-3H20 from the co-addition 
of 9 sub-spectra, each of which consists of 192 averaged transients. (B) Bottom trace: 
207Pb WURST-CPMG NMR spectrum of Pb(OAc)2-3H20 from the collection of 248 
averaged transients in a single experiment. Top trace: analytical simulation based on the 
co-addition of the echoes from the WURST-CPMG experiment. (C) SIMPSON 
simulation of the 207Pb WURST-CPMG NMR spectrum of Pb(OAc)2-3H20. 

The WURST-CPMG 207Pb NMR spectrum of Pb(OAc)2-3H20 was acquired in a 

single 248 scan experiment that required just under 30 minutes to complete. The 

WURST-CPMG pattern has a much higher signal-to-noise ratio and more clearly 

resolved discontinuities than the CP/CPMG pattern; in addition, the former required no 

special processing (i.e., co-addition of sub-spectra). Simulation of the spectrum resulting 

from the time-domain co-added echoes of the WURST-CPMG experiment yields 5iso = 

-1890 ppm, Q. = 1690 ppm and K = 0.61, all of which agree very well with previously 

reported parameters (Table 2.2).4568'76 A SIMPSON simulation of the 207Pb WURST-

CPMG spikelet manifold (Figure 2.2B) using these parameters again further confirms the 
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accuracy of these values. 

Due to the use of lead acetate as a 207Pb SSNMR setup standard, it is worth noting 

that our first attempts to acquire these spectra resulted in distorted powder patterns with a 

pronounced "lump" at the high-frequency end of the pattern (Figure A2). However, 

recrystallization of the sample from aqueous solution significantly changed the 

appearance of the 207Pb UW NMR spectrum, leading us to conclude that the initial sample 

was partially dehydrated. Indeed, the same phenomenon was acknowledged in our 

group's previous paper involving lead acetate hydrate, though a more pronounced shift to 

high frequency was noted.45 This example illustrates the potential for WURST-CPMG 

experiments to enable the identification of impurities in samples where MAS experiments 

may not be suitable or possible. 

2.3.3 '"HgNMR 

Mercury has two NMR-active isotopes, l99Hg and 201Hg. The former is preferred 

for NMR spectroscopy due to its higher natural abundance (16.8%), higher gyromagnetic 

ratio (4.8458 x 107 rad T 1 s"1, v0 = 72.5 MHz at 9.4 T) and the fact that it is a spin-1/2 

nucleus (20lHg is a spin 3/2 nucleus). '"Hg NMR has been used extensively to probe the 

atomic environment of metal centres in biologically relevant materials by using 199Hg as a 

surrogate nucleus for less receptive nuclei (e.g., 67Zn),78 or to study model compounds of 

metal centres in proteins.44 Solid-state l99Hg NMR data has been collected for many 

different types of mercury-containing compounds, from dimercury (I) species79 to 

organometallic molecules.41 Like 207Pb, 199Hg also has an expansive chemical shift 
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range,80 and many 199Hg SSNMR spectra exhibit large CSAs, making 199Hg SSNMR 

extremely sensitive to changes in local Hg environments. Hg(OAc)2 was chosen as a test 

sample for l99Hg WURST-CPMG NMR experiments because of its use as a CP setup 

standard in 199Hg CP/MAS NMR experiments, as well as its well-characterized CS tensor 

parameters.45'81 

Figure 2.3 shows the l99Hg WURST-CPMG NMR spectrum of Hg(OAc)2. The 

spectrum is ca. 130 kHz broad, and indicates a mercury CS tensor of nearly axial 

symmetry. 72 scans were used to acquire the l99Hg WURST-CPMG NMR spectrum, 

resulting in a total experimental time of ca. 29 hours. A long recycle delay of 1450 s was 

applied for this experiment, due to the large r,(199Hg) relaxation time constants.69 Our 

group previously acquired the 199Hg NMR spectrum of Hg(OAc)2 with a piecewise 

'H-199Hg CP/CPMG experiment that required the acquisition of six sub-spectra,45 each 

subspectrum took 16 scans to acquire for the CP/CPMG experiments, and the entire 

experimental time required was ca. 2.4 hours (Table 2.1). Wasylishen et. al also acquired 

the 199Hg NMR spectrum of Hg(OAc)2 using CP/CPMG, which required the acquisition 

of nine sub-spectra and took ca. 5 hours.46 The use of WURST-CPMG does not reduce 

the time required to obtain the 199Hg NMR spectrum of Hg(OAc)2 compared to the 

CP/CPMG experiment, largely due to the dependence of the recycle delay of the latter on 

the much shorter proton Tx. However, our experiment demonstrates that the WURST-

CPMG sequence can be readily employed to acquire 199Hg NMR spectra in cases where 

CP is not a viable option (i.e., little or no CP efficiency due to the absence of abundant 

and/or mobile nuclei, etc.). Again, the other benefit of using WURST-CPMG is that the 

47 



entire powder pattern may be acquired without stepping the transmitter, and hence, no 

probe retuning is required. Fitting of the spectrum with SIMPSON yielded 8iso = -2513 

ppm, Q. = 1810 ppm and K = 0.89, which match well with previous values (5iso = -2515, 

Q= 1826 and K=0.90).6 9 

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-100 -150 -200 -250 kHz 

Figure 2.3. (A) Echo spectrum resulting from Fourier transformation of the sum of the 
spin-echoes of the l99Hg WURST-CPMG experiment. (B) Bottom trace: ,99Hg 
WURST-CPMG NMR spectrum of Hg(OAc)2. Top trace: analytical simulation based on 
the spectrum in A. (C) SIMPSON simulation of the l99Hg WURST-CPMG NMR 
spectrum of Hg(OAc)2. 

2.3.4 195PtNMR 

l95Pt, the only NMR-active isotope of platinum, has a high natural abundance 

(33.8%) and a moderate gyromagnetic ratio (5.8383 x 107 rad T"' s'\ corresponding to a 

spectral frequency of 85.92 MHz at 9.4 T). ,95Pt NMR has been employed to study a 

broad range of platinum-containing materials including catalytic systems,10'37'82,83 semi-
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conductors,84 and various platinum coordination complexes.43'50,85"88 There is great 

variation in the magnitude of known platinum CSAs:89 to date, the largest reported span 

obtained from 195Pt SSNMR is that of K2PtCl4 (ft =10414 ppm).38 We chose K2PtCl4 to 

test the effectiveness of WURST-CPMG for patterns beyond the observable bandwidth of 

a WURST experiment. 

Figure 2.4 depicts the l95Pt NMR spectrum acquired with the WURST-CPMG 

pulse sequence. The pattern is too broad (ca. 980 kHz) to be collected in a single 

WURST-CPMG experiment; thus, piecewise acquisition is necessary. The collection of 

five sub-spectra at 400 kHz transmitter offsets was sufficient to obtain the entire powder 

pattern in just over 2 hours (Table 2.1). Based on similar experiments on SnO, we 

estimate that using the CPMG sequence to obtain a 195Pt NMR spectrum of similar 

quality would require at least nine hours (please refer to the Appendix A for a full 

explanation of this estimate), as the reduced excitation bandwidth would necessitate the 

acquisition of more sub-spectra. Using an MAS experiment, Ellis et al. were able to 

acquire the total 195Pt NMR spectrum in a piecewise fashion by collecting seven sub-

spectra;38 unfortunately, no experimental time is given for comparison. Not only does the 

WURST-CPMG experiment reduce the number of sub-spectra required to obtain the total 

powder pattern, it also provides a manifold of echo spikelets from which the platinum CS 

tensor can be accurately extracted, and avoids spectral artifacts from magic-angle mis-

sets, resulting in a better overall powder pattern shape with a higher S/N. As with the 

previously discussed spectra, an echo spectrum resulting from the FT of spin-echoes co-

added in the time domain was used for simulation purposes. The CS tensor parameters 
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(8iso = -1510 ppm Q = 10425 ppm K = -0.97) agree well with previously published 

results (5iso = -1848 ppm Q. = 10414 ppm K = -1.0).38 

^ U - l ^ ^ , , ^ . ! ! , ! , , ^ , „„M,i,M,Minii,.iii.-f1[]ltiiMi.ii.a,h 

Figure 2.4.195Pt WURST-CPMG NMR spectrum of K2PtCl4. The spectrum was 
acquired in a piecewise manner and is the sum of 5 sub-spectra, each of which consists of 
40 transients. Inset: The five subpectra obtained during the piecewise acquisition. 

2.3.5 "9Sn Ultra-Wideline SSNMR using pulses designed with Optimal Control 
Theory 

Broadband excitation pulses generated using OCT thus far have been designed for 

high-resolution solution NMR experiments. BEBOP and BIBOP30"32 pulses have been 

developed which can uniformly excite or invert spin magnetization over the full 13C 

chemical shift range at moderate #, field strengths (ca. 50 kHz). Constant-amplitude 

"calibration-free" pulses have also been reported,90 as well as ICEBERG pulses that 

result in transverse magnetization with a constant phase dispersion as a function of offset 
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frequency,91 and studies that use OCT to optimize pulses for use with a quadrupolar 

nucleus in solution samples (e.g., 23Na).92'93 As a preliminary investigation of the 

potential of optimized pulses for the acquisition of UW SSNMR spectra of spin-1/2 

nuclei, we employed the open-source NMR simulation program SIMPSON to attempt to 

generate pulses capable of exciting the full width of the n9Sn SSNMR spectrum of SnO 

at9.4T(ca. 150 kHz). 

Pulse A (15 kHz) Pulse B (50 kHz) Pulse C (150 kHz) 
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Figure 2.5. Visual descriptions of the rf amplitude (top) and phase (bottom) of the pulses 
generated using OCT which were employed for this work. 

A variety of pulses were generated with different restrictions placed on their 

lengths and maximum rf amplitudes. We focus the discussion on the three best-

performing pulses (Figure 2.5), each of which are 50 u,s in length and restricted to 

maximum rf powers of 15, 50 and 150 kHz (hereafter referred to as pulses A, B and C, 
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respectively). Other pulse lengths (25 and 100 \is) were also tested; however, the 50 [is 

pulses were found to yield the best experimental lineshapes. The rf amplitude profiles of 

these optimized pulses resemble trains of "Gaussian-like" shapes which generally 

increase in amplitude with time, though, for the pulse limited to 15 kHz rf power, this 

"Gaussian-train" shape is severely truncated. This motif was observed in all of the pulses 

generated for this application. It is of interest to note that these pulse shapes closely 

resemble the polychromatic pulses published by Kupce and Freeman in 1994,94 which 

were employed for broadband excitation of 13C and 'H solution NMR spectra. Kobzar et 

al. also observed similar shapes in a previous report on pulses generated with OCT.95 

The phase modulations of the pulses reported here are similar in each case; the phase is 

swept smoothly and relatively slowly through a range of ca. 10 to 50 degrees over the 

course of each Gaussian-like amplitude modulation, but undergoes rapid jumps of 90 to 

180 degrees between each modulation. In particular, the phase profiles of the 50 kHz and 

150 kHz pulses are nearly identical. All three pulses end with a phase very close to 90°. 

Figure 2.6A shows the 119Sn pattern acquired from SnO using pulse A, and 

experimental and numerically simulated spectra obtained with a 15 kHz rectangular, 

monochromatic n/2 pulses for comparison. In each case the transmitter frequency was 

applied near the center of gravity of the pattern (-167 ppm). Pulse A results in a 

spectrum with all discontinuities clearly visible, and a more uniform excitation profile 

than that of the lineshape predicted by SIMPSON 2.0. The 15 kHz square pulse produces 

a spectrum that is clearly inferior, with only one clearly resolved discontinuity, and a 

signal intensity that drops significantly with increasing distance from the isotropic shift, 
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as would be expected given its limited bandwidth. Figure 2.6B compares the n9Sn NMR 

spectra acquired with pulse B and a 50 kHz rectangular JI/2 pulse. The 50 kHz 

rectangular pulse shows an improved performance over the 15 kHz rectangular pulse, as 

it is capable of exciting the full width of the spectrum such that all three discontinuities 

are resolved, although a drop in intensity is observed at the low frequency end of the 

pattern. The spectrum acquired with pulse B has a slightly rounded shoulder on the low 

frequency side, implying that either its excitation bandwidth is not quite as wide as the 

pattern, or that magnetization vectors corresponding to different orientations in different 

regions of the powder patterns are nutating at variable rates, similar to nutation 

phenomena in central transition spectra of half-integer quadrupoles (a full numerical 

treatment is beyond the scope of this work).96"98 Both spectra are reasonable 

representations of the simulated powder pattern, though the spectrum acquired using 

pulse B more closely resembles the lineshape predicted by SIMPSON. Figure 2.6C 

depicts the n9Sn NMR spectrum of SnO acquired using pulse C, which was generated 

with a maximum permitted rf field of 150 kHz. In this case the maximum rf amplitude 

calculated by the OCT optimization is ca. 115 kHz, well below the maximum permitted 

value; hence, for comparison, a spectrum was obtained using a 115 kHz rectangular nil 

pulse. The spectrum acquired with pulse C is disproportionately intense on the low 

frequency end when compared to the lineshape predicted by SIMPSON 2.0, whereas the 

115 kHz rectangular pulse produces a spectrum that matches the simulated lineshape 

reasonably well (though high-frequency discontinuity is still less intense than the 

idealized simulated lineshape). 
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Figure 2.6. ll9Sn NMR spectra of SnO acquired with an OCT pulse with (Ai) a 15 kHz 
maximum rf field, (Aii) a 15 kHz rectangular pulse, (Bi) an OCT pulse with a 50 kHz 
maximum rf field, (Bii) a 50 kHz rectangular pulse, (Ci) an OCT pulse with a 150 kHz 
maximum rf field, and (Cii) a 150 kHz rectangular pulse. SIMPSON simulations of 
powder patterns resulting from a rectangular pulse at each respective pulse strength are 
shown above the experimental spectra. 

Table 2.3 gives selected experimental details for the OCT experiments. The 

measured S/N ratios confirm that the OCT pulses outperform standard rectangular pulses 

of similar pulse power. Of the OCT pulses, pulses A and B yield spectra with similar 

S/N values (70 and 71, respectively), while the spectrum resulting from pulse C has a 

somewhat lower S/N (58). Of the standard rectangular pulses, the 15 kHz pulse has the 

worst S/N (27), while the 50 kHz and 115 kHz pulses has S/N values of 54 and 51, 

respectively. We also note that the WURST-CPMG (and CPMG) experiments produced 

spectra with nearly half the S/N of the best OCT and rectangular- pulse experiments, 
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despite being acquired with only one tenth the number of scans. In large part, this is due 

to the signal enhancement from acquiring many echoes with a train of refocusing pulses 

in the CPMG-type experiments. In cases where T2 relaxation constants are very small 

(i.e., where the CPMG-type experiments are not useful), pulses generated with OCT offer 

a useful, low-power alternative. 

Table 2.3. Comparison of selected "9Sn SSNMR spectral parameters 

S/Na Experimental Time (min.) # of Scans 

800 

800 

800 

800 

800 

800 

80 

80 
" S/N ratios are based on the most intense discontinuity of the "9Sn SSNMR pattern. For CPMG-type 
experiments, the most intense spikelet was used for S/N determination. 
' The data given for the CPMG spectrum is based on the sub-spectrum centred closest to 522. 

These preliminary results indicate that broadband excitation pulses optimized 

using OCT for the acquisition of broad CSA patterns are particularly advantageous at low 

rf powers, and therefore should be suitable for studying low-y spin-1/2 nuclides such as 

15N,57Fe, 89Y, 103Rh and 107/l09Ag, samples sensitive to rf heating, or in solid state NMR 

studies of biological samples where high concentrations of ionic salts are present which 

can result in arcing within the probe. When high rf powers can be employed, these 

15 kHz rectangular pulse 

15 kHz OCT pulse 

50 kHz rectangular pulse 

50 kHz OCT pulse 

115 kHz rectangular pulse 

115 kHz OCT pulse 

30 kHz WURST-CPMG 

75 kHz CPMG* 

27 

70 

54 

71 

51 

58 

32 

29 

26.7 

26.7 

26.7 

26.7 

26.7 

26.7 

2.7 

2.7 
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pulses offer little or no advantage over regular 7i/2 pulses in terms of excitation, at least 

over a range of up to ca. 150 kHz (we have yet to test this approach over greater 

frequency ranges). However, of all six spectra presented in this section, the spectrum 

acquired with pulse A most closely resembles the powder pattern predicted by SIMPSON 

2.0. Hence, in terms of lineshape accuracy, the use of such optimized pulses may be 

advantageous (this was also noted in a study of excitation pulses generated for half-

integer quadrupoles using OCT).33 Finally, we note that in order to take advantage of the 

significant signal enhancement available from the CPMG protocol, this approach will 

require the optimization of broadband refocusing pulses, which is not straightforward.29 

We are currently making preliminary investigations of such refocusing pulses. 

2.4 Conclusions 

The WURST-CPMG pulse sequence has successfully been applied in the 

acquisition of wideline and UW SSNMR patterns of various spin-1/2 nuclides. In 

comparison to the CPMG sequence, WURST-CPMG offers a significant reduction in 

experimental time in the acquisition of the "9Sn SSNMR spectrum of SnO, removing the 

need for piecewise acquisition. Similarly, 207Pb WURST-CPMG NMR proves to be more 

efficient than the 'H-207Pb CP/CPMG sequence in acquiring the 207Pb SSNMR spectrum 

of Pb(OAc)2-3H20, as the entire pattern could be acquired in a single experiment, and in 

a shorter period of time. In cases where the Tx of the X nucleus is very long compared to 

the r,('H) {e.g., for ,99Hg SSNMR experiments on Hg(OAc)2), CP/CPMG may prove to 

be more efficient; however, CP is not always feasible {i.e., 'H or 19F are not present in the 
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sample), in which case WURST-CPMG is an extremely useful alternative. For SSNMR 

spectra that exceed the excitation bandwidth of WURST-CPMG pulses (e.g., 195Pt NMR 

of K2PtCl4), piecewise acquisition can be readily employed to obtain the total powder 

pattern. 

Preliminary experiments making use of pulses generated with OCT indicate that 

low-power pulses can be created which outperform standard, rectangular pulses of the 

same power for the acquisition of broad spin-1/2 SSNMR patterns. The improvements in 

signal intensity and powder-pattern shape provided by OCT pulses at low power levels 

are reduced as the pulse power is increased, though for samples sensitive to increases in 

temperature, samples containing low-y nuclei or solution samples with high salt 

concentrations, these pulses may be a useful alternative to standard rectangular pulses. 

For the acquisition of the 119Sn SSNMR spectrum of SnO, WURST-CPMG is the best 

method of acquisition; however, in cases where T2 relaxation constants are very small, 

pulses generated using OCT offer a reasonable alternative. 

We hope that this work encourages further investigations of the broad powder 

patterns of heavy spin-1/2 nuclides, since their acute sensitivity to the surrounding 

electronic structure could greatly enhance our understanding of structure and dynamics 

for a broad array of materials. These techniques will be very useful for further NMR 

investigations of a number of additional spin-1/2 nuclei which may have broad patterns 

arising from CSA or disorder at the atomic/molecular level, including metal nuclides like 

77Se, 29Si, 125Te, 18lYb, and of course low-gamma nuclides such as as 15N,57Fe, 89Y, 103Rh 

and 107/,09Ag. 
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Chapter 3 

207Pb SSNMR Spectroscopic Investigations of Pb(II) 
Thiolates 

3.1 Introduction 

Lead (II) is a heavy /?-block element capable of adopting a broad array of 

coordination environments and high coordination numbers, due to its large atomic radius 

and stereochemically active lone pair of electrons.1"4 However, the propensity of Pb(II) 

to form such highly coordinated species can result in the formation of polymeric 

structures, and in turn, a reduction in solubility as observed in a number of Pb(II) thiolate 

species.5"8 In an effort to improve the solubility of such compounds, (2,6-Me2C6H3S)2Pb 

and several substituted adducts were developed and characterized.910 As an extension of 

this work, and to explore the potential for new dative bonding arrangements about the Pb 

centre, [(2,6-Me2C6H3S)2Pb]2(dppe) (2), [(2,6-Me2C6H3S)2Pb]2(tmeda) (3), and [(2,6-

Me2C6H3S)2Pb]3(dmpe) (4) (where dppe = bis(diphenylphosphinoethane), tmeda = 

N,N,N',N' - tetramethylethylenediamine, and dmpe = bis(dimethylphosphino)ethane) 

were synthesized and isolated. This series of novel Pb(II) thiolates exhibits a unique 

array of Pb coordination environments, though a common feature is the formation of 

pseudo-trigonal pyramidal Pb bonding arrangements, similar to that of the [(PhS)Pb]" 

anion (l),1'12 as shown in Scheme 1. 
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Scheme 1. Note that the dashed lines in 3 and 4 indicate dative bonds. 

Owing to the insolubility of many of this class of Pb complexes, it is of 

importance to further examine well-characterized systems with 207Pb solid state NMR 

(SSNMR). The utility of 207Pb SSNMR as a probe of structure and dynamics has long 

been known to be of great importance.1013"16 207Pb SSNMR spectra are most often 

acquired under conditions of magic-angle spinning (MAS) owing to the broad patterns 

arising from large lead chemical shift anisotropies (CSA).1317 Such experiments are 

sometimes problematic, since (i) the lead chemical shift is highly temperature dependent 

and may change due to frictional heating of the rotor,1318"20 and (ii) for very large lead 

CSAs, the magic angle must be set with great precision to avoid "doubling" of the 

spinning sidebands (SSBs) and other related spectral artifacts.21"23 In addition, it has been 

observed that short, high-power pulses on the 207Pb channel are often incapable of 

uniformly exciting the entire manifold of SSBs, leading to reduced peak intensities on the 

outside limits of the spectrum, and hence, to spurious Herzfeld-Berger analyses of the 

chemical shift tensors.10 In samples with sources of abundant nuclei (i.e., 'H and 19F) 

which are proximate to the 207Pb centres, 'H-207Pb and l9F-207Pb cross-polarization magic 
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angle spinning (CP/MAS) NMR experiments are the norm.24"27 These experiments 

provide large increases in signal-to-noise ratios (S/N) and reduced experimental times, 

due to signal enhancement via CP and the (typically) shorter longitudinal relaxation 

constants (T^ of the abundant nuclei upon which the recycle times depend. Since many 

207Pb r,'s are known to be very long (on the order of minutes to hours) in solid 

systems20'28"30, these experiments are of great value. However, the excitation profiles of 

CP experiments are usually reduced compared to those achieved in standard Bloch decay 

experiments; therefore, CP/MAS experiments are of limited utility for extremely broad 

patterns.10,31 

Owing to the broad (i.e., >250 kHz) nature of many Pb NMR patterns, as well as 

decreased CP efficiency under MAS conditions resulting from distant and/or immobile 

'H or 19F nuclei, frequency-stepped piecewise acquisitions on static (i.e., stationary) 

samples have proven particularly useful.10'14'31"33 We designate such patterns as ultra-

wideline (UW) NMR patterns, since they typically cannot be uniformly excited with 

rectangular pulses at currently achievable power levels. Traditional piecewise 

acquisitions involve stepping the transmitter at constant field (or sweeping the field at 

constant frequency) and plotting the spin echo intensities as a function of frequency 

(field).33'34 The efficiency of piecewise acquisitions can be greatly improved by Fourier 

transforming the individual sub-spectra, followed by co-addition or skyline projection 

(this technique has been applied to numerous quadrupolar nuclei).35'36 Further 

improvement stems from the use of the quadrupolar Carr-Purcell Meiboom-Gill 

(QCPMG) pulse sequence, which was reintroduced for the acquisition of broad, central-
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transition, powder patterns of quadrupolar nuclei.37 Though predominantly applied for 

quadrupolar nuclei,38"41 our research group and others have employed the CPMG 

sequence (or CP/CPMG for systems with abundant nuclei such as 'H and 19F) to acquire 

SSNMR spectra of heavy spin-1/2 nuclei (e.g., ll3Cd, 195Pt, l99Hg, 207Pb) }ww&& 

Though effective, the use of the CPMG and CP/CPMG sequences for piecewise 

acquisition of broad NMR patterns is labour intensive, as the probe must be retuned for 

the acquisition of each sub-spectrum. As mentioned above, an alternative method for 

acquisition of UW SSNMR spectra is to sweep the magnetic field at a constant 

transmitter frequency; however, this requires specialized coils and controllers to be 

installed within the bore of the magnet.4445 More recently, the wideband uniform-rate 

smooth truncation (WURST)46 pulse sequence has been introduced as a method for 

acquiring UW SSNMR patterns.47'48 This sequence has been modified into the form of a 

CPMG-type sequence called WURST-QCPMG,49 which provides the benefits of 

broadband excitation of WURST and S/N enhancements of CPMG. This modification 

enables one to acquire UW spectra with fewer subspectra, or sometimes even in a single 

experiment, depending upon the Larmor frequency and quadrupolar parameters. 

Herein, we present 207Pb SSNMR spectra of 1 - 4, acquired in a piecewise fashion 

with the CP/CPMG pulse sequence. We also employ the WURST-CPMG sequence the 

obtain the 207Pb SSNMR spectra, in an effort to improve upon the efficiency of 

acquisition. DFT calculations are carried out with the Amsterdam Density Functional 

(ADF) software,50"52 to determine the nuclear shielding (NS) tensor orientations and relate 

the experimentally observed CS parameters to the molecular structures. 
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3.2 Experimental Details 

3.2.1 Solid-State 207Pb NMR Spectroscopy 

All Pb (II) thiolate samples were prepared by the group of Prof. Glen Briand at 

Mount Allison University. Solid-state 207Pb and 31P NMR spectra were acquired on a 

Varian Infinity Plus spectrometer with an Oxford 9.4 T wide-bore magnet (v0 ('H) = 400 

MHz, v0 (
207Pb) = 83.74 MHz, v0 (

31P) = 161.82 MHz. 207Pb chemical shifts were 

referenced to tetramethyllead (Pb(CH3)4, 8iso = 0.0 ppm) by using a 0.5M aqueous 

solution of Pb(N03)2 (5iS0 = -2941 ppm) as a secondary standard.28 Phosphorous chemical 

shifts are referenced to 0.5M H3P04 (aq) (8iS0 = 0.0 ppm). 

Solid-state NMR experiments were carried out using either a 4 mm HX double 

resonance Varian/Chemagnetics probe or a 4mm HXY triple resonance 

Varian/Chemagnetics probe. Lead acetate [Pb(OAc)2-xH20] was used to optimize 

parameters for cross-polarization/Carr-Purcell-Meiboorn-Gill (CP/CPMG)14'32 and 

WURST-CPMG49 experiments. The total spectrum for each CP/CPMG experiment was 

obtained by co-adding individual subspectra that were collected at evenly spaced 

transmitter offsets. 19-23 subspectra were required, and pulse delays for CP/CPMG 

experiments ranged from 20 - 45 s. Other experimental details regarding CP/CPMG 

experiments can be found in the Appendix B (Table Bl). TPPM "H decoupling53 was 

used for all CP/CPMG experiments. WURST-CPMG49 experiments were able to be 

completed without piecewise acquisition and employed 50 us WURST pulses with a 

pulse power of ca. 47 kHz. Further experimental details regarding WURST-CPMG 

experiments may be found in Appendix B (Table B2) All 207Pb spectra were simulated 
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using the WSolids NMR simulation program,54 and processed with NUTS (Acorn NMR). 

3.2.2 Density Functional Theory Calculations 

The NMR and EPR modules55"57 of the Amsterdam Density Functional (ADF) 

program package50"52 on the Shared Hierarchical Academic Research Computing Network 

(SHARCNET)58 were used to carry out all theoretical calculations. Relativistic effects 

were accounted for using the Zeroth-Order regular approximation (ZORA).59"63 All-

electron gauge including atomic orbitals (GIAO)64 triple-^ doubly-polarized basis sets 

were used for all atoms, except for the Pb atom(s) in each structure for which a 

quadruple-^ doubly polarized basis set was employed. All calculations were carried out 

using atomic coordinates from single-crystal X-ray experiments, with proton bond 

lengths set to experimentally optimal values. 

3.3 Results and Discussion 

3.3.1 Solid-State 207Pb NMR Spectroscopy 

In this section we examine the 207Pb SSNMR spectra of 1, 2, 3 and 4. 'H - 207Pb 

CP/MAS experiments were attempted on these samples, and were unsuccessful, yielding 

incompletely excited spectra much like those discussed in our previous work on 

analogous systems.10 Examples of these CP/MAS spectra can be found in Appendix B 

(Figure Bl). Hence, all 207Pb SSNMR spectra were acquired from stationary samples in a 

piecewise fashion using the CP/CPMG pulse sequence. The WURST-CPMG pulse 

sequence was also employed, in order to see if the number of sub-spectra required for an 
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accurate lineshape could be reduced, and the need for CP from 'H nuclei could be 

eliminated (which would aid in quantification of signal intensity in samples with multiple 

sites). The lead isotropic chemical shifts of all of the compounds are similar (Table 3.1), 

in spite of the large chemical shift range of lead, which is currently thought to be on the 

order of 18000 ppm.13 However, the anisotropic CS parameters vary greatly between 

compounds, indicating unique electronic environments for each 207Pb nucleus. Since 

each compound has a unique coordination environment(s) for the Pb atoms, the Pb 

chemical shift (CS) tensor should reflect changes in molecular geometry and the nature of 

the bonding ligands. 

The co-added 'H-207Pb CP/CPMG NMR spectrum of 1 (Figure 3.1) has a breadth 

of ca. 280 kHz and required the acquisition of 20 subspectra (totaling 32 hours of 

acquisition). The lengthy experimental time prohibited the acquisition of spikelets which 

are more closely spaced (i.e., further spacing of echoes in the CPMG echo train), due to 

the associated reductions in signal-to-noise (S/N). Also depicted in Figure 3.1 is the 

207Pb WURST-CPMG NMR spectrum of 1, which was acquired in a single experiment 

taking only 19 hours, and appears similar to that obtained with the CP/CPMG sequence. 

Though it does not offer the reduced pulse delay times and population enhancements 

associated with CP, the excitation bandwidth of WURST-CPMG is far superior to that of 

CP/CPMG, allowing the entire spectrum to be acquired in a single experiment as opposed 

to a piecewise manner. Eliminating the need for piecewise experiments also has the 

added benefit of removing the requirement that personnel be present to retune the probe 

between acquisitions of subspectra. 
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Table 3.1. Experimental 207Pb Chemical Shift Parameters" 

Compound 8„ 522 833 8iso
c £ld Ke 

(ppm) (ppm) (ppm) (ppm) (ppm) 

(1) (PbS3) 

(2) (PbS2P) 

(3) Site 1 (PbS3) 

(3) Site 2 (PbS2N2) 

(4) Site 1 (PbS2P2) 

(4) Site 2 (PbS3) 

(4) Site 3 (PbS3) 

4262 

4458 

4522 

4503 

477 

4282 

4395 

3176 

3314 

3856 

2620 

36 

3986 

3795 

812 

58 

922 

453 

-993 

582 

645 

2750 (20/ 

2610(40) 

3100(75) 

2525 (75) 

-160(50) 

2950(100) 

2945 (100) 

3400 (70) 

4400(100) 

3600(150) 

4050(125) 

1470(100) 

3700(300) 

3750 (300) 

0.37 (5) 

0.48 (5) 

0.63 (5) 

0.07 (5) 

0.40 (5) 

0.84 (5) 

0.68 (5) 

"The principal components of the chemical shift tensor are defined as 8,, > 522 s 833, where 5n and 833 are 
oriented along the directions of lowest and highest shielding, respectively. 
b The nuclear environment of each site is denoted in parentheses. 
c Siso = (8,1 + 522 + 833)/3. Values are with respect to (CH3)4Pb (8iso = 0.0 ppm). 
dQ = (8,, - 833), based upon simulations of static CP/CPMG spectra. 
cK = 3(822-8iso)/Q,-1.0<K< 1.0. 
-'Values in parentheses denote the uncertainty in the last digit of each parameter where indicated. 

73 



Piecewise CP/CPMG 

B 
vfW li*»lWtlfl*M»P##*W«*«¥i« 

WURST QCPMG 

ui IwSSMrtWilWItfiW^^ 

i i — i — | — i i i i — | — i i i i | — i — i i i | — i — i — i i | i i i i — | i i i i | — r i i i — | — i — i i i | i 

4500 4000 3500 3000 2500 2000 1500 1000 ppm 
i—i—i—i—i—i—i—i—i—IT—[—i—i—i—i—|—i—i—i—i—r -1—i—i—i—|—i—i—i—i—|—i—i—i—i—r~>—r 

400 350 300 250 200 150 100 50 kHz 
Figure 3.1. (A) 'H - 207Pb CP/CPMG and (B) WURST-QCPMG 207Pb NMR spectra of 
[(PhS)3Pb][As Ph3], 1, with WSolids simulation (top trace). 

Compound 1 contains a single Pb site in a three-coordinate pyramidal PbS3 

environment. Simulation of a CSA powder pattern which fits the outer manifold of the 

spikelet spectrum yields the 207Pb chemical shift tensor parameters, which include an 

isotropic shift of 8iso = 2750 ppm, a span of D. = 3400 ppm and a skew of K = 0.37 (see 

Table 3.1 for definitions of these parameters). The isotropic shift represents the average 

chemical shift value that would be observed if the molecule was rapidly tumbling in an 

isotropic fashion (8iso is normally what is measured in solution NMR experiments, and 

can sometimes be influenced by the solvent, temperature, viscosity, etc.). The span 

indicates the breadth of the chemical shielding (CS) pattern in ppm, and reports the 
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magnitude of the CSA. Finally, the skew is a dimensionless parameter which indicates 

the degree of axial symmetry of the CS tensor (-1 < K < +1, where K = +1 and -1 

represent the two extremes of axial symmetry). In this case, the positive value of K 

indicates that 833 is the distinct component of the CS tensor (i.e., 5n and 822 are similar in 

magnitude). Based on the site symmetry, and our previous studies of lead coordination 

compounds of this sort,10 it is predicted that 533, which corresponds to the direction of 

highest nuclear shielding, is aligned along or near the direction of the lone electron pair. 

The CS tensor parameters, as well as the orientation of the CS tensor in the molecular 

frame, are discussed in detail in the theoretical section below. 

Figure 3.2 shows the 207Pb CP/CPMG and WURST-CPMG NMR spectra of 2. 

The two spectra are similar in appearance, though the low-frequency end of the spectrum 

acquired with WURST-CPMG is lower in intensity than that acquired with CP/CPMG. 

However, the discontinuities of the WURST-CPMG spectrum are still clearly visible, and 

allow for the determination of CS tensor parameters. As with the SSNMR experiments 

conducted on 1, WURST-CPMG is advantageous as it allows the entire spectrum of 2 

(breadth of ca. 390 kHz) to be acquired in a single experiment, whereas the CP/CPMG 

experiment required the acquisition of 19 subspectra. WURST-CPMG also offers a 

moderate reduction in experimental time (Table 3.2). Compound 2 has a Pb environment 

which is similar to that of 1 except one sulfur atom has been replaced by a phosphorous 

atom. 2 has a comparable skew to that of 1, K = 0.48, but a significantly larger span, il = 

4400 ppm. Again, 833 is the distinct component of the CS tensor. 
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Figure 3.2. (A) "H - 207Pb CP/CPMG and (B) WURST-QCPMG 207Pb NMR spectra of 
[(2,6-Me2C6H3S)2Pb]2(dppe) (2) with WSolids simulation (top trace). 

Table 3.2. Comparison of experimental 
CPMG 

1 

CP/CPMG 32 

WURST-CPMG 19 

times (hours) between CP/CPMG and WURST-

2 

23 

20.2 

3 

20.3 

41.6 

4 

22 

60 
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'H"31P CP/MAS NMR spectra were acquired for 2 (Figure 3.3), in the hope of 

observing indirect spin-spin coupling between 207Pb and neighbouring 3IP nuclei. A 

single resonance with 8iso = 17(1) ppm is observed. Since the natural abundance of 207Pb 

is 22.6%, the coupling is manifested in the form of two satellite peaks, comprising a 

doublet of 22.6% of the total integrated intensity, with 'J(207Pb, 31P) = 1895(100) Hz. 

This coupling is not visible in the 207Pb CP/CPMG NMR spectrum, due to its small 

magnitude relative to the lead CSA (Cl = 4400 ppm) and the inherently low resolution in 

the CPMG spectrum. It is possible that this coupling might be observed in 207Pb MAS or 

CP/MAS NMR spectra; unfortunately, these experiments were unsuccessful (refer to 

Appendix B, Figure Bl) due to lengthy 207Pb T, constants and inefficient CP at even very 

slow spinning rates. 

i j (3 i p 207p b )_ 1 8 g 5 ( 1 1 0 ) i ^ 

100 50 0 -50 ppm 
1 i i | \ i i i | i i i i | i i i i i i i i i \ i i i i | \ ] i \ ] i \ i \ | r 

20 15 10 5 0 -5 -10 kHz 

Figure 3.3. 'H-3IP CP/MAS NMR of [(2,6-Me2C6H3S)2Pb]2(dppe), 2. * 
denotes impurity 
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Two distinct but overlapping powder patterns are observed in the 'H-207Pb 

CP/CPMG and 207Pb WURST-CPMG NMR spectra of compound 3 (Figure 3.4), which is 

consistent with its crystal structure. As with 1 and 2, the spectrum of 3 was able to be 

acquired in a single experiment with the WURST-CPMG pulse sequence, but required 

piecewise acquisition with CP/CPMG. Unlike the previously discussed compounds, the 

spectrum of 3 obtained with the WURST-CPMG pulse sequence required a much longer 

experimental time (Table 3.2) than that acquired with CP/CPMG, even with lower 

spectral resolution. This is likely due to the much longer T, constant of the 207Pb nucleus 

than that of 'H. CP is also very efficient for 3, owing to the presence of multiple methyl 

groups within the molecule. DFT calculations (vide infra) were used to assign each 

experimental CS tensor to a crystallographic site. Site 1 (PbS3) has afl = 3600 ppm, 

similar to that of 1, and K = 0.63, which is slightly larger in magnitude than those of 1 and 

2. 833 is again the distinct component of the CS tensor, and is likely oriented in a similar 

manner to that described for 1 and 2. Site 2 of 3 has a distinct four-coordinate PbS2N2 

environment, with a pseudo-trigonal bipyramidal geometry including the stereo-

chemically active lone pair. Accordingly, this site has markedly different CS tensor 

parameters, with Q. = 4050 ppm and K = 0.07 (though the isotropic shift is still in the 

same region as all of the other sites). The value of K indicates that all three principal 

components of the CS tensor are significantly different from one another, making a 

prediction of the CS tensor orientation based on molecular symmetry alone more 

difficult. We also note that the poorly resolved low-frequency edge of the spectrum leads 

to a significant error range in the reported values of the most shielded CS tensor element, 
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833, for the two tensors. 
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Figure 3.4. (A) 'H - 207Pb CP/CPMG and (B) WURST-QCPMG spectra of [(2,6-

Me2C6H3S)2Pb]2(tmeda), 3 , with WSolids simulation (top trace). 
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The 'H-207Pb CP/CPMG and 207Pb WURST-CPMG NMR spectra of 4 also have 

two distinct CSA patterns (Figure 3.5); however, the patterns are well separated and 

resolved. Despite the extreme breadth (ca. 485 kHz) of the powder patterns, the entire 

spectrum was acquired in a single WURST-CPMG experiment, and the resulting powder 

patterns closely resemble those of the CP/CPMG experiment. As with 3, however, the 

piecewise CP/CPMG experiment offered a more efficient method of acquisition, as it 

took 22 hours to acquire the spectrum, as opposed to the 60 hour experimental time of the 

WURST-CPMG experiment (we note that the spikelet spacing in the latter experiment 

offers higher spectral resolution, and accounts for some of the increase in experimental 

time). There are three Pb sites predicted from the crystal structure: Site 1 is a PbS2P2 

centre and Sites 2 and 3 are similar PbS3 environments. The CS tensor parameters of 

sites 2 and 3 closely resemble those of 1, 2 and site 1 of 3. Site 2 has Q. = 3700 ppm and 

K = 0.84, and site 3 has Q, = 3750 ppm and K = 0.68; however, there are large errors 

associated with these parameters as the two spectra are difficult to resolve due to the 

inherently low spectral resolution. As in the cases above, the c33's are the distinct 

components of the CS tensors, and are likely oriented along the pseudo three-fold 

rotational symmetry axes of each unit. The CS tensor parameters of site 1 (PbS2P2) are Q. 

= 1470 ppm, which is much smaller than those of any of the other systems, and K = 0.4, 

again indicating that 533 is the distinct component. Prediction of the orientation of the CS 

tensor for site 1 is again difficult because of the unique coordination environment of the 

Pb centre; the disparate parameters and tensor orientations will be discussed below. 
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Figure 3.5. (A) 'H - 207Pb CP/CPMG and (B) WURST-QCPMG spectrum of [(2,6-
Me2C6H3S)2Pb]3(dmpe), 4, with WSolids simulation. 
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31P CP/MAS NMR spectra reveal two resonances of approximately equal 

intensity with 8iso of 35.8(10) ppm and 0.1(10) ppm, with values of 'J(207Pb, 31P) of 2474 

(80) Hz and 1363 (50) Hz, respectively (Figure 3.6). The large values of'J(207Pb, 3,P) 

and corresponding satellite intensities clearly indicate the presence of Pb-P bonds. As 

with 2, the 'J couplings are not visible in the 207Pb CP/CPMG NMR spectrum due to the 

inherently low resolution. The presence of two 3IP resonances with very different values 

of 8iso and 'J(207Pb, 3IP) is puzzling; one would not expect this given the crystal structure 

of 4, since the two phosphorus sites of the dmpe group are chemically similar (and long 

range solid-state interactions are not expected to result in such differences). Preliminary 

DFT computations of the 31P chemical shifts in a structural model of 4 indicate the 

chemical shifts of the two sites should differ by only ca. 5 ppm, in contrast to the 

difference of ca. 36 ppm observed experimentally (Table B3). Further, the two shifts 

measured in the solid state bear no resemblance to those observed in solution 31P NMR 

experiments mentioned above, where a 8iso of ca. -34 ppm is thought to correspond to 

dmpe weakly interacting with the Pb site, and free dmpe has a 8iso = -47.55 ppm. At this 

time, we have no definitive explanation for the large differences in the parameters 

measured in the solid state. Since the powder XRD pattern of sample 4 matches closely, 

but not exactly, with simulated patterns (Figure B2), it is possible that there is an 

additional crystalline solid phase which is currently unaccounted for. 
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1 1/31 D 207| JfP.^Pb) = 2474 (80) Hz J(31P,207Pb) = 1363(50)Hz 

Spinning Speed (kHz) 
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Figure 3.6. 'H-31P CP/MAS NMR spectra of [(2,6-Me2C6H3S)2Pb]3(dmpe), 4. 
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We have demonstrated that both CP/CPMG and WURST-CPMG pulse sequences 

are useful for acquiring 207Pb UW SSNMR spectra. The WURST-QCPMG sequence 

enables acquisition of these extremely broad 207Pb NMR patterns in a single experiment 

(i.e., without the need for stepping the transmitter frequency) and offers considerable 

time savings (Table 3.2) for samples 1 and 2. Perhaps most importantly, it is unnecessary 

to have personnel present to monitor the experiment and re-tune the probe, allowing more 

efficient 24 hour acquisition. However, for samples 3 and 4, CP/CPMG is a more 

efficient for acquiring the UW 207Pb SSNMR spectra. The WURST-CPMG pulse 

sequence, which relies on direct excitation of the 207Pb nuclei, is less successful in these 

cases due to the much longer r,(207Pb) values. However, by directly exciting the 207Pb 

nucleus, WURST-CPMG avoids inaccurate distributions of signal intensity in samples 

with multiple sites, which can occur in CP experiments due to varying CP efficiency 

between sites. Though not always the most efficient method of acquisition where cross-

polarization is possible, WURST-CPMG may be very useful for acquiring UW SSNMR 

spectra of samples where ]H (or ,9F) is not present, or in cases where personnel are not 

available to acquire multiple spectra for piecewise experiments. 

3.3.2 Calculation of Lead Nuclear Shielding (NS) Tensors with Density Functional 
Theory 

Calculations of NMR parameters using density functional theory (DFT) allow for 

the correlation of observed NMR parameters to molecular structure, as well as for the 

exploration of the origins of nuclear magnetic shielding interactions. It is crucial to 

develop such understandings for unique coordination environments such as the ones 

84 



described herein, since this will afford rapid structural interpretation for many current 

and future systems for which crystallographic data is unavailable (i.e., sub-

microcrystalline and disordered systems). Furthermore, in compounds containing 

multiple sites, NMR parameters gleaned from DFT calculations can aid in the assignment 

of the spectra. In cases where MAS NMR experiments are impractical, these calculations 

are an invaluable tool for making spectral assignments. Since the current work deals 

with Pb chemical shifts, which arise from nuclear shielding (NS) of the Pb nuclei (i.e., 

magnetic shielding of the nucleus induced by electron circulation, which can be 

described in terms of mixing occupied and virtual molecular orbitals), the Zeroth-Order-

Relativistic-Approximation (ZORA)61"63 was employed for all DFT calculations. This 

methodology is essential for systems containing heavy atoms, as relativistic effects on the 

NS tensor become pronounced for heavy nuclei.59,60'65'66 

The theoretical anisotropic NS parameters for 1 and site 1 of 3 (Table 3.3) agree 

well with experimentally determined results. For the remaining Pb sites, Q. is generally 

overestimated, except for site 1 of 4 where it is slightly underestimated. Calculated 

values of K generally agree well with experimental results, with the exception of 2. 

Despite the vast chemical shift range of 207Pb, predicted values of 5jso agree well (i.e., 

deviate by ca. 250 ppm or less) with those observed experimentally, with the exception 

of Site 1 of 4 and, to a lesser extent, Site 1 of 3. 
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Table 3.3. Theoretical and Experimental Pb NS and CS tensor parameters. 
°11 °22 «33 °iso 8 iSo" ^ 

1 
Paramagnetic 

Diamagnetic 

Spin-Orbit 

Total 

Experimental 

2 

Paramagnetic 

Diamagnetic 

Spin-Orbit 

Total 

Experimental 

3 (site 1) 

Paramagnetic 

Diamagnetic 

Spin-Orbit 

Total 

Experimental 
3 (site 2) 

Paramagnetic 

Diamagnetic 

Spin-Orbit 

Total 

Experimental 

4 (site 1) 

Paramagnetic 

Diamagnetic 

Spin-Orbit 

Total 

Experimental 

-7494 

9956.3 

1028.8 

3785.3 

-7969 

9956.9 

1070 

3140.3 

-7049.7 

9955.7 

763.8 

3816.4 

-8199.4 

9950.2 

837.6 

2621.3 

-4536 

9952 

3035.9 

8564.5 

-6071 

9959.2 

1210.5 

4930.6 

-5990 

9960.6 

1255.4 

8559.5 

-6660.2 

9960.9 

1128.7 

4452.2 

-5994.9 

9955.7 

1204 

5170.4 

-4400 

9952.8 

3193.8 

8670.4 

-5545 

9964.2 

2788.4 

7082 

-4455 

9963 

3146.2 

8559.5 

-5091.7 

9961.7 

2855.4 

7556.1 

-4126.1 

9958.5 

3233.1 

9027.1 

-3756 

9964 

3329.2 

9500.9 

-6370 

9959.9 

1675.9 

5266 

-6138 

9960.1 

1823.8 

5646.2 

-5267.2 

9959.4 

1582.6 

5274.9 

6106.8 

9954.8 

1758.2 

5806.2 

-4231 

9956.3 

3186.3 

8911.9 

2592 

2750 

2438 

2610 

2812 

3100 

2479 

2610 

-854 

-160 

1948 

8 

1760 

3297 

3400 

3514 

6 

2076 

5419 

4400 

1958 

6 

2092 

3740 

3600 

4073 

8 

2396 

6406 

3685 

780.4 

12 

293.2 

936.3 

1475 

-0.5 

0.27 

0.79 

0.31 

0.37 

-0.1 

-0.2 

0.82 

0.23 

0.48 

0.6 

-0.8 
0.65 

0.66 

0.63 

0.0 

-0.3 

0.69 

0.2 

0.0 

0.65 

0.87 

0 

0.77 

0.38 
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Table 3.3. (continued) 

4 (site 2) 

Paramagnetic 

Diamagnetic 

Spin-Orbit 

Total 

Experimental 

4 (site 3) 

Paramagnetic 

Diamagnetic 

Spin-Orbit 

Total 

Experimental 

-7800 

9956.8 

658.3 

3020.7 

-7825 

9957.1 

724.9 

3121.6 

-6676 

9960.1 

948.1 

4092.0 

-6637 

9960.5 

1001.9 

4130.4 

-5123 

9962.9 

2789.5 

7563.9 

-5118 

9963.6 

2759.7 

7536.2 

-6533 

9959.9 

1465.3 

4892.2 

-6526 

9960.4 

1495.5 

4929.4 

3198 

3045 

3160 

2950 

2677 

6.2 

2131 

4543 

3625 

2707 

6.51 

2035 

4415 

3600 

0.16 

0 

0.73 

0.53 

0.79 

0.12 

0 

0.73 

0.54 

0.67 

"The principal nuclear shielding components are related to the chemical shift components 
by the equation 5iso = (oref- criso)/(l-aref), where aref corresponds to the isotropic shielding 
value of a reference compound (tetramethyllead, oref = 8064.8). 
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Calculated Pb NS tensor orientations are depicted in Figures 3.7 and 3.8. The Pb 

site of 1 (PbS3, Figure 3.7A, 3.7B) is in a trigonal pyramidal environment. As predicted 

from our experimental data, the NS tensor is oriented such that o33, the distinct principal 

component, is aligned along the direction of the lone pair, similar to results reported 

previously.10,67 Compound 2 also contains a single, three coordinate Pb site (PbS2P, 

Figure 3.7C, 3.7D), which is in an environment of lower symmetry than that of 

compound 1, due to the distinct Pb-P bond which is significantly longer than the Pb-S 

bonds. In this case, o33 is aligned close to the plane of the two Pb-S bonds (Table 3.4) in 

the direction of the lone pair. 

Figure 3.7. (A) "Top" view and (B) "side" view of NS tensor 
orientation of 1, (C) NS tensor orientation of 2, and (D) 2 shown as 
dimer. 
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Table 3.4. Angles describing the orientation of NS tensor components with respect to 
key structural and symmetry elements-
Compound 1 

o33-Pb-S(l) 119.28° 

o33-Pb-S(2) 133.37° 

c33-Pb-S(3) 116.16° 

Compound 2 

a33-Pb-S(l) 141.04° 

a33-Pb-S (2) 122.00° 

a33-Pb-P 98.40° 

Compound 3 (Site 1) (Site 2) 

o33-Pb-S(l) 113.91° a33-Pb-S(l) 163.50c 

o33-Pb-S(2) 138.04° o33-Pb-S (2) 94.07° 

a33-Pb-S(3) 108.90° a33-Pb-N(l) 103.42c 

a33-Pb-N(2) 81.52° 

Compound 4 (Site 1) (Site 2) (Site 3) 

a33-Pb-S(l) 10.74° a33-Pb-S(l) 142.42° a33-Pb-S (1) 102.91' 

o33-Pb-S(2) 163.49° a33-Pb-S (2) 121.73° c33-Pb-S (2) 143.48c 

a33-Pb-P(l) 88.31° a33-Pb-S(3) 98.40° o33-Pb-S (3) 120.62c 

a33-Pb-P (2) 86.82° 
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Two distinct Pb sites are present in 3 (Figure 3.8A, 3.8B): one three-coordinate 

environment (PbS3, Site 1), and one four-coordinate environment (PbS2N2, Site 2). Site 

1, much like compound 1, has a trigonal pyramidal coordination geometry; however, one 

of the three S atoms is datively coordinated, forming a longer Pb-S bond than the other 

two. As a result, there is a reduced symmetry compared to 1, and o33 is not clearly 

aligned along a particular symmetry element. The coordination sphere of Site 2 contains 

two nitrogen atoms and two sulfur atoms, (one of the latter is bound to the Pb in a dative 

manner). o33 is oriented ca. 165° from the shorter, covalent Pb-S bond, near the position 

of the lone pair. ou is in the same plane as the N-Pb-N bonding arrangement, and bisects 

the N-Pb-N angle. Compound 4 has three distinct Pb centres (Figure 3.8C, 3.8D): one 

four coordinate (PbS2N2) site (Site 1), and two three coordinate (PbS3) sites (Sites 2 and 

3) which are nearly identical (Table 3.4). As with Site 1 of 3, one coordinating sulfur 

atom from each of Sites 2 and 3 forms a dative bond with Site 1, which lengthens the Pb-

S bond and reduces the local symmetry at the Pb centre. Accordingly, o33 is shifted away 

from the pseudo three-fold axis of rotation (Figure 3.8). Site 1 adopts a unique four 

coordinate environment, with bonds to a bidentate DMPE ligand, and dative bonds to two 

sulfur atoms from neighbouring sites. 
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Figure 3.8. NS Tensor orientations of (A) Site land (B) Site 2 of 3, and (C) Site 1 and 
(D) Site 2 of 4. The full molecules are shown in the insets. Note that Site 3 of 4 has been 
omitted due to its similarity to Site 2. 

In comparing the Pb NS tensor parameters and orientations, some interesting 

trends emerge. First, consider the PbS3 environments in compounds 1, 3 and 4. Close 

examination of the Pb-S bond lengths and S-Pb-S bond angles indicate that 1 is the most 

symmetric, possessing a local pseudo three-fold rotational axis, and 4 is the least 

symmetric. It is interesting to note that as the sites deviate farther from a rotational axis, 

the values of K increase when one would expect them to decrease. The orientation of the 

c33 component of the NS tensor seems to move from the pseudo-C3 axis in 1 into the S-

Pb-S plane in 3 and 4. Clearly, simple symmetry arguments cannot be made to describe 

these changes in NS tensor parameters and orientations; rather, it is a delicate interplay 
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between paramagnetic shielding contributions involving the Pb lone pair which is a major 

factor in determining the nature of these tensors, as we have noted in previous work.10 

If the PbS2P type environment of site of 2 is then examined, one can see that the 

bond angles are similar to those of the PbS3 site of 1; in essence, the difference between 

the two sites is a phosphorous atom in place of a sulfur atom within the coordination 

sphere of the Pb centre in 2. This relatively minor change results in drastically different 

Q. and K values (Table 3.1), with Q increasing significantly and K taking on an 

intermediate value, relative to the other Pb compounds. The next Pb environment to 

consider is the PbS2P2 site of 4. The major difference between this site and the PbS2P site 

of 2 is the difference in coordination number (the extra P ligand in the site of 4 makes it 

four coordinate). The Q. value for the PbS2P2 site of 4 is reduced by a great deal 

compared to the PbS2P site of 2, which may be related to the fact that the Pb-S bonds in 

the four coordinate site of 4 are dative bonds. The lone pair is not stereochemically 

active due to the local geometry of the Pb atom in this site. The smaller span associated 

with this site arises from the absence of the large paramagnetic deshielding terms 

associated with high jp-character of the lone pair. This is distinct from the other sites 

where these deshielding terms give rise to large spans and serve to orient o33 near or 

along the stereochemically active lone pairs. The final site is the PbS2N2 site of 3, which 

exhibits a relatively large Q. value relative to the aforementioned Pb environments, and a 

K value near zero. The PbS2N2 environment has an unusual geometry, and undoubtedly 

has closely spaced occupied and virtual molecular orbitals which are induced to mix by 

the external magnetic field, thereby producing the large span (a full discussion of this is 
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beyond the scope of the current work). The skew is easier to rationalize: each of the CS 

tensor components are completely different from one another, meaning they are directed 

into distinct electronic environments, consistent with the asymmetric nature of this site. 

Though there are no clear general trends regarding the Q values, PbS3-type environments 

tend to have CS tensors which are close to being axially symmetric, whereas the PbS2P, 

PbS2P2 and PbS2N2 sites each have CS tensors with three distinct tensor components, in 

line with their local symmetries. 

3.4 Conclusions 

207Pb SSNMR experiments have been successfully carried out on compounds 1-4 

using both the CP/CPMG and WURST-CPMG pulse sequences. The sensitivity of 207Pb 

SSNMR as a probe of molecular structure is evident, as the resulting 207Pb SSNMR 

spectra differ greatly with small changes in the coordination environment of the Pb 

centre. The CP/CPMG pulse sequence allows for these spectra to be readily acquired in a 

piecewise fashion, though employment of the WURST-CPMG sequence allows for each 

of the spectra to be acquired in a single experiment. Theoretical investigations with ADF 

and ZORA agree reasonably well with experimental data, and aid in spectral assignment 

in cases where overlapping patterns of multiple sites exist. Such calculations also allow 

for the determination of NS tensor orientations, which correlate spectral parameters to the 

molecular structure. These NS tensor orientations, and the magnitude of the associated 

NS parameters, are highly dependent upon the coordination environment of the Pb centre; 

varying the number, and nature, of coordinating ligands has a profound impact on these 
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parameters, and by extension, the spectral appearance. Smaller variations in coordination 

environment, such as varying bond distance and bond angle, have a lesser effect, though 

such subtle variations still alter the NS parameters. Consequently, we believe that the use 

of these two pulse sequences for signal enhancement, in combination with DFT 

calculations of nuclear shielding properties, will allow for many Pb-containing materials 

to be studied using 207Pb SSNMR. We are hopeful that this work inspires further research 

in this area, and aids others in shedding new light on the nature of lead-containing 

materials. 
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Chapter 4 

Solid-state NMR Investigations of Metal Guanidinates 

4.1 Introduction 

Recently, the synthesis of a series of group 13 amidinates (i.e. containing a 

bidentate N-C-N ligand) (Scheme 1) was reported.1"3 Similar group 13 amidinates have 

shown promise in several applications, including catalysis,4 C-H bond activation5 and as 

precursors in chemical vapour deposition.1,6 These molecules offer a wide variety of 

unique coordination environments, including four-, five- and six-coordinate metal centres 

with several different coordinating ligands. Though all of the molecules in the series 

NMe2 

N M N N Al N 
\ 

1 

Me2N I ^NMe2 Me2N , f "NMe2 

M = Al, Ga X = CI, NMe2 
Scheme 1 

discussed herein can be recrystallized to produce high quality crystals suitable for 

structural characterization by single-crystal X-ray diffraction, it is unlikely that these 

same molecules (or other molecules with similar structural motifs) will be amenable to 
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such characterization when used in the applications described above; hence, it is very 

useful to gain an understanding of the relationships between these well-characterized 

structures and NMR parameters which can be obtained through a variety of solid-state 

NMR (SSNMR) experiments. 

27A1 solid-state NMR spectroscopy is widely used for the structural 

characterization of a wide variety of aluminum-containing materials,7'8 such as glasses,9 

minerals,10 microporous materials such as zeolites" and aluminophosphates,12 and to a 

much lesser extent, molecular compounds.13"17 27A1, which is a quadrupolar nucleus with 

a nuclear spin of 5/2, is favourable for SSNMR experimentation, owing to its 100% 

natural abundance, moderate quadrupole moment (14.66 x 10~28 m2) and relatively high 

gyromagnetic ratio (6.97 x 107 rad T 's~').18 It is well known that 27A1 SSNMR spectra 

are extremely sensitive to structural differences between aluminum environments: for 

instance, it is easy to distinguish between four-, five- and six-coordinate Al sites on the 

basis of their chemical shifts. However, there is often little variation between the 

isotropic chemical shifts of aluminum centres with the same coordination number. 

In addition to information on the isotropic chemical shift, 27A1 SSNMR allows for 

the measurement of electric field gradient (EFG) and chemical shift (CS) tensor 

parameters, which is useful for distinguishing between compounds exhibiting similar 

chemical shifts. The quadrupolar interaction, which is the interaction between a nuclear 

spin with a non-zero quadrupole moment, and the local EFGs, can be probed directly 

with 27A1 SSNMR spectroscopy, allowing one to explore the ground-state electronic 

structure, symmetry and bonding at each Al site. 
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Though not employed as extensively as 27A1 SSNMR, 71Ga SSNMR has also 

been used to study various materials,19 including gallium oxides,20 zeolites,21 molecular 

sieves22 and coordination complexes.23 71Ga has a moderately high gyromagnetic ratio 

(8.18 x 107 rad T"'s"'), moderate quadrupole moment (10.7 * 10"28 m2), and moderate 

natural abundance (39.89%) which make it suitable for SSNMR experiments. However, 

71Ga SSNMR experiments can be challenging to perform as the resulting spectra are often 

very broad, owing to the fact that 71Ga is a spin-3/2 quadrupole.19 

Herein we examine a series of guanidinate (guan = Me2N-C(N'Pr)2) compounds 

with 27A1 SSNMR spectroscopy, including Al(guan)3, Al(guan)2Cl and Al(guan)2NMe2, 

in order to determine whether they can be differentiated on the basis of their EFG and CS 

tensor parameters. 7,Ga SSNMR experiments are also performed on Ga(guan)3 in order 

to examine the alteration of the metal EFG tensor parameters resulting from this much 

heavier metal element. Two field strengths, 9.4 T and 21.1 T, are employed to ensure the 

accuracy of the EFG and CS tensor parameters which are extracted. Ab initio 

calculations of EFG and nuclear shielding (NS) tensors have also been conducted to 

ascertain their effectiveness at predicting the experimentally obtained parameters, and to 

determine the orientations of these tensors within the molecular frames. 
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4.2 Experimental Details 

All guanidinate compounds were provided by Dr. Sean T. Barry and Julie 

Delahunt at Carleton university, and were prepared as described elsewhere.1 

A1(N03)3-9H20 and Ga(N03)xH20 were purchased from Aldrich and used without 

further purification. Samples were powdered under an inert dinitrogen atmosphere, and 

tightly packed into 4 mm (o.d.) zirconium oxide rotors. 

Solid-state NMR experiments were performed using a Varian InfinityPlus NMR 

spectrometer equipped with an Oxford 9.4 T (v0('H) = 400 MHz) wide-bore magnet at the 

University of Windsor operating at v0(
27Al) = 104.16 MHz and v0(

71Ga) = 121.89 MHz, or 

at the National Ultra-high Field Facility for Solids (www.nmr900.ca) in Ottawa, ON, on a 

Bruker Avance II NMR spectrometer equipped with a Bruker 21.15 T (v0('H) = 900 

MHz) magnet operating at v0(
27Al) = 234.53 MHz and v0(

71Ga) = 274.49 MHz. 

Experiments conducted at 9.4 T were carried out using a Varian/Chemagnetics 4 mm 

HXY triple-resonance probe or a Varian/Chemagnetics 4 mm HX double-resonance 

probe. Experiments performed at 21.1 T employed a Bruker 4 mm double resonance 

probe. 27A1 NMR chemical shifts are reported with respect to a 1.0 M aqueous solution 

of A1(N03)3-9H20 (5is0 = 0.0 ppm). A 1.0 M aqueous solution of Ga(N03)3-xH20 (5iS0 = 

0.0 ppm) was used as a reference for all 71Ga SSNMR experiments. 

The standard Hahn-echo pulse sequence ((rc/2)x - T, - (7i)y - x2 - acq) was employed 

for the acquisition of all spectra at 9.4 T, where x, and x2 represent short delays (i.e., 20 to 

100 ^is). nil pulse powers of ca. 4-27 kHz were used for 27A1 NMR experiments, and of 

ca. 34 kHz for the 71Ga NMR experiment. A sequence of the form ((TI/2)X - x, - (7i/2)y - x2 
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- acq) was employed at 21.1 T, with ca. 42 kHz and ca. 80 kHz nil pulses for 27A1 and 

71Ga experiments, respectively. Further experimental details can be found in Appendix C 

(Tables CI and C2), The TPPM decoupling scheme24 was employed in the acquisition of 

all SSNMR spectra. Analytical simulations of all spectra were carried out using the 

WSolids Simulation package,25 and NUTS (Acorn NMR) was used for all spectral 

processing. EFG shield26 was employed to calculate EFG and NS tensor parameters 

using the formulae given in Table 4.1. 

Ab initio calculations were performed using Gaussian 0327 operating on a dual-

733 MHz Pentium III Dell Precision 420 workstation, a dual-2.0 GHz Xenon Dell 

Precision 650 workstation, or the Shared Hierarchical Academic Research Computing 

Network (SHARCNET). The restricted Hartree-Fock (RHF) and hybrid density 

functional (B3LYP)16'20'28 methodologies were used, with the (6-311G**) and (6-31G**) 

basis sets employed on all Al, Ga and N atoms. The aug-cc-pVDZ-6-31 lg basis set was 

employed on the CI atom of Al(guan)2Cl. The (3-21G**) basis set was used on all other 

atoms present in the molecules in an effort to reduce computational expense, and protons 

were placed in idealized positions based on known literature values. Predicted isotropic 

chemical shifts were determined using 8 = aref - asamp,e and are given with respect to 

A1(H20)6
3+ (8iso = 0.0 ppm); the isotropic shielding of the cation was calculated with each 

method and basis set employed. 
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4.3 Results and Discussion 

4.3.1. 27A1 and 71Ga Solid-state NMR Spectroscopy 

The compounds studied in this work comprise an interesting series of structural 

motifs arising from coordination of guanidinate ligands, with various metal coordination 

environments and coordinating ligands. It is well known that 27A1 NMR can be used to 

differentiate between four-, five- and six-coordinate aluminum environments based on 

chemical shifts; however, chemical shift differentiation between different aluminum 

compounds containing the same number of coordinating ligands is more difficult. Such 

compounds, though superficially similar in symmetry and coordination number, have 

drastically different CS and EFG tensor parameters, due to the nature of the coordinating 

ligands. In this section, we describe the use of 27A1 and 71Ga SSNMR experiments for the 

extraction of CS and EFG tensor parameters, as well as the first principles calculation of 

the NMR interaction tensor components and their orientation in the molecular frames. 

In many instances, determination of accurate CS and EFG tensor parameters from 

the central transition second-order quadrupolar NMR patterns can be challenging. The 

chemical shielding anisotropy (CSA) and quadrupolar interaction (QI) manifest 

themselves in very distinct manners in such patterns, depending upon their relative 

magnitude, as well as the relative orientation of their interaction tensors.29'30 The tensor 

orientations with respect to the molecular frames are only experimentally obtainable from 

NMR experiments on single crystals or oriented samples; fortunately, these orientations 

can often be inferred from local symmetry and structure, and predicted with great 

accuracy by theoretical calculations. 
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For microcrystalline powder samples, several techniques are commonly employed 

to distinguish between the contributions of the CSA and QI to the central transition 

spectrum. In this work, magic-angle spinning (MAS) NMR spectroscopy was employed 

in tandem with standard Hahn-echo NMR experiments on stationary samples (i.e., static 

NMR experiments). By rapidly spinning the sample about an axis oriented at 54.74° 

with respect to the static magnetic field, it is possible to average the effects of CSA, 

provided that the spinning rate, vrot (in Hz), is greater than the span, Q. = 5,, - 833 (in Hz), 

of the pattern. Since MAS only partially averages the orientation dependence of the 

second-order quadrupolar interaction, clear discontinuities and shoulders are observed in 

the MAS NMR pattern which can easily be simulated to yield the quadrupolar 

parameters, CQ and r|Q, as well as the isotropic chemical shift, 8iso. In practice, for MAS 

NMR of half-integer quadrupoles, it is only necessary to spin fast enough to ensure that 

the spinning sidebands are well separated from the isotropic pattern, in order to ensure 

that the positions of the discontinuities and shoulders can be determined with accuracy. 

The anisotropic CS tensor parameters, Q. and K, and the Euler angles which describe the 

relative orientation of the EFG and CS tensors can then be determined from spectra 

obtained under static conditions. In this section, the 27A1 SSNMR spectra of Al(guan)3, 

Al(guan)2NMe2, and Al(guan)2Cl, as well as the 71Ga SSNMR spectrum of Ga(guan)3 are 

presented, and their NMR interaction tensor parameters discussed in the context of 

molecular systems that have been similarly characterized in previous studies. A 

summary of the NMR parameters is presented in Table 4.1. 

107 



Table 4.1. Experimental and theoretical 27A1 and 71Ga EFG and CS tensor parameters." 

Al(guan)3 

RHF/631G** 

RHF/6-311G** 

B3LYP/6-31G** 

B3LYP/6-311G** 

Ga(guan)3 

RHF/6-31G** 

RHF/6-311G** 

B3LYP/6-31G** 

B3LYP/6-311G** 

Al(guan)2Cl 

RHF/6-31G** 

RHF/6-311G** 

B3LYP/6-31G** 

B3LYP/6-311G** 

AI(guan)2NMe2 

RHF/6-31G** 

RHF/6-311G** 

B3LYP/6-31G** 

B3LYP/6-311G** 

r b 

(MHz) 

3.3(2) 

3.8 

2.7 

2.9 

2.4 

8.6(2) 

-16.8 

5.5 

-20.7 

4.1 

7.5(2) 

-6.8 

-7.2 

-5.8 

-6.7 

14.3(5) 

-9.9 

-11.3 

-8.9 

-10.1 

V 

0.00(2) 

0.01 

0.03 

0.03 

0.04 

0.02(2) 

0.01 

0.06 

0.01 

0.09 

0.10(2) 

0.24 

0.10 

0.10 

0.14 

0.45(6) 

0.65 

0.52 

0.50 

0.50 

&iK
d 

(ppm) 

15.7(1) 

-1.0 

-9.8 

46.5 

60.1 

17.5(1) 

58.5(1) 

36.9 

34.4 

90.7 

110.9 

75(10) 

37.1 

35.7 

92.0 

109.4 

ft' 

(ppm) 

19(7) 

15 

15 

12 

14 

77(3) 

64 

61 

69 

59 

85(10) 

56 

72 

63 

88 

190(30) 

80 

103 

84 

111 

K? 

-0.6 (1) 

-0.88 

-0.82 

-0.56 

-0.71 

-0.95 (10) 

-0.63 

-0.91 

-0.60 

-0.81 

-0.75(10) 

-0.94 

-0.88 

-0.82 

-0.69 

0.25(15) 

-0.03 

-0.07 

-0.06 

-0.08 

a« 

C) 
50(5) 

114 

81 

144 

45 

105(2) 

28 

92 

31 

106 

42(10) 

179 

144 

48 

64 

40(15) 

32 

49 

39 

60 

P 

C) 
90(2) 

88 

87 

87 

78 

90(2) 

83 

90 

83 

90 

73(10) 

78 

84 

88 

88 

0(3) 

1 

2 

2 

3 

Y 

C) 
170(10) 

3 

3 

8 

178 

0(2) 

187 

178 

188 

176 

139(10) 

49 

42 

137 

144 

300(15) 

284 

276 

284 

274 

" Experimental values are given in boldface. Values in parentheses denote the uncertainty in the last digit. 
The principal components of the chemical shift tensor are defined as 8n > 822 z 833, where 5,, and 833 are 
oriented along the directions of lowest and highest shielding, respectively. The principal components of 
the EFG shielding tensor are defined as |V n | < |V22| £ |V33| 
4 CQ = (eQV33/h) where 0(27A1) = 14.660 fm2, g(71Ga) = 10.700 fm2, e = 1.602176487 x 10"19 C, h = 
6.62606896 x 10"34Js. 
C 1 Q = ( V „ - V 2 2 ) / V 3 3 
d Ko = (8„ + 522 + 533)/3. Values are with respect to A1(N03)3-9H20 (8iso = 0.0 ppm) or Ga(N03)3-jcH20 (8iS0 

= 0.0 ppm). Theoretical values are with respect to the aluminum hexahydrate ion and calculated using 8iso = 
°ref ~ °"iso-
eCl = (5,, - 833). Based upon simulations of static spectra. 
fK = 3(822 - Siso)/Q, -1.0 < K < 1.0. Based upon simulations of static spectra. 
g The convention employed for Euler angle determination is summarized elsewhere. 
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~i r 
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Figure 4.1: (A) 27A1 MAS and (B) 27A1 static SSNMR spectra of Al(guan)3 acquired at 
9.4 T (top) and 21.1 T (bottom), with analytical simulations. 

The 27A1 MAS and static NMR spectra of Al(guan)3 acquired at 9.4 T and 21.1 T 

are shown in Figure 4.1. The aluminum centre is in a six-coordinate environment where 

the three bidentate ligands give rise to a threefold rotational axis. All four spectra 

indicate that a single Al site is present. Simulations of the MAS NMR spectra acquired 

at both fields yield CQ = 3.3 MHz and r|Q = 0.0. The small CQ is typical of aluminum 

complexes with a relatively undistorted six-coordinate environment, and reflects the high 

degree of spherical symmetry in the electronic ground state of the molecule. The nQ 

indicates that V33 is the unique component of the axially symmetric EFG tensor (i.e., Vu 

= V22). Analysis of the CS tensor parameters yield Q. - 19 ppm and K = -0.6, which 

indicates that 5n is the distinct component of the CS tensor. Principal components of the 
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EFG and CS tensors can point any direction with respect to the molecular frame; 

however, their directions will be governed by local symmetry and structure. In cases of 

symmetry higher than C, or even in instances of high "pseudo-symmetry", the 

orientations of the principal components are constrained in or directed by symmetry 

elements. Consequently, it is likely that one of the unique/distinct principal components 

of both tensors is aligned along or near the threefold rotational axis. The Euler angles are 

consistent with these predictions; in particular, the Euler angle p = 90° indicates the 

proximity of the V33 and 8,, components. 

Previous studies have also examined six-coordinate aluminum centres via 27A1 

SSNMR, including Al(acac)3, Al(trop)3 and A1(TMHD)3,
13 where acac = acetylacetonate, 

trop = tropolonato, and TMHD = 2,2,6,6-tetramethyl-3,5-heptanedione (see Table 4.2). 

Though the aluminum sites in each of these compounds are coordinated by six oxygen 

atoms (rather than six nitrogens, as is the case here), the EFG tensor parameters of these 

systems and Al(guan)3 are similar, suggesting that the coordination number may be of 

greater importance to the magnitude of the CQ than the nature of the coordinating ligand. 

The CQ of Al(guan)3 falls between those of Al(acac)3, A1(TMHD)3 and Al(trop)3 (CQ = 

3.03, 3.23 and 4.43 MHz, respectively), indicating that the aluminum centre has a similar 

local environment to these species. The crystal structures of Al(acac)3 and Al(trop)3 are 

known, and possess distorted octahedral environments; A1(TMHD)3, whose structure is 

unknown, is undoubtedly in this category as well. Since Al(guan)3 possesses a C3 

rotational axis, the nQ is equal to zero. The values of nQ for Al(acac)3, A1(TMHD)3 and 

Al(trop)3 are all close to (but not exactly) zero, since they possess pseudo-threefold 
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rotational axes; based on these symmetries, the Vi3 in each case is predicted to be 

oriented along or near these axes. 

Table 4.2. 27A1 EFG Parameters of previously reported compounds 

Compound 

Al(acac)3 

Al(trop)3 

A1(TMHD)3 

[Me2-Al(u-OTHF)]2 

[Et2-Al(u-OTHF)]2 

AlNcCl" 

AlPc(SPh)4Cla 

AlPcCl" 

Al(CH3)(7-azain)2(7-

Al(7-azain)3(7-azain 

azain 

•H) 

-H) 

Al(7-az)(7-azH)(OCH(CF3)2)2 

AlMes3 

A1(NTMS2)3 

AlMe3
6 

A1C1/ 

C0 (MHz) 

3.03 

4.43 

3.23 

19.9 

19.6 

5.4-9.8 

5.4-10.0 

5.4-9.8 

13.75 

3.65 

1.30 

48.2 

36.3 

48.25 

28.29 

no 
0.15 

0.08 

0.10 

0.98 

0.97 

0.10-0.50 

0.10-0.50 

0.10-0.50 

0.44 

1.0 

1.0 

0.00 

0.00 

0.0 

0.0 

Coord.c 

6 

6 

6 

5 

5 

5 

5 

5 

4 

4 

4 

3 

3 

3 

3 

ref. 
13 

13 

13 

16 

16 

17 

17 

17 

14 

14 

14 

16 

16 

16 

16 

" Multiple aluminum sites were reported, hence a range of EFG tensor parameters are reported. 
b Based on theoretical calculations. 
c Denotes the aluminum coordination number. 
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Figure 4.2: (A)7lGa MAS SSNMR spectrum of Ga(guan)3 acquired at 21.1 T. (B) 7lGa 
static SSNMR spectra of Ga(guan)3 acquired at 9.4 T (top) and 21.1 T (bottom), with 
analytical simulations. 

Figure 4.2 shows the static 71Ga SSNMR spectra of Ga(guan)3 acquired at 9.4 T 

and 21.1 T, and the 71Ga 18 kHz MAS SSNMR spectrum acquired at 21.1 T. As with 

Al(guan)3, the metal centre of Ga(guan)3 is in a six-coordinate environment and has C3 

symmetry. The three 71Ga SSNMR spectra indicate that a single Ga site is present. At 

first sight, the spectrum acquired at 9.4 T using a 90-180 echo sequence appears to 

indicate that an impurity may be present, due to the distortion or "bump" in the centre of 

the CT pattern at ca. -227 ppm. However, no distortions are observed in either the MAS 

or static powder patterns acquired using a 90-90 echo sequence at 21.1 T (we note that 

the 9.4 T spectrum was obtained first), so we discount this as a possibility. It is possible 
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that the "bump" in the 9.4 T spectrum is an artefact arising from non-uniform or 

incomplete excitation of the static pattern (possibly resulting from an imperfect 

refocusing 7i-pulse), or non-uniform nutation of the magnetization corresponding to 

crystallites with different orientations.31 

The static 71Ga powder pattern of Ga(guan)3 is clearly much broader (ca. 80 kHz 

broad at 9.4 T, and ca. 34 kHz broad at 21.1 T) than the 27A1 SSNMR spectrum of its 

aluminum counterpart (ca. 5 kHz broad at 9.4 T, and ca. 6 kHz broad at 2LIT). This is 

due to the higher CQ (8.5 MHz) of 71Ga, which results from the much larger V33 value in 

the Ga compound (VJ3 = -0.342) than in the Al compound (V33 = -0.095). The V33 is 

smaller in the latter since the Al centre is in an environment of higher spherical 

symmetry: all six Al-N bonds are 2.024 A, whereas the gallium species has three Ga-N 

bonds which are 2.084 A, and three which are 2.096 A. The 7lGa pattern is also much 

broader because of its spin (/= 3/2); the CT patterns of spin-3/2 nuclides are 

considerably broader than those of spin-5/2 nuclei, as the breadth of a second-order 

quadrupolar powder pattern is given by:8 

A = —¥- • Cj , where v = 
v0 2n 

where C, is a scaling factor, which is 3/64 for spin-3/2 nuclei and 9/800 for spin-5/2 

nuclei. As in the case of the Al(guan)3, the value of r)Q for Ga(guan)3, T|Q = 0.02, 

indicates that the EFG tensor is of high axial symmetry, and that F33 is the unique 

component. The gallium CSA in Ga(guan)3 is significantly larger than that of the Al 
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species (Q. = 77 and 19 ppm, respectively). Moving down a group of the periodic table, 

the valence orbitals of the nuclei become larger and more polarizable. Since the 

chemical shift is dependent upon the circulation of electrons within the ground state 

molecular orbitals (MO's), and symmetry-allowed magnetically induced mixing of 

occupied and virtual MO's which are close in energy, it is generally observed that the 

chemical shift range (and hence, the magnitude of the CSA) of a particular nucleus 

increases as one moves from the top of a group to the bottom.32 Consequently, the 

observation of the larger gallium CSA is unsurprising, given the structural similarity of 

these systems. The skew (K = -0.95) indicates a highly axially symmetric gallium CS 

tensor; this, combined with the Euler angles, strongly suggest co-alignment of the V3J and 

8,, components. 

A 

B 0 = 9 . 4 T 

J^J 
urol = 10 kHz 

200 100 -100 -200 

30 20 -10 -20 

B0 = 21.1 T i)rot = 10 kHz 

80 70 60 50 40 30 ppm 

20 18 16 14 12 10 8 6 kHz 

200 150 100 

40 30 20 10 -10 -20 kHz 

Figure 4.3: (A)27A1 MAS and (B) 27A1 static SSNMR spectra of Al(guan)2Cl 
acquired at 9.4 T (top) and 21.1 T (bottom), with analytical simulations. 

Al(guan)2Cl has a single, five-coordinate aluminum site, and its MAS and static 
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27A1NMR spectra acquired at 21.1 T and 9.4 T are shown in Figure 4.3. Again, the 

spectra might seem to indicate that an impurity is present, as there is a slight "bump" on 

the low-frequency side of the high-frequency discontinuity of the MAS spectrum 

acquired at 21.1 T, and a noticeable "peak" at ca. -35 ppm in the static spectrum 

acquired at 9.4 T. Simulations of the MAS NMR powder patterns yield a CQ of 7.5 MHz, 

which is greater than that of the six-coordinate Al(guan)3, but similar to values reported 

for a series of aluminum dyes with an A1N4C1 environment.17 The nQ = 0.1, which 

indicates a high degree of axial symmetry for the EFG tensor; however, Vn and V22 are 

slightly different from one another. Simulations of the static 27A1 SSNMR spectra yield 

Q = 85 ppm and K = -0.75. The span is significantly larger than that of Al(guan)3, but the 

skew is similar. The large CQ in Al(guan)2Cl with respect to that in Al(guan)3 largely 

stems from the non-spherical environment in the former. The Al(guan)2Cl has a pseudo 

two-fold rotational axis containing the lone Al-Cl bond, along which V33 is likely 

directed. The non-zero r\Q value is consistent with the two-fold rotational axis as well. 

The K = -0.75 identifies 5n as the distinct component of the CS tensor, which might 

suggest that it is oriented along or near the two-fold rotational axis; however, the Euler 

angles indicate otherwise, placing V33 and 522 in close proximity. This will be discussed 

further in the computational section below. 

Figure 4.4 depicts the 27A1 NMR spectrum of Al(guan)2NMe2 another five-

coordinate aluminum species, acquired at 9.4 T (unfortunately, no spectra could be 

acquired at 21.1 T due to decomposition of the sample in transit from Windsor to 

Ottawa). The molecular structure is similar to that of Al(guan)2Cl, with a pseudo-twofold 
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Figure 4.4: Bottom trace: 27A1 static SSNMR spectrum of Al(guan)2NMe2 acquired at 9.4 
T. Middle trace: Analytical simulation including CSA. Top Trace: Analytical simulation 
without CSA included. Note: * denotes impurity. 

rotational axis directed along the Al-NMe2 bond. A notable feature of the static 27A1 

SSNMR spectrum is the sharp, intense peak at ca. 0 ppm, which indicates the presence of 

an impurity in this case. Also notable is the breadth of the powder pattern, ca. 100 kHz, 

which is significantly greater than any of the previously discussed aluminum compounds. 

Analytical simulation of the spectrum yields CQ = 14.3 MHz and r|Q = 0.45; however, due 

to the breadth of the static spectrum, an MAS experiment could not be employed to refine 

these EFG tensor parameters, since there is considerable overlap between the isotropic 

pattern and the spinning sidebands (data not shown). The large quadrupolar coupling 

constant indicates that the ground state electronic environment at the aluminum site is of 

very reduced spherical symmetry compared to that of Al(guan)2Cl, and the value of nQ 

indicates that all three tensor parameters are distinct from one another. CS tensor 
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parameters of Q. = 190 ppm and K = 0.25 were obtained from simulation of the 9.4 T 

spectrum; the lack of static spectra at two fields casts some doubt on the size of this span, 

since it would be significantly larger than the largest known 27A1 span measured by solid-

state NMR to date, Q. = 120 ppm, observed for a five-coordinate AlNcCl species.17 

Coupled with the absence of ultra-high field data, the impurity peak renders increasingly 

accurate determination of CS tensor parameters difficult; nonetheless, a relatively 

accurate measurement of CQ has been made, since the pattern is dominated by the 

quadrupolar interaction (Figure 4.4). 

It is clear from this study of molecular Al-species and the work of others (on both 

molecular and periodic solids) that six-coordinate (and four-coordinate) metal 

environments must have smaller CQ values than five-coordinate environments, owing 

largely to the high spherical symmetry of the former. But what of comparing the variety 

of five- and three- coordinate environments with varying symmetries? Previously, our 

group acquired ultra- wideline (UW) 27A1 SSNMR spectra of three- and five-coordinate 

aluminum compounds.16 The five-coordinate species, [Me2-Al(u-OTHF)]2 and [Etj-Aldi-

OTHF)]2, have very large quadrupolar coupling constants of 19.9 MHz and 19.6 MHz, 

respectively (Table 4.2), dwarfing those of Al(guan)2Cl and Al(guan)2NMe2. The Al 

environments in these systems feature coordination of the Al by three O atoms (in a 

plane) and two C atoms (above and below the plane, at ca. 120° from the outer O 

atoms).16 On the other hand, Mroue et al. have reported values of CQ ranging between 

5.4 and 10 MHz for five-coordinate Al centres in phthalocyanine dyes (Table 4.2), where 

the Al atoms are coordinated equatorially by four N atoms and axially by a single CI 
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atom.17 Of these varying structural motifs, it would seem that the dyes have the least 

spherical symmetry about the Al atoms; yet, it is clearly the nature of the surrounding 

ligands and their bonding to the Al centre that determines the characteristics of the 27A1 

EFG tensors. Therefore, one must be careful in making generalizations about decreasing 

geometrical spherical symmetry and corresponding increases in CQ for systems having 

the same coordination number, but dissimilar atoms (and arrangements of atoms) in the 

first coordination sphere. 

In comparing two systems of superficially similar geometry like Al(guan)2NMe2 

and Al(guan)2Cl, it is possible to make some generalizations about the spherical 

symmetry of the ground electronic state at the Al site. For instance, in our group's 

investigation of three-coordinate Al environments, it was observed that two compounds 

with similar planar threefold geometries in the first coordination sphere, AlMes3 and 

A1(NTMS2)3 (Mes = mesityl, NTMS = bis(trimethylsilyl)amino), that the values of CQ are 

very different, 48.2 and 36.3 MHz, respectively (Table 4.2).16 Similarly, CQ values of 

48.75 and 28.29 MHz have been calculated for trigonal planar AlMe3 and A1C13 

molecules, respectively, in the gas phase.33'34 Detailed RHF and B3LYP calculations,16 as 

well as a recently published NLMO analysis of the EFG tensor contributions,35 show that 

a complex interplay of contributions to the EFG tensor from o-bonding, 71-bonding (in the 

case of CI and N atoms) and Al core electrons gives rise to different magnitudes of V33 

along the threefold rotational axes of these molecules. It was found that the F33 decreases 

as the bond length increases, and as there is back donation from the rc-orbitals of the 

ligand into the empty 2>p AO of the aluminum atom. In comparing Al(guan)2NMe2 and 
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Al(guan)2Cl, something similar is clearly at work, with a decrease in CQ for the latter 

compound, where the longest covalent bond and highest degree of back-bonding. A 

detailed theoretical treatment of these systems is currently underway. 

Further, the presence of Al-C bonds is seen to result in significant increases in the 

CQ(27A1) with respect to systems with just Al-O, Al-N and/or Al-Cl bonds.21'22 For 

instance, one study, which reported 27A1 NMR data for distorted tetrahedral aluminum 

azaindole species, found that CQ = 13.75 MHz for Al(CH3)(7-azain)2(7-azain-H). Given 

that the local geometry appears to be spherically symmetric, this CQ is quite large, 

especially when compared to similar complexes with A1N4 and A1N402 environments, 

which exhibited CQ's of 3.65 MHz and 1.30 MHz respectively.14 

Hence, it is clearly not simple geometric spherical symmetry that influences the 

character of the EFG tensor; rather, it is the spherical symmetry of the electronic ground 

state, which is depend upon the nature of the metal, surrounding ligands and modes of 

bonding. 

4.3.2 Ab initio Calculations of Nuclear Shielding and Electric Field Gradient 
Tensor Parameters 

Ab initio calculations aid in correlating the NMR parameters observed 

experimentally with molecular structure. To this end, the Gaussian 03 program suite was 

employed to investigate the origins of the NMR interaction tensors observed in the 

guanidinate complexes. Select methods and basis sets were chosen based on previous 

studies of aluminum-containing materials by our research group.16 

The theoretically predicted 27A1NS and EFG tensor parameters generally agree 
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well with those obtained experimentally (Table 4.1). Of all the method/basis set 

combinations, RHF/6-311G** yielded the values that most closely match those observed 

experimentally. The B3LYP method is the best predictor of nQ, with both basis sets 

providing values that match reasonably well with experiment. The isotropic shifts are 

consistently underestimated by RHF and overestimated by B3LYP, and the span is 

generally best predicted by B3LYP/6-311G**. The skew values generally match very 

well with experimental data, with the 6-311G** basis set providing the best results. The 

theoretically predicted 71Ga NS and EFG tensor parameters of Ga(guan)3 are generally 

not as accurate as those of the aluminum compounds, though still provide a reasonable 

estimate of what to expect experimentally. 

In surveying the summary of the calculations presented in Table 4.1, there are 

some general features that must be discussed. Regardless of the method/basis set 

employed, the theoretically predicted EFG and NS tensor parameters of Al(guan)3 and 

Al(guan)2Cl agree well with those obtained experimentally. Though the sign of the CQ 

cannot be determined experimentally, the calculations predict a positive CQ for the 

former, but a negative value for the latter. The positive F33 in Al(guan)3 is consistent 

with its orientation into a region of low electron density (i.e., along the threefold 

rotational axis), and the negative F33 in Al(guan)2Cl is consistent with its orientation 

along the Al-Cl bond into a region of high electron density (see also the discussion of NS 

tensor orientations below).35 In the case of Ga(guan)3, V33 is aligned in a similar manner 

to that of Al(guan)3, and hence, a positive CQ is expected. Of the theoretically predicted 

CQ'S, only those carried out with the 6-311G** basis yet yield a CQ with a positive sign. 
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This result, combined with the generally poor correlation of predicted and experimental 

parameters, indicates that the 6-31G** basis set is unsuitable for use in this instance. 

Calculations with larger all-electron basis sets on Ga are currently underway. Finally, the 

tensor parameters predicted for Al(guan)2NMe2, are not in very good agreement with 

experiment. The EFG tensor parameters are calculated reasonably well (notably, the 

values of nQ), but the spans are consistently predicted to be about half the magnitude of 

the experimentally measured values. Given the reliability of calculated NMR interaction 

tensor parameters for the first three rows of the periodic table, these results cast further 

doubt upon the veracity of the experimentally determined parameters. This reiterates the 

need for reacquisition of experimental data at 9.4 T, and acquisition of new spectra at 

21.1 T, for a freshly synthesized batch of Al(guan)2NMe2. 

4.3.3 Nuclear Shielding (NS) and Electric Field Gradient (EFG) Tensor 
Orientations 

Prediction of the NS and EFG tensor orientations within the molecular frame via 

first principles calculations aids in connecting the molecular geometry with the SSNMR 

powder pattern and related parameters. In an effort to gain insight into the origins of the 

NMR interactions responsible for the characteristic appearance of each powder pattern 

acquired in this work, these tensor orientations have been calculated and examined 

(Figure 4.5). 
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Figure 4.5. NS (top) and EFG (bottom) tensor orientations of (A) Al(guan)3, (B) 
Ga(guan)3, (C) Al(guan)2Cl and (D) Al(guan)2NMe2. 

For Al(guan)3, both the 27A1 NS and EFG tensors are oriented such that the unique 

components (a,, and V33, respectively) are aligned along a threefold rotation axis, as 

predicted from our experimental results. Similarly, Ga(guan)3, which has a similar 

coordination geometry to Al(guan)3, has au and V33 (the unique components of its NS 

and EFG tensors) directed along its threefold rotation axis. The precise orientations of 

Vu and V22 are not of great importance, since nQ = 0 and the EFG tensor is axially 

symmetric about the threefold axis. The distinct components of the NS and EFG tensors 

of Al(guan)2Cl are aligned in different directions: o33 is aligned in the direction of the CI 

ligand, as predicted, which is along the pseudo two-fold rotation axis of the molecule. 

V3J is aligned perpendicular to the Al-Cl bond, with V22 oriented at an angle of ca. 27° 

from the Al-Cl bond, which was unexpected; it was believed that F33 would be aligned 
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along the Al-Cl bond. For Al(guan)2NMe2, a33 is the unique component of the NS tensor, 

and as predicted, is aligned along the Al-NMe2 bond in a similar fashion to that in 

Al(guan)2Cl. Interestingly, F33, is also aligned along this direction, which is distinct from 

the case for Al(guan)2Cl; clearly, the nature of the Al-NMe2 and Al-Cl bonding in these 

complexes is very different. We are currently conducting an NLMO analysis of the 

molecular orbitals that contribute to the EFG tensors, so further discussion of this is 

beyond the scope of this study. 

4.4 Conclusions 

27A1 SSNMR spectroscopy has been successfully applied to determine the CS and 

EFG tensor parameters of Al(guan)3, Al(guan)2Cl, and Al(guan)2NMe2 (though further 

work is needed on this latter complex). The use of multiple field strengths in spectral 

acquisition, especially the ultra-high 900 MHz field, aids in significantly improving the 

accuracy of the experimentally determined EFG and CS tensor parameters. Though CQ 

tends to increase with decreasing coordination number, we note that the nature of the 

ligands and their bonding in the first coordination sphere has a dramatic effect on the 

magnitude of the CQ, as evidenced by comparison of Al(guan)2Cl and Al(guan)2NMe2. 

Hence, unless the ligands are very similar between metal centres, generalized statements 

relating coordination number to CQ should be avoided. nQ varies significantly mong the 

different systems, and is a powerful indicator of different symmetry elements (i.e., nQ = 0 

indicates a threefold rotational axis, and intermediate values of nQ indicate the lack of 

rotational or pseudo-rotational axes). Though similar in structure to Al(guan)3, slight 
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differences in bond lengths and atomic positions give rise to a much larger F33 in 

Ga(guan)3, resulting in a larger CQ than that of Al(guan)3. 

The span tends to increase with decreasing coordination number; however, before 

a definitive conclusion can be drawn, the 27A1 SSNMR spectrum of Al(guan)2NMe2 must 

be reacquired at multiple field strengths; the experimentally determined span of 190 ppm 

represents the largest reported from a 27A1NMR experiment, casting doubt on our 

simulated parameters. Ga(guan)3 has a much larger span than that of Al(guan)3, owing to 

its larger, more polarizable orbitals and associated magnetic shielding effects. 

Aside from the isotropic chemical shifts, the 27A1 EFG and CS tensor parameters 

are predicted with reasonable accuracy by ab initio calculations. For Al(guan)2NMe2, the 

prediction of a span consistent with those measured in analogous Al systems leads us to 

believe that our experimental data requires reacquisition and reexamination. 

Theoretically predicted 71Ga tensor parameters are less successful, especially those 

calculated with the 6-31G** basis set, indicating that the use of larger basis sets is 

required. 

This preliminary account demonstrates the utility of SSNMR of half-integer 

quadrupolar metal nuclides for investigating the relationships between structure, 

symmetry and anisotropic NMR parameters, especially for distinguishing between 

structural environments which seem superficially analogous. Future work in this area 

will include further study of other compounds in the main group guanidinate series, such 

as the four-coordinate Al(guan)(NMe2)2 and analogous gallium species.1 Extending the 

current study to include transition metal guanidinates, we wish to conduct an 
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investigation of copper(I) guanidinate dimers,36 which have copper sites in nearly linear, 

two-coordinate environments. We will apply the specialized acquisition techniques and 

hardware utilized in our first two exploratory papers describing 65Cu ultra-wideline NMR 

of Cu(I) species in environments of low spherical symmetry.37'38 
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Chapter 5 

General Conclusions and Future Work 

The WURST-CPMG pulse sequence was found to be effective for acquiring UW 

SSNMR spectra of a wide variety of nuclei, offering increased excitation bandwidths, 

and often reducing experimental times in comparison to conventional experiments. 

Pulses generated with optimal control theory also prove effective, though further 

investigation into their use is required. The next step is a detailed investigation of the 

effectiveness of pulses generated with OCT at acquiring UW spectra of a broad array of 

nuclei. Owing to their effectiveness at low rf pulse strengths, the acquisition of SSNMR 

spectra of low-y nuclei (e.g., l07/109Ag, l5N, 57Fe, etc.) is of particular interest. 

Development of a CPMG-type train of these pulses would also be an interesting 

endeavour, though certainly not a trivial one. It would also be of great interest to utilize 

optimal control theory in the context of a double-resonance cross-polarization 

experiment, in order to obtain simultaneous signal enhancement and broad banded 

excitation from CP and shaped pulses, respectively. 

In Chapter 3,207Pb UW SSNMR was found to be a sensitive probe of local lead 

environments in a series of Pb(II) thiolates, with subtle differences in the lead 

coordination sphere resulting in significantly different CS tensor parameters. Further 

experimentation includes determination of the origin of the resonances observed in the 

31P SSNMR spectrum of [(2,6-Me2C6H3S)2Pb]3(dmpe), as well as the study of similar Pb 

(II) thiolates with 207Pb SSNMR to allow for the eventual characterization of materials 
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derived from related complexes. It would also be of great interest to utilize the 

experimental techniques and lead CS tensor data to investigate structural motifs such as 

these in a variety of different Pb complexes and Pb-containing materials. 

Chapter 4 reports the study of a series of guanidinate complexes with 27A1 and 

71Ga SSNMR. It was found that 27A1 and 71Ga SSNMR could be readily employed to 

distinguish between the various guanidinate species, with small differences in 

coordination environments being reflected by large changes in quadrupolar parameters. 

Since the NMR tensor parameters vary widely between the guanidinate complexes, more 

of these molecules must be studied to fully explore the trends associated with changing 

the metal centre coordination environment. Particularly, examination of four coordinate 

aluminum guanidinate species would complete a series of four-, five-, and six-coordinate 

guanidinates, allowing for broader conclusions to be drawn. A similar investigation of a 

complete series of gallium and copper guanidinates with 71Ga and 63/65Cu SSNMR, 

respectively, is also forthcoming. 

It has been demonstrated herein that SSNMR is an extremely sensitive probe of 

local nuclear environments, as small variations in the coordination environment are 

reflected in changing EFG and CS tensor parameters. Furthermore, the WURST-CPMG 

pulse sequence, the CP/CPMG pulse sequence and pulses generated with OCT have all 

been shown to be effective methods for acquiring UW SSNMR spectra. It is hoped that 

this work inspires further research in the area of UW SSNMR, leading to further 

advancements in acquisition techniques and the study of a broader array of materials. 
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Appendix A 

Supporting Information - New Methods for the 
Acquisition of Static CSA Patterns from Spin-1/2 Nuclides 

A.l. Supporting Experimental Information 

A.1.1. Experimental Parameters for SSNMR Experiments 

Table Al. Experimental parameters for WURST-CPMG NMR experiments 

SnQ Pb(QAc)2 Hg(QAc)2 K2PtCl4 

Number of transients per 
subspectrum 

Number of subspectra 

Experimental time (minutes) 

WURST sweep range (kHz) 

Recycle delay (s) 

Number of Meiboom-Gill Loops 

Acquisition points per echo 

Spikelet Separation (kHz) 

WURST pulse length (us) 

Proton decoupling power (kHz) 

WURST pulse power (kHz) 

Spectral width 

80 

1 

2.7 

2000 

2 

64 

200 

2.5 

50 

N/A 

30 

500 

248 

1 

28.9 

2000 

7 

75 

200 

2 

50 

0.25 

47 

400 

72 

1 

1740 

2000 

1450 

80 

200 

2.5 

50 

0.3 

28 

500 

40 

5 

133.35 

2000 

40 

250 

200 

10 

50 

N/A 

67 

2000 
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Table A2. Experimental parameters for "9Sn CPMG NMR spectrum of SnO. 

SnO 

Number of transients per 
subspectrum 

Number of subspectra 

Transmitter offset per piece (kHz) 

Recycle delay (s) 

Total experimental time (minutes) 

Number of Meiboom-Gill Loops 

Acquisition points per echo 

Spikelet Separation (kHz) 

pw90 (ps) 

90° pulse power (kHz) 

Spectral width (kHz) 

80 

10 

45 

2 

26.7 

64 

200 

2.5 

3.33 

75 

500 
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Table A3. Experimental parameters for the 207Pb CP/CPMG NMR spectrum of 
Pb(OAc)73H?Q 

Pb(OAc)2-3H2Q 

Number of Subspectra 9 

Scans per subspectrum 192 

Trans. Offset per piece (kHz) 20 

Recycle delay (s) 4 

Number of Meiboom-Gill Loops 80 

Acquisition points per echo 200 

Spikelet Separation (kHz) 2 

90° 'H pulse power (kHz) 142 

Decoupling power (kHz) 57 

Hartmann-Hahn match (kHz) 48 

Contact time (ms) 3 

Spectral width 400 

A.1.2. Experimental Parameters for SSNMR Experiments using pulses generated 
with optimal control theory. 

Table A4. Experimental details for ' l9Sn NMR spectra acquired with pulses generated 
using OCT 

Number of transients per spectrum 

Recycle delay (s) 

Total experimental time (minutes) 

pw90 (jj.s) 

Max. pulse power achieved (kHz) 

Spectral width (kHz) 

Dwell (us) 

15 kHz 

800 

2 

26.7 

50 

15 

400 

2.5 

50 kHz 

800 

2 

26.7 

50 

50 

400 

2.5 

150 kHz 

800 

2 

26.7 

50 

115 

400 

2.5 
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A.1.3. Supplementary SSNMR Spectra 

100 ' ' 50 ' ' 0 ' 5 -100 -150 ' -200 kHz 

-50 -100 -150 -200 -250 kHz 

c 
600 400 200 0 - 2 0 0 - 4 0 0 -600 kHz 

Figure Al. Echo spectra produced from Fourier transformation of the time-domain sum 
of the spin-echoes of WURST-CPMG experiments. Shown are (A) the u9Sn NMR 
spectrum of SnO , (B) the 207Pb NMR spectrum of Pb(OAc)2 and (C) the 195Pt NMR 
spectrum of K2PtCl4. 
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-100 -150 -2X1 -250 

Figure A2. (A) 207Pb CP/CPMG NMR spectrum of Pb(OAc)2-3H20 prior to 
recrystallization of the sample. Shown is the co-addition of 9 sub-spectra, each of which 
consist of 64 averaged transients. (B) 207Pb WURST-CPMG NMR spectrum of 
Pb(OAc)2-3H20 prior to recrystallization of the sample. The spectrum consists of 198 
averaged transients and was acquired in a single experiment. The large "lump" at the 
high-frequency end of the spectra is not present after recrystallization, indicating that the 
sample used initially was partially dehydrated. 
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A.1.4. Explanation for the estimated time required to acquire the 195Pt CPMG 
SSNMR spectrum of K2PtCl4 

When discussing the WURST-CPMG 195Pt NMR spectrum of K2PtCl4, we 

estimated that it would take at least 9 hours to acquire the same spectrum with CPMG. 

This estimation was formulated by examining previous 195Pt SSNMR studies carried out 

by our group,1 in which the CP/CPMG experiment was employed. Spectra ca. 500 kHz 

broad required 13-18 sub-spectra; hence, many more sub-spectra would be required to 

acquire the spectrum of K2PtCl4 which is ca. 910 kHz broad. Though CPMG may have a 

greater excitation bandwidth than CP/CPMG, we assume at least 20 sub-spectra would be 

required, which would take ca. 9 hours if each sub-spectrum took 27 minutes to acquire, 

as they did for WURST-CPMG. In fact, this is likely a conservative estimate, as 16 sub-

spectra were required to obtain the 160 kHz broad pattern of SnO, as mentioned 

previously in this report.. 
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Appendix B 
Supporting Information - 207Pb SSNMR Investigations of 
Pb(II) Thiolates 

B.l. Supporting Experimental information 

B.1.1. Experimental Parameters for 207Pb SSNMR Experiments 

Table Bl. CP/CPMG experimental parameters 

Number of subspectra 

Scans per subspectrum 

Trans. Offset per piece (kHz) 

Recycle delay 

Number of Meiboom-Gill Loops 

Real points per loop 

Dwell (us) 

Spikelet Separation (kHz) 

Acq. Length 

pw90 (us) 

pwl80(us) 

Ring-down Delays (x, = T2=t3 = T4) 

Contact time (s) 

aHdec 

aHcp 

aH 

aXcp 

aX 

Spectral width (kHz) 

1 

20 

128 

20 

45 

204 

40 

2.5 

10 

8192 

1.8 

3.6 

40 

0.021 

0.25 

0.35 

0.6 

0.25 

0.6 

400 

2 

23 

120 

24 

30 

163 

50 

2.5 

8 

8192 

1.98 

3.5 

40 

0.015 

0.25 

0.35 

0.6 

0.18 

0.6 

400 

3 

19 

192 

20 

20 

101 

80 

2.5 

5 

8192 

1.8 

3.6 

40 

0.011 

0.25 

0.35 

0.6 

0.25 

0.6 

400 

4 

22 

120 

24 

30 

163 

50 

2.5 

8 

8192 

1.98 

3.5 

40 

0.014 

0.25 

0.35 

0.6 

0.18 

0.6 

400 
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Table B2. WURST-QCPMG experimental parameters. 

Number of transients 

Experimental time (hours) 

Offset (kHz) 

Recycle delay (s) 

Number of Meiboom-Gill Loops 

Real points per loop 

Spectral window of subspectra 
(kHz) 

Dwell (\is) 

Spikelet Separation (kHz) 

Acq. Time (s) 

pw90 (jus) 

aH dec 

aX 

Sweep width (kHz) 

759 

19 

1000 

90 

200 

100 

1000 

1 

10 

0.02 

50 

0.15 

0.2 

1000 

808 

20.2 

1000 

90 

200 

100 

1000 

1 

10 

0.02 

50 

0.15 

0.2 

1000 

1664 

41.6 

1000 

90 

100 

200 

1000 

1 

10 

0.02 

50 

0.15 

0.2 

1000 

2400 

60 

1000 

90 

100 

200 

1000 

1 

5 

0.02 

50 

0.15 

0.2 

1000 

B.1.2. DFT calculations of 31P Shielding Parameters for Compound 4 

Table B3. Calculated 31P NS tensor components for the phosphorous nuclei in 4. 

J22 " 3 3 

site 1 

site 2 

158.42 

166.47 

309.73 

307.42 

389.52 

397.32 

285.89 

290.40 

ADF predicts that there will be a ca. 4.51 ppm difference between the chemical shifts of 
the two phosphorous nuclei (Aaiso = A8iso). 
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B.1.3. Supplementary SSNMR Spectra 
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Figure Bl. SIMPSON simulations (top traces) and experimental 207Pb CP/MAS spectra 
(bottom traces) of 1 at spinning speeds of (A) 9.7 kHz, (B) 8.0 kHz and (C) 6.3 kHz. 
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B.1.4. Powder X-Ray Diffraction of Compound 4 

simulation 

experimental 

2-Theta 
Figure B2. Powder X-ray diffraction pattern of 4. 
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Appendix C 
Supporting Information - Solid-state NMR Investigations 
of Metal Guanidinates 

Cl. Supporting Experimental Information 

Cl.l. Selected SSNMR Experimental Parameters 

Table Cl. 9.4 T 27A1 and 71Ga static experimental parameters 

Al(guan)3 Al(guan)2NMe2 Al(guan)2Cl Ga(guan)3 

Number of Scans 

Recycle delay (s) 

Dwell (fxs) 

Acq. Length 

90° pulse power 
(kHz) 

14416 

4 

10 

1024 

3.77 

23424 

2 

2.5 

2048 

47.2 

1456 

4 

5 

1024 

10.8 

43600 

0.1 

1 

2048 

33.6 

Spectral Window 
(kHz) 

100 400 200 1000 

Table C2. 9.4 T 27A1 MAS NMR experimental parameters 

Al(guan)3 Al(guan)2Cl 

Number of Scans 

Recycle delay (s) 

Dwell ((is) 

Acq. Length 

90° pulse power (kHz) 

Spectral Window (kHz) 

1328 

4 

5 

4096 

6.12 

200 

80 

4 

2 

4096 

20 

500 
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