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Abstract 

A parallel algorithm for finding 3-edge-connected components of an undirected graph 

on a CRCW PRAM is presented. The time and work complexity of this algorithm is 

O(logn) and 0((m + n)loglog«), respectively, where n is the number of vertices and m 

is the number of edges in the input graph. The algorithm is based on ear decomposition and 

reduction of 3-edge-connectivity to 1-vertex-connectivity. This is the first 3-edge-connected 

component algorithm of a parallel model. 
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Chapter 1 

Introduction 

Graph connectivity (vertex-connectivity and edge-connectivity) is a fundamental subject in 

graph theory and has been studied extensively. A connected graph G = (V,E) is /c-edge 

(k-vertex) connected if removing (k — 1) or fewer edges (vertices) will leave the graph 

connected. Graph connectivity has applications in a wide variety of areas such as network 

reliability, DNA construction, DNA computation, quantum physics and chemistry where 

the Feynman diagram is used [31]. Because of its importance, graph connectivity has been 

explored extensively in the last few decades on different computational models, especially 

on the sequential and parallel models. 

In this thesis, an efficient algorithm for finding 3-edge-connected components of an 

undirected graph is presented. The algorithm runs on the Arbitrary-CRCW-PRAM model. 

For any graph with m edges and n vertices, the algorithm runs in 0(logrc)-time using 

<9(((m + n)loglogn)/logn) processors and performing 0((m + n) log logn) work. This 

is the first algorithm for finding 3-edge-connected components on the Arbitrary-CRCW-

PRAM model. 

In addition to its applications in the traditional areas such as network reliability, 3-
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edge-connectivity also has important applications in quantum physics and chemistry as is 

explained below. 

In quantum physics and chemistry, a Feynman diagram consists of a set of vertices and 

a set of edges. The edges can be partitioned into two types: V-edges and G-edges. The 

V-edges are undirected edges while the G-edges are directed edges. Every vertex in the 

diagram is incident with exactly three edges: one V-edge, one G-edge of which the vertex 

is the tail and one G-edge of which the vertex is the head. A Feynman diagram is irreducible 

if it cannot be disconnected by removing fewer than three G-edges. Let F be a Feynman 

diagram and LF be the undirected graph obtained from F by contracting the V-edges into 

a vertex and treating the G-edges as undirected edges. Then F is irreducible if and only if 

F is 3-edge-connected. In quantum Monte Carlo simulation, it is necessary to determine if 

a Feynman diagram is irreducible [31]. 

Recently, in bioinformatics, a data structure, called a cactus graph, had been introduced 

to capture the nested structure of genome comparisons [33]. The cactus graph is built from 

an adjacency graph Go in a series of steps. First, the connected components of Go formed by 

the adjacency edges are determined. Then pseudo adjacency edges are added to produced a 

graph G\ representing a decomposition of Go. In G\, two vertices x and y are equivalent if 

it takes the removal of three or more edges to disconnect them. The equivalence classes of 

vertices are thus the 3-edge-connected components. A graph G2 is constructed to represent 

this decomposition. It has one vertex for each 3-edge connected component. The theory of 

graph decomposition into 3-edge-connected components shows that Gi is a cactus graph in 

the combinatorial sense. Finally, to construct the cactus graph, the tree-like structures in G2 

are folded to obtain an Eulerian cactus graph. 

2 



Chapter 2 

Related Works 

On the sequential model, for undirected graphs, linear-time algorithms are known only 

for k = 2,3. Tarjan [38] presented a very simple and elegant linear-time sequential al

gorithm for finding 2-vertex-connectivity. This technique is based on a powerful graph 

traversal technique, called depth-first search, devised by Hopcroft and Tarjan [19]. The 

depth-first search technique was also used by Tarjan [39] to solve the st-numbering prob

lem. Gabow [11] revisited depth-first search from a path-view perspective and designed a 

new elegant linear-time algorithm for 2-vertex-connectivity and 2-edge-connectivity. For 

3-vertex-connectivity, the problem was first studied by Hopcroft and Tarjan [19] in 1973. 

They presented a rather complicated linear-time algorithm. In 2001, Gutwenger and Mutzel [15] 

presented a list of errors in the algorithm of Hopcroft and Tarjan and showed how to correct 

them. Unfortunately, their explanation was brief and incomplete. For 3-edge-connectivity, 

the first linear-time algorithm was presented by Galil and Italiano [12]. Their method is to 

reduce 3-edge-connectivity to 3-vertex-connectivity in linear time and then use Hopcroft 

and Tarjan's 3-vertex-connectivity algorithm to solve the problem. This algorithm is rather 

complicated and difficult to implement. Two simpler linear-time algorithms were then re-
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ported by Taoka et al [37] and Nagamochi and Ibaraki [30]. Both algorithms are based 

on depth-first search. The algorithm of Nagamochi and Ibaraki [30] uses graph transfor

mation technique. However, they use three different types of graph transformations and 

perform multiple depth-first search over the input graph. The algorithm is complicated and 

hard to implement. The algorithm of Taoka et al [37] computes the 3-edge-connected com

ponents in three phrases with four depth-first search. However, the algorithm is simpler 

than the previous two algorithms and is easier to implement. Both Nagamochi et al [30] 

and Taoka et al [37] classify the cut-pairs into two types, type-1 and type-2, and determine 

them separately. Tsin [43] presented a very simple and elegant linear-time algorithm for 

finding 3-edge-connected components. This algorithms does not distinguish between type 

1 and type 2 cut-pairs. It use a novel graph transformation technique, called absorb-eject, to 

transform the given graph so that every 3-edge-connected component is transformed into a 

single vertex, called a super-vertex, which is then released to generate the 3-edge connected 

component. The algorithm is conceptually simple and is easy to implement. Tsin [44] also 

presented another linear-time algorithm for finding a set of cut-pairs whose removal leads 

to the 3-edge-connected components. This algorithm is also simple and easy to implement. 

An empirical study [44] shows that this algorithm outperforms all the other algorithms in 

finding cut-pairs and in determining if a graph is 3-edge-connected whereas the algorithm 

of Tsin [43] outperforms the rest in determining 3-edge-connected components. For k — 4, 

no linear-time algorithm has been reported so far. Only an 0(n2)-time algorithm (n is the 

number of vertices in graph G) has been reported. Moreover, this algorithm only determines 

if a graph is 4-vertex-connected. 

On the parallel computer models, the &-edge (&-vertex) connectivity problems have also 

received great attention. The most popular parallel computer model is the PRAM (Parallel 

4 



Random Access Machine). A PRAM is a parallel computer in which n processors have 

access to a common memory, called the shared memory. The PRAM is a SIMD (Single 

Instruction Multiple Data) machine. Specifically, at any point of time during the execution 

of a program, every processor in the PRAM executes the same instruction but on different 

data stored in the shared memory. The processors are synchronized. Depending on whether 

more than one processor is allowed to read from or write into the same memory location in 

the shared memory, the PRAM can be classified into the following types: 

EREW (Exclusive-Read-Exclusive-Write): At any time, only one processor is allowed 

to read from a memory location and only one processor is allowed to write into a 

memory location. 

CREW (Concurrent-Read-Exclusive-Write): More than one processor is allowed to read 

from the same memory location at the same time but only one processor is allowed 

to write into a memory location at any time. 

ERCW (Exclusive-Read-Concurrent-Write): Only one processor is allowed to read from 

a memory location at any time but more than one processor is allowed to write into a 

memory location at any time. 

CRCW (Concurrent-Read-Concurrent-Write): More than one processor is allowed to read 

from the same memory location at the same time and more than one processor is 

allowed to write into a memory location at the same time. 

Depending on how write-conflicts are handled, this PRAM model has been further 

classified as follows: 

CRCW-common: all processors writing into the same memory location must write 

the same thing; only one processor will succeed and we don't know which one. 
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CRCW-arbitrary: the processors writing into the same memory location may write 

different things. However, only one processor succeeds and we don't know 

which one. 

CRCW-priority: the processors in the PRAM are given different priorities. When 

more than one processor attempt to write into the same memory location, only 

the one that has the highest priority succeeds. 

In the following, m and n are the number of edges and vertices in the input graph, 

respectively. 

While depth-first search had been successfully used in designing optimal (linear-time) 

algorithms for various graph connectivity problems, it has not been successful in designing 

efficient algorithms, let alone optimal algorithms, for parallel computers. This is due to the 

fact that the technique is inherently sequential. 

A parallel algorithm that use 0(n2) processors to find the connected components (1-

vertex-connected) of an undirected graph in 0(log2n)-time on an CREW-PRAM was first 

reported in [17]. Later, Hirschberg et al [17] showed that the O(log2 n)-time bound can also 

be achieved using only n\n/logn] processors. Chin et al [4] further improved the bounds 

to 0(n2/£" + log2n)-time using K(> 0) processors. Note that when K = 0(n2 /log2 n), 

this algorithm achieves the 0(log2n)-time bound using only 0(n2/ log n) processors. An 

almost optimal algorithm for finding connected components has been developed by Cole 

and Vishkin [6]. It runs in 0(log«)-time using 0((m + n)a(m,n)/logn) processors, where 

a is the inverse Ackermann function. However, this algorithm runs on the stronger CRCW-

PRAM model. 

Biconnectivity (2-vertex-connected) and bridge-connectivity (2-edge-connected) were 

first studied by Savage and Ja'Ja' [35]. The parallel algorithms they presented uses 0(log2n)-
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time and 0(n3/logn) processors and runs on a CREW-PRAM. Later, Tsin and Chin [45] 

presented optimal algorithms that run in 0(n/K + log2 n)-time with nK(K > 1) proces

sors on the same model. When K — 0(n/log2 n), these algorithms achieve the 0(log2n)-

time bound using only 0(n2/ log2 n) processors. As the processor-time product, also called 

work, is 0(n2), the algorithms do optimal work for dense graphs. Tarjan and Vishkin [40] 

developed a parallel implementation for finding biconnected components that runs in 0(log n)-

time using 0{m-\-n) processors. However, the algorithm runs on the stronger CRCW-

PRAM model. 

For triconnectivity (3-vertex-connectivity), several algorithms have been developed. 

The algorithms reported in [21] and [14] use a parallel algorithm for matrix multiplica

tion as subroutine; hence their algorithms are far from optimal. Major progresses were 

made by Miller and Ramachandran [13] and Ramachandran and Vishkin [34]. The for

mer presented an algorithm that runs in 0(log2n)-time on the CREW-PRAM while the 

later presented an algorithm that runs in 0(log«)-time on a CRCW-PRAM. Later, Fussell, 

Thurimella and Ramachandran [9] came up with a parallel algorithm for finding sepa

ration pairs whose time and processor complexity are O(logn) and 0(m + n), respec

tively, on the CRCW-PRAM. Fussell et al [9] used a local replacement technique to suc

cessfully improve the processor bound. Specifically, their algorithm runs in O(logn)-

time using 0((m + n)loglogn/logn) processors. No parallel algorithm has been reported 

for 3-edge-connectivity. For 4-vertex-connectivity, a parallel algorithm for the Arbitrary-

CRCW-PRAM was reported by Kanevsky and Ramachandran [23]. This algorithm runs in 

0(log2n)-time using 0(n2) processors. 

Graph connectivity is a natural way of measuring the robustness and reliability of a 

computer or communication network. The subject has thus been extensively studied on 
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the distributed computer model. For biconnectivity and bridge-connectivity, a number of 

algorithms that run in 0(n)-time and transmit 0(m) messages of O(logn) length have been 

proposed [1,18,27,32,36]. For 3-edge-connectivity, Jennings et al [22] presented the first 

algorithm that runs in 0(n3)-time transmitting 0(n3) messages [22]. Tsin [41] improved 

both the time and message bounds to 0(n2). No 3-vertex-connectivity algorithm has been 

reported so far. 

Fault-tolerance is a very important issue in computer network. The concept of self-

stabilization is a concept introduced by Dijkstra [8] to handle transient faults on distributed 

computer. For bridge-connectivity, Karaata and Chaudhuri [26] presented the first self-

stabilizing algorithm. However, their algorithm must run concurrently with a self-stabilizing 

breadth-first spanning tree algorithm. The algorithm runs in 0(mn2) steps and 0(dm) 

rounds( for the definition of rounds, please see [26] for details), where d(< n) is the diam

eter of the network. Chaudhuri [2] presented another algorithm that must run concurrently 

with a self-stabilizing depth-first spanning tree algorithm and requires only 0(n2) steps 

and 0(d) rounds. For biconnectivity, Karaata [24] presented the first self-stabilizing algo

rithm for finding cut-vertices. His algorithm must run concurrently with a self-stabilizing 

breadth-first spanning tree algorithm and a self-stabilizing bridge finding algorithm. The 

algorithm requires 0(mn2) steps and 0(dm) rounds. Chaudhuri [3] improved the bounds to 

0(n2) steps and 0(d) rounds by presenting an algorithm that runs concurrently with a self-

stabilizing depth-first spanning tree algorithm. Karaata [25] presented a self-stabilizing 

algorithm that finds all the biconnected components in 0(d) rounds using 0(«AlogA) 

bits per processor, where A(< n) is the largest degree of a vertex in the network. His al

gorithm must run concurrently with a self-stabilizing breadth-first spanning tree algorithm 

and a self-stabilizing bridge finding algorithm. Devismes [7] improved the bounds to 0(H) 
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moves( for the definition of moves, please see [7] for details) (H(< n) is the height of the 

spanning tree) and 0(n\og A) bits per processor, with the assumption that a breadth-first 

search or depth-first search spanning tree is available. Tsin [42] improved all of the above 

results by presenting an algorithm that finds all the bridges, cut-vertices, bridge-connected 

components and biconnected components in 0(dn\og A) rounds using 0(nlog A) bits per 

processor. Moreover, in contrast with the above algorithms, this algorithm does not assume 

the existence of any spanning tree. 

In the wireless sensor network setting, Turau [46] presented an algorithm that takes 

0(n)-time and transmits at most Am messages. 
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Chapter 3 

Definitions 

A graph is a triple G = (V,E) in which V and E are two disjoint finite sets such that V ^ (j). 

Each element of V is called a vertex of G, and each element of Z? is called an edge of G. 

Let v\e\V2---Vk-\ek-\vk be a sequence of alternating vertices and edges such that v,- € V, 

1 < i < k, and e,- = (v,-, v,+i) e E, I <i <k. We shall also denote the edge et by v,- -> v,+i. 

The sequence is a pafn P in G if the vertices v,-, 1 < / < k, are distinct; the sequence is a 

cycle in G if vi = v& and the vertices v,-, 1 < / < k, are distinct, where k > 1. The subscript 

j is called the index of vertex v,- on the path P. We assume that on each path P, the index of 

every vertex is distinct. When the sequence is a path, then vi,v^ are the end vertices, and 

each v,, 1 < i < k, is an internal vertex. We shall also denote the path by vi ~> v*. The path 

is a nw// path if k = 1. A self-loop is an edge that connects a vertex to itself. A u-v walk is a 

sequence of vertices starting at u and ending v, where every two consecutive vertices in the 

sequence are adjacent in the graph. A closed walk is a walk when the first and last vertices 

are the same. The set of edges (vertices, respectively) on a path P is denoted by E(P) 

(V(P), respectively). G — E\ where E' C E, is the graph resulting from G after the edges 

in E' are removed. A graph G is connected if there is a path between every two vertices; 
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it is disconnected otherwise. A connected component is a maximal connected subgraph 

of G. An edge e is called a bridge of G if G — e is disconnected. If a connected graph G 

contains no bridge, then G is called a bridgeless graph or a 2-edge-connected graph. A 

vertex v € V is called cut-vertex if G — v is disconnected. A graph without a cut-vertex is 

biconnected and is also called block. A pair of edges {e,e'} E E is called a cut-pair of a 

bridgeless graph G if G — {e, e'} is disconnected. A bridgeless graph without cut-pairs is a 

3-edge-connected graph. Let G = {V,E) and G' = (V,£ ' ) be two simple disjoint graphs, 

then the union of G and G' is the graph G U G' = (V U V', E U £ ' ) . G' is called a spanning 

subgraph of G if V = V' and G' is a subgraph of G. 

An ear decomposition D of an undirected graph G = (V, E) is a partition of £ into a set 

of edge-disjoint paths Do,Di, . . .D,, . . .D„ such that Do is a cycle on which a vertex, r, that 

has the smallest index value, is designated as the root, and for every D^,k>_ 1, each end 

vertex of D^ is a vertex on some Dj,j < k. We say that ear D, is smaller than Dj if / < j . If 

there is only one edge in D,, then D, is a trivial ear; otherwise, it is a non-trivial ear. Two 

ears are parallel if they have the same end vertices. The distance between two vertices on 

an ear is the number of edges between them on the ear. The following defintion is from [10]. 

Starting with the end vertex p of D; with the smaller index, define pos(p,Di) to be zero. 

Vv € V(Dj) — {p}, pos(v,Di) is the distance from p to v on D,. The value of pos(w,Di), 

for w <£ V(Di) is undefined. For the sake of consistency, we label the vertices of an ear in 

D by their pos values. Specifically, if v/, Vj are two vertices on the ear D,, then I and j are 

the pos value of v/ and vj, respectively. We use Dt(e,e') (Di[e,e'\, respectively) to denote 

the portion of ear D; between edges e and e', exclusive (inclusive, respectively) of these 

edges. D,(v, V) (D,[v, v'], respectively) denotes the portion of ear D,- between vertex v and 

v', exclusive (inclusive, respectively) of these vertices. D; — Di[e,e'] refers to the segment 
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of Dj whose edge set is E(Dj) —E(Di[e,e']). Remark: In this thesis, we assume without 

loss of generality that the input graph G is 2-edge-connected. 
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Chapter 4 

Some Properties of Cut-Pairs 

Lemma 1. Let G = (V,E) be a connected graph. An edge eofG is a bridge if and only if 

e does not lie on any cycle in G. 

Proof See [43]. • 

Lemma 2. An undirected graph G has an ear decomposition if and only if it is 2-edge 

connected. 

Proof See [47]. • 

Lemma 3. Let G = (V,E) be a connected graph and let e,e' € E. Then {e, e'} is a cut-pair 

if and only if e (e', respectively) is a bridge in G — e' (G — e, respectively). 

Proof. See [43] • 

Lemma 4. Let G — (V,E) and D be an ear decomposition of G. Then for any edge e E 

U/=i Dj, there exists a cycle containing e without passing through any edge in ear Dj. 

Proof. (Proof by induction) 

13 



Base case: when i = 1, according to the definition of ear decomposition, Do is a cycle 

C containing every edge in it. 

Suppose the Lemma holds true for i — k — 1. 

Consider i = k. Let e E \J)ZQDJ. If e E U/=O^./>
 m e n by the induction hypothesis, e 

lies on a cycle in [f-Z^Dj without passing through any edge in ear D^-\. Clearly, the cycle 

is also a cycle in \J*JZQDJ, without passing through any edge on £>*. 

If e lies on Dk-\, let the two end-vertices of ear D^-\ be lying on the ears Du and Dv, 

where u, v < k — 1. By a simple induction, it is easily verified that \JiZ0Dj is a connected 

graph. As a result, there is a path P in it connecting the two end-vertices of D^-1. It follows 

that the path P and ear D^-i forms a cycle containing e in U/=o^7 an<^ m i s c y c l e does not 

use any edge on ear D^. • 

Lemma 5. Let G = (V,E) and D be an ear decomposition of G. If {e,e'} is a cut-pair of 

G, then there exists a non-trivial ear Di G D that contains both e and e'. 

Proof. 

Since D is a partition of E, every edge belongs to one and only one ear. 

Let {e, e'} be a cut-pair such that e E Di and e' E Dj. We want to prove that / = j . 

Suppose to the contrary that i ^ j , without loss of generality, we assume / < j . By 

Lemma 4, there exists a cycle in \J{ZQDJ containing e but not e'. But then e is not a bridge 

in G — e', which contradicts Lemma 3. • 

Theorem 1. Let G = (V,E) be an undirected graph and r be the root of an ear decompo

sition D ofG. Let Di E D and e, e' E E{Di) such that e = (a, b), e' = (a', b'). Furthermore, 

pos(a,Di) < pos(b,Di) < pos(a',Dj) < pos(b',Di). Then {e,e'} is a cut-pair of G if and 

only if it satisfies both the following conditions: 
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1. There does not exist a path P : m ~> r, where m € V(Di[b,a']), and V(P) D V(A) = 

{m}. 

2. Let Q = {w e Di\3 path P': V(P')r\V(Di) = {w,m}, where m e V(Di[b,a'})}. If 

Q is not empty, let c € Q such that pos(c,D[) < pos(u,Di) and d € Q such that 

pos(d,Di) > pos(u,Di),\/u € Q. Thenpos(b,Di) <.pos(c,Dj) < pos(d,Di) <pos(a',Di). 

Proof. 

1. (Only if) Since {e, e'} is a cut-pair of G, G — {e, e'} contains at least two connected 

components, namely C\ and C%. Furthermore, D, — D\e, e'] and Di(e, e') cannot be in 

the same connected component, otherwise, there would exist a path Pj from a vertex 

x e V(Di - Di[e,e']) to some vertex y € V(D,-(e,e')) in G - {e,e'}. This path and the 

portion of £),• between x and y, called it Pi, form a closed walk W. Owing to the fact 

that Pi does not contain e or e' and P2 contains only one of e and e', without loss of 

generality, we assume P2 contains e. As W is a closed walk, there must exist a cycle, 

C, in W that contains e. Since C does not contain e', therefore C is a cycle in G — {e1}. 

By Lemma 1, e is not a bridge in G — {e1} which contradicts Lemma 3. 

Now, let Dt — Di[e, e'\ be in C\ and D,(e,e') be in C2. 

For condition 1, suppose to the contrary that there exists a path m ~* r, where m 6 

[ft,a']. Let G' = U/=o^ ' (i-e- G' is a subgraph of G composing of the ears Dj,0 < 

j < i). It is easily verified that G' is a connected graph. Let v' be one of the end 

vertices of £>,-, then v' is a vertex in G'. As r is also a vertex in G' and G' is connected, 

therefore, there is a r ~~> v' path connecting r and v' in G'. The paths m-^r and r ~»v' 

form a n m ^ v ' path. Since m € V(Ci) while v' € V(C2), we thus have C\ = C2 which 

contradicts C\ ^ C2. 
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For condition 2, suppose to the contrary that p0sy(c>A) < posvt(b,Di), then c € Q 

implies that there is a path P' from m to c without passing through e and e'. It follows 

that P' connects m and c in G—{e,e'}. But c € V(C\) and m € V(C2), therefore C\ = 

C2 which contradicts C\ 7̂  C2. By a similar argument, posvi(d,Di) > posv>(a',Di). 

2. (If) Suppose {e, e'} is not a cut-pair. Then by Lemma 3, e is not a bridge in G — {e'}. 

By Lemma 1, e lies on a cycle C. If C completely lies within I J ^ o ^ ' le t m be a 

vertex such that m € V(D,[fc,a']). Then there must exist a path P : m ~> r in Uj=o A'> 

hence in G, such that V(P) nV(D,) = {m}. Condition 1 is thus violated. 

On the other hand, if the cycle C contain an edge outside U'J^QDJ, then 3 a path P': 

V(P')nV(Di) = {w,m}, where m € V(Di[b,a'])} such that pos(w,Di) < pos(b,Dt). 

Condition 2 is thus violated. 

The case in which e' is not a bridge in G — {e} can be proved in a similar way. 

• 
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Chapter 5 

Finding 3-edge-connected Components 

Given G = (V,E), let D be an ear decomposition of G. We define G' = (V',E') as follows: 

V' = {v\ | D, e D}, vertex vj, 1 < / < n, is called the image of £>,•; £ ' = {e' = (v'hv'j) \ 3e = 

(uh,W{) eE such that M/J € V (£),•) A w/ eV(Dj)/\i^ j}; edge e is called the corresponding 

edge of e' in G. Moreover, for every edge e' = (v-, v'-) € E', where i < j , a 2-tuple X-value 

is associated with e', denoted by Xei, such that A,e/[1] = h and A,e/[2] = /. Let Bi,2?2, •. • ,#/ 

be the blocks of G'. 
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Input: A bridgeless graph G = (V,E) 

Output: A graph G' = (V',E') 

Find an ear decomposition D of G. 

for each ear D{ £ D do in parallel 

| create a new vertex v\ £ V(G'). 

Endpar 

for each edge e = (x,y) £ E(G) do in parallel 
if (x = UhG V(Di) and y = wi £ V(D/), where j < j ) then 

create a new edge e' = (vj, v') GE(G'). 

\>[2]=l. 

Endpar 

Algorithm 1: Building G' for graph G 

Lemma 6. TTiere <ioe5 nof exwf a bridge in the graph G1 = (V',E'). 

Proof. 

In order to prove that there is no bridge in the graph G', we shall prove that for each 

edge e' £ E(G'), there exists a cycle containing e'. Let e' = {v'^v'j), where v\ (v'j) is the 

image of ear D,- (Dj, respectively), and edge e = (M, v) be the corresponding edge in graph 

G, where u £ Dt A v € Dj. Since G is a bridgeless graph, by Lemma 1, we know that e lies 

on a cycle C in G. 

Let P\y denote the ear portion between vertices x and y, exclusive, on the ear D^, where 

x £ V(Dk), y £ V(Dk) and Dk £ D. Then the cycle C can be represented as follows: 

u,PL,Wl,wuliu,W2,W2,--.Kh^,w^wh,Pth,Wh+1,---^vPiv,v,v,e,u, where i^d^a^b^ 
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For the segment, P%h_uWh,Wh,P&h ,wh+l> of cycle C, we want to show that v'a,v'b are con

nected in G', if Da and Dj, are non-trivial ears. [Remark: If Da or D\, is a trivial ear, since 

the end vertices of Da or Df, are the internal vertices of some other ears, say Dc and D^ 

respectively. So, instead of proving v'a and v'b are connected, we can prove v'c and v'd are 

connected.] 

The following cases are to be considered. 

• If Wh £ Da, then by the definition of G', an edge e' = (v'a, v'b) is in G'. 

• If Wh is one of the end vertices of ear Da, by the definition of ear decomposition, Wh is 

an internal vertex of another ear D^. Ifk^ b, then edges e i = (v'a, v'k) and e2 = (v'k, v'b) 

exist in G'. It follows that e\ and ei form a path v̂  —> v^ in G'. On the other hand, if 

k = b, then an edge e' = (v'a,v'b) exists in G'. 

From the above argument, it is easily verified that for a cycle C in G, if it passes through 

two non-trivial ears, then there exists a path in G' connecting the images of these two ears; 

if it passes through at least one trivial ear, then there exists a path in G' between the images 

of the ears that contain those end vertices as internal vertices. As a result, if e = (u,v), 

where u £ Di A v e Dj lie on a cycle in G, then there corresponds a cycle C' in G' containing 

e' = (v),v'). Hence, e' lies on a cycle in G'. • 

Lemma 7. Le? v\, v'- Z?£ f/ze images ofearDi andDj, respectively. Ifi < j , then there exists 

a path between root r and v't -without passing through v'-. 

Proof. Immediate from Lemma 4. • 

Theorem 2. Let D{,Dj £ D such that i < j and vj, v'- £ V(5&)> where B^ is a block in G', 

1 < k < I. Then any path P starting from a vertex v £ V(Dj) must pass through some 
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internal vertex u 6 V(Di) before reaching some vertex x £ V(DZ), z < i if and only ifv\ has 

the smallest index among all the vertices in the block B^. 

Proof. 

1. (If) 

Since v E V{Dj), the assertion is equivalent to proving that any path P starting from 

v'j must pass through vertex v't before reaching some vertex v'z, z < i. Suppose to 

the contrary that there exist a path P starting from v' which does not pass through v\ 

before reaching some vertex v'v z < i- We assume that v'z lies on a block Bw. Owing to 

the fact that v'i has the smallest index value in block B* and the image of any ear that is 

smaller than Z>, cannot be in B^, so v'z cannot be in the block Bk- Since vj-, v'j € V(Bk), 

there exists a cycle C containing v'i and v'j. 

Let v'h be the common vertex of P and C such that no vertex following v'h on P lies 

on C. Let v's be the first vertex on P which lies on the section v'h ~-> v'z such that 

v̂  g- V(Bic) while the vertex preceding it on P does belong to V(-Byt). Since \J'J=QDJ is 

a connected graph containing the ears Dz and Z),-, there must be a path, Pi, connecting 

v[ with v'z outside B&. Let v't be a common vertex of Pi and the section v̂  ~-> v'z that 

is closest to v .̂ Then, the section v't -<•> v'h on C, the section v'h -^> v's on path P, the 

section v[ ~» v't on Pi form a cycle containing v'{ and v£ in G'. As a result, v̂  G V(S^) 

which contradicts the above assumption made on v .̂ 

2. (Only if) Suppose to the contrary that v\ does not have the smallest index among all 

the vertices in the block B^. Let us assume that v'k has the smallest index in B^. Since 

k < i, by Lemma 4, there exists a cycle in {J'Z^Dj, hence in G, that contains D^ and 

not Dj. Since v'-, v'k € V(B^), that means v'- and v̂ . lie on a common cycle. It follows 
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that there are at least two paths connecting v'j and v'k in B^. Therefore, there is a path 

Pi connecting them without going through v'r Moreover, since k,z < i, \JlZ}QDj is 

a connected graph containing the vertices v'k and v'z. As a result, there is a path P2 

connecting v'k and v'z without passing through v). The paths Pi and Pj form a walk, 

hence a path connecting v'j and v'z but bypassing v'r This contradicts the assumption. 

• 
Corollary 1. Let G = (V,E) and D be an ear decomposition of G. If 5,, 1 < i < I, is a 

biconnected component ofG' = (V',E'), then the vertex ofBi with the smallest index value 

is either the root r or a cut-vertex ofG'. 

Proof. 

Let Bi be a block of G' and v'k be the vertex in it that has the smallest index value. 

Suppose v'k is not the root r. Then r $ V(B{). Suppose to the contrary that v'k is not a cut 

vertex. Then G' — v'k is a connected graph which implies that for any other vertex in block 

Bj, there is path connecting it with the root r without passing through v'k. But r = v'Q and 

0 < k. This contradicts Theorem 2. 

• 

Lemma 8. Let Z), and Dj, j 7̂  i, be any two ears in an ear decomposition D of graph 

G = (V,E). For an edge e = (u,v) € E(G) such that u G V(D,-), v € V(Dj) and i ^ j , if 

v'j 6 V' belongs to a block whose smallest index is smaller than i, then there exists a path P 

connecting v to the root r in G without passing through any internal vertex z € A'. 

Proof. 

Since vertex v e V(Dj), this lemma is equivalent to proving that there exists a path P 

between v'- and the root r without passing through v\. Let us assume that v' belongs to the 

block Bk and v- belongs to the block B^. Two cases are to be considered separately. 
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(a) If k = h, let v'p has the smallest index value among all the vertices in £*(= B/,). By 

Theorem 2, if there exists a path from v' to the root r, it must pass through v'p. Since v,', 

v'j, v'p belong to the same block, they lie on a cycle. By Lemma 1, there exists a path Pi 

connecting v'j and v'p without passing through v'{. By Lemma 7, there is a path 7>2 from v'p 

to root r without using v\. It follows that paths Pi and Pz form a path connecting v' with r 

in G' without passing through v\. Consequently, there is a path P connecting v to the root r 

in G without passing through any internal vertex z G A-

(&) lik^h, then v̂  and v(- belong to two different blocks. Let us assume that v'w has the 

smallest index in block Bk. Since w < i, by Lemma 7, there exists a path Pi connecting the 

root r with vertex v'w bypassing v\. Moreover, as v'j lies in the block B^, there exists a path 

P2 connecting v'w and v̂  without passing through v\. It follows that paths Pi and P2 form 

a walk that contains a path connecting v' with r without passing through v\. Hence, there 

exists a path P connecting v to the root r in G without passing through any vertex zEDi. 

a 

Let Bi, 1 < i < /, be a block in G' and vĵ  be the vertex in block B,- that has the 

smallest index. Let /#,. = mm{h \ 3e = {uh,wq),Uh € V(Djt) and wq £ V(Dj),i ^ j} and 

rBi = max{/? | 3e = (uh,wq),uh € V(Dk) and wg 6 V(D7'),i # j}. 

Then, Vz G V, let z be on an ear Dw such that v^ and v'k belong to the same block. If z 

is directly connected to some vertex in D^, then let pz[1..3] such that Pz[l] = k, pz[2] = Ik, 

pz[3] = n . Otherwise, pz[l] = k, pz[2] = null, pz[3] = null. 
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Input: A bridgeless graph G = (V,E), an ear decomposition D, G' = (V',E') of G 

Output: pz[1..3], Vz e V(DW), 0<w<n 

Determine the blocks, #i ,#2,... ,5/, of G'. 

for Bi, 1 < i < / do in parallel 

Compute v'k such that k = min{j | v'- is a cut-vertex of G and v'j € V(Z?,-)}. 

Compute Q = {e' G E(Bi) | v'k is an end-vertex of e'}. 

Compute miriBi = min{X,e'[l] | e' E Q}. 

Compute maxBi = max{X,e'[l] | e' e Q}. 

Compute P = {V[2] | e' e Q}. 

for (v'w e V(Bi) - {v'k}) do in parallel 

for (z € V(DW)) do in parallel 

i fzePthen 

Pz[l]=*-

Pz[2] =minBi. 

Pz[3] =maxBr 

end 
else 

Pz[l]=*-

Pz[2]=null. 

Pz[3]=null. 

end 

Endpar 

Endpar 

Endpar 

Algorithm 2: Finding P value 
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Lemma 9. Algorithm 2 correctly computes Pz[1..3],z € V. 

Proof. Immediate from the definition of |3Z [1. .3], z € V. • 

Let Dj be a non-trivial ear voeo^iei... e^\v^ in an ear decomposition D of graph G. For 

each vertex v € D,-, 0 < i < n, after computing p%, we then build a graph, £!,•, for ear Z), to 

help us find the cut-pairs of the given graph G. The vertex set of Q., consists of the vertices 

of ear Dt. For an internal vertex v on the ear Z),, if v can reach the root r without using any 

internal vertex in the £>,-, then xv = true. 

For a vertex w on the ear D,-, if w is one of the end-vertices of an edge e € E(G) such 

as e = (w,z), where z 6 Dj and j ^ i, then an edge e\ = (w,Vfc) € E(Q.,), where v* is the 

vertex with the smallest pos value on the ear D,- that can be reached from w without using 

any internal vertex in the ear Dv. If v* = w, then no edge is created in E(£li). By symmetry, 

an edge e2 = (w,v/,) € E(£li), where v̂  is the vertex with the largest pos value on the ear 

Di that can be reached from w without using any internal vertex in the ear Z),. An £l-graph 

of G is the union of the graphs Git, 1 < i < n. 
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Input: A graph G, its associated graph G' and an ear decomposition D 

Output: £2-graph for G 

for each ear Di € D do in parallel 

for Vh € V(Di) do in parallel 
xVh = false. 

for e — (u,Vh), u € V(Dj),e ^ £(£>,') do in parallel 

if(3M[l] < / then 
| xVh = true. 

end 

Endpar 

if xVfi — false then 
aVh = min{|3u[2] | 3e = (u,vh),u <E V(Dj),i # j}. 

2>V/i=max{pM[2] | 3e = (u,vh),ueV(Dj),i^j}. 

end 

cVh=mm{pos(u,Di) \ e = (u,vh),u e V(D,-),e ££(£>,-)}. 

dVh = max{pos(u,Di) \ e = (u,vh),u € V(Dt),e &E(Di)}. 

Endpar 

Endpar 

if h y£ min{aVh, cVh} then 
| add an edge e = (v/,, w) such that pos(w, Di) = min{aVA, cVh}. 

end 

if h ^ max{bVh,dVh} then 
| add an edge e = (v^,w) such that po^w,£>,•) = max{bVh,dVh}. 

end 

Algorithm 3: Build ft-graph for G 
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Lemma 10. Algorithm 3 correctly builds the Q-graphfor the graph G. 

Proof. 

Since £2-graph is the union of £2, graph for each ear D,,0 < i < n, so this statement is 

equivalent to proving that Algorithm 3 correctly builds the £2, graph for each ear D,. 

• (i): Since v̂  G V(Di), if j3„[l] < i, it means that v\, the image of Dj, belongs to a 

block whose vertex with the smallest index is smaller than i. Then, by Lemma 8, 

there exists a path P from u to the root r without using any vertex of ear £),-. By 

definition, xu is correctly set to true. 

[Remark: Notice that for any edge e = (H,V/,), u e V(Dj),Vh G V(D{),j ^ i, it is not 

possible that P„[l] > i. Suppose to the contrary, p„[l] > i, then by the definition of 

the (3 value, v'i and v'- cannot be in the same block. Let us assume that v'j £ V(BW) 

and v'i G V(Bt), w^t, where Bw,Bt are blocks of G'. Two separate cases are to be 

considered: 

Case 1: If vertex v' is not the cut-vertex of block Bw, then by Theorem 2, edge e = 

(u,Vh) must contain a vertex of ear D/, where v\ is the cut-vertex of block Bw. Since 

u € V(Dj), j ^ /, that means v/, G V{D{). Furthermore, v/, G V(D,) by assumption. 

So, v/, belongs to both D, and £>/. But v't and v\ are in two different blocks. We thus 

have i = I. As a result, P„[l] = i which contradicts our assumption that pM[l] > i. 

Case 2: If vertex v'- is the cut-vertex of block Bw, since e = (M,V/,),V/, G Z),- and 

v- € V(Bt), that means p„[l] is the index of the cut-vertex of Bt. As a result, PM[1] < i 

which contradicts the assumption that PM[1] > /.] 

• (ii): For edge e eE(G) such that e = (u,vh),u e V(D7-),v* G V(Di)J^i, if pM[l] = i , 
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it means that vj and v'- are in the same block B^, 1 <k<l, where v't is the cut-vertex 

of Bi. Owing to the fact that the cut-vertex v\ can be a vertex in several blocks, and 

for each such block #/,, there corresponds two values lgh and TBA, it can be easily 

seen that the variable aVh represents the minimum lsh values, and the variable bVh 

represents the maximum rsh values. Furthermore, from the vertex v^, there can be an 

edge e\ = (w, v/,), where u € V(A)- It is easily seen that e\ does not use any internal 

vertex of Di except u and v/,. 

The variable cVh represents the minimum u value and the variable dVh represents the 

maximum u value, where u £ V(pi). It is obvious that the minimum of aVh and cVh is 

the index of the vertex with the smallest pos value on D,- which can be reached from 

Vf,. Similarly, the maximum of bVh and dVh is the index of the vertex with the largest 

pos value on Dt which can be reached from v^. 

• 

The following definitions are similar to those defined in [10]. We refer to the edges in 

E(Q.i) —E(Di) as arcs. It is easily verified that the arcs form a collection of paths in Q,\ We 

shall denote each of the paths by v\a\V2di•. .vq-\aq-\vq, where a.j is the arc connecting 

vertices Vj and v/+i. 

Define an equivalence relation ^ over V(£>,') a s follows: Mva,Vb G V(D,-), va%yt, if 

there is an arc between them or there exists a pair of arcs (va,vc) and (v^,v^) such that 

pos(va,Dj) <pos(yb,Di) < pos(vc,Di) <pos(vd,Di). 

Definition: An £^-graph of an ear D,- is a spanning subgraph of the £Vgraph such that 

£(£!•) = E(Q.j) — E{Di). An Cl'-graph of a graph G is a spanning subgraph of the H-graph 

such that E(Q!) = E(Q) - E(G). 
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Input: The fl'-graph of graph G 

Output: The connected components Ci,C2,... ,Cn of the n'-graph 

for Dj € D do in parallel 

for e\ = (vfl,vc) G E(Q!),pos(va) < pos(vc),va,vc € V (£>,•) do in parallel 
Find an edge ez = (v^v^), pos(vb) < pos(vd), such that 

(/) pos(va) < pos{yb) < pos(vc). 

(ii) pos(vd) = max{pos(v') \ 3e = (v&, v'), v' € V(D{) f\pos(v') > pos(vc)}. 

Find an edge e^ = (vy, v<//) , pos(vy) < pos^ji), such that 

(i) pos(va) < pos(vdi) < pos(vc). 

(ii) pos(vy) = min{pos(v') \ 3e = (v',vd>),v' G V(A') Apoj(v') < pas(vfl)}. 

if ^2 exi'sta then 
| add an edge (v^,vc). 

end 

if £3 exists then 

I addanedge(va,vrf/). 

end 

Endpar 

for v G V(£),), where xv = true do in parallel 
I add an edge between v and one end vertex of £>,-. 

Endpar 

Endpar 

Find the connected components Ci,Cz, • • • ,Cn. 

Algorithm 4: Finding connected components of H'-graph 
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Lemma 11. Let u, v E V(Q.'i). If there exists a path P connecting u and v in Qlit then exists 

two edge-disjoint paths connecting u and v in G. 

Proof. (Proof by induction on the number of interlaces K in P) 

Base case: when K = 0, the path P consists of a sequences of arcs: 

(u =)viaiv2fl2 • • • vq-\aq-\vq{= v) 

Since every arc corresponds to a path in G that does not use any edge on D,, therefore the 

path P gives rise to a path in G that does not use any edge on £>,-. Since Dj[u,v] is a path 

connecting u and v in G that uses only edge on D(, we thus have two edge-disjoint paths 

connecting u and v in G. 

Suppose the Lemma holds true for K = k — 1. 

Let P : (u =)v\e\V2e2...vq-\eq-\vq{= v) have k(> 1) interlaces. 

Let eh be the first edge in P that is not an arc (note: this is where the first interlace 

in P occurs). Consider P' : vieiV2^2 • • •Vh^h^h+i- Then ej = aj, 1 < j < h. It follows that 

v\a\V2az. ..eh-iVf, is a path in G that does not use any edge on Z),-. As D,-[«,v] is a path 

connecting u and v in G that uses only edge on D,-, we thus have two edge-disjoint paths 

connecting u and Vh+\ in G which give rise to a cycle containing the edge e — (v/,+i, v/,). 

Now, consider P" : Vh+\eh+\Vh+2 • • • vq-\eq-\vq. Clearly, P" has k — 1 interlaces. By the 

induction hypothesis, there exists two edge-disjoint paths connecting v^+i with v. These 

two paths also give rise to a cycle containing the edge e = (v^+i,v/,). 

Clearly, the edge e is the only common edge of P' and P". Therefore, by removing e 

from both paths and joining them at the vertices v/, and v/,+i, we obtain a cycle containing 

u and v in G. Hence, then exists two edge-disjoint paths connecting u and v in G. • 

Theorem 3. Let vertices u,v G V(G). u, v are in the same connected component of the 

Q!-graph if and only ifu, v are in the same 3-edge-connected component ofG. 
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Proof. 

1. (Only If): Suppose u and v belong to the same connected component in the £2'-graph. 

Then there is a path P connecting u and v. 

(/) u and v belong to the same H^-graph: 

If P is a path in the H^-graph, then by Lemma 11, there are two edge-disjoint paths 

connecting u and v in G. Since there is yet another path connecting u and v using 

only edge outside D, — Dj[u,v], we thus have three edge-disjoint paths connecting u 

and v in G. 

If P is not a path in the ^ -g raph , then there must exist a path P' in the £2^-graph that 

connects u with one end-vertex a of D, and another path P" that connects v with the 

other end-vertex b of Dt. By Lemma 11, there are two edge-disjoint paths connecting 

u and a in G and two edge-disjoint paths connecting v and b in G. But a and £> are 

connected by two edge disjoint paths using only edges outside the £2^,-graph. Hence 

there are two edge-disjoint paths connecting u and v in G. However, the path £>/[«, v] 

is a path connecting u and v. This path and the other two paths are clearly disjoint. 

Hence, there are three edge-disjoint paths connecting u and v in G. 

(H) U and v belong to different H^-graph: 

The path P can be partitioned into a collection of sub-paths so that each sub-path is 

in some H'-graph. 

By applying Lemma 11 and a simple induction, it is easily verified that there are three 

edge-disjoint paths connecting u and v in G. 

2. (If): Suppose to the contrary that vertex u and v are in the same 3-edge-connected 

component of G, but u and v are not in the same connected component in H'-graph. 
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Let u € V(Dt) and v € V(Dj). 

(i) If / = j , without loss of generality, we assume that pos(i,Di) < pos(j,Di) and b, c 

be the two end-vertices of £),-. Let 

A : v/a/v/+ia/+i... v„_ia„_ivu(= u)au... aqvq+\ 

P2 : vtatvt+ia,+i...v„_iav-ivv(= v)av. ..asvs+\ 

then following cases are to be considered: (7) both u and v do not have paths con

necting them to b or c, then there is no path in £2j- connecting vq+\ and vt, otherwise, 

u and v are connected. It follows that (v/_i,v;) and (yq+i,vq+2) forms a cut-pair for 

3-edge-connected component that contains u. Similarly, (vt-i,vt) and (ys+i,vs+2) 

forms a cut-pair for 3-edge-connected component that contains v. As a result, there 

exists a cut-pair which can separate vertices u and v. This contradicts our assumption 

that u and v are 3-edge-connected. (2) If M or v, but not both, is connecting to b(or c), 

otherwise, u and v is connected in £2'-graph, then without loss of generality, let u has 

a path to one of the end-vertices of Z),-, b. It follows that (vs+i, vs+2) forms a cut-pair 

for 3-edge-connected component that contains v, which contradicts our assumption. 

In conclusion, u and v are in the same connected component in £Y-graph 

(ii) If i # j , since u and v are 3-edge-connected, there exists £ number of edge-disjoint 

paths between u and v, £ > 3. Furthermore, these ^ paths can be partitioned into a 

collection of sub-paths so that each sub-path is in some fiy-graph. By applying a sim

ple induction, it is easily verified that u and v are in the same connected component 

in Q'-graph. 

• 
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Input: A bridgeless graph G = (V,E) 

Output: The 3-edge-connected components of G 

Algorithm 1. 

Algorithm 2. 

Algorithm 3. 

Algorithm 4. 

Algorithm 5: Finding 3-edge-connected components of graph G 

Lemma 12. Algorithm 5 correctly find the 3-edge-connected components of graph G. 

Proof. Immediate from the correctness of Algorithms 1 to 4. • 
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Do 

Do 

D5 

D,o 

Do 
D9 

Do = {V1,V2,V8,V9,V1o} 
Di = { v 1 , v 1 0 } 
D2 = { V2,V3lV5,V7,V8 } 
D3 = { v3,V4,v6,v5 } 
D4 = { v4,v6 } 
D5 = { v6,v5 } 
D6 = {v7,v17 ,v11 ,v12, v7} 
D7 = { v7,v17 } 
D8 = { v n , v 7 } 
D9 = {v12,v16,v13,v12} 
D10 = {V16,V15,V14,V13} 
D n = {v15,Vi3} 

Dl2={Vl6,Vl4} 

F igure l : Graph 6 and an open ear decomposit ion D 
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B o : lV'o = 2; rV'o = 8 ; B i : lV'2 = 7; IV2 = 7; 
B 2 : lV'2 = 3; rV'2 = 5 ; B 3 : l v 6 = 12; rv6 = 1 2 ; 
B4; lV'9 = 13; rV'g = 16; 

Figure 2: G' graph of G 
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V 2 V 8 Vg 

O graph for ear D0 

V10 

Q graph for ear D2 

v3 v4 

Tv4 = true 
v6 

TV6 = true 
v5 V7 

Q graph for ear D3 

V17 
T V 1 7 = true 

V11 

TV I I = true 

V12 

O graph for ear D6 

V12 V16 V 1 3 

O graph for ear D9 

V16 V15 

TV15= true 

V14 V , 3 

T V 1 4 = true 

Q graph for ear D10 

Figure 3: Q for the ears in D 
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Vi V2 V8 V9 V10 

Q' graph for ear D0 

v 2 v 3 v5 v 7 v s 

Q' graph for ear D2 

v 3 v 4 V e V 5 

r v 4=true T v 6=true 

Q' graph for ear D3 

v? v1 7 

TV17= t rue 

Vn v 1 2 

TV 1 1 = true 

Q' graph for ear D6 

V12 Vie V13 

Q' graph for ear D9 

V16 V15 V,4 
T v 1 5 - t r u e Tvi4 = t rue 

O' graph for ear D10 

V13 

3-edge-connected components: 
{V9},{V1,V1o},{V2,V8},{V3,V4,V5,V6},{V12},{V7,V17,V11},{V13,V14,V15lV16} 

Figure 4: 3-edge-connected components of G 
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Chapter 6 

Complexity on PRAM CRCW Model 

Fussell et al [9] showed that the time complexity and work for finding triconnected com

ponents of a graph G is 0(logn) and 0((m + n)log\ogn), respectively. We shall show that 

finding the 3-edge-connected components can be done within the same bounds. 

Definition: st-numbering [39]: Let G = (V,E) be an undirected graph with |V| = n and 

\E\=m. Let s and t be two distinct vertices of G. Then an .^-numbering of G is a numbering 

of vertices of G by the integers 1 through n such that s is numbered 1, t is numbered n, and 

any other vertex is adjacent both to a lower-numbered and to a higher-numbered vertex. 

Lemma 13. An st-numbering exists if and only if the graph G is biconnected. 

Proof. See [28] • 

Lemma 14. The Euler-tour technique on trees can be implemented optimally in O(logn)-

time with 0(n) work on an EREW PRAM. 

Proof. See [40]. • 
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Lemma 15. The connected components and a spanning tree of an n-node, m-edge graph 

can be determined in 0(logn)-time with 0((m + n)loglogn) work on an arbitrary-CRCW 

PRAM provided that the input is presented as an adjacency list. 

Proof. See [5]. • 

Lemma 16. List Ranking on n elements can be performed optimally in 0(logn)-time with 

0{n) work on an EREW PRAM. 

Proof. See [5]. • 

The input representation for Algorithm 5 (Finding 3-edge-connected components of 

graph G) is an adjacency list for each individual vertex. The adjacency list is represented 

by a 1-dimensional array. In this adjacency lists structure of G, for every edge (M,V), ver

tices u and v appear in each other's adjacency list. The adjacency lists structure can be 

constructed as follows: given the list of edges, L, of G in which every edge is represented 

by an unordered pair of the end-vertices of the edge, a parallel bucket sort in the range 

[1 , . . . ,n] is performed over L to produce the desired adjacency lists structure. This can be 

done in O(logn)- time and 0((n + m) loglogn) work [16]. 

In executing the parallel algorithm, every vertex u and every edge e is associated with a 

processor, denoted by Pu and Pe, respectively. In the following, we shall analyze the time 

and work complexity of Algorithms 1 to 4. 

• Algorithm 1: 

Finding an ear decomposition D of G can be done in O(logn)-time with 0((m + 

n) loglogn) work [20]. However, as the cited algorithm does not order the edges on 

each ear, the following two steps are needed to impose such an order. (1): Decompose 
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the input graph G into biconnected components G,, 1 < i < co. By Lemma 13, we 

know that an st-numbering must exist for each G,. By adding Y!i^\ \Gj\ t 0 t n e st~ 

numbers of the vertices in G,, 1 < i < (0, we obtain an ^-numbering for G. Label 

each vertex v £ V(G) with this st-number. This can be achieved in 0(log«)-time 

with 0((m + n) log logn) work [29], (2): Since every ear is a path, every edge (w,v) 

on an ear can be oriented from u to v. As a result, we can sort the edges on each 

ear according to the sr-number of u by a parallel bucket sort. This can be done in 

0(logn)-time with 0((m + n)loglogn) work [16]. 

Create an array N of size n x 1 in shared memory, where n is the total number of ears 

in G. Since n equals to the number of non-tree edges in G, therefore, the value of n 

is known after the spanning tree of G is constructed. By Lemma 15, this can be done 

in 0(logn)-time. N[i], 0 < i < z, represents ear D, in G. After that, do the following 

for each ear. For an ear D,, let us assume the number of edges in D, is k. Allocate in 

memory one array M,- of size k + 1 and create a pointer from N[i] to the first element 

of Mi. The processor associate with the first edge of ear Dt is responsible for inserting 

the vertices in M,[0] and M,[l]. The processors associate with the rest of edges do the 

following: Let us assume one of the edge is e = (w, v), where pre-order of u is smaller 

than v, and e is in nth position in the edge list of ear D, after sorting. Then processor 

Pe is responsible for inserting v into Mi[n + 1]. This can be done in 0(l)-time. After 

the above setup, the pos value can be easily calculated by reading its index number 

in array M; associated with ear D,-. 

Building G' can be constructed as follows: let the processor assigned to the first 

edge of ear Z),- does the following: (1) Find end-vertices u, v of ear Z),-. This can 

be easily done by examining array M, which takes 0(1)-time. (2) Find the ears Dp 
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and Dq where u and v are the internal vertices in P and Q, respectively. This can 

be accomplished by examining the adjacency list of u. Since each vertex in this list 

has been assigned an ear number for the corresponding edge and the edge with the 

smallest ear number is one that lies on ear Dp, determining this smallest ear number, 

hence the ear number p, can be done in 0(logn)-time. Furthermore, as the st-number 

of vertex u is known and the vertices in ear Dp are ordered by their tf-numbers, 

finding pos(u,P) can be done in 0(logn)-time with binary search. The ear Dq and 

pos(v, Q) can be determined similarly. 

Finally, the edges e' = {v'0v'p), e" — (v'^Vq) are created while the following assign

ments are carried out: Xei[l] «— p, Xe>[2] <- i, Xe"[l] <— i and Xe»[2] <— q. 

• Algorithm 2 

Using the list of the edges of G' created by Algorithm 1, the first step of finding 

the blocks in G' can be done in 0(logn)-time and 0((m + n)loglog«) work [40]. 

Then for each block 5,-, 1 < i < I, the vertex v'k with the smallest index in B, is 

determined. This can be done in 0(logn)-time and 0(m) work. A spanning tree 7} of 

Bi is then constructed. By Lemma 15, this can be done in 0(logn)-time with 0((m + 

n) log log n) work. By applying the Euler-tour technique and using the smallest index 

k, the spanning tree can be rooted at v'k. This can be done in 0(log«)-time with 

0{m) work. The set Q consists of the vertices adjacent to v'k in 7J. Computing mins, 

and maxBi thus takes 0(logn)-time with 0{n) work. The set P can be determined 

similar to Q. Finally, the values of pz[i], 1 < i < 3Vz e V(DW) can be calculated in 

0(logn)-time with 0(m) work. 

• Algorithm 3 
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In determining the iVh values, the initialization step takes 0(logn)-time with 0(n) 

work; determining if PM[1] < i can also be done within the same time and work 

bounds. If 3w, such that (3M[1] < i, then xVh 4— true. Since there can be more than 

one such u, there can be more than one processor writing into xV/i. A write conflict 

thus occurs. However, as the model allows concurrent-writes and all the processors 

involved are writing the same value (i.e. true), one of them will succeed. This step 

also takes 0(logn)-time with 0(n) work. Computing aVh, bVh, cVh and dVh involves 

computing the minimum and maximum value of the labels of the edges incident on 

vertex v ,̂ where v/, € A . We can apply list ranking [5] to the adjacency list of v/,. 

Briefly, we compare the P values of each vertex in the adjacency list of v/, in the 

recovery stage of the list ranking algorithm. By Lemma 16, the four values can be 

computed in 0(logn)-time using 0(n) work. Finally, adding the edges e can be easily 

done in 0(logn)-time with 0(n) work. 

• Algorithm 4 

Determining ei and e$ can be reduced to the range-minima problem which can be 

solved in 0(logn)-time with 0(n) work [5]. If range-minima returns a position 

number, then the edge ez (^3, respectively) is added. Adding edges for the cases 

where xv = true can be trivially done in 0(log«)-time with 0(n) work. Finally, By 

Lemma 15, determining the connected component can be done in <9(log«)-time with 

0((m + «)loglogn) work. 

In conclusion, Algorithm 5 (Finding 3-edge-connected components of graph G) runs in 

0(log«)-time on an Arbitrary-CRCW PRAM while performing 0((m + n) loglogn) work. 

41 



Chapter 7 

Conclusions and Future work 

We have presented a parallel algorithm for finding the 3-edge-connected components of an 

undirected graph. The time and work bounds (hence processor bound) of the algorithm 

match those of the best-known algorithm for 3-vertex-connectivity on the same computer 

model. 

Our algorithm consists of a number of steps each of which solves a particular sub-

problem. With the exception of the step for finding connected components and the step 

for generating an adjacency lists structure, each step can be done in the optimal O(logn)-

time and 0(m + n) work. Actually, for the step for finding connected components, an 

"almost optimal" algorithm is known [5]. This algorithm takes 0(logn)-time and does 

0((m + n)a(m,n)) work, where a is the inverse Ackermann function which grows slightly 

faster than a constant function. Unfortunately, for the step for generating an adjacency lists 

structure, the best known algorithm relies on integer sort. So far, there does not exist a 

parallel integer sorting algorithm that has the "almost optimal" time and work bounds. 

Hence, to improve the work complexity of our algorithm to the optimal 0{m+n) bound, 

we shall try to improve the work complexity for the problem of finding connected compo-
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nents and for sorting integers. 
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