
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Finding 3-edge-connected components in parallel Finding 3-edge-connected components in parallel

Yuan Ru
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ru, Yuan, "Finding 3-edge-connected components in parallel" (2010). Electronic Theses and Dissertations.
7917.
https://scholar.uwindsor.ca/etd/7917

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/275771092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7917&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7917?utm_source=scholar.uwindsor.ca%2Fetd%2F7917&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FINDING 3-EDGE-CONNECTED COMPONENTS IN PARALLEL

by
Yuan Ru

A Thesis
Submitted to the Faculty of Graduate Studies

through School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2010

© 2010 Yuan Ru

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Vote reference
ISBN: 978-0-494-62727-3
Our file Notre reference
ISBN: 978-0-494-62727-3

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or oth

erwise, are fully acknowledged in accordance with the standard referencing practices. Fur

thermore, to the extent that I have included copyrighted material that surpasses the bounds

of fair dealing within the meaning of the Canada Copyright Act, I certify that I have ob

tained a written permission from the copyright owner(s) to include such material(s) in my

thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

in

Abstract

A parallel algorithm for finding 3-edge-connected components of an undirected graph

on a CRCW PRAM is presented. The time and work complexity of this algorithm is

O(logn) and 0((m + n)loglog«), respectively, where n is the number of vertices and m

is the number of edges in the input graph. The algorithm is based on ear decomposition and

reduction of 3-edge-connectivity to 1-vertex-connectivity. This is the first 3-edge-connected

component algorithm of a parallel model.

IV

Acknowledgements

I greatly appreciate the help from my supervisor, Dr. Yung H. Tsin. During the whole

process of this writing thesis, he gave me countless valuable suggestions and insights. With

out his help, I could not have been able to achieve my goal of completing this thesis. Also I

would like to thank Dr. R. M. Barron and Dr. Dan Wu for their support and encouragement.

I acknowledge the financial support by my supervisor, Dr. Yung H. Tsin, in the form

of research assistantship through NSERC, the School of Computer Science in the form of

graduate assistantship. A few words cannot express my appreciation of these people and

entities.

I also need to thank my wife Jenny Liu for her understanding during the whole writing

period.

v

Contents

Author's Declaration of Originality

Abstract

Acknowledgements

List of Figures

1 Introduction

2 Related Works

3 Definitions

4 Some Properties of Cut-Pairs

5 Finding 3-edge-connected Components

6 Complexity on PRAM CRCW Model

7 Conclusions and Future work

Bibliography

Vita Auctoris

iii

iv

V

vii

1

3

10

13

17

37

42

43

50

VI

List of Figures

5.1 Graph G and an open ear decomposition D 33

5.2 G' graph of G 34

5.3 H-graph for the non-trivial ears in D 35

5.4 Connected Components of Q.'-graph 36

vn

Chapter 1

Introduction

Graph connectivity (vertex-connectivity and edge-connectivity) is a fundamental subject in

graph theory and has been studied extensively. A connected graph G = (V,E) is /c-edge

(k-vertex) connected if removing (k — 1) or fewer edges (vertices) will leave the graph

connected. Graph connectivity has applications in a wide variety of areas such as network

reliability, DNA construction, DNA computation, quantum physics and chemistry where

the Feynman diagram is used [31]. Because of its importance, graph connectivity has been

explored extensively in the last few decades on different computational models, especially

on the sequential and parallel models.

In this thesis, an efficient algorithm for finding 3-edge-connected components of an

undirected graph is presented. The algorithm runs on the Arbitrary-CRCW-PRAM model.

For any graph with m edges and n vertices, the algorithm runs in 0(logrc)-time using

<9(((m + n)loglogn)/logn) processors and performing 0((m + n) log logn) work. This

is the first algorithm for finding 3-edge-connected components on the Arbitrary-CRCW-

PRAM model.

In addition to its applications in the traditional areas such as network reliability, 3-

1

edge-connectivity also has important applications in quantum physics and chemistry as is

explained below.

In quantum physics and chemistry, a Feynman diagram consists of a set of vertices and

a set of edges. The edges can be partitioned into two types: V-edges and G-edges. The

V-edges are undirected edges while the G-edges are directed edges. Every vertex in the

diagram is incident with exactly three edges: one V-edge, one G-edge of which the vertex

is the tail and one G-edge of which the vertex is the head. A Feynman diagram is irreducible

if it cannot be disconnected by removing fewer than three G-edges. Let F be a Feynman

diagram and LF be the undirected graph obtained from F by contracting the V-edges into

a vertex and treating the G-edges as undirected edges. Then F is irreducible if and only if

F is 3-edge-connected. In quantum Monte Carlo simulation, it is necessary to determine if

a Feynman diagram is irreducible [31].

Recently, in bioinformatics, a data structure, called a cactus graph, had been introduced

to capture the nested structure of genome comparisons [33]. The cactus graph is built from

an adjacency graph Go in a series of steps. First, the connected components of Go formed by

the adjacency edges are determined. Then pseudo adjacency edges are added to produced a

graph G\ representing a decomposition of Go. In G\, two vertices x and y are equivalent if

it takes the removal of three or more edges to disconnect them. The equivalence classes of

vertices are thus the 3-edge-connected components. A graph G2 is constructed to represent

this decomposition. It has one vertex for each 3-edge connected component. The theory of

graph decomposition into 3-edge-connected components shows that Gi is a cactus graph in

the combinatorial sense. Finally, to construct the cactus graph, the tree-like structures in G2

are folded to obtain an Eulerian cactus graph.

2

Chapter 2

Related Works

On the sequential model, for undirected graphs, linear-time algorithms are known only

for k = 2,3. Tarjan [38] presented a very simple and elegant linear-time sequential al

gorithm for finding 2-vertex-connectivity. This technique is based on a powerful graph

traversal technique, called depth-first search, devised by Hopcroft and Tarjan [19]. The

depth-first search technique was also used by Tarjan [39] to solve the st-numbering prob

lem. Gabow [11] revisited depth-first search from a path-view perspective and designed a

new elegant linear-time algorithm for 2-vertex-connectivity and 2-edge-connectivity. For

3-vertex-connectivity, the problem was first studied by Hopcroft and Tarjan [19] in 1973.

They presented a rather complicated linear-time algorithm. In 2001, Gutwenger and Mutzel [15]

presented a list of errors in the algorithm of Hopcroft and Tarjan and showed how to correct

them. Unfortunately, their explanation was brief and incomplete. For 3-edge-connectivity,

the first linear-time algorithm was presented by Galil and Italiano [12]. Their method is to

reduce 3-edge-connectivity to 3-vertex-connectivity in linear time and then use Hopcroft

and Tarjan's 3-vertex-connectivity algorithm to solve the problem. This algorithm is rather

complicated and difficult to implement. Two simpler linear-time algorithms were then re-

3

ported by Taoka et al [37] and Nagamochi and Ibaraki [30]. Both algorithms are based

on depth-first search. The algorithm of Nagamochi and Ibaraki [30] uses graph transfor

mation technique. However, they use three different types of graph transformations and

perform multiple depth-first search over the input graph. The algorithm is complicated and

hard to implement. The algorithm of Taoka et al [37] computes the 3-edge-connected com

ponents in three phrases with four depth-first search. However, the algorithm is simpler

than the previous two algorithms and is easier to implement. Both Nagamochi et al [30]

and Taoka et al [37] classify the cut-pairs into two types, type-1 and type-2, and determine

them separately. Tsin [43] presented a very simple and elegant linear-time algorithm for

finding 3-edge-connected components. This algorithms does not distinguish between type

1 and type 2 cut-pairs. It use a novel graph transformation technique, called absorb-eject, to

transform the given graph so that every 3-edge-connected component is transformed into a

single vertex, called a super-vertex, which is then released to generate the 3-edge connected

component. The algorithm is conceptually simple and is easy to implement. Tsin [44] also

presented another linear-time algorithm for finding a set of cut-pairs whose removal leads

to the 3-edge-connected components. This algorithm is also simple and easy to implement.

An empirical study [44] shows that this algorithm outperforms all the other algorithms in

finding cut-pairs and in determining if a graph is 3-edge-connected whereas the algorithm

of Tsin [43] outperforms the rest in determining 3-edge-connected components. For k — 4,

no linear-time algorithm has been reported so far. Only an 0(n2)-time algorithm (n is the

number of vertices in graph G) has been reported. Moreover, this algorithm only determines

if a graph is 4-vertex-connected.

On the parallel computer models, the &-edge (&-vertex) connectivity problems have also

received great attention. The most popular parallel computer model is the PRAM (Parallel

4

Random Access Machine). A PRAM is a parallel computer in which n processors have

access to a common memory, called the shared memory. The PRAM is a SIMD (Single

Instruction Multiple Data) machine. Specifically, at any point of time during the execution

of a program, every processor in the PRAM executes the same instruction but on different

data stored in the shared memory. The processors are synchronized. Depending on whether

more than one processor is allowed to read from or write into the same memory location in

the shared memory, the PRAM can be classified into the following types:

EREW (Exclusive-Read-Exclusive-Write): At any time, only one processor is allowed

to read from a memory location and only one processor is allowed to write into a

memory location.

CREW (Concurrent-Read-Exclusive-Write): More than one processor is allowed to read

from the same memory location at the same time but only one processor is allowed

to write into a memory location at any time.

ERCW (Exclusive-Read-Concurrent-Write): Only one processor is allowed to read from

a memory location at any time but more than one processor is allowed to write into a

memory location at any time.

CRCW (Concurrent-Read-Concurrent-Write): More than one processor is allowed to read

from the same memory location at the same time and more than one processor is

allowed to write into a memory location at the same time.

Depending on how write-conflicts are handled, this PRAM model has been further

classified as follows:

CRCW-common: all processors writing into the same memory location must write

the same thing; only one processor will succeed and we don't know which one.

5

CRCW-arbitrary: the processors writing into the same memory location may write

different things. However, only one processor succeeds and we don't know

which one.

CRCW-priority: the processors in the PRAM are given different priorities. When

more than one processor attempt to write into the same memory location, only

the one that has the highest priority succeeds.

In the following, m and n are the number of edges and vertices in the input graph,

respectively.

While depth-first search had been successfully used in designing optimal (linear-time)

algorithms for various graph connectivity problems, it has not been successful in designing

efficient algorithms, let alone optimal algorithms, for parallel computers. This is due to the

fact that the technique is inherently sequential.

A parallel algorithm that use 0(n2) processors to find the connected components (1-

vertex-connected) of an undirected graph in 0(log2n)-time on an CREW-PRAM was first

reported in [17]. Later, Hirschberg et al [17] showed that the O(log2 n)-time bound can also

be achieved using only n\n/logn] processors. Chin et al [4] further improved the bounds

to 0(n2/£" + log2n)-time using K(> 0) processors. Note that when K = 0(n2 /log2 n),

this algorithm achieves the 0(log2n)-time bound using only 0(n2/ log n) processors. An

almost optimal algorithm for finding connected components has been developed by Cole

and Vishkin [6]. It runs in 0(log«)-time using 0((m + n)a(m,n)/logn) processors, where

a is the inverse Ackermann function. However, this algorithm runs on the stronger CRCW-

PRAM model.

Biconnectivity (2-vertex-connected) and bridge-connectivity (2-edge-connected) were

first studied by Savage and Ja'Ja' [35]. The parallel algorithms they presented uses 0(log2n)-

6

time and 0(n3/logn) processors and runs on a CREW-PRAM. Later, Tsin and Chin [45]

presented optimal algorithms that run in 0(n/K + log2 n)-time with nK(K > 1) proces

sors on the same model. When K — 0(n/log2 n), these algorithms achieve the 0(log2n)-

time bound using only 0(n2/ log2 n) processors. As the processor-time product, also called

work, is 0(n2), the algorithms do optimal work for dense graphs. Tarjan and Vishkin [40]

developed a parallel implementation for finding biconnected components that runs in 0(log n)-

time using 0{m-\-n) processors. However, the algorithm runs on the stronger CRCW-

PRAM model.

For triconnectivity (3-vertex-connectivity), several algorithms have been developed.

The algorithms reported in [21] and [14] use a parallel algorithm for matrix multiplica

tion as subroutine; hence their algorithms are far from optimal. Major progresses were

made by Miller and Ramachandran [13] and Ramachandran and Vishkin [34]. The for

mer presented an algorithm that runs in 0(log2n)-time on the CREW-PRAM while the

later presented an algorithm that runs in 0(log«)-time on a CRCW-PRAM. Later, Fussell,

Thurimella and Ramachandran [9] came up with a parallel algorithm for finding sepa

ration pairs whose time and processor complexity are O(logn) and 0(m + n), respec

tively, on the CRCW-PRAM. Fussell et al [9] used a local replacement technique to suc

cessfully improve the processor bound. Specifically, their algorithm runs in O(logn)-

time using 0((m + n)loglogn/logn) processors. No parallel algorithm has been reported

for 3-edge-connectivity. For 4-vertex-connectivity, a parallel algorithm for the Arbitrary-

CRCW-PRAM was reported by Kanevsky and Ramachandran [23]. This algorithm runs in

0(log2n)-time using 0(n2) processors.

Graph connectivity is a natural way of measuring the robustness and reliability of a

computer or communication network. The subject has thus been extensively studied on

7

the distributed computer model. For biconnectivity and bridge-connectivity, a number of

algorithms that run in 0(n)-time and transmit 0(m) messages of O(logn) length have been

proposed [1,18,27,32,36]. For 3-edge-connectivity, Jennings et al [22] presented the first

algorithm that runs in 0(n3)-time transmitting 0(n3) messages [22]. Tsin [41] improved

both the time and message bounds to 0(n2). No 3-vertex-connectivity algorithm has been

reported so far.

Fault-tolerance is a very important issue in computer network. The concept of self-

stabilization is a concept introduced by Dijkstra [8] to handle transient faults on distributed

computer. For bridge-connectivity, Karaata and Chaudhuri [26] presented the first self-

stabilizing algorithm. However, their algorithm must run concurrently with a self-stabilizing

breadth-first spanning tree algorithm. The algorithm runs in 0(mn2) steps and 0(dm)

rounds(for the definition of rounds, please see [26] for details), where d(< n) is the diam

eter of the network. Chaudhuri [2] presented another algorithm that must run concurrently

with a self-stabilizing depth-first spanning tree algorithm and requires only 0(n2) steps

and 0(d) rounds. For biconnectivity, Karaata [24] presented the first self-stabilizing algo

rithm for finding cut-vertices. His algorithm must run concurrently with a self-stabilizing

breadth-first spanning tree algorithm and a self-stabilizing bridge finding algorithm. The

algorithm requires 0(mn2) steps and 0(dm) rounds. Chaudhuri [3] improved the bounds to

0(n2) steps and 0(d) rounds by presenting an algorithm that runs concurrently with a self-

stabilizing depth-first spanning tree algorithm. Karaata [25] presented a self-stabilizing

algorithm that finds all the biconnected components in 0(d) rounds using 0(«AlogA)

bits per processor, where A(< n) is the largest degree of a vertex in the network. His al

gorithm must run concurrently with a self-stabilizing breadth-first spanning tree algorithm

and a self-stabilizing bridge finding algorithm. Devismes [7] improved the bounds to 0(H)

8

moves(for the definition of moves, please see [7] for details) (H(< n) is the height of the

spanning tree) and 0(n\og A) bits per processor, with the assumption that a breadth-first

search or depth-first search spanning tree is available. Tsin [42] improved all of the above

results by presenting an algorithm that finds all the bridges, cut-vertices, bridge-connected

components and biconnected components in 0(dn\og A) rounds using 0(nlog A) bits per

processor. Moreover, in contrast with the above algorithms, this algorithm does not assume

the existence of any spanning tree.

In the wireless sensor network setting, Turau [46] presented an algorithm that takes

0(n)-time and transmits at most Am messages.

9

Chapter 3

Definitions

A graph is a triple G = (V,E) in which V and E are two disjoint finite sets such that V ^ (j).

Each element of V is called a vertex of G, and each element of Z? is called an edge of G.

Let v\e\V2---Vk-\ek-\vk be a sequence of alternating vertices and edges such that v,- € V,

1 < i < k, and e,- = (v,-, v,+i) e E, I <i <k. We shall also denote the edge et by v,- -> v,+i.

The sequence is a pafn P in G if the vertices v,-, 1 < / < k, are distinct; the sequence is a

cycle in G if vi = v& and the vertices v,-, 1 < / < k, are distinct, where k > 1. The subscript

j is called the index of vertex v,- on the path P. We assume that on each path P, the index of

every vertex is distinct. When the sequence is a path, then vi,v^ are the end vertices, and

each v,, 1 < i < k, is an internal vertex. We shall also denote the path by vi ~> v*. The path

is a nw// path if k = 1. A self-loop is an edge that connects a vertex to itself. A u-v walk is a

sequence of vertices starting at u and ending v, where every two consecutive vertices in the

sequence are adjacent in the graph. A closed walk is a walk when the first and last vertices

are the same. The set of edges (vertices, respectively) on a path P is denoted by E(P)

(V(P), respectively). G — E\ where E' C E, is the graph resulting from G after the edges

in E' are removed. A graph G is connected if there is a path between every two vertices;

10

it is disconnected otherwise. A connected component is a maximal connected subgraph

of G. An edge e is called a bridge of G if G — e is disconnected. If a connected graph G

contains no bridge, then G is called a bridgeless graph or a 2-edge-connected graph. A

vertex v € V is called cut-vertex if G — v is disconnected. A graph without a cut-vertex is

biconnected and is also called block. A pair of edges {e,e'} E E is called a cut-pair of a

bridgeless graph G if G — {e, e'} is disconnected. A bridgeless graph without cut-pairs is a

3-edge-connected graph. Let G = {V,E) and G' = (V,£ ') be two simple disjoint graphs,

then the union of G and G' is the graph G U G' = (V U V', E U £ ') . G' is called a spanning

subgraph of G if V = V' and G' is a subgraph of G.

An ear decomposition D of an undirected graph G = (V, E) is a partition of £ into a set

of edge-disjoint paths Do,Di, . . .D,, . . .D„ such that Do is a cycle on which a vertex, r, that

has the smallest index value, is designated as the root, and for every D^,k>_ 1, each end

vertex of D^ is a vertex on some Dj,j < k. We say that ear D, is smaller than Dj if / < j . If

there is only one edge in D,, then D, is a trivial ear; otherwise, it is a non-trivial ear. Two

ears are parallel if they have the same end vertices. The distance between two vertices on

an ear is the number of edges between them on the ear. The following defintion is from [10].

Starting with the end vertex p of D; with the smaller index, define pos(p,Di) to be zero.

Vv € V(Dj) — {p}, pos(v,Di) is the distance from p to v on D,. The value of pos(w,Di),

for w <£ V(Di) is undefined. For the sake of consistency, we label the vertices of an ear in

D by their pos values. Specifically, if v/, Vj are two vertices on the ear D,, then I and j are

the pos value of v/ and vj, respectively. We use Dt(e,e') (Di[e,e'\, respectively) to denote

the portion of ear D; between edges e and e', exclusive (inclusive, respectively) of these

edges. D,(v, V) (D,[v, v'], respectively) denotes the portion of ear D,- between vertex v and

v', exclusive (inclusive, respectively) of these vertices. D; — Di[e,e'] refers to the segment

11

of Dj whose edge set is E(Dj) —E(Di[e,e']). Remark: In this thesis, we assume without

loss of generality that the input graph G is 2-edge-connected.

12

Chapter 4

Some Properties of Cut-Pairs

Lemma 1. Let G = (V,E) be a connected graph. An edge eofG is a bridge if and only if

e does not lie on any cycle in G.

Proof See [43]. •

Lemma 2. An undirected graph G has an ear decomposition if and only if it is 2-edge

connected.

Proof See [47]. •

Lemma 3. Let G = (V,E) be a connected graph and let e,e' € E. Then {e, e'} is a cut-pair

if and only if e (e', respectively) is a bridge in G — e' (G — e, respectively).

Proof. See [43] •

Lemma 4. Let G — (V,E) and D be an ear decomposition of G. Then for any edge e E

U/=i Dj, there exists a cycle containing e without passing through any edge in ear Dj.

Proof. (Proof by induction)

13

Base case: when i = 1, according to the definition of ear decomposition, Do is a cycle

C containing every edge in it.

Suppose the Lemma holds true for i — k — 1.

Consider i = k. Let e E \J)ZQDJ. If e E U/=O^./>
 m e n by the induction hypothesis, e

lies on a cycle in [f-Z^Dj without passing through any edge in ear D^-\. Clearly, the cycle

is also a cycle in \J*JZQDJ, without passing through any edge on £>*.

If e lies on Dk-\, let the two end-vertices of ear D^-\ be lying on the ears Du and Dv,

where u, v < k — 1. By a simple induction, it is easily verified that \JiZ0Dj is a connected

graph. As a result, there is a path P in it connecting the two end-vertices of D^-1. It follows

that the path P and ear D^-i forms a cycle containing e in U/=o^7 an<^ m i s c y c l e does not

use any edge on ear D^. •

Lemma 5. Let G = (V,E) and D be an ear decomposition of G. If {e,e'} is a cut-pair of

G, then there exists a non-trivial ear Di G D that contains both e and e'.

Proof.

Since D is a partition of E, every edge belongs to one and only one ear.

Let {e, e'} be a cut-pair such that e E Di and e' E Dj. We want to prove that / = j .

Suppose to the contrary that i ^ j , without loss of generality, we assume / < j . By

Lemma 4, there exists a cycle in \J{ZQDJ containing e but not e'. But then e is not a bridge

in G — e', which contradicts Lemma 3. •

Theorem 1. Let G = (V,E) be an undirected graph and r be the root of an ear decompo

sition D ofG. Let Di E D and e, e' E E{Di) such that e = (a, b), e' = (a', b'). Furthermore,

pos(a,Di) < pos(b,Di) < pos(a',Dj) < pos(b',Di). Then {e,e'} is a cut-pair of G if and

only if it satisfies both the following conditions:

14

1. There does not exist a path P : m ~> r, where m € V(Di[b,a']), and V(P) D V(A) =

{m}.

2. Let Q = {w e Di\3 path P': V(P')r\V(Di) = {w,m}, where m e V(Di[b,a'})}. If

Q is not empty, let c € Q such that pos(c,D[) < pos(u,Di) and d € Q such that

pos(d,Di) > pos(u,Di),\/u € Q. Thenpos(b,Di) <.pos(c,Dj) < pos(d,Di) <pos(a',Di).

Proof.

1. (Only if) Since {e, e'} is a cut-pair of G, G — {e, e'} contains at least two connected

components, namely C\ and C%. Furthermore, D, — D\e, e'] and Di(e, e') cannot be in

the same connected component, otherwise, there would exist a path Pj from a vertex

x e V(Di - Di[e,e']) to some vertex y € V(D,-(e,e')) in G - {e,e'}. This path and the

portion of £),• between x and y, called it Pi, form a closed walk W. Owing to the fact

that Pi does not contain e or e' and P2 contains only one of e and e', without loss of

generality, we assume P2 contains e. As W is a closed walk, there must exist a cycle,

C, in W that contains e. Since C does not contain e', therefore C is a cycle in G — {e1}.

By Lemma 1, e is not a bridge in G — {e1} which contradicts Lemma 3.

Now, let Dt — Di[e, e'\ be in C\ and D,(e,e') be in C2.

For condition 1, suppose to the contrary that there exists a path m ~* r, where m 6

[ft,a']. Let G' = U/=o^ ' (i-e- G' is a subgraph of G composing of the ears Dj,0 <

j < i). It is easily verified that G' is a connected graph. Let v' be one of the end

vertices of £>,-, then v' is a vertex in G'. As r is also a vertex in G' and G' is connected,

therefore, there is a r ~~> v' path connecting r and v' in G'. The paths m-^r and r ~»v'

form a n m ^ v ' path. Since m € V(Ci) while v' € V(C2), we thus have C\ = C2 which

contradicts C\ ^ C2.

15

For condition 2, suppose to the contrary that p0sy(c>A) < posvt(b,Di), then c € Q

implies that there is a path P' from m to c without passing through e and e'. It follows

that P' connects m and c in G—{e,e'}. But c € V(C\) and m € V(C2), therefore C\ =

C2 which contradicts C\ 7̂ C2. By a similar argument, posvi(d,Di) > posv>(a',Di).

2. (If) Suppose {e, e'} is not a cut-pair. Then by Lemma 3, e is not a bridge in G — {e'}.

By Lemma 1, e lies on a cycle C. If C completely lies within I J ^ o ^ ' le t m be a

vertex such that m € V(D,[fc,a']). Then there must exist a path P : m ~> r in Uj=o A'>

hence in G, such that V(P) nV(D,) = {m}. Condition 1 is thus violated.

On the other hand, if the cycle C contain an edge outside U'J^QDJ, then 3 a path P':

V(P')nV(Di) = {w,m}, where m € V(Di[b,a'])} such that pos(w,Di) < pos(b,Dt).

Condition 2 is thus violated.

The case in which e' is not a bridge in G — {e} can be proved in a similar way.

•

16

Chapter 5

Finding 3-edge-connected Components

Given G = (V,E), let D be an ear decomposition of G. We define G' = (V',E') as follows:

V' = {v\ | D, e D}, vertex vj, 1 < / < n, is called the image of £>,•; £ ' = {e' = (v'hv'j) \ 3e =

(uh,W{) eE such that M/J € V (£),•) A w/ eV(Dj)/\i^ j}; edge e is called the corresponding

edge of e' in G. Moreover, for every edge e' = (v-, v'-) € E', where i < j , a 2-tuple X-value

is associated with e', denoted by Xei, such that A,e/[1] = h and A,e/[2] = /. Let Bi,2?2, •. • ,#/

be the blocks of G'.

17

Input: A bridgeless graph G = (V,E)

Output: A graph G' = (V',E')

Find an ear decomposition D of G.

for each ear D{ £ D do in parallel

| create a new vertex v\ £ V(G').

Endpar

for each edge e = (x,y) £ E(G) do in parallel
if (x = UhG V(Di) and y = wi £ V(D/), where j < j) then

create a new edge e' = (vj, v') GE(G').

\>[2]=l.

Endpar

Algorithm 1: Building G' for graph G

Lemma 6. TTiere <ioe5 nof exwf a bridge in the graph G1 = (V',E').

Proof.

In order to prove that there is no bridge in the graph G', we shall prove that for each

edge e' £ E(G'), there exists a cycle containing e'. Let e' = {v'^v'j), where v\ (v'j) is the

image of ear D,- (Dj, respectively), and edge e = (M, v) be the corresponding edge in graph

G, where u £ Dt A v € Dj. Since G is a bridgeless graph, by Lemma 1, we know that e lies

on a cycle C in G.

Let P\y denote the ear portion between vertices x and y, exclusive, on the ear D^, where

x £ V(Dk), y £ V(Dk) and Dk £ D. Then the cycle C can be represented as follows:

u,PL,Wl,wuliu,W2,W2,--.Kh^,w^wh,Pth,Wh+1,---^vPiv,v,v,e,u, where i^d^a^b^

18

For the segment, P%h_uWh,Wh,P&h ,wh+l> of cycle C, we want to show that v'a,v'b are con

nected in G', if Da and Dj, are non-trivial ears. [Remark: If Da or D\, is a trivial ear, since

the end vertices of Da or Df, are the internal vertices of some other ears, say Dc and D^

respectively. So, instead of proving v'a and v'b are connected, we can prove v'c and v'd are

connected.]

The following cases are to be considered.

• If Wh £ Da, then by the definition of G', an edge e' = (v'a, v'b) is in G'.

• If Wh is one of the end vertices of ear Da, by the definition of ear decomposition, Wh is

an internal vertex of another ear D^. Ifk^ b, then edges e i = (v'a, v'k) and e2 = (v'k, v'b)

exist in G'. It follows that e\ and ei form a path v̂ —> v^ in G'. On the other hand, if

k = b, then an edge e' = (v'a,v'b) exists in G'.

From the above argument, it is easily verified that for a cycle C in G, if it passes through

two non-trivial ears, then there exists a path in G' connecting the images of these two ears;

if it passes through at least one trivial ear, then there exists a path in G' between the images

of the ears that contain those end vertices as internal vertices. As a result, if e = (u,v),

where u £ Di A v e Dj lie on a cycle in G, then there corresponds a cycle C' in G' containing

e' = (v),v'). Hence, e' lies on a cycle in G'. •

Lemma 7. Le? v\, v'- Z?£ f/ze images ofearDi andDj, respectively. Ifi < j , then there exists

a path between root r and v't -without passing through v'-.

Proof. Immediate from Lemma 4. •

Theorem 2. Let D{,Dj £ D such that i < j and vj, v'- £ V(5&)> where B^ is a block in G',

1 < k < I. Then any path P starting from a vertex v £ V(Dj) must pass through some

19

internal vertex u 6 V(Di) before reaching some vertex x £ V(DZ), z < i if and only ifv\ has

the smallest index among all the vertices in the block B^.

Proof.

1. (If)

Since v E V{Dj), the assertion is equivalent to proving that any path P starting from

v'j must pass through vertex v't before reaching some vertex v'z, z < i. Suppose to

the contrary that there exist a path P starting from v' which does not pass through v\

before reaching some vertex v'v z < i- We assume that v'z lies on a block Bw. Owing to

the fact that v'i has the smallest index value in block B* and the image of any ear that is

smaller than Z>, cannot be in B^, so v'z cannot be in the block Bk- Since vj-, v'j € V(Bk),

there exists a cycle C containing v'i and v'j.

Let v'h be the common vertex of P and C such that no vertex following v'h on P lies

on C. Let v's be the first vertex on P which lies on the section v'h ~-> v'z such that

v̂ g- V(Bic) while the vertex preceding it on P does belong to V(-Byt). Since \J'J=QDJ is

a connected graph containing the ears Dz and Z),-, there must be a path, Pi, connecting

v[with v'z outside B&. Let v't be a common vertex of Pi and the section v̂ ~-> v'z that

is closest to v .̂ Then, the section v't -<•> v'h on C, the section v'h -^> v's on path P, the

section v[~» v't on Pi form a cycle containing v'{ and v£ in G'. As a result, v̂ G V(S^)

which contradicts the above assumption made on v .̂

2. (Only if) Suppose to the contrary that v\ does not have the smallest index among all

the vertices in the block B^. Let us assume that v'k has the smallest index in B^. Since

k < i, by Lemma 4, there exists a cycle in {J'Z^Dj, hence in G, that contains D^ and

not Dj. Since v'-, v'k € V(B^), that means v'- and v̂ . lie on a common cycle. It follows

20

that there are at least two paths connecting v'j and v'k in B^. Therefore, there is a path

Pi connecting them without going through v'r Moreover, since k,z < i, \JlZ}QDj is

a connected graph containing the vertices v'k and v'z. As a result, there is a path P2

connecting v'k and v'z without passing through v). The paths Pi and Pj form a walk,

hence a path connecting v'j and v'z but bypassing v'r This contradicts the assumption.

•
Corollary 1. Let G = (V,E) and D be an ear decomposition of G. If 5,, 1 < i < I, is a

biconnected component ofG' = (V',E'), then the vertex ofBi with the smallest index value

is either the root r or a cut-vertex ofG'.

Proof.

Let Bi be a block of G' and v'k be the vertex in it that has the smallest index value.

Suppose v'k is not the root r. Then r $ V(B{). Suppose to the contrary that v'k is not a cut

vertex. Then G' — v'k is a connected graph which implies that for any other vertex in block

Bj, there is path connecting it with the root r without passing through v'k. But r = v'Q and

0 < k. This contradicts Theorem 2.

•

Lemma 8. Let Z), and Dj, j 7̂ i, be any two ears in an ear decomposition D of graph

G = (V,E). For an edge e = (u,v) € E(G) such that u G V(D,-), v € V(Dj) and i ^ j , if

v'j 6 V' belongs to a block whose smallest index is smaller than i, then there exists a path P

connecting v to the root r in G without passing through any internal vertex z € A'.

Proof.

Since vertex v e V(Dj), this lemma is equivalent to proving that there exists a path P

between v'- and the root r without passing through v\. Let us assume that v' belongs to the

block Bk and v- belongs to the block B^. Two cases are to be considered separately.

21

(a) If k = h, let v'p has the smallest index value among all the vertices in £*(= B/,). By

Theorem 2, if there exists a path from v' to the root r, it must pass through v'p. Since v,',

v'j, v'p belong to the same block, they lie on a cycle. By Lemma 1, there exists a path Pi

connecting v'j and v'p without passing through v'{. By Lemma 7, there is a path 7>2 from v'p

to root r without using v\. It follows that paths Pi and Pz form a path connecting v' with r

in G' without passing through v\. Consequently, there is a path P connecting v to the root r

in G without passing through any internal vertex z G A-

(&) lik^h, then v̂ and v(- belong to two different blocks. Let us assume that v'w has the

smallest index in block Bk. Since w < i, by Lemma 7, there exists a path Pi connecting the

root r with vertex v'w bypassing v\. Moreover, as v'j lies in the block B^, there exists a path

P2 connecting v'w and v̂ without passing through v\. It follows that paths Pi and P2 form

a walk that contains a path connecting v' with r without passing through v\. Hence, there

exists a path P connecting v to the root r in G without passing through any vertex zEDi.

a

Let Bi, 1 < i < /, be a block in G' and vĵ be the vertex in block B,- that has the

smallest index. Let /#,. = mm{h \ 3e = {uh,wq),Uh € V(Djt) and wq £ V(Dj),i ^ j} and

rBi = max{/? | 3e = (uh,wq),uh € V(Dk) and wg 6 V(D7'),i # j}.

Then, Vz G V, let z be on an ear Dw such that v^ and v'k belong to the same block. If z

is directly connected to some vertex in D^, then let pz[1..3] such that Pz[l] = k, pz[2] = Ik,

pz[3] = n . Otherwise, pz[l] = k, pz[2] = null, pz[3] = null.

22

Input: A bridgeless graph G = (V,E), an ear decomposition D, G' = (V',E') of G

Output: pz[1..3], Vz e V(DW), 0<w<n

Determine the blocks, #i ,#2,... ,5/, of G'.

for Bi, 1 < i < / do in parallel

Compute v'k such that k = min{j | v'- is a cut-vertex of G and v'j € V(Z?,-)}.

Compute Q = {e' G E(Bi) | v'k is an end-vertex of e'}.

Compute miriBi = min{X,e'[l] | e' E Q}.

Compute maxBi = max{X,e'[l] | e' e Q}.

Compute P = {V[2] | e' e Q}.

for (v'w e V(Bi) - {v'k}) do in parallel

for (z € V(DW)) do in parallel

i fzePthen

Pz[l]=*-

Pz[2] =minBi.

Pz[3] =maxBr

end
else

Pz[l]=*-

Pz[2]=null.

Pz[3]=null.

end

Endpar

Endpar

Endpar

Algorithm 2: Finding P value

23

Lemma 9. Algorithm 2 correctly computes Pz[1..3],z € V.

Proof. Immediate from the definition of |3Z [1. .3], z € V. •

Let Dj be a non-trivial ear voeo^iei... e^\v^ in an ear decomposition D of graph G. For

each vertex v € D,-, 0 < i < n, after computing p%, we then build a graph, £!,•, for ear Z), to

help us find the cut-pairs of the given graph G. The vertex set of Q., consists of the vertices

of ear Dt. For an internal vertex v on the ear Z),, if v can reach the root r without using any

internal vertex in the £>,-, then xv = true.

For a vertex w on the ear D,-, if w is one of the end-vertices of an edge e € E(G) such

as e = (w,z), where z 6 Dj and j ^ i, then an edge e\ = (w,Vfc) € E(Q.,), where v* is the

vertex with the smallest pos value on the ear D,- that can be reached from w without using

any internal vertex in the ear Dv. If v* = w, then no edge is created in E(£li). By symmetry,

an edge e2 = (w,v/,) € E(£li), where v̂ is the vertex with the largest pos value on the ear

Di that can be reached from w without using any internal vertex in the ear Z),. An £l-graph

of G is the union of the graphs Git, 1 < i < n.

24

Input: A graph G, its associated graph G' and an ear decomposition D

Output: £2-graph for G

for each ear Di € D do in parallel

for Vh € V(Di) do in parallel
xVh = false.

for e — (u,Vh), u € V(Dj),e ^ £(£>,') do in parallel

if(3M[l] < / then
| xVh = true.

end

Endpar

if xVfi — false then
aVh = min{|3u[2] | 3e = (u,vh),u <E V(Dj),i # j}.

2>V/i=max{pM[2] | 3e = (u,vh),ueV(Dj),i^j}.

end

cVh=mm{pos(u,Di) \ e = (u,vh),u e V(D,-),e ££(£>,-)}.

dVh = max{pos(u,Di) \ e = (u,vh),u € V(Dt),e &E(Di)}.

Endpar

Endpar

if h y£ min{aVh, cVh} then
| add an edge e = (v/,, w) such that pos(w, Di) = min{aVA, cVh}.

end

if h ^ max{bVh,dVh} then
| add an edge e = (v^,w) such that po^w,£>,•) = max{bVh,dVh}.

end

Algorithm 3: Build ft-graph for G

25

Lemma 10. Algorithm 3 correctly builds the Q-graphfor the graph G.

Proof.

Since £2-graph is the union of £2, graph for each ear D,,0 < i < n, so this statement is

equivalent to proving that Algorithm 3 correctly builds the £2, graph for each ear D,.

• (i): Since v̂ G V(Di), if j3„[l] < i, it means that v\, the image of Dj, belongs to a

block whose vertex with the smallest index is smaller than i. Then, by Lemma 8,

there exists a path P from u to the root r without using any vertex of ear £),-. By

definition, xu is correctly set to true.

[Remark: Notice that for any edge e = (H,V/,), u e V(Dj),Vh G V(D{),j ^ i, it is not

possible that P„[l] > i. Suppose to the contrary, p„[l] > i, then by the definition of

the (3 value, v'i and v'- cannot be in the same block. Let us assume that v'j £ V(BW)

and v'i G V(Bt), w^t, where Bw,Bt are blocks of G'. Two separate cases are to be

considered:

Case 1: If vertex v' is not the cut-vertex of block Bw, then by Theorem 2, edge e =

(u,Vh) must contain a vertex of ear D/, where v\ is the cut-vertex of block Bw. Since

u € V(Dj), j ^ /, that means v/, G V{D{). Furthermore, v/, G V(D,) by assumption.

So, v/, belongs to both D, and £>/. But v't and v\ are in two different blocks. We thus

have i = I. As a result, P„[l] = i which contradicts our assumption that pM[l] > i.

Case 2: If vertex v'- is the cut-vertex of block Bw, since e = (M,V/,),V/, G Z),- and

v- € V(Bt), that means p„[l] is the index of the cut-vertex of Bt. As a result, PM[1] < i

which contradicts the assumption that PM[1] > /.]

• (ii): For edge e eE(G) such that e = (u,vh),u e V(D7-),v* G V(Di)J^i, if pM[l] = i ,

26

it means that vj and v'- are in the same block B^, 1 <k<l, where v't is the cut-vertex

of Bi. Owing to the fact that the cut-vertex v\ can be a vertex in several blocks, and

for each such block #/,, there corresponds two values lgh and TBA, it can be easily

seen that the variable aVh represents the minimum lsh values, and the variable bVh

represents the maximum rsh values. Furthermore, from the vertex v^, there can be an

edge e\ = (w, v/,), where u € V(A)- It is easily seen that e\ does not use any internal

vertex of Di except u and v/,.

The variable cVh represents the minimum u value and the variable dVh represents the

maximum u value, where u £ V(pi). It is obvious that the minimum of aVh and cVh is

the index of the vertex with the smallest pos value on D,- which can be reached from

Vf,. Similarly, the maximum of bVh and dVh is the index of the vertex with the largest

pos value on Dt which can be reached from v^.

•

The following definitions are similar to those defined in [10]. We refer to the edges in

E(Q.i) —E(Di) as arcs. It is easily verified that the arcs form a collection of paths in Q,\ We

shall denote each of the paths by v\a\V2di•. .vq-\aq-\vq, where a.j is the arc connecting

vertices Vj and v/+i.

Define an equivalence relation ^ over V(£>,') a s follows: Mva,Vb G V(D,-), va%yt, if

there is an arc between them or there exists a pair of arcs (va,vc) and (v^,v^) such that

pos(va,Dj) <pos(yb,Di) < pos(vc,Di) <pos(vd,Di).

Definition: An £^-graph of an ear D,- is a spanning subgraph of the £Vgraph such that

£(£!•) = E(Q.j) — E{Di). An Cl'-graph of a graph G is a spanning subgraph of the H-graph

such that E(Q!) = E(Q) - E(G).

27

Input: The fl'-graph of graph G

Output: The connected components Ci,C2,... ,Cn of the n'-graph

for Dj € D do in parallel

for e\ = (vfl,vc) G E(Q!),pos(va) < pos(vc),va,vc € V (£>,•) do in parallel
Find an edge ez = (v^v^), pos(vb) < pos(vd), such that

(/) pos(va) < pos{yb) < pos(vc).

(ii) pos(vd) = max{pos(v') \ 3e = (v&, v'), v' € V(D{) f\pos(v') > pos(vc)}.

Find an edge e^ = (vy, v<//) , pos(vy) < pos^ji), such that

(i) pos(va) < pos(vdi) < pos(vc).

(ii) pos(vy) = min{pos(v') \ 3e = (v',vd>),v' G V(A') Apoj(v') < pas(vfl)}.

if ^2 exi'sta then
| add an edge (v^,vc).

end

if £3 exists then

I addanedge(va,vrf/).

end

Endpar

for v G V(£),), where xv = true do in parallel
I add an edge between v and one end vertex of £>,-.

Endpar

Endpar

Find the connected components Ci,Cz, • • • ,Cn.

Algorithm 4: Finding connected components of H'-graph

28

Lemma 11. Let u, v E V(Q.'i). If there exists a path P connecting u and v in Qlit then exists

two edge-disjoint paths connecting u and v in G.

Proof. (Proof by induction on the number of interlaces K in P)

Base case: when K = 0, the path P consists of a sequences of arcs:

(u =)viaiv2fl2 • • • vq-\aq-\vq{= v)

Since every arc corresponds to a path in G that does not use any edge on D,, therefore the

path P gives rise to a path in G that does not use any edge on £>,-. Since Dj[u,v] is a path

connecting u and v in G that uses only edge on D(, we thus have two edge-disjoint paths

connecting u and v in G.

Suppose the Lemma holds true for K = k — 1.

Let P : (u =)v\e\V2e2...vq-\eq-\vq{= v) have k(> 1) interlaces.

Let eh be the first edge in P that is not an arc (note: this is where the first interlace

in P occurs). Consider P' : vieiV2^2 • • •Vh^h^h+i- Then ej = aj, 1 < j < h. It follows that

v\a\V2az. ..eh-iVf, is a path in G that does not use any edge on Z),-. As D,-[«,v] is a path

connecting u and v in G that uses only edge on D,-, we thus have two edge-disjoint paths

connecting u and Vh+\ in G which give rise to a cycle containing the edge e — (v/,+i, v/,).

Now, consider P" : Vh+\eh+\Vh+2 • • • vq-\eq-\vq. Clearly, P" has k — 1 interlaces. By the

induction hypothesis, there exists two edge-disjoint paths connecting v^+i with v. These

two paths also give rise to a cycle containing the edge e = (v^+i,v/,).

Clearly, the edge e is the only common edge of P' and P". Therefore, by removing e

from both paths and joining them at the vertices v/, and v/,+i, we obtain a cycle containing

u and v in G. Hence, then exists two edge-disjoint paths connecting u and v in G. •

Theorem 3. Let vertices u,v G V(G). u, v are in the same connected component of the

Q!-graph if and only ifu, v are in the same 3-edge-connected component ofG.

29

Proof.

1. (Only If): Suppose u and v belong to the same connected component in the £2'-graph.

Then there is a path P connecting u and v.

(/) u and v belong to the same H^-graph:

If P is a path in the H^-graph, then by Lemma 11, there are two edge-disjoint paths

connecting u and v in G. Since there is yet another path connecting u and v using

only edge outside D, — Dj[u,v], we thus have three edge-disjoint paths connecting u

and v in G.

If P is not a path in the ^ -g raph , then there must exist a path P' in the £2^-graph that

connects u with one end-vertex a of D, and another path P" that connects v with the

other end-vertex b of Dt. By Lemma 11, there are two edge-disjoint paths connecting

u and a in G and two edge-disjoint paths connecting v and b in G. But a and £> are

connected by two edge disjoint paths using only edges outside the £2^,-graph. Hence

there are two edge-disjoint paths connecting u and v in G. However, the path £>/[«, v]

is a path connecting u and v. This path and the other two paths are clearly disjoint.

Hence, there are three edge-disjoint paths connecting u and v in G.

(H) U and v belong to different H^-graph:

The path P can be partitioned into a collection of sub-paths so that each sub-path is

in some H'-graph.

By applying Lemma 11 and a simple induction, it is easily verified that there are three

edge-disjoint paths connecting u and v in G.

2. (If): Suppose to the contrary that vertex u and v are in the same 3-edge-connected

component of G, but u and v are not in the same connected component in H'-graph.

30

Let u € V(Dt) and v € V(Dj).

(i) If / = j , without loss of generality, we assume that pos(i,Di) < pos(j,Di) and b, c

be the two end-vertices of £),-. Let

A : v/a/v/+ia/+i... v„_ia„_ivu(= u)au... aqvq+\

P2 : vtatvt+ia,+i...v„_iav-ivv(= v)av. ..asvs+\

then following cases are to be considered: (7) both u and v do not have paths con

necting them to b or c, then there is no path in £2j- connecting vq+\ and vt, otherwise,

u and v are connected. It follows that (v/_i,v;) and (yq+i,vq+2) forms a cut-pair for

3-edge-connected component that contains u. Similarly, (vt-i,vt) and (ys+i,vs+2)

forms a cut-pair for 3-edge-connected component that contains v. As a result, there

exists a cut-pair which can separate vertices u and v. This contradicts our assumption

that u and v are 3-edge-connected. (2) If M or v, but not both, is connecting to b(or c),

otherwise, u and v is connected in £2'-graph, then without loss of generality, let u has

a path to one of the end-vertices of Z),-, b. It follows that (vs+i, vs+2) forms a cut-pair

for 3-edge-connected component that contains v, which contradicts our assumption.

In conclusion, u and v are in the same connected component in £Y-graph

(ii) If i # j , since u and v are 3-edge-connected, there exists £ number of edge-disjoint

paths between u and v, £ > 3. Furthermore, these ^ paths can be partitioned into a

collection of sub-paths so that each sub-path is in some fiy-graph. By applying a sim

ple induction, it is easily verified that u and v are in the same connected component

in Q'-graph.

•

31

Input: A bridgeless graph G = (V,E)

Output: The 3-edge-connected components of G

Algorithm 1.

Algorithm 2.

Algorithm 3.

Algorithm 4.

Algorithm 5: Finding 3-edge-connected components of graph G

Lemma 12. Algorithm 5 correctly find the 3-edge-connected components of graph G.

Proof. Immediate from the correctness of Algorithms 1 to 4. •

32

Do

Do

D5

D,o

Do
D9

Do = {V1,V2,V8,V9,V1o}
Di = { v 1 , v 1 0 }
D2 = { V2,V3lV5,V7,V8 }
D3 = { v3,V4,v6,v5 }
D4 = { v4,v6 }
D5 = { v6,v5 }
D6 = {v7,v17 ,v11 ,v12, v7}
D7 = { v7,v17 }
D8 = { v n , v 7 }
D9 = {v12,v16,v13,v12}
D10 = {V16,V15,V14,V13}
D n = {v15,Vi3}

Dl2={Vl6,Vl4}

F igure l : Graph 6 and an open ear decomposit ion D

33

B o : lV'o = 2; rV'o = 8 ; B i : lV'2 = 7; IV2 = 7;
B 2 : lV'2 = 3; rV'2 = 5 ; B 3 : l v 6 = 12; rv6 = 1 2 ;
B4; lV'9 = 13; rV'g = 16;

Figure 2: G' graph of G

34

V 2 V 8 Vg

O graph for ear D0

V10

Q graph for ear D2

v3 v4

Tv4 = true
v6

TV6 = true
v5 V7

Q graph for ear D3

V17
T V 1 7 = true

V11

TV I I = true

V12

O graph for ear D6

V12 V16 V 1 3

O graph for ear D9

V16 V15

TV15= true

V14 V , 3

T V 1 4 = true

Q graph for ear D10

Figure 3: Q for the ears in D

35

Vi V2 V8 V9 V10

Q' graph for ear D0

v 2 v 3 v5 v 7 v s

Q' graph for ear D2

v 3 v 4 V e V 5

r v 4=true T v 6=true

Q' graph for ear D3

v? v1 7

TV17= t rue

Vn v 1 2

TV 1 1 = true

Q' graph for ear D6

V12 Vie V13

Q' graph for ear D9

V16 V15 V,4
T v 1 5 - t r u e Tvi4 = t rue

O' graph for ear D10

V13

3-edge-connected components:
{V9},{V1,V1o},{V2,V8},{V3,V4,V5,V6},{V12},{V7,V17,V11},{V13,V14,V15lV16}

Figure 4: 3-edge-connected components of G

36

Chapter 6

Complexity on PRAM CRCW Model

Fussell et al [9] showed that the time complexity and work for finding triconnected com

ponents of a graph G is 0(logn) and 0((m + n)log\ogn), respectively. We shall show that

finding the 3-edge-connected components can be done within the same bounds.

Definition: st-numbering [39]: Let G = (V,E) be an undirected graph with |V| = n and

\E\=m. Let s and t be two distinct vertices of G. Then an .^-numbering of G is a numbering

of vertices of G by the integers 1 through n such that s is numbered 1, t is numbered n, and

any other vertex is adjacent both to a lower-numbered and to a higher-numbered vertex.

Lemma 13. An st-numbering exists if and only if the graph G is biconnected.

Proof. See [28] •

Lemma 14. The Euler-tour technique on trees can be implemented optimally in O(logn)-

time with 0(n) work on an EREW PRAM.

Proof. See [40]. •

37

Lemma 15. The connected components and a spanning tree of an n-node, m-edge graph

can be determined in 0(logn)-time with 0((m + n)loglogn) work on an arbitrary-CRCW

PRAM provided that the input is presented as an adjacency list.

Proof. See [5]. •

Lemma 16. List Ranking on n elements can be performed optimally in 0(logn)-time with

0{n) work on an EREW PRAM.

Proof. See [5]. •

The input representation for Algorithm 5 (Finding 3-edge-connected components of

graph G) is an adjacency list for each individual vertex. The adjacency list is represented

by a 1-dimensional array. In this adjacency lists structure of G, for every edge (M,V), ver

tices u and v appear in each other's adjacency list. The adjacency lists structure can be

constructed as follows: given the list of edges, L, of G in which every edge is represented

by an unordered pair of the end-vertices of the edge, a parallel bucket sort in the range

[1 , . . . ,n] is performed over L to produce the desired adjacency lists structure. This can be

done in O(logn)- time and 0((n + m) loglogn) work [16].

In executing the parallel algorithm, every vertex u and every edge e is associated with a

processor, denoted by Pu and Pe, respectively. In the following, we shall analyze the time

and work complexity of Algorithms 1 to 4.

• Algorithm 1:

Finding an ear decomposition D of G can be done in O(logn)-time with 0((m +

n) loglogn) work [20]. However, as the cited algorithm does not order the edges on

each ear, the following two steps are needed to impose such an order. (1): Decompose

38

the input graph G into biconnected components G,, 1 < i < co. By Lemma 13, we

know that an st-numbering must exist for each G,. By adding Y!i^\ \Gj\ t 0 t n e st~

numbers of the vertices in G,, 1 < i < (0, we obtain an ^-numbering for G. Label

each vertex v £ V(G) with this st-number. This can be achieved in 0(log«)-time

with 0((m + n) log logn) work [29], (2): Since every ear is a path, every edge (w,v)

on an ear can be oriented from u to v. As a result, we can sort the edges on each

ear according to the sr-number of u by a parallel bucket sort. This can be done in

0(logn)-time with 0((m + n)loglogn) work [16].

Create an array N of size n x 1 in shared memory, where n is the total number of ears

in G. Since n equals to the number of non-tree edges in G, therefore, the value of n

is known after the spanning tree of G is constructed. By Lemma 15, this can be done

in 0(logn)-time. N[i], 0 < i < z, represents ear D, in G. After that, do the following

for each ear. For an ear D,, let us assume the number of edges in D, is k. Allocate in

memory one array M,- of size k + 1 and create a pointer from N[i] to the first element

of Mi. The processor associate with the first edge of ear Dt is responsible for inserting

the vertices in M,[0] and M,[l]. The processors associate with the rest of edges do the

following: Let us assume one of the edge is e = (w, v), where pre-order of u is smaller

than v, and e is in nth position in the edge list of ear D, after sorting. Then processor

Pe is responsible for inserting v into Mi[n + 1]. This can be done in 0(l)-time. After

the above setup, the pos value can be easily calculated by reading its index number

in array M; associated with ear D,-.

Building G' can be constructed as follows: let the processor assigned to the first

edge of ear Z),- does the following: (1) Find end-vertices u, v of ear Z),-. This can

be easily done by examining array M, which takes 0(1)-time. (2) Find the ears Dp

39

and Dq where u and v are the internal vertices in P and Q, respectively. This can

be accomplished by examining the adjacency list of u. Since each vertex in this list

has been assigned an ear number for the corresponding edge and the edge with the

smallest ear number is one that lies on ear Dp, determining this smallest ear number,

hence the ear number p, can be done in 0(logn)-time. Furthermore, as the st-number

of vertex u is known and the vertices in ear Dp are ordered by their tf-numbers,

finding pos(u,P) can be done in 0(logn)-time with binary search. The ear Dq and

pos(v, Q) can be determined similarly.

Finally, the edges e' = {v'0v'p), e" — (v'^Vq) are created while the following assign

ments are carried out: Xei[l] «— p, Xe>[2] <- i, Xe"[l] <— i and Xe»[2] <— q.

• Algorithm 2

Using the list of the edges of G' created by Algorithm 1, the first step of finding

the blocks in G' can be done in 0(logn)-time and 0((m + n)loglog«) work [40].

Then for each block 5,-, 1 < i < I, the vertex v'k with the smallest index in B, is

determined. This can be done in 0(logn)-time and 0(m) work. A spanning tree 7} of

Bi is then constructed. By Lemma 15, this can be done in 0(logn)-time with 0((m +

n) log log n) work. By applying the Euler-tour technique and using the smallest index

k, the spanning tree can be rooted at v'k. This can be done in 0(log«)-time with

0{m) work. The set Q consists of the vertices adjacent to v'k in 7J. Computing mins,

and maxBi thus takes 0(logn)-time with 0{n) work. The set P can be determined

similar to Q. Finally, the values of pz[i], 1 < i < 3Vz e V(DW) can be calculated in

0(logn)-time with 0(m) work.

• Algorithm 3

40

In determining the iVh values, the initialization step takes 0(logn)-time with 0(n)

work; determining if PM[1] < i can also be done within the same time and work

bounds. If 3w, such that (3M[1] < i, then xVh 4— true. Since there can be more than

one such u, there can be more than one processor writing into xV/i. A write conflict

thus occurs. However, as the model allows concurrent-writes and all the processors

involved are writing the same value (i.e. true), one of them will succeed. This step

also takes 0(logn)-time with 0(n) work. Computing aVh, bVh, cVh and dVh involves

computing the minimum and maximum value of the labels of the edges incident on

vertex v ,̂ where v/, € A . We can apply list ranking [5] to the adjacency list of v/,.

Briefly, we compare the P values of each vertex in the adjacency list of v/, in the

recovery stage of the list ranking algorithm. By Lemma 16, the four values can be

computed in 0(logn)-time using 0(n) work. Finally, adding the edges e can be easily

done in 0(logn)-time with 0(n) work.

• Algorithm 4

Determining ei and e$ can be reduced to the range-minima problem which can be

solved in 0(logn)-time with 0(n) work [5]. If range-minima returns a position

number, then the edge ez (^3, respectively) is added. Adding edges for the cases

where xv = true can be trivially done in 0(log«)-time with 0(n) work. Finally, By

Lemma 15, determining the connected component can be done in <9(log«)-time with

0((m + «)loglogn) work.

In conclusion, Algorithm 5 (Finding 3-edge-connected components of graph G) runs in

0(log«)-time on an Arbitrary-CRCW PRAM while performing 0((m + n) loglogn) work.

41

Chapter 7

Conclusions and Future work

We have presented a parallel algorithm for finding the 3-edge-connected components of an

undirected graph. The time and work bounds (hence processor bound) of the algorithm

match those of the best-known algorithm for 3-vertex-connectivity on the same computer

model.

Our algorithm consists of a number of steps each of which solves a particular sub-

problem. With the exception of the step for finding connected components and the step

for generating an adjacency lists structure, each step can be done in the optimal O(logn)-

time and 0(m + n) work. Actually, for the step for finding connected components, an

"almost optimal" algorithm is known [5]. This algorithm takes 0(logn)-time and does

0((m + n)a(m,n)) work, where a is the inverse Ackermann function which grows slightly

faster than a constant function. Unfortunately, for the step for generating an adjacency lists

structure, the best known algorithm relies on integer sort. So far, there does not exist a

parallel integer sorting algorithm that has the "almost optimal" time and work bounds.

Hence, to improve the work complexity of our algorithm to the optimal 0{m+n) bound,

we shall try to improve the work complexity for the problem of finding connected compo-

42

nents and for sorting integers.

43

Bibliography

[1] M. Ahuja and Y. Zhu. An efficient distributed algorithm for finding articulation points,

bridges and biconnected components in asynchronous networks. In 9th Conference on

Foundations of Software Technology and Theoretical Computer Science, LNCS 405,

pages 99-108, 1989.

[2] P. Chaudhuri. A note on self-stabilizing articulation point detection. Journal of System

Architecture, 45(14): 1249-1252, 1999.

[3] P. Chaudhuri. A self-stabilizing algorithm for detecting fundamental cycles in a graph.

J. Comput. Syst. ScL, 59(l):84-93, 1999.

[4] F. Y. Chin, J. Lam, and I. N. Chen. Efficient parallel algorithms for some graph

problems. Comm. ACM, 25(9):659-665, 1982.

[5] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications

to list, tree and graph problems. In SFCS '86: Proceedings of the 27th Annual Sym

posium on Foundations of Computer Science, pages 478^-91, Washington, DC, USA,

1986.

44

[6] R. Cole and U. Vishkin. Approximate parallel scheduling. II. Applications to

logarithmic-time optimal parallel graph algorithms. Inform, and Comput, 92(1): 1-

47, 1991.

[7] S. Devismes. A silent self-stabilizing for finding cut-nodes and bridges. Parallel

Processing Utters, 15(1-2):183-198, 2005.

[8] E.W. Dijkstra. Self-stabilizing algorithm in spite of distributed control. Commun.

ACM, 17:643-644, 1974.

[9] D. Fussell, V. Ramachandran, and R. Thurimella. Finding triconnected components

by local replacement. SI AM J. Comput, 22(3):587-616, 1993.

[10] D. Fussell and R. Thurimella. Separation pair detection. In VLSI Algorithms and

Architectures (Corfu, 1988), volume 319 of Lecture Notes in Comput. Sci., pages

149-159. Springer, New York, 1988.

[11] H.N. Gabow. Path-based depth-first search for strong and biconnected components.

Inf. Process. Lett., 74(3-4): 107-114, 2000.

[12] Z. Galil and G.F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT

News, 22(1):57-61, 1991.

[13] L.M. Gary and V. Ramachandran. A new graphy triconnectivity algorithm and its

parallelization. In STOC '87: Proceedings of the Nineteenth Annual ACM Symposium

on Theory of Computing, pages 335-344, New York, NY, USA, 1987. ACM.

[14] L.M. Gary and J.H. Reif. Parallel tree contraction and its application. In SFCS '85:

Proceedings of the 26th Annual Symposium on Foundations of Computer Science,

pages 478-489, Washington, DC, USA, 1985. IEEE Computer Society.

45

[15] C. Gutwenger and P. Mutzel. A linear time implementation of spqr-trees. In GD '00:

Proceedings of the 8th International Symposium on Graph Drawing, pages 77-90,

London, UK, 2001. Springer-Verlag.

[16] T. Hagerup. Towards optimal parallel bucket sorting. Inform, and Comput., 75(1):39-

51, 1987.

[17] D. S. Hirschberg. Parallel algorithms for the transitive closure and the connected com

ponent problems. In STOC '76: Proceedings of the Eighth Annual ACM Symposium

on Theory of Computing, pages 55-57, New York, NY, USA, 1976. ACM.

[18] W. Hohberg. How to find biconnected components in distributed networks. J. Parallel

Distrib. Comput., 9:374-386, 1990.

[19] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM

J. Comput, 2:135-158, 1973.

[20] J. Ja'Ja'. An Introduction to Parallel Algorithms. Addison Wesley Longman Publish

ing Co., Inc., Redwood City, CA, USA, 1992.

[21] J. Ja'Ja' and J. Simon. Parallel algorithms in graph theory: planarity testing. SIAM J.

Comput., 11(2):314-328, 1982.

[22] E. Jennings and L. Motyckova. Distributed computation and maintenance of 3-edge-

connected components during edge insertions. In Proceedings of 3rd Colloquium

SIROCC096, pages 224-240, June 1996.

[23] A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-connectivty.

J. of Comput. and System Sci, 42:288-306, 1991.

46

[24] M. Karaata. A self-stabilizing algorithm for finding articulation points. International

J. of Foundations of Computer Science, 10(l):33-46, 1999.

[25] M. Karaata. A stabilizing algorithm for finding biconnected components. /. Parallel

Distrib. Comput, 62(5):982-999, 2002.

[26] M. Karaata and P. Chaudhuri. A self-stabilizing algorithm for bridge finding. Dis

tributed Computing, 2:47-53, 1999.

[27] A. Kazmierczak and S. Radhakrishnan. An optimal distributed ear decomposition

algorithm with applications to biconnectivity and outerplanar testing. IEEE Transac

tions on Parallel and Distributed Systems, 11:110-118, 2000.

[28] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.

In Theory of Graphs (Internal Sympos., Rome, 1966), pages 215-232. Gordon and

Breach, New York, 1967.

[29] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (eds) and

st-numbering in graphs. Theor. Comput. Sci., 47(3):277-298, 1986.

[30] H. Nagamochi and T. Ibaraki. A linear time algorithm for computing 3-edge-

connected components in a multigraph. Japan J. Indust. Appl. Math., 9(2):163-180,

1992.

[31] N. Nakanishi. Graph Theory and Feynman Integrals. Gordon and Bridge Science

Publishers, 1971.

[32] J. Park, N. Tokura, T. Masuzawa, and K. Hagihara. Efficient distributed algorithms

solving problems about the connectivity of network. Systems and Computers in Japan,

22:1-16, 1991.

47

[33] B. Paten, M. Diekhans, J. Ma, B. Suh, and D. Haussler. Cactus graphs for genome

comparisons. In Proceedings of the 14th International Conference on Research in

Computational Molecular Biology (RECOMB), Lisbon, Portugal, (to appear), 2010.

[34] V. Ramachandran and U. Vishkin. Efficient parallel triconnectivity in logarithmic time

(extended abstract). In VLSI Algorithms and Architectures (Corfu, 1988), volume 319

of Lecture Notes in Comput. Sci., pages 33^-2. Springer, New York, 1988.

[35] C. Savage and J. Ja'Ja'. Fast, efficient parallel algorithms for some graph problems.

SIAMJ. Comput., 10(4):682-691, 1981.

[36] B. Swaminathan and K. J. Goldman. An incremental distributed algorithm for com

puting biconnected components in dynamic graphs. Algorithmica, 22:305-329, 1998.

[37] S. Taoka, T. Watanabe, and K. Onaga. A linear-time algorithm for computing all 3-

edge-connected components of a multigraph. IEICE Transactions on Information and

Systems, E75(3):410-424, 1992.

[38] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput,

1(2):146-160, 1972.

[39] R.E. Tarjan. Two streamlined depth-first search algorithms. Fund. Inform., 9(1):85-

94, 1986.

[40] R.E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J.

Comput., 14(4):862-874, 1985.

[41] Y. H. Tsin. An efficient distributed algorithm for 3-edge-connectivity. International

J. of Foundations of Computer Science, 17(3):677-701, 2006.

48

[42] Y. H. Tsin. An improved self-stabilizing algorithm for biconnectivity and bridge-

connectivity. Inf. Process. Lett, 102(l):27-34, 2007.

[43] Y. H. Tsin. A simple 3-edge-connected component algorithm. Theory Comput. Syst.,

40(2): 125-142, 2007.

[44] Y. H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. J. of Discrete

Algorithms, 7(1): 130-146, 2009.

[45] Y. H. Tsin and F. Y. Chin. Efficient parallel algorithms for a class of graph theoretic

problems. SI AM J. Comput, 13(3):580-599, 1984.

[46] V. Turau. Computing bridges, articulations and 2-connected components in wireless

sensor networks. In Algorithmic Aspects of Wireless Sensor Networks, Second Inter

national Workshop ALGOSENSORS 2006, LNCS 4240, pages 164-175, 1989.

[47] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc, 34(2):339-

362, 1932.

49

Vita Auctoris

Yuan Ru was born in 1980 in Wuxi, Jiangsu, China. He graduated from Wuxi No.l Middle

School in 1999. In 2001 he went on to the University of Windsor, in Ontario, Canada,

where he obtained a B.Sc. degree in Computer Science in 2004. In 2005, he joined TP

Software Ltd in Shanghai as a Java Software Engineer. He is currently a candidate for the

Master of Science degree in Computer Science at the University of Windsor and plans to

graduate by May 2010.

50

	Finding 3-edge-connected components in parallel
	Recommended Citation

	ProQuest Dissertations

