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Abstract 

An experimental study and a finite element analysis is conducted on a cable-

damper system to study the individual and combined effects of damper stiffness and 

damper support stiffness on controlling stay cable vibrations. For the studied ranges of 

damper stiffness and damper support stiffness, the optimum damper coefficient is found 

to be shifted up to 22% and the modal damping ratio varies by as much as 23%. Results 

show that the optimum damper size increases as the damper stiffiiess and the damper 

support stiffiiess increase. Though the corresponding maximum attainable modal 

damping ratio also increases with more rigid damper support stiffness, it was found to be 

lower if damper stiffiiess increases. Approximate relations between the optimum damper 

size and the damper location, damper stiffness, damper support stiffiiess, as well as the 

corresponding maximum attainable modal damping ratio with these three system 

parameters are proposed. 
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Chapter 1; Introduction 

1.1 Background 

Cable-stayed bridges are commonly used in civil infrastructure. Their economic 

design, utility, and pleasing aesthetics have led to their use over unprecedented span 

lengths. The main span of Sutong Bridge in China, for example, is over a kilometer long 

and is currently the longest in the world. As bridge spans increase, so must their stay 

cables, which loose rigidity with length. The longest cable on the Sutong Bridge has a 

length of 580 meters. Due to their low inherent damping, which is often less than 1%, 

and low natural frequencies, stay cables are particularly sensitive to excitations by various 

dynamic sources. Violent, large amplitude vibrations of stay cables have been observed 

on bridge sites, and are of concern both for the healthy maintenance of the structure and 

for the bridge users. Excessive cable vibrations may result in fatigue failure at the cable-

deck or cable-tower connections and/or the deterioration of the cable corrosion 

mechanism. The source of stay cable vibration is an area of study that is important to 

ensure the safety of the bridge. To date, a number of vibration mechanisms have been 

identified as potentially harmful to bridge stay cables. The primary sources of vibration 

are from rain-wind-induced vibration, vortex-induced oscillation, high-speed vortex 

excitation, wake galloping, galloping of dry-inclined cables, and parametric excitation. 

1.2 Types of cable excitation 

Rain-wind-induced vibrations occur during periods of moderate wind and rain 

within a low frequency range of 1-3Hz. The amplitude of cable oscillations could reach ~ 

0.25 - 1 meter and have resulted in cables hitting each other in some extreme cases. An 

early observation of this phenomenon was during the construction of the Meiko-Nishi 
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Bridge in Japan (Hikami and Shiraishi, 1988). Experimental and analytical studies as 

well as field monitoring programs were carried out to study the mechanisms associated 

with this phenomenon (Flamand, 1995; Main and Jones, 2001; Kumarasena et al., 2007; 

Ni et al., 2007; Taylor and Robertson, 2010; Wang and Hou, 2011). The circular cross-

section of the cable is altered with respect to oncoming wind when rain water droplets 

rest on the cable. This results in an unstable aerodynamic force acting on the cable and, 

when the droplet oscillates at the natural frequency of the cable, the cable resonates and 

exhibits large vibrations. 

Vortex-induced vibration occurs when wind is acting in the direction 

perpendicular to the axis of the cable. K6rman vortices shed alternatively from either side 

of the cable, generating an oscillating force perpendicular to the direction of the wind 

(towards the cable) which induces cable vibration. If this force oscillates at a frequency 

near the natural frequency of the cable, resonance occurs which leads to large amplitudes 

of cable motion. Vortex shedding can be "locked-in" to a resonant frequency for a period 

when excitation wind speeds have been exceeded. These vibrations generally occur at 

low wind speeds and have a vibration amplitude response of approximately one cable 

diameter (Kumarasena et al., 2007; Zuo et al, 2008). 

High-speed vortex excitation has not yet been fully understood. This type of 

vibration is thought to result from the contribution of several modal frequencies and the 

interaction between K&rman vortex shedding and axial vortex shedding. This vibration 

has been observed to occur at higher frequencies than Karman vortex excitation in a 

narrow high reduced wind speed range and has a limited amplitude (Matsumoto et al., 

2001; Cheng et al., 2008a). 
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Wake galloping generally occurs when cables are in the wake of other structural 

elements such as other cables, bridge towers, and nearby buildings. When cables move in 

and out of a wake, they experience a change in the speed of wind and increased 

turbulence and they may begin to oscillate. If this oscillation frequency nears the natural 

frequency of the cable, resonance will occur. Wake galloping may be most easily 

avoided by installing cables in a properly spaced configuration so they will not be 

influenced by each other's wakes, as well as minimizing wakes generated from nearby 

construction (Kumarasena et al., 2007). 

Galloping of dry inclined cables occurs in the critical Reynolds number range and 

has only been observed experimentally; there are no confirmed cases from the field to 

date. In the lab, vibration was observed when the angle between the cable axis and the 

wind was 60° or between 75° - 90°. It was found that the mechanism of this type of 

vibration can be explained by the Den Hartog criterion, but its full mechanism is still not 

clearly understood (Cheng et al., 2008b). 

Parametric excitation occurs when bridge stay cables are forced to vibrate as a 

result of the motion of the bridge tower or bridge deck. Traffic live load, ground motion 

(earthquake), and wind are some examples of what may cause the bridge superstructure to 

move. This movement causes stay cable anchorage points to displace vertically (deck 

anchorage) or horizontally (tower anchorage), causing a fluctuation in the tension 

experienced within the cable. The ratio of the excitation frequency to the cable natural 

frequency often observed to yield large amplitude responses from parametric excitation is 

2 (Hou and Wang, 2011). 
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1.3 Vibration mitigation techniques 

To suppress unfavorable cable motions, various vibration controlling means have 

been proposed. They can be generally categorized as aerodynamic type and mechanical 

type. 

The alteration of the cable casing surface has proven to be an effective measure in 

controlling both rain-wind-induced vibration as well as vortex-induced vibration. This 

vibration mitigation method is classified as an 

"aerodynamic" type because the surface treatments 

would change the aerodynamic forces that induce the 

Figure 1-1: Cable casing surface cable to vibrate. The surface treatment could prevent 
protrusions (Yeo and Jones, 

2011) the formation of water 

rivulet on the cable surface and disturb the formation and 

shedding of the K£rm£n vortices. Surface modification 

patterns were tested in wind tunnel studies to investigate 

their effectiveness. A commonly used protrusion pattern 

is the helical spiral, shown on the top cable in Figure 1-1, Figure 1-2: Cable casing 
cross-section alterations 

along with two other patterns that have been tested (Yeo (Kleissl and Georgakis, 2011) 

and Jones, 2011). The U.S. Grant Bridge in Ohio, USA, uses the helical spiral type of 

surface protrusion. Modification of the base cylindrical cross-section of the cable casing, 

as shown in Figure 1-2, is a very recent area of research that is currently being tested in 

wind tunnels (Kleissl and Georgakis, 2011). 
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The mechanical type of vibration control includes the use of cross-ties, which 

would increase the in-plane stiffness and thus the natural frequency of cables; and 

external dampers, which would directly increase damping in the cable. 

Cross-ties are transverse cable connectors that connect several stay cables together 

to increase the overall stiffness and damping of the entire cable network. The points of 

tie connection limit the motion of the stays, decreasing their effective length and 

increasing cable in-plane stiffness, which tends to increase the natural frequencies of the 

cables. Environmental cable excitation is generally most critical in the lower modes of 

vibration. Increased cable natural frequencies help to avoid increased dynamic response 

at resonance in these critical lower modes. Both experimental and numerical work (e.g. 

Yamaguchi and Nagahawatta, 1995; He et al., 2010; Caracoglia and Jones, 2005) have 

shown that flexible cross-ties are more effective than their stiff counterparts because 

flexibility allows for energy dissipation within the cross-ties, and that some prestress 

should be applied to the cross-ties when they are installed. However, segmenting the 

cable with the ties tends to generate intense local vibrations that are not desirable. This 

method of vibration mitigation has been successfully used on several bridges, for 

example, the Fred Hartman Bridge in Texas, USA (Caracoglia and Jones, 2005), and the 

Dames Point Bridge in Jacksonville, Florida, USA (Kumarasena et al., 2007). 

Many external type mechanical dampers have been used in the field such as the 

friction damper (Myrvoll et al., 2002), high damping rubber dampers (Nakamura et al., 

1998), tuned-mass dampers (Cai et al., 2006), magnetorheological (MR) dampers 

(Christenson and Spencer, 2001), and viscous dampers (Main and Jones, 2001). MR 

dampers generate resistance to control cable motion through the alignment of magnetic 
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particles in the damper in the direction parallel to an applied magnetic field. They have 

been explored primarily through semi-active control (Johnson et al., 2007), and passive 

control (Cho et al., 2005). A newly proposed method of vibration contol changes the 

boundary condition of the classic cable system: one end of the cable is no longer fixed. 

The support is flexible and has both stiffness and damping in the direction of cable 

vibration, which may reduce vibration displacement more effectively than a passive 

damper (Hwang et al., 2009). Viscous dampers are the most commonly used mechanical 

type. They are being used on the Fred Hartman Bridge in the USA, the Brotonne Bridge 

in France, and the Aratsu Bridge in Japan. Design tools have been proposed and 

developed for their application (e.g. Pacheco et al., 1993; Tabatabai and Mehrabi, 2000; 

Cheng et al, 2010). Improvements to the classic viscous damper have been attempted 

recently with adjustable fluid dampers (Xu and Zhou, 2007). They use shape memory 

alloy to optimize the damper performance. 

Often overlooked, however, is the effect of damper and damper support stiffness 

in the viscous damper design. Practical design tools must include these parameters in 

order to predict accurately the additional damping from the damper. Without considering 

these factors, damping may be overestimated in design and cables in the field may not 

receive adequate damping as expected, which may leave the bridge structure vulnerable 

to dynamic excitation. 

1.4 Motivations 

The accurate prediction of the additional damping a viscous damper can provide 

for a stay cable is imperative to an efficient damper design. There is a lack of research 

that has been done on the effect of damper stiffness and damper support stiffness on the 
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performance of a viscous damper, and their combined effect has rarely been investigated. 

The very few existing studies which explored this issue indicated that both damper and 

damper support stiffness would have a sizeable effect on the accurate prediction of the 

system damping ratio. 

The lack of study in the area of how damper stiffness and damper support stiffness 

would affect damper efficiency was the motivation for the current work, which included 

the construction of an experimental study and a finite element analysis of the dynamic 

behaviour of a cable-damper system while including damper and damper support stiffness 

properties. The impacts of these two parameters on the damper performance were 

investigated separately as well as in combination. This study has not only confirmed the 

trends currently documented, but it has extended their practicality to the actual damper 

design by proposing approximations for the optimum damper size and its corresponding 

maximum equivalent first modal damping ratio. 

1.5 Objectives 

The objectives of this study were thus proposed to be: 

1. Design a linear viscous damper that allows for adjustable damper stiffness and 

support stiffness. 

2. Design the calibration system for the damper. 

3. Conduct cable forced vibration tests to observe the following: 

a. the effect of damper support stiffness on cable damping ratio 

b. the combined effect of damper stiffness and damper support stiffness on 

cable damping ratio 
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4. Develop a finite element model of the cable-damper system including damper 

stiffness and damper support stiffness. The model was developed using the 

ANSYS commercial software. The energy-based method proposed by Cheng et 

al. (2010) was used to calculate the damping ratio of the system. 

5. Compare experimental and numerical results, as well as those reported in the 

literature. 

6. Develop approximate expressions for the optimum damper size and its 

corresponding maximum attainable equivalent first modal damping ratio to be 

used in practical damper design in order to account for the influence of damper 

stiffness and damper support stiffness effects on its performance. 
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Chapter 2: Literature Review 

A common simplification in the analysis of a cable-damper system has been to 

idealize the cable as a taut string. Therefore, cable sag (inclination) and bending stiffness 

are neglected. This assumption has often been used in analytical studies, such as those 

that use complex eigenvalue analysis to estimate the additional damping expected in 

different modes of vibration from a linear viscous damper. 

Kovacs (1982) identified the existence of an optimum viscous damping coefficient 

using the semi-empirical approach and developed an analytical equation estimating its 

value, based on the two extremes of cable damping: no damping and a damper with 

infinite damping capacity, which will act as a rigid support. This research analyzed only 

the first mode of cable vibration, although it has the potential of being extended to higher 

modes. 

A universal damping estimation curve was subsequently developed by Pacheco et 

al. (1993), also based on eigenvalue analysis using the taut cable assumption. This curve, 

shown in Figure 2-1, can be used for a practical range of stay cables and linear viscous 

dampers, and it assesses the optimal size and location of a damper needed for controlling 

cable vibration in a specific mode in which the maximum amount of additional damping 

must be provided. In addition, this curve can further estimate the additional damping to 

be had in other modes based on the initial damper design developed from the curve. 

Modal damping ratio is plotted on the y-axis and the non-dimensional damper coefficient 

is potted on the x-axis, where ft is the modal damping ratio in the Ith mode of vibration, xc 

is the location of the damper, L is the span length of the cable, c is the damper coefficient, 
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m is the mass per unit length of the cable, &)0x is the fundamental natural frequency of the 

cable, and i is the mode number. This curve can be used for the first six modes of cable 

vibration and it has increased usefulness over previous work because of its simplicity in 

application. An analytical solution representing the universal estimation curve has also 

been developed. It was proposed by Krenk (2000) that maximum additional damping that 

can be achieved from a linear viscous damper could be approximated simply as £ = 

x c / 2L .  
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Figure 2-1: Universal damping estimation curve 
(Pacheco et al., 1993) 

The shortfall of linear viscous dampers is that the optimal damping coefficient 

can only be achieved in one specified mode of vibration. It will have an increasingly 

rigid effect on higher modes and an increasingly less rigid effect on lower modes. This 

also causes the natural frequency of the cable to shift towards that of a similar cable with 

a shortened length. However, the preferred mode to dampen is generally not known 

beforehand. In the study by Main and Jones (2001), the case of an infinitely rigid damper 
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was analyzed as a "clamped case" and analytically described by a clamping ratio, which 

was seen to increase with mode number, for a particular damping coefficient. This means 

that the damper acts in a more rigid manner for higher cable vibration modes, and 

confirms that this type of damper may only act optimally for one mode, because its 

effectiveness decreases for other modes. This optimal mode must be known before the 

damper is designed, and must be designed on a case-by-case basis for each cable in 

question, which may not be economically practical in design. It is worth pointing out 

that, though not optimal, a linear viscous damper may offer some damping effect to other 

vibration modes. 

An analytical comparison between linear and nonlinear viscous dampers has been 

done by Main and Jones (2002) using the taut cable assumption. A universal damping 

estimation curve for a nonlinear damper was developed. The behavior of a nonlinear 

viscous damper can be generally described as exerting a force, proportional to the 

velocity of the cable, raised to some positive exponent. The use of this type of damper 

might be an improvement over the linear viscous damper because its efficiency is largely 

dependent on the amplitude of cable oscillation, and is less sensitive to mode number. 

The damper performs optimally in modes that experience oscillations in the vicinity of 

the design amplitude. Specifically, it was found that a nonlinear viscous damper with the 

exponent of V2 was completely independent of mode number and was equally effective at 

the same amplitude of vibration oscillation, regardless of the mode. This extends the 

design of dampers beyond a specific mode of vibration. 

A mathematical model and semi-empirical design equation for nonlinear dampers 

was developed for high velocity applications by Jia et al. (2008). The taut string-single 
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Figure 2-2. Universal damping 

estimation curves (comparable to the taut-string, single damper curve) were generated by 

Caracoglia and Jones (2007) for the two damper case as well. It was found that the modal 

damping of the damped cable was improved when the dampers were installed at opposite 

ends of the cable, but worsened when located at the same end due to their interaction. 

The latter would actually increase the stiffness at that end of the cable. 

Tabatabai and Mehrabi (2000) studied the dynamic behaviour of a damped 

flexible cable by including the sagging and bending stiffness of the cable in the 

formulation. A notable conclusion was made that bending stiffness has a considerable 

effect on the obtainable damping ratio that can be achieved by a mechanical viscous 

damper, and that the taut cable approximation is likely to overestimate the obtainable 

damping ratio. Design equations / methods for damper design have been proposed which 

include bending stiffness but restrict damper location to the vicinity of the cable end. 

Cable sag, often analytically expressed by the inextensibility parameter (A2) was 

initially proposed by Irvine and Caughey (1974). It is defined as the ratio of the stiffness 

of an ideal massless cable to that of an actual sagging cable. The sagging effect was 

found to be significant primarily in the first mode of vibration for cables with an 

inextensibility parameter greater than one. The universal damping estimation curve 

proposed by Pacheco et al. (1993) was deemed valid only for short to medium length 
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cables, where sag can justifiably be neglected. Xu and Yu (1998), as well as Tabatabai 

and Mehrabi (2000), developed curves, similar to the universal damper design curve, to 

determine the maximum damping ratio and the optimum damper size while considering 

the cable sagging effect for the first mode of cable vibration and beyond. 

Energy-based methods have been explored to evaluate the additional damping 

provided by an attached viscous damper. Jiang (2006) used the kinetic-energy decay ratio 

of a freely vibrating cable, obtained from a finite element model developed using the 

ANSYS commercial software, and converted it into equivalent Rayleigh damping. 

Cheng et al. (2010) developed a mathematical equation based on the kinetic 

energy decay time-history of a freely vibrating damped cable to evaluate the additional 

damping provided by an attached viscous damper. The time-history response was 

obtained from numerical simulations of a freely vibrating cable damper system developed 

using the ABAQUS commercial software. This work expanded on the previous studies 

by not only including the sag and flexural rigidity of the cable, but also lifting the 

restriction on the damper installation location in the application. 

The dynamic behaviour of a cable-damper system has also been extensively 

studied experimentally. Pacheco et al. (1993) conducted tests to validate the proposed 

universal damping estimation curve and found that the amount of additional damping 

provided by a linear viscous damper did not reach the predicted optimum value. It was 

suggested that this could be attributed to the effects of cable sag and non-ideal linear 

viscous damper behavior. 
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Xu et al. (1999) conducted both free and forced vibration tests on a cable-damper 

system, with varying cable tension to simulate a range of sag conditions. The existence 

of an optimal damper coefficient that can reach a maximum modal damping ratio for a 

given damper location has been confirmed. Large-amplitude force-controlled vibration 

tests revealed non-linear vibration of an undamped cable, while the linearity was restored 

in the three lowest modes of vibration with the use of an oil damper. Out-of-plane 

vibration was also observed during these tests near the first in-plane natural frequency of 

the cable because of its proximity to its first out-of-plane natural frequency, which was 

thought to have generated internal resonance. In the experiment, the oil damper was 

found to be able to extinguish the out-of-plane vibration in the first mode, while 

effectively mitigating the in-plane vibration. 

Field observations evaluating the performance of linear viscous dampers were 

conducted by Main and Jones (2001) on the Fred Hartman Bridge in Texas, USA, where 

two dampers were installed on two different stay cables. The dampers were found to be 

effective in mitigating cable vibrations that were identified to have stemmed from vortex-

and rain-wind-induced excitations. After installing the dampers, not only the amplitude 

of cable vibration but also the acceleration of cable motions were decreased significantly. 

It was also observed that the damper forces were the greatest when the wind was in the 

same direction as the cable was declining. 

Experimental research has also been extended to the use of multiple dampers 

attached to one cable by Sun et al. (2004). It was found that two dampers, installed at 

opposite ends of the cable, will increase the overall damping in the system; the sum of the 

additional damping provided by each damper is approximately equivalent to the overall 
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cable damping ratio. However, installing the two dampers 

at the same end of the cable will reduce the cable damping 

ratio. 

The installation of linear viscous dampers has been 

to date generally restricted to the end of a cable within a 

few percent of the cable length for practical reasons. 

However, the damper will have increased effectiveness and 

damping capabilities if it can be moved towards the mid-

span of the cable. In field applications, this may require a damper support structure to 

allow the damper to be installed beyond its conventional position, as shown in Figure 2-3. 

It is worth noting that none of the studies reviewed above considered the stiffness of the 

damper itself and the support in the formulation. These could have considerable impact 

on the efficiency of the damper. 

A few studies addressed the issue of damper stiffness and damper support 

stiffness. Zhou (2005) used complex modal analysis to develop an equation for the 

optimal damper size, which included damper stiffness. It was found that as the non-

dimensional damper stiffness increased, the optimal damper size would increase linearly. 

Xu and Zhou (2007) developed an analytical formula using the taut cable 

assumption for the cable damping ratio using an adjustable fluid damper. This damper 

type acts as a passive fluid damper after the optimum damping coefficient is found 

through application. The formula represented the adjustable fluid damper using the 

Maxwell model, which can be described as a dashpot connected in series with a spring. 

Figure 2-3: Damper support 
structure (Sun et al, 2004) 
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An additional spring was connected in series with the damper spring to represent support 

stiffness. The cable damping ratio was represented as a function of damper support 

stiffness; an increase in damper support stiffness increased the cable damping ratio. 

Fujino and Hoang (2008) analytically derived an asymptotic formula for the 

modal damping of a cable, which included cable sag, flexural rigidity, and damper 

support stiffness. In the formula, the influencing factors were expressed as modification / 

reduction factors, which can be used conveniently in practical damper design. This study 

confirmed that, for cables with a small sag parameter, sagging effect was significant only 

for the 1st symmetric mode of cable vibration and that the influence of cable flexural 

rigidity was apparent in all modes of interest. Damper support stiffness was found to be 

independent of the mode of cable vibration and to have a significant effect on the 

maximum damping capability of the damper. With the increase of damper support 

stiffness, the cable damping ratio increases. Damper design equations including the 

damper support stiffness were proposed. 

The analytical work by Huang and Jones (2011) has led to the development of 

universal damping estimation curves for predicting modal damping ratio of a damped 

cable by including the effect of damper support stiffness, although the taut cable 

assumption was used in their formulation. In this study, a decrease in damper support 

stiffness was also found to decrease additional damping from an attached linear viscous 

damper. 

Sun et al. (2004; 2008) analytically analyzed the individual effects of damper 

stiffness and damper support stiffness on the maximum attainable damping ratio, based 
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on the taut string assumption. An increased damper stiffiiess and decreased damper 

support stiffness were each found to independently decrease the maximum obtainable 

cable damping ratio. Efficiency factors were proposed, which were defined as the ratio of 

actual additional damping from experimental results to the analytically calculated results 

based on ideal linear viscous damper theory. 

Huang (2011) conducted an experimental work focusing specifically on the effect 

of damper stiffness on the efficiency of a linear viscous damper in suppressing cable 

vibrations. Springs were installed between a model cable and a linear viscous damper to 

simulate the damper stiffness. Results indicated that the existence of damper stiffiiess 

would reduce the effectiveness of a damper. 

Further study needs to be undertaken to understand the effects of damper stiffness 

and damper support stiffness on the additional damping provided by a viscous damper. A 

thorough understanding of both of these parameters will help bridge designers to 

maximize viscous damper effectiveness in mitigating stay cable vibration. The current 

study has expanded on previous work by considering these two parameters both 

separately and in combination in an experimental study and through a finite element 

analysis of a cable-damper system. Approximations for the optimum damper size and its 

corresponding maximum achievable damping ratio have been developed for the 

convenience of practical damper design. 
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Chapter 3: Experimental Study 

An experimental study was carried out to investigate the dynamic behavior of a 

cable-damper system. This chapter will include a detailed description of the experimental 

setup, the equipment, and the testing procedures that have been used, as well as the 

experimental results. An existing experimental setup, developed by Huang (2011), was 

modified to be used for the current study. This experimental study was set up in room B-

19 in Essex Hall at the University of Windsor, Ontario, Canada. 

3.1 Experimental setup 

A steel wire cable was used to model a bridge stay cable and it was mounted 

horizontally between two steel columns. A sketch of the experimental setup is shown in 

Figure 3-1. 
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Figure 3-1: Sketch of experimental setup 

One end of the cable was attached to a load cell for measuring the pretension in the cable, 

and the other end was attached to a hydraulic pump for applying tension in the cable. The 

cable had a span length of 9.33 m (mounted into position), a nominal diameter of 4.65 

mm, a unit mass of 0.092 kg/m, and a nominal moment of inertia of 15.8 mm4. The 

appropriate amount of pretension for this cable to achieve the desired dynamic behaviour 

was investigated by Huang (2011) and found to be within the range of 2500 N - 4000 N. 
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This range is high enough to avoid too little tension in the cable, which would cause the 

cable to be slack, and low enough to avoid too much tension, which would cause the 

vibrating cable to exhibit elliptical motion. The pretension in the cable used for this 

experimental study was 3200 N. The natural frequency of the model cable was lowered 

to approach that of an actual bridge stay cable by adding 20 evenly spaced 50 gram mass 

blocks to increase its unit mass. The resulting unit mass of the cable was 0.2 kg/m. The 

first natural frequency of a cable (/i) can be predicted using the formula: fi = 

1/(2lS)yjT/m, where L = cable length (m), T = cable pretension (N), m = cable unit mass 

(kg/m). The resulting natural frequency of the cable, after the addition of the mass 

blocks, is predicted to be 6.78 Hz. In the lab, the natural frequency of the cable was 

found to be approximately 7.0 Hz. 

A Universal Flat Load Cell, model number FL25U-2SG, was mounted at one end 

of the cable to measure the applied pretension in the cable. It has a maximum capacity of 

25,000 lb and it was calibrated using a universal tensile tester, which yielded a calibration 

constant of 5.458 kN/mV. This constant was inputted into the data acquisition system to 

display cable tension in kN (with a display resolution of 10 N). The load cell is shown in 

Figure 3-2. 
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Figure 3-2: Universal Flat 
Load Cell 

An Enerpac hydraulic steel hand pump, shown in Figure 3-3, was installed at the 

opposite end of the cable from the load cell to apply pretension to the cable. The unit, 

model number PH-84, has a maximum pressure rating of 10,000 psi. In this experiment, 

the hydraulic pump was setup to exert a pretension of 3200 N to the cable. This value 

was measured by the load cell located at the opposite end of the cable. 

Figure 3-3: Hydraulic hand pump 
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An accelerometer was placed at the mid-span of the cable to monitor the first 

modal response of cable vibration. It was placed on the very top of the cable cross-

section in order to record only the vertical motion. Real time data was collected using the 

Astrolink Xe data acquisition and control software. The data was monitored to make sure 

that the wave-form acceleration data collected was symmetric, which indicated that the 

unit is properly placed at the top of the cable and is receiving data from only the vertical 

direction of motion. The accelerometer used, model number 352A24, was purchased 

from Dalimar Instruments and has a testing range of 1 - 8000 Hz. The testing range used 

in this experimental study was 6-8 Hz. 

An electronic dynamic Smart Shaker from the Modal Shop, Inc. was utilized for 

the forced vibration tests. The unit, model number K2007E01, is capable of providing up 

to 7 lb (31 N) of peak sine force, has a 1/2 inch (1.27 cm) stroke, and a testing frequency 

range of 1 - 9000 Hz. The shaker was installed at five percent of the cable length, sitting 

on a tripod, and directed vertically to provide excitation in only this direction, as shown in 

Figure 3-4. The correct installation of the damper is essential in order to receive accurate 

data from the accelerometer, which is installed to record vertical motion. Improper 

installation (non-vertical excitation) will cause unsymmetrical cable motion and thus 

incorrect cable damping ratio in the analysis. 
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Figure 3-4: Smart Shaker 

An HP signal generator, model number 33120A, was used to generate the 

dynamic excitation functions to control the dynamic shaker. This unit, shown in Figure 

3-5, has the ability to generate many output functions including sine, square, triangle, and 

ramp, among others. The sinusoidal output function was used in this experiment. The 

signal generator can generate this output function in a frequency range of 1 - 15 MHz. 

Figure 3-5: HP signal generator 
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The data acquisition recorder used was AstroDAQ Xe from Astro-Med, Inc. The 

unit, part number 22834-513, connects to a computer through a USB 2.0 interface and has 

eight input channels. Both the load cell and the accelerometer were connected to this data 

recorder, shown in Figure 3-6. The software that was used with this recorder was the 

AstroLINK Xe data acquisition and control software, also from Astro-Med, Inc. The 

software, part number 22834-514, can record data at frequencies up to 200,000 Hz. In 

this experiment, a sampling frequency of 1000 Hz was used. The Realtime mode in the 

software was used to monitor and capture real-time acceleration data from the 

accelerometer. The review mode in the software was used to review and save data 

previously captured. 

Figure 3-6: AstroDAQ XE data 
aquisition recorder 
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3.2 Damper design and calibration 

A passive linear viscous damper was used in this experimental study. This 

damper type provides a dissipative damping force generated from the pressure difference 

from a piston moving through a viscous fluid. The damper used in this study was 

designed to have variable damper stiffness and support stiffness. It was also imperative 

that all energy in the system be affected only by the damper and stiffness components (no 

loss of energy due to friction), to result in an accurate cable damping ratio. A photograph 

of the damper designed for this experimental study is shown in Figure 3-7. 

Figure 3-7: Viscous damper 
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The designed damper has the following main components: 

1. A plastic container holds the viscous fluid. It is open at the top and it has an 

inner diameter of 100 mm. The bottom of the container has 12 holes carved 

into it to fit the support springs. Figure 3-8 shows a sketch of the damper 

container. 
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Figure 3-8: Damper container 
sketch 
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Figure 3-9: Damper 
block sketch 

2. SYNTON PAO 100, produced by Chemtura Canada Co. and obtained from 

Commonwealth Oil, was used as the viscous fluid for this damper. It has a 

kinematic viscosity at 40°C of 1279.51 centistokes (cSt). 

3. An acrylic block was designed as the piston for this damper. It has vertical 

holes that extend vertically and symmetrically through the block for the 

purpose of increasing the contact surface area with the viscous fluid to 
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increase the damper damping coefficient. It has a mass of 80.78 g. Figure 3-9 

shows a sketch of the damper block. 

4. A plastic stick connects the block to the cable. It screws into the center of the 

block and attaches to the cable through two aluminum pieces that fit around 

the cable cross-section. The stick and aluminum pieces have a mass of 26.10 

g. Figure 3-10 shows a picture of the damper block connected to the stick and 

aluminum pieces. 

5. Two sets of two springs were used to simulate the damper stiffness. They are 

connected to the damper container through two aluminum hooks screwed into 

the top surface edges of the container, directly across from each other, and 

they are connected to the cable directly. The stiffness of the springs was 

measured experimentally in the lab. The springs were obtained from 

McMaster-Carr and have the following properties: 

Figure 3-10: Damper block, 
sick, and cable attachment 
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Table 3-1: Damper stiffness spring properties 

Spring Part No. 9654K53 9654K812 

Stiffness (N/m) 140 300 

Spring type Steel Extension Spring Steel Extension Spring 

6. Two sets of six springs were used to simulate the damper support stiffness. 

They sit in an acrylic base plate that has holes carved out to fit their cross-

section. The base of the plastic damper container rests on the springs. It has 

holes carved out of its base to fit the springs. The stiffness of the springs was 

measured experimentally in the lab. The springs were obtained from 

McMaster-Carr and have the following properties: 

Table 3-2: Damper support stiffness spring properties 

Spring Part No. 9434K147 9434K135 

Stiffness (N/m) 5780 7880 

Spring type 
Music wire precision 
compression spring, 

zinc-plated 

Music wire precision 
compression spring, 

zinc-plated 

7. An acrylic base plate was designed to accompany the damper and allow for 

varying support stiffness. It has two sets of six holes carved into it 

symmetrically. Each set of six holes accommodates one set of support 

stiffness springs. The two sets of support stiffness springs can be used either 

independently or in combination. The base plate can also be directly attached 

to the damper to simulate an infinitely stiff support. 

A damper calibration system was designed to measure the damping coefficient of 

the damper. An LVDT was used to measure the linear displacement of the piston (acrylic 
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block and stick) as it moves through the damper viscous fluid under constant applied 

forces. The LVDT cylinder was placed on the lid of an acrylic structure, shown in Figure 

3-11, which has an opening in its side to allow for the raising and releasing of the damper 

piston. 

Figure 3-11: Acrylic calibration unit 

The top of the LVDT stick fits into the damper cylinder and its base is screwed into the 

aluminum top plate of the plastic damper stick, which is also connected to the acrylic 

damper block at its bottom end. The two aluminum pieces of the damper stick, used to 

attach to the cable during testing, hold rectangular prism mass blocks during calibration. 

The different mass blocks are used as the constant applied forces on the piston. The mass 

was applied in 25 g increments. The LVDT was connected to the AstroDAQ Xe data 

recorder to display the velocity of the LVDT in volts per second using the AstroLINK Xe 

software. The conversion factor for the displacement of the LVDT stick is 1 volt = 2.5 

mm. It was used to convert its velocity into meters per second. The damper coefficient 
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has a unit of Ns/m. The applied force during calibration includes the weight of the 

damper acrylic block, the plastic stick and the attached aluminum pieces, the mass blocks 

used, the screws to attach the aluminum pieces together, and the LVDT stick. As the 

damper piston is released, each time with different mass blocks installed, the data 

acquisition software records the velocity of the LVDT stick. The relation between the 

applied force and the damper piston velocity, illustrated in Figure 3-12, was produced 

from calibration results and linear regression analysis. The slope of this force-velocity 

curve is the damper coefficient with the unit of Ns/m. The damper in this experimental 

study had a damping coefficient of 32.2 Ns/m. 
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Figure 3-12: Force vs. Velocity calibration graph 

3.3 Forced-vibration tests 

Forced-vibration tests were performed to observe vertical cable motion under 

varying excitation frequencies. The combinations of damper stiffness and damper 

support stiffness that were tested are described in Table 3-3. 
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Table 3-3: Damper-stiffness combinations 

Damper coefficient (Ns/m) 32.2 

Damper support stiffness 
(N/m) 

Infinite 82000 47300 

Damper stiffness (N/m) 0 280 600 0 280 600 0 280 600 

The following describes the experimental testing procedures that were followed: 

1. Find the first natural frequency of the cable (to the nearest 0.05 Hz) by adjusting 

the excitation frequency of the shaker through the signal generator. The 

maximum cable response from the accelerometer data can be captured in the 

Realtime mode of the AstroLINK Xe software (i.e. resonance). The experimental 

value of the first natural frequency of the cable will be slightly higher than that 

estimated theoretically because the installation of the shaker decreases the 

effective length of the cable. 

2. Create a file name for the current test and select the sampling frequency (1000 Hz 

was used) in the AstroLink Xe software. 

3. Set the signal generator to a frequency of 0.5 Hz less than the experimental natural 

frequency and record the acceleration data. This data file may be subsequently 

reviewed (in the Review mode) and saved as a Microsoft Excel file. 

4. Increase the signal generator frequency by 0.05 Hz for each test, up to (/i + 0.5) 

Hz. Each damper-stiffness combination will therefore be tested at 20 frequency 

values. 

A Butterworth Filter, which can filter higher modes out of the experimental data, 

leaves only data from the first mode of vibration. This filter used a band pass of {fx -
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0.6 H z )  -  ( f x  + 0.6 H z )  and had a filter order of two. The acceleration data was 

subsequently converted to displacement data using a Fourier Transform and the Matlab 

commercial software. With this displacement data, the half-power method was used to 

determine the cable-damping ratio of the tested system by plotting the frequency-response 

curve. 

A sample data set will be presented to fully illustrate the experimental procedure. The 

sample data set will have the damper located at 10% of the cable length, with a damper 

stiffness of 280 N/m and a damper support stiffness of 47300 N/m. 

First, a pretension of 3200N was applied to the cable using the hydraulic hand pump. 

The value of pretension was measured by the load cell, which was connected to the 

AstroDAQ Xe data acquisition system, and observed in the Realtime mode of the 

AstroLINK Xe software. The shaker was installed at 5% of the cable length, at the 

opposite end from the load cell. It was set to its maximum amplitude and connected to 

the signal generator. The signal generator was set to a sinusoidal output function. The 

accelerometer was installed at the mid-span of the cable, on the top of the cable cross-

section. It was also connected to the data acquisition system. 

The damper was subsequently installed at 10% of the cable length, at the same end as 

the load cell (and the opposite end from the shaker). First, the acrylic damper base plate 

was secured onto a steel base, which can be adjusted to raise the damper up to the height 

of the cable. The six support springs with stiffness of 7880 N/m are placed in their 

respective holes in the base plate (the springs are placed alternatively in the holes such 

that each spring has an empty hole adjacent to it). The support springs are installed in 
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parallel and their combined stiffness is a direct addition of each spring stiffness, which 

results in a damper support stiffness of 47300 N/m. The damper container is filled with 

the viscous fluid, SYNTON PAO 100, and the container is placed on the support springs. 

The top of the support springs fit into the holes in the damper container base. The damper 

block is attached to the plastic stick and placed in the damper container. The plastic stick 

is connected to the cable through its attached aluminum pieces, which are screwed 

together with the cable in between them. The two damper stiffness springs, each with a 

stiffness of 140 N/m, are installed in parallel. The bottom of each spring is attached to an 

aluminum hook, on each side of the container. The top of each spring is hooked directly 

onto the cable. Their combined stiffness is 280 N/m. 

The fundamental frequency of the cable is then found in the experiment by 

adjusting the output frequency on the signal generator. The fundamental frequency is 

found to be approximately 7.20 Hz by qualitatively observing the maximum cable 

response at this excitation frequency. The shaker and damper attachments caused the 

fundamental frequency to increase slightly. The testing frequency range was 0.5 Hz 

below the fundamental frequency to 0.5 Hz above it, therefore 6.70 - 7.70 Hz. The signal 

generator was set to 6.70 Hz. The sampling frequency was set to 1000 Hz. The 

AstroLINK Xe software was used to capture the data over a time period of 12 seconds. 

The data was then reviewed in the Review mode and saved an excel file for further 

processing. The signal generator output frequency was increased by 0.5 Hz and the 

data was once again captured, reviewed, and saved. This was repeated up to at frequency 

of 7.70 Hz. This concluded testing for this sample. 
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The following details the data processing of the sample data set. The acceleration 

data from the first data file (6.70 Hz) was brought into Matlab; it was represented by the 

variable "b". The Butterworth filter was designed in Matlab using the "Filter Design & 

Analysis Tool". It was of Bandpass response type and a filter order of two. The filter 

was represented by the variable "Hd". An M-file, designed by Huang (2011) and 

included in Appendix A, was subsequently used to process the data. This file applies the 

Butterworth filter to remove higher modes of vibration from the experimental data and it 

applies Fourier Transform to convert acceleration time-history data to displacement time-

history data. The M-file produces a graphical output of the displacement time-history 

data, shown in Figure 3-13. The maximum displacement is found using the "Data 

Cursor" tool, which displays data values interactively. The maximum displacement value 

for this data set was found to be 0.6133 cm. 
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Figure 3-13: Displacement vs. Time output 
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Table 3-4: Maximum displacement values for each tested excitation frequency 

Excitation frequency 
(Hz) 

Maximum 
displacement (cm) 

6.70 0.6133 
6.75 0.6905 
6.80 0.8046 
6.85 0.9372 
6.90 1.090 
6.95 1.254 
7.00 1.409 
7.05 1.545 
7.10 1.585 
7.15 1.545 
7.20 1.444 
7.25 1.317 
7.30 1.191 
7.35 1.065 
7.40 0.9495 
7.45 0.8478 
7.50 0.7586 
7.55 0.6841 
7.60 0.6178 
7.65 0.5622 
7.70 0.5108 

The maximum displacement for each data file was subsequently found. These values 

are presented in Table 3-4. A variable was created for the excitation frequency (F) and 

the maximum displacement (D) in Matlab. The Curve Fitting Tool was used to plot 

maximum displacement (D) in centimeters versus excitation frequency (F) in Hz. The 

data was fitted with a cubic spline, interpolant type of fit, shown in Figure 3-14. The 

fitting curve was analyzed using the Analysis Tool, and the displacement was interpolated 

at each 0.001 Hz along the fitting curve. The maximum displacement (Dmax) may then be 

found with the precision of 0.00001 Hz. In this data set, the maximum displacement was 

1.58517 cm. 
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Figure 3-14: Maximum displacement (cm) vs. Excitation frequency (Hz) 

The half-power method was subsequently used to calculate the experimental cable-

damping ratio. The steps are listed below and a summary of the sample data set is 

presented in Table 3-5. 

1. The maximum displacement was divided by the square-root of two to 

calculate the half-power points: 

Dmax _ 1.58517 cm __ — = 1.120884 cm 

2. The excitation frequencies (on each side of the peak displacement) that 

correspond to this displacement value were found to be: 

Ri = 6.910 Hz 

R2 = 7.328 Hz 
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3. The damping ratio was calculated using the following formula: 

R2-Ri 7,328Hz - 6.910HZ 
5 = „ = „ooo„ , = 0.02936 = 2.936% 

R2 t Rj 7.328Hz "I- 6.910Hz 

Table 3-5 Summary of the sample experimental data set 

Damper location Ld 10% L 

Damping coefficient c (Ns/m) 32.2 

Damper stiffness kd (N/m) 280 

Damper support stiffness ks(N/m) 47300 

Damping ratio £ (%) 2.936 

3.4 Experimental results 

Table 3-6 summarizes the combinations of damper stiffness and damper support 

stiffness that have been tested. The damper was installed at 4%L, 6%L, and 10%L. The 

experimental results for each damper location are presented graphically in Figures 3-15, 

3-16, and 3-17, respectively. 

Table 3-6: Tested stiffness combinations 

Damper damping coefficient c 
(Ns/m) 32.2 

Damper support stiffness ks 

(N/m) 
Infinite 82000 47300 

Damper stiffness kd (N/m) 0 280 600 0 280 600 0 280 600 

36 



0.6 

0.5 

£0-4 *u> 
o 

2 0.3 

Q 0.2 

0.1 

0.0 

f 

£ 1 

0 Damper stiffness = 0 N/m 

• Damper stiffness = 280 N/m 

A Damper stiffness = 600 N/m 

0 Damper stiffness = 0 N/m 

• Damper stiffness = 280 N/m 

A Damper stiffness = 600 N/m 

0 Damper stiffness = 0 N/m 

• Damper stiffness = 280 N/m 

A Damper stiffness = 600 N/m 

1 

1.6 

1.4 

1.2 

1.0 
o 

'•g 
^ 0.8 

0.6 

0.4 

0.2 

0.0 

50000 100000 150000 

Damper support stiffness ks (N/m) 

Figure 3-15: Experimental results (4%L) 
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Figure 3-16: Experimental results (6%L) 
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Figure 3-17: Experimental results (10%L) 

The experimental results given in Figures 3-15, 3-16, and 3-17 show that the 

effects of damper support stiffness and damper stiffness on the performance of a linear 

viscous damper are similar at all three tested damper locations. It can be observed from 

these three figures that the modal damping ratio of the cable-damper system increases as 

damper support stiffness increases. This is the same trend that has been observed in 

previous studies (Xu and Zhou, 2007; Fujino and Hoang, 2008; Huang and Jones, 2011). 

The reason for this behaviour may be attributed to difference in damping force that the 

damper exerts when it has a rigid support (Figure 3-18) compared to when it has a support 

with finite stiffness (Figure 3-19). The damping force exerted by the damper may be 

expressed by the following: 

Fd = c(VA - VB) (3.1) 
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where Fj is the damping force exerted by the damper on the cable (N), c is the damping 

coefficient of the damper (Ns/m), VA is the velocity of the node where the damper 

connects to the cable (m/s), and VB is the velocity of the node where the damper connects 

to its base support (m/s). Nodes A and B are illustrated in both Figures 3-18 and 3-19. In 

Figure 3-18, a sketch of a damper with a rigid support is shown. For this case, the 

velocity of node B (VB) in Eq. (3.1) would be zero because the rigid support is not in 

motion. When this is inserted into Eq. (3.1), the value of the damping force becomes the 

following: 

In Figure 3-19, a sketch of a damper with a support of finite stiffness is shown. The 

velocity of node B (VB) in this case would be a nonzero value. This results in a smaller 

damping force than in the case where the damper has a rigid support. Therefore, a 

damper with a finite support provides less damping than that with a rigid support. 

Fd = cVA (3.2) 
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Figure 3-18: Sketch of a damper with a rigid support 
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Figure 3-19: Sketch of a damper with a support of finite stiffness 
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The experimental results also show that the modal damping ratio decreases as the 

damper stiffness increases. This trend, observed by Zhou (2005) and Huang (2011), is 

reasonable because the existence of the damper stiffness reduces the efficiency of the 

damper by absorbing part of the energy and converting it to elastic energy. Without 

damper stiffness, this part of energy would otherwise be transferred to the damper and be 

dissipated through its damping mechanism. This set of data implies that to achieve the 

maximum efficiency of a linear viscous damper, preferably, it should be supported on a 

rigid base, and the stiffness of itself should be negligible. 

The experimental results obtained have been compared with the existing literature 

to confirm their accuracy. The studies conducted by Xu and Zhou (2007), Fujino and 

Hoang (2008), and Huang and Jones (2011) have produced analytical formulae that 

predict the value of the modal damping ratio of a cable-damper system while including 

the effect of damper support stiffness. However, the effect of damper stiffness was not 

considered in these works. These formulae will therefore be used to compare with the 

zero damper stiffness cases of the current study. The study conducted by Zhou (2005) 

produced a damper efficiency reduction factor that accounts for the effect of damper 

stiffness only. The degradation of damper performance caused by the presence of damper 

stiffness observed in the current experimental study will be compared with the reduction 

factor calculated using the formula developed by Zhou (2005). 

The equation developed by Xu and Zhou (2007) is based on the Maxwell model, 

i.e. a damper in series with a spring, and has the following form: 



where £ is the nondimensional modal damping ratio of the cable-damper system in the 

mode of vibration, xc is the location of the damper, L is the length of the cable, co0i is the 

undamped circular frequency of a taut cable in the first mode of vibration, kt is the 

nondimensional damping parameter in the P mode of vibration, calculated based on the 

following: 

where c is the damper coefficient. The damper support stiffness is included in the term A, 

which is defined as the total relaxation time constant and is a component of the Maxwell 

model upon which these equations are based. This term may be calculated using the 

following formula: 

where kd is the damper stiffness in series with the damper, and k, is the support stiffness 

in series with both the damper and the damper stiffness. For the purpose of comparison 

with the current results, which only had the damper support stiffness in series with the 

damper (damper stiffness was in parallel with the damper), the term c/kj was taken as 

zero. In order to utilize Eq. (3.3) to compare with the results of the current study, xJL 

was taken as 0.04, 0.06, and 0.10 for the 4%L, 6%L, and 10%Z, damper locations, 

respectively. The values of c, m, L, and G>0I were taken as 32.2 Ns/m, 0.2 kg/m, 9.33 m, 

and 42.59 radians/s, respectively. The value of k3 was varied from 6,300 N/m to 200,000 

N/m. The value of damper support stiffness used to represent a rigid support was taken as 

200,000 N/m. This is appropriate because this value is significantly larger than the values 

used for the finite support stiffness. The formula developed by Xu and Zhou (2007) uses 

(3-4) 

A = c/kd + c/ks (3.5) 
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the taut cable assumption. Therefore, cable sag and bending stiffness were neglected. 

The dashed line in Figures 3-20 to 3-22 portrays the results by Eq. (3.3). 

The equation developed by Fujino and Hoang (2008) for evaluating the amount of 

damping provided by an external linear viscous damper to suppress cable vibrations while 

considering the damper support stiffness is the following: 

Sn „ „ k2nfnsnnn ^ 
—77 = RsnRf——: _ .2 ,  ,  (3-6) 
xc/L k2 + (l + knf) n|nn^ 

where k = xck/H is the dimensionless damper support stiffness, xc is the location of the 

damper, k is the damper support stiffness, H is the chord tension of an inclined cable, and 

L is the length of the cable. The terms «/ and nm are the modification factors due to cable 

flexural rigidity and sag, respectively, and n„ is a modification factor that includes the 

dimensionless damper damping coefficient and its location along the cable length. The 

values for these modification factors were calculated using the formulae proposed in the 

study. For example, when the damper is located at 4%L, r\f and n„ are calculated to be 

0.874 and 0.160, respectively. The value of nm was calculated to be equal to one (this 

factor is not dependent on the location of the damper). The terms Rm and R/ are the 

reduction factors due to the influence of cable sag and flexural rigidity, respectively. The 

former was calculated to be 1.0 (it is not dependent on the location of the damper) and the 

latter was calculated to be 0.960 when the damper is located at 4%L. This equation was 

applied to the cable used in this experiment and the damper support stiffness parameter 

was again varied from 6,300 N/m to 200,000 N/m. The solid line in Figures 3-20 to 3-22 

portrays the results of Eq. (3.6). The equation developed by Fujino and Hoang (2008) 

included not only the damper support stiffness, but also the cable bending stiffness and 
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sag. Since the damper stiffiiess was not included in this formula, only the experimental 

data points that have zero damper stiffness were used for comparison. 

The universal curve equation proposed by Huang and Jones (2011) predicts the 

modal damping ratio of a cable-damper system by including a flexibility coefficient that 

takes into account the damper support stiffiiess. The equation has the form of the 

following; 

~ (3.7) 
xc/L 1 + (tc2 k)2^2 

where k is the nondimensional damping coefficient, which can be expressed as: 

k=akr'(r) (38) 

and C is the effective flexibility coefficient expressed as: 

1/Y ?=1+J; (3-9) 

The effective flexibility coefficient includes a nondimensional spring stiffness parameter 

X which is expressed as: 

* = ¥ (3'9) 

where k is the damper support stiffness, L is the cable length, and H is the cable tension 

force. The universal curve equation, Eq. (3.7), was applied to the cable used in this 

experiment with the damper support stiffiiess parameter varied in the same range as was 

done for the two previous studies described. The dotted line in Figures 3-20 to 3-22 
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portrays the results by Eq. (3.7). This equation uses the same taut cable assumption as 

that developed by Xu and Zhou (2007), and therefore cable sag and bending stiffness 

were neglected. Damper stiffness was not included in this formula. Thus, the 

experimental data that have zero damper stiffness will be used for comparison. 
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Figure 3-20: Experimental results (4%L) 

44 



Curves by Huang & Jones (2011) and 

Xu & Zhou (2007) overlap 

<J 
Curves by Huang & Jones (2011) and 

Xu & Zhou (2007) overlap 

<J 

O Current study 

—» Fujino & Hoang (2008) 

— — Xu& Zhou (2007) 

O Current study 

—» Fujino & Hoang (2008) 

— — Xu& Zhou (2007) 

O Current study 

—» Fujino & Hoang (2008) 

— — Xu& Zhou (2007) 

50000 100000 150000 

Damper support stiffness ks (N/m) 

200000 

Figure 3-21: Experimental results (6%L) 
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Figure 3-22: Experimental results (10%L) 
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In Figures 3-20 to 3-22, it may be seen that the damping ratio of the experimental 

results (and the modal damping ratios from literature) increase as the damper location is 

moved towards the mid-span of the cable. This pattern is well documented in literature 

(e.g. Cheng et al., 2010). As the damper is installed closer to the mid-span of the cable, 

the transverse displacement undergone by the cable at the location of damper installation 

increases. This is the same displacement that the damper piston will be subjected to while 

attached to the cable at this location. The work W done by the damper on the cable may 

be simply expressed as W = Fjd, where Fj is the damper force and d is the cable 

displacement at the damper attachment point (point A in Figure 3-18). The damper force 

acts in the opposite direction as the displacement of the cable, therefore the work done by 

the damper is negative (or rather, dissipative). The negative work done by the damper on 

the cable increases as the displacement undergone at the cable-damper attachment point 

increases. Therefore, a greater amount of oscillation energy is removed from the cable as 

the damper location is closer to the mid-span of the cable. Work W may also be 

expressed as the net change in the kinetic energy KE, i.e. W = AKE. An increase in 

negative work is equivalent to a larger negative change in kinetic energy in the cable at 

the point of damper installation. Therefore, when the damper is installed closer to the 

cable mid-span, more kinetic energy (or oscillation energy) is removed from the cable, 

resulting in a greater modal damping ratio. 

The experimental results at the 4%L damper location, as given in Figure 3-20, are 

slightly below the damping ratio predicted using the formulae developed by Xu and Zhou 

(2007), Fujino and Hoang (2008), and Huang and Jones (2011). In the 6%L and 10%L 

damper locations, however, the current experimental data points lie in between the 
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damping ratio predictions of the formulae found in the literature (Figures 3-21 and 3-22). 

This discrepancy in the pattern of measured data may be attributed to small differences in 

the damper installation location, the shaker installation location, and the setting of cable 

pretension in different testing cases. The entire experimental setup of the cable-damper 

system was torn down and re-built between tests at each damper location. Although great 

care was taken to ensure uniform experimental practices during each testing session, 

small variations in damper location and cable tension, primarily, may have a noticeable 

effect on the resulting modal damping ratios. 

Table 3-7 summarizes the values of modal damping ratio obtained experimentally 

in the current study as well as the values of modal damping ratio obtained using the 

formulae from literature using the same damper support stiffness. Table 3-8 summarizes 

the absolute percent difference between the modal damping ratios obtained in the current 

experimental study with those calculated using the equations from literature. 
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Table 3-7: Summary of modal damping ratios (%) 

Damper location 
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Table 3-8: Absolute percent different between current study results and those from 
literature (%) 

Damper location 
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47,300 12.4 26 26.0 6.3 4.4 4.4 3.5 1.9 1.9 

82,000 10.1 24.1 24.1 7.9 2.9 2.9 5.3 0.3 0.3 

Rigid 4.7 11.6 11.6 12.1 0.7 0.7 1.3 6.5 6.5 

48 



The study conducted by Zhou (2005) proposed a formula that predicts the 

reduction in modal damping ratio attributed to damper stiffness. This reduction factor is 

inversely proportional to the nondimensional damper stiffness, indicating that the damper 

loses efficiency as damper stiffness increases. This formula neglects both cable sag and 

bending stiffness. The equation developed is the following: 

Rmax = feT (3.10) 

1 + 
H 

where k is the damper stiffness (N/m), xc is the damper location (m), and H is the cable 

pretension (N). Rmax is the reduction factor to show how much modal damping ratio is 

reduced when considering damper stiffness. This equation makes no consideration for 

damper support stiffness. Only the change in modal damping ratio due to the existence of 

damper stiffness, with a rigid damper support, can be used for comparison. Therefore, the 

damper efficiency reduction due to damper stiffness observed in the current study was 

calculated and compared with the reduction factor computed from Eq. (3.10) by Zhou 

(2005). The reduction factors for the current study were calculated by using the 

following formula: 

r _ |kd*o ^311^ 
Skd=0 

where R is the reduction factor, is the damping ratio of a testing case where no 

damper stiffness existed, and to is the damping ratio of a testing case of non-zero 

damper stiffness. Both of these damping ratios corresponded to a rigid damper support. 

For example, the testing case with the damper located at 4%L and damper stiffness of 0 
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and 280 N/m, the modal damping ratios obtained from the current experimental study are 

given in Table 3-9: 

Table 3-9: Experimental modal damping ratios (%) (4%L, ks = rigid) 

Damper stiffness kd 
(N/m) 

Modal damping ratio 
5 (%) 

0 0.550 

280 0.529 

The damper efficiency reduction factor due to the existence of damper stiffness as 280 

N/m can be computed from: 

rO.529 ro.5291 
= TT^D = 0.962 

L0.550J 

The reduction factor was calculated for each combination of damper location and damper 

stiffness tested and the results are listed in Table 3-10 along with the reduction factor 

calculated using the formula proposed by Zhou (2005). The two sets of results are found 

to agree well with each other. The error is less than 6.5%. They are also presented 

graphically in Figures 3-23 and 3-24 for the convenience of comparison. 
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Table 3-10: Modal damping reduction factor comparison 

Damper 
location 

Damper stiffness 
(N/m) 

Rmax 

Current study 

Rmax 

Zhou (2005) 

Error (%)* 

4%L 280 0.962 0.968 0.62 4%L 

600 0.934 0.935 0.11 

6%L 280 0.893 0.953 6.30 6%L 

600 0.872 0.905 3.65 

10%L 280 0.955 0.924 3.35 10%L 

600 0.828 0.851 2.70 

Use Zhou (2005) as reference base 

^ k ^ L 
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Figure 3-23: Reduction factor comparison (kd = 280 N/m) 



i 
' i i 

L 

— — 

# Current study 

0 Zhou (2005) 

1 

— # Current study 

0 Zhou (2005) 

1 

— 

0 0.02 0.04 0.06 0.08 0.1 0.12 

rd 
= Lj/L 

Figure 3-24: Reduction factor comparison (kd = 600 N/m) 
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Chapter 4: Numerical Simulation 

4.1 Finite element model 

A 2D finite element model of the studied cable-damper system was analyzed 

using the ANSYS 14.0 commercial software. The model used was developed by Jiang 

(2006) and subsequently modified in the current study to include the damper stiffness and 

the damper support stiffness. 

The cable was modeled using the element type PIPE59, which is an Immersed 

Pipe or Cable element type. This is a uniaxial element with six degrees-of-freedom at 

each node (both translation and rotation in the X, Y, and Z axes), as illustrated in Figure 

4-1. 

T90 
out w9 

TI80 
PY 

Figure 4-1: PIPE59 Element Geometry 
(ANSYS 14.0 Documentation) 

It is possible to use this element in tension, compression, torsion, and in bending, and it 

has stress stiffening and large deflection capabilities. The Real Constant No. 11, which is 

the initial strain in the axial direction, was utilized to apply the cable pretention of 3200 

N. The initial strain was calculated using the formula relating the linear stress and strain, 

i.e. a = Ee, where a = axial stress (Pascal), E = Young's Modulus of the cable (Pascal), e 

= strain (dimensionless).  The axial stress may be calculated from the formula a = F/A, 
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where F = cable pretention (N) and A = cable cross-sectional area (m2). The material of 

the element was steel with a Young's Modulus of 200 GPa and the cable was modeled as 

solid by inputting a pipe wall thickness equal to the radius of the cable cross-section. The 

cable was fixed at both ends. 

A sensitivity analysis was carried out for the purpose of selecting the optimum 

number of elements for the cable. A modal analysis of the cable-damper system was 

repeated, with the ANSYS software, using a different number of elements ranging from 

50 to 500. The results are shown in Figure 4-2. A transient analysis of the cable-damper 

system was also repeated, with the ANSYS software, using a different number of 

elements ranging from 100 to 350 elements. The resulting equivalent modal damping 

ratio obtained through each transient analysis (the cable is divided into a different number 

of elements in each analysis) was compared with the equivalent modal damping ratio 

obtained using the formula developed by Fujino & Hoang (2008) (refer to Eq. (3.6)). The 

absolute percentage difference between the numerical simulation results and that obtained 

from the formula developed by Fujino & Hoang (2008) are shown in Figure 4-3. 
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Figure 4-2: Natural frequency (Hz) vs. Number of elements graph 
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Figure 4-3: Absolute percentage difference vs. Number of elements graph 

It can be seen from Figure 4-2 that the natural frequency of the cable approaches a 

constant value of 6.8519 Hz as the number of elements increase. This constant value is 

within 1.06% of the predicted theoretical value of 6.78 Hz, as was calculated previously 

from the formula: = 1/(2L)yjT/m. The number of elements selected for this study 

was 200 because the natural frequency of the cable becomes constant at this value. It can 

be seen from Figure 4-3 that the absolute percentage difference between the damping 

ratio of the cable-damper system obtained from numerical simulation and the value 

obtained using the asymptotic formula developed by Fujino & Hoang (2008) decreases as 

the number of elements increase. When the number of elements is 200, the percentage 

difference between the two sets of data is less than 2.5%, which is acceptable. Therefore, 

considering both the accuracy requirement and computation time, it is decided to use 200 

elements to simulate the cable in the numerical analysis. 
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The damper was modeled using the COMBIN14 Spring-Damper element type. 

This massless element was used as a longitudinal spring-damper (it has torsional spring-

damper capabilities as well) connected transversely to the cable. This is a uniaxial 

tension-compression element with three degrees-of-freedom at each node (translation in 

the X, Y, and Z axes). COMBIN14 is a damper in parallel with a spring, as illustrated in 

Figure 4-4. 

The damper coefficient is inputted with units of (force x time / length), or Ns/m if base 

units are used throughout (as was used in this study). The spring in this element is used 

to simulate the damper stiffness. The spring stiffness is inputted with units of (force / 

length), or N/m if base units are used throughout. A value of zero stiffness was used to 

simulate zero damper stiffness case and a nonzero value was used to simulate a specified 

damper stiffness. This element was modeled as fixed at its base node for simulations with 

infinite damper support stiffness and connected to a spring element (described 

subsequently) when simulating finite damper support stiffness. 

The damper support stiffness was modeled as a spring in series with the damper 

and fixed to the ground at its base. A COMBEN14 element was used for this spring by 

torque 

Figure 4-4: COMBIN14 Element geometry 
(ANSYS 14.0 Documentation) 
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removing the damping property from the element, i.e. to input a very small value for the 

damping coefficient («1). 

4.2 Numerical simulation 

A modal analysis of the cable-damper system was conducted (developed by Jiang, 

2006) to find the free vibration characteristics of the model cable, including its natural 

frequencies and the visualization of the corresponding mode shapes. This was done to 

verify that the cable properties were correctly inputted. The natural frequencies yielded 

from numerical simulations were compared to those calculated with the formula: /„ = 

n/(2L)y/T/m. The mode shapes were visualized as being different from the ideal mode 

shapes of a vibrating string. This difference was caused by the attachment of the damper 

which holds the cable at its point of attachment. Figure 4-5 illustrates the deformed mode 

shapes that resulted from modal analysis of the cable-damper system. The damper in this 

figure is attached at 45% of the cable length to see the altered mode shape with greater 

ease. The modal analysis input file can be found in Appendix B. 
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a) 

b) 

Figure 4-5: Resulting mode shapes 
a) Mode 1, b) Mode 2 

(Damper located at 45%L, c = 133 Ns/m, rigid support, no damper stiffness) 

A time-history (transient dynamic) analysis of the cable-damper system 

(developed by Jiang, 2006, and modified in this study) was performed to determine the 

dynamic response of the cable undergoing free vibration. To excite the first mode, the 

mid-span of the cable is displaced vertically downwards by 30 cm and the motion of the 

cable is recorded using an automatically generated time step (on the order of 10"3 

seconds). The kinetic energy time-history of the mid-span node of the cable was 

outputted in a text file and subsequently copied into Microsoft Excel for further analysis. 

A sample of the data output is portrayed in Figure 4-6. The transient analysis input file 

can be found in Appendix C. 
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0.6 0.8 

Time (s) 

Figure 4-6: Sample kinetic energy time-history output 
(Damper located at 10%L, c = 90 Ns/m, rigid support, no damper stiffness) 

The energy-based approach for a linear viscous damper design, developed by 

Cheng et al. (2010), was used to calculate the cable damping ratio. The kinetic energy 

time-history output from the ANSYS finite element simulation is used in the calculation. 

The /1th modal damping ratio of a cable may be found using the following formulae: 

sn 
_ In(l-dn) 

4n 
(4.1) 

and 

j _ lyj (Eki,n)max~[Ek(l+i),n]max 

n ' [Ekl,n]r— 
(4.2) 

where is the damping ratio of the w01 mode, d„ is the kinetic energy decay ratio, and £*,•„ 

is the maximum kinetic energy in the Ith cycle of the /1th modal vibration. There are two 

kinetic energy peaks within each vibration cycle. The first peak within each vibration 

cycle is selected as Eu,n- Microsoft Excel is used to calculate Eq. (4.2) to yield the first 

modal damping ratio of the cable. 
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A sample data set will be presented to fully illustrate the procedure of the 

numerical simulation and the processing of the results. The sample data set presented has 

a damper with a damping coefficient of 90 Ns/m, located at 10% of the cable length from 

the cable end, with a damper stiffness of 0 N/m and a damper support stiffness of 200,000 

N/m. 

The system properties (damper coefficient, damper location, damper stiffness, and 

damper support stiffness) are first inputted into the time-history (transient analysis) 

command file (Appendix C). The simulation time must also be specified in the file. This 

command file was written in a text editor and saved with the filename extension ".inp". 

The ANSYS software is launched and the input file can be read directly by the software 

(File —• Read input from...). The simulation begins immediately. 

When the simulation is complete, the data results may be located. The kinetic 

energy time-history is automatically written to a file entitled "kinetic.txt", which will be 

located on the same hard drive that the program was launched on. This file contains two 

adjacent columns. The left column is the time (from zero to the simulation time specified 

in the input file). The right column is the corresponding kinetic energy of the node at the 

mid-span of the cable. These columns are copied into a Microsoft Excel file for 

processing. 

The kinetic energy time history data is plotted in Microsoft Excel as a scatter plot 

with smooth lines, as shown in Figure 4-7. The peaks of the curve, marked with "X" on 

Figure 4-7, are found using an "IF" statement to display a kinetic energy value if it is 

greater than both the values that precede and follow it, for example 

60 



IF(AND(B3>=B4,B3>=B2),B3,NA()). These results are filtered using the Sort & Filter 

tool in the Data menu. This is to remove blank cells and cells that contain the #N/A error 

value, leaving the peak values as well as some non-peak values that also satisfy the IF 

statement. These are filtered manually. The peak kinetic energy values are listed in 

Table 4-1. 
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Figure 4-7: Kinetic energy time history 
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Table 4-1: Peak kinetic energy values 

Cycle No. Time (s) Kinetic energy (J) 

Cycle 1 
0.022033 114.487 

Cycle 1 
0.070633 81.951 

Cycle 2 
0.118602 52.797 

Cycle 2 
0.172833 36.577 

Cycle 3 
0.227494 24.993 

Cycle 3 
0.285925 17.158 

Cycle 4 
0.346197 11.982 

Cycle 4 
0.414098 8.438 

Cycle 5 
0.476658 5.991 

Cycle 5 
0.540973 4.252 

Cycle 6 
0.611124 3.031 

Cycle 6 
0.67778 2.225 

Cycle 7 
0.745522 1.674 

Cycle 7 
0.812967 1.232 

Cycle 8 
0.884121 0.958 

Cycle 8 
0.951216 0.753 

Cycle 9 
1.015813 0.641 

Cycle 9 
1.092529 0.487 

Cycle 10 
1.160843 0.444 

Cycle 10 

Each vibration cycle has two kinetic-energy peaks: kinetic energy is maximum 

when cable passes through its point of zero displacement (velocity is maximum) both 

when its velocity is positive directed upwards and positive directed downwards. The first 

peak of each vibration cycle is used in the energy-based approach developed by Cheng et 

al. (2010). The kinetic energy decay ratio (d„) associated with the first mode 

(fundamental mode) of the damped cable is calculated, using Eq. (4.2), followed by the 

determination of the first modal damping ratio (£) based on Eq. (4.1), i.e. 
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1 ["114.487 - 52.797 52.797 - 24.993 24.993 - 11.982 

91 114.487 + 52.797 + 24.993 
11.982 - 5.991 5.991 - 3.031 3.031 - 1.674 

+ 11.982 + 5.991 + 3.031 
1.674 - 0.958 0.958 - 0.641 0.641 - 0.444 

0.641 

= 0.454791486 

and 5i = -In(l - d1)/4ir 

= —In(l - 0.454791486)/4tc 

= 0.04827 or 4.827 % 

The first modal damping ratio (£) of this sample case is determined to be 4.827 %. 

4.3 Numerical results 

Table 4-2 summarizes the values of the damper damping coefficient, the damper 

stiffness, the damper support stiffness, and the damper location that have been simulated. 

Numerical simulations for each damper location were subdivided into four cases, which 

are summarized in Table 4-3. The results of the 6%L damper location will be presented 

in this section. The results of the 4%L and 10%L damper locations can be found in 

Appendix D. 
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Table 4-2: Parameter values used in the numerical study 

Parameter Tested Values 

Damper damping coefficient c 
(Ns/m) 

18.4 32.2 46.7 70.3 90 164.8 275.5 500 

Dimensionless damping 
coefficient ¥ 

0.73 1.27 1.85 2.79 3.56 6.51 10.89 19.76 

Damper location L<j 4%L, 6%L, 10%L 

Damper stiffness kd (N/m) 0,280,600 

Dimensionless damper 
stiffness Kd 

4%L: 0, 0.03,0.07 

6%L: 0,0.05,0.10 

10%L: 0,0.08,0.17 

Damper support stiffness ks 

(N/m) 
47300, 82000,100000,200000,300000, rigid 

Dimensionless damper support 
stiffness Ks 

4%L: 5.5,9.6,11.7,23.3,35.0, rigid 

6%L: 8.3,14.3,17.5,35.0,52.5, rigid 

10%L: 13.8,23.9,29.2, 58.3,87.5, rigid 

Table 4-3: Numerical simulations cases 

Testing Case ks kd 

1 rigid 0 

2 not rigid 0 

3 rigid *0 

4 not rigid *0 

a) Testing case 1: ks = rigid, kj = 0 

The first numerical simulation case has a rigid damper support stiffness and a 

negligible damper stiffness. This is therefore an ideal cable-damper system assumed in 

the majority of the existing studies. The numerical simulation results for the 6%L damper 
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location are shown in Figure 4-8, along with three other curves based on formulae 

proposed in literature, i.e. the formula developed by Huang & Jones (2011), the 

asymptotic formula developed by Fujino & Hoang (2008), and the formula developed by 

Xu & Zhou (2007). The rigid damper support stiffness condition is applied to all three 

formulae. These curves are used to compare with the numerical simulation results to 

verify both the pattern and accuracy. It can be seen from Figure 4-8 that the numerical 

results obtained from the current study agree well with the three analytical curves. All 

plots are displayed in terms of nondimensional quantities. The nondimensional damping 

parameter (¥) is calculated using the formula V = (nc)/(mL(ols), where oj1s = 

(n/L)yjH/m is the fundamental modal frequency of a taut string equivalent to the cable. 

The nondimensional damper location (Tj)  is calculated using the formula rd  = x c /L.  

The nondimensional damper stiffness (KJ) and the nondimensional damper support 

stiffness (K s)  can be calculated using the formulae Kd  = x ckd /H and K s  = x ck s /H.  
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Figure 4-8: Relation between equivalent first modal damping ratio and damper size 
at I> 0.06 (Rigid damper support and no damper stiffness) 

b) Testing case 2: ks f rigid, kj = 0 

The second testing case investigates the effect of damper support stiffness on the 

performance of an external linear viscous damper. In this case, the damper support 

stiffness is changed in each simulation using the values listed in Table 4-2, whereas the 

damper stiffness remains zero. The results are portrayed in Figure 4-9, with each curve 

corresponding to one specific damper support stiffness. For comparison, results of the 

rigid damper support are also shown in the same figure. The trend seen in the numerical 

simulation results is that if dampers of the same size (damping coefficient) but different 

damper support stiffness were attached to the same cable at the same location, the modal 

damping ratio of the cable-damper system would increase as the damper support stiffness 

increases. This trend is the same as that reported in previous studies (Xu and Zhou, 2007; 

66 



Fujino and Hoang, 2008; Huang and Jones, 2011). This effect is a result of the influence 

that the damper support has on the damping force exerted by the damper. The damping 

force (Fd) that a linear viscous damper can generate is equal to the damper coefficient (c) 

multiplied by the relative velocity between the damper-cable connection (VA) and the 

damper base (VB) (refer to Eq. (3.1)). In the case of a rigid support (refer to Figure 3-18), 

the base of the damper is immobile. Therefore, the velocity of the damper base is zero 

and the damping force is maximized. Conversely, a finite damper support (refer to Figure 

3-19) would result in a decreased damping force because the motion of the damper base is 

not zero and the relative motion between the two damper extremities is decreased. This 

indicates that to install a linear viscous damper on a cable-stayed bridge closer to the 

cable mid-span, better cable vibration control effect can be achieved by using a more 

rigid supporting structure. 

The resulting curves also show that the optimum nondimensional damping 

parameter changes as the damper support stiffness varies. An increase in damper support 

stiffness results in a higher value of the optimum nondimensional damping parameter. In 

other words, when the damper installation location is determined, to achieve the best 

effect of suppressing cable vibrations, the optimum size of a linear viscous damper would 

be larger if it will be attached to a more rigid damper support. For example, for the 6%L 

damper location, the tested variation in damper support stiffness resulted in a range of 

optimum damper coefficients from 128 Ns/m (when k, = 47,300 N/m) to 146 Ns/m (when 

ks was rigid). This trend is the same as that found in using the formula developed by 

Fujino and Hoang (2008) when varying the damper support stiffness. 
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In order to examine the accuracy of the numerical simulation results, each curve in 

Figure 4-9 was compared separately with the analytical formulae developed by Xu & 

Zhou (2007), Fujino and Hoang (2008), and Huang and Jones (2011), as was done for the 

first testing case. These plots are shown in Figures 4-10 to 4-14. Comparison of the four 

sets of data presented in these five figures show that all of the numerical simulation 

results agree well with the analytical ones. The results from the current study are most 

similar to those produced using the asymptotic formula developed by Fujino & Hoang 

(2008) (refer to Eq. (3.1)). This formula includes the effects of cable sag, flexural 

rigidity, as well as damper support stiffness, and therefore most closely resembles the 

parameters that have been considered in the current study. The results produced using the 

formulae developed by both Xu and Zhou (2007) as well as Huang and Jones (2011) 

predict a slightly higher equivalent first modal damping ratio in the lower range of 

damper coefficients, and a slightly lower equivalent first modal damping ratio in the 

higher range of damper coefficients. This may be attributed to the taut cable assumption 

that these formulae are based on, of which cable sag and bending stiffness have been 

neglected when deriving these formulae. It is reasonable that the curves produced by 

these two formulae, which are based on the same assumptions, overlap. 
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Figure 4-9: Effect of damper support stiffness (fa = 0.06) 
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Figure 4-10: Effect of damper support stiffness (Ks = 52.2, Td = 0.06) 
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Figure 4-11: Effect of damper support stiffness (Ks = 35.0, Td = 0.06) 
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Figure 4-12: Effect of damper support stiffness (Ks = 17.5, fa = 0.06) 
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Figure 4-13: Effect of damper support stiffness (Ks = 14.3, fa = 0.06) 
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Figure 4-14: Effect of damper support stiffness (Ks = 8.3, Td = 0.06) 

71 



c) Testing case 3: k s  = rigid, kd + 0 

The third testing case investigates the effect of damper stiffness on the performance of 

an external linear viscous damper. In this case, the different values of damper stiffness 

listed in Table 4-2 are used in each simulation, whereas the damper support stiffness 

remains rigid. The resulting curves corresponding to each damper support stiffness are 

displayed in Figure 4-15, along with the results of the rigid support stiffness case from the 

first testing case. The numerical simulation results suggest that the modal damping ratio 

would decrease if the damper stiffness increases. This trend is consistent with that 

reported in previous studies (Zhou, 2005; Huang, 2011). Conceptually, this case is 

similar to that of the second numerical simulation testing case. The existence of damper 

stiffness will reduce the efficiency of a damper because part of the energy that transferred 

from the oscillating cable to the damper will be converted to elastic energy through 

damper stiffness and feed back to the cable during the periodical motion of the cable-

damper attachment point. Without the existence of damper stiffness, this fraction of 

energy would have otherwise been more efficiently dissipated through the damping 

mechanism of the damper. Therefore, a damper without damper stiffness will provide 

better control of stay cable vibrations compared to a damper with certain damper 

stiffness. 

The resulting curves also show that the optimum nondimensional damping parameter 

varies as the damper stiffness changes. In Figure 4-15, the optimum nondimensional 

damping parameters of the three curves shown are 5.76, 6.21, and 6.29 for the 

nondimensional damper stiffness' of 0, 0.05, and 0.10, respectively. In other words, at 

the damper location of 6%L, the damper sizes of 145.7 Ns/m, 157.1 Ns/m, and 159.1 
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Ns/m were found to be optimum when the damper had stiffiiess' of 0 N/m, 280 N/m, and 

600 N/m. An increase in damper stiffiiess results in a higher value of the optimum 

nondimensional damping parameter. This means that a damper of a larger size will be 

required for optimal performance when the stiffiiess of a damper is increased. The 

formula for predicting the optimum damping parameter proposed by Zhou (2005) gives 

the same trend. 
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Figure 4-15: Effect of damper stiffiiess (Td = 0.06) 
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In order to confirm the accuracy of the numerical simulation results, the modal 

damping ratio reduction factors computed from the simulated data sets were compared to 

the reduction factors calculated using the formula proposed by Zhou (2005) (refer to Eq. 

(3.2)). The following formula was used to calculate the reduction factor for a simulated 

set of results from the current study: 

where R is the reduction factor of a set of results at a particular damper stiffness value. 

The ratio between the modal damping ratio of the non-zero damper stiffness condition 

(the third testing case) and that of the zero damper stiffness condition (<fa„=o) (the 

first testing case) is calculated for each of the eight damper damping coefficients listed in 

Table 4-2. The average of these eight ratios is taken, yielding the reduction factor 

corresponding to a specific damper stiffness to be compared with the formula proposed 

by Zhou (2005). A sample calculation for the reduction factor based on the results of the 

current study at a damper stiffness of 280 N/m (K<j = 0.05) will be presented here. The 

simulated modal damping ratios for the first testing case as well as those for the third 

testing case (kd = 280 N/m, K<j = 0.05) are listed in Table 4-4. 

(4.3) 
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Table 4-4: Current study modal damping ratios (T"d = 0.06) 

Damping coefficient 
c (Ns/m) 

&=o(%) §w=280n/m (%) 

18.4 0.679 0.606 

32.2 1.182 1.130 

46.7 1.635 1.546 

70.3 2.240 2.186 

90 2.637 2.500 

164.8 3.007 2.873 

275.5 2.506 2.263 

500 1.620 1.572 

The reduction factor calculation for the case of damper stiffness of 280 N/m when the 

damper was located at 6%L from the cable end is the following: 

lr0.606 1.130 1.546 2.186 2.500 2.873 2.263 1.5721 
R ~ 8 L0.679 + 1.182 + 1.635 + 2.240 + 2.637 + 3.007 + 2.506 + 1.620J ~ °"943 

This value was compared with the reduction factor calculated using the formula proposed 

by Zhou (2005) using the same damper stiffness (280 N/m) and damper location (6% of 

the 9.33 m long cable, which is a distance of 0.5598 m): 

^max ~ 
1 + H 1 + 

(280^)(0.5598 m) 
3200 N 

= 0.953 
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Table 4-5 compares the reduction factors corresponding to the simulated damper stiffness 

with those calculated using the formula developed by Zhou (2005). It can be seen that the 

two sets of results agree well with each other. 

Table 4-5: Comparison of modal damping ratio reduction factor 

Dimensionless 
damper 

stiffness (K<j) 

Reduction factor 
Dimensionless 

damper 
stiffness (K<j) Current study Zhou(2005) 

Absolute 
percentage 

difference (%)* 

0.05 0.943 0.953 1.05 

0.10 0.904 0.905 0.11 

Use Zhou (2005) as reference base 

d) Testing case 4: &s ^ rigid, kj^O 

The fourth testing case investigates the combined effects of damper stiffness and 

damper support stiffness on the performance of an external linear viscous damper. In this 

case, both the damper stiffness and the damper support stiffness are varied. Results 

corresponding to the case of damper stiffness Kd = 0.05 and varying damper support 

stiffness are displayed in Figure 4-16, and those plotted for the damper stiffness of Kj = 

0.10 and varying damper support stiffness are shown in Figure 4-17. Both of these two 

plots manifest a similar pattern as to how the optimum damping coefficient and the 

corresponding maximum achievable damping ratio vary as the studied parameters change. 

When considering both ks and kd, the curves in Figures 4-16 and 4-17 have the same 

pattern as the ideal case when no damper stiffness exists and the damper support stiffness 

is rigid. At each damper location, an optimum damper size exists, which can provide the 

maximum achievable damping ratio for that damper location. The values of optimum 
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damping parameter and their corresponding maximum achievable damping ratios 

obtained from the simulations for the current study for the fourth testing case are listed in 

Tables 4-6 and 4-7, respectively. 

Table 4-6: Optimum nondimensional damping parameters 
(testing case 4 of the current study) 

Dimensionless 
damper support 

stiffness Ks 

o
 ii Kd = 0.05 

o
 

©
 ii £
 

8.3 5.07 4.89 5.18 

14.3 5.36 5.15 5.75 

17.5 5.35 5.46 5.85 

35.0 5.54 5.62 6.15 

52.5 5.47 6.20 5.73 

rigid 5.76 6.21 6.29 

Table 4-7: Maximum achievable damping ratio (%) (testing case 4 of the current study) 

Dimensionless 
damper support 

stiffness Ks 

o
 ii £ K4 - 0.05 F

 11 0
 

*—>
* 

o
 

8.3 2.54 2.48 2.33 

14.3 2.71 2.60 2.42 

17.5 2.74 2.64 2.5 

35.0 2.85 2.67 2.6 

52.5 2.91 2.76 2.66 

rigid 3.03 2.88 2.86 
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V 

The results in Table 4-6 show the general pattern of how the optimum damper size 

is affected by the change in both damper stiffness and damper support stiffness. 

Observing from left to right across the table, it can be seen that an increase in damper 

stiffness generally causes an increase in the optimum damper size. Observing from top to 

bottom down the table, results show that an increase in damper support stiffness also 

causes an increase in the optimum damper size. These individual effects of damper 

stiffness and damper support stiffness on the optimum damper size are the same as those 

seen in the previous two testing cases. The same combined effects of damper stiffness 

and damper support stiffness are also seen in the cases of 4%L and 10% L damper 

locations, the graphs of which can be found in Appendix D. 

With respect to the maximum achievable damping ratio, observing from left to 

right across Table 4-7, an increase in damper stiffness is found to result in a decreased 

maximum achievable damping ratio. Observing from top to bottom down the same table 

shows a trend where increased damper support stiffness leads to a higher maximum 

achievable damping ratio. This is a reasonable trend, reflecting both the individual 

effects of damper stiffness and damper support stiffness. Both of these two parameters, 

an increase in the former and a decrease in the latter, cause a decrease in damping ratio 

individually. Therefore, it is reasonable that their combined effect follows the same 

trend. 

In order to maximize damper performance when damper stiffness exists, a larger 

damper size may be required in order to have a larger damping force to counteract the 

effects of damper stiffness. This may account for the trend observed when damper 

stiffness exists. When damper support stiffness increases, the damping force is 
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maximized due to the more rigid condition of the damper base (point B in Figure 3-18), 

causing a larger velocity difference between the top and the base of the damper. A larger 

damper force as damper support stiffness increases will yield a larger damping ratio. This 

ability to maximize damping force through the means of damper size and relative velocity 

between the two extremities of the damper may explain the trend of an increased 

optimum damper size with an increasingly rigid damper support. From the above 

observation, it can be concluded that to have the maximum possible cable vibration 

control when using a linear viscous damper, the damper stiffness should be minimized 

and the damper support stiffness should be maximized. 

2 4 8 10 12 6 14 16 18 
Nondimensional damping parameter 

Figure 4-16: Combined effect of damper stiffness and damper support stiffness 
(Kd = 0.05, Td = 0.06) 
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Figure 4-17: Combined effect of damper stiffness and damper support stiffness 
(kd = 0.10, rd = 0.06) 

The numerical simulation results for the damper locations of 4%L and 10%L are 

given in Appendix D. The same trend with respect to the effects of damper stiffness and 

damper support stiffness on the damper size and the corresponding maximum achievable 

damping ratio can also be observed. 
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Chapter 5: Further Discussion on Results 

5.1 Comparison of experimental and numerical results 

The results from the current experimental study will be compared with those from 

the numerical simulations. Since, in the physical tests, only one damper size of c = 32.2 

Ns/m was used, only the numerical simulation results with the same damper size will be 

used for comparison. Figures 5-1 to 5-3 show the experimental and numerical results 

under the conditions of damper size c = 32.2 Ns/m, zero damper stiffness, and respective 

damper location at 4%L, 6%L, and 10%L. In these figures, the results for the same cable-

damper system condition using the formulae developed by Xu and Zhou (2007), Fujino 

and Hoang (2008), and Huang and Jones (2011) are also displayed for the convenience of 

comparison (refer to Section 3.4 for formulae usage details). As can be seen from these 

three figures, the experimental results are similar to those from the numerical study. They 

are most representative of the numerical simulation results when the damper is located 

closer to the end of the cable. A damper installation location within a few percent of the 

cable length is practiced most commonly on actual cable-stayed bridges. The numerical 

simulation results are accurate within a few percent to the solid line curve displaying the 

results using the formula developed by Fujino and Hoang (2008), which includes both 

damper support stiffness and cable bending stiffness. The curves depicting the results 

based on the formulae developed by Xu and Zhou (2007), and Huang and Jones (2011), 

which overlap with each other, overestimate the attainable damping ratio in the damped 

cable. This overestimation is attributed to the taut cable assumption used in the 

development of these formulae, where the effects of cable bending stiffness and cable sag 

were ignored. 
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Figure 5-2: Experimental and numerical results (6%L, kd = 0) 
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Figure 5-3: Experimental and numerical results (10%L, k<j = 0) 

Figures 5-4 to 5-6 show the comparison between the experimental and the 

numerical results for the non-zero damper stiffness conditions at the 4%L, 6%L, and 

10%L damper installation locations, respectively. Since no study is available in the 

literature that can predict the equivalent damping ratio of a cable-damper system while 

considering both the damper support stiffness and the damper stiffness effects, no 

reference curve is given in these three figures. The experimental results are found to 

agree well with the numerical results in all cases. 
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In Sections 3.4 and 4.3, the damper efficiency reduction factor due to the 

existence of damper stiffness was computed respectively based on the experimental and 

numerical simulation results. They are shown together in Figures 5-7 and 5-8 along with 

the set determined based on Zhou's formula (2005) for comparison. As can be seen from 

the figures, all three sets of results show the same trend and agree well with each other. 
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5.2 Estimation of optimal damper size and maximum achievable damping ratio 

Regression analysis was applied to the results obtained from the current numerical 

study to develop an approximate relation between the optimum damper size <Fopt and the 

nondimensioanl system parameters of damper location Fd, damper stiffness kd, and 

damper support stiffness ks. The same exercise was done for the maximum achievable 

damping ratio. The expressions of these two approximate relations are given in Eqs. (5.1) 

and (5.2). 

H'opt = 1.309178 + 0.062143[ln(rd)]4 + 0.068345 ln(Ks) + 2.239942Kd (5.1) 

Smax = -0.00205 + 0.465924rd + 0.0005 ln(Ks) - 0.0295Kd (5.2) 

where Yopt is the optimum nondimensional damping parameter, £max is the corresponding 

maximum achievable equivalent first modal damping ratio, Fd is the nondimensional 

damper location, K, is the nondimensional damper support stiffness, and Kd is the 

nondimensional damper stiffness. The coefficient of determination associated with the 

preceding approximations in Eqs. (5.1) and (5.2) are 0.977 and 0.990, respectively. 

These approximations are useful in designing the linear viscous dampers to 

suppress cable vibrations on cable-stayed bridges. In particular, in the preliminary design 

stage, multiple design schemes are proposed. The availability of a convenient yet reliable 

tool that can quickly predict the controlling effect of different schemes will be very 

advantageous to the designers. To the knowledge of the author, these are the first of such 

approximate equations that include the effect of both damper support stiffness and 

damper stiffness in a simple form for the purpose of linear viscous damper design. The 

regression data analysis tool in Microsoft Excel was used to obtain these approximations. 

87 



Equation (5.1) is plotted in Figure 5-9 against the nondimensional damper support 

stiffness for the same combinations of damper location, damper stiffness, and damper 

support stiffness as were used in the numerical study. Three groups of curves are 

presented in Figure 5-9 which correspond to the damper locations of 4%L, 6%L, and 

10%L, respectively. Every group contains three curves, with each representing a specific 

nondimensional damper stiffness case. As can be seen from the figure, the optimum 

damper size is highly dependent on the damper location, but is not sensitive to the 

nondimensional damper support stiffness, especially in the case of a more rigid support. 

The change in damper stiffness would affect the optimum damper size. This impact is 

more obvious when the damper is installed closer to the cable mid-span. 

The significance of different system parameters in affecting the optimum damper 

size can also be deduced from Eq. (5.1). The optimum damper size Wopt is proportional to 

the natural logarithm of the nondimensional damper location Tj to the fourth exponent, 

which renders !Fopt most sensitive to the variation in fd- Since the nondimensional 

damper location is always less than one, the result of the term (ln(rd)f decreases as the 

nondimensional damper location increases. In other words, the optimum damper size 

decreases as the damper is installed closer to the cable mid-span. A simplified 

explanation for this occurrence is presented here. The damper damping force Fd may be 

represented by Fd = cV, where c is the damper size and V is the cable velocity at the 

damper connection point (refer to Eq. (3.2)). From basic mechanics, force F may be 

represented by F = W/d, where W is the work done by the force F and d is the 

displacement in the direction of the force. By equating these two equations representing 

force, damper size may be expressed in terms of the displacement at the cable-damper 
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attachment point as c = W/(Vd). In this manner, it can be seen that a smaller damper size 

is required to generate the same force when there is a greater displacement at the cable-

damper attachment point. This would occur if the damper were located more towards the 

cable mid-span. 

The form of Eq. (5.1) suggests that the nondimensional damper support stiffness 

Ks has a marginal effect on the optimum damper size. The natural logarithm of Ks, which 

increases slowly as the damper support becomes more rigid, is multiplied by a fractional 

constant. Therefore, as the nondimensional damper support stiffness increases, though 

the optimum damper size would increase as well, this amount will be very small. On the 

other hand, the increasing rate of the natural logarithm decreases as the damper support 

stiffness increases; this explains why a relatively larger increase exists at lower damper 

support stiffness, whereas its impact at a higher Ks range is negligible, as can be observed 

in Figure 5-9. 

Compared to Ks, the nondimensional damper stiffness Kd has a more sizeable 

effect on the damper size. In the approximate relation expressed by Eq. (5.1), ¥opt varies 

linearly with Kd with a linear constant greater than 2. Therefore, an increase in the 

nondimensional damper stiffness will require a larger damper size to achieve the optimum 

performance. The results from the experimental and numerical studies (refer to Chapters 

3 and 4, respectively) have shown that an increase in damper stiffness results in a 

decrease of the maximum attainable cable-damping ratio. Thus, a larger damper size is 

required when larger damper stiffness is present in order to counteract the effect of 

damper stiffness and maximize the attainable damping ratio. Again, the damping force 

may be expressed as Fd = cV. However, if damper stiffness exists, then an associated 
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elastic force Fs - -kjd also exists, where kj is the damper stiffness and d is the 

displacement in the direction of the force. Therefore, the resulting force offered by the 

damper to the cable would be a function of Fd and F„ i.e. Fd = f(cV, -kdd). If isolating the 

damper size c, it can be seen that it is a function of the damper damping force, the 

positive damper stiffness multiplied by the displacement at the cable-damper attachment 

point, and the inverse of velocity at this point, i.e. c = f(Fd, kjd, l/V). In this manner, it 

can be seen that, for the same damper damping force, an increase in the nondimensional 

damper stiffness would result in a greater optimum damper size. 
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Figure 5-9: Graphical representation of Eq. (5.1) 
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The optimum damper sizes obtained from the current numerical study are 

compared with those estimated by the approximate relation represented by Eq. (5.1). The 

comparisons are shown graphically in Figures 5-10 to 5-18. Each figure collects results 

of the cases that have the same damper location and same damper stiffness. For the zero 

damper stiffness condition, the results from the formulae proposed by Xu and Zhou 

(2007), Fujino and Hoang (2008), and Huang and Jones (2011) are also displayed (refer 

to Section 3.4 for formulae usage details). Again, the results by Xu and Zhou (2007) and 

Huang and Jones (2011) overlap. As is indicated by the specified coefficient of 

determination of 0.977, the numerical simulation data points correlate well with the 

regression approximation. 
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Zhou (2005) and Sun et al. (2008) each developed an equation to predict the 

optimum damper size for a given damper location while including the nondimensional 

damper stiffness. Both of these proposed formulae were based on the taut string 

assumption and therefore do not include cable bending stiffness and sagging effect. The 

damper support stiffness was considered to be rigid in both cases. The proposed formula 

by Zhou (2005) is: 

1 , (1 + Kd) 1 

C°pt'' — IT2 m 1 j (xc/L) (5,3) 

where m is the mass per unit length of the cable, co\ is the undamped circular frequency of 

a taut cable in the first mode of vibration, and i is the mode of vibration. The one 

developed by Sim et al. (2008) is: 

- a(1 + ^xc/l) 
°opt (Vaa>n)a-1mixc/L 

where OJ„ is the undamped circular frequency of a taut cable in the rP mode of vibration. 

Eq. (5.4) allows for a nonlinear damper, where a is the exponent associated with 

nonlinearity. For a linear damper, as is being considered in the current study, a - 1. The 

term associated with this nonlinear exponent, Vaco„, which includes the transverse 

displacement of the cable at the point of damper attachment, Va, reduces to 1. The 

variable // includes the damper stiffness parameter and can be calculated by y. = kdL/T. 

The value of A may be calculated from: 

A = —1— (5.5) 
2 J0 sina+1(x)dx 

In the case of the current study, a = 1 because a linear damper is being considered and the 

value of A simplifies to 1. 
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In both formulations, the optimum damper size is predicted to increase as the 

damper stiffness increases. This is the same trend as in the regression approximation, Eq. 

(5.1), developed in the current study. These formulations are used to compare with the 

approximation of the optimum nondimensional damping parameter, Eq. (5.1), for the 

combinations of damper location and damper stiffness listed in Table 4-2, and a rigid 

damper support stiffness. Figure 5-19 displays the comparison between the current 

regression approximation, Eq. (5.1), the current numerical results, and the formulae 

developed by Zhou (2005) and Sun et al (2008) for the rigid damper support condition. 
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Several comments may be made about the results shown in Figure 5-19. Firstly, it 

can be seen that the numerical data points agree well with the regression approximation. 

In addition, the curves developed from the equations proposed by Zhou (2005) and Sun et 

al. (2008) overlap at the same damper location. Both of these formulae are shown to 

underestimate the optimum damper size required at any given damper location. This may 

be attributed to the taut cable assumption that both of these equations have made. 

The approximation for the maximum equivalent first modal damping ratio is 

plotted in Figure 5-20 for the damper location, damper stiffness, and damper support 

stiffness combinations listed in Table 4-2. In Eq. (5.2), it can be seen that each of these 

three parameters affects the maximum attainable structural damping ratio. The damper 

installation location is linearly proportional to the maximum damping ratio, which 

increases as the damper is moved closer to the mid-span of the cable. This effect is well 

documented in literature (e.g. Cheng et al. 2010). Theoretically, a linear viscous damper 

will perform better when it is installed closer to the cable mid-span, although common 

practice is to install them within a few percent of the cable length for ease of construction 

and aesthetics. 

The damper support stiffness will also affect the maximum achievable damping 

ratio. The modal damping ratio is linearly proportional to the natural logarithm of the 

damper support stiffness in Eq. (5.2). Therefore, a weaker support may cause a linear 

viscous damper to exhibit a damping ratio lower than would be predicted without 

considering this parameter. 
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In addition, Eq. (5.2) implies that the maximum modal damping ratio is negatively 

correlated to the damper stiffness. A simplified explanation for this correlation may be 

suggested by examining the behaviour of a viscously damped freely vibrating system. 

The damping ratio of such a system may be represented by the following: 

In this equation, it is apparent that the damping ratio is inversely proportional to the 

square-root of the system mass m and stiffness k. Accordingly, an increase in stiffness 

will result in a corresponding decrease in damping ratio. It is recommended that the 

stiffness within a linear viscous damper be minimized in order to maximize its attainable 

modal damping ratio and achieve the optimum cable vibration control. 
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Figure 5-20: Graphical representation of Eq. (5.2) 

Figures 5-21 to 5-29 give graphical comparison between the maximum attainable 

equivalent first modal damping ratio of the studied cable-damper system obtained from 

the current numerical simulations and the regression approximation equation, Eq. (5 .2), 

for the same combinations of damper location, damper stiffness, and damper support 

stiffness as listed in Table 4-2. For the convenience of comparison, the predictions from 

the equations developed by Xu and Zhou (2007), Fujino and Hoang (2008), and Huang 

and Jones (2011) are also displayed (refer to Section 3.4 for formulae usage details) for 

the zero damper stiffness conditions in Figures 5-21, 5-24, and 5-27. The curves for the 
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formulae developed by Xu and Zhou (2007), and Huang and Jones (2011), overlap. The 

agreement between different sets of results can be readily observed from these figures. 

The regression approximation is a good representation of the numerical data points, with 

its coefficient of determination being 0.990. 
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Sun et al. (2008) developed an equation that predicts the maximum modal 

damping ratio of a nonlinear viscous damper while including the effects of damper 

stiffness and assumed the damper support stiffness to be rigid, i.e. 

Sn.max A|stn(a>nt) I""1 

Xc/L ( l  + fe(l + A|sin(o)nt) |a _ 1)  

(5.6) 

L 

The definitions of parameters in Eq. (5.6) are the same as those in Eq. (5.4). When a = 1 

is inputted into Eqs. (5.6) and (5.5) for a linear damper case, the latter of which calculates 

the value oiA, the above equation is simplified to the following form: 

xc/L 
^n,max — (5>7) 

L 
2(1+^) 

Eq. (5.7) was used to compare with the regression approximation, Eq. (5.2), developed in 

the current study. This comparison is displayed in Figure 5-30 below. The curves and 

numerical data points are found to agree well with each other. 
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Chapter 6: Conclusions and Recommendations 

6.1 Conclusions 

Cable-stayed bridge is a common bridge type chosen for construction. New 

structures are being designed to span larger distances than ever. The safe design of cable-

stayed bridges is paramount and cable vibration control must be considered in order to 

maintain the structural integrity of its cables. The stiffness of the damper in use on the 

bridge, the stiffness of the damper support, and their combined effect will influence the 

overall performance of the damper in mitigating stay cable vibration. However, there is a 

lack of study of these stiffness effects and, to the knowledge of the author, even less is to 

be found on their combined effect. An experimental study was designed and carried out 

herein using a scaled model of a cable-damper system to measure the effects of damper 

stiffness, damper support stiffness, and their combined effect during forced vibration 

tests. A finite element model of the same cable-damper system was developed to 

simulate the same stiffness effects over a wider range of system parameters. The results 

from both studies agreed well with the predictions available in literature. As a summary, 

the following have been completed in this study: 

1. Design of a linear viscous damper that includes variable damper stiffness, damper 

support stiffness, and the ability to combine both stiffness parameters. 

2. Design a calibration system for the damper. 

3. Conduct cable forced vibration tests to observe the effects of damper stiffness, 

damper support stiffness and the combined effect of both. 

4. Development of a finite element model of a cable-damper system that includes 

damper stiffness and damper support stiffness. 
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5. Comparison of numerical and experimental results to each other as well as 

empirical formulae found in existing literature to observe the effects of the 

parameters of interest. 

6. Develop empirical formulae to predict the optimum damper size and its 

corresponding maximum attainable first modal damping ratio by considering the 

effect of damper stiffness and damper support stiffness. 

The following can be concluded from the current study: 

1. As the damper is moved closer to the cable mid-span, the optimum damper size 

decreases and the corresponding maximum achievable damping ratio increases. 

2. An increase in the damper stiffness results in an increase of the required optimum 

damper size but a decrease in the maximum achievable damping ratio. 

3. An increase in the damper support stiffness results in an increase of the optimum 

damper size and its corresponding maximum achievable damping ratio. 

4. To achieve better effect in cable vibration control, if a linear viscous damper 

would be used as countermeasure, it is recommended to minimize its own 

stiffness. Should a damper support be required, it is preferred to choose a more 

rigid one. 

Empirical formulae have been proposed based on the current numerical results, for 

use in the preliminary design phase of a linear viscous damper for bridge stay cables. The 

empirical formulae developed in this study are the culmination of extensive study of the 

effects of damper stiffness and damper support stiffness on the performance of a linear 

viscous damper for the purpose of mitigating stay cable vibration. They are proposed 

with the objective to expand the current knowledge base regarding linear viscous damper 
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design for stay cable vibration control. To the knowledge of the author, these are the first 

empirical approximations for the optimum damper size and its corresponding maximum 

attainable first modal damping ratio that include the effects of both damper stiffness and 

damper support stiffness. 

6.2 Future recommendations 

It is recommended that future study look towards evaluating various damper 

supports that may be used on cable-stayed bridges to allow linear viscous dampers to be 

placed closer to the cable mid-span. In this manner, improved stay cable control may be 

achieved and empirical formulae such as those proposed in the current study may be used 

to improve the accuracy in predicting the required optimum damper size and its 

corresponding maximum attainable first modal damping ratio. An experimental study 

may also proceed by testing the limits of the effect of damper support stiffness in order to 

suggest a range of stiffness for the purpose of design. 
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Appendix A: Matlab m-file 

% Signal processing using Fourier Transform (Time domain to Frequency domain) 
% Find the fundamental frequency 
pwelch(b, [],[],2048,1000,'one sided') 

% Convert data units to m/s2 

a=b* 100.53 

% Apply Butterworth filter 
Af=filter(Hd,a) 

% Convert all filtered data set from time domain to frequency domain 
F=fft(Af) 

% Convert acceleration to displacement, 7.20 is the fundamental frequency in Hz 
Df=F/(2 *pi*7,20)A2 

% Convert displacement data from frequency to time domain; 100 is meter to centimeter 
D=ifft(Df)*100 
T=0:l/1000:length(Af)/l000-1/1000 

plot(T,D) 
xlabel('T ime( Second)') 
ylabel(Displacement(cm)') 
title('Displacement vs Time') 
grid on 

116 



Appendix B: Modal Analysis ANSYS Input File 

L=9.33 

D=4.65E-3 

R=2.325E-3 

DELTA=0.10 

T=9.421589879E-4 

E1=2E11 

DENS 1=1.177699E4 

!K1=0 

DAM=90 

Ll=L/200 

/PREP7 

MP,EX,1,El 

MP,DENS,1,DENS1 

MP.PRXY, 1,0.3 

ET, 1 ,PIPE59,0 

R,1,D,R 

RMORE,„„T 

ET,2,COMBIN 14„2 

R,2,0,DAM 

K,l, 

K,2,DELTA*L 

K,3,L/2 

K.4.L 

L,l,2 

L,2,3 

L,3,4 

TYPE,1 

MAT,1 

REAL.l 

LESIZE,ALL,L1 

LMESH,1,3 

(Cable length (m) 

! Cable diameter (m) 

(Cable radius (m) 

(Location of damper 

(Initial strain in axial direction 

(Elastic Modulus (N/m2) 

(Density (kg/m3) 

(Stiffness (N/m) 

(Damping coefficient (Nm/s) 

(Element length 

(Enters the model creation preprocessor 

(Define material 

(Define PIPE59 element 

(Define Real Constants 

(Define COMBIN14 element 

(Define a line between two keypoints 

(Set the element type attribute pointer 

(Set the element material attribute pointer 

(Set the element real constant set attribute pointer 

(Specify the divisions and spacing ratio on unmeshed 
lines 
(Generate nodes and line elements along lines 
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NUM1 =NODE(DELTA«L,0,0) 

*GET,NUM2,N ODE„NUM,M AX 

N.NUM2+1 ,DELTA*L 

TYPE,2 

REAL,2 

E.NUM1 ,NUM2+1 

D.NUM2+1 ,ALL,0 

NNODE=NODE(L/2,0,0) 

NSEL„LOC,X,-0.001,0.001 

D,ALL,ALL,0 

NSEL„LOC,X,L-0.001,L+0.001 

D,ALL,ALL,0 

ALLSEL,ALL 

D,ALL,UZ,0 

ALLSEL,ALL 

FINISH 

/SOLU 

ANTYPE,STATIC 

SSTIF,ON 

NLGEOM,ON 

ACEL„9.80 

AUTOTS,ON 

TIME.l 

DELTIM, 15,5,25 

SOLVE 

FINISH 

/SOLU 

ANTYPE,MODAL 

MODOPT,DAMP, 12„„ 1 

UPCOORD.l .O.ON 

PSTRES,ON 

MXPAND,12 

(Retrieve value and store it as a scalar parameter or part 
of an array parameter 
'Define node 

(Define element by node connectivity 

! Define degree-of-freedom constraints at node 

(Select a subset of nodes 

(Select all entities 

(Model defined to be a 2D model in the X-Y plane 

(Enter the solution processor 

(Specify the analysis type as static and restart status 

(Activate stress stiffiiess effects in a nonlinear analysis 

(Include large-deflection effects in a static or full transient 
analysis 
(Specify the linear acceleration of the global Cartesian 
reference frame for the analysis 
(Specify to use automatic time stepping 

(Set the time for a load step 

(Specify the time step sizes to be used for this load step 

(Perform a modal analysis 

(Specify modal analysis options; damped system 

(Specify that prestress effects are included 

(Specify the number of modes to expand 
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EMATWRITE,YES 

PSOLVE,TRIANG 

PSOLVE.EIGDAMP 

! PSOLVE,EIGFULL 

FINISH 

/SOLU 

EXP ASS,ON 

PSOLVE,EIGEXP 

FINISH 

/POST1 

/DSC ALE,, 1 

SET,NEXT 

PLDISP,1 

SET,LIST 

lAdditional solution step for expansion 

(Required to review mode shapes in the postprocessor 

lEnter the database results postprocessor (general 
postprocessor) 
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Appendix C: Time-History Analysis ANSYS Input File 

L=9.33 

D=4.65E-3 

R=2.325E-3 

DELTA=0.1 

T=9.421589879E-4 

E1=2E11 

DENS1=1.177699E4 

KD=0 

KS=200000 

DAM=90 

Ll=L/200 

/CONFIG,NRES,9999 

/PREP7 

MP, EX, 1, El 

MP,DENS,1,DENS1 

MP,PRXY,1,0.3 

ET,1,PIPE59,0 

R,1,D,R 

RMORE„,„T 

ET,2,COMBIN 14„2 

R,2,KD,DAM 

R,3,KS,0 

K,l, 

K,2,DELTA*L 

K,3,L/2 

K,4,L 

L,l,2 

L,2,3 

L,3,4 

TYPE.1 

(Cable length (m) 

(Cable diameter (m) 

ICable radius (m) 

(Location of damper 

! Initial strain in axial direction 

(Elastic Modulus (N/m2) 

(Density (kg/m3) 

(Stiffness (N/m) 

(Damper support stiffness (N/m) 

(Damping coefficient (Nm/s) 

(Element length is 

(Enter the model creation preprocessor 

(Define a linear material property 

(Define element type 

(Define the element real constants 

(Add real constants to set 

(Real constant defining damper stiffness and damper 
coefficient 
(Real constant defining damper support stiffness and 
zero damper stiffness 

(Define keypoint 

(Define line between two keypoints 

(Set the element type attribute pointer 
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MAT,1 

REAL.l 

LESIZE,ALL,L1 

LMESH.1,3 

NUM1 =NC>DE(DELTA*L,0,0) 

•GET,NUM2,NODE,,NUM,MAX 

N.NUM2+1 ,DELT A* L 

TYPE,2 

REAL,2 

E.NUM1.NUM2+1 

N,NUM2+2,DELTA*L 

TYPE,2 

REAL,3 

E,NUM2+1 ,NUM2+2 

D,NUM2+2,ALL,0 

NNODE=N()DE(L/2,0,0) 

NSEL„LOC,X,-0.001,0.001 

D,ALL,ALL,0 

NSEL„L()C,X,L-0.001,L+0.001 

D,ALL,ALL,0 

ALLSEL,ALL 

D,ALL,UZ,0 

ALLSEL,ALL 

FINISH 

/SOLU 

ANTYPE,TRANS 

TRNOPT,FULL 

OUTRES„ALL 

OUTRES,NSOL,ALL 

OUTRES,V,ALL 

OUTPR,NSOL,ALL 

!Set the element material attribute pointer 

!Set the element real constant set attribute pointer 

(Generate nodes and line elements along lines 

! Define a node 

! Define an element by node connectivity 

! Create node for base of support spring 

! Activate local element 2 (COMBIN14) 

lActivate real constant 3 (support stiffness) 

!Create node between damper base node and spring 
base node 
! All degrees-of-freedom fixed at base of support spring 
(ground) 

(Select a subset of nodes 

! Select all entities 

IModel defined to be a 2D model in the X-Y plane 

! Enter the solution processor 

'Specify the analysis type as transient analysis 
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OUTPR,V,ALL 

TIMINT,OFF ITurn off transient effects 

SSTIF.ON 

NLGEOM.ON 

TIME, IE-10 

LSWRITE,1 

SSTIF.ON 

NNODE=NODE(L/2,0,0) 

D,NNODE,UY,-0.30 

NSUBST,2 (Specify the number of substeps to be taken this load 
step 

KBC,1 

TIME,0.001 !Set the time for a load step 

LSWRITE,2 

TIMINT,ON ! Include transient effects 

TINTP,,0.25,0.5 

CNVTOL,M,-l 

SSTIF.ON 

DDELE,NNODE,UY 

KBC,1 

AUTOTS.ON 

TIME, 1.5 ! Set the time for a load step 

DELTIM,0.4E-3,0.1 E-3.0.6E-3 ISpecify the time step sizes to be used for this load step 

LSWRITE.3 

LSSOLVE,l ,3,1 IRead and solve multiple load steps 

FINISH 

/POST26 ! Enter the time-history results postprocessor 

NSOL,3 ,NNODE, V, Y, V Y 

NSOL,4,NNODE,U,Y,UY 

LINE.3000 

/AXLAB,X,TIME (S) !Axis labels 

/AXLAB,Y,DISPLACEMENT (M) 

PLVAR,4 
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•GET,TSIZE,VARI„NSETS 

•DIM,TIME,ARRAY,TSIZE 

VGET,TIME(1),1 

FINISH 

/P0ST1 

•GET,NSBSTP1 ACTIVE,,SET,N 
SET,FIRST,3 
•GET,NSBSTP2,ACTIVE„SET,N 
SET,LAST,3 
NSBSTP=NSBSTP2-NSBSTP1+1 

•DIM,E_KENE,ARRAY,NSBSTP 
2 
ESEL„TYPE„1 

SET, 1,1 

ETABLE,KENE,KENE 

SSUM 

ESEL„TYPE„1 

*GET,ST_KE,SSUM„ITEM,KEN 
E 
E_KENE( 1 )=ST_KE 

•DO,1,1,2 

SET,2,1 

ET ABLE,KENE,KENE 

SSUM 

ESEL„TYPE„1 

•GET,STKE,SSUM,,ITEM,KEN 
E 
E_KENE(I+1 )=ST_KE 

•ENDDO 

•DO,I,l,NSBSTP 

SET,3,1 

ET ABLE,KENE,KENE 

SSUM 

•GET,STKE,SSUM,,ITEM,KEN 
E 
E_KENE(I+3)=ST_KE 

•ENDDO 
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/AXLAB,X,TIME (S) 

/AXLAB.Y,KINETIC ENERGY 
(j) 
*VPLOT,TIME( 1 ),E_KENE(1) 

/OUT,KINETIC,TXT lOutput file (kinetic.txt) 

*VWRITE,TIME(1 ),E_KENE(1) 

(IX,1 ,,F17.10,' ',F17.10) 

/OUT 

FINISH 
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Appendix D: Numerical Simulation Results (4%L and 10%L) 
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Figure D-1: Relation between equivalent first modal damping ratio and damper 
size at Td = 0.04 (Rigid damper support and no damper stiffness) 
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Figure D-2: Effect of damper support stiffness (rd = 0.04) 
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Figure D-3: Effect of damper support stiffness (Ks = 35.0, Fa = 0.04) 
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Figure D-4: Effect of damper support stiffness (Ks = 23.3, Ta = 0.04) 
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Figure D-5: Effect of damper support stiffness (Ks = 11.7, Td = 0.04) 



Curves by Huang & Jones (2011) md 
Xu & Zhou (2007) overitp 

fr 1.2 

§ 0-6 —0- Current study 

Fujino & Hoang (2008) 

Huang & Jones (2011) 

Xu& Zhou (2007) 

'3 0.4 

6 8 10 12 14 
Nondimensional damping parameter 

Figure D-6: Effect of damper support stiffness (Ks = 9.6, fa = 0.04) 
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Figure D-7: Effect of damper support stiffness (Ks = 5.5, Td = 0.04) 
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Figure D-8: Effect of damper stiffness (Td = 0.04) 

£ 1.8 

1.4 

-e- Rigid support, Kd = 0 

-a-Ks=rigid 

—I—K =35.0 
s 

<| K =23.3 

-B-K =11.7 

-^-K =9.6 

-•-K =5.5 

0.8 

6 0.6 

3 0.4 

0.2 

2 6 8 10 12 14 18 4 16 
Nondimensional damping parameter 

Figure D-9: Combined effect of damper stiffness and damper support stiffness 
(Kd = 0.03, rd = 0.04) 
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Figure D-10: Combined effect of damper stiffiaess and damper support stiffness 
(IQ = 0.07, Td = 0.04) 
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Figure D-11: Relation between equivalent first modal damping ratio and damper 
size at Ta = 0.10 (Rigid damper support and no damper stiffness) 
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Figure D-12; Effect of damper support stiffness (Td = 0.10) 
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Figure D-13: Effect of damper support stiffiiess (Kg = 87.5 fa = 0.10) 
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Figure D-14: Effect of damper support stiffness (Ks = 58.3, Td = 0.10) 
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Figure D-15: Effect of damper support stiffness (Ks = 29.2, r<j = 0.10) 
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Figure D-16: Effect of damper support stiffness (Ks = 23.9, Ta = 0.10) 
133 



sir 
0 

1 
t 
a 

c v 
13 
> 

I 
w 

2.5 

Curvet by Huang St Jones (2011) and 
Xu & Zhou (2007) overiap 

-6-Current study 

Fujino & Hoang (2008) 

Huang & Jones (2011) 

X u &  Z h o u  ( 2 0 0 7 )  

6 8 10 12 14 
Nondimensional damping parameter SP 

16 18 

Figure D-17: Effect of damper support stiffness (Ks = 13.8, fd = 0.10) 
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Figure D-18: Effect of damper stiffness (fa = 0.10) 
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Figure D-19: Combined effect of damper stiffness and damper support stiffness 
(ka = 0.08, rd = 0.10) 
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Figure D-20: Combined effect of damper stiffness and damper support stiffness 
(K<i = 0.17, Td = 0.10) 
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