
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2009 

A Communication Choreography for Discrete Step MultiAgent A Communication Choreography for Discrete Step MultiAgent 

Social Simulations Social Simulations 

Muhammad Naushin Hasan 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Hasan, Muhammad Naushin, "A Communication Choreography for Discrete Step MultiAgent Social 
Simulations" (2009). Electronic Theses and Dissertations. 8035. 
https://scholar.uwindsor.ca/etd/8035 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/275771079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8035&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8035?utm_source=scholar.uwindsor.ca%2Fetd%2F8035&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


A Communication Choreography for Discrete Step Multi-

Agent Social Simulations 

By 

Muhammad Naushin Hasan 

A Thesis 
Submitted to the Faculty of Graduate Studies 

through Computer Science 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 
University of Windsor. 

Windsor, Ontario, Canada 

2009 

© 2009 Muhammad Naushin Hasan 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

Bibliothgque et 
Archives Canada 

Direction du 
Patrimoine de l'6dition 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-57602-1 
Our file Notre r6f6rence 
ISBN: 978-0-494-57602-1 

NOTICE: AVIS: 

The author has granted a non-
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 

Canada 



A Communication Choreography for Discrete Step Multi-Agent Social 
Simulations 

by 

Muhammad Naushin Hasan 

APPROVED BY: 

Dr. Kemal Tepe 
School of Electrical and Computer Engineering 

Dr. Dan Wu 
School of Computer Science 

Dr. Ziad Kobti, Advisor 
School of Computer Science 

Dr. Jianguo Lu, Chair of Defence 
School of Computer Science 

29 May, 2009 



Author's Declaration of Originality 

I hereby certify that I am the sole author of this thesis and that no part of this 

thesis has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone's copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in my thesis, 

published or otherwise, are fully acknowledged in accordance with the standard 

referencing practices. Furthermore, to the extent that I have included copyrighted 

material that surpasses the bounds of fair dealing within the meaning of the Canada 

Copyright Act, I certify that I have obtained a written permission from the copyright 

owner(s) to include such material(s) in my thesis and have included copies of such 

copyright clearances to my appendix. 

I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution. 



ABSTRACT 

Considerable research has been done on agent communications, yet in discrete step social 

agent simulations there is no standardized work done to facilitate reactive agent-to-agent 

communication. We propose an agent-to-agent interaction framework that preserves the 

integrity of the communication process in an artificial society in a 'time-stepped' discrete 

event simulator. We introduce the modeling language called Agent Choreography 

Description Language (ACDL) in order to model the communication. It serves in 

describing the common and collaborative observable behaviour of multiple agents that 

need to interact in a peer to peer manner to achieve some goal. ACDL further adopts the 

parallel and interaction activities to model proper communication in an artificial society. 

The ACDL communication framework is implemented and tested in REPAST. It 

employs a communication manager to generate and execute ACDL specification 

according to agent's communication needs. 

iv 



DEDICATION 

To my loving parents who have been a constant source of inspiration since the beginning 

of my education. 

And to my loving and caring wife who has always patiently supported me. 

Thank you for taking care of everything during the program. 

This thesis would not be possible without you. 

Also to my brothers and friends who gave me the necessary support and help to get me 

this far in my life. 

v 



ACKNOWLEDGEMENT 

I would like to give my sincere gratitude to my supervisor Dr. Ziad Kobti, for his 

excellent supervision, guidance, and encouragement thought this research work. Without 

his help and his great patience to me, this work presented here would not have been 

possible. 

I would also like to thank my internal reader, Dr. Dan Wu and my external reader, Dr. 

Kemal Tepe for participation as my thesis committee and spending their precious time to 

review this thesis and putting down their comments, suggestions on the thesis work. 

Their confidence in my abilities has been unwavering, and has helped to make this thesis 

a solid work. 

I would like to thank my wife Mirza T Nasreen for her patient, love, support and 

encouragement during the research and thesis writing. 

Finally, I am very grateful to all my family and friends for being supportive and always 

there for me. 

vi 



TABLE OF CONTENTS 

ABSTRACT iv 
DEDICATION v 
ACKNOWLEDGEMENT vi 
TABLE OF FIGURES ix 
LIST OF TABLES xi 
1. INTRODUCTION 1 

1.1 Motivation 4 

1.2 Thesis Contribution 5 

1.3 Thesis Layout 5 

2. BACKGROUND 6 

2.1 Artificial Society 6 

2.2 Simulation Techniques used in Artificial Society Model 6 

2.2.1 Time-step scheduling 7 

2.2.2 Discrete-event scheduling 8 

2.3 Agent Communication 8 

2.3.1 KQML 9 

2.3.2 FIPA ACL 10 

2.4 WS-CDL 10 

2.4.1 Static Part 11 

2.4.2 Dynamic Part 12 

3. LITERATURE REVIEW 14 

3.1 Communication in Artificial Society 14 

3.2 Communication in agent based modeling 15 

3.3 Time Management in Agent-based Simulation 16 

4. METHODOLOGY AND FRAMEWORK 20 

4.1 ACDL 20 

4.1.1 ACDL Example 24 

4.2 Communication Framework 25 

5. IMPLIMENTATION AND EXPERIMENTS 28 

5.1 Experimental Setup 28 

5.1.1 Repast - The Simulation Environment 28 

5.1.2. Repast - Fundamental Components 29 

5.1.3. Repast - Scheduling Mechanism 30 
vii 



5.2 Implementation 32 

5.2.1. Communication Manager 32 

5.2.2. ACDL to Java Mapping 32 

5.2.3. Agent Control 33 

5.2.4. Simulation Control 34 

5.3 Experimentation 35 

5.3.1 Case Study 1 36 

5.3.2 Case Study 2 38 

6. CONCLUSION and FUTURE WORK 41 
7. REFERENCES 42 
VITA AUCTORIS 48 

viii 



TABLE OF FIGURES 
FIGURE 1 - 1 (A) PROBLEM SCENARIO 1 (B) PROBLEM SCENARIO 2 3 

FIGURE 1 - 2 CORRECT SCENARIO 4 

FIGURE 2 - 1 (LAWSON AND PARK 2 0 0 0 ) TIME-STEP SCHEDULING ALGORITHM 7 

FIGURE 2 - 2 (LAWSON AND PARK 2 0 0 0 ; BANKS ET AL. 2 0 0 5 ) DISCRETE-EVENT 

SCHEDULING ALGORITHM 8 

FIGURE 2 - 3 (WOOLRIDGE 2 0 0 1 ) SAMPLE K Q M L MESSAGE 9 

FIGURE 2 - 4 (WOOLRIDGE 2 0 0 1 ) SAMPLE F I P A A C L MESSAGE 1 0 

FIGURE 3 - 1 (PAWLASZCZYK AND TIMM 2 0 0 7 ) SCENARIO IN DISTRIBUTED SIMULATION 
CAUSING VIOLATION OF EVENT ORDERING (CAUSALITY ERROR). WHEN EVENT EN 
ARRIVES, EI9 HAS ALREADY BEEN PROCESSED BY AGENT A] (STRAGGLER EVENT) 17 

FIGURE 3 - 2 (PAWLASZCZYK AND TIMM 2 0 0 7 ) DELAYED EVENT EXECUTION BASED ON 
PROTOCOL INFORMATION. AGENT A] RECEIVES A PROPOSAL FROM AGENT A3, WHILE 
HE IS WAITING FOR AN INFORM-DONE MESSAGE OF AGENT A2 . INSTEAD OF 
IMMEDIATELY PROCESSING THE INCOMING MESSAGE, THE EXECUTION IS DELAYED. 

THUS, EVENT ORDER IS PRESERVED AND STILL VALID 17 

FIGURE 3 - 3 (HELLEBOOGH ET AL. 2 0 0 5 B ) TIME MANAGEMENT ADAPTABILITY 1 9 

FIGURE 4 - 1 (BARRETO ET AL. 2 0 0 5 ) W S - C D L PACKAGE SYNTAX 2 1 

FIGURE 4 - 2 (BARRETO ET AL. 2 0 0 5 ) W S - C D L CHOREOGRAPHY SYNTAX 2 2 

FIGURE 4 - 3 (BARRETO ET AL. 2 0 0 5 ) W S - C D L PARALLEL ACTIVITY SYNTAX 2 2 

FIGURE 4 - 4 (BARRETO ET AL. 2 0 0 5 ) W S - C D L INTERACTION ACTIVITY SYNTAX 2 3 

FIGURE 4 - 5 A C D L DEFINITION 2 4 

FIGURE 4 - 6 U M L SEQUENCE DIAGRAM FOR TWO AGENTS' INTERACTION 2 4 

FIGURE 4 - 7 A C D L REPRESENTATION OF FIGURE 4 - 6 2 5 

FIGURE 4 - 8 SCHEDULING ALGORITHM WITH THE COMMUNICATION MANAGER 2 6 

FIGURE 4 - 9 PHASE 1: GENERATION OF A C D L FILE 2 6 

FIGURE 4 - 1 0 PHASE 2: EXECUTION OF A C D L FILE 2 6 

FIGURE 4 - 1 1 AGENT EXECUTION PSEUDOCODE 2 7 

FIGURE 4 - 1 2 SYNCHRONIZED RESOURCE CONSUMPTION PSEUDOCODE - LOCKING THE 
RESPONDER 2 7 

FIGURE 4 - 1 3 SYNCHRONIZED RESOURCE CONSUMPTION PSEUDOCODE - RELEASING THE 
RESPONDER 2 7 

FIGURE 5 - 1 (NORTH AND MACAL 2 0 0 5 ) REPAST - FUNDAMENTAL COMPONENTS 3 0 

FIGURE 5 - 2 CLASS DIAGRAM FOR A C D L ELEMENTS 3 3 

FIGURE 5 - 3 AGENT'S CONTROL FLOW - THE STEP FUNCTION 3 4 

ix 



FIGURE 5 - 4 CLASS GENERATED A C D L FOR THE CASE STUDY. 

x 



LIST OF TABLES 

T A B L E 2 - 1 SUMMARY OF THE W S - C D L ELEMENTS THAT CONSTITUTE THE STATIC PART . 11 

T A B L E 2 - 2 SUMMARY OF THE W S - C D L ACTIVITIES 1 2 

T A B L E 5 - 1 VALUES RECEIVED FROM THE SIMULATION RUN WITH THE IMPLEMENTED 
FRAMEWORK 3 7 

T A B L E 5 - 2 VALUES RECEIVED FROM THE SIMULATION RUN WITHOUT THE IMPLEMENTED 
FRAMEWORK 3 8 

T A B L E 5 - 3 VALUES RECEIVED FROM THE SIMULATION RUN WITHOUT THE IMPLEMENTED 
FRAMEWORK 3 8 

T A B L E 5 - 4 INITIAL VALUES FOR THE AGENTS IN CASE STUDY-2 3 9 

T A B L E 5 - 5 VALUES RECEIVED FROM THE SIMULATION RUN WITHOUT THE IMPLEMENTED 
FRAMEWORK 3 9 

T A B L E 5 - 6 VALUES RECEIVED FROM THE SIMULATION RUN WITH THE IMPLEMENTED 
FRAMEWORK 3 9 

T A B L E 5 - 7 VALUES RECEIVED FROM THE SIMULATION RUN WITHOUT THE IMPLEMENTED 
FRAMEWORK 4 0 

xi 



1. INTRODUCTION 

Artificial societies are the agent-based computational models of social processes (Epstein 

and Axtell 1996; Gilbert and Conte 1995) or social phenomena mainly used for social 

analysis. Epstein and Axtell (1996) built an entire artificial society called 'Sugarscape' 

from the bottom up by modeling society's agents and their interactions. 'Sugarscape' was 

the first computational study of entire artificial societies (North and Macal 2007). 

According to (Epstein and Axtell 1996), Cellular Automata (CA) + Agents = Sugarscape. 

The underlying space of the modeling is the Sugarscape, which is a CA, containing 

random or concentrated distribution of sugar. Agents live and metabolize on that 

Sugarscape by gathering and eating sugar. If sugar is depleted and agents starve, they die. 

The general structure of an artificial society model consists of three components: 

(a) a population of autonomous agents, (b) a separate environment, and (c) agent 

behavioral rules governing the interaction of agents with one another, the interaction of 

agents with their environment, and the interaction of environmental sites with one 

another (Epstein and Axtell 1996; Lawson and Park 2000). The environment in the model 

is typically a two-dimensional grid of cells, often forming a toroid. It contains 

heterogeneous distribution of one or more resource of interest to the agents. The society 

population consists of agents that move over the landscape and interact with the 

environment and with other agents. 

The simulation technique used to model artificial societies is discrete event 

simulation (DES). Generally, at each tick of the simulation clock as the simulation 

progresses, agents move in the environment and interact with each other and the 

environment and gradually the whole society begins to evolve. Though, the simulation 

technique is called discrete event simulation, it is essentially a time-based simulation 

approach, where the system states are changed in each time-steps and the corresponding 

agent actions or behaviors to take place in each time steps are called 'events'. 

1 



One of the major aspects of the social simulation is the ability of the agents to 

communicate with each other or with the environment. But unfortunately, most works on 

social simulation and artificial social systems have the least focus on agent 

communications (Malsch et. al 2007). Typically, in social simulations agents involve in 

an indirect mode of interactions, where messages are transmitted from sender to receiver 

on a one-to-one basis (Malsch et. al 2007). No works have been found in this paradigm at 

the time of writing this thesis, where it deals in details of agent communication: how to 

implement agent communication framework with the simulation model, with even the 

effort to preserve the temporal and contextual accuracy of the agent communications. 

In most Cellular Automata (CA) based artificial society models the discrete event 

simulation engine logic uses "time-step" scheduling where multiple agent behaviors 

occur at each time step (Lawson and Park 2000). At a given time-step, all the agents in 

the agent-list are processed sequentially. Therefore agent to agent communication can 

easily lose the temporal and contextual accuracy of the messages being passed. For 

example, in a non-trivial social simulation, there are two agents A\ and A2 

communicating some time sensitive information. At any time step ti, Ai is being 

processed from the agent list. At tj, Ai asks for (query) anything to A2 related to Ai's 

current time ti. In this case, A2 may not live on the same time step as Ai's. A2's current 

time t2 either could be t2 = t[ (Both Ai and A2 are processed) or t2<ti (Ai is processed 

before A2) or t2>ti (If the agent list is shuffled at each time step and A2 is processed 

before Aj). Clearly this simulation technique loses the temporal and contextual accuracy 

of the information interchanged. 

2 



A2 A! AI A2 

1991 1992 1993 1991 1992 1993 

Simulation Time Representing Year Simulation Time Representing Year 

Figure 1-1 (a) Problem Scenario 1 (b) Problem Scenario 2 

If the underlying simulation model increases its time-step by a year and if we let 

Ai's current year, ti = 1992. Now Ai asks A2 "what is the unemployment rate for the 

current year?". As explained earlier, A2 's current year could be either 1992 (Figure 2) or 

1991 (Figure 1-a) or 1993 (Figure 1-b). If A2 lives in year 1991 or 1993, Ai gets back 

wrong information from A2. Surely this scenario introduces the problem of wrong or 

outdated information. 

3 



AI 

A2 

1991 1992 1993 

Simulation Time Representing Year 

Figure 1-2 Correct Scenario 

Only when A2 is processed before Al and they both live on the year 1992, Ai gets 

the accurate information. Therefore, with the existing simulation technique agents are 

able to communicate but there are failing scenarios where the communication could lose 

its temporal and contextual integrity. Usually, like other behaviors agent communication 

is also modeled as a behavioral subroutine. As mentioned earlier, simulation mechanism 

is strictly controlled by time steps and in those time steps agent communication should 

take place. Therefore, the problem in agent communication found in this paradigm is due 

to the specific simulation technique or the simulation algorithm used to model the agent 

behaviors and the society. 

1.1 Motivation 

In most of the artificial society simulations reactive agents are being used (Malsch et. al 

2007) and therefore the simulation models lack agent to agent communication 

capabilities in temporal context. Those reactive agents only interact with the environment 

and there is no direct agent to agent communication. In order to model human societies 

realistically it is necessary to have the communication capabilities with proper temporal 

4 



and contextual accuracy into the model along with the use of behavioral agents so that the 

simulated models can represent human behavior as closely as possible. In this, thesis we 

only consider the communication part in temporal context in an artificial society model. 

1.2 Thesis Contribution 

This thesis is mainly concerned about creating an agent communication language called 

ACDL (Agent Choreography Description Language) based on WS-CDL (Web Service 

Choreography Description Language) and using ACDL build a framework for agent to 

agent communication in the context of social simulation. As seen earlier in this chapter, 

is that modeling agent to agent communication by using direct method calls could lose 

the temporal and contextual accuracy of the messages and therefore producing erroneous 

results. Our contribution provides a way to preserve that temporal and contextual 

accuracy of the messages intended for communication in social simulation and producing 

the accurate result. 

1.3 Thesis Layout 

This thesis is organized as follows: 

Chapter 2 represents all the basic concepts and definitions and Chapter 3 represents 

related works in our problem domain. Chapter 4 contains the proposed framework and 

the design and it is followed by Chapter 5 where we detail our implementation and 

experimentations. In the end Chapter 6 focuses on conclusion and future works. 

5 



2. BACKGROUND 

2.1 Artificial Society 

The term 'artificial society' first originated in the works of (Builder and Bankes 1991) 

and later popularized by (Epstein and Axtell 1996). An 'artificial society' is a generic 

class of agent based simulation model (Lawson and Park 2000) which is used to simulate 

various social phenomena or processes. The simulation of agents and their interactions is 

known as agent-based modeling (Axelrod 1997). It is also called bottom-up modeling and 

artificial social system. The goal of agent-based modeling is to study and understand the 

properties of complex social systems. Social processes e.g. populations dynamics, group 

formation, environmental and economic impacts, propagation of disease, cultural 

influences, combat, etc. are usually complex (Epstein and Axtell 1996). It is impossible 

to decompose those complex processes clearly into simpler sub-processes. Therefore the 

isolated analysis of the simpler processes cannot be aggregated to yield the analysis of the 

complex social process as a whole. In social context, these models help to understand 

how macroscopic social behavior can emerge from various microscopic social 

phenomena. With growing popularity agent based society models are used in applications 

from the social sciences, in military applications, biology, chemistry, ecology, 

engineering, geography and marine biology etc. 

2.2 Simulation Techniques used in Artificial Society Model 

Being a well established modeling tool (Law 2007) Discrete-event simulation (DES) is 

used to model artificial societies (Lawson and Park 2000). A system is modeled in terms 

of its state at each point in time in DES (Banks et al. 2005). In Agent Based Modeling 

Systems (ABMS) or modeling an artificial society there are two types of scheduling 

algorithms that are associated with DES (North and Macal 2007): 

6 



Time-step scheduling 

Discrete-event scheduling 

2.2.1 Time-step scheduling 

The time-step scheduling algorithm for discrete event simulation to evolve an artificial 

society is (Lawson and Park 2000): 

initialize society landscape; 
initialize agent population; 
t = 0; // time counter, (0 <= t <= T) (T = max. simulated time) 
while(t<= T){ 

perform agent actions; 
update society landscape; 
update the agent list; 
randomize the agent list; //To minimize artifacts in the 

simulation result 
t++; } 

generate statistical report;. 

Figure 2-1 (Lawson and Park 2000) Time-step scheduling Algorithm 

Time-step scheduling algorithm involves fixed-increment integer time-counter to 

track the flow of time. All events of interest and agent behavioral actions must occur at 

one of these integer-time steps. In this algorithm, first, the society landscape and the 

agent population initialization are done. Now if the maximum simulated time for the 

model is T, the artificial society model evolves synchronously according to Figure 2-1. 

Most multi-agent based simulation environments are time-driven DES tools (Sansores 

and Pavon 2005). 

7 



2.2.2 Discrete-event scheduling 

In discrete event scheduling algorithm an event list is maintained. Event list is the list of 

all future events, ordered by time of occurrence. This algorithm repeatedly determines 

the most imminent possible event in the list and advances the simulation clock to this 

event's scheduled time of occurrence. Also in each execution step the algorithm 

generates future events (if any) and places them in the event list with proper ordering. 

The pseudo code for the discrete event scheduling algorithm for discrete event simulation 

to evolve an artificial society would be (Lawson and Park 2000; Banks et al. 2005): 

initialize society landscape; 
initialize agent population; 
e =dequeEvent(); 
while(e.time<= T){ 

perform event actions; 
update society landscape; 
update/schedule the event list; 
e =dequeEvent(); } 

generate statistical report;. 

Figure 2-2 (Lawson and Park 2000; Banks et al. 2005) Discrete-event scheduling 

Algorithm 

2.3 Agent Communication 

Communication is one of the key components in an artificial society. The agents need to 

be able to communicate or interact with the environment or with each other if they need 

to cooperate, collaborate, and negotiate and so on. Generally in a multi-agent system, 

agents interact with each other by using some special communication languages, called 

agent communication languages (ACL) which are based on speech act theory (Searle 

1969) and that provide a separation between the communicative acts and the content 

language. The two most-widely used ACLs in practice are KQML and FIPA-ACL. But 

neither has yet been considered as standards. In regards to multi-agent simulation they 

are considered heavy weight languages. 

8 



2.3.1 KQML 

KQML (Knowledge Query and Manipulation Language) was the first ACL with a broad 

uptake and was developed in the early 1990s as part of the US government's DARPA 

Knowledge Sharing Effort (KSE). It is a language and protocol for exchanging 

information and knowledge that defines a number of performative verbs and allows 

message content to be represented in a first-order logic-like language called KIF 

(Knowledge Interchange Format) which is another deliverable of KSE. (Genesereth and 

Fikes 1992). KQML is the outer language format for the agent communication as it 

defines the envelope format for the messages and KIF is concerned with the message 

content. 

Each KQML message has a performative (the action indicating verb) and a 

number of parametres (attribute-value pairs). An example KQML message is shown in 

Figure 2-3. 

(ask-one 
:content (PRICE IBM ?price) 
:receiver stock-server 
:language LPROLPG 
:ontology 

) 
NYSE-TICKS 

Figure 2-3 (Woolridge 2001) Sample KQML message 

Among few of the constraints for KQML are: building different implementations 

of KQML were not tightly constrained and therefore those implementations failed to 

interoperate with each other. The semantics of KQML were never rigorously defined. 

KQML performatives do not have commissives by which agents can make commitments 

to each other so that they can coordinate their activities to achieve a common goal 

(Woolridge 2001). 

9 



2.3.2 FIPA ACL 

Currently the most used and studied agent communication language is the FIPA ACL 

(Foundation for Intelligent Physical Agents Agent Communication Language), which 

incorporates many aspects of KQML (Labrou et al., 1999) and syntactically it is the same 

as KQML. The primary features of FIPA ACL are the possibility of using different 

content languages as it does not mandate any specific language for the message content 

(Woolridge 2001) and the management of conversations through predefined interaction 

protocols. It has a richer set of performative (the action indicating verbs) than KQML. An 

example FIPA ACL message is shown in Figure 2-4. 

(inform 
:sender agent1 
:receiver agent2 
:content (price food2 

150) 
:language si 
:ontology 

) 
hpl-auciton 

Figure 2-4 (Woolridge 2001 ) Sample FIPA ACL message 

FIPA ACL excels over KQML by incorporating semantics with the help of a 

formal language called SL. The semantics of the FIPA ACL map each ACL message to a 

formula of SL, which defines a constraint that the sender of the message must satisfy if it 

is to be considered as conforming to the FIPA ACL standard (Woolridge 2001). 

2.4 WS-CDL 

WS-CDL (Barreto et al. 2005) is a XML-based language that is used to specify the peer-

to-peer collaboration of participants from a global or public point of view. It is a multi-

participant contract of the interactions among the participants on which each of them 

have agreed upon. WS-CDL specifies the ordering of messages that the participants 

10 



exchange and the operations they offer across the domains of interactions. This is a 

description language not an executable language. A WS-CDL document conceptually has 

two parts (Fredlund, L. 2006; Mendling and Hafher 2006): a static part, i.e., the invariant 

part that describes e.g., variable, token and channel definitions and a dynamic part that 

states the interaction among the partners. (Barreto et al. 2005; Ross et al. 2005; Barros et 

al. 2005) provides in-depth details. 

2.4.1 Static Part 

This part defines all the specifications needed to define the collaborating parties. 

According to (Barreto et al. 2005; Ross et al. 2005; Barros et al. 2005; Fredlund, L. 2006; 

Mendling and Hafner 2006) Table 2-1 introduces the WS-CDL elements that belong to 

the static part. 

Table 2-1 Summary of the WS-CDL elements that constitute the static part 

WS-CDL Entity Description 

roleType The interactions are taken place among various roleTypes 

relationType Identifies the mutual relationship between two roleTypes 

participantType Set of all the roleTypes that belong to the same physical entity 

information Type 
Describes the types for many of the variables that might be used in a 

choreography 

variable 
Expresses information about commonly observable objects in a 

collaboration 

token Express parts or alias of a variable for reference purpose 

channelType 
Specifies where and how the interaction should take place between 

multiple participantTypes 

package 
The root of every choreography definition and contains both the 

static and the dynamic parts of a choreography 

11 



2.4.2 Dynamic Part 

This part defines all the peer-to-peer interactions among the parties involved. Dynamic 

part constitutes the core of the choreography. The root element for the dynamic part is the 

choreography element. 

choreography. A choreography specifies where and how the interaction should 

take place between multiple participantTypes. It is basically the container for a collection 

of WS-CDL activities that may be performed by one or more of the participants. 

According to (Barreto et al. 2005; Ross et al. 2005; Barros et al. 2005) the three types of 

WS-CDL activities are summarized on Table 2-2. 

Table 2-2 Summary of the WS-CDL activities 

WS-CDL 

activities 
Description 

An ordering 

structure 

Specifies the orders in which the interactions should take place. It 

could be sequential, parallel or conditional and they are represented by 

the sequence, parallel and choice elements respectively. They can be 

used in a nested manner in the choreography 

A WorkUnit-

Notation 

It is represented by workunit element and is used to guard and/or 

provide a means of repetition of those activities enclosed within the 

workunit. 

A basic activity 
It is used to describe the lowest level actions performed within 

choreography. 

A basic activity can be either: 

An interaction activity: It is represented by interaction element and is the basic building 

block of communication among the participating entities in choreography, interaction is 

regarded as the base atom of the choreography composition. The exchange of 

information between the collaborating partners occurs inside this element. It specifies the 

relationTypes that are involved in the information interchange and the direction of the 

12 



message flow by using the attributes fromRole and toRole. The operation attribute inside 

interaction captures the name of the operation associated with the interaction. The 

exchange element constitutes the real message that is to be passed between the 

communicating parties. 

A perform activity:. It specifies a separately defined choreography to be performed. 

An assign activity: It specifies assignments of variables within a roleType. 

A silentAction activity: It specifies participant specific non-observable operational details 

to be performed. 

A no Action activity: It specifies participant specific points where the participants do not 

perform any action. 

A finalize activity: It specifies finalizer block for the choreography. 

13 



3. LITERATURE REVIEW 

This chapter reviews some of the works done related to our thesis area. Here we focus on 

the works done on communication in artificial society, communication in agent based 

modeling and time management in distributed simulation. 

3.1 Communication in Artificial Society 

Artikis and Pitt (2001) suggested a model of artificial society that facilitates 

communication. The requirements for their open agent society model are: 1) a need to 

make the organizational and legal elements of a multi-agent system externally visible, 2) 

open societies should be neutral with respect to the internal architecture of their members, 

and 3) communication and conformance of behaviour are at least as important as 

intelligence. An agent society based on this model consists of the following entities: 1) a 

set of agents, 2) a set of constraints on the society (norms and rules), 3) a communication 

language, 4) a set of roles that agents can play, 5) a set of states the society may be in, 

and 6) a set of owners of the agents. Davidsson (2001) and Davidsson and Johansson 

(2006) extended that model by introducing a stakeholder or owner of the society. 

Buzing et al (2003) built a discrete time stepped artificial society called VUscape 

(a two-dimensional grid based spatial model with resource distributed in the cells and 

agents consuming the resource in the cells) which is based on the popular Sugarscape 

model (Epstein and Axtell 1996). The authors introduced a framework for modeling 

communication and cooperation in an artificial society where communication and 

cooperation behaviour are evolved in the society by means of an environmental pressure. 

Agents in this model are given 'talk' and 'listen' capabilities. By listening an agent can 

get information from other agents' resources and locations. By talking an agent can 

'broadcast' its resource and location information to other agents. Authors ran experiments 

on both with communicating and non-communicating agents in their society. The 

14 



communicating agents tend to have larger surviving population than non-communicating 

agents. Also with communication, the behaviour of the system seems more stable than 

without communication. 

In their continuation of work (Buzing et al 2004; Eiben et al. 2005) tried two 

different approaches to communication among the agents in the society - centralized 

approach referred to as 'Multicast Model' and distributed approach referred to as 

'Newscast model'. Multicast Model is a spatial communication scheme where 

multicasted messages travel along agents axes. Multicast communication is implemented 

by a centralized message board where agents can post messages by their talk capability 

and can read the messages from it by their listen capability. The newscast model is a fully 

distributed information propagation protocol for large-scale peer-to-peer computing. In 

newscast communication messages are transferred directly between the agents without a 

third party like a message board as in the centralized approach. Each agent contains a 

cache where it holds messages received from other agents along with their IDs and 

addresses. The senders of messages are the friends of an agent and agents are only 

allowed to communicate among the friends. According to the experimental results, 

newscast communication was found less effective than multicast communication as 

agents tend to move less and die out faster. According to the authors the difficulty with 

the distributed approach is not being able to remove the outdated information from the 

agent's cache and that leads to false information to other agents. (Buzing et al. 2005) also 

studied the evolution of communication and cooperation in VUscape with the multicast 

model. 

3.2 Communication in agent based modeling 

Among the very few works done specifically on agent to agent communication on multi-

agent simulation (Gokturk and Polat 2003) proposed a three-layered approach to the 

agent communication in the context of distributed multi-agent simulation. The highest 

layer is the content layer where the actual message is expressed as Knowledge 

15 



interchange Format (KIF) or Semantic Language (SL). The next layer is called the 

communication layer, where the message contents form the upper layer and is 

encapsulated using an agent communication language such as KQML or FIPA-ACL. The 

bottom layer is the transport layer to take care of the specific transfer related issues e.g. 

converting the ACL messages so that they can be transferred over actual connection. The 

authors implemented the second layer using KQML and the third layer using HLA (High 

Level Architecture) which is a distributed simulation standard (IEEE 1516) that aims at 

interoperable and component-based reusable simulations. In their implementation they 

have difficulties in establishing point-to-point links (how the agents can refer to each 

other) among the agents and also to maintain the order of the sent messages (known as 

send-order reception problem) in the receiving end. Both of these difficulties arose 

because of the limitations present in HLA architecture. The authors solved the point-to-

point links problem with implementing a publish-subscribe model of messages and the 

send-order reception using a time-stamping scheme. 

3.3 Time Management in Agent-based Simulation 

Most of the time management and synchronization works are focused on distributed 

event-driven DES. In distributed simulation as the agents are executed in physically 

separated locations there is a need to synchronize the event changes that occur at different 

computational nodes. Two main approaches to ensure correct time stamp order are: 

conservative and optimistic synchronization (Pawlaszczyk and Timm 2007). By means of 

lookahead, Conservative algorithm strictly ensures that all the events occurring at 

different computational nodes are always synchronized so that there does not appear any 

causality error (the message ordering problem). Optimistic algorithm on the other hand 

allows the causality error to occur and then fix it by means of rollback to a nodes last 

correct state. Figure 3-1 illustrates how rollback is done on out-of-order (straggler) 

message. (Pawlaszczyk and Timm 2007) proposed a hybrid time management approach 

by combining optimistic synchronization approach and domain-specific knowledge based 

on FIPA request interaction protocol. In this approach rather than doing expensive 

16 



rollbacks out-of-order messages are delayed for execution. Figure 3-2 the delayed 

execution of the straggler message. 

Agent a, 

—*• evert message 

0, event with time stamp t 

waHctock time 

straggler event 
forcing rollback 

Figure 3-1 (Pawlaszczyk and Timm 2007) Scenario in distributed simulation causing 

violation of event ordering (causality error). When event en arrives, ei9 has already been 

processed by agent ai (straggler event). 

delayed execution 

Agent a, 

Af«flt 32 

Agwit % 

FIPA: inforrrt-done 

ACL-Msssagfl 
•vant with ima stamp t 
rsiatai events of protocol 1 

wailclock time 
wall tor remaining message 

related events of protocol 2 

Figure 3-2 (Pawlaszczyk and Timm 2007) Delayed event execution based on protocol 

information. Agent ai receives a proposal from Agent a3, while he is waiting for an 

inform-done message of Agent a2. Instead of immediately processing the incoming 

message, the execution is delayed. Thus, event order is preserved and still valid. 

17 



Braubach et al. (2004) presented a standard-compliant middleware called time 

service component to enable the simulation of process-flows in distributed MAS. The 

time service component allows the timed synchronization among the distributed 

participants and controls the progress of the over-all process flow. The authors have 

implemented the time service as a FIPA-compliant agent, and that can be used to couple 

heterogeneous subsystems implemented on different agent platforms. 

Huang et al. (2005a; 2005b) built a special agent interface called Smart Time 

Management (STM) on top of HLA. STM can take over event's time-stamp tagging 

work, maintain a lookahead value and unify different time management approaches 

(conservative and optimistic) provided by the HLA. STM presents a unified and scalable 

middle layer to allow the user to construct an HLA federation with an unanimous Time 

Management interface when solving the synchronization issue. For optimistic approach 

STM also extends the interfaces with the smart rollback, state-saving, and fossil 

collection mechanisms. 

Helleboogh et al. (2005a) proposed semantic duration models to capture timing 

requirements using the technique of duration modeling that reflect the semantics of MAS 

activities in an explicit model. And the authors also built a time management 

infrastructure based on the semantic duration model description to integrate all time 

management functionality into a MAS transparently. The idea of duration modeling is to 

maintain a logical clock for each agent and advance that clock for each primitive that is 

executed by the agent. The duration of a primitive performed by an agent is the (logical) 

time period it takes until the effects of that primitive are noticeable. The developer has to 

describe all timing characteristics by means of assigning logical durations to each of the 

primitives. Advancing the logical clock in a way that is independent of computer loads 

and processor speeds, enables repeatable simulation results. There are two possible levels 

of duration model low level and high level. Low level models are directly tied to 

programming language implementation. The authors took the high level approach that 

ties to the semantics of the MAS model. The duration model is usually used for agent 

18 



deliberation model but the authors extended this model to accommodate other agent 

activities e.g. the activities that agents perform on the environment. 

Helleboogh et al. (2005b) introduced time management adaptability in MASs. 

Time management adaptability allows a MAS to be adaptive with respect to its execution 

platform, where arbitrary and varying timing delays can produce error in the simulation. 

It also allows customizing the execution policy of a MAS to suit the needs of a particular 

application. The authors employed time models as a means to explicitly capture the 

execution policy derived from the application's execution requirements. They classified 

and evaluated time management mechanisms which can be used to enforce time models 

and also introduced a MAS execution control platform which combines both previous 

parts to offer high-level execution control. These three constituent parts of time 

management adaptability are shown in Figure 3-3. 

MAS 

Logical Tims 

Tim© mods! 

Network Delays 

Time Mai :harosm 

Scheduling Delays 

Execution Platform 

Figure 3-3 (Helleboogh et al. 2005b) Time management adaptability. 

19 



4. METHODOLOGY AND FRAMEWORK 

In this chapter we present an overview of our approach to solve the inconsistency 

problem that we have presented in the Introduction. There are two major parts to the 

solutions approach: one is to use the new proposed language ACDL and another is to use 

the communication framework in the simulation engine that uses the ACDL to 

accomplish the communication task. 

4.1 ACDL 

We have first noted that, WS-CDL can be applied to model varieties types of interactions 

(peer to peer collaboration) among participating web services. Then we thought that we 

could introduce the same concept to model the communication between the agents in an 

artificial society. Therefore, we proposed ACDL to incorporate into the artificial society 

simulation so that all the interactions among the agents are properly preserved. But for 

social simulation perspective we need to have a very shortened and simple set of 

language constructs that specifies the contracts between the communicating agents. In 

that contract we simply want to state the rules of sequential message flows between the 

communicating parties. The following section gives the detailed overview of the ACDL 

model. 

In chapter 2, we have seen that the package element is the root of the 

choreography in WS-CDL and therefore it is the container for both the static and dynamic 

parts. The syntax of WS-CDL package construct is given in Figure 4-1. 

20 



<package 
name="NCName" 
author="xsd:string"? 
version="xsd:string"? 
targetNamespace="uri" 
xmlns="http://www.w3,org/2005/10/cdl"> 

<informationType/>* 
<token/>* 
<tokenLocator/> * 
<roleType/>* 
<relationshipType/>* 
<part i c ipantType/> * 
<channelType/>* 

Choreography-Notation* 
</package> 

Figure 4-1 (Barreto et al. 2005) WS-CDL package syntax 

Other than the Choreography-Notation (used to define a choreography) construct 

the rest of the elements constitute the static part. As we are interested in the dynamic part 

as it contains the actual interaction, in ACDL we have made choreography element the 

root element. Now looking at the choreography syntax (Figure 4-2), we can see that it 

also has some static parts e.g. variableDefinitions as well as some housekeeping elements 

like exceptionBlock, finalizerBlock etc. The Activity-Notation constructs are used to 

define various types of activities in choreography. As we are only interested in the core 

interactions we just kept the Activity-Notation construct in our choreography syntax 

definition. From the major three type of WS-CDL activity (Table 2-2) we kept the 

ordering structure construct as using this we can specify in our choreography which 

activities to run in parallel. As discussed in the problem statement that the timing 

problem of the communicated messages are introduced due to the sequential nature of the 

simulation engine. Therefore, using this ACDL specification we can specify which 

interactions to be executed in parallel. The syntax of parallel activity is given in Figure 4-

3. A parallel activity can contain 1 or more other activities. Also from Table 2-2, we kept 

the basic activity construct as using this we can specify an interaction activity (the basic 

building block of a choreography) in our choreography. 

21 



cchoreography name="NCName" 
complete="xsd:boolean XPath-expression"? 
isolation="true"j"false"? 
root="true"|"false"? 
coordination"true"|"false"? > 

<relationship type="QName" />+ 

variableDefinitions? 

Choreography-Notation* 

Activity-Notation 

<exceptionBlock name="NCName"> 
WorkUnit-Notation+ 

</exceptionBlock>? 

<finalizerBlock name="NCName"> 
Activity-Notation 

</finalizerBlock>* 
</choreography> 

Figure 4-2 (Barreto et al. 2005) WS-CDL choreography syntax 

<parallel> 
Activity-Notation+ 
</parallel> 

Figure 4-3 (Barreto et al. 2005) WS-CDL parallel activity syntax 

From the WS-CDL interaction activity syntax we have kept only the mandatory 

elements (interaction and participate) for ACDL interaction activity syntax as they are 

the minimal constructs to specify any interaction. 

22 



<interaction name="NCName" 
channelVariable="QName" 
operation="NCName" 
align="true"|"false"? 
initiate="true"|"false"? > 

<participate relationshipType="QName" 
fromRoleTypeRef="QName" 

toRoleTypeRef="QName" /> 

<exchange name="NCName" 
faultName="QName"? 
informationType="QName"?|channelType="QName"? 
action="request"|"respond" > 

<send variable="XPath-expression"? 
recordReference="list of NCName"? 
causeException="QName"? /> 

creceive variable="XPath-expression"? 
recordReference="list of NCName"? 
causeException="QName"? /> 

</exchange> * 

<timeout time-to-complete="XPath-expression" 
fromRoleTypeRecordRef="list of NCName"? 
toRoleTypeRecordRef="list of NCName"? />? 

<record name="NCName" 
when="before"|"after"|"timeout" 
causeException="QName"? > 

<source variable="XPath-expression"? | 
expression="XPath-expression"? /> 

<target variable="XPath-expression" /> 
</record>* 

</interaction> 

Figure 4-4 (Barreto et al. 2005) WS-CDL interaction activity syntax 

And after all the derivation from WS-CDL we have the ACDL language 

definition presented in Figure 4-5. 

23 



choreography ::= 
<choreography> 

Activity-Notation* 
</choreography> 
Activity-Notation :: = 
<parallel> 

<interaction name="NCName" operation="NCName"> 
<participate fromRoleType="QName" 

toRoleTypeRef="QName" /> 
</interaction>* 

</parallel> 

Figure 4-5 ACDL definition 

In each interaction in ACDL we have a name attribute which identifies an 

interaction element uniquely in the document and also an operation attribute which 

mainly contains the method name to invoke. The participate element contains 

fromRoleType and toRoleType attributes which specifies the entities involved in the 

interaction and specifies the direction of operation. 

4.1.1 ACDL Example 

Consider the following interaction between two agents: Agent A requests some amount 

of food from agent B and agent B sends back some food as per the request for food from 

agent A. In the UML sequence diagram this scenario is illustrated in Figure 4-6. 

Figure 4-6 UML Sequence Diagram for Two Agents' Interaction 

24 



According to our simple ACDL definition this interaction could be modeled as 

Figure 4-7. 

<?xml version="l.0" encoding="UTF-8"?> 
<choreography> 

<parallel> 
cinteraction name="Agent Interactionl " operation=" requestFood"> 

<participate fromRole="A" toRole= "B" /> 
</interaction> 
cinteraction name="Agent Interaction2 " operation=" 

allocateFood"> 
<participate fromRole="B" toRole= " A" / > 

</interaction> 
</parallel> 

</choreography> 

Figure 4-7 ACDL representation of Figure 4-6. 

4.2 Communication Framework 

We have introduced a communication manager in the society model. This manager is 

responsible for generation and then execution of an ACDL file for a particular simulation 

clock tick. In each simulation clock tick the agents inform the communication manager 

about their communication needs and the manager registers the communicating agents to 

build an ACDL file that captures all the interaction needs for that simulation clock. And 

at the beginning of the next simulation clock tick it executes the ACDL file where all the 

communicating agents are executed in parallel manner, which means all the agents 

requiring communication are executed in their requested time frame in parallel. The rest 

of the agents from the agent list which do not engage in any communication activities are 

then executed sequentially by the simulation engine. The proposed scheduling algorithm 

is shown in Figure 4-8. 

25 



initialize society landscape; * 
initialize agent population; 
t = 0; // time counter, (0 <= t <= T) (T = max. simulated time) 
while(t<= T){ 

perform agent communication and agent action with the help of 
communication manager for the communicating agents; 

perform agent actions for non-communicating agents; 
update society landscape; 

update the agent list; 
t++; 
create choreography for next tick; // Communication Manager Generates 
// the ACDL file to be executed in next tick. } 
generate statistical report; 

Figure 4-8 Scheduling Algorithm with the Communication Manager. 

In this manner we can avoid the sequential execution cycle of the underlying 

simulation engine which was the cause of the problem e.g. if agent A2 needs to 

communicate with agent Ai at some simulation time t = 7, the parallel execution 

mechanism guarantees that both Ai and A2 are in t = 7. This two phase proposed 

architecture is given in Figure 4-9 and Figure 4-10. 

Communica 
tion 

Manager 

Figure 4-9 Phase 1: Generation of ACDL file 

Simulatio 
n Engine 

Agent 

V 
Communi ACDL 

cation 
Manager 

File cation 
Manager 

Figure 4-10 Phase 2: Execution of ACDL file. 

26 



While executing the agents concurrently we needed to have finer grain control on 

the agent execution codes by synchronizing the agents. For example, if agent A2 requests 

agent A| for allocating some resources, each of the request interaction and respond 

interaction are captured in ACDL and while executing these interactions both A2 and 

Ai's execution codes are run in parallel. By means of synchronization technique on the 

agent execution code we made sure that the requested resource is not consumed in Ai 

before the A2's request has been fulfilled. The pseudocode for agent execution is shown 

in Figure 4-11. The synchronized method for resource consumption is shown in Figure 4-

12 where it locks the responding agent thread and the method for receiving resource is 

shown in Figure 4-13 where the requesting agent thread releases the lock from the 

responding agent thread. 

1. Consume resource; // this is synchronized 
2. Consider communication needs and register with the 

communication manager if needed; 
3. Perform all other agent actions if needed; 
4. update the agent local time; 

Figure 4-11 Agent execution pseudocode. 

While( ! requestProcessed){ 
Wait(); 

} 
Consume the resource for this clock tick; 

Figure 4-12 Synchronized resource consumption pseudocode - locking the responder 

if( ! resourceReceived){ 
notify(); 

} 
Add the received resource to the inventory; 

Figure 4-13 Synchronized resource consumption pseudocode - releasing the responder 

27 



5. IMPLIMENTATION AND EXPERIMENTS 

5.1 Experimental Setup 

The Implementation of ACDL and the communication framework and the 

experiments were performed using the popular multi-agent simulation toolkit REPAST 

under Java 6 SDK in Windows XP environment running on Toshiba Satellite Intel® 

Celeron® 1.73 GHz, 1.99 GB of RAM. 

5.1.1 Repast - The Simulation Environment 

The Recursive Porous Agent Simulation Toolkit (Repast) is one of the leading free, open-

source large-scale agent modeling toolkits available in pure Java (North and Macal 

2007). (Tobias and Hofmann 2003) performed a survey on 16 agent modeling toolkits 

and mentioned that, "we can conclude with great certainty that according to the available 

information, Repast is at the moment the most suitable simulation framework for the 

applied modeling of social interventions based on theories and data" (Tobias and 

Hofmann 2003). It also supports .Net (Repast.Net), Python scripting (Repast Py) and 

point and click modeling for non-programmers in their latest release on 2005 called 

Repast Symphony. In our modeling and experimentation we will be using the Java 

version of Repast, called Repast J. It is an integrated simulation development framework 

that provides almost all the necessary constructs (Java API) for easy and rapid 

development, maintenance and execution of simulations. 

Repast was created at the University of Chicago. Subsequently, it has been 

maintained by organizations such as Argonne National Laboratory. Repast is now 

managed by the nonprofit volunteer Repast Organization for Architecture and Design 

(ROAD). ROAD is lead by a board of directors that includes members from a wide range 

of government, academic, and industrial organizations. The Repast system, including the 

source code, is available directly from the web (ROAD 2005). Repast seeks to support 

28 



the development of extremely flexible models of living social agents, but is not limited to 

modeling living social entities alone. 

From (ROAD 2005): "Our goal with Repast is to move beyond the representation 

of agents as discrete, self-contained entities in favor of a view of social actors as 

permeable, interleaved, and mutually defining; with cascading and recombinant motives. 

We intend to support the modeling of belief systems, agents, organizations, and 

institutions as recursive social constructions" (ROAD 2005). 

5.1.2. Repast - Fundamental Components 

Repast has four fundamental components, namely simulation engine, the input/output 

(I/O) system, the user interface, and the support libraries (Figure 5-1). These components 

are implemented in the core layer and using the external layer they are accessed by the 

user. Out of those four layers the most important layer is the simulation engine which is 

responsible for executing simulations. The simulation engine has four main parts, namely 

the model, the controller, the agent and the scheduler. 

Repast model holds all the detailed specification and the definition of the 

simulation to be run by the scheduler. Those detailed specifications usually include the 

list of agents to be executed, the simulation initialization instructions, and the user 

interface specification. The controller works as a bridge between the model and the 

scheduler. It activates the model to be run and manages the interactions between the user 

or batch execution system and the model. 

Agents are the key entities in agent based simulation and in Repast there could be 

various types of agents to model e.g. geographically situated agents, network-aware 

agents, etc. They are created by users from components and template classes within 

Repast. Agents receive data from the Repast I/O and also provide results to it. As the 

29 



scheduling is closely related to the problem and solution of this thesis, a detailed 

discussion on it is given in next sub-section. 

fZ 

User Interface 

Controller 
/ \ 

77s-

77C 

Agents 

Model 

t r 

V 
1 Scheduler 

Simulation Engine 

I/O 

v i 

Support Libraries 

Figure 5-1 (North and Macal 2005) Repast - Fundamental Components. 

5.1.3. Repast - Scheduling Mechanism 

Repast operates like a discrete event simulator whose quantum unit of time is known as a 

tick. In each tick events are executed in an orderly manner. For example, if event A is 

scheduled for tick 1, event B for tick 2, and event C for tick 3, then event A will execute 

first, then event B and C at last. Repast is more like a discrete time simulator though it 

appears to users as a discrete event simulator. 

30 



By Repast scheduling mechanism at each of the simulation tick a set of agent 

behaviors which is called an action gets executed. RePast scheduling consists of three 

phases of behavior, a preparatory, an execution, and a post- or cleanup phase. RePast then 

schedules these in the appropriate order to occur every tick. 

The agents' actions are eventually method calls on the agent objects. RePast 

represents these method calls separately from the objects themselves through the 

BasicAction class. A BasicAction consists of a single abstract public void execute() 

method. Any classes that sub-class a BasicAction must implement this method, and it is 

in this method that the actual method call or calls to be scheduled should occur. So, for 

example, if the agent behavior is encapsulated by a step method, then the BasicAction's 

execute method would iterate through all the agents and call this step method on each 

one. This BasicAction gets scheduled for execution at some specific tick. 

BasicAction-s can be created in two ways, either by the modeler or implicitly by a 

Schedule object. In the first, the modeler will sub-class a BasicAction, implementing the 

execute method accordingly. This sub-class is usually created as inner class (anonymous 

or otherwise). In the second, the modeler provides an object reference and the name of 

the method she wishes to execute as arguments to a Schedule object's schedule method. 

The schedule object will then dynamically create and load the byte-code for a 

BasicAction class whose execute method calls the named method on the specified object. 

For example, suppose a model class contains a method named "run" in which all the 

agents are iterated through calling a method named "step" on each agent. To schedule 

this run method, the modeler passes the name of the method, that is, "run," and a 

reference to the model to the Schedule object. No sub-classing is necessary; the Schedule 

object does all the work. Furthermore, because the byte-code for the BasicAction is 

dynamically created, there is no performance penalty, as there might be with a solution 

that relied on reflection. 

31 



5.2 Implementation 

This section presents how the ACDL file is generated and executed in our 

implementation in detail. 

5.2.1. Communication Manager 

The Communication Manager is implemented as a separate class called 

CommunicationManager. It has a temporary data structure where the communicating 

agents registers themselves in a particular tick. At the end of the tick the 

CommunicationManager generates the ACDL file from that temporary data structure 

with the help of Java DOM parser. And the beginning of next tick it executes the ACDL 

file generated from last tick. Basically when the SAX parser parses the ACDL file it 

creates the required instances from the ACDL file as per the Java class mappings 

described in the next sub-section and using Java Reflection API the instances are 

executed. Using Java thread and synchronization we have made sure that the activities 

run and parallel and proper synchronization i.e. when the requester and the responder 

agents are run in parallel, the responder agent should not consume its resources before it 

serves to request. 

5.2.2. ACDL to Java Mapping 

Following (Pu et al. 2007) for each ACDL element we have implemented a 

corresponding JAVA class. We already know that both the parallel activity and the 

interaction activity are ACDL activities. Therefore we modeled an abstract class called 

ACDLActivity as the base class of all activity classes and then extended it to create 

ParallelActivity and InteractionActivity class to create the ACDL instances parallel and 

interaction respectively. ACDLActivity class contains attributes name and Activity List 

which is an ArrayList<ActivityList> that lists all the activities contained in current 

activity and also an abstract method Run to be implemented in its children classes. All the 

32 



actions in an activity are performed by the Run method. The corresponding class 

diagram is provided in Figure 5-2. 

Figure 5-2 Class diagram for ACDL elements. 

All the activities contained in an instance of Java class parolle[Activity are 

executed concurrently. Therefore, every element in the ArrayList<ActivityList> will be 

fetched and called in its method Run in parallel by using JAVA threads. As interaction is 

the base atom of the choreography composition, it is the most atomic instruction to be 

executed. With the help of JAVA synchronization we have made sure that for a request -

response interaction scenario, request is always processed first before the response while 

executing the parallel Run methods of the interactionActivity instance. 

5.2.3. Agent Control 

In our implementation of the framework and in all the case studies the agents have the 

control structure shown in Figure 5-3. This control is encapsulated in agent's step 

function. At each tick of the simulation this control is get executed. 

33 



Figure 5-3 Agent's control flow - the step function 

The Agent first consumes its resources for the current tick and then checks if it 

has enough resource to survive for another tick and if not it registers with the 

communication manager to take care of the communication by which the current agent 

requests resources from another agent who has enough resource. As a last step the agent 

update the local time to the time of the current simulation tick. 

5.2.4. Simulation Control 

The simulation control is encapsulated in the execute method inside the scheduler section 

of the model. This is the main control section of the simulation from where the simulator 

34 



makes calls to perform the agent controls as described in the previous section and also the 

calls to the communication manager to take care of all the communication issues. The 

core steps are: 

1. Process choreography : The scheduler calls the processChor method of the 

CommunicationManager to process the generated ACDL file. In this step the 

CommunicationManager executes all the communication needs and also executes 

communicating agents in parallel for the current tick. The agents are executed by 

simply calling its step function as describes in the previous sub-section. 

2. Process non-communicating agents: The scheduler just iterates through the agent 

list and executes all the non-communicating agents. The agents are executed by 

simply calling its step function as describes in the previous sub-section. 

3. The scheduler updates the global time. 

4. Create Choreography: While executing the communicating or non-

communicating agents in steps 1 and 2, there might be more communication 

needs and agents might have registered their communication needs with the 

CommunicationManager's temporary data structure. In this step the scheduler call 

the CommunicaitonManager's createChor method to generate the ACDL file 

from that temporary data structure to make it ready to be executed in the next 

simulation clock tick. 

5.3 Experimentation 

This section presents the experiments and result analysis of our implemented framework 

performed with the help of few case studies. As our implementation is a new one, we 

have validated the experimental results against manually computed validation table. We 

have built our table based on simple scenario and less number of iteration for each of the 

experimental cases. All the agent interactions are resource based i.e. in each simulation 

ticks agents either consume resource or gathers resource by communicating requests to 

35 



other agents if resource level goes below a certain threshold value. And we also validate 

our results by comparing the resource levels in the validation table and the 

experimentation table. For each of the case studies we have the simulation run for two 

sub cases - one with the communication framework enabled and another and another is 

without the communication framework, just using the direct method calls as a means of 

communication / interaction. We also compared (based on the agent resource and the 

number of dead agents) how simulation results can vary in those two setups. 

5.3.1 Case Study 1 

With our implementation of the framework we have built a simple society of two agents 

Al and A2. 

5.3.1.1. Initialization. At the initialization of the simulation (when global and local times 

are all 0) Al has $100 (resource in simulation) and A2 has $0 of money. 

5.3.1.2. Society (Simulation) Rules. At each simulation step each agent consumes $50. 

If any time during the simulation the resource goes below $0 the agent dies. We have set 

the communication criteria based on 'need for resources'. If any agent has less than $50 

then it requests (initiates communication) the other agent to give it another $50 for 

survival. And if the requested agent has more than $50 it sends back the requester agent 

$50. 

Table 5-1 shows the simulation run result for the test case with the implemented 

framework. Figure 5-4. shows the generated ACDL for the two simulation clock ticks 

when the global simulation time, T = 0 and T = 1. Note here that, at the end of time T = 

0, both the request and corresponding response are generated 

in the ACDL. At time T = 1, there is no ACDL entry as there is no agent who has greater 

than $50 to serve another's request. Therefore at next simulation clock, T = 2 both the 

36 



agents die. We also have the simulation run results without the framework, shown in 

Table 5-2. 

In the generated ACDL in Figure 5-4, the root element is chorepgraphy. It 

contains number of parallel elements which again holds number of interactions to be 

executed in parallel. Inside an interaction we have a name attribute which is uniquely 

generated and operation attribute which is actually a method name. A participate element 

is contained inside an interaction with two attributes fromRole and toRole. fromRole 

represents from which object the interaction is to initiate and toRole represents the 

destination object where the initiated interaction should direct to. Therefore the semantics 

of the interaction element is that, "call the method in operation attribute on the toRole 

object from the fromRole object". In the generated ACDL we represented the agent 

instances by their IDs. Therefore the semantics of the first interaction, "Agent 

Interaction!" is to call the 'processRequest' method on Agent-1 from Agent-2. 

<?xml version="1.0" encoding="UTF-8"?> 
<choreography> 

<parallel> 
cinteraction name="Agent Interactionl" 

operation="processRequest"> 
cparticipate fromRole="2" toRole=" l"/> 

</interaction> 
cinteraction name="Agent Interaction2" operation="addMoney"> 

cparticipate fromRole="l" toRole=" 2" / > 
c/interaction> 

c/parallel> 
c/choreography> 

Figure 5-4 Class Generated ACDL for the case study. 

Table 5-1 Values received from the simulation run with the implemented framework. 

Global Time(T) Agent Specific Info. A, A2 

0 Local Time 0 0 
Money($) 100 0 

1 Local Time 1 1 
Money($) 0 0 

37 



Table 5-2 Values received from the simulation run without the implemented framework. 

Global Time Agent Specific Info. A! A2 

0 Local Time 0 0 
Money($) 100 0 

1 Local Time 1 0 
Money($) 50 0 

Local Time 1 1 
Money($) 50 Dead(-50) 

It can be noted here that at the end of the simulation time, t = 1, with the 

framework implemented both Ai and A2 has $0 but without the framework 

implementation Ai has $50 and A2 dies. Table 5-3. shows how different values are 

generated from those two different approaches for the simulation. Results of Table 5-1 

are the exact same as the results of our manually computed validation table. 

Table 5-3 Values received from the simulation run without the implemented framework. 

Methodology Simulation Time AI 
(resource) 

A2 
(resource) 

# of Dead Agents 

Without Framework 0 100 0 0 
1 50 (-50) 1 

With Framework 0 100 0 0 
1 0 0 0 

5.3.2 Case Study 2 

We have 5 agents' (Ai,. ,5) society for the second case study and run it for 3 iterations 

(ticks) so that the simulation results can be easily verified with manually computed 

validation table. 

5.3.2.1. Initialization. At the initialization of the simulation (when global and local times 

are all 0) the agents have the values following Table 5-4. 

38 



Table 5-4 Initial values for the agents in case study-2. 

AI 
(resource) 

A2 
(resource) 

A 
(resource) 

A4 
(resource) 

A5 
(resource) 

300 150 101 50 102 

5.3.2.2. Society (Simulaiton) Rules. At each simulation step each agent consumes $50. 

If any time during the simulation the resource goes below $0 the agent dies. We have set 

the communication criteria based on 'need for resources'. If any agent has less than $50 

then it requests (initiates communication) the other agents to give it another $50 for 

survival. When an agent needs to communicate, it starts searching from the beginning of 

the agent list to search for the non-communicating agent that has enough resource to 

share. This scheme is simulation specific. We have kept this simple structure 

concentrating more on the core communication and timing issue. For example in any 

other simulation scenario an agent can communicate with the closest neighbors along its 

axes where it is situated in the simulation space. And if the requested agent has more 

than $50 it sends back the requester agent $50. 

Table 5-5 Values received from the simulation run without the implemented framework. 

Time AI A2 A3 A4 A5 
(tick) (resource) (resource) (resource) (resource) (resource) 

0 300 150 101 50 102 
1 250 100 51 0 52 
2 150 50 1 0 2 
3 50 0 1 -50(Dead) -48 (Dead) 

Table 5-6 Values received from the simulation run with the implemented framework. 

Time A, A2 A3 A4 As 
(tick) (resource) (resource) (resource) (resource) (resource) 

0 300 150 101 50 102 
1 250 100 51 0 52 
2 150 50 1 0 2 
3 0 0 1 0 -48 (Dead) 

39 



Table 5-5 represents the simulation values with the implemented framework and 

Table 5-6 represents the values with implementation and Table 5-7 shows the different 

results that we have got from those two runs based on number of dead agents. Table 5-6 

produces the same values as our verification table. 

Table 5-7 Values received from the simulation run without the implemented framework. 

Methodology # of Dead Agents 

Without Framework 2 

With Framework 1 

40 



6. CONCLUSION and FUTURE WORK 

This thesis proposes an agent communication language called ACDL, which is a subset 

of WS-CDL and a communication framework to model proper communication among the 

agents in an artificial society. With the trivial simulation case studies our experimental 

results show that the communication framework is able to produce the expected 

simulation results and therefore the correctness of the messages intended to communicate 

is preserved in the temporal context. Also from the experiments we have found that our 

implementation of the framework is able to solve the timing problem mentioned in the 

introduction. Also the implemented framework produces more accurate result than the 

regular simulation scheme where the communications are modeled by direct method 

calls. 

Possible future work for this would be to build the framework as a package into 

the Repast agent simulation toolkit and test it with large scale simulation scenarios like 

'sugarscape' (Epstein and Axtell 1996) and also to extend the language vocabulary by 

adopting more language constructs from WS-CDL to provide the agents with more 

interaction scenarios. Also, the regular agent communication languages constructs from 

KQML or FIPA ACL could be incorporated with ACDL language constructs and in that 

way more generic XML parsers can be used to process KQML or FIPA ACL 

performatives (actions). 

41 



7. REFERENCES 

1. Banks, J., Carson, J., Nelson, B. and Nicol, D. (2005). Discrete-event system 

simulation - fourth edition. Pearson. 

2. Epstein, J.M., and Axtell, R.L. (1996). Growing artificial societies. Social 

sciences from the bottom up. Cambridge, MA: MIT Press. 

3. Gilbert, N. and Conte, R. (1995). Artificial Societies: the computer simulation of 

social life. UCL Press, London. 

4. Schelling, T.C. (1969). Models of Segregation. American Economic Review. 

Papers and Processdings 59 (2): 488-93. 

5. Schelling, T.C. (1971a). Dynamic Models of Segregation. Journal of 

Mathematical Sociology 1: 143-86. 

6. Schelling, T.C. (1971b). On the ecology of Micromotives. The Public Interest 25 

(Fall): 61-98. 

7. Schelling, T.C. (1978). Micromotives and Macrobehavior. Norton. 

8. North, M. and Macal, C. (2007). Managing Business Complexity: Discovering 

Strategic Solutions with Agent-Based Modeling and Simulation Oxford 

University Press: New York, NY, 2007 

9. Sawyer, R. K. (2003). Artificial Societies: Multiagent Systems and the Micro-

Macro Link in Sociological Theory. Sociological Methods Research 2003; 31; 

325. 

10. Malsch, T., Schlieder, C., Kiefer, P., Lubcke, M., Perschke, R., Schmitt, M. and 

Stein, K. (2007). Communication Between Process and Structure: Modelling and 

Simulating Message Reference Networks with COM/TE. Journal of Artificial 

Societies and Social Simulation vol. 10, no. 1. 

42 



11. Timm, I., J., Scholz, T., Herzog, O., Krempels, K. and Spaniol, O. (2006). From 

Agents to Multiagent Systems. Multiagent Engineering; International Handbooks 

on Information Systems. Springer Berlin Heidelberg. 

12. Sansores, C. and Pavon, J. (2005)Agent Based Simulation for Social Systems: 

From Modeling to Implementation. Lecture notes in computer science ISSN 

0302-9743. Springer, Berlin, ALLEMAGNE. 

13. Drogoul, A., D. Vanbergue, T. Meurisse.(2002) Multi-agent Based Simulation: 

Where Are the Agents? In: J.S. Sichman, et al. (Eds.): Multi-Agent-Based 

Simulation II: Third International Workshop, MABS 2002. Lecture Notes in 

Computer Science, Vol. 2581. Springer. Bologna, Italy (2002), 1-15. 

14. Wang, F., Turner, S. and Wang, L. (2005). Agent Communication in Distributed 

Simulations. Multi-Agent and Multi-Agent-Based Simulation; Agent 

Communication in Distributed Simulations. Springer Berlin / Heidelberg. 

15.Buzing, P., Eiben, A., and Schut, M. (2005). Emerging communication and 

cooperation in evolving agent societies. Journal of Artificial Societies and Social 

Simulation, 8(1). 

16. Eiben, A. E., Schut, M. C., and Toma, T. (2005). Comparing multicast and 

newscast communication in evolving agent societies. In Proceedings of the 2005 

Conference on Genetic and Evolutionary Computation (Washington DC, USA, 

June 25 - 29, 2005). H. Beyer, Ed. GECCO '05. ACM, New York, NY, 75-81. 

17. Buzing, P.C., Eiben, A.E., Schut, M.C., Toma, T. (2004). Cooperation and 

communication in evolving artificial societies. Evolutionary Computation, 2004. 

CEC2004. Congress on Volume 2, 19-23 June 2004 Page(s):2030 - 2037 Vol.2. 

18. Buzing, P.C., Eiben, A.E. and Schut, M.C. (2003). Evolving agent societies with 

VUscape. In W. Banzhaf, T. Christaller, P. Dittrich, J.T. Kim, and J. Ziegler, 

43 



editors, Proceedings of the Seventh European Conference on Artificial Life, 

volume 2801, pages 434-441. Springer Verlag, 2003. 

19. Silberschatz, A., Galvin, P. and Gagne, G.(2002). Operating System Concepts 

Seventh Edition. John Wiley & Sons, Inc. 

20. Lawson, B. and Park, S. (2000). Asynchronous Time Evolution in an Artificial 

Society Model. Journal of Artificial Societies and Social Simulation vol. 3, no. 1. 

21. Tobias R and Hofmann C (2003) Evaluation of free Java-libraries for social 

scientific agent based simulation. Journal of Artificial Societies and Social 

Simulation 

22. ROAD: Repast 3.1 (2005), available at 

http://repast.sourceforge.net/repast_3/index.html. 

23. Collier, N. (2003). RePast: An Extensible Framework for Agent Simulation. 

http://www.econ.iastate.edu/tesfatsi/RepastTutorial.Collier.pdf 

24. Axelrod, R. (1997). The Complexity of Cooperation: Agent-Based Models of 

Competition and Collaboration. Princeton, N.J.: Princeton University Press. 

25. Filippo Castiglione (2006). Scholarpedia Article, available at: 

http://www.scholarpedia.org/article/Agent_based_modeling 1 (10): 1562. 

26. Builder, C. H. and Bankes, S. C. (1991). Artificial Societies: A concept for basic 

research on the societal impacts of information technology. RAND Report p-

7740. 

27. Genesereth, M. R. and Fikes, R.E. (1992). Knowledge Interchange Format, 

Version 3.0 Reference Manual . Technical report logic-92-1, Computer Science 

Department, Standford University. 

44 

http://repast.sourceforge.net/repast_3/index.html
http://www.econ.iastate.edu/tesfatsi/RepastTutorial.Collier.pdf
http://www.scholarpedia.org/article/Agent_based_modeling


28. Woolridge, M. and Wooldridge, M. J. 2001 Introduction to Multiagent Systems. John 

Wiley & Sons, Inc. 

29. Artikis, A. and Pitt, J. (2001). A formal model of open agent societies. In Mueller, 

J., Andre, E., Sen, S., and Frasson, C., editors, Proceedings of the Fifth 

International Conference on Autonomous Agents, pages 192-193, Montreal, 

Canada. ACM Press. 

30. Davidsson, P. (2001). Categories of artificial societies. Lecture Notes in 

Computer Science, 2203. 

31. Davidsson, P. and Johansson, S. (2006). On the Potential of Norm-Governed 

Behavior in Different Categories of Artificial Societies. Computational and 

Mathematical Organization Theory, Vol. 12(2-3), pages 169-180, Springer, 2006. 

32. Gokturk, E. and Polat, F. (2003). Implementing agent communication for a multi-

agent simulation infrastructure on HLA. In Proceedings of the 18th International 

Symposium on Computer and Information Sciences, LNCS. Springer-Verlag. 

33. Pawlaszczyk, D.; Timm, I. J. (2007). A Hybrid Time Management Approach to 

Agent-based Simulation. In: Proc. 29th Annual German Conference on Artificial 

Intelligence (KI2006), LNCS, Vol. 4314, pp. 374-388. Springer, 2007. 

34. Braubach, L., Pokahr, A., Lamersdorf, W., Krempels, K. H. ans Welk, P. O. 

(2004): A Generic Simulation Service for Distributed Multi-AgentSystems. In: 

Trappl, R. (eds.): Cybernetics and Systems (Vol. 2), Vienna, Austria, (2004) 576-

581. 

35. Huang, j., Tung, M., Wang, K. and Lee., M. (2005a). Smart Time Management— 

the unified time synchronization interface for the distributed simulation. 

45 



Computer Standards & Interfaces Volume 27, Issue 2, January 2005, Pages 149-

161, 

36. Huang, j., Tung, M., Hui, L. and Lee., M. (2005b) An Approach for the Unified 

Time Management Mechanism for HLA. SIMULATION2QQ5\ 81: 45-56. 

37. Helleboogh, A., Holvoet, T., Weyns, D. and Berbers, Y. (2005a). Extending time 

management support for multi-agent systems. In Multiagent and Multiagent-

based Simulation, New York, USA, Lecture Notes in Computer Science, Vol. 

3415, 2005. 

38. Helleboogh, A., Holvoet, T., Weyns, D. and Berbers, Y. (2005b). Towards Time 

Management Adaptability in Multi-agent Systems. Adaptive Agents and Multi-

Agent Systems III (2005), pp. 88-105. 

39. Barreto, C., Burdett, D., Fletcher, T., Kavantzas, N., Lafon, Y., & Ritzinger, G. 

(Eds.) (2005): Web Services Choreography Description Language version 1.0. In 

W3C Candidate Recommendation. Retrieved November 9, 2005 from 

http://www.w3.org/TR/2005/CR-ws-cdl-l 0-20051109. 

40. Fredlund., L. (2006). Implementing WS-CDL. In Proceedings of the second 

Spanish workshop on Web Technologies (JSWEB 2006). Universidade de 

Santiago de Compostela, November 2006. 

41. Mendling, J. and Hafher, M. (2006) From WS-CDL Choreography to BPEL 

Process Orchestration. Technical Report JM-2006-07-24. Vienna University of 

Economics and Business Administration. 

42. Pu, G., Shi, J., Wang, Z., Jin, L., Liu, J., and He, J. (2007). The Validation and 

Verification of WSCDL. In Proceedings of the 14th Asia-Pacific Software 

Engineering Conference (December 04 - 07, 2007). APSEC. IEEE Computer 

46 

http://www.w3.org/TR/2005/CR-ws-cdl-l


Society, Washington, DC, 81-88. DOI= 

http://dx.doi.org/! 0.1109/APSEC.2007.93 

43. North, M. J. and Macal, C. M. (2005). Escaping the accidents of history: An 

overview of artificial life modeling with Repast. In Artificial Life Models in 

Software, A. Adamatzky and M. Komosinski, Eds. Springer, Heidelberg, 

Germany. 115--141. 

47 

http://dx.doi.org/


VITA AUCTORIS 

Muhammad Naushin Hasan was born in Chittagong, Bangladesh. He received his 

bachelor degree in Computer Information Systems at the University of Windsor. 

Currently he is completing his masters' degree in computer science from the University 

of Windsor and expects to graduate in May 2009. 

48 


	A Communication Choreography for Discrete Step MultiAgent Social Simulations
	Recommended Citation

	ProQuest Dissertations

