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Abstract

With commercial wind power generation coming of age, the majority of research
and development has gone into the design of turbine blades and the components within
the nacelle, leaving the turbine mast largely ignored. The author proposes a system for
the instrumentation and monitoring the modal properties of a commercial wind turbine,
as well as the design and creation of a model suitable for use in wind tunnel tests. This
is accomplished via a combination of experimental and theoretical methods. A system
for structural monitoring of the turbine will allow for early warning and preventive
maintenance of masts in the field. The model will focus on conditions where failure of
the mast is most likely to occur, such as severe weather events. These tools will prove

valuable in the design of masts as well as siting for wind farms.
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1.0 Introduction

In recent years wind power technology has emerged as a competitive and desirable
alternative to traditional methods of energy production. As it becomes more feasible, the
majority of research has gone towards the design of wind turbine blades and the
equipment in the nacelle; as a result, these subjects are discussed heavily in the
literature. Far less information is available on the design and analysis of the mast of
wind turbines, structures which have failed in the past. The author wishes to investigate
one of the failure methods, the excitation of natural frequencies. The excitation of these
resonant frequencies is undesirable in structures such as these due to the large forces the
resultant displacements exert on the structure.

With this in mind, this paper will cover two subjects regarding the modal properties
of the mast of a commercial wind turbine. The first will be the development and
implementation of a data acquisition system (DAQ) for use in a commercial wind farm.
The main thrust of this exercise is to be able to select the minimum number of locations
on the mast of a wind turbine that can be used to indicate if and when resonance is
induced in the mast. This is desirable for the sake of preserving the structure by
allowing engineers to detect whether or not a turbine is experiencing excitation around
its resonance frequencies. If these events are found to occur regularly, steps could then
be taken to avoid such occurrences. This is achieved through a combination of
theoretical, computational and experimental methods.

The second subject covered in this thesis is the creation of a physical model that
exhibits the same modal properties as the wind turbine, and is suitable for use in wind
tunnel tests. This will provide a proactive method that will allow engineers to study the
effect of severe weather and placement on a potential wind turbine design. Additionally
this method could be expanded to the investigation of severe weather events on wind
farms as a whole through physical modeling of entire sections of a farm, allowing for

exploration of turbine wake interactions on individual units.




2.0 Literature Review

2.1 Significance of Research

Modal analysis in its most basic form is a way of describing a system via the
characteristics that determine its natural frequencies. These characteristics are the mass,
stiffness, and damping of the structure. The most important result of these qualities
relates to what are known as the mode shapes and the natural, or resonant, frequencies.
These are the frequencies at which the structure exhibits a greater response in the form
of structural deflection and acceleration per unit of force applied to the structure
(Avitabile, 2001). Numerous papers have been published on the effects of resonance on
structures, usually bridges. The effects on the structure can range from inconvenient,
such as the displacements experienced by the Millennium Bridge (Strogatz et al., 2005),
to catastrophic, such as the Tacoma Narrows disaster (Billah and Scanlan, 1990). The
situation that gave rise to these events occurred when forces acting on the structure
oscillate in sync with a resonant frequency of the structure. This allows the force to be
amplified over successive oscillations causing the marked increase in amplitude in

structural displacement and acceleration (Abdulrehem and Ott, 2009).

Researchers at Riso National Laboratories in Denmark have recently published a
paper outlining recent developments and future challenges regarding the design of wind
turbines. One specifically mentions the need for greater knowledge of the wind turbine
mast. This is important due to the coupling that can occur between the tower and the
blades, leading to greater stresses on both (Rasmussen et al., 2003). Driving the need for
this knowledge is the current trend of increasing the size of wind turbines to increase
energy production. Commercial wind turbines have increased in power output by nearly
a factor of ten over the past decade. To enable this level of power extraction the turbines
have grown in size by three to four times. As this occurs, the relative stiffness of the
tower decreases making its flexibility and damping properties more relevant to the
longevity of the turbine. Further exasperating the issue is the fact that as turbine
components increase in size, their natural frequencies have the tendency to decrease,

bringing them down into the range where they could be more easily excited by
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aerodynamic forces and structural interaction (Hansen et al., 2006). Furthermore, as the
size increases the finical investment increases as well, making further investigation into

previously ignored systems more cost effective.

Recent studies have brought to light evidence that the electrical power systems used
in electrical distribution can cause a phenomenon called sub-synchronous resonance, an
event in which unintended voltages form in the electrical distribution system can
produce a harmonic force within the generator (Varma et al., 2008). When the
frequency of this applied force coincides with that of the generator shaft or other
components, such as the turbine mast, these modes are excited and failure can occur.
This event can excite modes in the low frequency range, about 1 or 2 Hz, and illustrates

the importance of studding the natural frequencies of wind turbine masts.
2.2 Structural Health Monitoring

Structural health monitoring is a method by which damage to a structure is
detected and, if possible, located through the use of sensors such as strain gauges and
accelerometers installed throughout a structure. It is based on the idea of building up a
database that makes up a picture of what the response of a new, or “healthy”, structure
looks like. Deviation from this baseline is an indication of damage to the structure and
ideally, the location and severity of the damage can be ascertained by the system. This
has been achieved with varying degrees of success on objects such as composite
concrete and steel beams (Chellini et al., 2008). More complex structures such as a
highway bridges and the blades of horizontal axis wind turbines have also undergone
structural health monitoring and damage localization under controlled conditions (James
et al., 1995). This method is dependent on building a healthy state database to use as a

datum as well as monitoring the structure for deviation from this baseline.

An approach developed at Sandia National Laboratories (SNL) is used to determine
fatigue damage and the subsequent effect of crack growth on the blades of wind
turbines. This method is dependent on loads derived from mathematical models or, real

loads determined from an operational wind turbine. These values must represent a




lifetime of use for the turbine components and require a long term data acquisition

system to provide this information (Veers, 1989).

During a test of the 34 m Test Bed Vertical Axis Wind Turbine (VAWT) at SNL,
two unforeseen significant events occurred while this turbine was operating near its
resonance frequencies. The first was during a high wind over-speed condition that
caused blade resonance. As the wind reached speeds in excess of 20 meters per second,
the power production of the turbine exceeded its generator capacity, causing the rotors
to rotate faster. As the rotor speed reached 32 rpm, it swept though the first blade
edgewise bending mode, causing a subsequent increase in stresses in the structure. As
the speed of the turbine further increased to 40 rpm, the first in plane tower bending
mode was excited, causing peak to peak stresses of over 100 MPa. The results from this

event are graphed in Figure 1.
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Fig. 1: Lead-lag Response in 17 m/s Winds (Ashwill and Veers, 1989)

The second event occurred during a cold day at normal operating speeds. Normally
the turbine is operated at a rotational speed above that the resonance frequencies of the
guy wires. On this exceptionally cold day, the guy wires underwent thermal contraction,

causing an increase in cable tension and subsequently shifting the resonant frequencies




up the spectrum and into the range of the current operating speed of the turbine. This
caused excessive vibrations in the cable and a peak to peak strain of nearly 40 MPa in
the blades as the cables began affecting the tower. This lead to an emergency stop,
during which, and for some time after, the cables continued to vibrate excessively

(Ashwill and Veers, 1989).

Another approach to structural health monitoring in wind turbines has been the use of
impact testing on a healthy wind turbine blade mounted in the field. A comparison is
then preformed between the initial healthy condition of the blade and that of the blade
with simulated damage applied to it by loosening the bolts connecting the blade to the
rotor hub. This study was unable to locate or conclusively detect the virtual damage in

the blade and the experiment was ruled inconclusive (Gross et al., 1998).

It has been noticed that vibrations in the blades can cause tower vibration.
Specifically classical flutter and stall induced vibrations have been investigated.
Classical flutter can prove to be problematic in pitch regulated turbines if the blade has
been designed with features that make it susceptible to such excitation, or if the tip
speed increases beyond its design limit due to over-speed. Stall induced vibration is a
problem often seen in stall regulated turbines. As the blade is operated in separatéd flow
conditions, turbulence is generated which acts on the blade. Currently, stall induced
vibrations from a deep stall, such as is found in parked turbines, is being looked at due
to the large loads that can be exerted upon a machine such as during severe weather

(Hansen, 2007).
2.3 Data Acquisition Systems

In the past, field modal analysis has been carried out on many different structures,
primarily bridges. As with this paper, the primary goals of these studies have been to
determine the dynamic properties and response of the structures conditions found in the
field. These studies often use accelerometers placed on the structure to determine its
dynamic response, and strain gauges to measure its static response (Sutherland et al.,

2001). This is generally satisfactory for structures such as those studied in the past by




SNL and Riso National Laboratories due to their relatively small size of less than 20m
in height. When larger structures are tested, a combination of strain gauges and
accelerometers used in concert to measure the dynamic response of very low frequency
vibrations can yield better results. It has been shown in field tests on the Tsing Yi South
Bridge, strain gauges have the ability to display low frequency modes with greater
clarity then accelerometers due to the limits on low frequency response that are inherent

in these instruments (Ashebo et al., 2007).

In a report by Riso National Laboratories, an applied modal analysis test of wind
turbine blades was executed. During selection of excitation methods, they made a
decision to use transient excitation supplied via an impact hammer. They cited the
difficulties of shaker methods in exciting frequencies below 1.5 Hz as the reason for the
decision. In the end they constructed an electrically driven impulse hammer in order to

provide repeatability in their measurement campaign (Pendersen and Kristensen, 2003).

It was realized early on during testing of SNL’s 17 m VAWT, that full modal testing
of a wind turbine was time consuming and labour intensive. It required a team of two
people two weeks to adequately characterise the structure. Because of this, the idea of
“mini-modal” testing was suggested, the idea that a computational modei could be used
in conjunction with a modal testing procedure of comparatively small scope could be
used to describe the modal properties of the turbine. The theory is that the
computational model could be verified and adjusted by this small scale testing. Over the
course of this project several methods of structural excitation were investigated
including step-relaxation (an excitation method that involves loading the turbine with an
anchored cable and then suddenly cutting the cable), human excitation (involving a
person physically grabbing and shaking the structure), wind induced or ambient
excitation, and impact excitation. It was determined that for small or very flexible
structures that a person was capable of moving by hand, human excitation was the most
effective and easiest to execute, due to quick set up and ease of implementation. Step
excitation was a good second choice, especially for structures that are too stiff or

massive to excite by hand (Lauffer et al., 1987).




2.3.1 34 m Test Bed

Early wind turbine tests aimed at characterizing the structural response of a
commercial scale wind turbine were carried out by SNL. Their early large scale test
turbine was a 34 m VAWT known as the 34-Meter VAWT Test Bed (Carne et al.,
1992). The structure initially underwent what they termed substructure modal testing, a
method that is used to verify the physical models developed by first testing and then
verifying the computational model for each component on its own before testing them
together in their installed state. This allows designers to troubleshoot their
computational models before the added complications of structural interactions. If all of
the individual component tests are predicted by the computational models with
reasonable accuracy then it can be assumed that they are correct up to this point. Once
the structure is assembled and tested, any discrepancies between the experimental
results and the computational model are likely due to the connections between the
components, thus giving the designer a starting location for debugging the code. First,
the two blades were tested, each blade being composed of five separate sections
composed of extruded aluminum, bent to the proper curvature. The blades were then
tested in a free-free condition by suspending them by soft bungees. This condition was
chosen because it is simple to create in the lab and relatively easy to simulate
computationally. Following this, the tower and guy wires were attached and tested. This
was done in situ to capture the effect that the unknown boundary condition at the base
of the turbine represents. The theoretical model was well validated in this test with the

exception of error generated from the structural supports (Carne et al., 1992).

Upon installation, 34 m test bed turbine was experimentally instrumented with
permanent strain gauges and removable accelerometers on the blades, mast, and guy
wires, and computationally modeled to determine its natural frequencies and mode
shapes, thus generating a healthy state baseline against which further tests can be
compared. Static, modal and operational tests of the turbine were carried out and
showed good correlation between the two results demonstrating that the Finite Element

Analysis (FEA) model accurately represented the turbine (Ashwill, 1988).




2.3.2 ATLAS

The ATLAS system consists of two or more DAQ’s, one rotor based unit (RBU)
and one or more ground based units (GBU) housed on the ground or in the nacelle of
the turbine. Of vital importance to the success of this DAQ system, is the
implementation of accurate time stamps in order to ensure that all collected data from
the various DAQ systems can be precisely related to one another. Without this, the
accuracy of the data and operations performed on the collected information becomes
suspect. When using relatively high frequency rates, it was found that in one day, two
DAQ systems could be out of step by one sample with each other. To solve this issue,
SNL began the practice of utilizing Global Positioning System (GPS) receivers to
ensure that separate subsystems, such a DAQ systems mounted on the turbine rotor, in
the nacelle or tower, and on meteorological towers were in sync with each other. The
signals transmitted by GPS satellites allow the disparate systems to remain in synch
with each other. Depending on the system configuration, this can be achieved via the
installation of a dedicated GPS card connected to a receiving antenna, or through a
dedicated GPS unit connected through a serial port connection. Even should the satellite
signal be lost for brief periods of time, the onboard clock in the DAQ is sufficiently

accurate to allow the data to
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Fig. 2: Schematic of a Typical ATLAS Setup (Berg and Zayas, 2001)




remain in sync for brief periods of signal loss. The data from these remote units can

then be transmitted and stored in a master computer either on or off site via spread

spectrum radio modems for short range communication or cellular modems when

greater distance is required (Berg and Robertson, 1998).

The above research soon developed into one of the best examples of a long term

structural monitoring program that has been designed for commercial use. The Long-

Term Inflow and Structural Test (LIST) Turbine is a program executed by SNL in

Bushland, TX, on a 23 m modified Micon 65/13 turbine. A modal survey of the tower

was conducted to locate the first two modes of the structure. The survey was not

however, conducted with the nacelle installed and therefore, not indicative of the modal

Fig.3: LIST Turbine in Bushland, TX
(Sutherland et al., 2004)

response of the tower while in service

(Sutherland et al., 2001).

The first generation of the data acquisition
system is known as the Accurate Time-Linked
Data Acquisition System (ATLAS). It employed
a rotor based unit that utilized strain gauges to
monitor the turbine blades, and another ground
based unit to monitor the drive train as well as
loading on the turbine tower. This first
generation ATLAS system was installed in
August of 1998 on an Atlantic Orient
Corporation 50 kW turbine in Bushland, TX,
seen in Figure 3 (Berg et al., 1999). The tower
itself was only insturmented with strain gauges
used to detect bending at 3.9 m above the base
of the turbine. The remaining strain gauges as
well as all of the accelerometers were distributed

along the blades and in the nacelle (Sutherland




et al., 2005).

The DAQ installed on the LIST turbine was designed to characterise the inflow,
structural response, and turbine state with 60 sensors, 34, 19, and 7 sensors respectively,
in order to develop the most complete picture of the affect that inflow has on the
structural response of the turbine. They utilized a scanning rate of 30 Hz for the
instrumentation, which yields a Nyquist frequency of 15 Hz that is sufficient to both
capture the pertinent information of the turbine as well as prevent aliasing of the signals.
This relatively high sampling rate was required to ensure sufficient resolution to capture
events that had short time spans and low frequency of occurrence, such as gusts, as the
traditional method of averaging out the wind speeds over the ten minute interval
provides insufficient resolution to capture such events. They then broke the data into the
industry standard of bins of 10 minute interval packages based on the mean wind speed,
after discarding data that was below the cut in speed of the turbine determined the
correlation of inflow with fatigue on the structure. Their results showed that if the data
is captured with sufficient frequency, then a correlation between the inflow and the

structural response of the turbine can be readily obtained (Sutherland, 2002).

The LIST program increased its scope with the implementation of a structural
monitoring program on a 600 kW turbine located at the National Wind Technology
Center (NWTC) near Boulder, CO. This area is a mountainous region meant to stand in
contrast to the original turbine site in Bushland, TX, which is representative of a Great
Plains site. This turbine was instrumented primarily to monitor flapwise and edgewise
bending at the root of the turbine blades. While also incorporated an inertial
measurement unit (IMU) installed in the nacelle, the paper presented dealt only with the
measurements from the blade itself, and found that a good correlation could be reached
between the inflow and the high end of the bending moment distribution (Sutherland
and Kelley, 2003).

The ATLAS system was designed to be easily accessible to the public and private

companies, and was constructed from off the shelf, commercially available parts. The




main thrust of this system was to monitor the vibrations and strain located in the nacelle
and rotor as evidenced by the rotor based data acquisition unit (RBU) as well as the
nacelle based data acquisition unit (NBU). One of the most important parts used in this
system in the inclusion of separate GPS receivers integrated into each unit that allows

all units to be accurately synced with one another (Berg and Zayas, 2001).

More recently, the ATLAS system has received minor upgrades to the to the
hardware configuration in order to improve GPS reception among other issues, but the
majority of the changes have been to the software component. The interface has recently
been upgraded from a combination of the DOS/Windows software to a Windows system
that utilizes National Instruments’ LabView software. The change was made to make
use of LabView’s more fluid and easy to understand graphical programming language
in order to facilitate that program’s goal of creating a DAQ system that is simple to use

and easy to implement (Berg et al., 2000).

In the past the major threat to the ATLAS system were lightning
strikes(Sutherland et al., 2001). As turbines and requisite meteorological towers are
often located in areas where they are the tallest structure, they tend to attract these
events. As a result the system was shutdown within ten days of first becoming
operational, and these events have been the major source of downtime. In order to
remedy this situation, several layers of lightning protection have been implemented.
These precautions include an extensive electrical grounding network, connecting all
towers, guy wires buildings and electronics cabinets to ground in order to channel the
energy away from sensitive electronics, as well as protecting circuits with high speed
gas/diode lightning protection circuits and using fibre optics in place of electrical cable

where necessary (Sutherland et al., 2001).
2.3.3 Meteorological Equipment

Due to their moving parts, cup anemometers have been found to be more susceptible
to failure due to inclement weather; whereas sonic anemometers are less susceptible to

damage from environmental conditions such as high wind and hail. To increase
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reliability, sonic anemometers can be added to conventional systems, especially in areas
subject to severe weather. Specifically, many of the cup anemometers at the site of the
LIST turbine in Bushland, TX were destroyed during periods of severe weather

(Sutherland et al., 2005).

Despite the apparent shortcomings of cup anemometers they are still useful to have
on site. They have been heavily researched and have become the industry standard in
the wind energy community, finding homes in various standards and methodologies.
Conversely, sonic anemometers have made great strides in the last decade, and their
inherent advantages over cup anemometers make them a possible successor. These
strengths and short comings have both been investigated in the ACCUWIND project
(Pedersen et al., 2006). This project attempts to bring emerging technology such as
sonic anemometers, into line with industry standards to allow industry access to a
broader range of instruments. As a result, it is beneficial to have both instruments on
site in order to benefit from the capability of the sonic anemometers while having cup
anemometers available to allow straightforward comparison of data between different

test sites.
2.3.4 Strain Gauges

Studies involving the use of strain gauge monitoring of wind turbines can be found in
the papers on the Variable Speed Test Bed wind turbines out of SNL. Tests to obtain
damage estimates for a machine using a variable speed control algorithm were carried
out on a ten meter downwind machine, using strain gauges installed on the turbine
blades (Sutherland and Carlin, 1998). Further testing by Sandia was conducted to
provide a comparison of different sensor types when used to detect structural damage to
the blade during fatigue tests. The experiment used conventional piezoelectric
accelerometers and strain gauges as well as micro-fibre composite (MFC) and acoustic
sensors. They found that accelerometers and strain gauges were both effective in
detecting damage while the acoustic and MFC sensors were notably less so. The

acoustic gauges were likely less effective due to the sound attenuation because of the




composite nature of the turbine blade (Rumsey et al., 2008). Further investigation into
this experiment yielded evidence that a method of determining optimal sensor locations
needed to be found. The sensors on the turbine blade were not ideally arranged to detect
and locate the areas in which damage occurred. The biggest challenge is properly
locating sensors in a way that can pinpoint locations of damage while still being able to

monitor the entire structure. (Rumsey and Paquette, 2008).

RISO National Laboratories launched a project with the goal of advancing wind
turbine technology and reducing costs by outlining methods for the structural health
monitoring of wind turbine blades. This project was executed in conjunction with the
Sensor Technology Center, DELTA, InnospeXion, FORCE Technology and LM
Glassfiber (Sorensen et al., 2002). In a way similar to the project conducted by SNL
mentioned above, a portion of the project concerned itself with determining what
instruments are best for different types of damage detection. They employed acoustic
emission, fibre optic micro bend displacement transducers, and strain gauges. During
test stops, ultra sonic and X-ray surveillance was employed to monitor the spread of
damage. During this test artificial damage was inflicted on the turbine blade in the form
of a notch in the laminate at the trailing edge of the blade followed by creating adhesive
failure at the trailing edge. The strain gauges were capable of measuring the
redistribution of strain in the system caused by the failures. Acoustic emissions were
useful for detecting crack propagation before it became visible, as well as being able to
determine the position and severity of the damaging events causing the sound. Fiber
optic micro-bend displacement transducers can determine crack propagations, and show
some promise for use in determining crack size. Finally both the X-ray and ultra-sonic
imaging devices are useful in locating the size and location of damage to the blade

(Kristensen et al., 2002).

The ATLAS/LIST structural monitoring program provided researchers with a great
deal of data. This allowed them to not only monitor, but to also characterise the turbine
extensively, and begin research into how various inflow parameters affect turbine

component life. A sequential analysis, as opposed to traditional multivariate regression,
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was carried out on the LIST test data to determine which of several different parameters
may have an effect on component life. Two parameters were used as a basis, the mean
wind speed and the standard deviation of the wind speed at hub height, and sixteen other
variables were selected to determine their relative importance on turbine lifetime. The
study found that the majority of these parameters did not have an appreciable impact on
turbine fatigue, epically when compared with the impacts that both mean wind velocity
and turbulence (Nelson et al., 2003). Further study into the importance of these
variables using long term data gathered through the LIST program corroborated these
results, and showed that the sixteen residual variables have almost no impact once

removed from mean wind speed and turbulence, as seen in Figure 4 and the importance
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Fig.4: Regression of Primary Inflow
Parameters on Edgewise Bending in Fig. 5: Residuals After the Removal of the
a Turbine Blade Dependence on the Primary Inflow Parameters
(Sutherland et al., 2004). (Sutherland et al., 2004).

of both turbulence and mean wind speed at hub height can be seen in Figure 5

(Sutherland et al., 2004).

RISO, under the Technical University of Denmark (DTU), has begun a commercial
wind turbine monitoring program in the same spirit of the LIST project with the added
mission of providing turbine data and operational experience to its students. A 36 m tall
grid connected, stall regulated Nordtank, NTK 500/41 wind turbine has been installed

on campus and instrumented with metrological tools describing inflow, structural
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response sensors, control and power measurements and electrical measurements to
measure interactions with the power grid. In order to monitor structural response, strain
gauges have been placed on the blades, rotor hub, and the turbine tower. The turbine
tower sensors consist of two instruments for measuring bending moments at the base of
the shaft and one torsional sensor located at the top of the tower. This project has
provided a variety of structural response measurements in a long term data set that has

proven useful for research and education (Helgesen et al., 2008).
2.4 Computational Modeling

Early computational modeling was conducted on all the turbines worked on by SNL.
The 34 m test bed, a darrieus style VAWT, was modeled several ways. While stationary
the FEA code NASTRAN was used to determine the gravity loads via a static solution.
As the rotor began to turn and speed up, the situation grew more complex and
NASTRAN, along with a method developed by SNL, was required to adjust the
stiffness matrix by including the effects of centrifugal softening and coriolis forces. This
led to a change in the natural frequencies of the turbine as described in Section 2.2

(Ashwill, 1989).

Early experiments comparing FEA and experimental modal analysis techniques
were performed at Sandia National Laboratories. Their early test specimen was a2 m
VAWT. They developed a FEA model of the turbine and then conducted modal tests on
the specimen through modal impact testing during a standstill state, using a
pretensioned cable for excitement for the rotating case, as well as using a combination
of strain gauges and accelerometers to collect modal data. The experiment showed that
good correlation between the experimental results from both the rotating and stationary

tests, and computational results is possible (Carn et al., 1982).

One of the earliest referenced computer codes for determining damage and life
expectancy was the Life2 computer code out of SLN. It was a system written in
FORTRAN and concerned itself with determining the lifetime of a turbine component

by determining when crack initiation and crack growth would occur (Sutherland, 1989).

15



Currently there are several different types of programs for simulating aeroelastic
models of wind turbines available on the market. They range from simple procedures
such as those developed by RISO National Laboratory and the International
Electrotechnical Commission (IEC) Annex which model the structure as a simple one
degree of freedom system that is useful for modeling the first natural frequency of the
tower, to more complex full system models such as those put out by Garrad Hassan
known as GH Bladed and the F atigue, Aerodynamics, Structures, and Turbulence
(FAST) program developed by the United States National Renewable Energy
Laboratory (NREL) (Prowell and Veers, 2009).

RISO has tested a computational aeroelastic modeling software called HawC, a
code specifically designed for horizontal axis wind turbines (HAWT). It is a FEA
modeling software notable in that it has rotating substructures, such as the rotor and
components within the nacelle, which is not satisfactorily handled in other FEA
software. It is a code based on representing the structures as two dimensional prismatic
elements and divides the structures into three substructures, the rotor, nacelle, and
tower. This code has been verified through field tests, with the difference between the
computational and experimental values accounted for through drift in the sensors

(Larsen and Volund, 1998).

RISO has also investigated the loading case of a locked rotor during severe wind
conditions in the KNOW-BLADE project. Currently such loading conditions are based
on the Blade Element Momentum (BEM) or the lifting line method, both of which use
tables for values of lift and drag for the airfoil. This work investigated the use of
computational fluid dynamics to obtain these loads. This method of characterizing the
loads on a parked turbine was quite successful at reproducing measured values from
field experiments and it is hoped that this method can be used in the future to help refine

design parameters for parked turbines (Sorensen et al., 2004).

Operational modal analysis using strain gauges has been performed on wind turbines

in order to determine the structural damping of the system. They did not however




implement a long term monitoring system. The exciter methods used involved
generating forced responses via generator torque, which is not a method capable of
exciting modes above a certain frequency, they also used operational modal analysis

(Hansen et al., 2006).

In a study aimed at simplifying aeroelastic models, researchers have attempted to
extract equivalent beam properties from wind turbine blades. This procedure attempts to
ease the construction of aeroelastic models by taking a structure as complex as a turbine
blade and breaking it down into either a single beam element or several beam elements
by using loading on the blade to generate a six by six stiffness matrix from which the
equivalent beam or beams can be extracted. Currently the process is still in its infancy
and relies on passing data between NuMAD, ANSYS, MATLAB,
ADAMSpreprocessor, and Excel as well as separate code for each program (Malcolm
and Laird, 2007).

Wind turbines have been modeled via FEA, in which the turbine tower, nacelle and
blades are all subdivided into beam elements. A report out of RISO National
Laboratories modeled the turbine using Timoshenko beam elements and computed
aerodynamic forces by the BEM method. Through this method, they have managed to
calculate natural frequencies, logarithmic decrements and mode shapes of the
aeroelastic turbine modes. The study managed to find good agreement between the
computed and experimentally measured damping from a stall regulated 600 kW turbine
(Hansen, 2004).

2.5 Modal Modeling

This section deals with the creation of physical, aero-elastic modeles of various types

for the purpose of studying modal properties of wind turbines.
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When scaling down large structures, such as the Jindo Bridge in South Korea, mass
and stiffness need to be carefully controlled via the selection of materials and placement
of masses (Caetano et al., 2000). The Jindo model used an aluminum alloy in order to
reduce the stiffness of beam elements. Similarly, masses were required to be added to
the cable stays in order to compensate for the extremely light dead weight resulting

from using piano wire as seen in Figure 6.

~Cablett

LEQmm

Fig. 6: Schematic of Jindo Bridge Model (Caetano et al., 2000)

When designing a physical model, special consideration must be given to any
structure that has what is conventionally thought of as a fixed point. For normal
structural analysis, a foundation can usually be considered as being a fixed support
which would effectively turn a wind turbine into a cantilever beam. While this situation
is extremely easy to simulate computationally, it cannot be easily replicated in an
experimental situation. Far simpler to replicate experimentally, and as easy to recreate
computationally is a free-free condition, in which the specimen can be suspended by

soft springs (Ewins, 2000 and McConnell and Varoto, 2008).

Wind tunnel testing is expected to give good results when replicating the
environmental conditions in the field. A study was conducted on a 2 m darrieus wind
turbine in order to investigate the effects of field conditions on a wind turbine, with an
eye towards maintaining consistent Reynolds numbers. The experiment showed that the
power coefficients, or Cp values, which are a standard method of evaluating the power

output of a turbine, obtained in the field could be nearly replicated during wind tunnel
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testing. The Cp for field values was 0.34 while that of the wind tunnel was 0.32 as long
as the Reynolds numbers are kept constant (Sheldahl, 1980).

Further testing on this 2 m darrieus VAWT was conducted to determine the effect
of rotation on the modal properties of the turbine (Carne and Nord, 1983). An
unexpected result of the testing was that the stand that was added to the turbine in order
to increase ground clearance greatly affected the turbine, complicating the modal
properties of the overall system. This was despite the fact that the four foot steel channel
stand was relatively stiff compared to the wind turbine. The steel stand was later
dropped in favour of anchoring the structure directly to a concrete pad. The tests were
then conducted and the results summarized below. As seen in Table 1, there is a trend
for most of the modes to shift up the frequency spectrum as the rotor rpm increases. In

some cases these shifts are quite large.

0 rpm 300 rpm 600 rpm

Mode Descrption Pn | orcieay | tim | ceotciey | | aim ) | ofCriiea

1st antisymmetric flatwise 123 1.6 148 12 18.5 18
1st symmetric flatwise 12.5 16 14.2 14 17.7 0.4
1st rotor out-of-plane 15.3 0.7 108 1.7 5.9 29
1st rotor in-plane 156.8 0.6 21 04 25.7 0.3
Dumbbell 24.4 18 26.5 0.5 30.7 0.16
2nd rotor out-of-plane 26.2 0.5 242 1 19.6 0.7
2nd rotor in-plane 283 0.5 30.6 13 30.9 0.6
2nd symmetric flatwise 29.7 05 326 2 39.2 0.5
2nd antisymmetric flatwise 315 0.9 338 0.5 40 0.9
3rd rotor out-of-plane 36.5 1.1 38.2 11 41.4 15

Table 1: Modal Frequencies and Damping Ratios for a Stationary and a Rotating Darrieus
Wind Turbine (Carne and Nord, 1983)

The testing of VAWT’s continued with the creation of the 110 m tall EOLE wind
turbine in Quebec Canada. Again, it was determined that due to the large size and
relatively low frequencies that are expected in such a large structure, both natural
excitation via ambient wind and step-relaxation would be used. It was concluded that as

turbines became larger in size, step-relaxation, which in this case required the ability to
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apply a 135 kN load to the turbine, becomes impractical. Thick cables, explosive cable
cutters, expensive fixtures, significant ground support and a winch capable of exerting
135 kN are all required for a successful test. These materials are not only time
consuming to install but are also extremely expensive and hazardous when in use

(Carne et al., 1987).
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3.0 Objectives

The goal of this thesis is the creation of a methodology to enable improved
monitoring and design of commercial wind turbine masts. To this end there are three
subsections. The first is the implementation of a short term data acquisition program
that will assist in finding potential sensor positions for the instruments connected to the
long term structural system. The second is development of a long term environmental
and structural monitoring program developed with an eye towards monitoring
environmental data and modal response of the mast. The final section deals with the

creation of an aero-elastic model.
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4.0 Data Acquisition System

The goals of the data acquisition is to adequately and economically determine the
modal properties of the system, as well as to develop a database that can be used in
future research into the health of the wind turbine. Two data acquisition systems will be
implemented to collect and monitor this data. The experimental set-up for this project
consists of two parts. A long term DAQ designed to remotely obtain both structural and
environmental data, and a short term modal analysis system intended to conduct a
modal survey of the turbine tower and obtain data regarding the structural properties via

impact testing.

4.1 Short Term Data Acquisition System

The primary goal of short term modal impact testing is to provide a general view of
the modal response of the mast in order to evaluate locations for the instrumentation to
be used in the long term structural monitoring system. Additionally, it is used to
evaluate the modal properties of the mast such as its natural frequencies, mode shapes,
and damping ratios that will be used to assist in the design of the modal model. This
data will be used to validate the model by comparing it to data that has been obtained
from similar tests conducted on the model. This particular method of testing was
selected in an attempt to combine ease of application with cost savings.

4.1.1 Objectives
The objective of this system is to rapidly, simply, and cost effectively conduct a

modal survey of the tower in order to obtain data regarding the natural frequencies and

mode shapes of the system in a simple and non-invasive manner.

4.1.2 Methodology
Standard practice for modal testing of large scale structures generally involve
attachment of strain gauges and accelerometers to the structure and applying energy.
The method of applying this energy usually takes place trough the step relaxation
method or a shaker. Both of these methods were explored and dismissed.
Step relaxation was not appropriate for the system due to the fact that a mounting

block upon which to attach the cable of sufficient size did not exist on site. As well, the
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expense of a large cable and winch of sufficient strength makes the procedure difficult.
Additionally, suggesting a method that on the surface appears to put the structure at
great risk would reduce confidence in the practitioner’s ability. These reasons,
compounded by the difficulty of attaching and reattaching the cable to the wind turbine
between tests, make this procedure infeasible.

Shaker testing was discarded simply due to expense and logistics. Shakers of the size
required are large, expensive, and driven hydraulically. In general these devices are not
bought, but rented making it difficult to respond to the schedule of the wind farm. In
addition to the cost, the mass and hydraulic power source of the shaker makes it difficult
to move around the structure. Since the shaker must be solidly affixed to the turbine,
there would be many restraints on its placement.

A large impact sledge was decided upon as the desired solution. This device is large
enough to excite structures of this size, and is relatively inexpensive compared to other
options. It also has the added benefit of being compact enough that the point of
excitation can be moved about the tower.

In the choice between strain gauges and accelerometers, accelerometers were
selected for this system. While strain gauges are cheaper per unit, the sheer number of
strain gauges required to characterize the entire structure would make them cost
prohibitive. Coupled with the time and difficulty of installing strain gauges while
suspended from the access ladder, an accelerometer equipped with a simple magnetic
base proves to be the best option.

4.1.3 Procedure

In order to determine mode shapes and natural frequencies, a roving accelerometer
impact test was performed. For this test, two accelerometers were affixed to a magnetic
base using hot glue. Two accelerometers were used in order to allow one to verify the

other.

The accelerometers are placed at the base of the wind turbine. The structure is then
excited at a location on the first platform, in a specific direction with the impact sledge

equipped with a soft rubber tip affixed to a load cell attached to its head. At each
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accelerometer location, the structure is struck five times and signals from the hammer
and accelerometers are recorded, analyzed, and used to produce an frequency response
function (FRF) curve. Finally the vibration in the mast is allowed to settle between
strikes. The Supervisory Control and Data Acquisition System (SCADAS) generates
feedback regarding the input, output, coherence and the FRF function allowing the user
to determine whether or not to use each hit in the average FRF for that point. Following
the five strikes, the accelerometers are moved up the side of the turbine, and this test is
repeated at predetermined locations, as indicated in Figure 7 and Table 2. As seen from
the figure, special attention was given to the flanged connections, and more samples

were collected in these areas.

The selection of the number of sample locations is entirely dependent on the time
available in the field. The more samples that are taken allow for a clearer picture of each
mode shape of the turbine. This is epically important for higher natural frequencies
where the mode shapes become more complex and require greater resolution to generate
a clear and accurate picture. The sample locations are equally spaced which will help to
generate a clear picture. Near the base of the turbine, this was not an option due to

limited access to the tower due to generating and control equipment.

While the SCADAS system is capable of resolving natural frequencies and mode
shapes up into the thousands of hertz, the focus will be on the low frequency spectrum

between 0 and 50 Hz.
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Name Height Name Height
(m) (m)

TurbineTower: 1 0.3 | TurbineTower:26 42 .4
TurbineTower:2 0.8 | TurbineTower:27 42.5
TurbineTower:3 5.0 | TurbineTower:28 42.6
TurbineTower:4 8.0 | TurbineTower:29 42.7
TurbineTower:5 10.0 | TurbineTower:30 42.8
TurbineTower:6 12.0 | TurbineTower:31 44.0
TurbineTower:7 15.3 | TurbineTower:32 46.0
TurbineTower:8 15.4 | TurbineTower:33 48.0
TurbineTower:9 15.5 | TurbineTower:34 50.0
TurbineTower:10 15.6 | TurbineTower:35 52.0
TurbineTower:11 15.6 | TurbineTower:36 54.0
TurbineTower: 12 15.8 | TurbineTower:37 56.0
TurbineTower:13 15.9 | TurbineTower:38 58.0
TurbineTower: 14 16.0 | TurbineTower:39 60.0
TurbineTower:15 18.0 | TurbineTower:40 62.0
TurbineTower:16 20.0 | TurbineTower:41 64.0
TurbineTower:17 23.0 | TurbineTower:42 66.0
TurbineTower:18 25.0 | TurbineTower:43 67.0
TurbineTower: 19 28.0 | TurbineTower:44 70.0
TurbineTower:20 31.0 | TurbineTower:45 72.0
TurbineTower:21 33.0 | TurbineTower:46 74.0
TurbineTower:22 36.0 | TurbineTower:47 76.0
TurbineTower:23 39.0 | TurbineTower:48 78.0
TurbineTower:24 42.2 | TurbineTower:Hammer 6.6
TurbineTower:25 423

Table 2: Accelerometer Locations on Wind Turbine
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Fig. 7: Accelerometer Locations on Wind Turbine
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4.1.4 Results

The roving accelerometer test of the field turbine identified a number of natural
frequencies of the structure. These frequencies are determined from the locations of the
peaks on the FRF curves in Figure 8 and Figure 9. The y axis is in units of g/N. This
represents the acceleration observed in the structure when a 1N force is applied to it.
This helps to normalize different readings taken from impact tests, to help allow for the
fact that operators are unable to apply the same amount of force to the structure with
every test. These peaks represent frequencies at which the response of the turbine per
force input into the system increases. The results are also summarized in Table 3, which
shows the correlation, as a percent, for each mode shape. Figure 10 is a graphical
representation of Table 3.

When using the FRF curves to determine resonance frequencies of the system,
extraneous results need to be eliminated. They were removed through two methods. The
first was eliminating low level response peaks that can be seen dominating the lower
portion of the graph. These peaks represent system noise as well as resonance
frequencies that yield a low enough response that they can be considered trivial
compared to the major frequencies, or are localized frequencies occurring due to
resonance in nearby components. The other method involved correlation of mode
shapes. The system often picks up several natural frequencies that are very close
together both in frequency and mode shape. The “true” resonance frequency is selected

by picking the shape that yields the highest response.

The FRF curves seen in Figures 8 and 9 were taken on two separate occasions and
show close correlation to one another. This not only shows that the method is consistent,
but also disputes the idea that enviromhental conditions have a substantial effect on the
results of impact testing. Figure 8 is the result from the original attempt to characterize
the turbine, and there is evidence of the first mode shape around 2.5 Hz, the area where
we expect to see the first natural frequency for a structure of this size. For the rest of the
peaks, there is clear agreement between the two charts. Figure 9 was the result of the

second attempt to acquire modal data. In an attempt to better characterize the system,
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the resolution was increased and this lead to poorer results as the instruments began to
capture extraneous readings that lead to readings of false or inconsequential resonance,

especially at very low frequencies.

13

Fig. 8 Exterior of Field Turbine Fig.9 Interior of Field Turbine

.
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Fig. 10: FRF for Wind Turbine on Apr. 29, 2009
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Frequency Mode 1 Mode 2 | Mode 3 | Mode 4

(Hz) 16.2 Hz | 30.5Hz | 60.3 Hz | 78.1Hz
Mode 1 16.2 100.0 4.1 0.3 7.0
Mode 2 30.5 4.1 100.0 0.1 9.8
Mode 3 60.3 0.3 0.1 100.0 37.3
Mode 4 78.1 6.9 9.8 37.3 100.0

Table 3: Modal Assurance Criterion
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Fig. 12: Modal Assurance Criterion Matrix

4.2 Long Term Data Acquisition System

The long term DAQ was designed to utilize existing, onsite equipment, as well as
allow integration of other instruments from different parties, and coordinate this
equipment. Due to issues with installation and integration with the existing equipment,
this plan was not implemented but it is the hope of the author that these plans will be put

into action in future projects. Proof of concept has been obtained though the data

acquisition system that has been installed.
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4.2.1 Objectives
The long term structural response DAQ is intended to provide wind farm operators
with an integrated system that can be easily applied in the field to monitor the response
of the turbine mast and identify environmental conditions which have the possibility of
exciting the resonance frequencies in the mast, exposing the turbine to conditions likely
to cause structural damage.
4.2.2 Methodology
As with the short term modal testing method mentioned above, the methodology and
components selected were chosen with cost savings and ease of application in mind to
ensure that this remains a useful tool.
4.2.3 Procedure
The system for collecting long term structural data was designed to utilize existing
equipment on site as well as keeping cost savings in mind. To this end, strain gauges
were chosen over accelerometers. While a difficult to install initially, they are able to
provide reliable, long term data acquisition, and are inexpensive. Strain gauges are
capable of monitoring modal signals from large structures and have several advantages
over accelerometers which are traditionally used for this purpose. Strain gauges are
capable of detecting lower frequency responses then accelerometers, as accelerometers
have a minimum frequency sensitivity beyond which their accuracy begins to quickly
fall off. Additionally, strain gauges are more inexpensive then accelerometers,
particularly speciality accelerometers that are designed for low frequency response

needed in a large structure such as this.

The strain gages will be driven by 4-20 mA transmitters, a reliable device that has
been used for decades to drive sensors over long distance with little signal loss. As well,
18 AWG (American Wire Gauge), shielded cable was selected to ensure good signal
quality, as well as to reduce interference created by the generating equipment in the
turbine nacelle and tower. To utilize existing equipment, two Campbell Scientific

CR800 DAQ’s are used in the design. Furthermore, monitoring of environmental data
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needed to be addressed so that the structural signals can be related to wind conditions.
Finally the need for coordination, and transmission of any data would need to be
addressed.
4.2.4 Results

The final design of the long term data acquisition system is as follows. 350 Ohm
strain gauges were selected as the sensors. The strain gauges are powered by 4-20 mA
transmitters over an 18 AWG shielded cable. These transmitters are useful in this
application due to their ability to attenuate the small changes in resistance and noise
associated with long cables. The voltage drop occurring across a resistor is then read by

the DAQ system. The gauges are installed in a vertical column along the inside of the
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Fig. 13: Comparison of Accelerometer Sensitivity with Perpendicular Axis

mast. This was done to allow ease of installation, as the majority of the mast is
inaccessible except for locations near the access ladder and tower platforms. This
method is acceptable due to experiments that have shown that good response is still
achieved even when the sensor is located 90 degrees from the direction of application of

the exciting force acting on the structure; see Figure 11 Comparison of Sensor
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Sensitivity, where the black line represents the response in the principal direction and
the gray represents the response in the off direction.

The DAQ’s intended for use in this system are two CR800 DAQ’s from Campbell
Scientific that were available for use onsite. Each CR800 will be responsible for
monitoring up to five strain gauges. The CR800s have a maximum scanning rate of 100
Hz and cannot scan all channels simultaneously; meaning that the maximum frequency
range will be limited to one half the maximum scanning rate to prevent aliasing, divided
by the number of sensors monitored. For example, three strain gauges per DAQ would
give a maximum range of (100/2/3=16.67) 16.6 Hz. This allows some flexibility in the
system, allowing to user to either monitor more or less strain gauges at the cost of
frequency range.

These CR800’s then pass their data on to a CR1000 DAQ. This system acts as a hub,
responsible for receiving incoming signals from other DAQ systems, the structural
response monitoring system, the environmental monitoring system, GPS signals and

DAQ systems. It then packages the data and stores it until it can be transmitted to the

University.

The GPS unit connected to the CR1000 is
required for ensuring proper time stamping of all the
data, thus ensuring that drift does not occur, which
would cause the signals to move out of sync with
each other.

Finally the CR1000 has two communication

systems at its disposable. A spread spectrum radio
modem allows communication with the

meteorological instruments. The cellular modem

enables users to dial up the system remotely and

receive the data via the internet. This is necessary Fig. 14 R.M Young 8100

due to the remote location and inaccessibility of the Sonic Anemometer

system.
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Weather conditions are monitored by instruments currently used by the wind farm
to gather environmental data. These include a number of Cup anemometers, wind veins,
and sensors for rain fall and humidity. Additionally, a R.M. Young 81000 ultrasonic
anemometer, Figure 12, was integrated with this system. This instrument has been
calibrated by Campbell Scientific, and verified in the University of Windsor fluids lab
wind tunnel with the cables that will be used during installation. This check shows that
the device functions well despite the long cable required for installation on the
metrological tower. Calibration and specification sheets have been included in
Appendix A. The advantages of this instrument include the ability to sense short
variations in wind speed, the capability to measure wind speed in all three directions.
This data, along with information regarding the turbine operating state, will be gathered

into ten minute interval data packs and shared with the University of Windsor.
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5.0 Computational Modeling

5.1 Objective

The purpose of computational modeling is to serve as a design aid for the
construction of a physical model of the wind turbine. This will be done in two ways.
The first will be design and construction of a modal analysis program using a Matlab
program that reads data from Microsoft Excel spreadsheets. The second is by using a

commercially available structural analysis package, ANSYS 10.

5.2 Methodology

The computational model will be used to design a physical model of the test turbine

at a scale of 1 to 53.33. The model will be based on the equation:
([k]-@’[mD)p=0 [Eq.1]

where k and m are the stiffness and mass matrices, o is the natural frequency of the

undamped system, and V is a vector representing the shape of the system. Through
application of Cramer’s rule, we see that the solution of the set of the simultaneous

equatibns is of the form:
b= [Eq.2]
= - _ q.
[€]- & [m]|

which leads to:
kl-o2[m]=0 [Eq. 3]

This is the equation that will be used to determine the natural frequencies of the test

turbine and the model.

By iterating this equation over the desired frequency range, the values of o that

satisfy this equation and thus, the natural frequencies of the system can be found.
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Matlab will be used to perform this iteration and the code for the program is included in

Appendix B.

The mass matrix is of the form:
[m|=mi[M] [Eq.4]

where m is the mass per unit length of the segment, L is the length of the segment and
[M] is a diagonal N by N symmetric matrix, identical for all structures having N degrees

of freedom.

The stiffness matrix is of the form:

[k]=%[1<] [Eq.5]

where E is the modulus of elasticity of the material, I is the moment of inertia of the
cross sectional area, and [K] is a N by N symmetric matrix that is identical for all
structures having N degrees of freedom and similar boundary conditions. The matrices
are constructed by assuming that each beam element has four degrees of freedom, one
translational and one rotational at each end, and that it will deform in the manner of a
uniform beam that has been subjected to nodal displacements and rotations. The

assumed shape is that of a cubic hermitian polynomial as shown in Figure 13:

wi(x)

y2(x)

Fig. 15: Assumed Bending Shape of Beam Elements
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These shape functions for a unit translation or rotation applied to the left side of the

beam element respectively are the following:

w(x)=1- 3(—32 + 2(%)3 [Eq.6]

2
w,(x)= X(l - %) [Eq.7]

The shape functions for a unit displacement or rotation applied to the right side of the

beam element are:

v, (x)= 3(%) : 2(—;—) (Eq.8]

2
¢//4(x)=x—(%—1) [Eq.9]

This method assumes that each beam element has uniform properties of mass,
stiffness, and moment of inertia. Agreement between the natural frequencies of the test
turbine and the model will be achieved by adjusting the properties of mass, stiffness,

and moment of inertia of the model.

Absent from the above calculations is the damping matrix. The damping matrix
will not be calculated, the damping ratios will be used in its place. The damping from
both the model and full scale structures will be determined experimentally though the
use of the LMS system, and will be used to adjust the natural frequency that is obtained
from the computational model to properly represent the natural frequency desired from

the modal model.
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The effect of damping on the natural frequencies of a structure is shown by the

following equation:

@, =oy1-5* [Eq.10]

where @), is the damped natural frequency, o is the undamped natural frequency, and &

is the damping ratio of the structure. The desired natural frequencies will be calculated
through theory and then adjusted by the damping ratio. As we see from equation 10 the
damping ratio may not have a significant effect on the overall frequency. A damping
ratio of 20%, relatively high for a civil structure, will only cause a change in the natural

frequency of approximately 2%.

5.3 Procedure

Both the model and the field turbine are modeled using a Matlab program the author
has designed for this purpose. The model will be simulated three ways. The first will be
by modeling each of its three sections individually in a free-free condition. This will
allow the sections to be experimentally tested and verified independently from each
other. Secondly, the entire assembled model will be simulated in a free-free condition.
This allows the structure as a whole to be verified. If there are no discrepancies in any
of the first tests, we can assume that the individual pieces have been properly
constructed. If after the second test, in which the pieces have been assembled,
discrepancies are found, it can be surmised that there are problems resulting from the
connections between the sections. The entire model will then be simulated with a fixed
base connection, and the experimental model will be tested against this condition.
Finally the field turbine will be modeled. The Matlab program designed by the author
will be verified computationally by comparing the results obtained to those obtained by
a commercial software program, ANSYS, and then by comparing the results determined
experimentally through the use of the LMS SCADAS system. The test specimen used is
a stainless steel pole that will be modeled with free-free and fixed-free boundary

conditions.
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5.3.1 Matlab

The method using Matlab to solve the natural frequencies of the system consists of
two parts. The first is a spreadsheet created in Microsoft Excel. This is a series of seven
sheets that calculate the mass and stiffness matrices for each of the three sections as
well as an input sheet that allows the user to manipulate the other six by adjusting a
several fields on a single screen. Once the mass and stiffness matrices are calculated, the
spreadsheets are read into a Matlab program. A sample of this program used to calculate
the complete model in with a fixed base has been included in Appendix D. Here the
mass and stiffness matrices first assembled and are then operated on according to the
method outlined in Section 5.2, and the natural frequencies are determined based on
what frequencies a value of 0 is obtained for the determinant.

5.3.2 ANSYS

ANSYS is used to verify the Matlab program. The same modeling conditions were
used for these models as in the Matlab program. A test specimen was modeled in a free-
free and fixed-free boundary conditions, and the bottom two sections of the model were
modeled in a free-free boundary condition. The mesh was created using a hex
dominated method. Though as suitable as using tetrahedrons for a shape such as the one
modeled here, it was necessary in order to keep the number of elements under that

restricted by the student version of ANSYS.

5.4 Results
5.4.1 Matlab

The Matlab program was used to generate tables from which the user can determine
the natural frequencies of each of the systems modeled. The results are summarized in
Table 4. The 25 degree of freedom (DOF) calculations are provided to show the
expected results from the model. This model required weights to be attached to it at
certain points, this process is further explained in section 6.0. Due to this, the model will
exhibit characteristics that would more closely resemble the results generated in the 25

DOF results. It can be seen that at lower frequencies, there is a greater correlation
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between the results of the two models. This is satisfactory for our purposes, as the

frequencies of interest are lower, between 0 and 100 Hz.

Field
Section 1 Section 2 Section 3 Free-Free Fixed-Free Turbine
22 78 42 78 54 78.0 118 234 118 234 234.0
DOF DOF | DOF | DOF | DOF | poF | bor DOF DOF DOF DOF
98.1 103.7 | 33.2 35.3 15.4 13.8 0.6 0.6 3.4 3.7 3.6
268.7 [ 2902 | 91.8 98.8 42.3 41.5 2.0 2.0 13.3 13.4 9.9
3227 15686 179.6 { 1935 | 828 82.5 10.4 10.7 17.0 18.4 18.9
8489 | 940.0 | 296.7 | 320.0 ] 1370 | 1374 14.6 14.6 39.2 44.0 32.7
4429 | 478.0 | 204.6 | 2062 | 273 29.5 49.9 54.2 48.1
617.4 1 667.9 ] 2856 | 288.5 | 483 52.0 68.7 843 68.4
819.9 | 889.4 | 380.0 | 384.6 | 544 579 77.1 93.5 89.5
69.6 | 86.2 113.6 122.3 117.5

Freedom

Table 4: Computed Resonance F requencies of Model at 25 and 365 Degrees of
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6.0  Aeroelastic Model

The final component of this thesis will be the design and
creation of an aeroelastic modal model for use as a tool in
wind tunnel testing. The model can be used as a standalone
tool to investigate the effect of different wind conditions on the
mast, or it can be combined with many other models to study
the effect of wake interactions that occur when many turbines
are placed in close proximity. In this manner, the possibility of
harmful effects occurring in the wind farm can be studied and
minimized.

6.1 Objectives

The author has constructed an aero-elastic model suitable
for use in a commercial wind tunnel. The hope is to develop a
tool that can be used to test this wind turbine in extreme wind
conditions outside of its normal operating range. This approach
is of interest given that the turbine mast undergoes a great deal
of excitation in this state, suggesting that natural frequencies
could be excited to the point of causing damage. Additionally,
under these conditions the turbine will be in a stalled state,
which eliminates extraneous readings due to rotor imbalance
or generating equipment. This also allows for the gathering of
data that will hopefully serve as a base to build further models

that will model the turbine under normal operating conditions.

6.2 Methodology

The model was created with two main goals in mind,
aerodynamic similarity to the field turbine in order to allow the
model to experience the same scaled loadings that wind exerts
on the structure, as well modal similarity, allowing the model

to exhibit the same natural frequencies and mode shapes of the

Fig. 16: Model
Stiffness Element
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wind turbine in modal testing as well as when it is exposed to similar wind conditions to

those found in the field.

The model’s mast will consist of three sections bolted together in much the same way
that the field turbine is. Each section consists of a rectangular aluminum spine, around
which a thin, cylindrical, aluminum shell is attached to the spine via steel machine

screws set into the sides of the spine.

The purpose of the aluminum spine, seen in Figure 14, is to provide structural
stiffness to the model, and is responsible for the accurately recreating this property
according to the stiffness matrix. It will be constructed out of 7075 aluminum due to its
high strength. The cylindrical shells attached to the spine are responsible for recreating
the aerodynamic properties of the turbine in order to allow it to faithfully respond to
simulated conditions in the wind tunnel. As the shells are not structural members, they
will be constructed out of less expensive standard aluminum. Additionally, the shells
will replicate the mass that is needed in the model. The spine itself is too light when
compared to the wind turbine, and thus the shells, with the assistance of weights
attached to them, will simulate the inertial properties. The shells will be screwed into
the sides of the spine at two points. This is done to reduce the effect that the shells will
have on the stiffness of the spine. The small gap between each shell allows them to float
over each other and not contribute to the stiffness of the system.

In order to ensure modal similarity, both the field turbine and the model have been
simulated using Matlab to determine their natural frequencies. As discussed, the
creation of a “fixed” point is extremely difficult to produce in the real world from a
model standpoint, and extremely easy to reproduce computationally. With this in mind
the testing will need to be broken down into several sections.

First each of the three sections composing the aluminum spines will undergo impact
testing and simulated in Matlab using free-free boundary conditions. The free-free
condition is simulated in the lab by suspending the specimen from a solid frame using
very soft springs or bungees. When the three sections have been independently tested

and verified against the Matlab simulation, they will then be assembled and tested once
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more in the free-free condition. In this way the construction of the model sections as
well as the connections can be independently looked at and verified away from the
difficulties a fixed point can cause. In this way, when the final modal test is preformed
on the assembled and fixed structure any discrepancies in the modal testing can be
attributed to a specific component of the model depending on what stage the error
occurs.

The model is scaled by a factor of 53.33, giving a total model height of 2.3m in order
to allow it to fit within the Boundary Layer Wind Tunnel at the University of Western
Ontario. This height was chosen in order to keep the model as large as possible to keep
the weight of the model down, relative to the size of the model. The blockage ratio of
this model will less than 4 percent.

Fluid dynamic scaling will be executed via Reynolds number scaling. To ensure

dynamic similarity, the model tests should be run so that Re,,, = Re where:

Re ="—L’—’ (Eq.11]

p = density of the fluid

V = velocity of the fluid

! = a characteristic length

u = viscosity of the fluid

Choosing the characteristic length as the diameter of the mast, using air as the fluid
and with a velocity range of between 10 and 15m/s, it is expected that the Reynolds
number for the structure will be between 2.9 x10° to 4.3 x10°. This places the structure
strictly within the turbulent boundary layer flow regime, characterized by a turbulent
boundary layer with a narrow turbulent wake and separation points above ninety
degrees. In order to reach this value in the wind tunnel requires wind speeds of between
533 and 800 m/s, not values easily obtainable in standard wind tunnels.

This is problematic as a traditional wind tunnel will generally be only able to
generate speeds up to 100 m/s. The solution used will be to not match the Reynolds
number exactly, but instead to match the flow patterns, so that the model is

representative of the structure. As the Reynolds number will be lower in the model test,
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owing the reduced wind velocity, it will be necessary to prematurely trip the boundary
layer into turbulence as well as to control the separation angle on the model. This is
done by perturbing the flow as it approaches the structure via screens or tripwires, or by
adding tripwires to the model, or adjusting the surface roughness to force the flow into a
turbulent state.

Using wind speeds obtainable in a commercial wind tunnel, 50 m/s, the Reynolds
number of the model becomes 268 x10°. This value places the model between the
boundaries of the precritical and single bubble flow regimes. By adding trip wires or
sufficient surface roughness, the laminar boundary layer can be forced into a turbulent
state, imparting the energy required for it to pass into the same flow regime as seen in
the field.

6.3Results

The result of this process is a structural spine that makes up the stiffness element of
the model. Attached to this spine are masses that complete the model. It is now expected
that the complete model with mass and stiffness elements attached, will behave in a
manner representative of the field turbine during modal testing. Ideally the model will
exhibit similar natural frequencies as well as the mode shapes associated with these

frequencies.

With the addition of the rings, nacelle and rotor to the structure, the model will
then exhibit geometric similarity to the filed turbine. This allows it to be used in wind
tunnel tests in order to further explore the response of the field turbine in varying wind

conditions.
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7.0 Results

This section contains a presentation and discussion of the results of the long and
short term field data acquisition, computational results, as well as a comparison of the
model to the field turbine.

7.1 Validation of Computational Modeling

The resonance frequencies of a 1 m long, stainless steel pole were determined

using the author’s Matlab program, ANSYS, as well as experimentally via the SCADAS
Mobile system. It was tested in free-free condition by suspending it on soft bungees and
in the fixed-free condition by clamping it firmly at the base and securing it to a stable
structure as seen in Figures 15 and 16. Table 5 shows the modal properties of the test

specimen for the free-free and fixed-free conditions.

Test Specimen Properties

l Free-Free ] Fixed-Free

Mass (kg) 4.084 3.6554
Length (m) 1.095 0.98

E (Pa) 1.93E+11 1.93E+11
[ (m% 1.14E-07 1.14E-07

Table 5: Modal Properties of Stainless Steel Test Specimen

R

Fig. 17: Free-Free Fig. 18: Fixed-Free
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The results for the three tests of the two different boundary conditions are presented

in Table 6. The frequency results are given in Hz and the percent error relative to the

Matlab results are presented in the brackets.

Free-Free Boundary Condition Fixed-Free Boundary Condition
Mode Matlab ANSYS | Experimental Matlab ANSYS Experimental
|| 2335m2 22(‘;';, )”Z 27(52';) )HZ 48.2 Hz 4?4%57‘ 3(23';0/1:)2
, | 64271z 60(1‘; ;{z 73(31;,3/0 )HZ 303.1 Hz 28(56'.,'/0 )H z 2;2%%/5[2
s | otne | Na™ | Mg | meeans | TeTHe [Tes

Table 6: Comparison of Results for Resonance Frequencies of Stainless Steel Specimen

As can be seen from Table 6, there is a good correlation between the two

computational methods and the experimental method. This demonstrates that the

simplified method of determining natural frequencies of a system employed is sufficient

for the purposes of this study.
7.2 Modeling of the Full Scale Wind

Turbine Matlab | Field
The results of the field turbine modeling are 1.2 Hz
presented in Table 7. As can be seen, there is 7.6 Hz
| imilarity b h tational it 179 Hz | 16.16 Hz
Close similarity between the computational results 332 Hz | 30.52 Hz
determined though the authors Matlab program 56.6 Hz | 60.37 Hz
and the experimental results. The lack of the first 82.8 Hz | 78.04 Hz

Table 7: Comparison of Results
for Resonance Frequencies for
the Wind Turbine

two mode shapes at approximately 1 and 7 Hz, is

of some concern. It is hoped that the use of strain

gauges in future measurement campaigns will
remedy this issue. Also of note is that the author had expected that a lower resonant
frequency would be present that is absent from both results. The first natural frequency
should occur at approximately 0.5 Hz. The sway of this frequency was noted by the
author while working on the turbine during an exceptionally windy day. Additionally it

would be expected that a structure of this size would have a lower first natural
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frequency. Support this is the fact that the experimental mode shape result at a
frequency of 16.16 Hz closely resembles the shape of a forth bending mode, not a third
bending mode as would be assumed by the results. This comparison is given in Figure
17. If we compare the experimental result from the turbine, pictured middle, to the
image of a typical third bending mode, seen left, we can see that the experimental result
has more peaks. The middle image more closely resembles on the one on the right, an
example of a typical forth bending mode for a structure with a fixed base. The
differences are accounted for by the mass of the bolted connections in the turbine, as
well as the mass of the nacelle and rotor. These masses act to dampen out movement,
and remain nearly stationary when compared to the rest of the structure.

In an attempt to pick up this first mode, the degrees of freedom in the Matlab
model were doubled. This made no appreciable change to the results and failed to detect

this frequency.
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Fig. 19: Comparison of Lowest Detected Natural Frequency Mode Shape to Typical Third and
Forth Bending Modes
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In order to ensure the environmental conditions did not affect the modal impact
measurement campaign, a test was conducted in a wind tunnel. The middle section of
the model was removed and secured to the bed of the tunnel. A modal impact test was
conducted on it, yielding natural frequencies and corresponding mode shapes. Then a
second test was conducted with the wind tunnel producing a wind speed of 7 m/s.
During this run the flexible model was visibly shaken by the wind produced by the
tunnel. A second model impact test was then conducted. The results of this test are
provided in Appendix E, but there was no significant change from the test conducted in
still air to when the wind tunnel was engaged.

7.2.1 Data Acquisition System

Acquisition of modal data for wind turbines presents challenges not normally
encountered in standard environments. By adapting traditional systems and methods, the
author has created a robust system capable of monitoring modal data of large structures
in remote locations. The system uses cheap and effective materials to keep down costs,
along with remote control and expandability that allows the system to be adapted and
modified as the needs of the project change. The results of this effort are summarized
below in schematic form in Figure 18.

It is however, important to note that due to the restriction of the 100 Hz scanning
rate, the frequency range available would be capped at 25 Hz for this set up. The best
compromise would be to use only two sensors, one located at 15.86 m another located at
66 m, raising the maximum frequency range to 50 Hz, while still maintaining the ability
to monitor all the resonance frequencies in this range, as well as retaining redundancy in

the system to allow for data checking and sensor failure.
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Figure 20: Long Term DAQ Schematic

as the long term DAQ, is short term modal testing. Without this, a practitioner would be
unable to determine the optimal sensor locations for monitoring the excitation of natural
frequencies. A system using a large impact sledge and two accelerometers equipped
with a magnetic base is an ideal method for determining these locations. This setup has
the benefits of being light weight and portable allowing it to be employed in remote
sites, or locations without power available to them. Additionally only two investigators

are needed to employ this system.

The mast can be monitored with only four strain gauges buy using the data that is
generated from this roving accelerometer test. By placing sensors at the specified
locations, the natural frequences of interest can be monitored. This is done by carefully
selecting a few points on the turbine which are sensitive to the majority of the natural
frequencies of interest. These are the locations that undergo the greatest amount of

movement due to the mode shape associated with these natural frequenceis. As can be
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seen in Figures 19-22, the combonation of the four points that are selected are sensitive
to all the natural frequencies of interest, as well as providing reduncency in the system

to allow for sensor failure and double checking of the data.
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7.3 Modal Model

The physical model is constructed of three aluminum sections, bolted together at
their bases. When all three sections are Jjoined, and the mass of each is adjusted to be
representative of that of the wind turbine, the model will behave in a manner
representative of the structure. By adding the aerodynamic elements to the model, it can
then be employed in wind tunnel tests. This allows investigators to look into how the
turbine could be expected to perform in severe wind conditions, test it in varying
surrounding environments, and use the model in conjunction with others to determine if
there would be any interference effects between many turbines grouped together in a

relatively small area.
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8.0 Future Work

Work for future investigators will consist mainly of three parts, testing and validation
the modal model, validation of the model in a wind tunnel, and finally a complete
deployment and refining of the data acquisition system.

Validation of the modal model would take place in three phases, testing the
individual sections with free-free boundary conditions, testing of the assembled
structure with free-free boundary conditions, and finally testing of the assembled
structure with a fixed base. As previously discussed, these three tests should be
conducted for ease of trouble shooting the components as they are assembled.

It is likely that adjustments will need to be made to the top section of the model
before it can be employed. Foremost, the masses and aerodynamic elements will need to
be fabricated and attached to the structure in order to properly scale the mass and
geometry. Secondly, issues regarding the stiffness of the topmost section of the model
need to be addressed. During fabrication, it was noted that the top section was too long
to be machined as a single piece. Because of this, it was created in two parts and then
assembled using two brass pins. This changed the stiffness in the area of the joint. The
author suggests that the two sections be separated by a small gap causing this point to be
supported by only the two pins. To make up remaining stiffness required, two plates
would be welded in place on the outside of the joint. Barring this, there are no further
problems anticipated with any of the free-free boundary condition testing. During wind
tunnel testing, special care will be needed to differentiate the excitation of the desired
natural frequencies which simulate the response of the wind turbine from those
generated by the off axis direction. This is due to the fact that the aluminum spine that
makes up the stiffness element of the model is rectangular, leading to two different sets
of natural frequencies. This can be monitored by locating an accelerometer in the off
axis direction during testing.

Finally the long term monitoring system will need to be employed. In order to do

this, location of the low resonance frequencies at 7.96, 1.19, and less than 1 Hz that
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were not detected by the modal impact testing will need to be resolved in order to
ensure that a complete picture of the wind turbine is captured. It is the hope that the use

of strain gauges will assist in their location in future measurement campaigns.
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9.0 Concluding Remarks
The author has presented a method for monitoring of resonance frequencies in the

mast of wind turbines. By first conducting a measurement campaign, proper
positioning of permanent sensors can be located in as little as a single day when
preformed by an experienced, two man crew utilizing the proper equipment and
techniques. Once located, a relatively simple and inexpensive long term DAQ system
can be installed on site, allowing the range of resonance of the structure can be easily
measured via two strain gauges when. The installation complicated only through the
remote nature of the structure, which is easily solved though modern communication
devices, allowing users to access this information worldwide.

Using this experimental data, the author was able to validate the theoretical model
used to calculate the resonance frequencies of the wind turbine. Using this data, the
structure was then scaled down to a size that is satiable in wind tunnel testing,
providing future researchers with a tool to continue investigations into the nature of

resonance in commercial wind turbine masts.

57



References

Abdulrehem M.M. and Ott E. “Low Dimensional Description of Pedestrian-Induced
Oscillation of the Millennium Bridge” Chaos 19 (2009)

Ashebo, D.B., Chan, T.H.T and Yu, L. “Evaluation of dynamic loads on a Skew box
girder continuous bridge Part I: Field test and modal analysis” Engineering Structures
29(2007) 1052-1063

Ashwill, T.D. “Initial Structural Response Measurements and Modal Validation for
the Sandia 34-Meter VAWT Test Bed” SAND88-0633 (1988)

Ashwill, T.D. “Initial Structural Response Measurements for the Sandia 34-Meter
Test VWAT Test Bed.” Selected Papers on Wind Energy Technology (1992): 47-54

Ashwill, T.D. and Veers, P.S. “Structural Response Measurements and Predictions
for the Sandia 34-Meter Test BED.” Selected Papers on Wind Energy Technology
(1992): 101-108

Avitabile, P. “Experimental Modal Analysis: A Simple Non-Mathematical
Presentation” Sound and Vibration Draft Document (2001)

Berg, D.E., and Robertson, P.J., “Precise Time Synchronization Data Acquisition
with Remote Systems” SAND98-1690C (1998)

Berg, D.E., Robertson, P., and Zayas. J., “ATLAS: A Small, Light Weight, Time-
Synchronized Wind-Turbine Data Acquisition System” AIAA-99-0050 (1999)

Berg, D.E., Rumsey, M.A., Zayas, J.R., “Hardware and Software Developments for
the Accurate time-Linked Data Acquisition System” AIAA-2000-0052 (2000)

Berg, Dale and Zayas, Jose. “Accurate Time-Linked Data Acquisition System Field
Deployment and Operational Experience.” AIAA-2001-0038 (2001)

Billah, K.Y. and Scanian, R.H. “Resonance, Tacoma Narrows bridge failure, and
undergraduate physics textbooks” American Association of Physics Teachers 59 (1991):
118-124

Caetno, E., Cunha, A. and Taylor, C.A. “Investigation of dynamic cable-deck
interaction in a physical model of a cable-stayed bridge. Part I: modal analysis”
Earthquake Engineering and Structural Dynamics 29 (2000): 481-498

Carne, T.G., Lobitz, D.W., Nord, A.R., and Watson, R.A. “Finite Element Analysis
and Modal Testing of a Rotating Wind Turbine” SAND82-0345 (1982)

58



Carne, T.G., and Nord, A.R. “Modal Testing of a Rotating Wind Turbine” SANDS§2-
0631(1982)

Carne, T.G., Lauffer, J.P., Gomez, A.J., and Benjannet, H. “Modal Testing the
EOLE” SAND87-1506 (1987)

Carne, T.G., Lauffer, J.P., Gomez, A.J., and Ashwill, T.D., “Model Validation of the
Sandia 34-Meter Test Bed Turbine Using Substructured Modal-Testing.” Selected
Papers on Wind Energy Technology (1992): 39-45

Chellini, G., De Roeck, G.D., Nardini, L., and Salvatore, W., “Damage detection of a
steel-concrete composite frame by a multilevel approach: Experimental measurements
and modal identification” Earthquake Engng Struct. Dyn. (2008): 37:1763-1783

Ewins, D.J. Modal Testing theory, practice and application Second Edition. Research
Studies press LTD., 2000

Gross. E., Simmermacher, T., and Zadoks. R.1., “Application of Damage Detection
Techniques using Wind Turbine Modal Data” AIAA 99-0047 (1998)

Hansen, M.O.L., Sorensen, J.N., Voutsinas, S., Sorensen, N., and Madsen, H.A.
“State of the art in wind turbine aerodynamics and aeroelasticity” Progress in Aerospace
Sciences 42 (2006): 285-330

Hansen, M.H. “Aeroelastic Stability Analysis of Wind Turbines Using an Eigenvalue
Approach” Wind Energy (2004): 7:133-143

Hansen, M.H. “Aeroelastic Instability Problems for Wind Turbines” Wind energy 10
(2007): 551-577

Hansen, M.H., Fuglsang, P. and Kundsen, T. “Two Methods for Estimating
Aeroelastic Damping of Operational Wind Turbine Modes from Experiments” Wind
Energy 9 (2006): 179-191

James, G., Mayes, R., Carne, T., Simmermacher, T., and Goodding, J. “Health
Monitoring of Operational Structures-Initial Results” SAND95-0345C (1995)

Kristensen, O.J.D., McGuan, M., Sendrup, P., Rheinlander, J., Rusborg, J., Hansen, -
AM,, Debel, C.P., and Sorensen, B.F. “Health Monitoring of Wind Turbine Blades-a
Preproject Annex E — Full-Scale Test of Wind Turbine Blade, Using Sensors and NDT”
RISO-R-1333(En) (2002)

Larsen, G.C. and Volund, P. “Validation of an Aeroelastic Model of Vestas V39”
RISO-R-1051(EN) (1998)

59



Lauffer, J.P., Carne, T.G., and Ashwill, T.D “Modal Testing in the Design
Evaluation of Wind Turbines” SAND87-2461 (1 987)

Malcolm, D.J., and Laird, D.L. “Extraction of Equivalent Beam Properties from
Blade Models” Wind Energ. (2007): 10:135-157

Mahmoud, M.A. and Ott, E. “Low dimensional description of pedestrian-induced
oscillation of the Millennium Bridge” American Institute of Physics (2009)

McConnell, K.G. and Varoto, P.S. Vibration Testing Theory and Practice. John
Wiley & Sons, Inc. 2008

Nelson, L.D., Manuel, L., Sutherland, H.J. and Veers, P.S. “Statistical Analysis of
Inflow and Structural Response Data from the LIST Program” AIAA-2003-0867 (2003)

Pendersen, H.B. and Kristensen, O.J.D., “Applied Modal Analysis of Wind Turbine
Blades” RISO-R-1388(EN) (2003)

Pendersen, K.O.H, Hansen, K.S., Paulsen, U.S. and Sorensen, P. “Wind Turbine
Measurement Technique-and Open Laboratory for Educational Purposes” Wind Energy
(2008): 11:281-295

Pedersen, T. F., Dahlberg, J., Cuerva, A., Mouzakis, F., Busche, P., Eecen, P., Sanz-
Andres, A., Franchini, S. and Petersen, S.M. “ACCUWIND-Accurate Wind Speed
Measurements in Wind Energy” RISO-R-1563(EN) 2006

Prowell, I. and Veers. V., “Assessment of Wind Turbine Seismic Risk: Existing
Literature and Simple Study of Tower Moment Demand” SAND2009-1100 (2009)

Rasmussen, F., Hansen, M.H., Thomsen, K., Larsen, T.J., Bertagnolio, F., Johansen,
J., Madsen, H.A., Bak, C. and Hansen, A.M. “Present Status of Aeroelasticity of Wind
Turbines” Wind Energy (2003): 6:213-228

Rumsey, M.A., Paquette, J., White, J.R., Werlink, R.J., Beattie, A.G., Pitchford,
C.W. and Dam, J.V. “Experimental Results of Structural Health Monitoring of Wind
Turbine Blades” American Institute of Aeronautics and Astronautics Paper (2008)

Rumsey, M.A. and Paquette, J. “Structural health Monitoring of Wind Turbine
Blades” Sandia National Laboratories Paper (2008)

Sheldahl, R.E., “Comparison of Field and Wind Tunnel Darrieus Wind Turbine
Data” SAND80-2469 (1980)

60



Sorensen, B.F., Lading, L., Sendrup, P., McGugan, M., Debel, C.P., Kristensen
0.1.D,, Larsen, G., Hansen, A.M., Rheinlander, J., Rusbork, J. and Vestergaard, J.D.
“Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades-a
Preproject” RISO-R-1336(EN)

Sorensen, J.D., Frandsen, S. and Tarp-Johansen, N.J., “Effective turbulence models
and fatigue reliability in wind farms” Probabilistic Engineering Mechanics 23 (2008):
531-538

Sorensen, N.N., Johansen, J. and Conway, S., “CFD Computations of wind Turbine
Blade Loads During Standstill Operation KNOW-BLADE TASK 3.1 Report” RISO-R-

1465(EN) (2004)

Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., Ott, E. “Crowd synchrony
on the Millennium Bridge” Nature Vol. 438 (2005): 43-44

Sutherland, H. J. “Damage Predictions for Wind Turbine Components using the
LIFE2 Computer Code.” Selected Papers on Wind Energy Technology (1992)

Sutherland, H.J. and Carlin, P.W. “Damage Measurements on the NWTC Direct-
Drive Variable-Speed Test Bed” AIAA-98-0064 (1998)

Sutherland, H.J., Jones, P.L. and Neal, B.A., “The Long-Term Inflow and Structural
Test Program” AIAA-2001-0039 (2001)

Sutherland, H.J. “Inflow and the Fatigue of the LIST Wind Turbine” AIA-2002-0065
(2002)

Sutherland, H.J., Kelley, N.D. and Hand, M.M. “Inflow and F atigue Response of the
NWTC Advanced Research Turbine” AIAA-2003-0862 (2003)

Sutherland, H.J., Zayas, J.R. and Sterns, A.J. “Update of the Long-Term Inflow and
Structural Test Program” AIAA-2004-0500 (2004)

The Highways Agency, Scottish Executive Development Department, The National
Assembly for Wales Cynulliat Cendlaethol Cymru, The Department for Regional
Development “Design Rules for Aerodynamic Effects on Bridges” (2001)

Vand Den Avyle, J.A., Sutherland H.J. “Fatigue Characterization of a VAWT Blade
Material.” Selected Papers on Wind Energy Technology (1992): 19-23

Varma, R.K., Auddy, S., and Semsedini, Y. “Mitigation of Subsynchronous
Resonance in a Series-Compensated Wind Farm Using FACTS Controllers.” IEEE
Transactions on power Delivery, Vol. 23, No. 3 (2008): 1645-1654

61



Veers, P.S. “Simplified Fatigue Damage and Crack Growth Calculations for Wind
Turbines.” Selected Papers on Wind Energy Technology (1992): 25-32

Zhang, X., Brownjohn, J -M.W., Wang, Y. and Pan, T. “Direct observations of non-
stationary bridge deck aeroelastic vibration in wind tunnel” Journal of Sound and
Vibration 291 (2006): 202-214

Zhu, Z., Gu, M. and Chen, Z. “Wind Tunnel and CFD Study on Identification of
Flutter Derivatives of a Long-Span Self-Anchored Suspension Bridge” Computer-Aided
civil and Infrastructure Engineering 22 (2007): 541-554

62



Appendix A Calibration and Specification Sheets

Accelerometer Calibration Sheets

~ Calibration Certificate ~

Per ISD 16063-21

Model Number: . 382BI10

Serial Number: B 91289

Description: ICPR Accelerometer Method: Back-to-Back Comparison

Manufacturer: PCRB

Calibration Data
Sensitivity @ 100.0 Hz 10.68  mv/g Output Bias
(1.089 mV/m/s?) Transverse Sensitivin

Discharge Time Constant 04 seconds Resonant Frequency

Sensitivity Plot

Temperature: 7) °F (21 °Cy Relative Humudity

190.0 1000 0 16000 ¢

Data Points
Frequency Hz) L% Frequency (Hz Dev. (% Frequency iHzi
10.0 . 300.0 0.2 7000.0
15.0 300.0 10000.0
30.9 . 1000.0
50.0 I 3000.0

REF. FREQ. . 3000.0

te Adhesne Fruurs Onentaton Vertical
atlow Trzquencies 1 the lisied lavel Lannot be obtamed. the calibiation s siem us braton amphivde  Acezlaation Level
“The gravmatienal canstant used fos cateulatiors by ths A 86AS M

Condition of Unit

beuei may be muted by
ATINTENY

As Found:  na
As Left: New Unit, n Tolerance

Notes
Calibration is NIST Traceable thru Project §22/274086 and PTB Traceable thru Project 1060.
This certificate shall not be reproduced, except in full. without written appros al fram PCB Piezotronics. Inc.
Calibration is performed in compliance with [SO 9001, 1SO 10012-1. ANSI'NCSL. 7340-1-1994 and 1SO 17023,
See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
. Measurement uncertainty (93% confidence level with coverage factor of 2) for frequency ranges tested during calibration
are as follows: 3-9 Hz; +/- 2.0%, 10-99 Hz: +/- 1.3%, 100-1999 Hz; 4/ 1.0%. 2-10 kHz; +/- 2.5%.

Technician: Robert Zsebehazy 3\7\ 2 Date: 02:29.08

| SPCB PIEZOTRONICS

R VIBRATION DIVISION
{RccreDiTED! Headquarters: 3423 Walden Avenue. Depew. NY 14043
CALIBRATION CERT #1862.02 Manutacturing and Calibration Facility 10869 Highway 903, Halilax. NC 27839
TEL 838-684-00i3 - FAX:716-683-3886 - wuww peb.com Lkt -

A0 0 0O 0O 0

FAGE ) oof 1 1187180100 £
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~ Calibration Certificate ~

Per iSO 15083-21

Model Number: 352C34

Serial Number: 101574

Description: ) ICPR Accelerometer Method: Back-to-Back Comparison (AT401-2)

Manufacturer: o PCB

Culibration Data

Sensitivity @ 100.0 Hz 100.0 mv/g Output Bias
(10.20 mV/m/s?) Transyerse Sensitivity

Discharge Time Constant 1.8 seconds Resonant Frequency

Sensitivity Plot

Temperature. 72 °F (22 °Cy Relative Humidity 39 %

100.0 1000.0 100000

Data Points
Frequency (Hzi L% Frequency (Hz) Dev. %) Frequency il
10.0 . 300.0 . 7000.0
15.0 2 500.0 . 10000.0
30.0 . 1000.0
50.0 . 3000.0
REF. FREQ. . 5000.0

¢ Siainless Jizel w Siicone Grease Covtng Fastener  Stad Mownt Fruure Orentation, Vernal
HC

Ly

s el cannel be sbraned e cahibs N Follow g tarm
“The gias naucnal consiant ased for anons by the calthiation 1 siem 15 ws

Condition of Unit

whinde  Aceionmon Lea

As Found: n/a
As Left: New Unit, In Tolerance

Notes
Calibration is NIST Traceable thru Project §22/277342 and PTB Traccable thru Project 1234,
This certificate shall not be reproduced. except in full, without written approval from PCB Piezotronics. inc.
Calibration is performed in compliance with [SO 9001, ISO 10012-1, ANSENCSL Z540-1-1994 and 1SO 17025,
See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration
are as follows: 3-9 Hz: +/- 2.09%, 10-99 Hz: +/- 1.3%. 100-1999 Hz: +/- 1.0%. 2-10 kliz: +/- 2.3%,

Technician: Brian Kemp /7% Date: 02:/02/09

SPCB PIEZOTRONICS

VIBRATION DMISION
[ACCREDITED Headquarters 3423 Walden Avenue. Depew. NY 14423
CALIBRATION CERT #1862.02 Calibratian Performed at 10889 Highway 903, Halifax. NC 27839
Pauk 1ol i TEL 888-684-0013 - FAX 716-683-3886 www neh.com

V0 O OO0 OO 0O O 0 o
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~ Calibration Certificate ~

Per 180 16063-21

Model Number: 352C34

Serial Number: 101808

Description: ICPR Accelerometer Method: Back-to-Back Comparisan (A 1401-3)

Manufacturer: PCB

Calibration Data
Sensitivity ‘@ 100.0 Hz 98.9 mVig Output Bias
(10.08 mV/m/s?) Transverse Sensitivity

Discharge Time Constant 1.8  seconds Resonant Frequency

Seunsitivity Plot

Temperature, 71 2F (22 °C) Refatve Humsdiy 3895

" 1000 T oo
Data Points

Freguency il S Frequency (liz) Dev. (%43 Frequency iz

10.0 . 300.0 -1.0 7000.0

15.0 1.7 300.0 -1.5 10000.0

30.0 1.0 1000.0 -2

30.0 0.5 3000.0 -2.8

REF. FREQ. 0.0 3000.0 -2.0

2w wilicone {rease Coasing N St Moun Nz Dnpeoites \earnzal

celerahon lev el man be lnvced i shaes -a 4 the Isted level cancor he obaired the zahty
~The grav cananal constant used foz

Condition of Unit

1k i

As Found:  n/a
As Lett: New Unit, In Tolerance

Notes
Calibration is NIST Traceable thru Project 822/277342 and PTB Traccable thru Project 1254
This certificate shall not be reproduced, exceptin full, without written approval from PCB Piczotronics. [ne.
Calibration is performed in compliance with 1SO 9001, 1SO 10012-1, ANSIANCSL Z340-1-1994 and 150 17023
See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
- Measurement uncertainty (93% confidence level with coverage factor of 2) for frequency ranges tested during calibration
are as follows: 3-9 Hz: /- 2.0%. 10-99 Hz; +/- 1.3%. 100-1999 Hz; ~/- 1.0%, 2-10 kHz: +- 2.3%,

Technician: Joseph Rogersan ’)\) Date: ~  02.03.09

wa SPCB PIEZOTRONICS

VIBRATION DIVISION

{ACCREDITED Headguarters. 3423 Walden Avenue. Depew. NY 11043
CALIBRATION CERT #1862.02 Cahbrazion Performed at: 10869 Highway 03, Hahian, NC Y9
IEL X88-684-0013 FAX. 716-683-3886 sww peh e

O OO O 00O 0O OO 0 0

PAGE 1o
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Impulse Hammer Calibration Certificate

~Calibration Certificate~ 1

Modef No.: 086D50 Customer:

Serial No.: 26873

Description: Impulse Force Hammer PO No.: —
Manufacturer: PCB B Calibration Method: Impuise (at-303-1)
Data
Output Bias: 9.6 Temperature: 74 'F 23 °C Relative Humidity: 36 %

HAMMER SENSITIVITY:

i

| Tip Medium {Red)

i h !

. Hammer Configuration : I

i ;

1 Extender .

; "" s | None !
f !
]

[ Hammer Sensitwvity Vit 1.03 ‘

‘ (mviNy 023

Above data is valid for all supplied tips.

Condition of Unit:
As Found N/A.
As Left  New unit in tolerance,

Notes:

Calibration is M.1.S.T traceable through projecs No. 822/274086 and PT8 Traceable thru Project 1060

. This certificate may not be reproduced, except in full, without written approval fram PCB Prezotronics, mc
Calibratior 15 performed 10 comphiance with 1SO 100121, ANSI/NCSL 2540-1-1964,

See Manufaclurer's spicification sheet for a delaiied fisting of performance specifications.

teasurement uncertainty {$5% confidence fevel with a coverage factor of 2} is +; 3.8%.

GB LN

.}f/_f/’ )
Technician: Jose Ramos_ /¢ " Date: 2/18/2009

T

wa { ®PCB PIEZOTRONCS

-\

@ TEL 716-684-0001 FAX: 715-684 098/ wavi pch.com
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Impact Hammer Specification Sheet
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Accelerometer Specification Sheets
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Appendix B ANSYS Reports

Test Specimen Free-Free Condition

’ Flrst Saved Tuesday, November 10 2009»

-

_Last Saved| Monday, January 11, 2010 )
Product Versuon . _11.0 SP1 Release

Units

___Unit System  Metric (m, kg, N, °C, s, V, A)
_Angle; Degrees

Rotatlonal Velocnty i o Mvra_gisw

Model

Geometry

) ) Model>Geometry i )
) i __Object Name; _Qeometry
‘ ) State| Fully Defined
o  Definition o
- e S°Uf9,§1 aUnnamed agdbr !
- ... Type DesignModeler
- o Length L{n_n_t_l_ Milimeters -
o Element  Control; Program Controlled
o Dlsplay Stylez _ Part Colory o
) __._ BoundingBox

o o Lengtn}( - 4 7e 002 m

. . . _lengthY| 47e-002m

Lengthz, 1.095m

' ' o Propertles ~
) Volurne 52375e 004 m°

o Mass| 4059 kg |
Statnstlcs i )
Bod|e51 ) 1 l

~ ActiveB Bod!e‘s”_b__‘ o

o o B Nodes | 29968

‘ Elements{_ 4523

s ) Preferences
o Import Sohd Bodies _ Yes
: ~ Import Surface Bodles Yes '

) lmport Lme Bodles _;Yes'
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‘Nonlinear Material Effects|
Boundmg Box v

Propertres

} Materralj Starnless_St_eeI
Strffness BehavrorL __Fiexible

B Parameter Processrng» ~ Yes
Personal Parameter Key- |
o CAD Attnbute Transfer . Noo
‘ Named Selectron Processmg‘ _No_
Materral Propertves Transfer:  No
o __CAD Assocratrvrty I Yes
Import Coordrnate Systems|  No
i 7 Reader Save PartFile; ~No
_ Import Using Instances| Yes
. Do SmartUpdate! ~~  No
Attach Frle V|a Temp File] ~ No
... . AnalysisType; 3D
 Mixed Import Resolution; ~~ None
.Enclosure and | Symmetry Processmg _ Yes
Model > Geometry > Parts
N Object Name;  Solid
) State - Meshed
) Graphics Propertles o
Visible | Yes
Transparency 1
Deﬁmtlon ,
Suppressed No

Length X! 4.7e-002m
_ Length Y‘ 4 7e-00_2 m
Length Z‘ 1.095m

. Volume| 5.2375e-004 m*

Mass - 4. 059 kg
Centrord Xf 8 0565e 019 m

Centrord Zr _ 0.

Moment of Inertla Ip1i 0 4019”‘kg ‘m? h

| Moment of Inertia 1p2;  0.4019kgm?

5475m

DS

d

[L SRS SRV S

T S W T

_ _Centroid Y’ 9.0636e-019 m |

v Moment of lnertra Ip3; 1. 8889e-003 kg m2

Statlstrcs
Nodes i
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_ 29968 |
o Elements, 4



Mesh

_* B Phys:cs Preference l

Model > Mesh
N Object Name|

State|

" Mesh

Defaults

Relevance 38

Advanced

Rele\rance Center i

Element Sl_ze |

_ Shape Checking: ‘Standard Mechanlcal

_ Mech

Solved

Coarse

hanlcal o

6. e-003 m

SOlld Element Midside N Nodes Program Controlled

" Straight Sided Elements|

_Initial Slze Seed'

] Smoothlng

Transmon |
Statlstlcs
Nodes| ~

Elements!

29088
4523

Model > Mesh > Mesh Controls

State

) Scoplng Method o
___ Geometry|

. ObjectName

o Typel

l o Element Size

~ Edge Behavior:

M_etho_d

Curv/Proxmlty Reflneme'ntt o

Element Midside Nodes!

Control Messages

Body Slzmg

~ FullyD Deflned o
. Scope .
Qeometry Selectlon )
. ABody
.. Definiton '

__ Suppressed

_No

Element Slze .

Default

He}( Domln‘a_nt Method

Heg Qomlnant

Use Global Settlng
No

H :
e i i e
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Modal

Model > Analysis
Object Name:  Modal
State Fully Defi ned
; Definition o
__ Physics Type; Structural
Analysis Type:  Modal
~ Options ’
Reference Temp  22.°C

_Model > Modal > Initial Condition
Object Name Inltlal Condlt/on
State Fully Defined -
v Defimtion » '
Initial Condition Environment. ~ None

Model > Modal > Analysis Settings

Object Name . .. Analysis Settings
State. S Fully Defined
o , ‘ 7 Optlons .
Max Modes to,
Fid: 25
Limit Search to:
Range- e
o ~ Solver Controls
Solver Type. , Program Controlled
| o Output Controls
Calculate Stress: L ~ No
~ Calculate Strain: No
Analysns Data Management
Solver Files; E:\Thesis Archive\Thesis Backup Nov. 6\Thesis Results\Pole\Free
Directory: _ Free\Ansys\Free Free Pole Simulation Files\Modal\
, Future Analysis; - .. ... None
-Save ANSYSdb: | . No_
Delete:

Unneeded Files' , _\_(esr
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Solution

__Model > Modal > Solution

_ Object Name Solutlon

L State Solved |

~_Adaptive Mesh Refi nement !

Max Refinement Loop | w__1»_ i
| Refinement Depth|

The following bar chart indicates the frequency at each calculated mode.

Model > Modal > Solution

4553.9

4000, . ‘
3000. |
2000,
) » | I | l l
.l
1 2 3 4 5 & 3 9 10 11 12 13 14 15 16 17 18 19 20 2t 22 23
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Model > Modal > Solution

Mode Frequency [Hz]

1.
2 %
| 3. | 1.7634e-004 |
| 4. | 4.2372e-004
| 5. | 1012e-003
| 6. | 1.9568e-003
| 7 22493
8 | 22494
. 9. | 60782
. 10 607.83
11 1158.6
L 12 1158.7
13 . 14078
L 14 18495

15 1849.6

16 22783
7. 26541
18. 2654.2
19 28155
i 20. |
a1 A8
r~22_ 42233
23
24 40088
| 25. | 45539 |

Model > Modal > Solution > Solution Information

Object Name Solution Information
State - Solved |
‘ Solutlon Informatlon

| ____ Solution Output| Solver Output |

NeWtO" RaPhSO'! Rf:‘.s'd‘_!_a..?i S _,_0_..
] Update Interval 25s
L _Display Points| Al |
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Model > Modal > Solution > Results

Objééi"Name fqté{ Deformation 11 Total Deformation 1 12
) Statei 0 ©ew,_ ... Solved o
o Scope_ T
%___”Geometryi AN B°d'e_5,w__ ]
e .. Definition - o B
_.._Type]  TotalDeformation
N MP_E’?_!_ L e
o . Results | k
L Frequencyl 1158 6Hz _»11w5§7 Hz

, 097978m 0.97971m

_ Minimum| - _ 4.286e-003m | 3.1258e-00:{ [rj__::
Maximum;|

M‘aterial Data

Stainless Steel

TABLE 15
_ Stainless Steel > Constants
Structural A

__Young's Modulus| 1.93e+011 Pa

— __Poisson's Ratio] __ 0.31 o
o Density.  7750. kg/m® _ |
i Thermal Expansion| 1.7e-005 1/°C

SR it wColiiad T TR

Tensnle Yield Strength 2,_0_73?“098 Pa |
Compresswe Yield Strength: 2.07e+008 Pa

. ____Tensile Ultimate Strength| 5.86e+008 Pa__
Compresswe Ultimate Strength ._,.<__WQ_,,Ea.‘_m_4, _1
. . Thermal | .j
. Themal Conductw;ty - 151Wim°C
o Spec:fc Heat| 480. Jikg- °C
- Electromagnetics B f

Relatlve 2 Permeability ! 10000

mh}B?_S{IﬁS_tIYI_ty 7'7ve 007 Ohm m
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Test Specimen Fixed-Free Condition

_ First Saved Monday, January 11, 2010
Last Saved . Monday, January 18, 2010.
.Product Versnon _ 11.0 SP1 Release

Units
_ Unit System_Metric (m, kg, N, °C, s, V, A)
Angle! Deg rees
Rotatlonal Veloc:ty _rad/s
Model
Geometry
S Model > Geometry
Object Name. Geomelry
State Fully Defined
Definition
_Source. E:\Single Beam\Single Beam leed agdb
. Type o DesngnModeIer o
_ Lengthunit! 4 Meters
Element Control ‘ Program Controlled _
Display Style » - Part C,olor o .
o Bounding. Box
S ~ Length X 48e002m ;
- _LengthY ~ 4.8e002m :
' Length Z! N 0.98m :
; Propertles“ f
Volume 4. 7952e 004 m?
Mass! 3 7163 kg
Statlstlcs _ , 7
S Bodies: o o
L _ActiveBodies: - 17
, Nodes S 7__28446 o
Elements .. 14091
Preferences o S
o lmport Solld Bodles o Yes S
o Import Surface BOdleSl Yes
»»»»»» lmport Llne Bodles . .. Yes
_ Parameter Processmg o 7 Yes
Personal Parameter Key, - DS
- CAD Attribute Transfer. No
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___Named Selection Processing;  No
Materlat Propertues»'l"ran_sfer . N
CAD Assocuatlwty

Import Using Instances%

o Yes
Import Coordmate Systemsr en.....No ;
o Reader Save Part File|

Do Smart Updater

o Attach Flle Vla Temp F|Ie

AnaIyS|s Type - 3D
R Mlxed Import Resolutlon;

B oo ... None
:Enclosure and Symmetry Processmg«

_____ MNodel > Geometry >Parts
r Object Name| 2| Solid
S - g

o _Statel  Meshed
o Graphlcs Propertles o ‘
P __Visible| Yes

N ﬁ Transparencyi 1T |

i . Definition .
] o Suppressed‘ No f
P Material
]  Stiffness Behavror,

‘Nonlinear Material Effects|

Stamless Steel

| Fte‘xlble o j
Yes

i

_._.; e Boundmg BOX‘ ; o

i

o __lengthX| 48e-002m

- LengthY‘  48e-002m |
- o Lengch 0_98‘m

77 properties

_ Volume] 47952e-004m° |

__”_vMﬂasﬂs,,‘ -3 7163 kg

. CentodX -1.7495e-018m

_____ CentroidY| 1.1795e-018m |
Centrord Z 0 49 m
~Moment of Inertia Ip1 | 0.29494 kg-m?

. __Momentof nertia Ip2|  0.29494 kg'm* |

__Momento of Inertla 1p3:1. 8093e 003 kg m2

Statlstics
Nodes,v
Elementsl

28446
14001
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Mesh

Model > Mesh

. ____ObjectName| ~ Mesh
T state] T soved
i Defaults 1

| Physics Preferencel: ‘Mechanical
* o Relevance e| OM

. _Advanced T ]
] Relevance Center{ Coarse -

Element Size _ Default

- A Shape Checkmg | Standard MechanroalI
Solud Elemenl‘ll@rdslgle_l:lgdes Program Controlled
_ Straight Sided Elements | No
5 Initial Size Seed .,Aet_i!eﬁfflﬁem_b!x,,_,j
| __Smoothing Low
_Transition, ~ Fast

sfiiietrcs o "hl

Nodes| 28446
_Elements| 14091

o .. Model > Mesh > Mesh Cogtrol_s

o Object Name* - Body Srzrng o Palfch Conform/ng Method

e Statel L _____Fully Defi D%‘? e
SRR ... ._Scope -
S WS_E?E!.'?S,,MEFF??Q_M___,.A.A.. Geometry Selectron B
b Geometry) __-m.1 BOdY e
- ,_ ‘..,'. e Sl e o it e e e o i i Defﬂltlon e e i e _ e e e
. Suppressed| o No
e Type, ElementvS|ze . e
. Element tSizej ~~ Default R
o Edge Behavror Curv/Proxrmlty Reflnementl i 7 !
e Methoa! _ ___ Tetrahedrons
l_ - Algorrthm o mPatch Conformlng‘ '
Element MldSlde Nodes e+ UseGlobal Settrng‘ N

_Expansion Factor| T g B
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Modal

Model > Analysis

Object Name Modal

State FuIIy Defi ned
Def'nitlon
Physucs Type Structural
Analysis Type:  Modal
Options
Reference Temp: 22 °C

Model > Modal > Initial Condition
_ Object Name Initial Condtt/on
_ State: Fully Defi ned :
Definition :
Initial Condition Environment None

Model > Modal > Analysis Settings

Object ‘Name S Analysis Sett/ngs
State= o . FullyDefined
' Options ' o v
Max Modes to Find - S ’ ‘ 10
Limit Search to-
Range: No
~ solverControls
Solver Type' R » - ”Progrram Controlled
' Output Controls -
Calculate Stress . S ~ No
Calculate Strain No
_ Analysis Data Management v
Solver Filesg E:\Finalized Ansys Reluts 2\Fixed'Pole\SingIe Beam Fixed
) Directoryi o o SimuAIatiron’Fi'lesA\I\_/Iodel_\‘
Future Analysis ' ‘ ~ None
SaveANSYSdb o 7 ~ No
Delete Unneeded
° ?:lles 7 Yes
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Model > Modal > Loads

|__Object Name|  Fixed Support

~State|  Fully Defined |

Scope |

Scoplng Method ; Geometry Selectlon ]

Geometry 1‘Face

__ Definition

. Type| Fixed Support
| Suppressed]  No

Solution

_ Model > Modal > Solution
. Object Name Solutlont
State Solved
Adaptlve Mesh Refmement )
‘Max Refinement Loops| 1.

_Refi nement Depth 2.
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The following bar chart indicates the frequency at each calculated mode.

Model > Modal > Solution

1437

10,
1250
1000
750. |
500.
250 l
A |
4 5 6 7 3 9 10

Model > Modal > Solution
:Mode | Frequency [Hz]|
A 45797

| ...45798 |

281.22

76385

. 763.87

18652
12741

~{ 14373 |

[ .

W
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Model > Modal > Solution > Solution Information
Object Name Solutlon Information
State Solved
Solution Information
Solution Output  Solver Output

Newton-Raphson ReS|duals . ;
~ Update Interval ~ 25s
Display Pomts' Al

Material Data

Stainless Steel

_ Stainless Steel > Constants

Structural o
Young's Modulus: 1.93e+011 Pa
_ Poisson’s Ratio. 0.31

N Density, 7750 kg/m® |

Thermal Expansnon 1. 7e 005 1/°C,_.}

_ Tensile Yield Strength: 2. 07e+008 Pa |

Compresswe Yleld Strength 2. 07e+008 Pa
Tensile Ultimate Strength  5.86e+008 Pa
Compresssve Ultimate Strength 0.Pa

o Thermal

~ Thermal Conductlvnty, 151 Wim- °C |

Specific Heat! 480. J/kg-°C |

Electromagnet:cs
) Relatwe Permeability : 10000 f
_ Resistivity. 7 7e-007 Ohm m:
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Appendix C Mode Shapes

Test Specimen Mode Shapes, Free-Free Boundary Conditions

ANSYS Mode Shapes

2909 0200 0,406 (m)
L e e

.10 0.330

Fig. C1: Mode 1: 224 Hz

.000 8208

.2 .40 (o}

6.100 0.300

Fig. C2: Mode 2: 607 Hz

0000 7208 0.400 (m)

0.100 0300

Fig. C3: Mode 3: 1158.6 Hz
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Experimentally Determined Mode Shapes

a.0ea44

J i

a.2 @.13s5
m Geometry

7 Deformation

Fig. C4: Mode 1:271.37 Hz

a.ents

/TN
}H

a.a a.13s
m Geometry

7/ Deformation

Fig. C5: Mode 2: 732.44 Hz

©.ae242

]

/N
N\

2.a @.135
m Geometry

7/ Deformatian
e
| S

Fig. C6: Mode 3: 1389.62 Hz
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Test Specimen Mode Shapes, Fixed-Free Boundary Conditions

ANSYS Mode Shapes
0.000 9900 (m) 0.000 : 0.900 (m)
Fig. C7: Mode 1: 46.21 Hz Fig. C8: Mode 2: 285 Hz
0.000 0.900 (m)

0.225 0.675

Fig. C9: Mode 3: 776.68 Hz
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Experimental Mode Shapes

a.e832

7 Deformation
.8 .
e—

7 Deformation
e
L |

7 Deformation
-]
| |

2.a a.242 2.a a. 242 a.a @.242
m G:omctrg m Geometrg m Geom:trld
Mode 1 : 32.0379 Hz, 1.39 flode 2 : 215.8024 Rz, 1.73 & Mode 3 : 635.3189 Hxz, 1.02 &

Fig. C10: Mode 1: Fig. C11: Mode 2: Fig. C12: Mode 12:
32.04 Hz 215.80 Hz 635.32 Hz
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Experimental Wind Turbine Mode Shapes

e.a 2.1
m Geometry

@a.a 2a.1 :

m Geometry

a

c c @
5 g o S
= ¢ Soe
Bl : &
[ - [ @
2 . < g
& s Lo
N N
1
N} 2a.1
m Geometry
Fig. C23: Mode 1: 16.23 Fig. C24: Mode 2: 30.53

c Y]
5 8 5 8
.~ G -
5 4 i

a !
c Eov ;
a
“+~ @ ‘e @ '
Yo 2o j
N N r________Fﬂﬁﬁ:: i

.a 2a.1 !
m Geometrg

Fig. 25: Mode 3: 60.33

Fig. C26: Mode 4: 78.04
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Appendix D
Matlab Program

%% %% Assigning the Three Base Matrices for the Stiffness Calculations %%%%

BaseMatrix 1=xlsread('C:\Users\Adam\Desktop\Finalized Thesis
Results\Model\Complete Fixed Free\Complete 356 DOF\Complete Model 356
DOF','1st Stiff','G159:CH314");
BaseMatrix2=xlsread('C:\Users\Adam\Desktop\Finalized Thesis
Results\Model\Complete Fixed Free\Complete 356 DOF\Complete Model 356
DOF',"2nd Stiff','G159:CH314");
BaseMatrix3=xlsread('C:\Users\Adam\Desktop\Finalized Thesis
Results\Model\Complete Fixed Free\Complete 356 DOF\Complete Model 356
DOF','3rd Stiff','J159:CK318");

%% %% Assigning the Base Mass Matrices %%%%

MassMatrix 1=xIsread('C:\Users\Adam\Desktop\Finalized Thesis
Results\Model\Complete Fixed Free\Complete 356 DOF\Complete Model 356
DOF','1st Mass','B80:CA157");
MassMatrix2=xlsread('C:\Users\Adam\Desktop\Finalized Thesis
Results\Model\Complete Fixed Free\Complete 356 DOF\Complete Model 356
DOF',"2nd Mass','B80:CA159");
MassMatrix3=xlsread("C:\Users\Adam\Desktop\Finalized Thesis
Results\Model\Complete Fixed Free\Complete 356 DOF\Complete Model 356
DOF','3rd Mass','D83:CC160");

%%%% Assigning Other Vairables %%%%

ModalMatrix=0;

Stiffness=0;
StiffnessRowCounter=1;
StiffnessColumnCounter=1;
ColumnCounter=3;

RowCounter=1;
LowerRowCounter=RowCounter+1;
RowMover=1;

BaseMatrixRow=0;
DoubbleRowMover=0;

%% %% Assembeling Aggegrate Matrix %%%%
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Aggegrate(1:156,1:80)=BaseMatrix|;
Aggegrate(157:312,79:158)=BaseMatrix2;
Aggegrate(313:472,157:236)=BaseMatrix3;

%First Block%
PreStiffness(1,1)=Aggegrate(1,1)*2;
PreStiffness(1,2)=0;
PreStiftness(2,1)=0;
PreStiffness(2,2)=Aggegrate(2,2)*2;

%Second Bock%

PreStiffness(3,1)=Aggegrate(3,1);
PreStiffness(3,2)=Aggegrate(3,2);
PreStiffness(4,1)=Aggegrate(4,1);
PreStiffness(4,2)=Aggegrate(4,2);

for BigColumnCounter=(3:2:236)

for ColumnCounter=(0:1:1)
RowCounter=1+DoubbleRowMover;
%Top Block%
PreStiffness(RowCounter,Bi gColumnCounter+ColumnCounter)=Aggegrate(Base
Matn'xRow+RowC0unter,BigColumnCounter+ColumnCounter);
RowCounter=RowCounter+1;
PreStiffness(RowCounter,BigColumnCounter+ColumnCounter)=Aggegrate(Base
MatrixRow+RowCounter,Bi gColumnCounter+ColumnCounter);
RowCounter=RowCounter+1;

%Middle Block%

PreStiffness(RowCounter,Bi gColumnCounter+ColumnCounter)=Aggegrate(Base
MatrixRow+RowCounter,BigColumnCounter+ColumnCounter)+Aggegrate(BaseMatri
xRow+RowCounter+2,BigColumnCounter+ColumnCounter);

RowCounter=RowCounter+1;

PreStiffness(RowCounter,Bi gColumnCounter+ColumnCounter)=Aggegrate(Base
MatrixRow+RowCounter,Bi gColumnCounter+C0lumnCounter)+Aggegrate(BaseMatri
xRow+RowCounter+2,BigColumnCounter+ColumnCounter);

RowCounter=RowCounter+1;

%Bottom Block%

PreStiffness(RowCounter,Bi gColumnCounter+ColumnCounter)=Aggegrate(Base
MatrixRow+RowCounter+2,BigColumnCounter+ColumnCounter);

RowCounter=RowCounter+1;

PreStiffness(RowCounter,BigColumnCounter+ColumnCounter)=A ggegrate(Base
MatrixRow+RowCounter+2,Bi gColumnCounter+ColumnCounter);

RowCounter=RowCounter+1;
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end

ColumnCounter=0;
DoubbleRowMover=DoubbleRowMover+2;
BaseMatrixRow=BaseMatrixRow+2;

end

for StiffnessRowCounter=(1:1:234)
for StiffnessColumnCounter=(1:1:234)
Stiffness(StiffnessRowCounter,StiffnessColumnCounter)=PreStiffness(StiffnessR
owCounter,StiffnessColumnCounter);
end
StiffnessColumnCounter=1;
end

%%%% Mass Matrices %%%%

Mass(1:78,1:78)=MassMatrix1;
Mass(79:156,79:156)=MassMatrix2;
Mass(157:234,157:234)=MassMatrix3;

%%%% Code to Find the Natural Frequncies %%%%

output=0;
output1=0;
output2=0;
w=0;

Det=0;
DetMatrix=0;

for w=0:1:7000

outputl=outputl+1;

output2=output2+1;
DetMatrix=(Stiffness-(w”2)*Mass)/1000000;
Det=det(DetMatrix);
output(outputl,1)=w/2/pi,
output(output2,2)=Det;

end
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Appendix E

Comparison of Impact Testing In Still and Moving Air

mm long aluminum bar, 11 mm wide by 9 mm deep.

10.00

(g/N)
Ampitude

1017

(g/N)
Ampitude

625¢-60.0Ph

Fig. E2: Resonance Frequencies of Test Specimen in 7 m/s Wind
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The results presented in this section were generated by securing a specimen to the
base of a wind tunnel and then conducting two sets of impact tests on it, one in still air
and one in moving air. The specimen used was the middle section of the model, a 504
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