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Abstract

An experimental study and a finite element analysis is conducted on a cable-
damper system to study the individual and combined effects of damper stiffness and
damper support stiffness on controlling stay cable vibrations. For the studied ranges of
damper stiffness and damper support stiffness, the optimum damper coefficient is found
to be shifted up to 22% and the modal damping ratio varies by as much as 23%. Results
show that the optimum damper size increases as the damper stiffness and the damper
support stiffness increase. Though the corresponding maximum attainable modal
damping ratio also increases with more rigid damper support stiffness, it was found to be
lower if damper stiffness increases. Approximate relations between the optimum damper
size and the damper location, damper stiffness, damper support stiffness, as well as the
corresponding maximum attainable modal damping ratio with these three system

parameters are proposed.
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Chapter 1: Introduction

1.1 Background

Cable-stayed bridges are commonly used in civil infrastructure. Their economic
design, utility, and pleasing aesthetics have led to their use over unprecedented span
lengths. The main span of Sutong Bridge in China, for example, is over a kilometer long
and is currently the longest in the world. As bridge spans increase, so must their stay
cables, which loose rigidity with length. The longest cable on the Sutong Bridge has a
length of 580 meters. Due to their low inherent damping, which is often less than 1%,
and low natural frequencies, stay cables are particularly sensitive to excitations by various
dynamic sources. Violent, large amplitude vibrations of stay cables have been observed
on bridge sites, and are of concern both for the healthy maintenance of the structure and
for the bridge users. Excessive cable vibrations may result in fatigue failure at the cable-
deck or cable-tower connections and/or the deterioration of the cable corrosion
mechanism. The source of stay cable vibration is an area of study that is important to
ensure the safety of the bridge. To date, a number of vibration mechanisms have been
identified as potentially harmful to bridge stay cables. The primary sources of vibration
are from rain-wind-induced vibration, vortex-induced oscillation, high-speed vortex

excitation, wake galloping, galloping of dry-inclined cables, and parametric excitation.

1.2 Types of cable excitation

Rain-wind-induced vibrations occur during periods of moderate wind and rain
within a low frequency range of 1-3Hz. The amplitude of cable oscillations could reach ~
0.25 - 1 meter and have resulted in cables hitting each other in some extreme cases. An
early observation of this phenomenon was during the construction of the Meiko-Nishi
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Bridge in Japan (Hikami and Shiraishi, 1988). Experimental and analytical studies as
well as field monitoring programs were carried out to study the mechanisms associated
with this phenomenon (Flamand, 1995; Main and Jones, 2001; Kumarasena et al., 2007,
Ni et al., 2007; Taylor and Robertson, 2010; Wang and Hou, 2011). The circular cross-
section of the cable is altered with respect to oncoming wind when rain water droplets
rest on the cable. This results in an unstable aerodynamic force acting on the cable and,
when the droplet oscillates at the natural frequency of the cable, the cable resonates and

exhibits large vibrations.

Vortex-induced vibration occurs when wind is acting in the direction
perpendicular to the axis of the cable. Karman vortices shed alternatively from either side
of the cable, generating an oscillating force perpendicular to the direction of the wind
(towards the cable) which induces cable vibration. If this force oscillates at a frequency
near the natural frequency of the cable, resonance occurs which leads to large amplitudes
of cable motion. Vortex shedding can be “locked-in” to a resonant frequency for a period
when excitation wind speeds have been exceeded. These vibrations generally occur at
low wind speeds and have a vibration amplitude response of approximately one cable

diameter (Kumarasena et al., 2007; Zuo et al, 2008).

High-speed vortex excitation has not yet been fully understood. This type of
vibration is thought to result from the contribution of several modal frequencies and the
interaction between Karman vortex shedding and axial vortex shedding. This vibration
has been observed to occur at higher frequencies than Karman vortex excitation in a
narrow high reduced wind speed range and has a limited amplitude (Matsumoto et al.,

2001; Cheng et al., 2008a).



Wake galloping generally occurs when cables are in the wake of other structural
elements such as other cables, bridge towers, and nearby buildings. When cables move in
and out of a wake, they experience a change in the speed of wind and increased
turbulence and they may begin to oscillate. If this oscillation frequency nears the natural
frequency of the cable, resonance will occur. Wake galloping may be most easily
avoided by installing cables in a properly spaced configuration so they will not be
influenced by each other’s wakes, as well as minimizing wakes generated from nearby

construction (Kumarasena et al., 2007).

Galloping of dry inclined cables occurs in the critical Reynolds number range and
has only been observed experimentally; there are no confirmed cases from the field to
date. In the lab, vibration was observed when the angle between the cable axis and the
wind was 60° or between 75° - 90°. It was found that the mechanism of this type of
vibration can be explained by the Den Hartog criterion, but its full mechanism is still not

clearly understood (Cheng et al., 2008b).

Parametric excitation occurs when bridge stay cables are forced to vibrate as a
result of the motion of the bridge tower or bridge deck. Traffic live load, ground motion
(earthquake), and wind are some examples of what may cause the bridge superstructure to
move. This movement causes stay cable anchorage points to displace vertically (deck
anchorage) or horizontally (tower anchorage), causing a fluctuation in the tension
experienced within the cable. The ratio of the excitation frequency to the cable natural
frequency often observed to yield large amplitude responses from parametric excitation is

2 (Hou and Wang, 2011).



1.3 Vibration mitigation techniques
To suppress unfavorable cable motions, various vibration controlling means have

been proposed. They can be generally categorized as aerodynamic type and mechanical

type.

The alteration of the cable casing surface has proven to be an effective measure in
controlling both rain-wind-induced vibration as well as vortex-induced vibration. This

= S .- vibration mitigation method is classified as an

“aerodynamic” type because the surface treatments

would change the aerodynamic forces that induce the

Figure 1-1: Cable casing surface cable to vibrate. The surface treatment could prevent
protrusions (Yeo and Jones,

2011) the formation of water

rivulet on the cable surface and disturb the formation and

shedding of the Karman vortices. Surface modification

patterns were tested in wind tunnel studies to investigate

their effectiveness. A commonly used protrusion pattern
is the helical spiral, shown on the top cable in Figure 1-1,  Figyre 1-2: Cabl casing
_ cross-section alterations
along with two other patterns that have been tested (Yeo (Kleissl and Georgakis, 2011)
and Jones, 2011). The U.S. Grant Bridge in Ohio, USA, uses the helical spiral type of
surface protrusion. Modification of the base cylindrical cross-section of the cable casing,

as shown in Figure 1-2, is a very recent area of research that is currently being tested in

wind tunnels (Kleissl and Georgakis, 2011).



The mechanical type of vibration control includes the use of cross-ties, which
would increase the in-plane stiffness and thus the natural frequency of cables; and

external dampers, which would directly increase damping in the cable.

Cross-ties are transverse cable connectors that connect several stay cables together
to increase the overall stiffness and damping of the entire cable network. The points of
tie connection limit the motion of the stays, decreasing their effective length and
increasing cable in-plane stiffness, which tends to increase the natural frequencies of the
cables. Environmental cable excitation is generally most critical in the lower modes of
vibration. Increased cable natural frequencies help to avoid increased dynamic response
at resonance in these critical lower modes. Both experimental and numerical work (e.g.
Yamaguchi and Nagahawatta, 1995; He et al., 2010, Caracoglia and Jones, 2005) have
shown that flexible cross-ties are more effective than their stiff counterparts because
flexibility allows for energy dissipation within the cross-ties, and that some prestress
should be applied to the cross-ties when they are installed. However, segmenting the
cable with the ties tends to generate intense local vibrations that are not desirable. This
method of vibration mitigation has been successfully used on several bridges, for
example, the Fred Hartman Bridge in Texas, USA (Caracoglia and Jones, 2005), and the

Dames Point Bridge in Jacksonville, Florida, USA (Kumarasena et al., 2007).

Many external type mechanical dampers have been used in the field such as the
fricion damper (Myrvoll et al., 2002), high damping rubber dampers (Nakamura et al.,
1998), tuned-mass dampers (Cai et al., 2006), magnetorheological (MR) dampers
(Christenson and Spencer, 2001), and viscous dampers (Main and Jones, 2001). MR

dampers generate resistance to control cable motion through the alignment of magnetic

5



particles in the damper in the direction parallel to an applied magnetic field. They have
been explored primarily through semi-active control (Johnson et al., 2007), and passive
control (Cho et al., 2005). A newly proposed method of vibration contol changes the
boundary condition of the classic cable system: one end of the cable is no longer fixed.
The support is flexible and has both stiffness and damping in the direction of cable
vibration, which may reduce vibration displacement more effectively than a passive
damper (Hwang et al., 2009). Viscous dampers are the most commonly used mechanical
type. They are being used on the Fred Hartman Bridge in the USA, the Brotonne Bridge
in France, and the Aratsu Bridge in Japan. Design tools have been proposed and
developed for their application (e.g. Pacheco et al., 1993; Tabatabai and Mehrabi, 2000;
Cheng et al, 2010). Improvements to the classic viscous damper have been attempted
recently with adjustable fluid dampers (Xu and Zhou, 2007). They use shape memory

alloy to optimize the damper performance.

Often overlooked, however, is the effect of damper and damper support stiffness
in the viscous damper design. Practical design tools must include these parameters in
order to predict accurately the additional damping from the damper. Without considering
these factors, damping may be overestimated in design and cables in the field may not
receive adequate damping as expected, which may leave the bridge structure vulnerable

to dynamic excitation.

1.4 Motivations
The accurate prediction of the additional damping a viscous damper can provide
for a stay cable is imperative to an efficient damper design. There is a lack of research

that has been done on the effect of damper stiffness and damper support stiffness on the
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performance of a viscous damper, and their combined effect has rarely been investigated.
The very few existing studies which explored this issue indicated that both damper and
damper support stiffness would have a sizeable effect on the accurate prediction of the

system damping ratio.

The lack of study in the area of how damper stiffness and damper support stiffness
would affect damper efficiency was the motivation for the current work, which included
the construction of an experimental study and a finite element analysis of the dynamic
behaviour of a cable-damper system while including damper and damper support stiffness
properties. The impacts of these two parameters on the damper performance were
investigated separately as well as in combination. This study has not only confirmed the
trends currently documented, but it has extended their practicality to the actual damper
design by proposing approximations for the optimum damper size and its corresponding

maximum equivalent first modal damping ratio.

1.5 Objectives

The objectives of this study were thus proposed to be:

1. Design a linear viscous damper that allows for adjustable damper stiffness and
support stiffness.
2. Design the calibration system for the damper.
3. Conduct cable forced vibration tests to observe the following:
a. the effect of damper support stiffness on cable damping ratio
b. the combined effect of damper stiffness and damper support stiffness on

cable damping ratio



4. Develop a finite element model of the cable-damper system including damper
stiffness and damper support stiffness. The model was developed using the
ANSYS commercial software. The energy-based method proposed by Cheng et
al. (2010) was used to calculate the damping ratio of the system.

5. Compare experimental and numerical results, as well as those reported in the
literature.

6. Develop approximate expressions for the optimum damper size and its
corresponding maximum attainable equivalent first modal damping ratio to be
used in practical damper design in order to account for the influence of damper

stiffness and damper support stiffness effects on its performance.



Chapter 2: Literature Review

A common simplification in the analysis of a cable-damper system has been to
idealize the cable as a taut string. Therefore, cable sag (inclination) and bending stiffness
are neglected. This assumption has often been used in analytical studies, such as those
that use complex eigenvalue analysis to estimate the additional damping expected in

different modes of vibration from a linear viscous damper.

Kovacs (1982) identified the existence of an optimum viscous damping coefficient
using the semi-empirical approach and developed an analytical equation estimating its
value, based on the two extremes of cable damping: no damping and a damper with
infinite damping capacity, which will act as a rigid support. This research analyzed only
the first mode of cable vibration, although it has the potential of being extended to higher

modes.

A universal damping estimation curve was subsequently developed by Pacheco et
al. (1993), also based on eigenvalue analysis using the taut cable assumption. This curve,
shown in Figure 2-1, can be used for a practical range of stay cables and linear viscous
dampers, and it assesses the optimal size and location of a damper needed for controlling
cable vibration in a specific mode in which the maximum amount of additional damping
must be provided. In addition, this curve can further estimate the additional damping to
be had in other modes based on the initial damper design developed from the curve.
Modal damping ratio is plotted on the y-axis and the non-dimensional damper coefficient
is potted on the x-axis, where &; is the modal damping ratio in the ™ mode of vibration, x,

is the location of the damper, L is the span length of the cable, ¢ is the damper coefficient,



m is the mass per unit length of the cable, wy, is the fundamental natural frequency of the
cable, and i is the mode number. This curve can be used for the first six modes of cable
vibration and it has increased usefulness over previous work because of its simplicity in
application. An analytical solution representing the universal estimation curve has also
been developed. It was proposed by Krenk (2000) that maximum additional damping that

can be achieved from a linear viscous damper could be approximated simply as ¢ =

xc/2L.
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Figure 2-1: Universal damping estimation curve
(Pacheco et al., 1993)

The shortfall of linear viscous dampers is that the optimal damping coefficient
can only be achieved in one specified mode of vibration. It will have an increasingly
rigid effect on higher modes and an increasingly less rigid effect on lower modes. This
also causes the natural frequency of the cable to shift towards that of a similar cable with
a shortened length. However, the preferred mode to dampen is generally not known

beforehand. In the study by Main and Jones (2001), the case of an infinitely rigid damper
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was analyzed as a “clamped case” and analytically described by a clamping ratio, which
was seen to increase with mode number, for a particular damping coefficient. This means
that the damper acts in a more rigid manner for higher cable vibration modes, and
confirms that this type of damper may only act optimally for one mode, because its
effectiveness decreases for other modes. This optimal mode must be known before the
damper is designed, and must be designed on a case-by-case basis for each cable in
question, which may not be economically practical in design. It is worth pointing out
that, though not optimal, a linear viscous damper may offer some damping effect to other

vibration modes.

An analytical comparison between linear and nonlinear viscous dampers has been
done by Main and Jones (2002) using the taut cable assumption. A universal damping
estimation curve for a nonlinear damper was developed. The behavior of a nonlinear
viscous damper can be generally described as exerting a force, proportional to the
velocity of the cable, raised to some positive exponent. The use of this type of damper
might be an improvement over the linear viscous damper because its efficiency is largely
dependent on the amplitude of cable oscillation, and is less sensitive to mode number.
The damper performs optimally in modes that experience oscillations in the vicinity of
the design amplitude. Specifically, it was found that a nonlinear viscous damper with the
exponent of 2 was completely independent of mode number and was equally effective at
the same amplitude of vibration oscillation, regardless of the mode. This extends the

design of dampers beyond a specific mode of vibration.

A mathematical model and semi-empirical design equation for nonlinear dampers

was developed for high velocity applications by Jia et al. (2008). The taut string-single
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damper analytical model and the
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3
[2

b . ) formulation have been extended to the
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Figure 2-2: Taut string-two damper mode! ™ damper case, as illustrated in

C lia and Jones, 2007 : . i
(Caracoglia and Jones ) Figure 2-2. Universal damping

estimation curves (comparable to the taut-string, single damper curve) were generated by
Caracoglia and Jones (2007) for the two damper case as well. It was found that the modal
damping of the damped cable was improved when the dampers were installed at opposite
ends of the cable, but worsened when located at the same end due to their interaction.

The latter would actually increase the stiffness at that end of the cable.

Tabatabai and Mehrabi (2000) studied the dynamic behaviour of a damped
flexible cable by including the sagging and bending stiffness of the cable in the
formulation. A notable conclusion was made that bending stiffness has a considerable
effect on the obtainable damping ratio that can be achieved by a mechanical viscous
damper, and that the taut cable approximation is likely to overestimate the obtainable
damping ratio. Design equations / methods for damper design have been proposed which

include bending stiffness but restrict damper location to the vicinity of the cable end.

Cable sag, often analytically expressed by the inextensibility parameter (1) was
initially proposed by Irvine and Caughey (1974). It is defined as the ratio of the stiffness
of an ideal massless cable to that of an actual sagging cable. The sagging effect was
found to be significant primarily in the first mode of vibration for cables with an
inextensibility parameter greater than one. The universal damping estimation curve

proposed by Pacheco et al. (1993) was deemed valid only for short to medium length
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cables, where sag can justifiably be neglected. Xu and Yu (1998), as well as Tabatabai
and Mehrabi (2000), developed curves, similar to the universal damper design curve, to
determine the maximum damping ratio and the optimum damper size while considering

the cable sagging effect for the first mode of cable vibration and beyond.

Energy-based methods have been explored to evaluate the additional damping
provided by an attached viscous damper. Jiang (2006) used the kinetic-energy decay ratio
of a freely vibrating cable, obtained from a finite element model developed using the

ANSYS commercial software, and converted it into equivalent Rayleigh damping.

Cheng et al. (2010) developed a mathematical equation based on the kinetic
energy decay time-history of a freely vibrating damped cable to evaluate the additional
damping provided by an attached viscous damper. The time-history response was
obtained from numerical simulations of a freely vibrating cable damper system developed
using the ABAQUS commercial software. This work expanded on the previous studies
by not only including the sag and flexural rigidity of the cable, but also lifting the

restriction on the damper installation location in the application.

The dynamic behaviour of a cable-damper system has also been extensively
studied experimentally. Pacheco et al. (1993) conducted tests to validate the proposed
universal damping estimation curve and found that the amount of additional damping
provided by a linear viscous damper did not reach the predicted optimum value. It was
suggested that this could be attributed to the effects of cable sag and non-ideal linear

viscous damper behavior.

13



Xu et al. (1999) conducted both free and forced vibration tests on a cable-damper
system, with varying cable tension to simulate a range of sag conditions. The existence
of an optimal damper coefficient that can reach a maximum modal damping ratio for a
given damper location has been confirmed. Large-amplitude force-controlled vibration
tests revealed non-linear vibration of an undamped cable, while the linearity was restored
in the three lowest modes of vibration with the use of an oil damper. Out-of-plane
vibration was also observed during these tests near the first in-plane natural frequency of
the cable because of its proximity to its first out-of-plane natural frequency, which was
thought to have generated internal resonance. In the experiment, the oil damper was
found to be able to extinguish the out-of-plane vibration in the first mode, while

effectively mitigating the in-plane vibration.

Field observations evaluating the performance of linear viscous dampers were
conducted by Main and Jones (2001) on the Fred Hartman Bridge in Texas, USA, where
two dampers were installed on two different stay cables. The dampers were found to be
effective in mitigating cable vibrations that were identified to have stemmed from vortex-
and rain-wind-induced excitations. After installing the dampers, not only the amplitude
of cable vibration but also the acceleration of cable motions were decreased significantly.
It was also observed that the damper forces were the greatest when the wind was in the

same direction as the cable was declining.

Experimental research has also been extended to the use of multiple dampers
attached to one cable by Sun et al. (2004). It was found that two dampers, installed at
opposite ends of the cable, will increase the overall damping in the system; the sum of the

additional damping provided by each damper is approximately equivalent to the overall
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cable damping ratio. However, installing the two dampers
at the same end of the cable will reduce the cable damping

ratio.

The installation of linear viscous dampers has been

to date generally restricted to the end of a cable within a

few percent of the cable length for practical reasons.
Figure 2-3: Damper support However, the damper will have increased effectiveness and
structure (Sun et al., 2004)

damping capabilities if it can be moved towards the mid-
span of the cable. In field applications, this may require a damper support structure to
allow the damper to be installed beyond its conventional position, as shown in Figure 2-3.
It is worth noting that none of the studies reviewed above considered the stiffness of the

damper itself and the support in the formulation. These could have considerable impact

on the efficiency of the damper.

A few studies addressed the issue of damper stiffness and damper support
stiffness. Zhou (2005) used complex modal analysis to develop an equation for the
optimal damper size, which included damper stiffness. It was found that as the non-

dimensional damper stiffness increased, the optimal damper size would increase linearly.

Xu and Zhou (2007) developed an analytical formula using the taut cable
assumption for the cable damping ratio using an adjustable fluid damper. This damper
type acts as a passive fluid damper after the optimum damping coefficient is found
through application. The formula represented the adjustable fluid damper using the

Maxwell model, which can be described as a dashpot connected in series with a spring.
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An additional spring was connected in series with the damper spring to represent support
stiffness. The cable damping ratio was represented as a function of damper support

stiffness; an increase in damper support stiffness increased the cable damping ratio.

Fujino and Hoang (2008) analytically derived an asymptotic formula for the
modal damping of a cable, which included cable sag, flexural rigidity, and damper
support stiffness. In the formula, the influencing factors were expressed as modification /
reduction factors, which can be used conveniently in practical damper design. This study
confirmed that, for cables with a small sag parameter, sagging effect was significant only
for the 1* symmetric mode of cable vibration and that the influence of cable flexural
rigidity was apparent in all modes of interest. Damper support stiffness was found to be
independent of the mode of cable vibration and to have a significant effect on the
maximum damping capability of the damper. With the increase of damper support
stiffness, the cable damping ratio increases. Damper design equations including the

damper support stiffness were proposed.

The analytical work by Huang and Jones (2011) has led to the development of
universal damping estimation curves for predicting modal damping ratio of a damped
cable by including the effect of damper support stiffness, although the taut cable
assumption was used in their formulation. In this study, a decrease in damper support
stiffness was also found to decrease additional damping from an attached linear viscous

damper.

Sun et al. (2004; 2008) analytically analyzed the individual effects of damper

stiffness and damper support stiffness on the maximum attainable damping ratio, based
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on the taut string assumption. An increased damper stiffness and decreased damper
support stiffness were each found to independently decrease the maximum obtainable
cable damping ratio. Efficiency factors were proposed, which were defined as the ratio of
actual additional damping from experimental results to the analytically calculated results

based on ideal linear viscous damper theory.

Huang (2011) conducted an experimental work focusing specifically on the effect
of damper stiffness on the efficiency of a linear viscous damper in suppressing cable
vibrations. Springs were installed between a model cable and a linear viscous damper to
simulate the damper stiffness. Results indicated that the existence of damper stiffness

would reduce the effectiveness of a damper.

Further study needs to be undertaken to understand the effects of damper stiffness
and damper support stiffness on the additional damping provided by a viscous damper. A
thorough understanding of both of these parameters will help bridge designers to
maximize viscous damper effectiveness in mitigating stay cable vibration. The current
study has expanded on previous work by considering these two parameters both
separately and in combination in an experimental study and through a finite element
analysis of a cable-damper system. Approximations for the optimum damper size and its
corresponding maximum achievable damping ratio have been developed for the

convenience of practical damper design.
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Chapter 3: Experimental Study

An experimental study was carried out to investigate the dynamic behavior of a
cable-damper system. This chapter will include a detailed description of the experimental
setup, the equipment, and the testing procedures that have been used, as well as the
experimental results. An existing experimental setup, developed by Huang (2011), was
modified to be used for the current study. This experimental study was set up in room B-

19 in Essex Hall at the University of Windsor, Ontario, Canada.

3.1 Experimental setup
A steel wire cable was used to model a bridge stay cable and it was mounted
horizontally between two steel columns. A sketch of the experimental setup is shown in

Figure 3-1.

Hyamic\

hand pump
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Figure 3-1: Sketch of experimental setup

One end of the cable was attached to a load cell for measuring the pretension in the cable,
and the other end was attached to a hydraulic pump for applying tension in the cable. The
cable had a span length of 9.33 m (mounted into position), a nominal diameter of 4.65
mm, a unit mass of 0.092 kg/m, and a nominal moment of inertia of 15.8 mm®. The
appropriate amount of pretension for this cable to achieve the desired dynamic behaviour

was investigated by Huang (2011) and found to be within the range of 2500 N — 4000 N.
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This range is high enough to avoid too little tension in the cable, which would cause the
cable to be slack, and low enough to avoid too much tension, which would cause the
vibrating cable to exhibit elliptical motion. The pretension in the cable used for this
experimental study was 3200 N. The natural frequency of the model cable was lowered
to approach that of an actual bridge stay cable by adding 20 evenly spaced 50 gram mass
blocks to increase its unit mass. The resulting unit mass of the cable was 0.2 kg/m. The

first natural frequency of a cable (f;) can be predicted using the formula: f; =

1/(2L)+/T/m, where L = cable length (m), T = cable pretension (N), m = cable unit mass
(kg/m). The resulting natural frequency of the cable, after the addition of the mass
blocks, is predicted to be 6.78 Hz. In the lab, the natural frequency of the cable was

found to be approximately 7.0 Hz.

A Universal Flat Load Cell, model number FL25U-2SG, was mounted at one end
of the cable to measure the applied pretension in the cable. It has a maximum capacity of
25,000 1b and it was calibrated using a universal tensile tester, which yielded a calibration
constant of 5.458 kN/mV. This constant was inputted into the data acquisition system to
display cable tension in kN (with a display resolution of 10 N). The load cell is shown in

Figure 3-2.
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Figure 3-2: Universal Flat
Load Cell

An Enerpac hydraulic steel hand pump, shown in Figure 3-3, was installed at the
opposite end of the cable from the load cell to apply pretension to the cable. The unit,
model number PH-84, has a maximum pressure rating of 10,000 psi. In this experiment,
the hydraulic pump was setup to exert a pretension of 3200 N to the cable. This value

was measured by the load cell located at the opposite end of the cable.

Figure 3-3: Hydraulic hand pump
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An accelerometer was placed at the mid-span of the cable to monitor the first
modal response of cable vibration. It was placed on the very top of the cable cross-
section in order to record only the vertical motion. Real time data was collected using the
Astrolink Xe data acquisition and control software. The data was monitored to make sure
that the wave-form acceleration data collected was symmetric, which indicated that the
unit is properly placed at the top of the cable and is receiving data from only the vertical
direction of motion. The accelerometer used, model number 352A24, was purchased
from Dalimar Instruments and has a testing range of 1 — 8000 Hz. The testing range used

in this experimental study was 6 — 8 Hz.

An electronic dynamic Smart Shaker from the Modal Shop, Inc. was utilized for
the forced vibration tests. The unit, model number K2007EO01, is capable of providing up
to 7 Ib (31 N) of peak sine force, has a 1/2 inch (1.27 cm) stroke, and a testing frequency
range of 1 — 9000 Hz. The shaker was installed at five percent of the cable length, sitting
on a tripod, and directed vertically to provide excitation in only this direction, as shown in
Figure 3-4. The correct installation of the damper is essential in order to receive accurate
data from the accelerometer, which is installed to record vertical motion. Improper
installation (non-vertical excitation) will cause unsymmetrical cable motion and thus

incorrect cable damping ratio in the analysis.
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Figure 3-4: Smart Shaker

An HP signal generator, model number 33120A, was used to generate the
dynamic excitation functions to control the dynamic shaker. This unit, shown in Figure
3-5, has the ability to generate many output functions including sine, square, triangle, and
ramp, among others. The sinusoidal output function was used in this experiment. The

signal generator can generate this output function in a frequency range of 1 — 15 MHz.

Figure 3-5: HP signal generator
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The data acquisition recorder used was AstroDAQ Xe from Astro-Med, Inc. The
unit, part number 22834-513, connects to a computer through a USB 2.0 interface and has
eight input channels. Both the load cell and the accelerometer were connected to this data
recorder, shown in Figure 3-6. The software that was used with this recorder was the
AstroLINK Xe data acquisition and control software, also from Astro-Med, Inc. The
software, part number 22834-514, can record data at frequencies up to 200,000 Hz. In
this experiment, a sampling frequency of 1000 Hz was used. The Realtime mode in the
sofiware was used to monitor and capture real-time acceleration data from the
accelerometer. The review mode in the software was used to review and save data

previously captured.

Figure 3-6: AstroDAQ XE data
aquisition recorder
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3.2 Damper design and calibration

A passive linear viscous damper was used in this experimental study. This
damper type provides a dissipative damping force generated from the pressure difference
from a piston moving through a viscous fluid. The damper used in this study was
designed to have variable damper stiffness and support stiffness. It was also imperative
that all energy in the system be affected only by the damper and stiffness components (no
loss of energy due to friction), to result in an accurate cable damping ratio. A photograph

of the damper designed for this experimental study is shown in Figure 3-7.

Figure 3-7: Viscous damper
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The designed damper has the following main components:

1. A plastic container holds the viscous fluid. It is open at the top and it has an
inner diameter of 100 mm. The bottom of the container has 12 holes carved
into it to fit the support springs. Figure 3-8 shows a sketch of the damper

container.

‘;QQ,QQ

Figure 3-8: Damper container Figure 3-9: Damper
sketch block sketch

2. SYNTON PAO 100, produced by Chemtura Canada Co. and obtained from
Commonwealth Oil, was used as the viscous fluid for this damper. It has a
kinematic viscosity at 40°C of 1279.51 centistokes (cSt).

3. An acrylic block was designed as the piston for this damper. It has vertical
holes that extend vertically and symmetrically through the block for the

purpose of increasing the contact surface area with the viscous fluid to
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increase the damper damping coefficient. It has a mass of 80.78 g. Figure 3-9
shows a sketch of the damper block.

4. A plastic stick connects the block to the cable. It screws into the center of the
block and attaches to the cable through two aluminum pieces that fit around
the cable cross-section. The stick and aluminum pieces have a mass of 26.10
g. Figure 3-10 shows a picture of the damper block connected to the stick and

aluminum pieces.

Figure 3-10: Damper block,
sick, and cable attachment

5. Two sets of two springs were used to simulate the damper stiffness. They are
connected to the damper container through two aluminum hooks screwed into
the top surface edges of the container, directly across from each other, and
they are connected to the cable directly. The stiffness of the springs was
measured experimentally in the lab. The springs were obtained from
McMaster-Carr and have the following properties:
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Table 3-1: Damper stiffness spring properties

Spring Part No. 9654K 53 9654K812
Stiffness (N/m) 140 300
Spring type Steel Extension Spring | Steel Extension Spring

6. Two sets of six springs were used to simulate the damper support stiffness.

They sit in an acrylic base plate that has holes carved out to fit their cross-
section. The base of the plastic damper container rests on the springs. It has
holes carved out of its base to fit the springs. The stiffness of the springs was
measured experimentally in the lab. The springs were obtained from

McMaster-Carr and have the following properties:

Table 3-2: Damper support stiffness spring properties

Spring Part No. 9434K 147 9434K135
Stiffness (N/m) 5780 7880
Music wire precision Music wire precision
Spring type compression spring, compression spring,
zinc-plated zinc-plated

7. An acrylic base plate was designed to accompany the damper and allow for

varying support stiffness. It has two sets of six holes carved into it
symmetrically. Each set of six holes accommodates one set of support
stiffness springs. The two sets of support stiffness springs can be used either

independently or in combination. The base plate can also be directly attached

to the damper to simulate an infinitely stiff support.

A damper calibration system was designed to measure the damping coefficient of

the damper. An LVDT was used to measure the linear displacement of the piston (acrylic

27



block and stick) as it moves through the damper viscous fluid under constant applied
forces. The LVDT cylinder was placed on the lid of an acrylic structure, shown in Figure
3-11, which has an opening in its side to allow for the raising and releasing of the damper

piston.

Figure 3-11: Acrylic calibration unit

The top of the LVDT stick fits into the damper cylinder and its base is screwed into the
aluminum top plate of the plastic damper stick, which is also connected to the acrylic
damper block at its bottom end. The two aluminum pieces of the damper stick, used to
attach to the cable during testing, hold rectangular prism mass blocks during calibration.
The different mass blocks are used as the constant applied forces on the piston. The mass
was applied in 25 g increments. The LVDT was connected to the AstroDAQ Xe data
recorder to display the velocity of the LVDT in volts per second using the AstroLINK Xe
software. The conversion factor for the displacement of the LVDT stick is 1 volt = 2.5

mm. It was used to convert its velocity into meters per second. The damper coefficient
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has a unit of Ns/m. The applied force during calibration includes the weight of the
damper acrylic block, the plastic stick and the attached aluminum pieces, the mass blocks
used, the screws to attach the aluminum pieces together, and the LVDT stick. As the
damper piston is released, each time with different mass blocks installed, the data
acquisition software records the velocity of the LVDT stick. The relation between the
applied force and the damper piston velocity, illustrated in Figure 3-12, was produced
from calibration results and linear regression analysis. The slope of this force-velocity
curve is the damper coefficient with the unit of Ns/m. The damper in this experimental

study had a damping coefficient of 32.2 Ns/m.
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Figure 3-12: Force vs. Velocity calibration graph

3.3 Forced-vibration tests
Forced-vibration tests were performed to observe vertical cable motion under
varying excitation frequencies. The combinations of damper stiffness and damper

support stiffness that were tested are described in Table 3-3.
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Table 3-3: Damper-stiffness combinations

Damper coefficient (Ns/m) 322
Damper support stiffuess Infinite 82000 47300
(N/m)

Damper stiffness (N/m) 0O (2801600 O | 280|600 O | 280 600

The following describes the experimental testing procedures that were followed:

1.

Find the first natural frequency of the cable (to the nearest 0.05 Hz) by adjusting
the excitation frequency of the shaker through the signal generator. The
maximum cable response from the accelerometer data can be captured in the
Realtime mode of the AstroLINK Xe software (i.e. resonance). The experimental
value of the first natural frequency of the cable will be slightly higher than that
estimated theoretically because the installation of the shaker decreases the
effective length of the cable.

Create a file name for the current test and select the sampling frequency (1000 Hz

was used) in the AstroLink Xe software.

. Set the signal generator to a frequency of 0.5 Hz less than the experimental natural

frequency and record the acceleration data. This data file may be subsequently
reviewed (in the Review mode) and saved as a Microsoft Excel file.

Increase the signal generator frequency by 0.05 Hz for each test, up to (f; + 0.5)
Hz. Each damper-stiffness combination will therefore be tested at 20 frequency

values.

A Butterworth Filter, which can filter higher modes out of the experimental data,

leaves only data from the first mode of vibration. This filter used a band pass of (f; —
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0.6 Hz) — (f;{ + 0.6 Hz) and had a filter order of two. The acceleration data was
subsequently converted to displacement data using a Fourier Transform and the Matlab
commercial software. With this displacement data, the half-power method was used to
determine the cable-damping ratio of the tested system by plotting the frequency-response

curve.

A sample data set will be presented to fully illustrate the experimental procedure. The
sample data set will have the damper located at 10% of the cable length, with a damper

stiffness of 280 N/m and a damper support stiffness of 47300 N/m.

First, a pretension of 3200N was applied to the cable using the hydraulic hand pump.
The value of pretension was measured by the load cell, which was connected to the
AstroDAQ Xe data acquisition system, and observed in the Realtime mode of the
AstroLINK Xe software. The shaker was installed at 5% of the cable length, at the
opposite end from the load cell. It was set to its maximum amplitude and connected to
the signal generator. The signal generator was set to a sinusoidal output function. The
accelerometer was installed at the mid-span of the cable, on the top of the cable cross-

section. It was also connected to the data acquisition system.

The damper was subsequently installed at 10% of the cable length, at the same end as
the load cell (and the opposite end from the shaker). First, the acrylic damper base plate
was secured onto a steel base, which can be adjusted to raise the damper up to the height
of the cable. The six support springs with stiffness of 7880 N/m are placed in their
respective holes in the base plate (the springs are placed alternatively in the holes such

that each spring has an empty hole adjacent to it). The support springs are installed in
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parallel and their combined stiffness is a direct addition of each spring stiffness, which
results in a damper support stiffness of 47300 N/m. The damper container is filled with
the viscous fluid, SYNTON PAO 100, and the container is placed on the support springs.
The top of the support springs fit into the holes in the damper container base. The damper
block is attached to the plastic stick and placed in the damper container. The plastic stick
is connected to the cable through its attached aluminum pieces, which are screwed
together with the cable in between them. The two damper stiffness springs, each with a
stiffness of 140 N/m, are installed in parallel. The bottom of each spring is attached to an
aluminum hook, on each side of the container. The top of each spring is hooked directly

onto the cable. Their combined stiffness is 280 N/m.

The fundamental frequency of the cable is then found in the experiment by
adjusting the output frequency on the signal generator. The fundamental frequency is
found to be approximately 7.20 Hz by qualitatively observing the maximum cable
response at this excitation frequency. The shaker and damper attachments caused the
fundamental frequency to increase slightly. The testing frequency range was 0.5 Hz
below the fundamental frequency to 0.5 Hz above it, therefore 6.70 — 7.70 Hz. The signal
generator was set to 6.70 Hz. The sampling frequency was set to 1000 Hz. The
AstroLINK Xe software was used to capture the data over a time period of 12 seconds.
The data was then reviewed in the Review mode and saved an excel file for further
processing. The signal generator output frequency was increased by 0.5 Hz and the
data was once again captured, reviewed, and saved. This was repeated up to at frequency

of 7.70 Hz. This concluded testing for this sample.
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The following details the data processing of the sample data set. The acceleration
data from the first data file (6.70 Hz) was brought into Matlab; it was represented by the
variable “b”. The Butterworth filter was designed in Matlab using the “Filter Design &
Analysis Tool”. It was of Bandpass response type and a filter order of two. The filter
was represented by the variable “Hd”. An M-file, designed by Huang (2011) and
included in Appendix A, was subsequently used to process the data. This file applies the
Butterworth filter to remove higher modes of vibration from the experimental data and it
applies Fourier Transform to convert acceleration time-history data to displacement time-
history data. The M-file produces a graphical output of the displacement time-history
data, shown in Figure 3-13. The maximum displacement is found using the “Data
Cursor” tool, which displays data values interactively. The maximum displacement value

for this data set was found to be 0.6133 cm.
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Figure 3-13: Displacement vs. Time output
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Table 3-4: Maximum displacement values for each tested excitation frequency

Excitation frequency Maximum
(Hz) displacement (cm)
6.70 0.6133
6.75 0.6905
6.80 0.8046
6.85 0.9372
6.90 1.090
6.95 1.254
7.00 1.409
7.05 1.545
7.10 1.585
7.15 1.545
7.20 1.444
7.25 1.317
7.30 1.191
7.35 1.065
7.40 0.9495
7.45 0.8478
7.50 0.7586
7.55 0.6841
7.60 06178
7.65 0.5622
7.70 0.5108

The maximum displacement for each data file was subsequently found. These values
are presented in Table 3-4. A variable was created for the excitation frequency (F) and
the maximum displacement (D) in Matlab. The Curve Fitting Tool was used to plot
maximum displacement (D) in centimeters versus excitation frequency (F) in Hz. The
data was fitted with a cubic spline, interpolant type of fit, shown in Figure 3-14. The
fitting curve was analyzed using the Analysis Tool, and the displacement was interpolated
at each 0.001 Hz along the fitting curve. The maximum displacement (Dy,x) may then be
found with the precision of 0.00001 Hz. In this data set, the maximum displacement was

1.58517 cm.
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Figure 3-14: Maximum displacement (cm) vs. Excitation frequency (Hz)

The half-power method was subsequently used to calculate the experimental cable-
damping ratio. The steps are listed below and a summary of the sample data set is

presented in Table 3-5.

1. The maximum displacement was divided by the square-root of two to

calculate the half-power points:

D 158517 cm
max = = 1.120884 cm

V2 V2

2. The excitation frequencies (on each side of the peak displacement) that

correspond to this displacement value were found to be:

R, = 6.910 Hz

R, = 7.328 Hz
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3. The damping ratio was calculated using the following formula:

R,~R, _ 7.328Hz — 6.910Hz

- - = = 2. 0
= R, ¥R, 7.328Hz+ 6.910Hz 002936 = 2936%

Table 3-5 Summary of the sample experimental data set

Damper location Ly 10% L
Damping coefficient ¢ (Ns/m) 322
Damper stiffness kg (N/m) 280
Damper support stiffness ky (N/m) 47300
Damping ratio & (%) 2.936

3.4 Experimental resuits

Table 3-6 summarizes the combinations of damper stiffness and damper support
stiffness that have been tested. The damper was installed at 4%lL, 6%L, and 10%L. The
experimental results for each damper location are presented graphically in Figures 3-15,

3-16, and 3-17, respectively.

Table 3-6; Tested stiffness combinations

Damper damping coefficient ¢

/o) 322
Damper support stiffness ks Infinite 82000 47300
(N/m)

Damper stiffness kg (N/m) 0280 600| O | 280 600 O |280] 600
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Figure 3-15: Experimental results (4%L)
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Figure 3-16: Experimental results (6%L)
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Figure 3-17: Experimental results (10%L)

The experimental results given in Figures 3-15, 3-16, and 3-17 show that the
effects of damper support stiffness and damper stiffness on the performance of a linear
viscous damper are similar at all three tested damper locations. It can be observed from
these three figures that the modal damping ratio of the cable-damper system increases as
damper support stiffness increases. This is the same trend that has been observed in
previous studies (Xu and Zhou, 2007; Fujino and Hoang, 2008; Huang and Jones, 2011).
The reason for this behaviour may be attributed to difference in damping force that the
damper exerts when it has a rigid support (Figure 3-18) compared to when it has a support
with finite stiffness (Figure 3-19). The damping force exerted by the damper may be

expressed by the following:

Fq = c(V4 — V) GE.1)
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where F; is the damping force exerted by the damper on the cable (N), c is the damping
coefficient of the damper (Ns/m), V, is the velocity of the node where the damper
connects to the cable (m/s), and Vjp is the velocity of the node where the damper connects
to its base support (m/s). Nodes A and B are illustrated in both Figures 3-18 and 3-19. In
Figure 3-18, a sketch of a damper with a rigid support is shown. For this case, the
velocity of node B (V) in Eq. (3.1) would be zero because the rigid support is not in
motion. When this is inserted into Eq. (3.1), the value of the damping force becomes the

following:
Fq = cV, (3.2)

In Figure 3-19, a sketch of a damper with a support of finite stiffness is shown. The
velocity of node B (Vp) in this case would be a nonzero value. This results in a smaller
damping force than in the case where the damper has a rigid support. Therefore, a

damper with a finite support provides less damping than that with a rigid support.

| i

q
\

Figure 3-19: Sketch of a damper with a support of finite stiffness
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The experimental results also show that the modal damping ratio decreases as the
damper stiffness increases. This trend, observed by Zhou (2005) and Huang (2011), 1s
reasonable because the existence of the damper stiffness reduces the efficiency of the
damper by absorbing part of the energy and converting it to elastic energy. Without
damper stiffness, this part of energy would otherwise be transferred to the damper and be
dissipated through its damping mechanism. This set of data implies that to achieve the
maximum efficiency of a linear viscous damper, preferably, it should be supported on a

rigid base, and the stiffness of itself should be negligible.

The experimental results obtained have been compared with the existing literature
to confirm their accuracy. The studies conducted by Xu and Zhou (2007), Fujino and
Hoang (2008), and Huang and Jones (2011) have produced analytical formulae that
predict the value of the modal damping ratio of a cable-damper system while including
the effect of damper support stiffness. However, the effect of damper stiffness was not
considered in these works. These formulae will therefore be used to compare with the
zero damper stiffness cases of the current study. The study conducted by Zhou (2005)
produced a damper efficiency reduction factor that accounts for the effect of damper
stiffness only. The degradation of damper performance caused by the presence of damper
stiffness observed in the current experimental study will be compared with the reduction

factor calculated using the formula developed by Zhou (2005).

The equation developed by Xu and Zhou (2007) is based on the Maxwell model,

i.e. a damper in series with a spring, and has the following form:

& w2k,
X /L7 14 (m2k; + iAwgq)?

(3.3)



where ¢; is the nondimensional modal damping ratio of the cable-damper system in the /™
mode of vibration, x, is the location of the damper, L is the length of the cable, w; is the
undamped circular frequency of a taut cable in the first mode of vibration, k; is the
nondimensional damping parameter in the /® mode of vibration, calculated based on the

following:

i () =

where c is the damper coefficient. The damper support stiffness is included in the term A,
which is defined as the total relaxation time constant and is a component of the Maxwell
model upon which these equations are based. This term may be calculated using the

following formula:
A=c/kg+ c/kg (3.5

where k; is the damper stiffness in series with the damper, and £, is the support stiffness
in series with both the damper and the damper stiffness. For the purpose of comparison
with the current results, which only had the damper support stiffness in series with the
damper (damper stiffness was in parallel with the damper), the term c/k; was taken as
zero. In order to utilize Eq. (3.3) to compare with the results of the current study, x/L
was taken as 0.04, 0.06, and 0.10 for the 4%L, 6%L, and 10%/[ damper locations,
respectively. The values of ¢, m, L, and wy, were taken as 32.2 Ns/m, 0.2 kg/m, 9.33 m,
and 42.59 radians/s, respectively. The value of k, was varied from 6,300 N/m to 200,000
N/m. The value of damper support stiffness used to represent a rigid support was taken as
200,000 N/m. This is appropriate because this value is significantly larger than the values

used for the finite support stiffness. The formula developed by Xu and Zhou (2007) uses
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the taut cable assumption. Therefore, cable sag and bending stiffness were neglected.

The dashed line in Figures 3-20 to 3-22 portrays the results by Eq. (3.3).

The equation developed by Fujino and Hoang (2008) for evaluating the amount of
damping provided by an external linear viscous damper to suppress cable vibrations while
considering the damper support stiffness is the following:

§n R k?n¢ngnny
/L - san.. — 2
Xc k2 + (1 + kng) 'nZ,n

(3.6)

where k = x.k/H is the dimensionless damper support stiffness, x. is the location of the
damper, k is the damper support stiffness, H is the chord tension of an inclined cable, and
L is the length of the cable. The terms nyand ng, are the modification factors due to cable
flexural rigidity and sag, respectively, and n, is a modification factor that includes the
dimensionless damper damping coefficient and its location along the cable length. The
values for these modification factors were calculated using the formulae proposed in the
study. For example, when the damper is located at 4%L, n; and n, are calculated to be
0.874 and 0.160, respectively. The value of n,, was calculated to be equal to one (this
factor is not dependent on the location of the damper). The terms R,, and Ry are the
reduction factors due to the influence of cable sag and flexural rigidity, respectively. The
former was calculated to be 1.0 (it is not dependent on the location of the damper) and the
latter was calculated to be 0.960 when the damper is located at 4%L. This equation was
applied to the cable used in this experiment and the damper support stiffness parameter
was again varied from 6,300 N/m to 200,000 N/m. The solid line in Figures 3-20 to 3-22
portrays the results of Eq. (3.6). The equation developed by Fujino and Hoang (2008)

included not only the damper support stiffness, but also the cable bending stiffness and
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sag. Since the damper stiffness was not included in this formula, only the experimental

data points that have zero damper stiffness were used for comparison.

The universal curve equation proposed by Huang and Jones (2011) predicts the
modal damping ratio of a cable-damper system by including a flexibility coefficient that
takes into account the damper support stiffness. The equation has the form of the

following:

& . 1k
x/L~ 1+ (n2k)2¢2 (3.7

where k is the nondimensional damping coefficient, which can be expressed as:

k=—° 1(X—lf) (3.8)

- mem
and {'is the effective flexibility coefficient expressed as:

1/x
x./L

=1+ (3.9)

The effective flexibility coefficient includes a nondimensional spring stiffness parameter

x which is expressed as:

X=q (3.9)

where k is the damper support stiffness, L is the cable length, and H is the cable tension
force. The universal curve equation, Eq. (3.7), was applied to the cable used in this
experiment with the damper support stiffness parameter varied in the same range as was

done for the two previous studies described. The dotted line in Figures 3-20 to 3-22
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portrays the results by Eq. (3.7). This equation uses the same taut cable assumption as
that developed by Xu and Zhou (2007), and therefore cable sag and bending stiffness
were neglected. Damper stiffness was not included in this formula. Thus, the

experimental data that have zero damper stiffness will be used for comparison.

08 1
Curves by Huang & Jones (2011)
0.7 and Xu & Zhou (2007) overlap
0‘6 —vfg,‘.—-----o-—b—n c XY X XX X XY X KX X _KX_ X _JJ
/7
S <
<05 _7'2_,
up
2 O o
‘éo 4
&
g 03
A ¢ Current study
02 .
e Fujino & Hoang (2008)
0.1 |e= == Xu& Zhou (2007)
ssseee Huang & Jones (2011)
0.0 T
0 50000 100000 150000 200000

Damper support stiffness k, (N/m)

Figure 3-20: Experimental results (4%L)
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Figure 3-22: Experimental results (10%L)
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In Figures 3-20 to 3-22, it may be seen that the damping ratio of the experimental
results (and the modal damping ratios from literature) increase as the damper location is
moved towards the mid-span of the cable. This pattern is well documented in literature
(e.g. Cheng et al., 2010). As the damper is installed closer to the mid-span of the cable,
the transverse displacement undergone by the cable at the location of damper installation
increases. This is the same displacement that the damper piston will be subjected to while
attached to the cable at this location. The work W done by the damper on the cable may
be simply expressed as W = F,d, where F; is the damper force and d is the cable
displacement at the damper attachment point (point A in Figure 3-18). The damper force
acts in the opposite direction as the displacement of the cable, therefore the work done by
the damper is negative (or rather, dissipative). The negative work done by the damper on
the cable increases as the displacement undergone at the cable-damper attachment point
increases. Therefore, a greater amount of oscillation energy is removed from the cable as
the damper location is closer to the mid-span of the cable. Work # may also be
expressed as the net change in the kinetic energy KE, i.e. W = AKE. An increase in
negative work is equivalent to a larger negative change in kinetic energy in the cable at
the point of damper installation. Therefore, when the damper is installed closer to the
cable mid-span, more kinetic energy (or oscillation energy) is removed from the cable,

resulting in a greater modal damping ratio.

The experimental results at the 4%/ damper location, as given in Figure 3-20, are
slightly below the damping ratio predicted using the formulae developed by Xu and Zhou
(2007), Fujino and Hoang (2008), and Huang and Jones (2011). In the 6%L and 10%L

damper locations, however, the current experimental data points lie in between the
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damping ratio predictions of the formulae found in the literature (Figures 3-21 and 3-22).
This discrepancy in the pattern of measured data may be attributed to small differences in
the damper installation location, the shaker installation location, and the setting of cable
pretension in different testing cases. The entire experimental setup of the cable-damper
system was torn down and re-built between tests at each damper location. Although great
care was taken to ensure uniform experimental practices during each testing session,
small variations in damper location and cable tension, primarily, may have a noticeable

effect on the resulting modal damping ratios.

Table 3-7 summarizes the values of modal damping ratio obtained experimentally
in the current study as well as the values of modal damping ratio obtained using the
formulae from literature using the same damper support stiffness. Table 3-8 summarizes
the absolute percent difference between the modal damping ratios obtained in the current

experimental study with those calculated using the equations from literature.
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Table 3-7: Summary of modal damping ratios (%)
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The study conducted by Zhou (2005) proposed a formula that predicts the
reduction in modal damping ratio attributed to damper stiffness. This reduction factor is
inversely proportional to the nondimensional damper stiffness, indicating that the damper
loses efficiency as damper stiffness increases. This formula neglects both cable sag and

bending stiffness. The equation developed is the following:

1
Ruax = — o (3.10)

where k is the damper stiffness (N/m), x. is the damper location (m), and H is the cable
pretension (N). Ry is the reduction factor to show how much modal damping ratio is
reduced when considering damper stiffness. This equation makes no consideration for
damper support stiffness. Only the change in modal damping ratio due to the existence of
damper stiffness, with a rigid damper support, can be used for comparison. Therefore, the
damper efficiency reduction due to damper stiffness observed in the current study was
calculated and compared with the reduction factor computed from Eq. (3.10) by Zhou
(2005). The reduction factors for the current study were calculated by using the
following formula:

- Ekd¥0

R=
Ekd=0

(3.11)

where R is the reduction factor, &k.-o is the damping ratio of a testing case where no
damper stiffness existed, and &k 20 is the damping ratio of a testing case of non-zero
damper stiffness. Both of these damping ratios corresponded to a rigid damper support.

For example, the testing case with the damper located at 4%L and damper stiffness of 0
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and 280 N/m, the modal damping ratios obtained from the current experimental study are

given in Table 3-9:

Table 3-9: Experimental modal damping ratios (%) (4%L, k, = rigid)

Damper stiffness kg3 | Modal damping ratio
(N/m) § (%)
0 0.550
280 0.529

The damper efficiency reduction factor due to the existence of damper stiffness as 280

N/m can be computed from:

[0 529

0 550] 0962

The reduction factor was calculated for each combination of damper location and damper
stiffness tested and the results are listed in Table 3-10 along with the reduction factor
calculated using the formula proposed by Zhou (2005). The two sets of results are found
to agree well with each other. The error is less than 6.5%. They are also presented

graphically in Figures 3-23 and 3-24 for the convenience of comparison.
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Table 3-10: Modal damping reduction factor comparison

Damper | Damper stiffness Romax Runax Error (%)’
location (N/m) Current study | Zhou (2005)

4%L 280 0.962 0.968 0.62

600 0.934 0.935 0.11

6%L 280 0.893 0.953 6.30

600 0.872 0.905 3.65

10%L 280 0.955 0.924 3.35

600 0.828 0.851 2.70

Use Zhou (2005) as reference base
12
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j 0.6
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Figure 3-23: Reduction factor comparison (kg = 280 N/m)
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Chapter 4: Numerical Simulation

4.1 Finite element model

A 2D finite element model of the studied cable-damper system was analyzed
using the ANSYS 14.0 commercial software. The model used was developed by Jiang
(2006) and subsequently modified in the current study to include the damper stiffness and

the damper support stiffness.

The cable was modeled using the element type PIPES9, which is an Immersed
Pipe or Cable element type. This is a uniaxial element with six degrees-of-freedom at

each node (both translation and rotation in the X, Y, and Z axes), as illustrated in Figure

4-1.
2 @u\n
o
J } 4

¥ X.y. 7 defines the element
] coardinate system anentstion

Figure 4-1: PIPE59 Element Geometry
(ANSYS 14.0 Documentation)
It is possible to use this element in tension, compression, torsion, and in bending, and it
has stress stiffening and large deflection capabilities. The Real Constant No. 11, which is
the initial strain in the axial direction, was utilized to apply the cable pretention of 3200
N. The initial strain was calculated using the formula relating the linear stress and strain,
i.e. 0 = Ee, where o = axial stress (Pascal), E = Young’s Modulus of the cable (Pascal), ¢

= strain (dimensionless). The axial stress may be calculated from the formula o = F /A,
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where F = cable pretention (N) and 4 = cable cross-sectional area (m?). The material of
the element was steel with a Young’s Modulus of 200 GPa and the cable was modeled as
solid by inputting a pipe wall thickness equal to the radius of the cable cross-section. The

cable was fixed at both ends.

A sensitivity analysis was carried out for the purpose of selecting the optimum
number of elements for the cable. A modal analysis of the cable-damper system was
repeated, with the ANSYS software, using a different number of elements ranging from
50 to 500. The results are shown in Figure 4-2. A transient analysis of the cable-damper
system was also repeated, with the ANSYS software, using a different number of
elements ranging from 100 to 350 elements. The resulting equivalent modal damping
ratio obtained through each transient analysis (the cable is divided into a different number
of elements in each analysis) was compared with the equivalent modal damping ratio
obtained using the formula developed by Fujino & Hoang (2008) (refer to Eq. (3.6)). The
absolute percentage difference between the numerical simulation results and that obtained
from the formula developed by Fujino & Hoang (2008) are shown in Figure 4-3.
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Figure 4-2: Natural frequency (Hz) vs. Number of elements graph 54
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Figure 4-3: Absolute percentage difference vs. Number of elements graph

It can be seen from Figure 4-2 that the natural frequency of the cable approaches a
constant value of 6.8519 Hz as the number of elements increase. This constant value is

within 1.06% of the predicted theoretical value of 6.78 Hz, as was calculated previously

from the formula: f; = 1/ (2L)Jm. The number of elements selected for this study
was 200 because the natural frequency of the cable becomes constant at this value. It can
be seen from Figure 4-3 that the absolute percentage difference between the damping
ratio of the cable-damper system obtained from numerical simulation and the value
obtained using the asymptotic formula developed by Fujino & Hoang (2008) decreases as
the number of elements increase. When the number of elements is 200, the percentage
difference between the two sets of data is less than 2.5%, which is acceptable. Therefore,
considering both the accuracy requirement and computation time, it is decided to use 200

elements to simulate the cable in the numerical analysis.
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The damper was modeled using the COMBIN14 Spring-Damper element type.
This massless element was used as a longitudinal spring-damper (it has torsional spring-
damper capabilities as well) connected transversely to the cable. This is a uniaxial
tension-compression element with three degrees-of-freedom at each node (translation in
the X, Y, and Z axes). COMBIN14 is a damper in parallel with a spring, as illustrated in

Figure 4-4.

Figure 4-4. COMBIN14 Element geometry
(ANSYS 14.0 Documentation)

The damper coefficient is inputted with units of (force x time / length), or Ns/m if base
units are used throughout (as was used in this study). The spring in this element is used
to simulate the damper stiffness. The spring stiffness is inputted with units of (force /
length), or N/m if base units are used throughout. A value of zero stiffness was used to
simulate zero damper stiffness case and a nonzero value was used to simulate a specified
damper stiffness. This element was modeled as fixed at its base node for simulations with
infinite damper support stiffness and connected to a spring element (described

subsequently) when simulating finite damper support stiffness.

The damper support stiffness was modeled as a spring in series with the damper

and fixed to the ground at its base. A COMBIN14 element was used for this spring by
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removing the damping property from the element, i.e. to input a very small value for the

damping coefficient (<<1).

4.2 Numerical simulation

A modal analysis of the cable-damper system was conducted (developed by Jiang,
2006) to find the free vibration characteristics of the model cable, including its natural
frequencies and the visualization of the corresponding mode shapes. This was done to
verify that the cable properties were correctly inputted. The natural frequencies yielded

from numerical simulations were compared to those calculated with the formula: f, =

n/ (ZL)\/'ITn;. The mode shapes were visualized as being different from the ideal mode
shapes of a vibrating string. This difference was caused by the attachment of the damper
which holds the cable at its point of attachment. Figure 4-5 illustrates the deformed mode
shapes that resulted from modal analysis of the cable-damper system. The damper in this
figure is attached at 45% of the cable length to see the altered mode shape with greater

ease. The modal analysis input file can be found in Appendix B.
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b)

Figure 4-5: Resulting mode shapes
a) Mode 1, b) Mode 2
(Damper located at 45%L, ¢ = 133 Ns/m, rigid support, no damper stiffness)

A time-history (transient dynamic) analysis of the cable-damper system
(developed by Jiang, 2006, and modified in this study) was performed to determine the
dynamic response of the cable undergoing free vibration. To excite the first mode, the
mid-span of the cable is displaced vertically downwards by 30 cm and the motion of the
cable is recorded using an automatically generated time step (on the order of 107
seconds). The kinetic energy time-history of the mid-span node of the cable was
outputted in a text file and subsequently copied into Microsoft Excel for further analysis.
A sample of the data output is portrayed in Figure 4-6. The transient analysis input file

can be found in Appendix C.
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Figure 4-6: Sample kinetic energy time-history output
(Damper located at 10%L, ¢ = 90 Ns/m, rigid support, no damper stiffness)

The energy-based approach for a linear viscous damper design, developed by
Cheng et al. (2010), was used to calculate the cable damping ratio. The kinetic energy
time-history output from the ANSYS finite element simulation is used in the calculation.

The »™ modal damping ratio of a cable may be found using the following formulae:

In(1-4d,
& = _n_(i_ﬂ_n) (4.1)
and
_1¢j (Exin)max—[Exg+1)nlmax
dn = izi':l [Etd,nlmax (4.2)

where &, is the damping ratio of the n™ mode, d, is the kinetic energy decay ratio, and Ej .
is the maximum kinetic energy in the it cycle of the n™ modal vibration. There are two
kinetic energy peaks within each vibration cycle. The first peak within each vibration

cycle is selected as E;,. Microsoft Excel is used to calculate Eq. (4.2) to yield the first

modal damping ratio of the cable.
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A sample data set will be presented to fully illustrate the procedure of the
numerical simulation and the processing of the results. The sample data set presented has
a damper with a damping coefficient of 90 Ns/m, located at 10% of the cable length from
the cable end, with a damper stiffness of 0 N/m and a damper support stiffness of 200,000

N/m.

The system properties (damper coefficient, damper location, damper stiffness, and
damper support stiffness) are first inputted into the time-history (transient analysis)
command file (Appendix C). The simulation time must also be specified in the file. This
command file was written in a text editor and saved with the filename extension “.inp”.
The ANSYS software is launched and the input file can be read directly by the software

(File — Read input from...). The simulation begins immediately.

When the simulation is complete, the data results may be located. The kinetic
energy time-history is automatically written to a file entitled “kinetic.txt”, which will be
located on the same hard drive that the program was launched on. This file contains two
adjacent columns. The left column is the time (from zero to the simulation time specified
in the input file). The right column is the corresponding kinetic energy of the node at the
mid-span of the cable. These columns are copied into a Microsoft Excel file for

processing.

The kinetic energy time history data is plotted in Microsoft Excel as a scatter plot
with smooth lines, as shown in Figure 4-7. The peaks of the curve, marked with “X” on
Figure 4-7, are found using an “IF” statement to display a kinetic energy value if it is

greater than both the values that precede and follow it, for example
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IF(AND(B3>=B4,B3>=B2),B3,NA()). These results are filtered using the Sort & Filter
tool in the Data menu. This is to remove blank cells and cells that contain the #N/A error
value, leaving the peak values as well as some non-peak values that also satisfy the IF
statement. These are filtered manually. The peak kinetic energy values are listed in

Table 4-1.
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Figure 4-7: Kinetic energy time history
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Table 4-1: Peak kinetic energy values

Cycle No. Time (s) Kinetic energy (J)

Cvelo 1 0.022033 114.487
yele 0.070633 81.951
Cvelo 2 0.118602 52.797
yele 0.172833 36.577
Cvelo 3 0.227494 24.993
ycle 0.285925 17.158
0346197 11.982

Cycle 4 0.414098 8438

0.476658 5991

Cycle 5 0.540973 4252

0.611124 3.031

Cycle 6 067778 2225

0.745522 1674

Cycle 7 0.812967 1232

0.884121 0958

Cycle 8 0951216 0.753

1.015813 0.641

Cycle 9 1.092529 0487

Cycle 10 1.160843 0.444

Each vibration cycle has two kinetic-energy peaks: kinetic energy is maximum
when cable passes through its point of zero displacement (velocity is maximum) both
when its velocity is positive directed upwards and positive directed downwards. The first
peak of each vibration cycle is used in the energy-based approach developed by Cheng et
al. (2010). The kinetic energy decay ratio (d,) associated with the first mode
(fundamental mode) of the damped cable is calculated, using Eq. (4.2), followed by the

determination of the first modal damping ratio (&) based on Eq. (4.1), i.e.
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17114487 — 52,797 52.797 — 24993 24.993 — 11.982

1=l 112287 YT w2797 T 22993
11982 —5991 5991 —3.031 3.031- 1.674

11982 T 5991 | 3031
1674 — 0958 0958 — 0.641 0.641 — 0.444]

1.674 + 0.958 + 0.641

= 0.454791486
and & = -In(1-d,)/4n
= —In(1 — 0.454791486) /41

0.04827 or 4.827 %

The first modal damping ratio (¢) of this sample case is determined to be 4.827 %.

4.3 Numerical results

Table 4-2 summarizes the values of the damper damping coefficient, the damper
stiffness, the damper support stiffness, and the damper location that have been simulated.
Numerical simulations for each damper location were subdivided into four cases, which
are summarized in Table 4-3. The results of the 6%L damper location will be presented
in this section. The results of the 4%L and 10%L damper locations can be found in

Appendix D.
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Table 4-2: Parameter values used in the numerical study

Parameter Tested Values

Damper damping coefficient ¢ | ¢ 4 1 355 | 467 (703 | 90 |164.8 |275.5 | 500
(Ns/m)

Dimensionless damping 073 1127185279 | 356 | 6.51 | 10.89 | 19.76
coefficient ¥

Damper location Ly

4%L, 6%L, 10%L

Damper stiffness kq (N/m)

0, 280, 600

Dimensionless damper

4%L: 0, 0.03, 0.07
6%L: 0, 0.05,0.10

stiffness K4
10%L: 0, 0.08, 0.17
&*‘,‘;‘;‘” support stiffness ks | 4730 82000, 100000, 200000, 300000, rigid

Dimensionless damper support
stiffness K,

4%L:5.5,9.6,11.7,23.3, 35.0, nigid
6%L: 8.3,14.3,17.5,35.0, 52.5, rigid

10%L: 13.8,23.9,29.2, 58.3, 87.5, rigid

Table 4-3: Numerical simulations cases

Testing Case ks kq
1 rigid 0
2 not rigid 0
3 rigid #0
4 not rigid #0

a) Testing case 1: k,=rnigid, k; =0

The first numerical simulation case has a rigid damper support stiffness and a

negligible damper stiffness. This is therefore an ideal cable-damper system assumed in

the majority of the existing studies. The numerical simulation results for the 6%/ damper
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location are shown in Figure 4-8, along with three other curves based on formulae
proposed in literature, i.e. the formula developed by Huang & Jones (2011), the
asymptotic formula developed by Fujino & Hoang (2008), and the formula developed by
Xu & Zhou (2007). The rigid damper support stiffness condition is applied to all three
formulae. These curves are used to compare with the numerical simulation results to
verify both the pattern and accuracy. It can be seen from Figure 4-8 that the numerical
results obtained from the current study agree well with the three analytical curves. All
plots are displayed in terms of nondimensional quantities. The nondimensional damping

parameter (%) is calculated using the formula ¥ = (mc)/(mLlw.s), where w.5=

(m/L)\/H /m is the fundamental modal frequency of a taut string equivalent to the cable.
The nondimensional damper location (I;) is calculated using the formula I; = x./L.
The nondimensional damper stiffness (K;) and the nondimensional damper support

stiffness (K;) can be calculated using the formulae Ky = x.ky/H and K, = x.ks/H.
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Figure 4-8: Relation between equivalent first modal damping ratio and damper size
at 'y= 0.06 (Rigid damper support and no damper stiffness)
b) Testing case 2: k, # rigid, kz=0
The second testing case investigates the effect of damper support stiffness on the
performance of an external linear viscous damper. In this case, the damper support
stiffness is changed in each simulation using the values listed in Table 4-2, whereas the
damper stiffness remains zero. The results are portrayed in Figure 4-9, with each curve
corresponding to one specific damper support stiffness. For comparison, results of the
rigid damper support are also shown in the same figure. The trend seen in the numerical
simulation results is that if dampers of the same size (damping coefficient) but different
damper support stiffness were attached to the same cable at the same location, the modal
damping ratio of the cable-damper system would increase as the damper support stiffness
increases. This trend is the same as that reported in previous studies (Xu and Zhou, 2007;
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Fujino and Hoang, 2008; Huang and Jones, 2011). This effect is a result of the influence
that the damper support has on the damping force exerted by the damper. The damping
force (F,) that a linear viscous damper can generate is equal to the damper coefficient (¢)
multiplied by the relative velocity between the damper-cable connection (V) and the
damper base (V) (refer to Eq. (3.1)). In the case of a rigid support (refer to Figure 3-18),
the base of the damper is immobile. Therefore, the velocity of the damper base is zero
and the damping force is maximized. Conversely, a finite damper support (refer to Figure
3-19) would result in a decreased damping force because the motion of the damper base is
not zero and the relative motion between the two damper extremities is decreased. This
indicates that to install a linear viscous damper on a cable-stayed bridge closer to the
cable mid-span, better cable vibration control effect can be achieved by using a more

rigid supporting structure.

The resulting curves also show that the optimum nondimensional damping
parameter changes as the damper support stiffness varies. An increase in damper support
stiffness results in a higher value of the optimum nondimensional damping parameter. In
other words, when the damper installation location is determined, to achieve the best
effect of suppressing cable vibrations, the optimum size of a linear viscous damper would
be larger if it will be attached to a more rigid damper support. For example, for the 6%L
damper location, the tested variation in damper support stiffness resulted in a range of
optimum damper coefficients from 128 Ns/m (when &, = 47,300 N/m) to 146 Ns/m (when
k, was rigid). This trend is the same as that found in using the formula developed by

Fujino and Hoang (2008) when varying the damper support stiffness.
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In order to examine the accuracy of the numerical simulation results, each curve in
Figure 4-9 was compared separately with the analytical formulae developed by Xu &
Zhou (2007), Fujino and Hoang (2008), and Huang and Jones (2011), as was done for the
first testing case. These plots are shown in Figures 4-10 to 4-14. Comparison of the four
sets of data presented in these five figures show that all of the numerical simulation
results agree well with the analytical ones. The results from the current study are most
similar to those produced using the asymptotic formula developed by Fujino & Hoang
(2008) (refer to Eq. (3.1)). This formula includes the effects of cable sag, flexural
rigidity, as well as damper support stiffness, and therefore most closely resembles the
parameters that have been considered in the current study. The results produced using the
formulae developed by both Xu and Zhou (2007) as well as Huang and Jones (2011)
predict a slightly higher equivalent first modal damping ratio in the lower range of
damper coefficients, and a slightly lower equivalent first modal damping ratio in the
higher range of damper coefficients. This may be attributed to the taut cable assumption
that these formulae are based on, of which cable sag and bending stiffness have been
neglected when deriving these formulae. It is reasonable that the curves produced by

these two formulae, which are based on the same assumptions, overlap.
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Figure 4-9: Effect of damper support stiffness (I's = 0.06)
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c) Testing case 3: k,=rigid, k;# 0

The third testing case investigates the effect of damper stiffness on the performance of
an external linear viscous damper. In this case, the different values of damper stiffness
listed in Table 4-2 are used in each simulation, whereas the damper support stiffness
remains rigid. The resulting curves corresponding to each damper support stiffness are
displayed in Figure 4-15, along with the results of the rigid support stiffness case from the
first testing case. The numerical simulation results suggest that the modal damping ratio
would decrease if the damper stiffness increases. This trend is consistent with that
reported in previous studies (Zhou, 2005; Huang, 2011). Conceptually, this case is
similar to that of the second numerical simulation testing case. The existence of damper
stiffness will reduce the efficiency of a damper because part of the energy that transferred
from the oscillating cable to the damper will be converted to elastic energy through
damper stiffness and feed back to the cable during the periodical motion of the cable-
damper attachment point. Without the existence of damper stiffness, this fraction of
energy would have otherwise been more efficiently dissipated through the damping
mechanism of the damper. Therefore, a damper without damper stiffness will provide
better control of stay cable vibrations compared to a damper with certain damper

stiffness.

The resulting curves also show that the optimum nondimensional damping parameter
varies as the damper stiffness changes. In Figure 4-15, the optimum nondimensional
damping parameters of the three curves shown are 5.76, 6.21, and 6.29 for the
nondimensional damper stiffness’ of 0, 0.05, and 0.10, respectively. In other words, at

the damper location of 6%L, the damper sizes of 145.7 Ns/m, 157.1 Ns/m, and 159.1
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Ns/m were found to be optimum when the damper had stiffness’ of 0 N/m, 280 N/m, and
600 N/m. An increase in damper stiffness results in a higher value of the optimum
nondimensional damping parameter. This means that a damper of a larger size will be
required for optimal performance when the stiffness of a damper is increased. The
formula for predicting the optimum damping parameter proposed by Zhou (2005) gives

the same trend.
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Figure 4-15: Effect of damper stiffness (T'y = 0.06)
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In order to confirm the accuracy of the numerical simulation results, the modal
damping ratio reduction factors computed from the simulated data sets were compared to
the reduction factors calculated using the formula proposed by Zhou (2005) (refer to Eq.
(3.2)). The following formula was used to calculate the reduction factor for a simulated

set of results from the current study:

8
R=1 §ikq20

== (4.3)
8 & 8ikg=0

where R is the reduction factor of a set of results at a particular damper stiffness value.
The ratio between the modal damping ratio of the non-zero damper stiffness condition
(&iks0) (the third testing case) and that of the zero damper stiffness condition ({ik=0) (the
first testing case) is calculated for each of the eight damper damping coefficients listed in
Table 4-2. The average of these eight ratios is taken, yielding the reduction factor
corresponding to a specific damper stiffness to be compared with the formula proposed
by Zhou (2005). A sample calculation for the reduction factor based on the results of the
current study at a damper stiffness of 280 N/m (K4 = 0.05) will be presented here. The
simulated modal damping ratios for the first testing case as well as those for the third

testing case (kq = 280 N/m, K4 = 0.05) are listed in Table 4-4.
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Table 4-4: Current study modal damping ratios (T'q = 0.06)

Damping coefficient &k~ (%) Ex=280 Nm (%0)
¢ (Ns/m)

184 0.679 0.606
322 1.182 1.130
46.7 1.635 1.546
70.3 2.240 2.186

90 2.637 2.500
164.8 3.007 2.873
275.5 2.506 2.263
500 1.620 1.572

The reduction factor calculation for the case of damper stiffness of 280 N/m when the

damper was located at 6%L from the cable end is the following:

170. 606 1130 1546 2.186 2500 2.873 2263 1572

0679 1.182 1635+2240+2637+3007+2506+1620

= 0.943

This value was compared with the reduction factor calculated using the formula proposed

by Zhou (2005) using the same damper stiffness (280 N/m) and damper location (6% of

the 9.33 m long cable, which is a distance of 0.5598 m):

1 1
Rmax = . = N = 0,953
1+ _ﬁg (280 71)(0.5598 m)
3200 N
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Table 4-5 compares the reduction factors corresponding to the simulated damper stiffness
with those calculated using the formula developed by Zhou (2005). It can be seen that the

two sets of results agree well with each other.

Table 4-5: Comparison of modal damping ratio reduction factor

Reduction factor
Dimensionless
damper Absolute
stiffness (Kq) Current study Zhou (2005) percentage
difference (%)
0.05 0.943 0.953 1.05
0.10 0.904 0.905 0.11

“Use Zhou (2005) as reference base

d) Testing case 4: k, # rigid, k4 # 0

The fourth testing case investigates the combined effects of damper stiffness and
damper support stiffness on the performance of an external linear viscous damper. In this
case, both the damper stiffness and the damper support stiffness are varied. Results
corresponding to the case of damper stiffness K4 = 0.05 and varying damper support
stiffness are displayed in Figure 4-16, and those plotted for the damper stiffness of K4 =
0.10 and varying damper support stiffness are shown in Figure 4-17. Both of these two
plots manifest a similar pattern as to how the optimum damping coefficient and the
corresponding maximum achievable damping ratio vary as the studied parameters change.
When considering both &, and k,, the curves in Figures 4-16 and 4-17 have the same
pattern as the ideal case when no damper stiffness exists and the damper support stiffness
is rigid. At each damper location, an optimum damper size exists, which can provide the

maximum achievable damping ratio for that damper location. The values of optimum
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damping parameter and their corresponding maximum achievable damping ratios

obtained from the simulations for the current study for the fourth testing case are listed in

Tables 4-6 and 4-7, respectively.

Table 4-6: Optimum nondimensional damping parameters

(testing case 4 of the current study)

Dimensionless
damper support Ke=0 Ks=0.05 Kq=0.10
stiffness K,

83 5.07 4.89 5.18
143 5.36 5.15 5.75
17.5 5.35 5.46 5.85
350 5.54 5.62 6.15
525 5.47 6.20 5.73
rigid 5.76 6.21 6.29

Table 4-7: Maximum achievable damping ratio (%) (testing case 4 of the current study)

Dimensionless
damper support Kg=0 Kq=0.05 Kqg=0.10
stiffness K,

83 2.54 2.48 233
14.3 2.7 2.60 2.42
17.5 2.74 2.64 25
35.0 2.85 2.67 26
525 291 2.76 2.66
rigid 3.03 2.88 2.86
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The results in Table 4-6 show the general pattern of how the optimum damper size
is affected by the change in both damper stiffness and damper support stiffness.
Observing from left to right across the table, it can be seen that an increase in damper
stiffness generally causes an increase in the optimum damper size. Observing from top to
bottom down the table, results show that an increase in damper support stiffness also
causes an increase in the optimum damper size. These individual effects of damper
stiffness and damper support stiffness on the optimum damper size are the same as those
seen in the previous two testing cases. The same combined effects of damper stiffness
and damper support stiffness are also seen in the cases of 4%/L and 10% L damper

locations, the graphs of which can be found in Appendix D.

With respect to the maximum achievable damping ratio, observing from left to
right across Table 4-7, an increase in damper stiffness is found to result in a decreased
maximum achievable damping ratio. Observing from top to bottom down the same table
shows a trend where increased damper support stiffness leads to a higher maximum
achievable damping ratio. This is a reasonable trend, reflecting both the individual
effects of damper stiffness and damper support stiffness. Both of these two parameters,
an increase in the former and a decrease in the latter, cause a decrease in damping ratio
individually. Therefore, it is reasonable that their combined effect follows the same

trend.

In order to maximize damper performance when damper stiffness exists, a larger
damper size may be required in order to have a larger damping force to counteract the
effects of damper stiffness. This may account for the trend observed when damper

stiffness exists. When damper support stiffness increases, the damping force is
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maximized due to the more rigid condition of the damper base (point B in Figure 3-18),
causing a larger velocity difference between the top and the base of the damper. A larger
damper force as damper support stiffness increases will yield a larger damping ratio. This
ability to maximize damping force through the means of damper size and relative velocity
between the two extremities of the damper may explain the trend of an increased
optimum damper size with an increasingly rigid damper support. From the above
observation, it can be concluded that to have the maximum possible cable vibration
control when using a linear viscous damper, the damper stiffness should be minimized

and the damper support stiffness should be maximized.
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Figure 4-16: Combined effect of damper stiffness and damper support stiffness
(Kq=0.05,T4=0.06)
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Figure 4-17: Combined effect of damper stiffness and damper support stiffness
(K4=10.10,T4 = 0.06)
The numerical simulation results for the damper locations of 4%L and 10%L are
given in Appendix D. The same trend with respect to the effects of damper stiffness and
damper support stiffness on the damper size and the corresponding maximum achievable

damping ratio can also be observed.

80



Chapter 5: Further Discussion on Results

5.1 Comparison of experimental and numerical results

The results from the current experimental study will be compared with those from
the numerical simulations. Since, in the physical tests, only one damper size of ¢ = 32.2
Ns/m was used, only the numerical simulation results with the same damper size will be
used for comparison. Figures 5-1 to 5-3 show the experimental and numerical results
under the conditions of damper size ¢ = 32.2 Ns/m, zero damper stiffness, and respective
damper location at 4%L, 6%L, and 10%L. In these figures, the results for the same cable-
damper system condition using the formulae developed by Xu and Zhou (2007), Fujino
and Hoang (2008), and Huang and Jones (2011) are also displayed for the convenience of
comparison (refer to Section 3.4 for formulae usage details). As can be seen from these
three figures, the experimental results are similar to those from the numerical study. They
are most representative of the numerical simulation results when the damper is located
closer to the end of the cable. A damper installation location within a few percent of the
cable length is practiced most commonly on actual cable-stayed bridges. The numerical
simulation results are accurate within a few percent to the solid line curve displaying the
results using the formula developed by Fujino and Hoang (2008), which includes both
damper support stiffness and cable bending stiffness. The curves depicting the results
based on the formulae developed by Xu and Zhou (2007), and Huang and Jones (2011),
which overlap with each other, overestimate the attainable damping ratio in the damped
cable. This overestimation is attributed to the taut cable assumption used in the
development of these formulae, where the effects of cable bending stiffness and cable sag

were ignored.
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Figures 5-4 to 5-6 show the comparison between the experimental and the
numerical results for the non-zero damper stiffness conditions at the 4%L, 6%L, and
10%L damper installation locations, respectively. Since no study is available in the
literature that can predict the equivalent damping ratio of a cable-damper system while
considering both the damper support stiffness and the damper stiffness effects, no
reference curve is given in these three figures. The experimental results are found to

agree well with the numerical results in all cases.
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In Sections 3.4 and 4.3, the damper efficiency reduction factor due to the
existence of damper stiffness was computed respectively based on the experimental and
numerical simulation results. They are shown together in Figures 5-7 and 5-8 along with
the set determined based on Zhou’s formula (2005) for comparison. As can be seen from

the figures, all three sets of results show the same trend and agree well with each other.
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5.2 Estimation of optimal damper size and maximum achievable damping ratio
Regression analysis was applied to the results obtained from the current numerical
study to develop an approximate relation between the optimum damper size ¥, and the
nondimensioanl system parameters of damper location I';, damper stiffness k;, and
damper support stiffness k,, The same exercise was done for the maximum achievable
damping ratio. The expressions of these two approximate relations are given in Egs. (5.1)

and (5.2).
Yopt = 1309178 + 0.062143[In(T)]* + 0.068345 In(K;) + 2.239942Kq4 (5.1)

Emax = —0.00205 + 0.465924T + 0.0005 In(K,) — 0.0295K4 (5.2)

where ¥, is the optimum nondimensional damping parameter, &y, is the corresponding
maximum achievable equivalent first modal damping ratio, /'y is the nondimensional
damper location, K, is the nondimensional damper support stiffness, and K, is the
nondimensional damper stiffness. The coefficient of determination associated with the

preceding approximations in Eqs. (5.1) and (5.2) are 0.977 and 0.990, respectively.

These approximations are useful in designing the linear viscous dampers to
suppress cable vibrations on cable-stayed bridges. In particular, in the preliminary design
stage, multiple design schemes are proposed. The availability of a convenient yet reliable
tool that can quickly predict the controlling effect of different schemes will be very
advantageous to the designers. To the knowledge of the author, these are the first of such
approximate equations that include the effect of both damper support stiffness and
damper stiffness in a simple form for the purpose of linear viscous damper design. The

regression data analysis tool in Microsoft Excel was used to obtain these approximations.
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Equation (5.1) is plotted in Figure 5-9 against the nondimensional damper support
stiffness for the same combinations of damper location, damper stiffness, and damper
support stiffness as were used in the numerical stady. Three groups of curves are
presented in Figure 5-9 which correspond to the damper locations of 4%L, 6%L, and
10%L, respectively. Every group contains three curves, with each representing a specific
nondimensional damper stiffness case. As can be seen from the figure, the optimum
damper size is highly dependent on the damper location, but is not sensitive to the
nondimensional damper support stiffness, especially in the case of a more rigid support.
The change in damper stiffness would affect the optimum damper size. This impact is

more obvious when the damper is installed closer to the cable mid-span.

The significance of different system parameters in affecting the optimum damper
size can also be deduced from Eq. (5.1). The optimum damper size ¥, is proportional to
the natural logarithm of the nondimensional damper location /; to the fourth exponent,
which renders ¥, most sensitive to the variation in ;. Since the nondimensional
damper location is always less than one, the result of the term (In(I'))* decreases as the
nondimensional damper location increases. In other words, the optimum damper size
decreases as the damper is installed closer to the cable mid-span. A simplified
explanation for this occurrence is presented here. The damper damping force F; may be
represented by F,; = cV, where c is the damper size and V is the cable velocity at the
damper connection point (refer to Eq. (3.2)). From basic mechanics, force ' may be
represented by F = W/d, where W is the work done by the force F and d is the
displacement in the direction of the force. By equating these two equations representing

force, damper size may be expressed in terms of the displacement at the cable-damper
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attachment point as ¢ = W/(Vd). In this manner, it can be seen that a smaller damper size
is required to generate the same force when there is a greater displacement at the cable-
damper attachment point. This would occur if the damper were located more towards the

cable mid-span.

The form of Eq. (5.1) suggests that the nondimensional damper support stiffness
K, has a marginal effect on the optimum damper size. The natural logarithm of X, which
increases slowly as the damper support becomes more rigid, is multiplied by a fractional
constant. Therefore, as the nondimensional damper support stiffness increases, though
the optimum damper size would increase as well, this amount will be very small. On the
other hand, the increasing rate of the natural logarithm decreases as the damper support
stiffness increases; this explains why a relatively larger increase exists at lower damper
support stiffness, whereas its impact at a higher X range is negligible, as can be observed

in Figure 5-9.

Compared to K, the nondimensional damper stiffness K; has a more sizeable
effect on the damper size. In the approximate relation expressed by Eq. (5.1), ¥, varies
linearly with K; with a linear constant greater than 2. Therefore, an increase in the
nondimensional damper stiffness will require a larger damper size to achieve the optimum
performance. The results from the experimental and numerical studies (refer to Chapters
3 and 4, respectively) have shown that an increase in damper stiffness results in a
decrease of the maximum attainable cable-damping ratio. Thus, a larger damper size is
required when larger damper stiffness is present in order to counteract the effect of
damper stiffness and maximize the attainable damping ratio. Again, the damping force

may be expressed as F; = cV. However, if damper stiffness exists, then an associated
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elastic force F; = -kud also exists, where k; is the damper stiffness and d is the
displacement in the direction of the force. Therefore, the resulting force offered by the
damper to the cable would be a function of F,; and F,, i.e. F; = f{cV, k). If isolating the
damper size c, it can be seen that it is a function of the damper damping force, the
positive damper stiffness multiplied by the displacement at the cable-damper attachment
point, and the inverse of velocity at this point, i.e. ¢ = f{F}, kud, 1/ V). In this manner, it
can be seen that, for the same damper damping force, an increase in the nondimensional

damper stiffness would result in a greater optimum damper size.
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The optimum damper sizes obtained from the current numerical study are
compared with those estimated by the approximate relation represented by Eq. (5.1). The
comparisons are shown graphically in Figures 5-10 to 5-18. Each figure collects results
of the cases that have the same damper location and same damper stiffness. For the zero
damper stiffness condition, the results from the formulae proposed by Xu and Zhou
(2007), Fujino and Hoang (2008), and Huang and Jones (2011) are also displayed (refer
to Section 3.4 for formulae usage details). Again, the results by Xu and Zhou (2007) and
Huang and Jones (2011) overlap. As is indicated by the specified coefficient of
determination of 0.977, the numerical simulation data points correlate well with the

regression approximation.
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Zhou (2005) and Sun et al. (2008) each developed an equation to predict the
optimum damper size for a given damper location while including the nondimensional
damper stiffness. Both of these proposed formulae were based on the taut string
assumption and therefore do not include cable bending stiffness and sagging effect. The

damper support stiffness was considered to be rigid in both cases. The proposed formula

by Zhou (2005) is:

1 (1+Kg 1
Copt,i - 1.[2 m]"wl i (XC/L) (5'3)

where m is the mass per unit length of the cable, w, is the undamped circular frequency of
a taut cable in the first mode of vibration, and i is the mode of vibration. The one
developed by Sun et al. (2008) is:

A1 +px /L)
Copt = (Vawn)®~nmix /L

(5.4)

where w,, is the undamped circular frequency of a taut cable in the »™ mode of vibration.
Eq. (54) allows for a nonlinear damper, where a is the exponent associated with
nonlinearity. For a linear damper, as is being considered in the current study, o = 1. The
term associated with this nonlinear exponent, V,w,, which includes the transverse
displacement of the cable at the point of damper attachment, V,, reduces to 1. The
variable u includes the damper stiffness parameter and can be calculated by 4 = kiL/T.

The value of A may be calculated from:

T

= —— 55
2 fon sin®*+1(x)dx (5:5)

In the case of the current study, a = 1 because a linear damper is being considered and the

value of 4 simplifies to 1.
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In both formulations, the optimum damper size is predicted to increase as the
damper stiffness increases. This is the same trend as in the regression approximation, Eq.
(5.1), developed in the current study. These formulations are used to compare with the
approximation of the optimum nondimensional damping parameter, Eq. (5.1), for the
combinations of damper location and damper stiffness listed in Table 4-2, and a rigid
damper support stiffness. Figure 5-19 displays the comparison between the current
regression approximation, Eq. (5.1), the current numerical results, and the formulae

developed by Zhou (2005) and Sun et al (2008) for the rigid damper support condition.
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Several comments may be made about the results shown in Figure 5-19. Firstly, it
can be seen that the numerical data points agree well with the regression approximation.
In addition, the curves developed from the equations proposed by Zhou (2005) and Sun et
al. (2008) overlap at the same damper location. Both of these formulae are shown to
underestimate the optimum damper size required at any given damper location. This may

be attributed to the taut cable assumption that both of these equations have made.

The approximation for the maximum equivalent first modal damping ratio is
plotted in Figure 5-20 for the damper location, damper stiffness, and damper support
stiffness combinations listed in Table 4-2. In Eq. (5.2), it can be seen that each of these
three parameters affects the maximum attainable structural damping ratio. The damper
installation location is linearly proportional to the maximum damping ratio, which
increases as the damper is moved closer to the mid-span of the cable. This effect is well
documented in literature (e.g. Cheng et al. 2010). Theoretically, a linear viscous damper
will perform better when it is installed closer to the cable mid-span, although common
practice is to install them within a few percent of the cable length for ease of construction

and aesthetics.

The damper support stiffness will also affect the maximum achievable damping
ratio. The modal damping ratio is linearly proportional to the natural logarithm of the
damper support stiffness in Eq. (5.2). Therefore, a weaker support may cause a linear
viscous damper to exhibit a damping ratio lower than would be predicted without

considering this parameter.
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In addition, Eq. (5.2) implies that the maximum modal damping ratio is negatively
correlated to the damper stiffness. A simplified explanation for this correlation may be
suggested by examining the behaviour of a viscously damped freely vibrating system.

The damping ratio of such a system may be represented by the following:

c

2vkm

In this equation, it is apparent that the damping ratio is inversely proportional to the

§= (5.6)

square-root of the system mass m and stiffness k. Accordingly, an increase in stiffness
will result in a corresponding decrease in damping ratio. It is recommended that the
stiffness within a linear viscous damper be minimized in order to maximize its attainable

modal damping ratio and achieve the optimum cable vibration control.
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Figures 5-21 to 5-29 give graphical comparison between the maximum attainable
equivalent first modal damping ratio of the studied cable-damper system obtained from
the current numerical simulations and the regression approximation equation, Eq. (5.2),
for the same combinations of damper location, damper stiffness, and damper support
stiffness as listed in Table 4-2. For the convenience of comparison, the predictions from
the equations developed by Xu and Zhou (2007), Fujino and Hoang (2008), and Huang
and Jones (2011) are also displayed (refer to Section 3.4 for formulae usage details) for

the zero damper stiffness conditions in Figures 5-21, 5-24, and 5-27. The curves for the
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formulae developed by Xu and Zhou (2007), and Huang and Jones (2011), overlap. The
agreement between different sets of results can be readily observed from these figures.
The regression approximation is a good representation of the numerical data points, with

its coefficient of determination being 0.990.
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Sun et al. (2008) developed an equation that predicts the maximum modal
damping ratio of a nonlinear viscous damper while including the effects of damper

stiffness and assumed the damper support stiffness to be rigid, i.e.

En.max - A|sin(wnt)|“'1
/L 1+ 59+ Alsin(@pt)le1)

(5.6)

The definitions of parameters in Eq. (5.6) are the same as those in Eq. (5.4). Whena=1
is inputted into Eqgs. (5.6) and (5.5) for a linear damper case, the latter of which calculates
the value of 4, the above equation is simplified to the following form:

Xc/L
max = T G.7)
n,max 2(1 + -':[-Lx-g)

Eq. (5.7) was used to compare with the regression approximation, Eq. (5.2), developed in

the current study. This comparison is displayed in Figure 5-30 below. The curves and

numerical data points are found to agree well with each other.
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Chapter 6: Conclusions and Recommendations

6.1 Conclusions

Cable-stayed bridge is a common bridge type chosen for construction. New
structures are being designed to span larger distances than ever. The safe design of cable-
stayed bridges is paramount and cable vibration control must be considered in order to
maintain the structural integrity of its cables. The stiffness of the damper in use on the
bridge, the stiffness of the damper support, and their combined effect will influence the
overall performance of the damper in mitigating stay cable vibration. However, there is a
lack of study of these stiffness effects and, to the knowledge of the author, even less is to
be found on their combined effect. An experimental study was designed and carried out
herein using a scaled model of a cable-damper system to measure the effects of damper
stiffness, damper support stiffness, and their combined effect during forced vibration
tests. A finite element model of the same cable-damper system was developed to
simulate the same stiffness effects over a wider range of system parameters. The results
from both studies agreed well with the predictions available in literature. As a summary,
the following have been completed in this study:

1. Design of a linear viscous damper that includes variable damper stiffness, damper

support stiffness, and the ability to combine both stiffness parameters.
2. Design a calibration system for the damper.
3. Conduct cable forced vibration tests to observe the effects of damper stiffness,
damper support stiffness and the combined effect of both.
4. Development of a finite element model of a cable-damper system that includes

damper stiffness and damper support stiffness.
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5.

6.

Comparison of numerical and experimental results to each other as well as
empirical formulae found in existing literature to observe the effects of the
parameters of interest.

Develop empirical formulae to predict the optimum damper size and its
corresponding maximum attainable first modal damping ratio by considering the

effect of damper stiffness and damper support stiffness.

The following can be concluded from the current study:

1.

As the damper is moved closer to the cable mid-span, the optimum damper size
decreases and the corresponding maximum achievable damping ratio increases.
An increase in the damper stiffness results in an increase of the required optimum
damper size but a decrease in the maximum achievable damping ratio.

An increase in the damper support stiffness results in an increase of the optimum
damper size and its corresponding maximum achievable damping ratio.

To achieve better effect in cable vibration control, if a linear viscous damper
would be used as countermeasure, it is recommended to minimize its own
stiffness. Should a damper support be required, it is preferred to choose a more

rigid one.

Empirical formulae have been proposed based on the current numerical results, for

use in the preliminary design phase of a linear viscous damper for bridge stay cables. The

empirical formulae developed in this study are the culmination of extensive study of the

effects of damper stiffness and damper support stiffness on the performance of a linear

viscous damper for the purpose of mitigating stay cable vibration. They are proposed

with the objective to expand the current knowledge base regarding linear viscous damper
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design for stay cable vibration control. To the knowledge of the author, these are the first
empirical approximations for the optimum damper size and its corresponding maximum
attainable first modal damping ratio that include the effects of both damper stiffness and

damper support stiffness.

6.2 Future recommendations

It is recommended that future study look towards evaluating various damper
supports that may be used on cable-stayed bridges to allow linear viscous dampers to be
placed closer to the cable mid-span. In this manner, improved stay cable control may be
achieved and empirical formulae such as those proposed in the current study may be used
to improve the accuracy in predicting the required optimum damper size and its
corresponding maximum attainable first modal damping ratio. An experimental study
may also proceed by testing the limits of the effect of damper support stiffness in order to

suggest a range of stiffness for the purpose of design.
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Appendix A: Matlab m-file

% Signal processing using Fourier Transform (Time domain to Frequency domain)
% Find the fundamental frequency
pwelch(b,[],[1,2048,1000,'one sided’)

% Convert data units to m/s’
a=b*100.53

% Apply Butterworth filter
Af=filter(Hd,a)

% Convert all filtered data set from time domain to frequency domain

F=ffi(Af)

% Convert acceleration to displacement, 7.20 is the fundamental frequency in Hz
Df=F/(2*pi*7.20)"2

% Convert displacement data from frequency to time domain; 100 is meter to centimeter
D=iff((Df)*100
T=0:1/1000:length(Af)/1000-1/1000

plot(T,D)
xlabel('Time(Second)")
ylabel('Displacement(cm)’)
title('Displacement vs Time')
grid on
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Appendix B: Modal Analysis ANSYS Input File

L=9.33

D=4.65E-3
R=2.325E-3
DELTA=0.10
T=9.421589879E-4
E1=2El1
DENS1=1.177699E4
IK1=0

DAM=90
L1=L/200

/PREP7

MP,EX,1 El
MP,DENS, 1, DENS1
MP,PRXY,1,0.3
ET,1,PIPE59,0
R,1,D,R
RMORE,,,,,T
ET,2,COMBIN14,2
R,2,0,DAM

K1,

K,2,DELTA*L
K.3,L2

K.4,L

L1,2

L2,3

L,3,4

TYPE, 1

MAT, 1

REAL,1
LESIZE,ALL,L1

LMESH,1,3

{Cable length (m)
ICable diameter (m)

ICable radius (m)

|Location of damper

|Initial strain in axial direction

IElastic Modulus (N/m?)

IDensity (kg/m’)

IStiffness (N/m)

Damping coefficient (Nm/s)

{Element length

|Enters the model creation preprocessor

IDefine material

1Define PIPESY element
IDefine Real Constants

iDefine COMBIN14 element

{Define a line between two keypoints

ISet the element type attribute pointer
1Set the element material attribute pointer
ISet the element real constant set attribute pointer

ISpecify the divisions and spacing ratio on unmeshed
lines
!Generate nodes and line elements along lines
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NUMI1=NODE(DELTA*L,0,0)
*GET,NUM2,NODE, NUM,MAX

N,NUM2+1,DELTA*L
TYPE,2

REAL,2
E,NUM1,NUM2+1
D,NUM2+1,ALL,0
NNODE=NODE(L/2,0,0)
NSEL,,LOC,X,-0.001,0.001
D,ALL,ALL,0
NSEL,,LOC,X,L-0.001,L+0.001
D,ALL,ALL,0
ALLSEL,ALL
D,ALL,UZ,0
ALLSEL,ALL

FINISH

/SOLU

ANTYPE,STATIC
SSTIF,ON

NLGEOM,ON

ACEL,,9.80

AUTOTS,ON
TIME, 1
DELTIM,15,5,25
SOLVE

FINISH

/SOLU
ANTYPE,MODAL
MODOPT,DAMP,12,,,,1
UPCOORD,1.0,0N
PSTRES,ON
MXPAND,12

IRetrieve value and store it as a scalar parameter or part
of an array parameter
IDefine node

IDefine element by node connectivity

IDefine degree-of-freedom constraints at node

!Select a subset of nodes

ISelect all entities
IModel defined to be a 2D model in the X-Y plane

!Enter the solution processor
ISpecify the analysis type as static and restart status
IActivate stress stiffness effects in a nonlinear analysis

lInclude large-deflection effects in a static or full transient
analysis

ISpecify the linear acceleration of the global Cartesian
reference frame for the analysis

ISpecify to use automatic time stepping

1Set the time for a load step
ISpecify the time step sizes to be used for this load step

Perform a modal analysis

1Specify modal analysis options; damped system

ISpecify that prestress effects are included

ISpecify the number of modes to expand
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EMATWRITE,YES
PSOLVE, TRIANG
PSOLVE,EIGDAMP
'PSOLVE,EIGFULL
FINISH

/SOLU

EXPASS,ON
PSOLVE EIGEXP
FINISH

/POST1

/DSCALE,,]
SET,NEXT
PLDISP,1
SET,LIST

tAdditional solution step for expansion

IRequired to review mode shapes in the postprocessor

{Enter the database results postprocessor (general
POStprocessor)
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Appendix C: Time-History Analysis ANSYS Input File

L=933

D=4.65E-3
=2.325E-3

DELTA=0.1
=0.421589879E-4

E1=2E11

DENS1=1.177699E4

KD=0

KS=200000

DAM=90

L1=L/200

/CONFIG,NRES,9999

/PREP7
MP,EX,1,E1
MP,DENS, 1, DENS1
MP,PRXY,1,0.3
ET,1,PIPES9,0
R,1,DR
RMORE,,,,,T
ET,2,COMBIN14, 2
R,2,KD,DAM

R,3,KS,0

K1,
K,2,DELTA*L
K,3,L72

K4.L

L,1,2

L2,3

L34

TYPE, |

ICable length (m)

1Cable diameter (m)

ICable radius (m)

{Location of damper

IInitial strain in axial direction
|Elastic Modulus (N/m?)
IDensity (kg/m’)

IStiffness (N/m)

IDamper support stiffness (N/m)
IDamping coefficient (Nm/s)
|Element length is

|Enter the model creation preprocessor

IDefine a linear material property

IDefine element type
!Define the element real constants

1Add real constants to set

IReal constant defining damper stiffness and damper
coefficient

IReal constant defining damper support stiffness and
zero damper stiffness

Define keypoint

IDefine line between two keypoints

ISet the element type attribute pointer
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MAT,1

REAL,1

LESIZE,ALL,L1

LMESH,1,3
NUMI1=NODE(DELTA*L,0,0)

*GET,NUM2NODE, NUM,MAX

N,NUM2+1,DELTA*L
TYPE,2

REAL,2
E,NUM1,NUM2+1

N,NUM2+2,DELTA*L
TYPE,2

REAL,3

ENUM2+1 NUM2+2

D,NUM2+2,ALL,0

NNODE=NODE(L/2,0,0)
NSEL,,LOC.X,-0.001,0.001
D,ALL,ALL,0
NSEL,,LOC.,X,L-0.001,L+0.001
D,ALL,ALL,0
ALLSEL,ALL
D,ALL,UZ,0
ALLSEL,ALL

FINISH

/SOLU

ANTYPE,TRANS
TRNOPT,FULL

OUTRES, ,ALL
OUTRES,NSOL,ALL
OUTRES,V,ALL
OUTPR,NSOL,ALL

ISet the element material attribute pointer

ISet the element real constant set attribute pointer

IGenerate nodes and line elements along lines

Define a node

IDefine an element by node connectivity

ICreate node for base of support spring
lActivate local element 2 (COMBIN14)
IActivate real constant 3 (support stiffness)

ICreate node between damper base node and spring

base node

1All degrees-of-freedom fixed at base of support spring

(ground)

ISelect a subset of nodes

1Select all entities
1Model defined to be a 2D model in the X-Y plane

|Enter the solution processor

ISpecify the analysis type as transient analysis
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OUTPR,V,ALL

TIMINT,OFF ITurn off transient effects
SSTIF,ON

NLGEOM,ON

TIME,1E-10

LSWRITE,1

SSTIF,ON

NNODE=NODE(L/2,0,0)

D,NNODE,UY,-0.30

NSUBST,2 ISpecify the number of substeps to be taken this load
step
KBC,1

TIME,0.001 ISet the time for a load step
LSWRITE,2

TIMINT,ON lInclude transient effects
TINTP,,0.25,0.5

CNVTOLM,-1

SSTIF,ON

DDELE,NNODE,UY

KBC,1

AUTOTS,ON

TIME,1.5 1Set the time for a load step
DELTIM,0.4E-3,0.1E-3,0.6E-3 ISpecify the time step sizes to be used for this load step
LSWRITE,3

LSSOLVE,1,3,1 'Read and solve multiple load steps
FINISH

/POST26 {Enter the time-history results postprocessor
NSOL,3,NNODE,V,Y,VY

NSOL,4,NNODE,U,Y,UY

LINE,3000

/AXLAB,X,TIME (S) lAxis labels
/AXLAB,Y,DISPLACEMENT (M)

PLVAR4
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*GET,TSIZE,VARIL,NSETS
*DIM,TIME,ARRAY, TSIZE
VGET,TIME(1),1

FINISH

/POSTI

*GET,NSBSTP1,ACTIVE,,SET,N
SET,FIRST,3
*GET,NSBSTP2,ACTIVE, ,SET,N
SET,LAST,3
NSBSTP=NSBSTP2-NSBSTP1+1

*DIM,E_KENE,ARRAY NSBSTP
2
ESEL, TYPE, !

SET,1,1

ETABLE KENE,KENE
SSUM

ESEL,, TYPE, 1

*GET,ST_KE,SSUM,,ITEM,KEN
E
E_KENE(1)=ST_KE

*DOL1,2

SET,2,1
ETABLE,KENE KENE
SSUM

ESEL,,TYPE,,!

*GET,ST_KE,SSUM,,ITEM,KEN
E
E_KENE(I+1)=ST_KE

*ENDDO
*DO,L,1,NSBSTP
SET,3,1
ETABLE,KENE,KENE
SSUM

*GET,ST_KE,SSUM, ITEM,KEN
E
E_KENE(I+3)=ST_KE

*ENDDO
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/AXLAB,X,TIME (S)

/AXLAB,Y KINETIC ENERGY

@
*VPLOT,TIME(1),E_KENE(1)

JOUT,KINETIC,TXT
*VWRITE, TIME(1),E_KENE(1)
(1X; "F17.10; 'F17.10)
/OUT

FINISH

IOutput file (kinetic.txt)
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Appendix D: Numerical Simulation Results (4%L and 10%L)
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Figure D-8: Effect of damper stiffness (I'q = 0.04)
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Figure D-9: Combined effect of damper stiffness and damper support stiffness
(K4=0.03,T4=0.04)
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Figure D-10: Combined effect of damper stiffness and damper support stiffness
(K4=0.07,T4=0.04)
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Figure D-11: Relation between equivalent first modal damping ratio and damper
size at 'y = 0.10 (Rigid damper support and no damper stiffness)
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Figure D-12: Effect of damper support stiffness (I'q = 0.10)
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Figure D-14: Effect of damper support stiffness (Ks = 58.3, 4 = 0.10)
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Figure D-15: Effect of damper support stiffness (Ks=29.2, 4 =0.10)
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Figure D-16: Effect of damper support stiffness (Ks = 23.9, 4 =0.10)
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Figure D-17: Effect of damper support stiffness (K;=13.8,I'q = 0.10)
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Figure D-18: Effect of damper stiffness (I'q = 0.10)
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Figure D-19: Combined effect of damper stiffness and damper support stiffness
(K34=0.08,I3=0.10)
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