
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Extending Scojo-PECT by migration based on system-level Extending Scojo-PECT by migration based on system-level

checkpointing checkpointing

Peiyu Cai
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Cai, Peiyu, "Extending Scojo-PECT by migration based on system-level checkpointing" (2009). Electronic
Theses and Dissertations. 7922.
https://scholar.uwindsor.ca/etd/7922

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/275771038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7922?utm_source=scholar.uwindsor.ca%2Fetd%2F7922&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

UMI°

Extending Scojo-PECT by Migration Based on

System-level Checkpointing

By

Peiyu Cai

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2009

© 2009 Peiyu Cai

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-57631-1
Our file Notre r6f6rence
ISBN: 978-0-494-57631-1

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise,

are fully acknowledged in accordance with the standard referencing practices. Furthermore,

to the extent that I have included copyrighted material that surpasses the bounds of fair

dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a

written permission from the copyright owner(s) to include such material(s) in my thesis and

have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

Abstract

In recent years, a significant amount of research has been done on job scheduling in high

performance computing area. Parallel jobs have different running time and require a different

number of processors, thus jobs need to be scheduled and packed to improve system

utilization. Scojo-PECT is a job scheduler which provides service guarantees by using

coarse-grain time sharing. However, Scojo-PECT does not provide process migration. We

extend the Scojo-PECT by migrating parallel jobs based on system-level checkpointing. We

investigate different cases in the Scojo-PECT scheduling algorithm where migration based on

system-level checkpointing can be used to improve resource utilization and reduce job

response time. Our experimental results show reduction of relative response times on

medium jobs over the results of the original Scojo-PECT scheduler and the long jobs do not

suffer any disadvantage.

Dedication

To my parents, my aunts

and

Miss. Huajing Yao

Acknowledgements

I would like to take this opportunity to thank my thesis supervisor, Dr. Angela Sodan for her

caring, guidance and cooperation throughout my graduate studies. This work presented here

would not be impossible without her help and support.

Secondly, I would like to thank Dr. Xiaobu Yuan and Dr. Muscedere for being the committee

and spending their valuable time and to Dr. Dan Wu for serving as the chair of the defenses.

Last but not least, I would like to thank all of my friends for all the help and support during

the completion of this thesis.

VI

Table of Contents

Author's Declaration of Originality iii

Abstract iv

Dedication v

Acknowledgements vi

List of Tables ix

List of Figures x

1. Introduction 1

2. Background Issues 4

3. The Scojo-PECT scheduler 10

4. Checkpointing and Migration 12

4.1 Checkpointing mechanism 12

4.2 Checkpointing costs 15

4.3 Migration and restart mechanism and cost 17

5. Extending Scojo-PECT by migration based on system-level checkpointing 19

5.1 Our assumptions 19

5.2 Selected Metrics 20

5.3 Extended Cases 20

5.3.1 Case one: Move job to continue in next non-type slice 20

5.3.2 Case two: Move job to make space for non-type backfill job 23

5.3.3 Case three: New job non-type backfill with migration at the end of slice to

avoid conflictions 25

5.3.4 Case four: Remove non-type backfilled job if new job of own type arrives....27

5.4 Sub Cases of Extended Cases 28

5.4.1 Move one job which can stay on same resources 29

5.4.2 Move one job which can not stay on same resources .29

5.4.3 Move multiple jobs to use resources in next slice 30

5.4.4 Move multiple jobs to avoid conflict 31

vii

5.5 Utilization Gain Calculation 32

5.6 Making decisions among checkpointing candidates 33

6. Experiments and Results 35

6.1 Experimental Set-up 35

6.2 Experimental Results 36

7. Summary and Conclusion 44

References 46

Appendix 49

VitaAuctoris 57

viii

List of Tables

Table 6.1: Characteristics of generated workloads 35

ix

List of Figures

Figure 2.1: Conservative backfilling and EASY backfilling 5

Figure 3.1: Job Type slices and backfilling 10

Figure 3.2: Scojo-PECTjobs and backfilled jobs 11

Figure 4.1: A checkpoint-restart system [32] 13

Figure 5.1: Move job to continue in next non-type slice(before) 21

Figure 5.2: Move job to continue in next non-type slice(after) 22

Figure 5.3: Move job to make space for non-type backfill job(before) 23

Figure 5.4: Move job to make space for non-type backfill job(after) 24

Figure 5.5: Newjob non-type backfill conflicts (before) 25

Figure 5.6: New job non-type backfill with migration at the end of slice to avoid

conflicts(after) 26

Figure 5.7: Remove non-type backfilled job if new job of own type arrives(before) 27

Figure 5.8: Remove non-type backfilled job if new job of own type arrives (after) 28

Figure 5.9: Move one job which can stay on same resource 29

Figure 5.10: Move one job which cannot stay on same resources 30

Figure 5.11: Move multiple jobs to use resources in next slice 30

Figure 5.12: Move multiple jobs to avoid conflict 31

Figure 6.1: Seed 7 Long jobs relative response time comparison 37

Figure 6.2: Seed 7 Medium jobs relative response time comparison 37

Figure 6.3: Seed 13 Long jobs relative response time comparison 38

Figure 6.4: Seed 13 Medium jobs relative response time comparison 38

Figure 6.5: Seed 23 Long jobs relative response time comparison 39

Figure 6.6: Seed 23 Medium jobs relative response time comparison 39

Figure 6.7: Seed 31 Long jobs relative response time comparison 40

Figure 6.8: Seed 31 Medium jobs relative response time comparison 40

Figure 6.9: Seed 71 Long jobs relative response time comparison 41

Figure 6.10: Seed 71 Medium jobs relative response time comparison 41

Figure 6.11: Long job migrate into M and migrate back to L 43

X

Figure 6.12: Mjob migrate into L and migrate back to M 43

xi

1. Introduction

In recent years, much research has been done in the High Performance Computing field. A

computer cluster system is a group of individual computer nodes usually linked by networks

and work as a super computer. Each node in the cluster has one or multiple processors.

Nodes also have local memories, local disks, and network devices to communicate and

collaborate with other nodes in the cluster system.

In cluster systems, a job can run parallel using multiple processors for a certain period of

time, so this makes it important to schedule the jobs of "when" and "where" to run in order to

obtain better utilization of the system and better response time for the jobs. The scheduler for

the cluster should be designed to obtain high system utilization and reduce the response time

of the jobs.

One scheduling category is space sharing. Space sharing [17] partitions processors into

groups and each group of processors is assigned exclusively to a single job. The job will run

on the assigned processors until finished. This approach is easy to implement but creates

fragmentations and the performance is not promising. Another scheduling category is time

sharing. The basic idea of time sharing is that multiple jobs share the same resources. Gang

scheduling [17] is one of the time sharing approaches which schedules all threads/processes

at the same time performs better, but it also suffers from expensive context switches. Jobs are

swap/paged out and in on a local machine. So jobs need to restart on the same nodes.

i

Another possibility to switch running job out to accomplish time sharing is to do

checkpointing. In computer systems checkpointing is usually implemented to support

rollback-recovery, which aims to recover the system from potential failure. Checkpointing

meanwhile allows job schedulers to move jobs or processes, so that the job or the processes

of jobs can be re-located and restart at another node. System-level checkpointing requires

support from the operating system. It writes the entire image of the running job into storage

device. Hence the overhead is high. But system-level checkpointing can be done at any

moment by the system. Application-level checkpointing needs the programmer to code

checkpoints into their program and only checkpoint part of their data, hence the overhead is

reduced. However application-level checkpoints can only be initialized by the user.

The Scojo-PECT [7] scheduler is an existing coarse-grain time sharing scheduler framework,

each slice running one type of job and allowing backfilling. At the end of slice, all jobs are

preempted and swapped out, then let the next slice type of jobs running.

Scojo-PECT, however, does not support checkpointing and migration. In our thesis we

extend Scojo-PECT by adding support of system-level checkpointing and migration, and

keep the preemption swaps. This will give our scheduler the flexibility to migrate jobs to

different nodes other than those where they were started, hence they can be better packed.

We explored the possible cases when and where checkpoints can be done in each

coarse-grain time slice. By extending these cases, we expect improvements for the average

response time of the Medium type and Long type jobs.

2

The thesis is organized in the following order: Chapter 2 introduced some important

backgrounds; Chapter 3 briefly introduced the Scojo-PECT scheduler; Chapter 4 introduced a

review of Checkpoint and Migration; Chapter5 we presented our extension algorithms on the

Scojo-PECT scheduler; Chapter 6 presented our experiments and results and Chapter 7 gives

a conclusion our thesis.

3

2. Background Issues

In space sharing, introduced in the previous chapter, the simplest strategy is to schedule jobs

in a First Come First Serve order. That means jobs are scheduled to run on the corresponding

resources in their submission order. However, the problem for this approach is that jobs are

scheduled on the processor dimension only. This will potentially cause fragmentation in the

system, which means some processor groups are left idle in a period of time. Because jobs

are scheduled in First Come First Serve order, even if the system has enough resources to let

a later job run, this job will have to wait for the current running job to complete. As a

consequence, average job waiting time and response time are increased. This will hurt the

performance.

To address the fragmentation problem, backfilling is studied to fill the system fragmentation

and improve system utilization [8][14]. In parallel computing, backfilling means jobs are

scheduled to run ahead of their original FCFS order to fill the free resources (fragmentation).

There are mainly two types of Backfilling strategies conservative backfilling and EASY

backfilling. [34]

If the backfilled job does not delay any of the successive jobs, the approach is called

conservative backfilling. Some other aggressive backfilling approaches abandon the no-delay

rule. For example: 'EASY' backfilling. This approach relaxes constrains of conservative

backfilling by keeping only the first job in the queue not delayed to prevent starvation.

4

Accordingly, later on jobs might be delayed and hence the response time is affected. As a

consequence, this approach could not guarantee good response time. The result varies on

different workloads.

JOB 3

Figure 2.1: Conservative backfilling and EASY backfilling

This figure shows an example of EASY backfilling, Job 1 is an EASY backfilled job, it does

not delay Job2 to run, but it conflicts with Job 3, which means Job3 will have to wait until

Job 1 is finished. Accordingly, in conservative backfilling, Job 1 will not be backfilled into

the space.

Both conservative backfilling and EASY backfilling can improve system utilization

significantly. Conservative backfilling improves about 70% system utilization, and still

leaves possibility to improve [49]. More over, the average response time is greatly reduced,

comparing to the basic First Come First Serve strategy. However, the pitfall of these two

approaches are, users have to estimate the jobs' running time accurately, otherwise, the

system can not guarantee fairness and correctness of the backfilling. This is also a hotly

5

PaacassoR

studied topic of modern high performance computing research area.

Allowing preemption of jobs is another solution to improve space sharing approaches.

Preemption can be used to support priorities, if a job with higher priority comes, low priority

jobs may preempt. Preemption can also be used to support long term time sharing. For

example, preempt long jobs and run them at night or other non-busy time. The pitfall is that

the cost is high and almost all preemptions need support from the operating system.

Preemption can be implemented by suspend/resume in memory or page/swap on disk.

However, suspension and resumption in memory may cause memory contention because it

requires sufficient system memory to store the currently running job and the preempted jobs

as well. Paging and swapping also needs support from the system, which is not always

supported. Moreover, preemption requires the preempted job to restart at the same resources.

This makes it impossible to re-pack jobs to obtain better response time and utilization.

A more flexible method to switch jobs out is checkpointing. After checkpointing, jobs are

able to be migrated; hence it will be possible for jobs to run on different resources. This

makes is possible for the scheduler to re-pack jobs better. We will explain checkpointing and

migration more in detail.

Checkpointing means to write an image file of the job out including all the information

needed to restart the job: all program data, the status of all resources uses such as registers,

6

opened files and network. Checkpointing is more expensive to do, but it is more flexible than

page/swapping.

Once checkpointing is done by the system, migration becomes possible. Migration means to

restart checkpointed jobs on different processors. Mere migration keeps the original allocated

number of processors. Migration is also implemented by halting the whole job and check

pointing. Note that to do migration the job should be in a migration-safe state for example

not to be in the middle of updating data or holding a lock. Both checkpointing and migration

should not involve system objects, and it is going to be complicated to do on heterogeneous

systems. However, static resource allocation courses fragmentation. If the jobs are moldable

or malleable, we can apply adaptive resource allocation.

Time sharing is the other general category of scheduling approaches in parallel computing

systems. The basic idea of time sharing is to run parallel jobs on

time-shared/multi-processing mode.

Combinations of space sharing and time sharing are also introduced such as gang scheduling

[21]. Gang scheduling schedules all threads/processes on different processors of a job at the

same time. All the processors of the system are time partitioned coordinately, and each time

partition can be viewed as a virtual system. Then, all the processes and threads are

synchronized into these virtual systems. It also includes more than one job sharing a same

time partition. Researches [9] on Gang scheduling show that it significantly reduced average

7

response time and has better results comparing to Space sharing.

Gang scheduling time slices are set globally and equal. Similar to some other approaches,

gang scheduling also suffers from high memory pressure, because it keeps jobs in memory to

reduce overhead.

Time sharing without coordination may leads to too many expensive switches or waste of

computing resources according to busy waiting. In other words a process of a parallel job

may have to wait for other processes of the job. Accordingly, the processor will stay idle for a

period of time. Another problem is basic time sharing entails too many expensive system

contexts switching. Other strategies have also been investigated such as Scojo-PECT.

The Scojo-PECT [7] scheduler is a coarse-grain time sharing preemptive scheduler

framework. It is also globally coordinated like gang scheduling. Scojo-PECT allocates

resource shares automatically. More specifically, it explicitly set the resource share

distribution per job class dynamically according to the workload, job mix and the

administrator's policy. By limiting time slice length into tens of minutes, the

preemption/swapping over head is acceptable. Scojo-PECT classifies jobs into job classes

according to their running time (currently supports short, medium and long type). Each job

type gets an individual slice of time to run. Scojo-PECT preempts jobs at the end of each

slice type to free memory space in the system so other jobs can run. We will introduce

Scojo-PECT more in detail in next chapter.

8

The original Scojo-PECT does not support checkpointing; so as a consequence, jobs that

were preempted have to restart on the same resources. It is not flexible enough, so we try to

extend its flexibility by allowing jobs to migrate based on system-level checkpointing.

Checkpointing technology is a field which has been hotly studied but is still developing.

There are no perfect implementations in this area. Our goal is to use checkpointing as a tool

to extend the flexibility of space sharing or time sharing.

9

3. The Scojo-PECT scheduler

In each Scojo-PECT job type slices [7], jobs are scheduled in a first come first serve (FCFS)

order. Short jobs and long jobs are found to obtain good response times by employing this

approach. Scojo-PECT maintains waiting queues and preemption queues for short, medium

and long jobs separately. When a new job comes, the scheduler will classify it by its running

time, artd then this job will be put in to the waiting queue of its own type, and wait for its

time to run. When a time slice runs to its end, all the running jobs will be preempted into

their own type preemption queue logically, and the jobs of next time slice will then restart.

This approach will reduce memory usage because the jobs can be preempted into disk. Figure

3.1 shows that the time slice intervals changes as time changes.

m l
Interval X I n t e r v a l "X

Figure 3.1: Job Type slices and backfilling. [7]

Scojo-PECT reduces fragmentation by applying backfilling. Currently, in our work we are

using conservative backfilling policy.

Scojo-PECT additionally supports non-type backfilling to reduce potential fragmentation.

Non-type backfilling means that a preempted or waiting job of a different type may get

backfilled if it will not delay other jobs. The backfilled jobs will run in the non-type slice

until the slice finish, and then this job will be preempted into its own slice type.

10

node I

Short Medium Long t ime
jobs jobs jobs

Figure 3.2: Scojo-PECT jobs and backfilled jobs

Scojo-PECT provides dramatically better relative response times than a non-preemptive

priority scheduler.

In brief the Scojo-PECT scheduler includes such characters:

1) Classify jobs by job type according to their runtimes (short, medium, long). The three

types of jobs are scheduled in separate time slices.

2) Each type of job is scheduled in a FCFS order.

3) Predict job's start time based on conservative backfilling.

4) For each time slice, the PECT scheduler will first resume preempted jobs of the same job

type.

5) Then allocate waiting jobs of the same type.

6) Try to backfill (EASY/conservative) after that try non-type backfill.

l l

4. Checkpointing and Migration

Checkpointing is widely used in many kinds of computer systems. In distributed systems

checkpointing is normally implemented to support rollback-recovery, which aims to recover

the system from potential failure. Checkpointing meanwhile allows job schedulers to move

jobs or processes, so that the job or the processes of jobs can be re-located and restart at

another node. Hence, by implementing checkpointing, many goals can be accomplished, for

example system load balancing, which means when a node of the cluster become overloaded

and too "busy", the jobs running on this node can be migrated to other nodes. So

checkpointing combined with migration can be used to improve system performance

including response time and system utilization.

4.1 Checkpointing mechanism

In this thesis, we use system-level checkpointing and migration as a tool to extend the

flexibility of the Scojo-PECT scheduler. System-level checkpointing is a direct and also the

most widely implemented checkpointing mechanism is to save the entire state of the job,

which is usually called full checkpointing. Because this approach needs support from the

computer system, this is also called system-level checkpointing. To implement checkpointing,

all the processes must be in a globally consistent state. According to previous research a

globally consistent state can be defined as the following: "More precisely, a consistent

system state is one in which if a process's state reflects a message receipt, then the state of

12

the corresponding sender reflects sending that message."[43] Once all the processes of the

job are at a consistent state, the processes will then write the state out, on local disk or any

kinds of stable storage system e.g. NFS (Network File Systems).

Figure 4.1 shows a typical cluster system with checkpointing supported. A, B and C are

nodes of a cluster system, parallel programs run parallel and communicate among the nodes.

The application coordinator send signals to the nodes and coordinate the target job that is to

be checkpointed to a consistent state, then the checkpoint file will be stored in to the storage

system. Accordingly, to restart the job, checkpoint files will be sent to the target nodes and

again the coordinator send signals and restart the job at a consistent stage.

n / XZ3

Control signals "
for checkpointing
and restart

Application \ '
Coordinator

- o - - • - • •

Locate an
ndividual

Storage Service
Location of
checkpoints

Federation of Storage Services

Figure 4.1: A checkpoint-restart system [32]

13

In some systems that need high reliability, checkpointing has to be done frequently, thus

writing the checkpoint file frequently to the storage. This may cost a significant amount of

system I/O resource and communication bandwidth. Incremental checkpointing is employed

to reduce the checkpoint file size. The system can save only the part that has been modified

since the last checkpointing to reduce the file size need to be written out. Then checkpointing

can be done frequently and the latency can be hidden. However, incremental checkpointing

checkpoint file size is at least as big as the operating system page size. Because of this

character, incremental checkpointing can not guarantee that the reduction of the checkpoint

files to be significant for every job.

In recent years, computer memory (RAM) price is getting less expensive. This makes it

possible to upgrade the memory size of each node of the cluster to a high capacity. As we

described above, the major drawback and bottleneck of checkpoint approaches are the system

I/O and bandwidth, so saving the checkpoint files in the local memory of each nodes can

greatly reduce the system resource cost of checkpointing and restart of jobs.

Another approach is called application-level checkpointing. [44] Application level

checkpointing can be supported by external library or supported by compiler. But both need

the programmer's effort to initialize checkpointing. The user (programmer) typically needs to

define the data set to checkpoint and also define the time interval between checkpoints. In

other words, the programmer has to code all these settings into their programs. An

14

application-level checkpoint file is normally smaller than that of the system-level

checkpointing hence the overhead to write the checkpoint file to the storage is lower.

However, this approach needs the programmer to know checkpointing structures well and

also with this approach it is impossible for the system to initialize a global checkpoint for the

entire system.

In our thesis we explored and extended Scojo-PECT scheduler by migration based on

system-level checkpointing.

4.2 Checkpointing costs

As we presented above, the cost of checkpointing of a parallel job in a cluster system

typically contains two parts:

1) To reach the consistent state, the system needs to coordinate all the processes, this takes a

certain period of time. We denote it Coord.

2) Once all the processes of the job are in a consistent state, the state image of each process

will be written out on local disk or in the memory or on a NFS server. At system level the

image size is equal to the memory footprint size.

We define the image file size that needs to write out as IS and the bandwidth to write out

bandwidth. So the formula of the checkpointing cost is:

15

Cp cost = Coord + IS/bandwidth

The coordinating time of processes is not dependent on the number of nodes and it is not the

main latency. By comparing the cost of in-memory and on-disk checkpointing, the cost of in

memory checkpointing is under 1 second, this includes coordination of processes and write

into memory. Hence Coord is less than 1 second roughly 0.4 sec or even less. [47][50]

The bandwidth to write the process image depends on the implementation. According to [49]

the bandwidth to write on the local disk is around 55-98MB /s to local disk in 2005, so it is

reasonable to believe that it can commonly be 70MB/s in 2009. If write into the memory it

can be as fast as lG/s. If store to a remote NFS server, the bandwidth will depends on the

network connection. A grid computing system in Canada called Sharcnet [www.sharcnet.org]

has lOGbps/IGbps dedicated connection between all clusters within the grid computing

system itself. So 70Mb/s is also reasonable for remote NFS server storage.

From the above information, the formula of the checkpointing cost we use in this thesis

would be:

CP Cost = IS/70 + 0.4

Accordingly, the in memory checkpointing cost would be

CP Cost = IS/1024+ 0.4

http://www.sharcnet.org

4.3 Migration and restart mechanism and cost

Since checkpointing stores a consistent state of a job, by transporting the state of process and

restarting it in a different node, we can achieve process migration.

Migration time is linear with the checkpointing image size. Mainly it costs the system to

write the image to the target nodes. And it is independent of the number of the processes in

the job [47]. Process restart itself costs a very short time. In some existing unix/linux system,

the system use mmap() function in Unix system instead of writing all the data into the

memory to restart the process.[48]

The cost to migrate and restart the job can be defined as follow:

MR cost = restart cost + IS/bandwidth

As we discussed above, the restart cost is very small [47] it is reasonable to believe it is

within 0.4 second. IS is the checkpoint file image size. Bandwidth is the achievable

transportation bandwidth to transport the image file to the target nodes. In [51] the bandwidth

is 22Mb/s in year 2005, it is reasonable to believe that the bandwidth now can be 30Mb/s. So

the formula to do process migration and restart is:

MR cost = IS/30 + 0.4.

Then we can obtain the total Checkpointing and Migration restart cost:

CMR cost = IS/21 +0.8

17

Accordingly, in memory checkpoint restart would be:

MR cost = IS/1024 + 0.4

Then the total Checkpointing and Migration restart cost would be:

CMR cost = IS/512 +0.8

5. Extending Scojo-PECT by migration based on

system-level checkpointing

The Scojo-PECT scheduler is a coarse-grain time sharing preemptive. It combines time

sharing and space sharing approaches to reduce response time and increase system

utilization.

5.1 Our assumptions

Our extension on Scojo-PECT scheduler is based several assumptions as follows.

• Each node contains only one processor, local memory, operating system and sufficient

local disk space.

• All jobs are neither moldable nor malleable. That means once submitted the number of

processors they need are fixed and can not change. In parallel computing, Moldable job

means the number of processors the job needs can be modified before starting to run.

Malleable job means the number of processors the job needs can be modified both

before starting to run and while it is running. [31]

• Users will have full knowledge of their job and are able to provide the number of

processors their jobs need. Also, the users will provide to the system with their estimated

running time of their jobs. This assumption used to be hard to accomplish. However,

recently, more and more commercial scientific computing softwares are released. More

and more researchers chose to use softwares to run tests on clusters instead of

programming by their own. These softwares can collect these job characters for the user

19

automatically or offer such interfaces to the user based on the input of the user's problem

e.g. "Gaussian 09", "Amber".

5.2 Selected Metrics

The following are the metrics we employed:

• Average Relative Response time: The time period from the moment the job submitted to

the cluster system to the moment that the job completed its running is called response

time of the job. Relative Response time is defined as: "response time /pure running time

without time slicing". This metric represents more on behalf of the user.

• Another metrics is P75, it denotes the highest bound of 75% jobs' relative response

times.

• Similarly P95 denotes the highest bound of 95% jobs' relative response times.

5.3 Extended Cases

Our efforts and work to extend Scojo-PECT by adding migration based on system-level

checkpointing can be categorized into the following four basic cases:

5.3.1 Case one: Move job to continue in next non-type slice

In Scojo-PECT scheduler, if a job can not finish at the end of it's own type slice, it will be

preempted and store into the preemption queue and wait for its own type of slice again then

restart on exactly the same processors it was running. However, if there are enough free

20

resources in the next slice for this job to run, because this job was preempted, it has to start

on the same processors, the free resource will be wasted and stay idle.

As illustrated in Figure 5.1 below, A job of Job Type A can not finish within its own slice

type, it need some more time to finish, but at the end of Slice Type A, this job must be

preempted and wait for Type B slice before it gets a chance to run again. However, we can

discover that in job Type B slice, there are enough free nodes (processors) to run this job,

because the original Scojo-PECT does not support checkpointing, these resources will be

wasted.

node
* Slice

Type/

typ

i

a cha

B

nge

Type

* time

Figure 5.1: Move job to continue in next non-type slice(before)

To make use of the free processors in the next slice, we can apply a checkpoint on the job and

then we restart the job to the free processors in the next slice. In Figure 5.2 the Type A job is

checkpointed. The deeper color part is the overhead to do the checkpoint. Then the

checkpointed job is migrated to Type B slice, the deeper colored part represents the overhead

to transfer the checkpoint file and restart the job.

21

node
Slice type change

Type
Type

time

Figure 5.2: Move job to continue in next non-type slice(after)

The scheduling Algorithm in presented as follow:

Case (SliceBeginEvent) {// CP is the abbreviation of checkpoint

For(jobsInRunningQueue){

If (jobRemainRunningTime > sliceRemainingTime){

If(therelsResourceCollisionInNextSlice){

if(SliceFinishTime - currentTime > CPoverhead(job))

add(job, CandidateList);

}

}

For(allJobsInCandidateList) {

makeCombinationsOfCP;

}
For (allCpCombinations){

compareCpGain(combination);

Rerurn(TheCombinationWithHighestGain);

}

insertCpEvents(combination);

}

22

5.3.2 Case two: Move job to make space for non-type backfill job

This case addresses another situation. While a time slice is running, a job is finished, then the

processors allocated to it will be set free and ready for other jobs to run. At this point, the

Scojo-PECT scheduler will first try to run own type waiting jobs and then try to backfill jobs

from other types. However, after all the checking, there is still a situation that the number of

free processors is enough for a preempted job of another type, but only because the job is a

preempted job it has to restart on the same processors it was running, and some of these

processors are occupied by another running job, hence this preempted job can not be

backfilled and run in current slice. In Figure 5.3 we can see in job Type A, a job finished in

the middle of this current slice, accordingly its processors are set free. A preempted Job 2 of

Type B can use these processors but it is blocked by Job 1.

node Slice type change

Type Ajobl :

Preempted
Type B job2

t ime

Figure 5.3: Move job to make space for non-type backfill job(before)

To make use of these system resources, we can apply a checkpoint on the job that is blocking

the preempted job, and migrate it to some other processors that will not block the preempted

job from being backfilled. In Figure 5.4 job one is checkpointed and migrated to some other

processors and the preempted Type B Job 2 is non-backfilled and run in slice Type A. Hence

this will improve the response time of Job 2.

node Slice type change

TypeAjobl

Preempted
Type B job2

- time

Figure 5.4: Move job to make space for non-type backfill job(after)

The scheduling algorithm is presented as follow:

Case(j obFinishEvent) {

Schedule() // try schedule jobs using the existing scheduler

for (alljobsInPreemptionQ){

if (currentFreeNodes>jobNodes){

getJobsThatAreBlockingBackfill(); II jobs that blocks the preempted job

if(backFillGain > CheckpointMigrationCost){

Migrate(blockingJobs);

Non-typeBackfill(preemptedJob);

}

}

}

5.3.3 Case three: New job non-type backfill with migration at the end

of slice to avoid conflictions

In the original Scojo-PECT scheduler, when a job finishes, the scheduler will try to non-type

backfill jobs from other types. If a non-type job can fit into the free processors in the current

slice, but this job can not finish within the slice and needs to run on its own slice type, then,

the scheduler will check again if this job will conflict with the preempted jobs in next slice, if

it will, the job will normally not be backfilled. In Figure 5.5 in Type A slice, we can see there

are enough free processors for a new Type B job 1, however, this job can not finish within

slice Type A, and moreover, this job conflicts with a preempted Type B job 2, so hence this

Job 1 will not be non-type backfilled in the original Scojo-PECT scheduler without

checkpointing and migration.

node Slice type change

Type A Preempted
.tyce,Bjob2

Backfilled
new non-
type B joblj

time

Figure 5.5: New job non-type backfill conflicts (before)

To extend the original scheduler, we allow the non-type waiting job backfill, then at the end

of the slice before the slice switch, we checkpoint the non-type backfilled job and migrate the

25

job to processors that are free in its own slice type and let it continue to run. In Figure 5.6,

the Type B job 1 is non-type backfilled and checkpointed at the end of slice Type A then in its

own type slice B, it is migrated to the free processors that will not conflict with the

preempted job 2.

node

Type A

Slice type change

Backfilled
ns/j non-

-J type B jobl __

Preempted
type B job2

i

time

Figure 5.6: New job non-type backfill with migration at the end of slice to avoid conflicts(after)

The algorithm to handle this case is as follows:

Case (jobFinishEvent) {// where processors are released.

schedule();// let the original scheduling algorithm run first

for (waitingjobsofNextType){

if(fitInCurrentSlice && cannotFinishWithinCurrentSlice){

if (conflicts With JobpreemptionQueue) {

if(CheckpointMigrationCost < checkpointMigrationGain)

Non-typeBackfill(job);// let the job run

addCPevent(job); // let job cp before slice switch

}

}

CaseCPevent{ II when it is time to checkpoint

Checkpoint(job);

Migrate(job,freeNodes);//7w/grafe the job into free nodes

}

26

5.3.4 Case four: Remove non-type backfilled job if new job of own

type arrives

In the original Scojo-PECT scheduler, if a job is non-type backfilled into another type Slice,

this job will continue to run till the end of this slice. This makes a problem, if a new job of

the current slice type arrives and at this moment there are not enough free processors in the

system to run this job, it will be delayed and keep waiting till its own slice come again. This

will hurt the response time of this job when improving the response time of the non-type

backfilled job. Figure5.7 shows at Type A slice a Type B job was non-type backfilled and

running, a new job of type A arrives when the backfilled job hasn't finish yet.

node New own type job arrives

Type A

Type B
-» time

Figure 5.7: Remove non-type backfilled job if new job of own type arrives(before)

We extend this case by giving the non-type backfilled job a checkpoint and put it into the

preemption queue of its own type. Then the new arrived job can get a chance to run. In

Figure 5.7 we can see that the non-type backfilled Type B job is checkpointed and a newly

arrived job of Type A starts to run on the processors yielded by the checkpointed job.

27

node New own type job arrives

Type A

Type B *Bl Type.A1 :••
time

Figure 5.8: Remove non-type backfilled job if new job of own type arrives (after)

The following is the algorithm of this case.

Case (jobSubmitEvent){

Schedule(WaitingJobs);//7r); to schedule with the

For (jobsInRunningQueue){

if (jobType != currentSliceType

&& enoughSpaceInNextSliceFor(job)

&& currentFreeNodes + jobNodes >=

Checkpoint(job);

Start(waitingJob);

}

}

}

original scheduler

waitingJobNodes) {

5.4 Sub Cases of Extended Cases

Although we extended the original Scojo-PECT scheduler with the four basic cases, as we

implement we have to face more sub-cases that may occur. The following are the sub-cases

we have to deal with in a real cluster system.

5.4.1 Move one job which can stay on same resources

This is the most straight forward case in our basic case one. Job 1 is checkpointed and

migrated to another slice, then run and finish with in the next slice type. In Figure 5.9 job 1 is

checkpointed in its own type slice and migrated into the next type slice, then it ends before

the next slice is over.

node Slice type change

job 1

| j o b l
- time

Figure 5.9: Move one job which can stay on same resource

5.4.2 Move one job which can not stay on same resources

In this case a job is checkpointed and migrated to another type slice as the pervious case, but

the migrated job is too long to finish within the next type slice. This may cause processor

conflicts if there are preempted jobs of its own type occupied the processors. So we have to

checkpoint the job again and migrate back to its own position when its own type slice comes.

Accordingly the overhead is again increased and have to be recalculated. In Figure 5.10 job 1

of type A is checkpointed and migrated to Type B slice. But it can not finish when Type B

slice ends, so it is checkpointed again and migrated back to its own position after Type C

slice when Type A slice comes again.

node Slice type change

job 1

job 1

Preempted
job

time

Figure 5.10: Move one job which cannot stay on same resources

5.4.3 Move multiple jobs to use resources in next slice

node Slice type change

job 1

Job 2

job 1

Job 2

t ime

Figure 5.11: Move multiple jobs to use resources in next slice

Another sub-case that may occur is that when we try to move job to continue in next

non-type slice, there may be more than one job that can fit into the free processors and

30

continue to run, we will have to evaluate the gain and cost of all the combinations of the

fixable jobs and make the decision which job or combination of the jobs should be

checkpointed and migrated. In Figure 5.11 jobl and job 2 can be checkpointed migrate

together into next type slice and continue to run.

5.4.4 Move multiple jobs to avoid conflict

node

TyjDe A

Slice type change

j ob l

job:

Backfilled;
j o b l I ! A preempted job

i that has to restart
here

Backfilled
job2

time

Figure 5.12: Move multiple jobs to avoid conflict

Similarly if there are multiple jobs that can be backfilled into a non-type slice and then can

avoid conflict with preempted jobs of its own type, we will make the decision which job or

which combination of jobs we should checkpoint and migrate. In Figure 5.12 job 1 and job 2

are both non-type backfilled into type A then at the end of slice Type A they are both

checkpointed then migrated in their own slice type to avoid conflicts with an existing

preempted job.

5.5 Utilization Gain Calculation

The Utilization Gain Calculation module is an important part of our extension on the

Scojo-PECT scheduler. Whenever we want to checkpoint and migrate a job for any of the

cases we introduced above, we need to first calculate the cost and the gain of the checkpoint

and migration, only if the gain is larger than cost we can continue to checkpoint and migrate

jobs.

We select which job(s) based on extra executed time during non-type slice minus overhead

for the procedure of checkpointing and migration of the job(s).

If using disk storage systems, the cost of checkpoint and migration can be simulated to be:

Checkpoint cost = Coordinate cost + ImageSize/bandwidthi

= 0.4 + (job memory footprint size) / 70 (Mb/s)

Migration cost = restart cost + ImageSize/bandwidthO

= 0.4 + (job memory footprint size) / 30 (Mb/s)

If the job(s) can finish within next non-type slice its Gain can be calculated as:

Gain = JobRemainningRuntime - (CheckpointCost + MigrationCost)

If the job(s) cannot finish within next non-type slice, that means this job will be first migrate

to next non-type slice and execute, then at the end of the slice, do another checkpointing and

32

migrated back to its own type slice to avoid potential conflicts .

Hence the gain would be: extra executed time in next non-type slice minus the overhead to

do the checkpoint and migration twice including migrating back:

Gain = LengthOfNextNon-typeSlice - 2*(CheckpointCost + MigrationCost)

5.6 Making decisions among checkpointing candidates

Although we calculate the gain and cost before making the decision which job or

combination of jobs should be checkpoint and migrated to obtain the maximum gain, this is

not enough for a real cluster system. Modern cluster systems contain hundreds even

thousands of processors, this allows many jobs to run simultaneously. As a result, there can

be a large number of jobs that can be checkpointed and migrate. Then, calculating the gain

and cost of all possible job combinations could be very costly and became unaffordable. To

solve the problem we apply heuristics to reduce the computation load.

In our extension Case 1, if we have more than one job that can fit into the free processors in

the next non-type slice, we first calculate the cost and extra running time of individual jobs, if

the extra running time is larger than the cost, this job will be added to a candidate list. Then

we check possible job combinations with a maximum of 4 elements of all the candidates in

the list. And then we perform checkpointing and migration for the combination of jobs with

the highest gain.

In our Case 2 once a job finishes in current slice, if the processors freed can fit more than one

preempted job to be non-type backfilled, we first calculate the extra running time of each

preempted job and then calculate the cost to migrate corresponding jobs need to be

checkpoint and migrated. Then we non-type backfill the job with the highest gain, checkpoint

migrate corresponding jobs and then see if the rest of processors can fit the job with the

second largest Gain and then repeat until all the candidates are checked or no more free

processor left in next non-type slice.

In our Case 3, it is very similar to case one. If the free processors in the current type slice are

enough for multiple non-type waiting jobs we select the one with the highest gain and then

try to fit more jobs with the same procedure.

In our Case 4, because the newly arrived job of own type has a higher priority, so it is fair

that we chose the first newly arrived job, checkpoint the corresponding non-type job(s) and

let the new job run. If there are multiple non-type backfilled jobs running, we checkpoint the

job(s) using less processors if it does not delay own type jobs.

By merging our extension and heuristics into the original Scojo-PECT scheduling algorithms,

our extension does not increase the algorithm complexity of the Scojo-PECT scheduler. In

our simulation, the running time of our extension for 10,000 jobs is increased about 15% than

that of the original Scojo-PECT simulation.

6. Experiments and Results

6.1 Experimental Set-up

Our experiments and evaluation are based on a discrete event simulator. The simulation input

data is generated by an external library in the Lublin-Feitelson [17] model. This model

simulates and generates workloads based on tens of thousands real jobs of real cluster traces

from the following three systems [17].

• "San-Diego Supercomputer Center Intel Paragon machine. This system has 416 nodes

and the log covers all 1995 and 1996."

• "1024-node Connection Machine CM-5 installed at Los-Alamos National Lab. The log is

from January through September 1996"

• "100-node IBM SP2 machine at the Swedish Royal Institute of Technology in

Stockholm. In the Period of October 1996 to August 1997"

Based on Lublin-Feitelson model, we generated workloads with the following randomization

seeds: 7,31,73,13,71. Each set of workload has 10,000 jobs and these jobs are simulated to

run on a cluster system which has 128 nodes. Different workload will have different impacts

on the result of our approach. The following Table 6.1 describes the most important

characteristics of the workloads with different seeds.

Table 6.1: Characteristics of generated workloads

35

SEED

7

13

23

31

71

Percentage of Job

types

Short

64.31

63.57

64.77

63.09

64.03

Med

19.68

19.18

19.17

20.18

19.39

Long

16.01

17.25

16.06

16.73

16.58

Average Job size

Short

8.63

8.53

8.70

8.72

8.68

Med

17.35

16.98

16.60

16.67

16.65

Long

20.87

19.70

20.38

20.43

19.02

Average

Inter-Arrival

Time(sec)

840.0

832.0

1038.0

860.0

810.0

Overall

Utilization

0.8037

0.7944

0.6215

0.7688

0.7643

6.2 Experimental Results

The following figures are the comparison of relative response times between the original

Scojo-PECT running workloads with different seeds and the result of extended Scojo-PECT

scheduler with our Checkpoint and Migration extension.

Avg denotes the average relative response time for all the jobs. P75 represents the average

relative response time for 75% of all the jobs. Similarly P95 is the average relative response

time for 95% of all the jobs.

36

Seed 7 Long

35.00

30.00
25.00

20.00

15.00

10.00

5.00

0. 00

H Orig
ffl Extend

~/<>;V-i> ..IS||i|i

, ' ^̂ ^̂ ^̂ S

Avg

9.44

9.34

-• . Illlili

n- M
• • • • ^ . • ^

P75

13. 18
13.06

" ~ ^ ~

-' . ••__
HSSH •'' 8̂-

'•'• 'WKt '
P95

28.63
26.41

Orig

Extend

Figure 6.1: Seed 7 Long jobs relative response time comparison

Figure 6.1 show the comparison of relative response times for Seed 7 Long jobs between the

Original result and our Extension.

Seed 7 Medium

25.00

20.00

15.00

10.00

5.00

0. 00

• Orig
9 Extend

:fr;"lfijj|

'"" BBIIi
Avg

8.40
7.63

t-, , , , „ v'rijm

- 'i iiiiiilB ,.u_
P75

11.30
10.32

K 'i
4

L* / 'J'i
? / ; ••••

P95

21.41
21.27

I Orig

I Extend

Figure 6.2: Seed 7 Medium jobs relative response time comparison

Figure 6.2 shows the comparison of relative response times for Seed 7 Medium jobs between

37

the Original result and our Extension.

Seed 13 Long

20.00

15.00

10.00

5.00

0. 00

fflOrig
9 Extend

p r r " r ~ ^

: ; «
Avg

6.90
6.67

iiM
/.- ;- j|J§jllj "-••

P75

9. 16
8.76

^

P95

17.82

17.73

• Orig
9 Extend

Figure 6.3: Seed 13 Long jobs relative response time comparison

Figure 6.3 shows the comparison of relative response times for Seed 13 Long jobs between

the Original result and our Extension.

Seed 13 Medium

Orig
Extend

Figure 6.4: Seed 13 Medium jobs relative response time comparison

31

Figure 6.4 shows the comparison of relative response times for Seed 13 Medium jobs

between the Original result and our Extension.

Seed 23 Long

12.00

10.00

8.00

6.00

4. 00

2.00

0.00

HOrig

B Extend

§1:1
. ~,;

 WM
Avg

4. 26
4. 13

- pm
- -'HI - Ill

P75

5.68
5.37

' - " —

>•• H i
m

P95

11. 10
11.00

H O r i g

9 Extend

Figure 6.5: Seed 23 Long jobs relative response time comparison

Figure 6.5 shows the comparison of relative response times for Seed 23 Long jobs between

the Original result and our Extension.

20.00

15.00

10.00

5.00

0.00

I Prig
Extend

Avg

6.05
5.28

Seed 23 Medium

P75
7.70

6.41

17.81

16.15

lOrig

I Extend

Figure 6.6: Seed 23 Medium jobs relative response time comparison

Figure 6.6 shows the comparison of relative response times for Seed 23 Medium jobs

between the Original result and our Extension.

Seed 31 Long

25.00

20.00

15.00

10.00

5.00

0. 00

HOrig
• Extend

n -
Avg

8.25
8. 12

-. ~ M

• . 1

• ' ' ••••, A

P75

11.45
11.23

M
rMU
£m

P95

20.21
20.21

Orig

Extend

Figure 6.7: Seed 31 Long jobs relative response time comparison

Seed 31 Medium

25.00

20.00

15.00

10. 00

5.00

0.00

HOrig
B Extend

''•" ' ^Hl— :'":^Wtt
Avg

8.00
7. 16

v> -K.1BBMJI

L^MT
P75

10.73
9.05

; • • • - . •

P95

22.59
21.82

Orig

Extend

Figure 6.8: Seed 31 Medium jobs relative response time comparison

Figure 6.8 shows the comparison of relative response times for Seed 31 Long and Medium

jobs between the Original result and our Extension.

Seed 71 Long

I Orig

I Extend

Figure 6.9: Seed 71 Long jobs relative response time comparison

30.00

25.00

20.00

15.00

10.00

5.00

0.00

Orig

Extend

Seed 71 Medium

Avg

8.61

7.25

iamsi

am

} •*
i - • • :

K : r-«

i

-* *
: , i
L* ' « •'!

P75

11.61

9. 19

P95

26. 15

22.72

Orig

Extend

Figure 6.10: Seed 71 Medium jobs relative response time comparison

Figure 6.10 shows the comparison of relative response times for Seed 31 Long and Medium

jobs between the Original result and our Extension.

In summary, for all the five seeds we tested, the average response time for Long jobs are

improved by 2.9%, the average response time for Medium jobs are improved by 13.1%. The

result of P75 for Long jobs is improved by 1.9%, Medium jobs 20.0%. For P95 Long jobs,

the improvement is 2.0% and for Medium jobs 9.0%. Our approach achieves improvements

on medium job relative response times, and long job relative response times do not suffer any

reduction.

As an explanation why long jobs do not benefit much: Scojo-PECT is a coarse-grain time

sharing scheduler, jobs are classified by running time. Medium jobs are those runs from 10

minutes to 3 hours and Long jobs are now classified from 3 hours to up to over 50 hours.

Approximately M slice interval is 18 minutes and L slice runs 42 minutes. When a long job

migrates into M slice, it runs 18 extra minutes minus costs. When a medium job checkpoint

and migrated into L slice it runs 42 extra minutes minus costs. So the extra run time for long

migrated to medium could be relatively small. And it is very likely that the migrated M job

will finish within the L slice. Moreover, the average job size of M jobs is smaller than L jobs

this makes M jobs more flexible to be scheduled.

42

node
Slice type change

tab!

Long slice
42 minutes

Medium
18m

Job i

Long slice;
42 minutes

bob 1
time

Figure 6.11: Long job migrate into M and migrate back to L

node

Job 2

Slice type change

Long slice
42minute

fefeas1"1

Job 2

Job 2

time

Figure 6.12: M job migrate into L and migrate back to M

43

7. Summary and Conclusion

We have presented our approach of extending the Scojo-PECT scheduler by Migration based

on system-level checkpointing. The focus of our presented approach is to obtain

improvement in average response times comparing to the original Scojo-PECT scheduler

which is a coarse-grain time sharing framework.

We explored possible situations where checkpoint and migration can be applied and

categorized them into four basic cases.

• We checkpoint job or multiple jobs and migrate them so that they can continue to run

in next non-type slice.

• We checkpoint and migrate job or multiple jobs to make space in a time slice to make

space for another job to perform non-type backfill.

• We let new arrived jobs to perform non-type backfill by checkpointing this job at the

end of the slice and migrate it to avoid conflicts with next slice.

• We halt and remove non-type backfilled job(s) if new job of own type arrives.

• Checkpoint and migration cost and gain are calculated and evaluated to support

decision making on which job or combination of jobs should be checkpoint and

migrated.

• Heuristics are applied when making the decision which job or combination of jobs

should be checkpoint and migrated.

44

Our extension as expected is able to reduce average relative response time of jobs. The

experimental result shows that our approach improves average relative response time of

Medium jobs by about 13.1% and improves about 2.9 % for Long jobs compared to the

original Scojo-PECT scheduler without checkpointing and migration supported.

References

[I] S. Agarwal, G.S. Choi, C.R. Das, A.B. Yoo, S. Nagar, Co-ordinated coscheduling in time-sharing

clusters through a generic framework, Proc. of the IEEE Intl. Conf. on Cluster Comp., 2003, pp. 84-91.

[2] A.C. Arpaci-Dusseau, D. Culler, Implicit Co-Scheduling: Coordinated Scheduling with Implicit

Information in Distributed Systems. ACM Trans. Compu. Sys., Aug. 2001,pp. 283-331.

[3] N. Bansal, M.H. Baiter, Analysis of SRPT Scheduling: Investigating Unfairness, ACM

S1GMETRICS Performance Evaluation Review, 2001, pp. 279-290.

[4] R. Brightwell, K.D. Underwood, C. Vaughan, An Evaluation of the Impacts of Network Bandwidth

and Dual-Core Processors on Scalability, Proc. Internat. Supercomputing Conference, Dresden, Germany,

Jun. 2007.

[5] L. Chai, Q. Gao, D. K. Panda, Understanding the Impact of Multi-Core Architecture in Cluster

Computing: A Case Study with Intel Dual-Core System, CCGRID, IEEE Inter. Symp. 2007, pp. 471-478

[6] S.P. Dandamudi, T.K. Thyagaraj, A Hierarchical Processor Scheduling Policy for

Distributed-Memory Multicomputer Systems, High Performance Comp. Proc. 4th Intl. Conf., 1997, pp.

218-223.

[7] B. Esbaugh, A.C. Sodan, Coarse-Grain Time Slicing with Resource-Share Control in Parallel-Job

Scheduling, High Performance Computing and Communication (HPCC), Houston, LNCS 4782, Springer

Verlag, Sept. 2007.

[8] D.G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems. Research Report RC

19790 (87657), IBM T. J. Watson Research Center, Oct 1994.

[9] D.G. Feitelson, L. Rudolph, Gang Scheduling Performance Benefits for Fine-Grain Synchronization.

Journal of Parallel and Distributed Computing, Dec 1992, pp. 306-318.

[10] E. Frachtenberg, D. G. Feitelson, F. Petrini, J. Fernandez, Adaptive Parallel Job Scheduling with

Flexible Coscheduling, Parallel & Distributed Systems, IEEE Trans., 2005, pp. 1066-1077.

[II] F. Gine, F. Solsona, P. Hernandea, E. Luque, Adjusting Time Slices to Apply Coscheduling

Techniques in a Non-dedicated NOW, Euro-Par 2002 Parallel Proc, 2002, pp. 234-239.

[12] F. Gine, F. Solsona, P. Hernandez, E. Luque, Cooperating Coscheduling in a Non-dedicated Cluster,

Euro-Par 2003 Parallel Proc, 2003, pp. 212-217.

[13] F. Gine, F. Solsona, M. Hanzich, P. Hernandez, E. Luque, Cooperating Coscheduling: A

Coscheduling Proposal Aimed at Non-Dedicated Heterogeneous NOWs, Journal of Computer Science and

Technology, Vol. 22, Sep. 2007.

[14] D. G. Feitelson and M. A. Jette, "Improved utilization and responsiveness with gang scheduling".

In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (Eds.), pp. 238-261,

Springer-Verlag, 1997. Lecture Notes in Computer Science Vol. 1291

[15] M. Hanzich, F. Gine, P. Hernandez, F. Solsona, E. Luque, A Space and Time Sharing Scheduling

Approach for PVM Non-dedicated Clusters, Recent Advances in Parallel Virtual Machine and Message

Passing Interface, 2005, pp. 379-387.

[16] M. Hanzich, F. Gine, P. Hernandez, F. Solsona, E. Luque, CISNE: A New Integral Approach for

Scheduling Parallel Applications on Non-dedicated Clusters, Euro-Par 2005 Parallel Processing, 2005, pp.

220-230.

[17] A. Hori, T. Yokota, Y. Ishikawa, S. Sakai, H. Konaka, M. Maeda, T. Tomokiyo, J. Nolte, H.

Matsuoka, K. Okamoto, H. Hirono, Time Space Sharing Scheduling and architectural support, Job

46

Scheduling Strategies for Parallel Processing(JSSPP), 1995, pp. 92-105.

[18] U. Lublin, D.G. Feitelson, The Workload on Parallel Supercomputers: Modeling the Characteristics

of Rigid Jobs, Journal of Parallel and Distributed Computing, 2003, pp. 1105-1122.

[19] A. Moursy, R. Garg, D.H. Albonesi, S. Dwarkadas, Compatible Phase Co-Scheduling on A CMP of

Multi-Threaded Processors, Parallel & Distributed Proc. Sys., 20th IEEE Intl., 2006.

[20] T. Moscibroda, O. Mutlu, Memory Performance Attacks: Denial of Memory Service in Multi-core

Systems. Proc. Of 16 th USENIX Security Symp., Boston, 2007.

[21] J.K. Ousterhout, Scheduling Techniques for Concurrent Systems, In 3rd Intl. Conf. Distributed

Corhput. Syst. (ICDCS), Oct 1982, pp. 22-30.

[22] F. Petrini, W. Feng, Buffered coscheduling: A New Methodology for Multitasking Parallel Jobs on

Distributed Systems, Parallel & Distributed Proc. Sys., 14th IEEE Intl., May 2000, pp. 439-444.

[23] G. Sabin, G. Kochhar, P. Sadayappan, Job Fairness in Non-Preemptive Job Scheduling, Proc. Intern.

Conf. on Parallel Proc. IEEE, 2004.

[24] G. Sabin, V. Sahasrabudhe, On Fairness in Distributed Job Scheduling Across Multiple Sites,

CLUSTER IEEE, 2004.

[25] G. Sabin, P. Sadayappan, Unfairness Metrics for Space-Sharing Parallel Job Schedulers, Job

Scheduling Strategies for Parallel Processing, Springer, Vol. 3834, 2005.

[26] A. Snavely, D.M. Tullsen, G. Voelker, Symbiotic Jobscheduling with Priorities for a Simultaneous

Multithreading Processor, Proc. of the 2002 ACM SIGMETRICS Intl. Conf. on Measurement & Modeling

of Computer Systems, Jun. 2002.

[27] A.C. Sodan, L. Lan, LOMARC — Lookahead Matchmaking for Multi-resource Coscheduling, Job

Scheduling Strategies for Parallel Processing (JSSPP), 2005, pp. 288-315.

[28] A.C. Sodan, G. Gupta, A. Deshmeh, X. Zeng, Benefits of Semi Time Sharing and Trading Space vs.

Time in Computational Grids, Technical Report 08-020, University of Windsor, Computer Science, May

2008.

[29] A.C. Sodan, L. Lan, LOMARC Lookahead Matchmaking for Multiresource Coscheduling on

Hyperthreaded processors, Parallel and Distributed Systems, IEEE Trans., 2006, pp. 1360-13 75.

[30] A.C. Sodan, Adaptive Scheduling for QoS Virtual-Machines under Different Resource

Availability—First Experiences, Job Scheduling Strategies for Parallel Processing (JSSPP), 2009.

[31] A.C. Sodan, Loosely Coordinated Coscheduling in the Context of Other Dynamic Approaches for

Job Scheduling—A Survey, Concurrency & Computation: Practice & Experience, 17(15), Dec. 2005, pp.

1725-1781.

[32] Sriram Krishnan, Dennis Gannon: Checkpoint and Restart for Distributed Components in XCAT3.

GRID 2004: 281-288. 10, Electronic Edition

[33] D.M. Tullsen, A. Snavely, Symbiotic Jobscheduling for a Simultaneous Multithreading Processor,

Internat. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2000.

[34] D. Lifka. The ANL/IBM SP scheduling system. In JSSPP, pages 295-303, 1995.

[35] J. Weinberg, A. Snavely, Symbiotic Space-Sharing on SDSC's DataStar System, Job Scheduling

Strategies for Parallel Processing (JSSPP), 2007, Vol. 4376. pages 295-303,1995.

[36] A.B. Yoo, M. A. Jette, An Efficient and Scalable Coscheduling Technique for Large Symmetric

Multiprocessor Clusters, Job Scheduling Strategies for Parallel Processing (JSSPP), 2001, pp. 21-40.

[37] J.L. Yu, D. Azougagh, J.S. Kim, S.R. Maeng, PROC Process ReOrdering-Based Coscheduling on

Workstation Clusters, Parallel & Distributed Proc. Sys., 19th IEEE Intl., Apr. 2005, pp. 50-50.

47

[38] X. Zeng, J. Shi, X. Cao, A.C. Sodan, Grid Scheduling with ATOP-Grid under Time Sharing,

CoreGrid Workshop on Grid Middleware (in conjunction with ISC), Dresden, Springer, Jun. 2007.

[39] Y. Zhang, A. Sivasubramaniam, Scheduling Best-effort and Real-time Pipelined Applications , on

Time-Shared Clusters, Proc. of the 13th annual ACM Sys. on parallel algorithms and architectures

(SPAA), July 2001.

[40] B.B Zhou, R.P. Brent, On the Development of an Efficient Coscheduling System, Job Scheduling

Strategies for Parallel Procesing (JSSPP), Springer, 2001, pp. 103-115.

[41] Jones JP, Nitzberg B. Scheduling for parallel Supercomputing: A historical perspective on achievable

utilization.

[42] Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP) (Lecture

Notes in Computer Science, vol. 1659). Springer: Berlin, 1999.

[43] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi , Yi-Min Wang, David B. Johnson A survey of

rollback-recovery protocols in message-passing systems.ACM Computing Surveys (CSUR) Volume

34, Issue 3, Pages: 375 - 408, 2002

[44] Luis Moura Silva, Joao Gabriel Silva: An Experimental Evaluation of Coordinated Checkpointing in

a Parallel Machine. EDCC 1999: 124-142

[45] Sankaran S, Squyres J M, Barrett B, Lumsdaine A, Duell J, Hargrove P and Roman E 2003 The

LAM/MPI checkpoint/restart framework: system-initiated checkpointing Proc. Los Alamos Computer

Science Institute (LACSI) Symp. (Santa Fe, New Mexico, USA, October 2003)

[46] Gengbin Zheng, Lixia Shi, and Laxmikant V. Kal' e. Ftc-charm++: An in-memory checkpoint-based

fault tolerant runtime for charm++ and mpi. In 2004 IEEE International Conference onCluster Computing,

pages 93-103, San Dieago, CA, September 2004Gengbin

[47] G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. Proceedings of the 10th

International Parallel Processing Symposium, p. 526-531,

[48] Hua Zhong and Jason Nieh http://www.ncl.cs.columbia.edu/research/migrate/crak.html

[49] Gioiosa, R. Sancho, J.C. Jiang, S. Petrini, F. Transparent, Incremental Checkpointing at Kernel

Level: a Foundation for Fault Tolerance for Parallel Computers. Supercomputing, 2005. Proceedings of

the ACM/IEEE SC 2005 Conference Publication Date: 12-18 Nov. 2005

[50] U.Lublin, D.G. Feitelson, "The Workload on parallel Super computers: Modeling the Characteristics

of Rigid Jobs", Journal of Parallel and Dis tributed Computing, Vol. 63, No.l 1, Nov 2003, pp.1105-1122

[51] Jose Carlos Sancho, Fabrizio Petrini, Greg Johnson, Juan Fernandez, Eitan Frachtenberg: On the

Feasibility of Incremental Checkpointing for Scientific Computing. 1PDPS 2004

[52] "Parix 1.2: Software Documentation", Parsytec Computer GmbH, March 1999

48

http://www.ncl.cs.columbia.edu/research/migrate/crak.html

Appendix

In this appendix, we put our result of test cases during our implementation. We created jobs

manually and simulated the situations that individual cases should be handled.

Case 1:

For case 1

We first tested M job checkpoint and migrate to L slice. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 28 nodes and run 8800 seconds

Job4 using 100 nodes and run 9000 seconds

Job5 using 100 nodes and run 20000 seconds.

Jobl and 2 are short jobs, Job 3 and 4 are medium jobs, Job5 is a long job. Our test result

shows that job3 is migrated to Long slice and run together with Job5 as expected.

node L

Job
1

Slice type

Job3

Job4

change

3ob5

job3

time

Then we tested L job checkpoint and migrate to M slice. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 1 node and run 1000 seconds.

Job4 using 128 nodes and run 299 seconds

Job5 using 127 nodes and run 9000 seconds

Job6 using 100 nodes and run 20000 seconds

Job7 using 1 node and run 20000 seconds.

Job 1, 2 and 4 are short jobs, Job 3 and 5 are medium jobs, Job6 and 7 are long jobs. Our test

result shows that job7 is migrated to Medium slice and run together with Job5 as expected.

We tested multiple jobs checkpoint and migrate. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 14 nodes and run 8800 seconds.

Job4 using 100 nodes and run 9000 seconds

Job5 using 14 nodes and run 8800 seconds

Job6 using 100 nodes and run 20000 seconds

Jobl and 2 are short jobs, Job 3, 4 and 5 are medium jobs, Job6 is a long jobs. Our test result

shows that job 3 and 5 are migrated to Long slice and run together with Job6 as expected.

Case 2

For case 2

50

We first tested single medium job migrate and allow backfill. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 29 nodes and run 1700 seconds

Job4 using 99 nodes and run 1300 seconds

Job5 using 28 nodes and run 20000 seconds.

Job6 using 100 nodes and run 20000 seconds.

Jobl and 2 are short jobs, Job 3 and 4 are medium jobs, Job5 and 6 are long jobs. Our test

result shows that after job 4 finished, job3 is migrated to free nodes in current slice and job 5

is non-type backfilled and run.

node t

Job 3ob3

1 ±
Job
4

Slice type change

job3 Job6

Job5

time

Next we tested multiple jobs migrate and allow backfill. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 14 nodes and run 1700 seconds

Job4 using 15 nodes and run 1700 seconds

51

Job5 using 99 nodes and run 1300 seconds

Job6 using 28 nodes and run 20000 seconds.

Job7 using 100 nodes and run 20000 seconds.

Jobl and 2 are short jobs, Job 3, 4 and 5 are medium jobs, Job6 and 7 are long jobs. Our test

result shows that after job 5 finished, job3 and 4 are migrated to free nodes in current slice

and job 6 is non-type backfilled and run.

We then tested single long job migrate and allow backfill. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 28 nodes and run 2500 seconds

Job4 using 100 nodes and run 1700 seconds

Job5 using 28 nodes and run 4600 seconds.

Job6 using 100 nodes and run 20000 seconds.

Jobl and 2 are short jobs, Job 3, 4 and 5 are medium jobs, Job 6 is a long jobs. Our test result

shows that after job 4 finished in long slice, job6 is migrated to free nodes in current slice

and job 3 is non-type backfilled and run.

Case 3

For case 3, we first tested allow new long job to backfill in Long slice. Our input is

Jobl using 128 nodes and run 299 seconds.

52

Job2 using 128 nodes and run 299 seconds.

Job3 using 100 nodes and run 1700 seconds

Job4 using 28 nodes and run 1300 seconds

Job5 using 100 nodes and run 20000 seconds.

Job6 using 28 nodes and run 20000 seconds.

Jobl and 2 are short jobs, Job 3 and 4 are medium jobs, Job5 and 6 are long jobs. Our test

result shows that after job 4 finished, Job6 allowed to non-type backfill and

checkpoint-migrated in Long slice to avoid conflict with Job5

node l

Job
1

Slice type

Job3

Job4 ! Job6

change

Job6

Job5

time

Then we tested allow multiple jobs to backfill and then checkpoint and migrate. Our input is:

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 100 nodes and run 1700 seconds

Job4 using 28 nodes and run 1300 seconds

53

Job5 using 100 nodes and run 20000 seconds.

Job6 using 14 nodes and run 20000 seconds.

Job7 using 14 nodes and run 20000 seconds.

Jobl and 2 are short jobs, Job 3 and 4 are medium jobs, Job5, 6 and 7 are long jobs. Our test

result shows that after job 4 finished, Job6, 7 allowed to non-type backfill and

checkpoint-migrated in Long slice to avoid conflict with Job5

Then we tested allow medium jobs to backfill and then checkpoint and migrate. Our input is:

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 100 nodes and run 1700 seconds

Job4 using 29 nodes and run 2000 seconds

Job5 using 99 nodes and run 20000 seconds.

Job6 using 28 nodes and run 2000 seconds.

Jobl and 2 are short jobs, Job 3, 4 and 6 are medium jobs, and Job5 is a long job. Our test

result shows that after job 4 finished, Job6 is allowed to non-type backfill and

checkpoint-migrated in M slice to avoid conflict with Job3

Case 4

For case 4, we first tested single job checkpointed out in M slice. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

54

Job3 using 28 nodes and run 17000 seconds

Job4 using 99 nodes and run 1300 seconds

Job5 using 1 node and run 80 seconds.

Job6 using 100 nodes and run 2000 seconds.

Jobl, 2 and 5 are short jobs, Job 4 and 6 are medium jobs, Job 3 is a long job. Our test result

shows that after Job 6 submitted, the non-type backfilled job3 is checkpointed and preempted.

Job 6 gets its nodes to run, when its Long slice, Job 3 gets back to run.

node

Job
1

Slice type

3ob3 Job6
i

Job4

change

3ob3

time

Then we tested multiple jobs checkpointed out to make space for own new arriving job. Our

input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 14 nodes and run 17000 seconds

Job4 using 14 nodes and run 17000 seconds

Job5 using 99 nodes and run 1300 seconds

Job6 using 1 node and run 80 seconds.

Job7 using 100 nodes and run 2000 seconds.

Jobl, 2 and 6 are short jobs, Job 5 and 7 are medium jobs, Job 3, 4 are long jobs. Our test

result shows that after Job 7 submitted, the non-type backfilled job3, 4 are checkpointed and

preempted. Job 7 gets its nodes to run, when its Long slice, Job 3, 4 gets back to run.

Then we tested single job checkpointed out to make space for own new arriving job in Long

slice. Our input is

Jobl using 128 nodes and run 299 seconds.

Job2 using 128 nodes and run 299 seconds.

Job3 using 128 nodes and run 299 seconds

Job4 using 28 nodes and run 17000 seconds

Job5 using 100 nodes and run 18000 seconds.

Job6 using 1 nodes and run 80 seconds

Job7 using 90 nodes and run 1800 seconds

Jobl, 2, 3 and 6 are short jobs, Job 7 is a medium job, Job 4 and 5 are long jobs. Our test

result shows that after Job 7 submitted, the non-type backfilled job5 is checkpointed Job 7

gets its nodes to run, when its Long slice, Job 5 gets back to run.

56

Vita Auctoris

NAME: Peiyu Cai

PLACE OF BIRTH: Hebei, P.R. China

YEAR OF BIRTH: 1980

EDUCATION:

Hebei University of Technology, Hebei, China
1999-2003

University of Windsor, Windsor, Ontario, Canada
2006 - 2009

57

	Extending Scojo-PECT by migration based on system-level checkpointing
	Recommended Citation

	ProQuest Dissertations

