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ABSTRACT 

This research is on austempered ductile iron (ADI), which offers an excellent 

combination of low cost, design flexibility, good machinability, high strength-to-weight 

ratio, good toughness, good wear resistance and fatigue strength. While ADI has found 

quite wide application in some industries, its use in automotive parts production has been 

limited. ADI obtains its excellent properties through the development of a high carbon 

austenite+ferrite microstructure referred to as ausferrite. The properties of ADI can be 

tailored by changing the heat treatment schedule. In this research a special chemistry Ni-

Mo-Cu ADI was subjected to heat treatment schedules. Mechanical properties (hardness, 

tensile strength, and toughness), tribological properties (scuffing and surface 

deformation) and microstructural studies were conducted. Feathery ausferrite 

microstructure produced by high austempering temperature and long time gave very good 

tribological properties. While martensitic microstructure produces by low austempering 

temperature and short time gave very high hardness. Heat treatment recommendations 

were made based on the targeted automotive applications. 
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CHAPTER I 

INTRODUCTION 

Austempered ductile iron, commonly referred to as ADI, is an interesting class of 

cast iron because of its unique microstructure and mechanical properties. It is a member 

of the cast iron family with a special microstructure, achieved by a combination of 

alloying elements, and a very precise and controlled heat treatment. A specific 

compositions of ductile iron are heat treated in two steps to achieve this microstructure, 

namely an austenitizing step and an austempering step. The goal of these two steps, 

along with the alloying elements catalytic effect, is to have an optimum combination of 

the bainitic ferrite and stable austenite. ADI offers the best combination of machinability, 

toughness, wear resistance, high strength to weight ratio with low-cost design flexibility 

compared to conventional ductile iron, cast and forged aluminum and many cast and 

forged steels[l-4]. 

In 2010, 300,000 tons of ADI were estimated to be used in industrial applications 

[3]. As it is a cast iron, ADI could be cast like any other ductile iron, thus offering 

engineers the opportunity to fabricate with a mature and inexpensive technology. The 

mechanical properties of ADI are superior to ductile iron, cast and forged aluminum, and 

even many cast and forged steels. For these excellent properties, ADI is a very serious 

material investigated for new applications. Since ADI has a very complex microstructure 

balance, it is not often easy for industry to exploit the properties of ADI according to their 

application. The ADI properties could be tailored within a very wide range of physical, 

mechanical and tribological properties. An in-depth knowledge of the property 

relationships with the heat treatment is thus essential for the practical use of ADI. 
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Researchers are involved in understanding the properties of ADI as it is still a relatively 

new material in many engineering fields. For this reason, new ideas for ADI applications 

are emerging all the time. Because of the increasing commercial uses, standards have 

been established such as ASTM A897 [5], which will encourage further applications of 

the ADI. The metallurgy of the ADI is an ideal example using the microstructure of a 

metal to tailor the mechanical and physical properties with the basic understanding of 

metallurgical kinetics and thermodynamics [6-7]. 

1.1 Research Scope: 

The scope of this research is to develop a heat treatment schedule for a pre-

specified chemical composition ductile iron to produce an ADI for automotive 

applications such as the crankshaft, camshaft and the lower-arm. These three components 

require different levels of hardness and tribological properties. Hardness levels required 

are 28, 50 and 40 HRC for crankshaft, camshaft and lower arm, respectively. The 

crankshaft and camshaft applications require good scuffing resistance as they are 

subjected to continuous rubbing in their operations. To achieve such various properties, it 

is important to develop an in-depth knowledge of the mechanical and tribological 

properties as a function of heat treatment schedule. The key to developing the desired 

product is to understand the matrix transformations during ADI heat treatment and how 

the important phases in the microstructure could be produced and stabilized. 

To achieve the above mentioned targets, three aspects of ADI were researched in 

this thesis, namely mechanical, tribological and microstructural properties. All three are a 

function of the heat treating schedule. Mechanical properties include macro hardness, 
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phase hardness (micro-hardness), tensile properties, toughness and fracture roughness. 

Tribological properties included scuffing resistance and surface deformation. 

1.2 Motivation: 

The application of ADI is a very practical one in the modern industry. The 

automotive industry, in particular, is constantly evolving and introducing newer and less 

expensive ways of manufacturing to maintain their position in the face of global 

competition. Steels and ductile irons are used in almost every aspect of automotive 

manufacturing such as bodywork, chassis and engine. According to their applications, the 

metal used has to provide a certain level of performance. For example, the mechanical 

properties of the metal used in the piston ring would be completely different from the one 

that used in bodywork. Thus a very wide range of steel/iron types would be necessary to 

perform their perspective applications. 

The mechanical and tribological properties of ADI could be altered over a very 

wide range just by adjusting the heat treatment parameters. The phases achievable in ADI 

microstructures include retained austenite, bainitic ferrite, martensite and carbide. With 

the combination of these phases the ADI could be made very hard or very tough, or in 

balance, as required for particular applications. 

The main advantages on ADI compared to traditional forged or wrought steel are [2-4, 7-

11]: 

• Twice the fatigue strength compared to conventional ductile irons. 

• Exceptional ductility, toughness and fracture resistance. 

• The hardness, toughness and ductility level is easily obtainable and can be tailored 

for any specific application. 
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• Does not contain embrittling carbides unlike steels which obtain their high hardness 

from the presence of carbides. 

• ADI exhibit superior sliding wear resistance compared to steel and ductile irons. 

• Lower fabrication and manufacturing cost due to casting technology compared to 

steel forgings and cutting processes such as turning, milling, and CNC machining. 

• 35% higher tensile strength than steel forgings. 

• 10% lower density than steel, which results in significant weight reduction. 

• Vibration dampening and heat transfer superior to many cast and forged steels. 

1.2.1 Direct benefit in industrial applications: 

Cost Benefit: up to 55% reduction in production cost due to casting technology, 

cheaper material and man-power savings as there is no need for assembly [9]. 

Weight Savings: up to 15% weight reduction compared to the same part made 

from steel. This could be attributed to the lower density of ADI and removal of assembly 

components such as bolts, screws and welds [7, 9]. 

Performance Benefits: Superior wear, durability and appearance compared to an 

assembly design. Greater independence to design engineers as all the properties can be 

varied over a wide range with tailored heat treatment schedules [7, 9]. 

With ADI's controllable properties by heat treatment, manufacturers will be able 

to produce all three components with same alloyed ductile iron by simply putting it 

through different heat treatments. This would be largely beneficial to streamline resource 

and spending. This is the main motivation of this research thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

Although this research is specifically about ADI, it is very important to have a 

base knowledge of ductile iron and its properties in order to fully understand the ADI 

research. A brief introduction to ductile iron, its microstructures, and phase diagrams is 

given first. This is followed by a review of the origins, properties and applications of 

ADI. 

2.1 Cast Irons 

Cast Irons are a family of ferrous alloys that possess a wide range of 

microstructures and physical properties. Fe-C alloys with carbon contents higher than 

2.14% are classified as cast irons, while those with lower carbon contents are classified as 

steel. Cast irons are generally Fe-C-Si alloys that often contain other alloying elements. 

Up to 10% total of C, Si, Mn, S, and P as well as varying amount of Ni, Mo, Cu and Va 

are typically present. The matrix microstructure consists of pearlite and ferrite. Cast iron 

is directly used in the as-cast condition without further heat treatment. In practice, most 

cast irons have carbon contents between 3.0-4.5 wt%, and other additional alloying 

elements [12, 13]. 
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Figure 2.1 Fe-C phase diagram[13] 
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From the Fe-C phase diagram in Figure 2.1, it can be seen that cast iron 

completely liquifies between 1150 and 1300°C. This is a significantly lower temperature 

than for steel, thus cast iron is less expensive and more convenient to melt and fabricate. 

In fact, cast iron provides a wide spectrum of mechanical properties that can be tailored 

by just altering some of the processing variables during the heat treatment. For most cast 

irons, the carbon exists as graphite and the microstructural and mechanical properties and 

behaviour depend on the composition and heat treatment. The types of cast iron vary over 

a wide range from machinable gray iron to non-machinable white iron. The major 
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classifications of the cast iron family are shown in Figure 2.2. The most common types 

are: gray, nodular, white, malleable and compacted graphite. 

CAST IRON 

I 
Grev machinable iron 

I 
Flake Graphite 

I 
Spheroidal Graphite 

I 

I 1 1 1 
Ferritic Pearlitic Austenitic Martensitic 

Malleable iron 

Ferritic 

Blackheart Thin 
Whiteheart 

1 
White, unmachinable iron 

no graphite 

I 
Pearlitic Martensitic 

I 
Whiteheart 

1 
Pearlitic 

I 

Special 
Malleable 

Figure 2.2 Classification of cast iron [14] 

2.1.1 Gray Iron 

The carbon and silicon contents are between 2.5-4.0% and 1.0-3.0%, 

respectively, in gray iron. Formation of graphite is common and it exists as flakes, which 

are surrounded by an a-ferrite or pearlite matrix; see Figure 2.3a. The flakey graphite 

formation in the iron matrix causes crack initiation and propagation through the sharp 

flake edges. This makes gray iron generally weak and brittle. The tips of the flakes are 

sharp and pointed, which could act as crack initiators and propagators under stress in the 

iron matrix. Gray iron can sustain heavy compressive loads, as the strength and ductility 
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are much higher under compressive loads. It is very effective for heavy mechanical 

vibration damping. Gray iron also exhibits high corrosion and wear resistance. In the 

molten state, gray iron exhibits high fluidity, which is useful in the casting process. Gray 

iron is the least expensive of all metallic materials [13]. Machines which are subjected to 

regular vibration and impacts are often constructed of gray iron[12, 13, 15]. 

Figure 2.3 Optical micrographs of various cast irons: a) Gray iron 500X: Visible graphite 
flakes are embedded in the a-ferrite matrix. , b) Nodular (ductile) iron 200X: Graphite is 
in nodular form and surrounded by a-ferrite matrix. [13]. 

2.1.2 Ductile (Nodular) Iron 

The flakey formation of the graphite in the gray iron could be altered to a nodular 

shape with small additions of Magnesium (Mg) or Cerium (Ce). A smaller and more 

nodular graphite formation reduces the localized stress that usually forms on the tip of the 

flake and increases the ductility of the iron. A typical microstructure of nodular cast iron 
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is shown on Figure 2.3b. The matrix phase surrounding the graphite nodules could be 

either pearlite or ferrite, depending on the heat treatment. Ductile cast iron has 

mechanical characteristics (tensile strength and elongation) comparable to those of steel. 

Typical applications include valves, pump bodies, crank shafts, gears and other machine 

components [13]. 

2.1.3 White Iron 

In low silicon cast irons (containing less than 1 wt% Si), which are subjected to 

rapid quenching, carbon remains as cementite instead of forming graphite. Cementite is a 

very hard and brittle compound. The presence of cementite makes white iron brittle and 

un-machinable. 

Figure 2.4 Optical micrographs of white iron 400X: the light cementite regions are 
surrounded by pearlite which has ferrite-cementite lamellar structure [13]. 
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A fracture surface of this type of cementite/martensite phased iron has a white 

coloured appearance, thus adopting the name white cast iron. An optical micrograph 

showing the microstructure of white cast iron is shown in Figure 2.4. The light cementite 

phases are surrounded by pearlite. This white layer could be only surface deep due to the 

chilled cooling effect, protecting the gray iron underneath, which naturally cools more 

slowly. Typical applications of white cast iron include hot rollers for steel forming, where 

a very hard and wear resistant surface without any deformation is necessary [13, 14]. 

2.1.4 Malleable Iron 

Heating white iron at temperatures between 700-900°C for a prolonged time in a 

neutral atmosphere causes decomposition of cementite into graphite. The microstructure 

becomes similar to that of nodular ductile iron which accounts for a relatively high 

strength and a significant ductility. This is called malleable white iron. 

w * 

iR 
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Figure 2.5 Optical micrographs of malleable iron 150X: graphite is formed as rosettes 
[13]. 
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Figure 2.5 shows an optical micrograph of malleable white iron. Dark graphite 

rosettes are surrounded by a-ferrite matrix. Major applications for the malleable white 

iron include connecting rods, differentials, flanges, pipe, valve parts, railroad, and marine 

and other heavy duty applications[13, 14]. 

2.2 Austempered Ductile Iron (ADI) 

ADI is a grade of iron, in which heat treatment is utilized to produce a metastable 

face-centered-cubic (FCC) matrix solid solution, austenite, which is stable at room 

temperature because it is saturated with 1.8-2 wt% carbon [6]. ADI has a very special 

microstructure made of acicular ferrite and carbon stabilized austenite. Though ADI is 

sometimes referred as 'Bainitic Ductile Iron', correctly heat treated ADI contains little or 

no bainite. Bainite consists of matrix of a plate-like ferrite and cementite (ferrous 

carbide), whereas ADI's matrix is a mix of acicular (plate-like) ferrite laths and stabilized 

austenite. The acicular ferrite laths are termed as bainitic ferrite. Ferrite lath formations 

are similar to the cementite in bainite. This mixture of bainitic ferrite in the retained 

austenite phase is called the Ausferrite Matrix [16]. Bainitic ferrite, retained austenite and 

nodular graphite are the desirable microstructure of the ADI. However undesired phases 

such as martensite, cementite and other carbides are often present [14]. 

In Figure 2.6, the ausferrite microstructure of ADI is shown in an optical 

micrograph. The sheaves/laths are densely packed in a stable austenite (light color) 

matrix. The dark feathery sheaves/laths are the bainitic ferrite and the light and smooth 

sheaves are the unwanted a' martensite. 
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Figure 2.6 ADI ausferrite microstructure 

In Figure 2.7 (a) and (b), the microstructures of ductile iron (DI) and ADI are 

shown schematically and compared. In Figure 2.7 (a), it is seen that the ductile iron is 

formed of ferrite, pearlite and graphite nodules. Ferrite often surrounds the graphite 

nodules. But in ADI (Figure 2.7b), ferrite is in the form of feathery sheaves or laths. They 

are densely packed inside an austenite matrix. Retained austenite usually accumulates in 

large areas without graphite nodules. Carbide particles often form inside these retained 

austenite rich areas, which is result of austenite decomposition (further discussion in 

chapter 2.4.2) 
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Figure 2.7 Schematic representation of a) Ductile cast iron, b) ADI 

The mechanical properties of ADI are dictated by three factors: a. 

bainite/ausferrite morphology, b. austenite volume fraction, and c. martensite and carbide 

volume fraction (undesired). The ADI microstructure is produced by the alloying 

elements and the 2 step heat treatment process; see Figure 2.8. 
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Figure 2.8 Two aspects of ADI production. 

2.3 Alloying Elements in ADI: 

The composition of ADI differs from conventional ductile irons. Typical alloying 

elements in ADI are: Carbon (C), Silicon (Si), Manganese (Mn), Copper (Cu), Nickel 

(Ni) and Molybdenum (Mo). The selection of these elements is done primarily to improve 

the cast quality by preventing non-spheroidal graphite or carbide formation or by 

promotion of shrinkage. The presence of a large amount of silicon suppresses the 

precipitation of carbides during the austempering process and retains a substantial amount 

of the stable high carbon austenite. Nickel, copper and molybdenum improve the 

hardenability of ADI quite significantly without the formation of pearlite [4, 16, 17]. 

Another crucial effect of the alloying elements is to prolong the process window. The 

process window is discussed in Section 2.5. 
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2.4 The Heat Treatment Process of ADI: 

The development of the ADI heat treatment process can be traced back to 1930, 

when the austempering process was introduced. Through the evolution of metal, ductile 

iron was invented in 1948, and the austempering process for ductile iron was developed 

in the 1950s. In the 1970s, the austempering methods for ductile iron were being 

industrially developed and used [16]. 
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Figure 2.9 Heat treatment process for ADI [2, 3] 

The ADI heat treatment process is precisely controlled and it is illustrated 

schematically in Figure 2.9. Heat treatment is composed of two precisely controlled steps, 

namely the austenitizing step and the austempering step. 
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2.4.1 Austenitizing Step: 

Ductile iron with ADI composition is first heated to the austenitizing temperature 

(step 1-2). This is usually from 800 to 950°C where Fe ions assume the FCC crystal 

structure thus transforming to y-austenite. The austenitizing temperature is maintained to 

dissolve some carbon from the graphite nodules in austenite, and also to uniformly 

dissolve the alloying elements in the y-austenite (step 2-3). The austenitizing temperature 

and duration is controlled to ensure the formation of austenite grain and uniform carbon 

content in the matrix. Figure 2.10 shows the carbon dissolving in to the austenite during 

the austenitizing step. 

Figure 2.10 Carbon dissolution in austenite during austenitizing step. 

2.4.2 Austempering Step: 

The austenitized material is then quenched (step 3-4) and held (step 4-5) at the 

'austempering' temperature. This temperature is slightly higher than the martensite start 

temperature (Ms). The quenching must be very rapid (within seconds), to avoid pearlite 

formation around the carbon nodules. The austempering time is also closely monitored 
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and controlled to avoid over or under processing. The range of austempering temperatures 

and times are typically 240°C-400°C and 30-240 minutes, while the martensite start (Ms) 

temperature is usually 220-250°C depending on the ADI composition[6]. 

During austempering, ductile iron undergoes two stages of transformations. In 

first stage, the austenite decomposes into ferrite and high carbon austenite, shown in 

Equation 2.1. This is the desirable stage of the transformation. 

Y - » a + yHC (Stage 1) Equation 2.1 

If the austempering is maintained too long, then the next stage of transformation 

occurs as given in Equation 2.2, where carbon austenite further decomposes into ferrite 

and carbide. This is undesirable and causes embrittlement from carbides[18, 19]. 

yHC -* a + Ecarbide (Stage 2) Equation 2.2 

The treated metal is then allowed to cool down to room temperature (step 5-6). 

2.5 Process Window for Austempering Process: 

The transition time between stage 1 and stage 2 transformations is called the 

process window, see Figure 2.11. From the figure it is seen that the ausferrite 

transformation is completed at the end of the stage 1. During process window, the 

ausferrite level remains stable and only starts to decrease with commencement of stage 2 

[17]. It has been established that the best mechanical properties of ADI (strength and 

ductility) are obtained by completing the stage 1 reaction completely, but before the onset 

of the stage-2 reaction. Thus, it is important to have a sizable process window which will 

allow the heat treatment process to stabilize so the system does not enter stage 2. As 
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mentioned earlier in section 2.3, one of the major purposes of the alloying elements is to 

prolong this process window time period. Alloying elements such as Ni, Co, Mo help 

expand the process window, to ensure optimum austempering. Mn on the other hand, 

contracts the process window[14, 17, 20]. 
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Figure 2.11 Process window for austempering[l, 19]. 

2.6 Austenite Decomposition: 

Austenite decomposition is the most important step in ADI microstructure 

formation. ADI production is basically controlled decomposition of austenite. Heat levels 

are precisely controlled to tailor the transformation to achieve the desired ADI 

microstructure. A thorough understanding of the austenite decomposition kinetics is thus 

important for ADI knowledge development. 
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The common types of transformation that take place during the austempering are 

bainite (bainitic ferrite), retained austenite, martensite and carbides[l]. Although 

martensite and carbides trend to reduce ductility and toughness, it is difficult to 

completely avoid formation of these phases during the heat treatment. 

2.6.1 Bainite: 

Bainite is one of the common austenite decomposition products. Bainitic ferrite 

and austenite mixture is the most important feature of the ADI microstructure. The bainite 

microstructure consists of consecutive layers of ferrite plates, separated by thin films. 

These thin films could be of cementite, martensite or austenite. In conventional bainite, 

these films are cementite, which forms in conventional steels and low silicon ductile iron 

[13]. But for ADI and some high silicon steels, cementite films are not found in the 

bainite, but they are replaced by a carbon-enriched, stable austenite. This formation is 

called bainitic ferrite. The ferrite aggregate plates are often referred to as sheaves or laths 

[1]. The smaller ferrite plates that exist within larger sheaves are often termed as subunits 

[1, 14], as seen on Figure 2.12. These sheaves and subunits are related to each other by a 

specific crystallographic orientation. The very first ferrite subunit that nucleates on the 

grain boundary achieves a particular size, and then successive plates stack up to build a 

single sheaf. Although the subunit plates are adjacent to each other, they are isolated by 

'yet to be' transformed austenite films. As the cooling continues, the separator films can 

transform into martensite or cementite under certain conditions. 
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Figure 2.12 Schematic illustration of bainite sheaves and subunits. 

Bainitic ferrite can exist in two different forms: upper and lower bainite. Upper 

bainite forms well above the martensite start temperature (Ms). In some ductile irons and 

steels, most of the carbides are present within the bainitic sheaf interface, rather than 

subunit-subunit interface. In other words, in upper bainite, the sheaves are made of 

uniform ferrite, without subunits. Whereas in lower bainite the sheaves are stack of 

subunit ferrite layers. The upper and lower bainite formation mechanisms are illustrated 

in Figure 2.13 [1]. 
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Figure 2.13: Upper and lower bainite formation [1]. 

Typically, lower bainite forms in high carbon steel and ductile irons below the 

temperature where upper bainite forms, but above that of the martensitic start temperature 

(Ms). There are many similarities in the lower bainite and martensite microstructure. The 

main difference is that in lower bainite, only one crystallographic variant of the carbide 

exists, whereas in martensite the tempered martensite shows multiple crystallographic 

variants. In some steels, the lower bainitic ferrite has s-carbide, instead of cementite. In 

summary, it is important to understand that both upper and lower bainite are 

transformations of austenite. In the case of upper bainite, the carbon from a bainite 

subunit transforms into an austenite grain before the carbide precipitates within subunits. 
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And in the case of lower bainite, carbon precipitates within the subunits before carbon is 

transferred to the interlayer of the sheaves. 

The ferrite growth is typically discussed based on either a reconstructive or a 

displacive transformation of austenite mechanism. One growth definition (reconstructive) 

claims the bainite growth is result of diffusional, non-cooperative and competitive growth 

of ferrite and cementite into the austenite during eutectoid composition with cementite 

appearing in non-lamellar form. In this definition, the transformation kinetics are related 

to the rate of ledge movement at the ferrite-austenite interface and it is controlled by the 

carbon diffusion. However, the displacive definition claims that a subunit of a ferrite is 

formed from the austenite with complete super-saturation of carbon through a displacive 

transformation [1, 13, 14]. 

2.6.2 Austenite: 

Retaining high-carbon austenite is one of the prime targets during the 

austempering process. Alloying elements such as Si, Cu, Ni, Mo help avoid pearlite 

formation and retain y-austenite. The difference between the austenite developed in the 

austenitizing step and the retained austenite is the carbon content. Austenite is not stable 

at room temperature because of its FCC crystal structure. But carbon saturated austenite 

can be stable at room temperature. In stage 1 of the austempering process, the parent 

austenite transforms into ferrite and high-carbon retained austenite. Carbon dissolves in 

residual austenite, producing "carbon-free" ferrite as upper-bainitic ferrite. This reduces 

the driving force for further decomposition. A portion of the residual austenite 

decomposes at the isothermal transformation temperature. The un-transformed residual 

austenite which remains stable at room temperature is the retained austenite. When 
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discussing the microstructure, it is important to differentiate between the residual 

austenite, which exists at the isothermal transformation temperature, and the retained 

austenite, which remains un-transformed even at room temperature[l, 13, 14]. 

2.6.3 Martensite 

Martensitic transformation occurs below the Ms temperature. It is formed through 

a displacive transformation of austenite. Martensitic transformation is an athermal process 

(below Ms), which means that the extent of transformation depends how much below the 

Ms it is undercooled, but it is independent of the time duration spent below Ms. The 

transformation takes place as soon as the temperature dips below Ms and continues till the 

martensite finish temperature, Mf. If Mf is well above room temperature, then 100% 

martensitic transformation is expected on cooling. But if Mf is below room temperature, 

then some austenite may be retained if only cooled to the room temperature. Experimental 

evidence suggests that the martensite assumes a BTC crystal structure from austenite 

(FCC crystal structure). This is a displacive process, but BTC is not achievable by just 

one displacement. It requires two levels of shear displacement and then an 

inhomogeneous lattice invariant strain. In three steps the FCC crystal structure of 

austenite transforms into a BTC martensitic crystal structure [13,21]. 

2.6.4 Carbide: 

Carbon often forms carbides with Fe or other metallic elements present. Silicon 

hinders carbide precipitation during the austempering process. Prolonged austempering 

takes the process to stage 2 where the high carbon residual austenite releases further 

carbon, which precipitates as carbides. Carbides are extremely detrimental to mechanical 
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properties. For best mechanical performance of ADI, the formation of carbides must be 

eliminated or minimized[19]. 

2.7 Thermodynamics of ADI Transformation: 

The ADI transformation thermodynamics can be understood using a common 

ductile iron phase diagram for a Fe-C-2.4 Si ductile iron, which is the most common iron: 

see Figure 2.14. The most important features of this ductile iron phase diagram which can 

explain the ADI metallurgy include: 

(I) Martensite start temperature (Ms, the temperature below the ductile iron 

must be quenched to obtain hard and brittle martensite microstructure). 

(II) Extension of the (a+y)/y field boundaries (in the dotted line), which creates 

a metastable two phase a+y field, where the carbon content of the austenite y is quite high 

at low temperatures. 
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Figure 2.14: Schematic phase diagram of portion of Fe-2.4Si-C system [6] 

(I) Ms Temperature: The Ms temperature line according to the Figure 2.14 shows 

that as the carbon content increases in the austenite, the martensite transformation start 

temperature is lowered. Austenite with 0.8 wt% will begin the martensite transformation 

above room temperature TR, but if the austenite had 2 wt% C, the martensite 

transformation will not begin until the temperature is at 0°C. 
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(II) Metastable extension of the (a+y)/y phase boundary: The phase boundary 

between the (a+y) and y fields from the top-left area of Figure 2.14 has been extended in 

the dotted line with thermodynamic considerations. This dotted lined are helps explain the 

austenite transformations in ADI in a very practical way. If we assume 0.8 wt% C 

austenite is quenched rapidly to the austempering temperature of TA, there will be no time 

for carbon diffusion to occur in the pearlitic transformations. Importantly, this TAmust be 

above the Ms line as shown in the diagram to avoid any martensite formation[6]. 

2.7.1 Isothermal transformation diagram: 

An isothermal transformation diagram for austenite, which illustrates the 

possibilities of forming common phases during the isothermal quenching is shown on 

Figure 2.15. This diagram is derived based on the knowledge on the Fe-C phase diagram 

and ADI transformation kinetics. The diagram shows the kinetic mapping of the austenite 

transformation during the quenching and holding. The quenching from Ty to TA ideally 

would be a straight line, as it is desired to be instantaneous. This is because an 

instantaneous quench process would ensure the fastest cooling rate, which is necessary 

for acicular ferrite formation and to avoid pearlite formation. But as seen on the diagram, 

it is often a curved line, as the inner section of the casting is harder to rapidly cool. 
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Figure 2.15: Isothermal transformation diagram of Austenite [6] 

Consider a typical heat treatment process of 2.4 Si-3.6 C ADI on Figure 2.15 . The 

casting is heated up to the austenitizing temperature Ty where the austenite is stable. This 

point the austenite matrix contained 0.8 wt% C in addition to the graphite nodules. A 

rapid quench to TA, austempering temperature and a hold to TA would initiate the 

following transformations shown in Equation 2.3: 
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y (0.8 % C) -> a (0.0 % C) + y (2.0 %C) Equation 2.3 

Austenite Ausferrite 

During this transformation reaction, ferrite nucleates on the graphite nodules or on 

the austenite grain boundaries. BCC ferrite can only retain a very small amount of carbon 

and carbon is rejected to the austenite which now contains a very large amount 2.0 wt% 

C. This reaction usually takes 1-2 hours. Prolonged austempering takes the transformation 

system to the bainite phase where further carbon release by the enriched austenite occurs 

and Fe3C carbides are formed. In steels, the bainitic transformation is very common but 

the large amount of silicon Si present in ADI suppresses carbide formation. Because the 

austenite is consuming the carbon from the matrix and becoming more and more carbon 

enriched, from Figure 2.15, we can see that the Ms will also decrease[6] 

A general TTT curve for ADI heat treatment is shown on Figure 2.16. It can be 

seen that the ADI cooling starts from the upper critical temperature. Austempering takes 

place well above the Ms temperature. Upper bainite and retained austenite (ausferrite) is 

formed in the stage 1 transformation, and quenching to room temperature begins before 

entering stage 2. 
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Figure 2.16: TTT curve for ADI [22] 

2.8 Alloying Element Segregation in ADI: 

Alloying element segregation could take place during both the austenitizing and 

austempering processes which strongly influences the microstructure, and the 

effectiveness of the alloying elements. Consequently alloy segregation could reduce the 

process window and increase carbide precipitation with a large reduction in mechanical 

properties. This segregation is due to the effect of manganese (Mn), phosphorus (P) and 

molybdenum (Mo). With increasing amounts of manganese (Mn), mechanical properties 
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such as yield and tensile strength, and elongation decrease because of the formation of 

intercellular embrittling regions due to a strong segregation effect. Alloying elements like 

molybdenum and manganese segregate strongly in the intercellular region prompting 

carbide formation and thus interfering with the austempering reactions in these areas. 

Hence, it may be possible to improve the mechanical properties including fracture 

toughness of ADI by eliminating molybdenum and keeping the manganese content as low 

as possible [20]. 

2.9 Mechanical Properties of ADI: 

The use of ADI is exponentially growing around the world as the manufacturers 

keep discovering the excellent combination of properties of ADI. The performance 

achieved is made even more attractive due to the fabrication simplicity and relatively 

lower cost compared to steel. The mechanical properties of ADI with a high carbon 

retained austenite matrix are much superior over other normal grades of cast ductile iron, 

where Fe is present in the body-center-cubic (BCC) phase. The established reasoning 

behind this remarkable toughness and hardness combination is due to the presence of the 

FCC crystal structure in the retained austenite and the ferrite and carbide distributions in 

that FCC matrix. The FCC metals are known for having more ductility compared to any 

other crystalline metals. Metals such as copper, aluminum, gold and silver all have the 

FCC crystal structure which is highly ductile and malleable [6]. Austenitic steels which 

are capable of a deep-drawing process are also highly ductile compared to other ferritic 

steels. 

A range of mechanical properties can be obtained with ADI. On one end, the 

ASTM grade I, where it is merely austenite phase with graphite nodules. This material 
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represents the most ductile and machinable ADI with low surface hardness. At the other 

extreme of the spectrum is ASTM grade V, containing an austenite matrix with embedded 

carbide, bainite and martensite representing the least ductile and machinable of the ADIs 

and highest surface hardness. In between are the other grades of the ADI. The ASTM 

specification A897 is now the most commonly accepted specification for Austempered 

Ductile Iron [2, 9, 10]. The five grades specified are detailed in Table 2.1: 

Table 2.1: ASTM Grades for ADI [5, 10] 

Grades 

125-
90-09 

1 SO-
l l 0-07 

175-
125-04 

200-
155-02 

230-
185-01 

AUSTEMPERED DUCTILE IRON 
ASTM A897 - 06 

ADI 
Grade 

1 

2 

3 

4 

5 

Min. 
Tensile 

(psi) 
125,000 

150,000 

175,000 

200,000 

230,000 

Min. 
Yield 
(psi) 

80,000 

110,000 

125,000 

155,000 

185,000 

Elongation 
(%) 

10 

7 

4 

2 

1 

Typical 
HB(Brinell) 

269 - 341 

302 - 375 

341 - 444 

388-477 

402-512 

Like other ductile iron specifications, ASTM A897 defines the minimum tensile 

properties for grades of ADI. From Table 2.1, it can be seen that the lower grades have a 

higher elongation up to 10%, while having lower tensile strength. Higher grades have 

higher hardness, but reduced the elongation. 

A comparison of where the ADI grades stand relative to cast irons and steel is 

shown in the commercial information provided in Figure 2.17 and Table 2.2. 
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Figure 2.17: Strength comparison of ADI and other ferrous metals [2]. 

It can be seen from Figure 2.17 that the strength of the ADI is higher than most 

other steels and ductile irons, and considerably higher than the standard ductile iron and 

forged steel. Also notable, ADI has the widest range compared to all other entries in the 

diagram. The only entry with higher strength is the carburized steel case which has a very 

narrow range. 

From Table 2.2, it can be seen that tensile properties of ADI of all the grades are 

much higher than cast irons, especially the yield strength. When compared to cast steel, 

all grades of ADI possessed higher tensile and yield strength. While forged steel only has 

a higher tensile and yield strength range than Grades I and II ADI. Elongation for cast and 

forged steels and malleable and ductile iron is higher than ADI Grades. 
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Table 2.2:Tensile properties comparison of ADI, cast irons and steels [2] 

Tensile (10A3 
psi) 
Yield (10A3 
psi) 

Elongation % 

ADI 

Grades 

1 

125 

80 

10 

2 

150 

100 

7 

3 

175 

125 

4 

4 

200 

155 

1 

5 

230 

185 

N/A 

Cast Irons 

Gray 
A48 

20-60 

<1 

Malleable 
A602 

50-105 

32-85 

10-1 

Ductile 
A536 

60-100 

40-70 

18-3 

Steels 

Cast 
A27 

60-70 

30-40 

24-22 

Forged 
A290 
A D 

80-170 

45-145 

22-10 

2.10 Scuffing Process and ADI Scuffing Research: 

Tribology studies are also part of this research. A brief discussion of scuffing 

mechanisms and ADI scuffing research is thus necessary. 

As noted by Qu et al. [23]: "The term 'scuffing' has been used to describe surface 

damage in various contexts throughout the field of engineering". Scuffing is associated 

with a sharp rise in friction and surface temperature, usually accompanied by a rise in 

noise and vibration [24, 25]. There has been no general agreement on a definition for 

scuffing. This has, to a large extent, been due to the complexity of the process. However, 

one definition that has captured many of the features of scuffing is: "Scuffing is a form of 

sliding-induced contact damage to a bearing surface, usually associated with asperity-

scale plastic deformation that results in localized and perceptible changes in roughness or 

appearance without significantly altering the geometric form of the part on which the 

damage occurs [23]." 
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Usually scuffing damage is catastrophic and not self-healing so that the scuffed 

part must be replaced. Scuffing may be delayed or prevented by selecting materials with 

appropriate microstructure and hardness. However due to the complexity of the scuffing 

process, there is a need to conduct a variety of experiments to better understand the 

scuffing mechanism, and to evaluate the influence of material microstructure and 

hardness on scuffing. 

Significant research have been carried out on the tribological behaviour of ADI 

[26-28], but few have examined scuffing. Magalhaes and Seabra [29] found that heat 

treating to produce a material that is simultaneously strong and ductile, helps resist 

scuffing. However there is limited published research on the effect of heat treatment on 

the microstructure, mechanical and tribological property relationships. The present 

research examines the effect of heat treatment schedules on the microstructure, hardness, 

toughness and the scuffing properties of a Ni-Cu-Mo ADI alloy and develops 

microstructure-property relationships. 

2.11 Applications of ADI 

The present applications of ADI include [2, 7-11, 26, 30, 31]: 

• Agriculture- excellent resistance to soil wear: Suspensions, ground engaging 

equipment, tractor wheels. 

• Soil cutting machines and tools: digger/grab teeth, high strength and wear 

resistance. 

• Automotive: chassis, crankshafts, camshafts, pinion and ring gear pairs, timing 

gears for diesel engines. 
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• Heavy Trucks: spring hanger brackets, pivot pins, clip plates, engine mounts, 

connecting rods etc. 

• Railroads: side bearing top caps, truck plates, rail braces suspension components. 

• Industrial: components subjected to wear and high stress. 

• Gears: wear resistance and vibration damping ability better than steel. 

• Construction: crushing, grading and wear components. 

• Food and feed milling: grinding, mixing. Crushing machines. 

The various uses of ADI are illustrated in Figure 2.18. 

Figure 2.18: Various commercial applications of ADI a.) gears, rotors, bodywork and 
other machine components[32], b) propellers [11], c)large wheels, shafts, mechanical 
housing of ADI[33]. 
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2.12 Previous Studies of Particular Relevance: 

This section discusses a few of the key papers from previous ADI research that are 

particularly relevant to the current research. 

The austempering schedule determines the microstructure formation and thus the 

mechanical properties of ADI. Ausferrite, martensite, bainite and carbide form at different 

times and temperatures during austempering. Much research has been conducted over the 

last decade exploring the effects of a wide range of austempering schedules on various 

ADI compositions. 

Researchers generally selected an austempering temperature in the range from 300 

to 4IOC. Below this temperature range, the ADI transformation is near the martensite-

start, Ms, temperature, where the microstructure becomes martensitic or lower bainitic, 

which is often brittle and weak. Kim et al [34] found in their research with Cu-Mo 

alloyed ADI that was austempered over the range of 350 to 410°C, that a higher 

austempering temperature produced a higher ductility. Tensile strength was found to be 

highest for austempering at 350°C. Eric et al [4, 35] in their research with a Cu-Ni-Mo 

ADI found that the microstructure and the mechanical properties varied greatly with 

austempering temperature in the range 320 to 400°C. The highest volume fraction of 

ausferrite and retained austenite was developed by austempering at 320°C. This produced 

the highest impact energy of 133J. When austempering at 400°C, blocky austenite and 

martensite were formed which resulted in tensile and Charpy properties approximately 

equal to those for 320°C austempered specimens. 

Stepped austempering possibilities have been explored by a number of researchers 

in the ADI field. Whereas in conventional austempering, the austempering temperature is 
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kept constant through the austempering duration, in the stepped process, the ADI samples 

are austempered usually at a lower than conventional austempering temperature for a 

short amount of time (step 1), and then the temperature is elevated (step 2) to a 

temperature similar to conventional austempering temperature. The two step process has 

a large influence on the microstructure and mechanical property development of the ADI. 

Uxiiveneg bMi t t a r M»t.B^m« Hie » a< 

Figure 2.19: ADI heat treatment, a) conventional austempering, b) 2 step austempering 
[17] 

Yang and Putatunda [17] investigated a novel two step austempering process 

(Figure 2.19) to compare with the conventionally austempered ADI with a 1.5Si-0.4Mn-

0.30 Mo composition. While austenitizing was done at 927°C for 2h, the austempering 

was done over a wide range of temperatures between 260°C and 400°C for conventional 

austempering. For stepped austempering, the samples were quenched to 260°C for 5 min 

to serve as the step 1 austempering, and then they were austempered to same temperature 

and time as the conventional batch. The stepped austempering batch of ADI samples were 

found to have higher yield strength, tensile strength and fracture toughness compared to 

the conventionally austempered batch of samples. The stepped process also resulted in a 
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finer ferrite and austenite as well as higher austenitic carbon, which is crucial to maintain 

the stability of the retained austenite. But tensile toughness was found lower for two-step 

samples, which could be attributed to the reduction in the ductility as a result of two-step 

process. 

Ravishanker et al [36] had similar findings regarding stepped austempering 1.5Ni-

0.5Cu-0.3Mo ADI. Tensile and yield strengths increased with the two-step process while 

the ductility and tensile toughness decreased. Fracture toughness was also found to be 

increased with the 2-step process. This was attributed to a finer ferrite microstructure and 

increased carbon content in the retained austenite. Two-step austempering resulted in a 

microstructure of upper and lower bainite. But, the proportion of upper and lower bainite 

was dependent of the duration of the first step of austempering. The retained austenite 

content decreased with increasing carbon content in the retained austenite increasing. 

Although austempering temperature and duration plays a pivotal role in tailoring 

the ADI microstructure and mechanical properties, the austenitizing parameters also have 

a noticeable effect on the microstructure and mechanical properties of ADI. A number of 

researchers have shown a strong influence on the ADI properties varying over the change 

of the austenitizing parameters. Bosnjak and Radulovic [37] examined a Ni-Mo alloyed 

ADI for varying austenitizing temperatures. Three austenitizing temperatures were 

selected (850, 900 and 930°C) and the austenitizing duration for each was 120 min. It 

was found that with lower austenitizing temperature, the austenite carbon content and 

austemperability are diminished while the propensity to the formation proeutectoid ferrite 

and pearlite is increased. Austemperability is the maximum section size of ductile iron 

that can be austempered without formation of pearlite during the austempering process. A 

more uniform microstructure was obtained by a lower austenitizing temperature. The 
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ausferrite transformation rate was found to be faster and the stage I austempering driving 

force was higher, with little or no effect on the stage II austempering for the low 

austenitizing temperature. Also, the process window was shifted to earlier austempering 

times, which would be beneficial from a cost point of view. 

For a Ni-Cu-Mo alloyed ADI, the optimum austenitizing temperature was found 

to be 900°C. It was found by Bosnjak et al [38], that although decreasing the 

austenitizing temperature would increase the carbon content of the retained austenite, and 

improve on the toughness properties, the overall % retained austenite was reduced. The 

carbon solubility was lower than required at 850°C, which resulted in proeutectoid ferrite 

and pearlite in the microstructures. An higher austenitizing temperature such as 930°C, 

led to a significant reduction in mechanical properties as the higher temperature produced 

embrittling carbide precipitation. 

Austenitizing below a critical austenitizing temperature results in partial 

austenitizing. By partial austenitizing, the ferrite-pearlite phase forms by commencing the 

austempering process from the (a+y) phase. Kicili and Erdogan [30] took this partial 

austenitizing approach in their ADI research. Partial austenitizing was done between 795 

and 815CC and also conventional full austenitizing was done at 900°C for comparison. 

Partial austenitizing produced a microstructure with proeutectoid ferrite and ausferrite. 

Also, new ferrite of an epitaxial ferrite phase was found to be developed with a coarse 

austenite dispersion after austenitizing from the in the (a+y) phase. The series of ADI 

samples partially austenitized from the (a+y) field, the tensile strength increased and 

ductility decreased with increasing ausferrite volume fraction and decreasing pro

eutectoid ferrite volume. The best combination of ductility and strength was found with 
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60-65% ausferrite volume fraction compared to pearlitic ductile iron grades. But the 

ductility was slightly lower than the ferritic grades. 

The TRIP (Transformation Induced Plasticity) effect is also influenced by the 

austenitizing parameters. The TRIP effect refers to the transformation of metastable 

austenite into martensite upon mechanical deformation. The TRIP effect is often 

considered to be negative, mainly because it results in premature wear. TRIP might also 

have some positive impact such as raising the fatigue resistance to a level comparable to 

carburized steel. But it must be emphasized that the TRIP effect is related to the austenite 

present within the volume of ausferrite. Although it might improve the surface wear 

properties, the toughness and tensile property would be reduced [3]. The TRIP effect and 

its relationship to the austenitizing parameters was studied by Daber et al [39]. In their 

work, a 1.5Ni-0.3Mo-0.5Cu composition ADI was subjected to austenitization at 850, 900 

and 950°C for 2 hours. Tensile tests were carried out to observe the TRIP effect due to the 

tensile fracture. It was found that increasing austenitizing temperature increased the 

tendency for the formation of strain induced martensite, regardless of the austempering 

process. Also, a high austenitizing temperature coupled with a high austempering 

temperature was found to form unstable retained austenite which increased the tendency 

to form martensite upon mechanical deformation. 

In a similar study by Daber and Rao [40], the TRIP effect due to conventional and 

two step austempering was investigated. The ADI composition was the same Ni-Cu-Mo 

ADI as in reference [39]. A conventional set of samples were austenitized for 30 min at 

950°C and austempered for 2 hours at 300, 350 and 400°C. While the two step set of 

samples were first austempered at 300°C for 10, 20, 30, 45 or 60 min and then transferred 
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to furnace at 400°C for 2 hour austempering. Microstructural studies revealed that 

increased strain hardening was associated with the formation of strain-induced martensite. 

Samples with blocky austenite had the higher propensity to form more TRIP martensite. 

As found in [39], samples with higher temperature austempering had greater tendency to 

form TRIP martensite. The stepped samples, which were subjected to a short first step 

had large amount of upper ausferrite, which resulted greater strain hardening ability. This 

higher strain hardening ability of ADI was due to strain induced transformation of 

retained austenite, or in other words, TRIP martensite. 

When doing research on ADI, it is very important to understand the 

microstructure descriptions of ADI. In the literature review, it was found that the main 

microstructure of ADI is being named differently. The term 'ausferrite' was most often 

used in the published research work. As discussed earlier, ausferrite is a unique 

microstructural arrangement of ferrite and austenite. Zimba et al [28], Trudel et al [41], 

Rundman et al [19], Thomson [42] and Kim et al [34] used the term ausferrite in their 

published works. Dai et al [43], Taran et al [44], and Sahin et al [26] preferred the term 

bainitic ferrite for the ferrite laths. The feathery laths of the ADI are often the shape of 

upper bainite ferrite laths. Upper and lower bainite terminology was used by 

Bhadeshia[45] and Rao et al [36, 39, 40, 46]. Yang and Putatunda [17] just defined the 

"special" ferrite as ferrite. A detailed explanation of the ADI microstructure can be found 

in the research publications of Kilicli [30], Rundman [6] and Achary [18]. 
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CHAPTER HI 

EXPERIMENTAL DETAILS 

To understand and evaluate the ADI microstructure kinetics and properties, a 

series of ADI samples were created and then tested. The samples were created from a 

wide range of heat treatment schedules. They were tested and analyzed for three aspects: 

mechanical, tribological and microstructural properties. Mechanical properties included 

surface hardness, microstructural phase hardness (microhardness), tensile property, and 

toughness analysis. Tribological properties included scuffing and surface deformation 

analysis. Metallographic analysis was performed on all the samples using a variety of 

instruments and methods. 

3.1 Overview of the Experimental Procedures and Measurements: 

The experimental procedures can be divided into 5 main areas, namely: 

1. Heat treatment design 

2. Sample production 

3. Mechanical property testing 

a. Macrohardness 

b. Micro hardness 

c. Charpy impact test 

d. Tensile testing 

4. Tribology testing: 

a. Scuffing performance 

b. Surface deformation observation 

5. Microstructural analysis 
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a. Optical metallography 

b. SEM (Scanning Electron Microscopy) metallography 

c. Image analysis 

d. X-ray diffraction (XRD) 

The XRD analysis was performed at Chrysler LLC Technology Center, MI. The 

scuffing testing was performed at the University of Oakland, MI. The tensile testing was 

performed jointly at Chrysler LLC Technology Center (CTC) and University of Windsor. 

3.2 Material and Casting: 

The ADI was a special chemistry ADI that was provided to us by our research 

partner, Chrysler LLC Technology Center (CTC). The chemical composition, which 

shows that it is predominantly a Ni-Cu-Mo alloyed ADI, is given on Table 3.1. 

Table 3.1 Alloy composition of ADI 
Element 

%wt 
C 

Mn 
P 
S 
Si 
Cr 
Ni 
Mo 
Cu 
Al 
V 
Cb 
Ti 
Co 
Sn 
B 

Mg 
W 

1 

3.77 
0.24 

0.027 
0.004 
2.45 
0.03 
1.62 
0.11 
0.77 

0.025 
0.009 
0.001 
0.005 
0.023 
0.002 

0.0003 
0.056 
0.012 

2 

3.76 
0.24 

0.028 
0.006 
2.60 
0.03 
1.59 
0.11 
0.81 

0.006 
0.009 
0.001 
0.004 
0.024 
0.001 
ND 

0.051 
0.010 

3 

3.75 
0.24 

0.028 
0.005 
2.50 
0.03 
1.62 
0.11 
0.77 

0.019 
0.010 
0.001 
0.006 
0.023 
0.002 

0.0015 
0.064 
0.011 

*1, 2, 3 indicate positions in the cast ingot. 
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3.2.2 Casting Details: 

• Wood patterns were created by the Chrysler Wood Shop. 

• Cope & drag molds were produced with no-bake PepSet sand. 

• Iron was melted in Ajax 500# coreless induction furnace at 1510°C. 

• Melt charge consisted of pig iron, steel, ferrosilicon, copper, nickel. 

• Iron was treated with 5% MgFeSi alloy with cover steel. 

• Iron was inoculated with 75% foundry grade FeSi during transfer to pouring ladle. 

• Iron was poured in molds at 1426°C. 

• Molds were allowed to cool to room temperature before shakeout. 

• Castings were cut from the gating with a band saw. 

• Casts were shot blasted for surface finishing. 

3.2.3 As cast samples: 

Optical metallography of the as-cast ADI (without any heat treatment) (Figure 

3.1) showed it to be predominantly pearlitic (85%) ductile iron with ferrite and nodular 

graphite. The bright ferrite regions surrounding the dark graphite nodules are often 

termed as "Cow's Eye" or "Bull's Eye". 
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A series of as-cast samples were austenitized for 15 minutes to observe the 

microstructural changes. The samples were then oil quenched to room temperature 

without any austempering. This experiment was conducted to observe the pearlite and 

ferrite transformations in the sample to determine an appropriate austenitizing 

temperature; see Table 3.2. Figure 3.2 (a-d) shows four optical micrographs illustrating 

the austenitizing time/temperature effects. From Figures 3.2(a) and (b), it can be seen that 

the ferrite-pearlite microstructure still remains at 700 & 740°C. At 740°C, the pearlite 

lamellas are segmented and shortened. At 820°C and 900°C, (Figures 3.2 (c) and (d)) it 

can be seen that the ferrite halos round the graphite nodules have been completely 

removed and the matrix microstructure is bainitic. A bainitic microstructure is only 
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possible through austenite decomposition, which indicates that at 820-900°C, our samples 

were fully austenitized. After careful metallographic observation of all samples, an 

austenitizing temperature of 890°C for 20 minutes was selected for the subsequent tests. 

x500 20pm * 
Figure 3.2 Microstructure comparison of austenitized samples: a)700C, b)740C, c)820C 
d)900C 

Table 3.2: Austenitizing process of initial test samples. 

Sample no 

Sample 1 
Sample 2 
Sample 3 
Sample 4 
Sample 5 
Sample 6 
Sample 7 
Sample 8 
Sample 9 
Sample 10 
Sample 11 

Heating 
Temperature 
(°C) 
As Cast 
700 
740 
780 
820 
840 
880 
900 
920 
940 
960 

Hold Time 
(Mins) 

15 
15 
15 
15 
15 
15 
15 
15 
30 
30 

Quenching 
Method 

Oil Quench 
Oil Quench 
Oil Quench 
Oil Quench 
Oil Quench 
Oil Quench 
Oil Quench 
Oil Quench 
Oil Quench 
Oil Quench 
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3.3.2 Austenitizing and austempering schedules: 

Heat treatment schedules with a fixed austenitizing time/temperature but a range 

of austempering times/temperatures were chosen on the basis of the published literature 

and industrial experience. This variation in austempering time and temperature is 

expected to provide a spectrum of mechanical/tribological performance. Figure 3.3 

illustrates the heat-treatment schedules chosen. 

Austenttizatton temperature at 390'' C/2Q mm 
10 min. 60 mm. 150 min. 

At 
275'C 
3008C 
325'C 
350*C 
375"C 

690=13/20 mm 

Time in mm. 

Figure 3.3: Heat Treatment Schedules 

The austenitization was set at 890°C for 20 minutes. Austempering on the other 

hand was conducted at 15 different time-temperature combinations. The temperatures 

ranged from 275-375°C and the austempering times ranged from 10 to 150 minutes. 
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3.4 Charpy Impact Testing: 

The Charpy tests were conducted at Chrysler LLC Technology Center (CTC) to 

ASTM E23 specifications [47]. The specimens were V notched with the dimensions of 

55mmX10mmX10mm; see Figure 3.4. The impact velocity used was 17.21 ft/s. Three 

samples were tested for each heat treatment condition. Figure 3.5 shows a broken (after 

testing) Charpy sample. 

M • 
10 mm 

M 

45° 

+ • 
2 mm 

2 mm 

Figure 3.4 ASTM E23 Charpy test diagram 
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3.5 Hardness Tests: 

Both surface hardness (macrohardness) and microhardness measurements were 
made. 

3.5.1 Surface Hardness: 

For surface hardness (macrohardness), the Rockwell hardness test with a 

Rockwell C scale (150 kg load: Brale indenter) was used (Figure 3.6). Broken Charpy 

samples were used to conduct the hardness test. The surfaces of the samples were cleaned 

with a rubbing cloth and checked for any surface impurities. Only clean and smooth areas 

without any deformation or cracks were selected for the hardness testing. Five indentions 

were done on each sample, and the average hardness result calculated. 
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Figure 3.6 Rockwell hardness testing machine. 

3.5.2 Microhardness: 

Microhardness tests were also conducted on all of the samples. The microhardness 

testing machine was equipped with an optical microscope with up to 100X magnification. 

This allowed us to measure the hardness of the specific phases, which were clearly 

observable on the optical metallographs. The hardness of all the separate phases (pearlite, 

ferrite, retained austenite, ausferrite, and martensite) was measured with a Knoop (200-

400g load, indenter and 15 sec indentation time) hardness method. A total of five 

indentations were conducted on each phase area and the average hardness value 

calculated. The samples used for the microhardness testing were the same as for SEM and 

Optical metallography. 
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3.6 Tensile Testing: 

Tensile testing was performed according to ASTM standard E8-04 [48]. The tests 

were conducted at both the Chrysler LLC Technology Center (CTC) and the University 

of Windsor. Figure 3.7 shows the dimensions of the ASTM E8-04 tensile bars. Two 

specimens were tested for each austempering time/temperature combination. 

The testing system is shown in Figure 3.8a. The elongation was measured by an 

extensometer which was attached in the center area of the tensile bars (Figure 3.8b). The 

gage length was 1 inch. Figure 3.8c shows a broken tensile bar after the test. The initial 

tensile bar grips had serrated edges. The wedged mechanical grips on the tensile testing 

machines were slipping under high tensile loads, rendering the elongation results invalid. 

The grip area was too short for the steel wedges. The grip area was then threaded to give 

better gripping and less slip. Initially the tensile tests were performed on an Instron ™ 

tensile testing machine, but the maximum load capacity of the machine was unable to 

fracture the ADI samples. Subsequent samples were tested on a Tinius-Olsen ™ tensile 

testing machine with a higher load capacity. 

0 375 R mm 

H-0 625-

r 
0 0 875 

L 

-0 750 -

0 0 560 

-2 250 min- -0 03125 R 

0O5OO±OO1O 

i 

- 2 625 -

- 5 375 -

-0 03125 R 

Notes All dimensions in inches 
Gage Length = 2 00 in 

Figure 3.7 : ASTM E8-04 Specification for tensile test specimens [48] 
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Figure 3.8 : Tensile testing equipment a) Tinius-Olsen testing system, b) extensometer, 
c) broken sample after testing. 

3.7 Surface Profilometry: 

The Charpy fracture surfaces were observed using both metallography to 

determine the general fracture characteristics and by stylus profilometry (Figure 3.9). To 

increase the stylus accuracy, it was sharpened after purchase. Stylus profilometry gave 

results with lum accuracy. The measuring equipment was Mitutoyo-Type IDC-112MEB, 

capable of measuring to .001mm. A 1mm fine point stylus was used to mount on the 

measuring device after further sharpening the tip to near 0.1mm. 
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Figure 3.9 : Stylus surface profilometry a) Measuring unit, b) Digital tray control 

The surface profile was measured both along (X axis) and across (Y axis) the 

Charpy impact motion. The profile was recorded at 1 mm intervals in both X and Y 

directions for all the fractured samples. This profilometry could provide valuable 

information on the surface roughness, ductility of the material and also help us better 

understand the SEM images [49]. 

The surface roughness was measured with roughness average Ra. Roughness 

average Ra is the arithmetic average of the absolute values of the roughness profile 

ordinates. Equation 3.1 shows the mathematical equation of measuring the surface 

roughness Ra. 

Ra
 = J /0 Z(x)/dx Equation 3.1 

Where / is the total measured length, and z is the height of the surface peaks [50]. 

3.8 Metallography: 

For optical metallography, each sample was hot mounted using a Buehler Mineral 

Filled Phthalate powder. Samples were then ground and polished to a mirror surface. The 
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polishing was done in steps with a Buehler Handimet II Roll Grinder, starting with a 

rough, abrasive polish to a very fine smooth polishing. The first steps were done using 

SiC papers from 100 grit to 600 grit. Final polishing was done with a Buehler Metaserv 

Grind-Polisher and Buehler Micropolish II Deagglomorated Alpha Alumina oxide 

powder (A1203) suspended in water. Samples were polished using 1.0 um oxide powder 

applied to a Buehler Billiard Cloth, and 0.05 um oxide powder applied to a Buehler 

Microcloth. After polishing, the samples were etched with nital. For optical microscopy, 

they were etched with 2% nital for about 5 seconds. For SEM metallography, the samples 

were etched with 1% nital for a approximately two seconds. Optical micrographs were 

taken on each sample at 50, 100, 200, 500 and 1000 times magnification levels. Figure 

3.10 shows the SEM equipment used for the ADI metallography. 

Figure 3.10: SEM equipment 
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3.9 X-Ray Diffraction: 

To determine the volume fraction of retained austenite for each heat treatment 

process, X-ray diffraction (XRD) was done by using monochromatic Cr-Ka radiation 

(wavelength 'k=2.29 A) at 20 kV and 20 mA, and an X-ray diffraction intensity strip chart 

recording. The recorded profiles were analyzed to obtain the precise diffraction peak 

positions and integrated intensities. The volume fraction of retained austenite was 

determined by the direct comparison method using integrated intensities of the (200)a and 

(21 l)a peaks of ferrite, and the (200)y and (220)y peaks of austenite [51, 52]. 

3.10 Scuffing Test: 

A ball-on-disc tribometer, Figure 3.11, was used to carry out the tests. The linear 

sliding speed was either 1.649m/s or 1.356m/s. The applied normal load was increased 

22N every 120 seconds and the test was terminated when a sudden increase of the 

coefficient of friction, large noise and severe vibration occurred. The load at this moment 

was defined as the scuffing load. The friction force was measured with a strain gauge 

mounted on the sample holder. The disc specimen was lubricated by white mineral oil 

with a viscosity of 33.5cSt at 40°C. All tests were repeated 4 times and the average 

coefficient of friction (COF) and scuffing load were recorded. Typically the coeffient of 

friction was approximately 0.1 before scuffing and increased rapidly to approximately 

0.25 when scuffing occurred. 
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Normal Load 

Steel Ball Wear Track 

Rotation Direction 

Disc Specimen 

Figure 3.11: Ball on disc scuffing test equipment 

3.11 Image Analysis: 

The microstructure images obtained by the optical microscopy were analyzed 

using ImageJ [53] and Photoshop software. The software analysis provided a very good 

understanding on the overall quantitative assessment of the microstructures present in the 

optical micrograph. 

The image analysis was performed to isolate and measure the area percentage of 

three different phases in the microstructure: The dark nodular graphite, Grey/semi dark 

acicular phase, which is ausferrite or martensite depending on the sample, and the light 

coloured retained austenite. They were separated using the color and geometric features. 

For example, graphite was separable due to its very dark appearance and the nodular 

shape. ImgaeJ provided tools to separate using the color saturation and the nodularity 

factor. Then they were further filtered using Photoshop to exclude any of the 

inconsistencies which were not graphite. Finally the images were exported back to the 

ImageJ to calculate the area percentage of the graphite nodules. 
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The optical images selected for this analysis were at the 50X and 100X 

magnification levels, which are the two lowest magnification levels. This was done due to 

the fact that 50x images had an overview of all the possible phases present in the system. 

Higher magnification would provide the software a better chance to recognize the 

geometric features, but the overall image might not represent a true picture of the actual 

phase distributions. 

Figures 3.12 (a-b), shows a image analysis photo comparison. Figure 3.12(a) is the 

original optical micrograph of our sample ADI. Figure 3.12(b) is the isolation of the 

graphite nodules only from the original image, which was done using the ImageJ 

saturation system and nodularity tool. Further enhancement was manually done using 

Adobe PhotoShop. 

Figure 3.12: Optical image analysis for graphite nodule percentage, a) original 
micrograph, b) graphite nodules separated after ImageJ and Photoshop filtering. 
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CHAPTER TV 

MICROSTRUCTURE CHARACTERIZATION 

This chapter discusses the microstructural observation and characterization of all 

ADI samples. Both qualitative and quantitative analysis was performed on the data 

gathered from optical micrographs, SEM images, XRD results for retained austenite and 

software image analysis. 

4.1 Austempering Temperature and Time Effect: 

Optical micrographs of the as cast and all the heat treated samples are shown in a 

series of images shown in Figures 4.1 to 4.6. For each sample, two images at high 

(lOOOx) and low (200x) magnifications are presented. The lower magnification image is 

useful in understanding the overall phase and graphite nodule distribution. The higher 

magnification image is required to understand the detailed microstructures. 

From Figures 4.1 (a-b) it can be seen that the as cast microstructure does not 

contain any acicular bainitic ferrite or martensite. The as-cast microstructure is 

predominantly pearlitic (85%). The graphite is mainly nodular in shape, and almost every 

graphite nodule is surrounded by a bright halo of ferrite. This formation of bright ferrite 

surrounding the dark graphite nodule is often termed as 'Bull's Eye' [54]. There is some 

ferrite present which is divorced from the graphite nodules. Some ferrite is also present in 

the pearlite grain boundary regions. 

The heat-treated samples can be segmented into 3 groups based on their 

microstructural characteristics: martensitic, mixed martensite-ausferrite, and ausferritic 

(Bainitic ferrite). The lower austempering temperature samples (275 and 300C) produced 

a microstructure which is predominantly martensite. From Figures 4.2-4.3, we can see in 
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the high magnification images very sharp and long dagger-shaped martensitic laths. 

Although at times, it was difficult to differentiate between bainite and martensite laths, 

the bainite laths would be thicker and plate shaped. There is a noticeable effect of the 

austempering time. The 10 min austempered samples at both temperatures (275 and 

300°C) had the sharpest and coarsest needles: see Figures 4.2 (a-b) and 4.3 (a-b). The 60 

min austempering samples had the finest needles: see Figures 4.2 (c-d) and 4.3 (c-d). 

The medium austempering temperature (325°C) samples created a unique mixed 

ADI microstructure, which are shown on Figure 4.4. From the high magnification 

microstructures (Figure 4.4- b, d and f), it can be seen that the microstructures consists of 

both a martensite microstructure with dark sheaves of ausferrite (bainitic ferrite) needles. 

The 10 minute sample (Figure 4.4 a-b) microstructure has less bainitic ferrite sheaves. 

The 60 minute sample (Figure 4.4 c-d) has more balanced martensite-ausferrite 

microstructure. The 150 minute sample (Figure 4.4 e-f) is mostly ausferrite. 

Higher austempering temperatures (350 and 375°C) however create a 

microstructure which is predominantly ausferrite, as shown in Figures 4.5 and 4.6. The 

bainitic ferrite laths are very thick and feathery for the longer austempering times. This is 

because as the austempering temperature increases, the sheaves of bainite become thicker 

and the subunits are easier to resolve [14]. When comparing the laths/sheaves of the 

ausferrite samples with the martensite samples (Figure 4.6d and Figure 4.2b), the 

difference between the martensite and ausferrite microstructure is very evident. Ausferrite 

or bainitic ferrite laths are thicker, shorter, segmented and the edges have a feathery or 

saw-type profile. On the other hand, the martensite needles are much longer, narrower 
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and have a smooth profile edge. For both 350 and 375°C, it can be seen that the 10 minute 

samples have the narrowest and least feathery ausferrite laths: see Figure 4.5b and 4.6b. 

SEM images at higher magnification of samples austempered for 60 or 150 mins at 350 

and 375°C are shown on Figures 4.7 a-b. This image comparison gives us a clear idea on 

the feathery ausferrite profile. The highly feathery ausferrite laths (Figure 4.7b) are seen 

to be much more segmented, thicker and rough profiled compared to the lower feathery 

ausferrite (Figure 4.7a). 

Figure 4.1 : Optical micrographs of As-cast samples. 
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Figure 4.2 : Optical micrographs of samples austempered at 275°C, a-b) 10 min, c-d)60 
min e-f)150 min. 
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Figure 4.3 Optical micrographs of samples austempered at 300°C, a-b) 10 min, c-d)60 
min e-f)150 min 
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Figure 4.4 :Optical micrographs of samples austempered at 325°C, a-b) 10 min, c-d)60 
min e-f)150min 
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Figure 4.5:Optical micrographs of samples austempered at 350°C, a-b) 10 min, c-d)60 
min e-f)150 min 
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Figure 4.6: Optical micrographs of samples austempered at 375°C, a-b) 10 min, c-d)60 
min e-f)150 min 
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Figure 4.7: SEM micrographs of: (a) Medium feathery ausferrite, (b): Highly feathery 
ausferrite. 

4.2 Retained Austenite: 

XRD analysis showed that the % retained austenite was dependant on the 

austempering time and temperature: see Table 4.1. The table is color coded for high (dark 

gray), medium (light gray) and low (white)-retained austenite content. 35-33% is 

considered high, 25-29% as medium and 12-24% is categorized as low. 

Table 4.1: Volume % retained austenite for API samples 
TempYTime 

275°C 
300°C 
325°C 
350°C 
375°C 

lOmin 
12 
18 
23 

60min 
15 
28 

27 I ^ K H 
29 

150min 
14 
27 

The % retained austenite versus austempering temperature for 10, 60 and 150 

minutes austempering time is plotted in Figure 4.8. The % retained austenite increases 

with increasing austempering temperature regardless of the austempering time. The 10 

minute samples have the lowest % retained austenite, compared to 60 and 150 minute 

samples. The % retained austenite is a indicator of the ausferrite, or bainitic ferrite, 

content on the microstructure. Samples with martensitic microstructure contain the least 
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% retained austenite, while samples with coarse feathery bainitic ferrite contain the 

highest % retained austenite. 

These results can be explained by the stage 1, stage 2 process and the process 

window for the austempering process. It could be assumed that the austempering process 

ends before completion of stage 1, generating only a small amount of ausferrite and 

converting the remaining matrix into martensite when specimens are quenched after only 

10 minutes. 60 minutes could be assumed to be within the process window, thus 

producing the highest amount of ausferrite, and thus retained austenite. 150 minutes 

however could be assumed to be entering the stage 2 of the austempering, which will 

begin to reduce the ausferrite content by developing carbides. It can be seen by a slight 

drop in the austenite content from 60 to 150 minutes on Table 4.1. 

••—10 min 

*H~" 60 min 

•A— 150 min 

Figure 4.8: Relation between austempering temperature and % vol retained austenite for 
3 different time durations. 

Relationship between the austempering time/temperature and the % retained 

austenite is best illustrated in a 3D plot shown in Figure 4.9. The bright yellow/orange 

zone represents the highest % of retained austenite and dark blue represents the lowest. It 

275 300 325 350 375 

Austempering Temperature °C 
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can be seen that the bright yellow and orange region is located at the 60 min high 

temperature zone. Although 150 minute zone represents high % retained austenite, the 

diagram shows it is slightly less than the 60 minute zone. 

Figure 4.9: 3D plot relationship between % retained austenite and austempering 
time/temperature. 

4.3 Qualitative Microstructure Image Analysis: 

Image analysis with the help of ImageJ, Adobe Photoshop and the XRD results of 

the retained austenite allowed us to develop an approximate qualitative breakdown on the 

percentage of microstructural phases in the ADI samples. Table 4.2 shows the results of 

the qualitative microstructure characterization of the ADI samples. The boxes with N/P 

indicates that the phase was assumed to be absent from the microstructure characteristic 

observation. 
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Table.4.1: Microstructure area % of the ADI samples 

Austempering 
Temp (C) 

275 

300 

325 

350 

375 

Time 
(Min) 

10 
60 
150 
10 
60 
150 
10 

60 

150 
10 
60 
150 
10 
60 

150 

graphite 

13.6 
17.2 
13.2 
14.4 
10.8 
12.1 
15.4 

13.4 

15.7 
13.9 
13.2 
12.4 
13.9 
15.8 

16.9 

Retained 
Austenite 

12 
15 
14 
18 
28 
27 
23 

33 

33 
27 
35 
34 
29 
36 

35 

Ausferrite 

N/P 

N/P 
N/P 
N/P 
N/P 
N/P 
29.9 

53.6 

51.3 
38.6 
51.8 
53.6 
26.8 

48.2.1 

48.1 

Martensite 

74.4 
67.8 
72.8 
67.6 
61.2 
60.9 
31.7 

N/P 

N/P 
18.5 
N/P 
N/P 
30.3 
N/P 

N/P 

80 

70 

60 

50 -

40 

30 

20 

10 
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6s-

w t l 1 trJ i 

• graphite 

» Retained Austenite 

DAusferrite 
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10 min 6U mm ISO mm 
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LOmin 60min 150min 

300 C 

.0 mm 60 min 150 min 

325 C 

.0 min 60 min 150 min 

350 C 
0 min 60 min 150 min 

375 C 

Figure 4.10 : Microstructure balance comparison of all the ADI samples. 

69 



Figure 4.10 shows a schematic representation of the different phases that are 

present in the various austempered samples. An important factor worth noticing here is 

the martensite-ausferrite-retained austenite balance in the samples. Samples with less than 

25% retained austenite have a high level of martensite and no ausferrite. Higher levels of 

retained austenite are usually paired with ausferrite. From the literature review in chapter 

2.12, a combination of ausferrite and retained austenite gives the best mechanical 

performance for ADI. 

4.4 Summary 

Following conclusions are drawn from the microstructural analysis: 

1. Austempering temperature and duration heavily influences the microstructure of 

ADI. 

2. Three groups of microstructures are developed from varied austempering time (10-

150min) and temperature (275-375°C): martensitic, mixed martensite-ausferrite, 

ausferritic microstructure. 

3. Lower austempering time and temperature gives a martensitic microstructure, 

higher austempering time and temperature gives an ausferritic microstructure. 

4. Some of the ADI samples with medium austempering temperature (300-325°C) and 

short to medium time (10-60 min) produce a mixed martensite-ausferrite 

microstructure. 
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CHAPTER V 

MECHANICAL PROPERTY ANALYSIS 

This chapter focuses on the analysis of the data obtained from the mechanical 

testing , including tensile testing, Charpy testing and hardness testing. 

5.1 Hardness: 

Table 5.1 summarises the macrohardness data obtained from the Rockwell 

hardness tests. From Table 5.1 it can be seen that the hardness of the as-cast sample is the 

lowest with 23 HRC, presumably due to the pearlite-ferrite microstructure which was 

discussed previously in Chapter 4.1. The 10 minute samples all had a very high hardness 

level. This is due to the presence of martensite in the microstructure as discussed in 

Chapter 4.1. The hardness level decreased with increasing austempering time and 

temperature. Figure 5.1 illustrates the relationship between hardness and austempering 

conditions. 

The samples having the highest hardness levels are 275C-10 and 60 minutes and 

300C-10min, and the lowest hardness levels were found in samples 375C-60 and 150 

min, and 350C-60 and 150 minute. From the microstructure of these samples, we can 

conclude that the presence of martensite gives the highest hardness, while the feathery 

bainitic ferrite or ausferrite microstructure produces the lowest hardness. 

It is noticeable from Figure 5.1 and Table 5.1 that every heat treated sample had a 

significant jump on the hardness level compared to the as cast sample. All grades (I to V) 

were achieved by the austempering of our specified chemistry ADI. The numbers in the 

parentheses ( ) in Table 5.1 represent the ASTM hardness grade for ADI. The dark gray, 

gray and white color coding indicates high, medium and low hardness levels. 
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Table 5.1: Hardness (HRC) of the as cast and heat treated samples 

Temp/Time 

As Cast 

275C 

300C 

325C 

350C 

375C 

lOmin 60min 150min 

23 

55.8+1{V) 

51.(HI (VI 

45.7±0.3(ni) 

45.4±l(ffl) 

45.2±3(III) 

46.0±0.5(IV) 

42.1±4(III) 

35.2±2(II) 

32.0±1.5(II) 

27.6±0.5(I) 

45.1±0.5(III) 

42.4±0.1(III) 

36.7±1.2(111) 

32.0± 1.25(11) 

27.6±1(I) 

60 

50 

u 40 

S 30 
c 

I 20 

10 

* Number in the brackets indicate ASTM hardness grade. 

-4—10 mm 

60 mm 

-A—150 mm 

• As Cast 

250 275 300 325 350 

Austempering Temperature °C 

375 

Figure 5.1: Relationship between hardness (HRC) and austempering temperature for 3 
different time durations. 

The hardness level can be related to the % retained austenite, since the presence of 

retained austenite determines the microstructure. Figure 5.2 shows a fairly linear, inverse 

relationship between the hardness level and the % retained austenite. Two separate 

relationships have been developed from the plotting. The hardness relationship of ADI 

samples with less than 30% retained austenite is expressed on Equation 5.1 and the solid 
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trend-line in Figure 5.2. Equation 5.2 and the dotted trend-line shows the relationship 

between retained austenite and hardness for ADI samples with higher than 30% retained 

austenite. From the coefficient of determination R values, it can be said that the hardness 

decreases much faster for high (more than 30%) retained austenite ADI samples. In 

Figure 5.1, the hardness curve fitting has been segmented into two lines, blow and above 

30% retained austenite level. From the microstructure characterization, it was observed 

that ADI with greater than 30% retained austenite develops feathery ausferrite, which has 

significant influence on the mechanical properties. Also on Figure 5.1, it can be seen that 

the hardness level drops sharply once the retained austenite goes higher than 30%. Thus 

the plot was segmented to two parts. From Equation 5.1 and 5.2, it can be seen that the 

coefficient of determination is much higher for the ADI samples with higher than 30% 

retained austenite. This indicates that the hardness trend is more predictable with 

ausferrite microstructure. The points at the 10-15% austenite zone is very scattered. This 

is the low temperature, low time sample region. This inconsistencies of hardness has 

reduced the coefficient of determination for the low retained austenite samples. The 

combined result is also shown on Equation 5.3. A combined result shows R2 value of 

0.77, which is slightly lower than the high austenite hardness, but higher than the low 

austenite hardness. 

H = -0.4375(RA) +55.298 (R2= 0.4665) Equation 5.1 

H = -2.8364(RA) + 129.23 (R2 = 0.8319) Equation 5.2 

H = -0.8889(RA) + 64.298 (R2 = 0.7687) Equation 5.3 
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Figure 5.2: Relationship between hardness (HRC) and %vol retained austenite. 

Figure 5.3 shows the relationship between hardness and the austempering time 

and temperature in a 3D plot. It can be seen that the high hardness values of yellow and 

orange color area falls in the low time and temperature zone of the 3D quadrant. It is 

noticeable from the figure that the low and high hardness falls in the extremes of the plot. 

Which indicates the hardness and softness is found at the lowest and highest 

temperatures. Also noticeable is the very wide range of hardness that was achieved from 

the heat treatment. The plot ranges approximately from 25-60 HRC. This is a wide 

spectrum of hardness level which can be useful over a very wide range of engineering 

applications. 
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Figure 5.3: 3D plot relationship between hardness (HRC) austenite and austempering 
time/temperature. 

5.1.1 Microhardness: 

The microhardness data of the individual phase areas are shown in Vickers 

hardness in Table 5.2. It is difficult to see any particular trends apart from the highest 

value was recorded from the martensite and the lowest value was recorded from retained 

austenite. The range of hardness measured for each phase was quite large. This could be 

due to the fact that the targeted microhardness locations have different phases in the 

subsurface. 
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Table 5.2:Microhardness (HV) of different phases in API samples 
Austempering 
Temperature 

(C) 

275 

300 

325 

350 

375 

Time 
(Min) 

10 
60 
150 
10 
60 
150 
10 
60 
150 
10 
60 
150 
10 
60 
150 

Martensite 

5941 
4209 
4740 
4376 
3708 
3270 
N/P 
N/P 
N/P 
N/P 
N/P 
N/P 
N/P 
N/P 
N/P 

Ausferrite 

N/P 
N/P 
N/P 
N/P 
N/P 
N/P 
4923 
4850 
3226 
4157 
3226 
2939 
3226 
4923 
3941 

Retained 
Austenite 

5287 
4052 
3762 
N/P 
3383 
3059 
N/P 
N/P 
N/P 
4157 
3226 
2739 
N/P 
N/P 
N/P 

5.2 Toughness: 

The Charpy fracture toughness results are given in Table 5.3. It is worth 

mentioning here that the Charpy toughness specimens in our tests were notched 

specimens as detailed in Chapter 3. Notched samples provide a much lower level of 

toughness values compared to un-notched samples [41]. It should also be mentioned that 

the results for the 10 minute samples are not given in Table 5.3 since they showed high 

variability in test results. 

From Table 5.3 and Figure 5.4, it can be seen that the Charpy toughness increases 

with increasing austempering temperature. Also the 150 minute samples exhibit a slightly 

higher toughness level compared to the 60 minute samples. The highest toughness levels 

were obtained from 350°C-150 min and 375°C-60 minute and 150 minute samples. These 

samples also contained the highest % retained austenite, i.e. ausferrite microstructure. The 
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samples with a thick and feathery ausferrite microstructure produced the highest 

toughness levels. Figures 5.5a and b demonstrate that the toughness is proportional to the 

% retained austenite, and inversely proportional to the hardness. 

Table 5.3: Charpy impact toughness (J) for as cast and ADI samples. 

Temp/Time 
As-Cast 
275°C 
300°C 
325°C 
350°C 
375°C 

60min 150min 
2.2 

4.11 
5.13 
5.96 
5.98 
6.45 

4.36 
5.46 
6.28 
6.71 
9.20 

•60min 

150 min 

as-cast 

250 275 300 325 350 

Austempering Temperature 

375 

Figure 5.4 : Relationship between Charpy impact toughness (J) and austempering 
temperature for 2 different times. 
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10 20 30 

% Retained Austenite 

30 35 40 
Hardness (HRC) 

Figure 5.5: Relationship between toughness and (a) % retained austenite and (b) 

hardness. 

SEM fractographs of all the Charpy samples at 500x magnification are illustrated 

on Figures 5.6 to 5.11. It can be seen that all the heat treated samples had a very rough 

fracture surface. This is sign of enhanced toughness. In contrast, the as-cast sample Figure 

5.6, exhibited a relatively flat surface that is characteristic of brittle fracture, cleavage 

facets are noted. The heat-treated samples exhibit micro-cup and cone features. It is 

difficult to perform any quantitative analysis of the SEM fractographs. But qualitatively it 

can be stated a brittle material would have a smooth surface and a tough material would 

have a rougher fracture surface. 

Figure 5.6: SEM fractographs of Charpy specimens of the as-cast sample. 
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_a4_3 15.0kV x500 20um a7_3 15.0kV x500 20jjm 

Figure 5.7: SEM fractographs of Charpy specimens austempered at 275 C, for a) 60 min, 
b) 150 min 

\m js 

b4_2 15.0kV x500 20|jm 

Figure 5.8: SEM fractographs of Charpy specimens austempered at 300 C, for a) 60 min, 
b) 150 min 

c4_1 15.0kV x500 20um 

Figure 5.9: SEM fractographs of Charpy specimens austempered at 325 C, for a) 60 min, 
b) 150min 
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d4_2 15.0kV x500 20um 

Figure 5.10: SEM fractographs of Charpy specimens austempered at 350 C, for a) 60 
min, b)150 min 

rzm;-

e4_2 15.0kV x500 20|jm 

Figure 5.11: SEM fractographs of Charpy specimens austempered at 375 C, for a) 60 
min, b)150 min 

The average roughness (Ra) values as obtained by surface profilometry are given 

in Table 5.4 and compared in Figure 5.12. The austempering temperature has no obvious 

effect on Ra. However, a trend can be seen with austempering time. The 150 minute 

austempered samples had a rougher fracture surface compared to the 60 minute 

austempered samples for an identical temperature. In Table 5.4, gray color code is again 

used to indicate relatively higher Ra values. The higher Ra is evidence of higher ductility: 

more cup and cone and less cleavage fracture. 
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Table 5.4: Average roughness (Ra) of fractured ADI samples. 

Austempering 
Temperatures 
(C) 

275 

300 

325 

350 

375 

Orientation 

X 

Y 

X 

Y 

X 

Y 

X 

Y 

X 

Y 

Average 

Roughness Average Ra 
(urn) 

60 min 

28.26 

gPfg^^jM^,,). U 

28.89 

17.32 

47.69 
23.78 

63.23 

44.75 

44.62 
29.93 

37.96 

150 min 

35.36 

" 8 3 ^ 

54.36 

64.74 

89.95 

38.74 

104.01 

59.12 

72.19 

78.67 

68.07 

•™s 

a. 
01 

* 80.00 -| 
(A 
V 

c •g, 60.00 -I 
o 
* 40.00 -
10 

= 20.00 -

a| 
^ * ,x 

• 1 
H II 11 • • 
I 3| I I I ' •• II li! 1 l l • 

H i i .1 
. ^ A - V A - \ - A - V A - y . A 

tf tf # # <f £ £ ^ # ^ 
Austempering temperature and Orientation 

m 60 min 

> 150 min 

Figure 5.12: Charpy fracture surface roughness average (Ra) comparison between 60 min 
and 150 min austempered ADI. 
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5.3 Tensile Properties: 

Tensile properties of the heat-treated samples are summarised in Table 5.5. A 

wide range of tensile properties were developed. The ultimate tensile strength varied over 

the range 900 to 1500Mpa, and the elongation ranged was from 1 to 7.8%. The gray color 

code in Table 5.5 indicates results from faulty samples which fractured outside the gage 

length and N/A indicates an experiment malfunction. 

Table 5.5: Tensile properties of the as-cast and austempered samples 

Heat Treatment 

As Cast 

275C 

300C 

325C 

350C 

375C 

60min 

150min 

60 min 

150 
min 

60 min 

150 
min 

60 min 

150 
min 

60 min 

150 
min 

Sample 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

YS(MPa) 
550.6 
546.5 
1275.0 
888.0 
1261.5 
1256.0 
965.5 
1214.5 
N/A 
N/A 
N/A 
N/A 

1028.0 
1003.0 
726.0 
722.5 
771.0 
779.5 
647.5 
684.5 
656.0 
664.5 

UTS 
(Mpa) 
768.0 

737.6 
1275.0 
1373.5 
1459.6 
1538.6 
1283.5 
1320.0 
1309.0 
1408.0 
1236.5 

tms" 
1247.5 
1238.5 
988.5 
981.5 
976.5 
991.0 
942.5 
913.5 
924.5 
880.0 

%E1 
3.95 
4.25 
1.0 

2.25 
1.57 
2.79 
1.733 
1.47 
N/A 
N/A 
N/A 
N/A 
3.23 
2.82 
3.4 
3.5 
4 
4 

6.1 
6.1 
7.8 

4.65 

The UTS data are plotted in Figure 5.13. All the heat treated samples had 

significantly higher ultimate tensile strength (UTS) compared to the as-cast sample. The 

austempering temperature had a significant effect on the UTS, with UTS decreasing with 
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increasing austempering temperature. This is an agreement with the hardness data in 

Table 5.1. The percentage elongation showed an opposite trend to the UTS; see Figure 

5.14. The 150 minute austempered samples had slightly higher elongations compared to 

the 60 minute samples. The relationship between percentage elongation and the UTS is 

illustrated on Figure 5.15. As expected, elongation is reduced with increasing tensile 

strength. The two power series trend-line covered area on Figure 5.15 are consistent with 

ADI expected tensile properties given in the ASTM A897 standard [5]. There appears to 

be a limiting UTS (~900MPa) at which further elongation improvement does not lead to a 

reduction in tensile strength in the ADI samples. 

• 60 min 

• 150 min 

As Cast 275 C 300 C 325 C 350 C 375 C 

Austempering Temperatures 

Figure 5.13: Tensile strength (MPa) of as-cast and ADI samples at 60 and 150 min 
austempering. 
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• 60 min 

* 150 min 

As Cast 275 C 300 C 325 C 350 C 375 C 

Austempering Temperatures 

Figure 5.14: Elongation % of as-cast and ADI samples at 60 and 150 min austempering. 
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Figure 5.15: Elongation and tensile strength relation of the samples. 

5.4 Mechanical Property Summary 

1 All five grades of ASTM standard hardness were achieved with the ADI samples. 

2 Martensitic samples had the highest hardness and feathery ausferritic samples the 

lowest. 
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3 Charpy toughness of the ADI samples were significantly higher than as-cast alloy. 

High austempering time and temperature gave high Charpy impact toughness for 

ADI. 

4 High UTS was achieved by the austempering process, which is comparable to the 

ASTM ADI standards. ADI samples with lower temperature austempering produced 

very high UTS but with minimum elongation. 
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CHAPTER VI 

SCUFFING PERFORMANCE 

The scuffing failure loads at both speeds are shown on Table 6.1 and Figure 6.1. 

It can be seen that a lower sliding speed generated overall higher scuffing failure loads. 

This is expected as abrasion and surface deformation is more severe and abrupt with 

increasing sliding speeds [55]. For both sliding speeds, the lower austempering 

temperature and time samples exhibited poorer scuffing performance. Better scuffing 

performance was found for samples austempered at higher temperatures, and longer 

times. Same dark gray, gray and while color coding is used in the Table 6.1 to assign 

high, medium and low values. 

Table 6.1: Scuffing load of API samples 
Austempering 
Temperature 

("Q 

275 

300 

325 

i 

350 

375 

Time 
10 
60 

Scuffing 
Loadl.65 
(m/s) 

90 
103 

• E l ^ i H8 
10 
60 

10 
60 

150 
10 
60 

150 
io" 
60 

150 

108 
124 
110 
118 
170 
126 
124 
170 
140 
128 
177 

Scuffing 
Loadl.35 
(m/s) 

150 
140 
148 
136 
145 
150 
155 

IF fill 
162 
155 
178 
140 
165 
185 

143 182 
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Figure 6.1: Comparison of scuffing failure loads. 

When the scuffing performance as measured by the scuffing load is plotted against 

the % retained austenite (Figure 6.2a) it shows that the performance improves with the 

increasing % retained austenite. 

The relationship between scuffing load and % retained austenite is given in 

Equations 6.1 and 6.2. The polynomial curve fitting gives an acceptable coefficient of 

determination R values in Equations (6.1) and (6.2). 

L = 138 - 4.496RA + 0.144(RA)2 (R2=0.749; 1.649 m/s) 

L = 138 - 4.496RA + O.llO(RA)2 (R2=0.586; 1.356 m/s) 

Equation 6.1 

Equation 6.2 
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Figure 6.2 Relationship between scuffing load and (a) % retained austenite, (b) hardness 
and (c) toughness. 

For both sliding speeds, the scuffing load increases with decreasing hardness: see 

Figure 6.2b and Equations (6.3) and (6.4). 

L = 235 - 2.561H - 0.0H2 (R2=0.728;1.649m/s) Equation 6.3 

L = 294.6 - 5.685H - 0.054H2 (R2=0.540; 1.356 m/s) Equation 6.4 

As the hardness is inversely proportional to toughness, the scuffing load increases 

with higher Charpy values as shown in Figure 6.2c and Equations 6.5 and 6.6. 

L = -6.36C2 + 93.13C - 175.18 (R2= 0.6052; 1.649 m/s) Equation 6.5 

L=-1.3C 2 + 25C +59.88 (R = 0.4388; 1.356m/s) Equation 6.6 
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The range of toughness is approximately 5.5 to 7 J where the scuffing load was 

the highest. For the same notched-type sample, the as-cast alloy had a toughness of only 

2.16J. The scuffing load decreases with increasing of sliding speed. The higher speed data 

(1.649 m/s) has higher R2 values compared to the lower speed (1.356 m/s) data in all the 

plots (Figures 6.2(a-c)). This suggests that scuffing resistance at the lower sliding speed 

is less predictable. 

It must be mentioned that the overall R2 values found throughout the scuffing test 

were not very impressive. Scuffing tests are very time consuming and it is not a 

controlled or a precise procedure. The failure load can never be predicted perfectly, 

because of the nature of the scuffing mechanism. If we tested with many other samples to 

tabulate a large database, the coefficient of determination may have been higher. For a 

tribology test otherwise, the coefficient of determination is expected to be lower. 

3D plots are utilized to show the scuffing load relationship with austempering 

time/temperature on Figure 6.3 (a-b). It can be seen that for both sliding speeds (1.65 and 

1.35m/s), 60 min austempering at high temperature (350-375°C) gives the highest 

scuffing load performance. 
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Figure 6.3: 3D plot relationship between scuffing load (N) and austempering 
time/temperature: a) 1.65m/s sliding speed, b) 1.35 m/s sliding speed. 

The scuffing performance is ultimately related to the microstructure of the sample. 

As discussed in Chapter 4, the % retained austenite is dependent on the amount of 

ausferrite or bainitic ferrite contained in the sample. Lower % retained austenite samples 

have more martensite and higher % retained austenite samples have feathery and thick 

ausferrite. The maximum scuffing loads were found for samples with a higher fraction of 
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feathery ausferrite (375°C, 60min-176N), while samples with a smaller amount of 

ausferrite and higher martensite content showed lower scuffing loads (275°C, lOmin-

88N). The relative amounts of martensite and ausferrite was critical in determining the 

scuffing performance. 

6.1 Metallurgical Examination of Scuffed Samples 

SEM images were taken to understand the subsurface deformation of the scuffed 

ADI samples. Figures 6.4 (a-i) show the cross-sectional views of the scuffed track of the 

ADI samples. The first row of images, Figures 6.4 (a-c) is for 10 minute austempered 

samples at three different temperatures. Thin, sharp needles of the martensitic 

microstructure are visible in the images. Cracks are observed at the graphite/martensite 

matrix interfacial regions in the subsurface and cracks are seen to be propagating from the 

interfacial regions. The result of this crack propagation will be the generation of a wear 

particle and the "pull-out" of graphite. Shelton and Bonner [56] in their study of copper-

containing ADI also suggested that sub-surface crack initiation and propagation, which 

lead to the surface delamination, always initiated at the graphite nodules. An in-situ 

observation of the microprocess of crack initiation and propagation in ADI by Dai and He 

[43] also gave similar findings. Very little plastic deformation was found in most of the 

10 minute samples except at 375°C (Figure 6.4c) which has the highest content of 

ausferrite for samples austempered for 10 minutes (Table 5.2). 

Figures 6.4 (d-f), are for with medium austempering temperatures (275-300°C 

and 60-150 mins). In Chapter 4, we have shown that these samples contain medium 

amounts of retained austenite, and some have a mixed ausferrite-martensite 

microstructure. Moderate plastic deformation was observed for these samples. A few 
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cracks were also observed, which are expected to produce wear particles after 

propagation. There was also deformation of the graphite due to the scuffing process. 

The samples heat treated at high temperatures and long austempering times,, 

Figures 6.4 (g-i) exhibit a large amount of plastic deformation. The patterns of the 

ausferrite laths or feathery structures show signs of heavy deformation during the sliding. 

Very few or no cracks were seen in these samples. 

Cracks can initiate easily in the harder surface during the sliding contact. 

Macrostructures with a hard martensitic matrix cannot "protect" the graphite nodules. The 

graphite is prone to pull out during sliding because of its weak strength; consequently, 

cracks can be propagated as in Figures 6.4 (a-c). After a low critical number of cycles, a 

large amount of wear particles are produced. These particles destroy the lubricant film, 

leading to metal-to-metal contact and eventually, catastrophic failure. This leads to a low 

scuffing resistance. This theory is also supported by the scuffing load-toughness 

relationship. Scuffing load is proportional to the toughness. Samples with lower 

toughness would be prone to surface cracks and debris accumulation, leading to lubricant 

film destruction. A tougher surface is thus the key to an improved scuffing performance. 
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Figure 6.4:SEM image in the subsurface micrograph at sliding speed of 1.649m/s (the 
horizontal arrow shows the sliding direction) for ADI austempered in (a) 325°C/10min, 
scuffing load=117N; (b) 350°C/10min, scuffing load=125N; (c) 375°C/10min, scuffing 
load=127N; (d) 275°C/60min, scuffing load=103N; (e) 275°C/150min, scuffing 
load=117N; (f) 300°C/60min, scuffing load=125N; (g) 325°C/150min, scuffing 
load=127N; (h) 350°C/60min, scuffing load=169N; (i) 375°C/60min, scuffing 
load=176N. 

A trace of a white layer is observed in Figure 6.4g. This "white layer" constituent 

has been mentioned in cast iron research studies dating back to the 1940s. Clayton and 

Jenkins [57] found that a cast iron surface rubbing against steel develops a thin layer of a 

white constituent. The material was assumed to have two phases; cementite and a high 

carbon ferritic base developed from austenite. Ludema [58] in his research on scuffing for 

a lubricated surface mentioned the formation of a white layer. This white layer is termed 
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as W2. XRD and transmission electron microscopy (TEM) analysis by Cranshaw and 

Campany [24] suggested that W2 was a heavily deformed mixture of austenite and 

martensite. The formation of the strain induced martensite in austempered ductile iron has 

been discussed in detail by Daber et al [39, 40]. The transformation of austenite to 

martensite on the surface has been shown by both Johansson [59] and Ball et al [60] to 

lead to an increase in wear resistance of austenitic-bainitic ductile iron and stainless 

steels. 

6.2 Scuffing Summary 

1 Feathery ausferrite microstructure ADI gives superior scuffing performance compared 

to martensitic microstructure ADI. 

2 Feathery ausferrite ADI undergoes heavy plastic deformation but very little crack 

initiation and propagation under scuffing. 

3 Cracks initiate in the graphite nodule and ferrous matrix interphase of the martensitic 

ADI. 
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CHAPTER VII 

CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK 

The following conclusions are also drawn from this study: 

1. An austenitizing temperature for our special chemistry ADI could safely be 

established at 890°C. The microstructural analysis of the ADI samples, as well as 

the initially austenitized samples showed no evidence of pearlite or a-ferrite above 

890C. It can be assumed that 890C is comfortably above the inter-critical 

austenitizing temperature or ICAT. 

2. The austenitizing time was 20 minutes. This time was selected to reduce 

production costs. But short austenitizing could lead to segregation of the alloying 

elements, with resulting inconsistencies in performance. Some of the poorer Charpy 

and tensile test results could be due to the low austenitizing time. Although the 

mechanical properties were comparable to established grades, a longer austenitizing 

time (1 hour) would be both practical and effective. 

3. A combination of austempering time and temperature determined the 

microstructure. Low austempering temperatures (275-300°C) and time (10 min) 

produced a martensite microstructure. Increasing time and temperature (350-375°C; 

60-150 min) produced a feathery ausferritic microstructure with high % retained 

austenite. Some samples, austempered at medium level temperatures (300-325°C), 

contained both ausferrite and martensite laths. 

4. XRD results showed that the retained austenite levels were a function of the heat 

treatment process. The percentage retained austenite increases with increasing 

austempering time. A 60 minute austempering process generated the highest % 
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retained austenite since it is inside the process window for austempering. A 150 

minute austempering is assumed to be entering the 2nd stage of austempering, 

resulting is a slight decrease in the % retained austenite. 

5. All five (I-V) ASTM hardness grades were achieved by the austempering. 

Martensitic samples had the highest hardness level (Grade V). Ausferritic samples 

with thick and feathery ausferrite laths were the softest (Grade I). The hardness 

level can be directly related to the % of retained austenite. The hardness levels of all 

the heat treated samples were superior compared to the as-cast pearlite-ferrite 

material. 

6. Charpy impact results showed that the toughness of all the austempered samples 

were much higher than the as-cast alloy. Toughness levels increased with increasing 

austempering temperature. 150 minute samples had higher toughness values 

compared to 60 minute samples. The thick, feathery ausferrite microstructure is 

beneficial in producing a high level of toughness. 

7. Low to medium austempering temperatures generated a high ultimate tensile 

strength and low elongation (Grade IV and V). As the temperature increased, the 

tensile strength decreased. None of the heat treatment schedules produces the Grade 

I specification which is 850Mpa UTS and 11% elongation. Feathery ausferrite 

samples had lower tensile strength and higher elongation compared to the 

martensitic samples. 

8. In scuffing tests, martensitic samples exhibited very little plastic deformation, but 

considerable crack initiation and propagation in graphite/matrix interphase. A 

moderate level of surface deformation was found in medium feathery ausferrite 

microstructure. The thick and feathery ausferrite microstructure exhibited heavy 
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plastic deformation and little, or no, crack initiation. The scuffing performance was 

significantly higher for these feathery ausferrite samples. 

9. A white layer surface material, which is believed to be a deformed mixture of 

ferrite and martensite, could be influential in controlling the scuffing mechanism. 

7.1 Recommendations for Future Work: 

The target applications for ADI in this research were in automotive crankshafts 

(28-32 HRC), camshafts (50 HRC) and lower arm suspensions (40-45 HRC). ADI 

with 28-32 HRC had very good toughness and scuffing performance, which is ideal 

for the crankshaft application. 50HRC ADI samples had poor toughness and scuffing 

performance. Such ADI is not recommended for use in camshafts. Softer ADI (30-40 

HRC) could be further hardened with carburizing or other hardening methods for 

camshaft application. This would develop a camshaft with a hard shell and a tough 

core. Further research is required for camshaft ADI applications. ADI in the range of 

40-45HRC had moderate toughness, tensile performance and scuffing performance. 

Thus a lower arm application of ADI is recommended. 

7.2 Recommendations for Future Work: 

A wide range of mechanical and tribological properties were achieved by altering 

the austempering time schedules. The following work is suggested to further understand 

and improve ADI properties. 

1. The effect of alloying elements should be studied along with the austempering 

schedules. Alloying elements such as Cu, Mo, Ni could alter the ADI microstructure 

and, thereby, properties. 
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2. Longer austenitizing times should be considered to ensure an uniform distribution of 

the alloying elements. The effects of austenitizing temperature/time would be useful 

information for commercial heat treaters. 

3. A multistep austempering processes should be investigated as a means of improving 

the mechanical properties. 

4. The TRIP effect or strain induces transformation should be examined in more detail. 

Most of the ADI components in commercial applications i.e. crank shafts and cam 

shafts, are expected to experience surface deformation. 

5. Investigate the applicability of a surface engineered ADI where the required 

scuffing and wear resistance is obtained through the surface layer. 
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