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Abstract 

Sequential pattern mining is the process of finding inter-transaction frequent sequential 
patterns from a sequential database, where records consist of ordered sets of events (or 
items), by applying data mining techniques on such sequential databases. Discovering 
sequential patterns in web server logs is an example application of sequential mining, 
which is useful for predicting visiting patterns of web users for such purposes as targeted 
advertisements. Position Coded Pre-order Linked Web Access Pattern (PLWAP) mining 
algorithm is one of the existing efficient web sequential pattern mining algorithms, which 
stores the frequently stored sequences of the entire sequential database in a compressed 
tree form with position coded nodes. 

However, for very long sequences exceeding thirty two nodes, the number of bits 
an integer position code can hold, the PLWAP algorithm's performance begins to 
degrade because it employs linked lists to store conjunctions of long position codes and 
the linked list traversals slow down the algorithm both during tree construction and 
mining. PLWAP algorithm also uses each and every node in the frequent 1-item event 
queue to test for that event inclusion in the suffix tree root set during mining. This is a 
very expensive operation since except for one node all other nodes that are its ancestors 
and descendents are not included in the root set. 

This thesis proposes two new algorithms, i.e. PLWAPLongl and PLWAPLong2. 
Both of these new algorithms use a new position code numbering scheme where each 
node is assigned two numeric variables (startPosition, endPosition) instead of one. Using 
this scheme we can determine the ancestor node in O (1) operation by comparing the 
startPosition and endPosition of two nodes. PLWAPLongl algorithm also proposes 
transforming the linked list based tree to an equivalent array representation and using 
binary search to find the immediate descendant in a suffix tree. PLWAPLong2 uses 
existing linked list based tree. Both PLWAPLongl and PLWAPLong2 algorithms 
introduce a new technique called "Last Descendant" to eliminate the unwanted nodes 
from ancestor/descendent test when creating the suffix tree root set. 

Keywords: Data mining, Web Mining, Association Rule Mining, Long Sequences, 
PLWAP Mining 
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1. Introduction 

Organizations that have large amount of data need to make decisions that impact 

their future activities. Data mining is a process of extracting relevant and important 

knowledge from that large data to facilitate decision making. Automatic discovery of 

user access patters from web usage log is known as web usage mining. Analysis of such 

pattern can help improve server performance, restructuring of a web site and better 

marketing strategies in e-commerce web sites. It can also be used to find significant user 

actions like sending an email or searching [SM+99]. In this thesis, we study efficient 

mining of sequential patterns from web usage log. This chapter is organized as follows: 

section 1.1 introduces web mining and its categories; section 1.2 introduces phases of 

web usage mining. 

1.1. Web Mining 

The growth of World Wide Web (WWW) has amazing impact on our everyday life. 

Online shopping, following news feeds, keeping track of stock market, weather update, 

banking or simply conducting online business, World Wide Web has grown in both 

volume and traffic. This growth has brought new challenges to web site design, web 

server design and also the web site navigation. When data mining techniques are applied 

on web data it becomes web mining. Web mining finds interesting patterns from the web 

by applying automatic mining techniques. Interesting patterns are discovered from web 

contents or web pages, web links in the web pages or web logs. This web data can be 

collected at the server-side, client-side, proxy-servers or organizations' database. 

According to [BL99], [MBN+99] and [SCD+00] web mining can be categorized into web 

content mining, web structure mining and web usage mining. 
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1.1.1. Web Content Mining 

Web sites are built up with text, hyperlinks, images, scripts and multimedia. Web content 

mining discovers useful information from these data items that make up the website. 

1.1.2. Web Structure Mining 

A website usually consists of more than one web page. These web pages are connected 

to each other using hyperlinks. Web structure mining discovers the patterns from such 

hyperlinks. These patterns represent the underlying model of the website and such a 

model then can be used to categorize the web pages. Using such patterns, similarity and 

relationship with different websites can be discovered. 

1.1.3. Web Usage Mining 

Although sequential pattern mining technique can be used with applications other than 

the web-based, focus of this thesis will only be on the web usage. Web usage mining 

finds relationships between and patterns in access log files generated by the user's visit to 

the website. It provides straightforward statistics, such as page access frequency along 

with finding common traversal paths with the website [CMS99]. According to [BM98], 

log files can be of three kinds: server log, error log and cookie log. A typical web log at 

least consists of entries shown in Table -1 . An Example of a line of data in a web log is 

137.207.76.120-[30/Aug/2001:12:03:24-0500] ',GET/jdkl.3/docs/relnotes/deprecatedlist.html 

HTTP/1.0" 200 2781" 

Where 137.207.76.120 is the host/ip, '-'represents annonymus user, [30/Aug/2001:12:03:24-

0500] is the [date:time], "GET/jdkl.3/docs/relnotes/deprecatedlist.html HTTP/1.0" is the 
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"request url", '200' is the status of the URL request and 2781 is the number of bytes 

requested. 

Field 

Host/ip 

User 

Date 

Request 

URL 

Status 

Bytes 

Description 

Remote client IP address 

Remote log user name 

Date, time and time zone of 

request 

User request identifier (URI) 

with the uniform resource 

locator(URL) string 

Status code returned to the 

client 

Bytes transferred (sent and 

received) 

Example 

111.125.12.112 

Xyz or ' - ' for anonymous user. 

14/Jan/2008:10:01:01-0400 

URI: http, ftp, mailto etc 

URL: 

http://cricket.resultsvault.com/cricket/reports/matchmenu.asp 

200 [series of success], 300 [series of redirect], 400 [series 

of failure] and 500 [series of server error] 

1024 bytes 

Table 1 Sample Web Log 

With the help of web usage mining, organizations can monitor the browsing behavior of 

users on the web-based applications. For example, if users access page with URL 

/products/games/hardware.html, 95% of times they also access page 

/products/games/accessories.html. Such information can be useful in laying out the links 

closer to each other hence providing easier browsing routes. Such patters can also help in 

doing better marketing of products to targeted users. Web usage data can be obtained 

from TCP-IP packets using sniffing software [SCD+0O], cookie log data, query data and 

click stream data [SCD+OO] [BM98]. 

3 
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1.2. Phases of web usage mining 

Web usage mining can be categorized into three phases: preprocessing, 

Knowledge/pattern discovery and pattern analysis. 

Log 
file 

r 

1=2.1= Preprocessing 

Preprocessing constitutes about 80% of the work of data mining tasks [AKM+01]. 

According to [CMS99] following tasks may be included in the preprocessing phase: Data 

cleaning, User-Identification, session-identification, path-completion, transaction-

identification, formatting. 

1.2.1.1. Data Cleaning 

Web pages these days are rich with images, multimedia, scripts and hyperlinks. When 

user visits the web site and requests for a web page, all the data ingredients of that page 

4 

Preprocessing 

Pattern Discovery 

Pattern Analysis 

Figure 1 Web Usage Mining Phases 



get recorded in the server log file. For web log analysis, only the html page should be 

listed in the navigational path of the log file. Multimedia embedded files, images, scripts 

and hyperlinks all become noise data and should be cleaned. 

1.2.1.2. User Identification 

Web logs contain IP addresses to identify the users. Sometimes, IP address can not 

uniquely identify every user because users share their computers or are connected 

through proxy servers. According to [CMS99], log/site method can be employed to 

identify unique users. Users and user sessions also become difficult to identify from the 

web logs because of the stateless nature of HTTP [CMS99, CP95, P97, SP+98] 

1.2.1.3. Formatting 

Formatting is the final step in preprocessing. A predefined module is used to format the 

cleaned log that could then be used for data mining. 

1.2.2. Pattern Discovery 

Once the usage log is cleaned and formatted, it is ready to be operated by various 

algorithms and methods. Let's see some of the methods applicable to web usage mining. 

Association Rule Mining: 

According to [AIS93], association rule is an implication of the form X => Y;, 

where X is a set of some items in Y, and Y; is a single item in Y that is not present in X 

and Y being the set of all the items. Association rule mining on web usage data helps 
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capturing relationships among page views based on user navigational patterns 

[MDKN01]. 

Clustering: 

Clustering allows grouping of users or data items on the basis of similar characteristics 

[CMS99]. Web server logs generated by user's visits to a website can be used to cluster 

user information to learn and develop future marketing plans. 

Sequential Pattern Mining: 

While association rule mining discovers intra-transaction patterns (patterns within 

same transaction), sequential pattern mining finds inter-transactions (patterns in more 

than one transaction) from a set of time-ordered items. 

1.2.3. Pattern Analysis 

Pattern analysis comes at the end of the web usage mining process. After applying 

mining techniques and algorithms patterns are analyzed and uninterested patterns are 

discarded. OLAP operations can also be performed on the load usage data once it is 

loaded into a data cube [SCD+00]. 

1.3. Sequential Pattern mining 

Sequential pattern discovery is to find inter-transaction patterns such that presence of one 

set of items is followed by another set, where items are ordered by their respective 

transaction time. Sequential mining is a process of applying data mining techniques on 

such sequential databases. Discovering sequential patterns in web server logs is helpful 

in predicting visiting patterns of web users in turn helping targeted advertisement or 

grouping related information depending on frequent sequential web accesses. 
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1.4. Thesis Contribution 

This thesis proposes two new algorithms, PLWAPLongl and PLWAPLong2, to 

efficiently find sequential patterns from long sequences. 

Both PLWAPLongl and PLWAPLong2 are based on PLWAP algorithm [LE03] [LE05]. 

PLWAP algorithm stores the entire sequential database in a compressed tree form with 

position coded nodes. However, for very long sequences exceeding thirty two nodes, the 

PLWAP algorithm's performance begins to degrade because it employs linked lists to 

store conjunctions of long position codes and the linked list traversals slow down the 

algorithm both during tree construction and mining [ELL05]. PLWAP algorithm also 

uses each and every node in the frequent 1-item event queue to test for that event 

inclusion in the suffix tree root set during mining. This is a very expensive operation 

since except for one node all other nodes that are its ancestors and descendants are not 

included in the root set. 

The new proposed algorithms, i.e. PLWAPLongl and PLWAPLong2, use a new position 

code numbering scheme where each node is assigned two numeric variables 

(startPosition, endPosition) instead of one. Using this scheme we can determine the 

ancestor node in 0(1) operation by comparing the startPosition and endPosition of two 

nodes. The PLWAPLongl algorithm also proposes transforming the linked list based 

tree to an equivalent array representation and using binary search to find the immediate 

descendant in a suffix tree. The PLWAPLong2 algorithm uses same linked list based tree 

structure as that used by PLWAP algorithm. Both PLWAPLongl and PLWAPLong2 

algorithms introduce a new technique called "Last Descendant" to eliminate the 

unwanted nodes from ancestor/descendent test when creating the suffix tree root set. 
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1.5. Outline of the Thesis Proposal 

The remaining of the thesis proposal is organized as follows: Chapter 2 reviews related 

work to this thesis. Chapter 3 details discussion of the problem addressed along with the 

new algorithms proposed. Chapter 4 gives performance analysis and experimental 

results. Chapter 5 draws the conclusion of this research and discusses future work. 

8 



2. Previous/Related Work 

2.1. Association Rules 

According to [AIS93], association rule is an implication of the form X => Yj, 

where X is a set of some items in Y, and Yj is a single item in Y that is not present in X 

and Y being the set of all the items. Association rule mining on web usage data helps 

capturing relationships among page views based on user navigational patterns. 

[AIS93] introduced many algorithms to apply association rule mining on market 

basket data. Market basket data contains list of items bough by customers in each 

transaction. With the advancements in bar-code scanning, task of recording such 

information has also become easy and fast. Mining such basket-data helps management 

of supermarkets in making decision like what two items to be put together, what items to 

be put on sale or what coupons should be designed and etc. Association rule provides 

information in the form of "if-then" statement. The " i f or the first part is the antecedent 

and the "then" part is the consequence. Association rules make use of two numbers i.e. 

support and confidence, to measure the degree of uncertainty in the rule. Support is the 

number of transactions that include all items in the antecedent and consequence parts of 

the rule. Confidence on the other hand is ratio of the number of the transactions that 

include all the items in consequence as well as the antecedent. 

2.2. Apriori 

[AIS93] introduced an algorithm to apply association rule mining over the 

market-basket data. Their algorithm, also know as AIS algorithm, answered the key 

problems of rule mining, i.e. 
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1. Generation of large itemsets. Large itemsets are those that have fractional 

transaction support greater than a certain threshold called minsupport. This 

step is also called join step. 

2. Generating all rules from the large itemset. This step is also called prune step. 

AIS algorithm's main drawback is that it makes multiple passes over the database to find 

all association rules [AS94]. It turns out to be exponentially large. [AS94] has presented 

three algorithms that outperform AIS algorithm. They all use the common function 

called apriori-gen that reduces the candidate itemsets. 

Transaction ID (TID) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Items purchased 

I l , I 2 , l 5 

h,U 

I2,I3 

Ii, h, I4 

I,,I3 

I2, Is 

Ii, I3 

Ii, I2, I3, I5 

I l , I 2 , l 3 

Table 2 Transaction DB 

The essence of apriori algorithm is that it employs iterative approach know as level-wise 

search. With such a technique, the algorithm uses prior knowledge of frequent itemset 

found at previous level to find the frequent itemset at present level. Algorithm starts with 

finding frequent-1 itemset called L| which is used to find L2. The set of frequent-2 
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itemset is used to find L3, and so on, until no more frequent k-itemsets can be found. Let 

us run through the transaction database shown in Table-2 to see how apriori algorithm 

works. Let us assume that the minsupport is 2 transactions. In our example it would be 

2/9 = 22%. 

1. In first iteration, each item belongs to the candidate 1 -itemsets, CI. A database scan 

is performed to get the occurrence count of each item. 

C, 
Itemset 
I, 
I2 

I3 
I4 

Is 

Support count 
6 
7 
6 
2 
2 

Table 3 Candidate 1-itemset 

2. Now the algorithm will generate the Li, set of frequent 1-itemsets, by satisfying the 

minsupport of candidate 1-itemsets. 

L, 
Itemset 

Ii 
I2 
Is 
I4 
Is 

Support count 
6 
7 
6 
2 
2 

Table 4 Frequent 1-itemsets 

3. With the L\ itemset in hand, algorithm will now perform a self join of Lj i.e. L] x L] 

to generate a candidate 2-itemsets satisfying minsupport. 

C2 
Itemset 

{Ii 
{Ii 
{Ii 
{Ii 
{I2 
{I2 

,I2} 
,I3} 
,M 
.15} 
,13} 
.14} 
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{12 
{13 
{13 
{14 

I5} 
14} 
15} 
Is) 

Table 5 Candidate 2-itemsets 

4. Algorithm will now use the C2 to find the minsupport of each 2-itemset by scanning 

the database once more. Support count of each candidate itemset in C2 is 

accumulated as shown below. 

C2 
Itemset 

{Ii,I2} 
{Il,I3> 
{ i i ,M 
{Ii.Is} 
{I2.I3} 
{12,14} 
{I2,I5} 
{I3.M 
{I3,I5} 
H4.I5} 

Support Count 
4 
4 
1 
2 
4 
2 
2 
0 
1 
0 

Table 6 Support Count of C2 
5. Using the last step data set, L2 will be generated. By joining L2 x L2 we will get the 

C3 candidate itemset. 

L2 
Itemset 

{Ii,I2} 
{I],l3> 
{IlJs} 
{ 12, I3} 
{ h, 14} 
{ 12, I5) 

Support Count 
4 
4 
2 
4 
2 
2 

Table 7 Frequent 2-itemsets 

C3 
Itemset 
{I , , 12,13} 
{I1.I2.I5} 

Table 8 Candidate 3-itemsets 

6. Database is scanned again to find count of each 3-itemsets using C3 data. 

12 
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C3 
Itemset 
{I1.I2.I3} 
{I1I2I5} 

Support Count 
2 
2 

Table 9 Support Count of C3 

7. Algorithm will now produce the L3 by comparing the candidate support count with 

minsupport. 

L3 
Itemset 
{I1.I2.I3} 
{I1.I2.I5> 

Support Count 
2 
2 

Table 10 Frequent 3-itemsets 

8. A self join on L3 is performed to produce candidate set of 4-itemsets, C4. As a result, 

we will get {{Ii; I2,13,15}}. Since the subset {I2, 13,15} is not frequent, the 4-itemsets 

{{Ii, I2, I3, Is}} will be pruned resulting in empty C4, causing the algorithm to 

terminate. 

With the termination of the algorithm, the final large itemset obtained is the union of LI, 

L2 and L3 i.e. 

L = {I], I2,13,14, Is, {h, I2}, {Ii, I3}, {Ii, Is}, {I2,13}, {I2,14}, {I2, Is}, {Ii, I2,13}, {Ii, h, 

Is}}-

[AS94] introduced two more algorithms based on apriori i.e. AprioriTid and 

AprioriHybrid. In AprioriTid, the database is not scanned again for count support after 

the first scan for candidate 1-itemsets. This algorithm uses special encoding scheme to 

find the support count, hence reducing the database scans. AprioriHybrid on the other 

hand is a combination of Apriori and AprioriTid. AprioriHybrid addresses the memory 

limitation problem faced by AprioriTid because of keeping the auxiliary dataset in 
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memory. AprioriHybird switches between Apriori and AprioriTid depending on memory 

availability. We will not be addressing these algorithms here. 

2.3. FP-Tree 

Apriori-like algorithms [AIS [AIS93], AprioriTid [AS94], AprioriHybrid [AS94]] use 

candidate set generation and test approach. These Apriori like algorithms are costly, 

especially when large number of patterns exist [HPYOO]. [HPYOO] proposed a frequent-

pattern tree (FP-tree) structure that compresses the database representing the frequent 

items and stores it in a prefix tree in descending order of their support. The FP-tree is 

then mined using the FP-growth mining method. Let us mine the database from Table 2 

using the FP-growth method. 

9. In the first scan'frequent 1-itemsets are obtained with their support count. Keeping 

the same minsupport count of 2 as we used in previous section. The set obtained in 

first scan is stored in descending order of the support count denoted by L. 

L = [I2:7, Ii:6,13:6,14:2,15:2]. 

10. After the first scan, the FP-tree construction process begins with the creation of the 

root node labeled 'null'. 

(^ Null J 

• After this the database is scanned for the second time. All of the items in each 

transaction are processed in descending support count order and branch is created for 

each transaction. Let us create couple of branches from our example database. 
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• Transaction T100 has three items "I], I2, I5". Its L order would be "12, Ii, Is"- The 

tree branch created for this transaction is shown in Figure 2. 

Item ID Support Node-Link ^ n u l 1 » 
Count , ^ M 

\ 1 / ^ 
I2 

II 
I3 

I4 

Is 

7 
6 
6 
2 
2 

— 

-*, 

- - - - - - - K l ^ 

Figure 2 Tree branch for T100 

This completes the transformation of first transaction from the database to one of the 

branches of the FP-tree. Now let us work on the second transaction. 

Second transaction T200 consists of two items "I2, V - Its L order would be "I2,14". 

I2 will be connected to the root and I4 will be connected to the node I2. The support 

count for I2 will be incremented by 1 since this new branch shares the common 

prefix (I2). Hence a new node I4 will be created as a child note of I2, as shown in 

Figure 3. 

Item ID Support N o d e . L i n k null {} 
, Count , ^ M 

\ 1 / s* 
I2 

I1 
I3 
I4 
Is 

7 
6 
6 
2 
2 

— 

--

-̂  

J * 

--' - --

Figure 3 Tree branch for T200 
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The algorithm will run for all the transactions in the database and the resulting tree 

looks as shown in Figure 4. 

Figure 4 Complete FP tree 

Along with the FP-Tree data structure, this algorithm also maintains item header 

table. Each item from that table points to its occurrences in the FP-Tree using node-

links. 

Once the FP-Tree construction is complete, mining process starts with the 

construction of the conditional pattern base from each frequent 1-itemset. Let us 

mine frequent patterns for I3. 

I3 has two branches in its conditional FP-tree as shown in Figure 5, which generates 

the following set of patterns: {12 13: 4, II 13:2,12 II 13:2}. 

Item ID ^U p p o r t Node-Link . Count . ^ ^ nuu {} 

I2 
L 

4 
4 - ---- 1 ^ 

Figure 5 13 conditional FP Tree 

Complete mining of FP-tree is shown in table 11. 
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Item 

Is 

I4 

I3 

Ii 

Conditional pattern base 

[(l2li : l) ,(I2IiI3 : l)] 

[(I2I i :l),(l2:l)] 

[(I2Ii:2),(I2:2),(Ii:2)] 

[(I2:4)] 

Conditional FP-tree 

(I2:2,1,:2) 

(I2:2) 

(l2:4,I,:2),(Ii:2) 

(I2:4) 

Frequent patterns generated 

h I5:2,1,15:2,12 I, I5:2 

I2 I4:2 

I2 I3:4,1,13:2,121,13:2 

I2I,:4 

Table 11 Frequent Patterns 

2.4. Sequential Pattern Mining Algorithms 

Sequential pattern mining algorithms were first presented by [AS95]. These algorithms 

were based on the apriori algorithms presented by [AS94]. 

2.5. Apriori ALL 

AprioriAll is the first of two algorithms presented by [AS95] to mine sequential patterns. 

The essence of this algorithm is to find the maximal sequences. Each such maximal 

sequence represents a sequential pattern. A sequence is maximal if it is not contained in 

any other longer frequent sequence. This algorithm is based on the Apriori algorithm 

presented in [AS94] with the addition of maximal phase that prunes out all non-maximal 

sequences. AprioriAll algorithm works on a transformed database, shown in Table 15. 

Original customer-sequence database (Table 12) is transformed to a table where 

transactions are large itemset (Table 13) which is further replaced by litemset mapping, 

as shown in Table 14. 

Cust ID 

1 

Original Cust Seq 

[(30) (90)] 

Large Itemsets 

(30) 

Mapped To 

1 
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2 

3 

4 

5 

[(110 20)(30)(40 

60 70)] 

[(30 .50 70)] 

[(30)(40 70)(90)] 

[(90)] 

(40) 

(70) 

(40 70) 

(90) 

2 

3 

4 

5 

Table 12 Customer-sequence Table 13 Large Itemset mapping 
database 

Cust ID 

1 

2 

3 

4 

5 

Original Cust Seq 

[(30) (90)] 

[(110 20)(30)(40 60 70)] 

[(30 50 70)] 

[(30)(40 70)(90)] 

[(90)] 

Transformed Seq 

[{(30)} {(90)}] 

[{(30)}{(40),(70),(40 70)}] 

[{(30), (70)}] 

[{(30)}{(40),(70),(40 70)}{(90)}] 

[{(90)}] 

Mapped Seq 

[{1}{5}] 

[{1} {2,3,4}] 

[{1,3}] 

[{1} {2,3,4} {5}] 

[{5}] 

Table 14 Mapped sequences 

Cust ID 

1 

2 

3 

4 

5 

Mapped Seq 

[{1} {5}] 

[{1} {2,3,4}] 

[{1,3}] 

[{1} {2,3,4} {5}] 

[{5}] 

Table 15 Transformed Database 



The algorithm finds all the frequent patterns the same way as apriori algorithm does. It 

starts by scanning the database to get the support count of each frequent 1-itemset, Table 

16. Assuming the user specified support to be 40% or 2 customer sequences, we will get 

the L] from Ci, shown in Table 17. We get the C2 by doing a self join of Li using 

apriori-gen function as described in [AS94]. The algorithm will keep on generating the 

candidate itemsets and their corresponding large itemsets unless our candidate itemset 

becomes empty and we can not produce anymore large itemsets. Table 18 to Table 23 

shows all of the candidate itemsets and large itemsets generated in sequence phase of 

AprioriAll algorithm. The maximal phase prunes out all of the non-maximal sequences 

from the large sequence sets to give the sequential patterns. Maximal phase uses the 

following algorithm to do this task [AS95] 

For(k = n ; k > l ; k - ) d o 

For each k-sequence Sk do 

Delete from S all subsequences of Sk 

S is the set of all large sequences generated in sequence phase. The maximal large 

sequences (sequential patterns) generated are shown in Table 24. 

Seq 
(1) 
(2) 
(3) 
(4) 
(5) 

Supp 

4 
2 
4 
4 
4 

Seq 

(1) 
(2) 
(3) 
(4) 
(5) 

Supp 

4 
2 
4 
4 
4 

Table 16 CI Table 17 LI 

Seq 
(12) 
(13) 
(14) 
(15) 
(2 3) 

(2 4) 

(2 5) 

(3 4) 

(3 5) 

(4 5) 

Supp 

2 
4 
3 
3 
2 
2 
0 
3 
2 
2 

Seq 
(12) 

(13) 

(14) 

(15) 

(2 3) 

(2 4) 

(3 4) 

(3 5) 

(4 5) 

Supp 

2 
4 
3 
3 
2 
2 
3 
2 
2 

Table 18 L2 
Table 19 C2 
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Seq 
(12 3) 
(12 4) 
(13 4) 
(13 5) 
(14 5) 
(2 3 4) 

(3 4 5) 

Supp 

2 
2 
3 
2 
1 
2 
1 

Table 23 C3 

Seq 
(12 3 4) 
(13 5) 
(4 5) 

Supp 

2 
2 
2 

Seq 
(123) 
(12 4) 
(13 4) 
(13 5) 
(2 3 4) 

Supp 

2 
2 
3 
2 
2 

Table 22 L3 

Table 24 Maximal Large Sequences 

2.6. AprioriSome 

Seq 
(12 3 4) 

Supp 

2 
Seq 
(12 3 4) 

Supp 

2 
Table 20 C4 Table 21 L4 

AprioriSome is also presented in [AS95] along with AS. The main difference between 

AprioriAll and AprioriSome is that AprioriAll generates all large sequences, including 

non-maximal sequences. Whereas AprioriSome generates large sequences for some and 

avoids generating unnecessary non-maximal sequences for the others. AprioriSome has 

two phases: forward phase and a backward phase. In the forward phase, it generates all 

the large itemsets for certain length sequences. It uses a function next that gives the 

length of next sequence to be processed. In backward phase, algorithm counts the 

sequences for the lengths that it skipped in the forward phase along with deleting non-

maximal sequences that were found in the forward phase. Taking the same database 

sample we used in Table 15 the AprioriSome forward phase will generate the Q , Li, C2, 

L2 and C3. It will skip generating the L3 and using the apriori-generate function will 

generate the C4 from C3. From C4 it will get the L4. Forward phase will halt here since 

C5 turns out to be an empty set. Backward phase will start with deleting non-maximal 
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sequences from L4. Since the only sequence in L4 is (1 2 3 4), from Table 23, which is 

maximal, hence nothing will be deleted from L4. Since we skipped the L3 in forward 

phase, in backward we will delete all the subsequences of (1 2 3 4) that are in C3. As a 

result, we are left with (1 3 5) and (3 4 5). Since (3 4 5) support count is only 1, it is also 

dropped. Going one step back, all sequences from L2 are also deleted except (4 5). At 

the end, all of the sequences form the L] will be deleted since all of them are subsets of 

the thus far found maximal sequences. Final maximal large sequences are (1 2 3 4) (1 3 

5) and (4 5). 

2.7. WAP Tree 

In the last section we saw apriori like algorithms for mining sequential patterns. WAP-

tree or Web Access Pattern Tree was developed by [PHM+00] for mining the sequential 

patterns from web logs in non-apriori like fashion. WAP tree resembles more the FP-tree 

algorithm in the sense that WAP Tree also transforms the database into a compact tree 

like structure and then employees a mining algorithm on it. WAP-tree uses a WASD, 

Web Access Sequence database. WASD is obtained after the first scan of the database is 

done and the non-frequent parts of every sequence are discarded. Let us work on an 

example of web log sequence shown in Figure 6 as <User ID, Access content> 

< 100,a><l 00,b><200,e><200,a><300,b><200,e>< 100,d><200,b><400,a><400,f> 
<100,a><400,b><300,a><100,c><200,c><400,a><200,a><300,b><200,c><300,f> 
<400,c><400,f><400,c><300,a><300,e><300,c> 

Figure 6 Web log sequence 
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These events are pre-processed in such a way that all access sequences for each user are 

grouped together to form a transaction database as shown in Table 25 

TID 
100 
200 
300 
400 

WASD 
abdac 
eaebcac 
babfaec 
afbacfc 
Table 25 Web Access Sequence Database 

After the transformation, dataset is scanned to get the frequency of each event. Assuming 

the minimum support of 75%, each sequence in WASD database is transformed into 

frequent subsequence as shown in Table 26. The support count for the events is a=4, 

b=4, c=4, d=l, e=2 and f=2. Since the support count for d, e and f is less that 75%, they 

are dropped from the web access sequences. 

TID 
100 
200 
300 
400 

WASD 
abdac 
eaebcac 
babfaec 
afbacfc 

Frequent Subsequence 
abac 
abcac 
babac 
abacc 

Table 26 WASD Frequent Subsequences 

Construction of WAP tree starts the same way as of FP-tree. A header node table is 

created with frequent events from the frequent subsequences to facilitate the tree 

traversal. Lets us now look at the complete construction of the three in following steps. 

o A virtual root is created. 

(^ Null J 

o Each event from the sequence is inserted into the tree as a node with count 1 from 

Root if that node type does not exist in that path, but the count is incremented by 

1 if that node type already exists. 
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o Taking first sequence 'abac' from the Table 26, node with label 'a ' will be 

inserted as a left child of the Root. Header node table is also updated and event 

'a' in the header table is linked to this node. Since there is no immediate child of 

the root labeled 'a' , we will assign 1 to this node 'a', 'b ' follows 'a' in this 

sequence and it will be made the let child of node labeled 'a'. After that we will 

insert 'a' as the right child of the node 'b ' . At the end we will insert 'c ' as the 

right child of the just created node 'a'. Counter for all these nodes will be set to 1. 

Final branch for sequence 'abac' is shown in Figure 7 

Item ID Node-Link 
/ ^ ^ null {} 

a 
b 

c 
- -

\ 
\ 
\ 

_ . / V y 

U5 
( a:l J 

•A J 

Figure 7 Tree branch for TID 100 

o The second sequence 'abcac' is then processed. Since there is an immediate child 

of root with label 'a' exists, algorithm does not insert a new node with label 'a' as 

child instead it will increment the count of 'a' to 2. Counter for node with label 

'b ' will also be incremented by 1 since it also already exists. Since the next node 

in the existing path is 'a' which does not match the event 'c ' in this sequence, 

hence a new node with c:l will be inserted. Similarly a:l will become the left 

23 



child of just inserted c:l and c:l will become the left child of the a:l, as shown in 

Figure 8. 

Item ID 

\ 
a 
b 
c 

Node-Link 

— 

\ 
\ 

— T—+-4T— 

-— ^•C a O ' 

r CM ^-^ y 

A null {} 

Figure 8 Tree branch for TID 200 

o The algorithm will process the remaining two sequences the same way and the 
resulting WAP-tree will be similar to Figure 9. 

Item ID Node-Link 

\ / 

null {} 

a 

Figure 9 WAP Tree 

Completion of the WAP-tree is followed by the WAP-mine algorithm that mines all 

frequent sequential patterns from the tree. Following steps are taken to complete the 

WAP-mine. 

o Mining starts with the lowest entry in the header table which in our example is 'c' 

and all the conditional sequence base of c are discovered, i.e. aba:2, ab:l, abca:l, 

ab:-l, baba:l, abac:l, aba:-l. Those subsequences that have -1 will be deducted 

24 



from the list of conditional sequence base of 'c' because such sequences are 

prefix sequences of other sequences. For example, aba and ab have count -1 and 

you may notice that aba and ab are prefix sequences of conditional sequence aba. 

This deduction is done to avoid these sequences from contributing twice. Now 

for these events to qualify as a frequent conditional event, one event must have a 

count of at least 3. Getting the counts from the sequences above, we get a:4, b:4 

and c:2. Since c:2 is less than the min support of 3, it will be discarded. After 

this elimination of 'c', the resulting conditional sequences based on c are aba:2, 

ab:l, aba:l, ab:-l,baba:l, aba:l. 

o Using the above sequence, algorithm will now generate a conditional WAP tree, 

WAP-tree|c as shown in Figure 10. 

Item ID 

\ 

a 
b 

Node-Link 

- - —/̂ —4_> -̂\ S v 
* * / \ b:3 f ^" A a:l ) i 

Figure 10 Conditional WAP-tree|c 

o New conditional WAP tree is now ready to be mined, as shown in Figure 10. 

o Next suffix subsequence be is found as a:3, ba:l and NULL. Since a is the only 

frequent event with count 3, 'b' will be discarded and a:4 becomes the frequent 

sequence base of 'be'. The recursive re-construction of WAP tree based on be 

ends here with c, be and abc as the frequent sequences found so far. The 

recursion will continue with suffix path |c, |ac. Conditional sequence base for 

25 



suffix 'ac' computed from figure 10 is NULL, ab:3, b:l , bab:l, and b:-l. Using 

the just mentioned list, algorithm will build the conditional WAP-tree for base 

'ac', as shown in Figure 11. 

Item ID 

\ 

a 
b 

Node-Link 

/ 

- -

C b:3 

a:3 \ s ' V b:1 ) 

* — ' 

Figure 11 Conditional WAP-tree|ac 

o The algorithm next finds the conditional sequence bases of bac as a:3 and ba:l. 

The only frequent sequence from here is a:4. Next the conditional WAP-treejbac 

is built with a:4. From here, the algorithm will go back to complete the mining of 

suffix ac and starts mining for suffix aac. The only sequence we get from 

conditional sequence base aac is b: 1 which is not frequent hence the conditional 

search for 'c ' ends. The conditional search for events 'a' and 'b ' is also done the 

same way as the mining for patterns with suffix 'c ' is done. 

o The complete frequent pattern set obtained at the end of WAP-mine algorithm is 

shown in figure 11. 

{c, aac, bac, abac, ac, abc, be, ,b, ab, a, aa, ba, aba} 

Figure 12 Complete frequent pattern set 

Unlike Apriori-like algorithms that make multiple scans of the databases to mine 

sequential patterns, WAP-tree algorithm only scans the database twice and avoids 
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generation of candidate sets. But, at the same time, it introduces the construction of large 

recursive intermediate WAP-trees during mining process, hence introducing the problem 

of efficiently storing and managing the main memory for such intermediate WAP trees. 

In the next section we will see how PLWAP algorithm presented by [LE03], [LE05] and 

[ELL05] eliminates the construction of such intermediate WAP-trees and improves the 

performance of mining sequential patterns. 

2.8. SPADE 

In [ZOO], the author proposed the SPADE (Sequential PAttern Discovery using 

Equivalent Class) algorithm. SPADE uses vertical format sequential pattern mining 

technique. In this technique an object is associated with each sequence in which it 

occurred along with the time stamp. Sequential pattern mining is implemented by 

growing the subsequences using apriori candidate generation. Bottleneck of SPADE is 

the generation of huge set of candidate sequences and the multiple scans of database in 

mining. 

2.9. PrefixSpan 

PrefixSpan was introduced by [PJ+01] and it is based on freeSpan. FreeSpan uses 

frequent items to recursively project sequences databases into a set of smaller projected 

databases and grow subsequence fragments in each projected database. The drawback of 

freeSpan is that the algorithm needs to keep the projected sequence in its original 

database without length reduction. PrefixSpan on the other hand is a prefix-based 

projection algorithm. It examines the prefix subsequence and projects their 

corresponding postfix subsequences. PrefixSpan algorithm does not generate any 
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candidate sequences and projected databases keeps on shrinking. Major cost of 

PrefixSpan is the construction of the project database and storing it in the memory. 

PrefixSpan also proposed two projection techniques 1) bi-level projection for reducing 

the number and sizes of projected database 2) Pseudo-projection that avoids physical 

copying of postfixes by using pointers to form projections. 

2.10. PLWAPTree 

PLWAP or the Pre-order Linked Web Access Pattern Tree was introduced by [LE03], 

[LE05] and [ELL05]. It eliminates the need for recursively re-constructing the 

intermediate WAP-trees during mining. It employs binary position code assignment to 

the nodes that helps determine the suffix tree for any frequent pattern prefix and 

eliminates the need of constructing the intermediate trees. Rule 2.1 from [LE03] defines 

the assignment of binary code as 

"Given a WAP-tree with some nodes, the position code of each node can simply 

be assigned following the rule that the root has null position code, and the 

leftmost child of the root has a code of 1, but the code of any other node is derived 

by appending 1 to the position code of its parent, if this node is the leftmost child, 

or appending 10 to the position code of the parent if this node is the second 

leftmost child, the third leftmost child has 100 appended, etc. In general, for the 

nth leftmost child, the position code is obtained by appending the binary number 

of "' to the parent's code ". 
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PLWAP or the Pre-order Linked Web Access Pattern Tree was introduced by [LE03], 

[LE05] and [ELL05]. It eliminates the need for recursively re-constructing the 

intermediate WAP-trees during mining. It employs binary position code assignment to 

the nodes that helps determine the suffix tree for any frequent pattern prefix and 

eliminates the need of constructing the intermediate trees. Rule 2.1 from [LE03] defines 

the assignment of binary code as 

"Given a WAP-tree with some nodes, the position code of each node can simply 

be assigned following the rule that the root has null position code, and the 

leftmost child of the root has a code of 1, but the code of any other node is derived 

by appending 1 to the position code of its parent, if this node is the leftmost child, 

or appending 10 to the position code of the parent if this node is the second 

leftmost child, the third leftmost child has 100 appended, etc. In general, for the 

nth leftmost child, the position code is obtained by appending the binary number 

of "' to the parent's code ". 

There are three main steps of PLWAP algorithm implementation, which are given below. 

• Step 1: Frequent-1 events are obtained by scanning the access sequence database. 

All events that have support equal or greater than the minimum support are frequent. In 

the PLWAP-tree, each node stores node label, node count and node position code. The 

root of the tree is a special virtual node with an empty label and count 0. 

• Step 2: Database is scanned for the second time to obtain the frequent sequences 

from each transaction. The non-frequent events in each sequence are deleted from the 

sequence, similar to WAP algorithm implementation. PLWAP algorithm also builds a 
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prefix tree data structure, called PLWAP tree, by inserting the frequent sequence of each 

transaction in the tree the same way the WAP-tree algorithm would insert them. The 

insertion of frequent subsequence is started from the root of the PLWAP-tree. Taking 

first sequence 'abac' from Table 26, node with label 'a ' will be inserted as a left child of 

the Root. Since there is no immediate child of the root labeled 'a' , we will assign count 1 

to this node 'a' and set its position code by applying Rule 2.1 above. Event 'b ' follows 

'a' in this sequence and it will be made the let child of node labeled 'a' with count set to 

' 1' and position code set by again using rule 2.1. After that we will insert 'a ' as the right 

child of the node 'b ' . At the end we will insert 'c ' as the right child of the just created 

node 'a'. 

Once all of the sequences are inserted in the PLWAP-tree from table 26, the tree is 

traversed in pre-order fashion (by visiting the root first, the left subtree next and the right 

subtree finally), to create the frequent header node linkage. To assist node traversal 

during mining process, auxiliary node linkage structure is constructed. All the nodes in 

the tree with the same label are linked by shared-label linkages into a queue, called event-

node queue. The event-node queue with label e; is also called ej -queue. There is one 

header table for a PLWAP-tree, and the head of each event-node queue is registered. 

The resulting PLWAP-tree is shown in figure 13. 
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Figure 13 PLWAP Tree 

Step 3: WAP-mine algorithm uses suffix subsequences to construct intermediate WAP-

trees to find the frequent sequence. PLWAP on the other hand finds the prefix event first 

and then uses the suffix tree. Since PLWAP does not create intermediate WAP-trees, it 

uses property 2.1 [LE03] to determine quickly if the given node is an ancestor or 

descendant of the other node hence finding the suffix tree of a particular event without 

reconstructing the intermediate trees. The property 2.1 from [LE03] states 

"A node a is an ancestor of another node f3 if and only if the position code of a with "1" 

appended to its end, equals the first x number of bits in the position code of p, where x is 

the ((number of bits in the position code of a) + I). " 

Taking Figure 13 as an example with minimum support of 75%, let us find frequent 

access patterns. 
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• PL WAP Algorithm starts mining with the first element from the header linkage table. 

In our example it is 'a'. Following the 'a' link, the first occurrence of 'a' node in the 

two suffix trees of the root at a:3:l and b:l :10 is mined. The first occurrence in both 

suffix trees is found at node a:3:1 and a: 1:101. Since the sum of counts of both these 

nodes is greater than the minimum support, hence 'a' is considered as frequent 1-

sequence. 

• Next the algorithm will look at 2-sequence that starts with 'a'. The suffix trees of 

1:3:1 and a:l:101 rooted at b:3;ll and b:l: 1011 are mined. The first occurrences of 

'a' in these suffix trees are found at nodes a:2: l l l , a:l: 11101 and a:l: 10111. Since 

the frequency count of these node is more than 3 hence 'a ' is added to the last list of 

frequent sequence 'a' forming 'aa' frequent sequence. 

• The algorithm will next mine the suffix trees of nodes mentioned in last step. The 

roots of these suffix trees c:2:l 111, c:l:l 11011 and c:l:101 111 will give 'c ' frequent 

event to make 'aac' frequent sequence. The last suffix tree is c: 1:11111 which is not 

frequent hence terminating the recursive search for 'a' and starts with the next event 

'b ' from the header linkage table. The algorithm backtracks and finds b:3:ll and 

b: 1:1011 and generates 'b ' frequent event giving 'ab' frequent sequence. The 

algorithm progresses and finds other frequent sequences with 'ab' as their prefix 

sequence i.e 'aba', 'abac' and 'abc'. The algorithm terminates here as no more 

frequent sequences are found and backtracks to find frequent sequences that have 'c ' 

as prefix event. Algorithm finds frequent event 'c ' from c:2;l 111, c: 1:111011 and 

c: 1:101111 to give 'ac' as the frequent sequence. This completes finding all the 

frequent sequences that have 'a' as their prefix. 
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• The PLWAP algorithm then finds the frequent sequences starting with 'b' and 'c'. 

The complete set of frequent sequences found by PLWAP are 

{a,aa,aac,ab,aba„abac,abc,ac,b,ba,bac,bc,c}. 

2.11. PLWAP1 & PLWAP2 

[WP08] introduced PLWAP 1 and PLWAP2 algorithms that are based on WAP and 

PLWAP algorithms. In PLWAP1 algorithm implementation, a new header table is 

created in every recursive call during mining that links only those nodes that are under 

the new root set. With this approach they are avoiding redundant node checking. In 

PLWAP2 algorithm, no new header table is created but the algorithm filters out events 

that are not under the new roots. This filtering is achieved by traversing from the new 

roots and collection events to add into the new header table. 
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3. Position Coded Pre-Ordered linked WAP-Tree Long 

(PLWAPLongl & PLWAPLong2) 

3.1. Problem addressed 

We have identified two problems that degrade the PLWAP algorithm performance. 

Problem #1: In previous chapter we saw that PLWAP eliminates the need to generate 

intermediate conditional WAP trees by first assigning the position codes to each node and 

then identifying quickly if a node on a current suffix tree set belongs to a different subtree 

so that its count can contribute to the total support count of root set. PLWAP algorithm 

implementation represents binary position code of each node by storing its binary code in 

a linked list data structure. However, for very long sequences exceeding thirty two 

nodes, the number of bits an integer position code can hold, the PLWAP algorithm's 

performance begins to degrade because the linked list traversals slow down the algorithm 

both during tree construction and mining [ELL05]. This is because when the algorithm 

starts the mining process and needs to test the ancestor-descendant relationship of two 

nodes, it will first retrieve the complete position code of these nodes by following the 

linked lists associated with each one of them. If these nodes happen to be part of the tail 

of a very long (more than 32 items) sequence, the retrieval of position codes becomes 

slow because the linked list will need to make too many memory reads to traverse 

completely through the linked list. 

Problem #2: Second problem seen in the PLWAP algorithm implementation is that 

during construction of the suffix trees the ancestor-descendant relationship check 

between the nodes from the root set and the nodes from the event queues performs many 
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unnecessary checks. This is because all events, with the same label, that are ancestor of 

event for which suffix tree is being explored, should not be tested for this relationship as 

they will never be counted in the suffix tree support. Similarly, those events, with the 

same labels, that are descendants of event for which suffix tree is being explored, should 

not be included in the support count of the suffix tree as well [LE03]. When dealing with 

long sequences where branches have hundreds of event nodes having repeated events, the 

algorithm will do many relationship checks just to ignore their support count. This 

support check affects the performance when we have very long sequences. From Figure-

12 we can see that when algorithm starts the mining process with "root" node in the root 

set and event queue 'a', node "a:3:l" is the first node from the event queue 'a' found to 

be the first descendant of root and added to the new root set. Although all the 

descendants of this node "a:3:l" will be checked for ancestor-descendant relationship but 

their counts will not be added, hence taking up time and costing the performance 

especially when we have large sequences. 

3.2. Proposed solution 

To address the problems identified in previous section, we are proposition two new 

algorithms, i.e. PLWAPLongl and PLWAPLong2. Both of these algorithms share same 

solution for problem #1. To address problem #2, PLWAPLongl algorithm proposes the 

transformation of linked list based PLWAP tree into its equivalent array based 

representation and employing binary search to find the descendents during root set 

creation. On the other hand, PLWAPLong2 algorithm uses the same linked list base tree 

structure as used by PLWAP algorithm. Both of these new algorithms also share a new 
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technique called 'Last Descendant' to eliminate unwanted node comparisons during root 

set creation. 

Solution for problem #1: To overcome the first problem, we are proposing a new 

position code numbering scheme. Our approach uses two new labels instead of one for 

each node i.e. 'startPosition' and 'endPosition' and assigns the numeric values to these 

labels during transformation of linked list tree into array based tree with pre-order 

traversal of the PLWAP-tree. Along with the assignment of new position code, we are 

also proposing the following rule that will be used during the mining process to 

determine the ancestor-descendant relationship of any two nodes. 

Rule 1.0 

"Given two nodes, n\ and n2, nj is ancestor of n2 (or n2 is descended of nj) if 

nj.startPosition < n2.startPosition & if'«;.endPosition > n2.endPosition". 

In subsequent section we will discuss both new algorithms in detail and discuss how to 

address problem #2. 

3.2.1. PLWAPLongl 

Solution of problem #2: To address the second problem identified in section 3.1, we are 

proposing the following new processing: 

1. Transform the PL WAP tree to its equal Array representation. 

2. Maintain the position of the last descendant of each event. 

3. Employ binary search to find the immediate descendant during root set creation. 

Here is how rest of this chapter is organized. Section 3.2.1 details the new approach of 

transforming the linked list based PLWAP tree to its equivalent array based PLWAP-

Long tree. Section 3.2.2 presents the details of maintaining 'Last Descendant'. Section 
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3.2.3 details the importance of using binary search to find immediate descendant. Section 

3.2.4 presents the mining algorithm for PLWAP-Long with example. Section 3.2.5 

outlines PLWAPLongl, transformTree and buildDesc algorithms. 

3.2.1.1. Array Representation 

The reason for transforming the linked list tree to its equivalent array representation is 

that with arrays we can jump from one node to the other known node in a 0(1) time. In 

case of linked list based PLWAP-tree, memory references of parent, child and sibling are 

stored in nodes and memory seek is required in order to obtain the actual address. 

Another advantage of array representation is that we do not need to chain the same label 

events as we did in the linked list tree because during transformation event arrays are 

constructed using the pre-order traversal of the linked list tree and hence all events with 

same label are inserted in their respective event arrays in ascending startPosition. Once 

all of the events with same label are inserted in their respective event arrays, starting from 

index 0 and incrementing the index by 1 will explicitly chain these same label events. 

The header table is also represented using array of linkheader structure. 

Note: To keep the transformed array based PLWAP-Long tree figures simple, all of the 

values a node holds are shown within <>. The order of these values is 

<event><occur><startPosition><endPosition><lastDesc>. 

Taking the Figure-13 as example, let us transform the tree to its array representation 

using pseudo code of transformTree algorithm shown in Figure 21. A new method 

transformTree() is called that takes in root node of the linked list tree, NULL parent node 

and NULL leftChild node. transformTree method traverses through the linked list tree in 

a pre-order fashion. During this transformation the transformTree method also assigns 
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the startPosition and the endPosition. It starts with the event of the root node and looks 

up the header table array and finds the event. 

Since it is the start of the transformation and the fact that root event has label -1 , we 

won't find this event in the header table and hence create a new root node. startPosition 

' 1 ' is assigned to the root node. This root node will point the transformed array 

represented tree. Following the algorithm from Figure-21, we will call the transform tree 

method with left child of the root (i.e. a:3:l), the newly created root and the NULL (since 

the newly created root has not yet assigned the left child). Note: The link header array 

is populated when the original linked list PL WAP tree is constructed. The event arrays 

are also dynamically created at this very moment and start of each array is linked to the 

event entry in the link header array. In this example from Figure-13, three event arrays 

will be created for event 'a' size 5, event 'b' size 2 and event 'c' with size 5. Algorithm 

will find the array index of this event from the link header array, i.e. 0, and also retrieve 

the insertPosition. InsertPosition gives the location where new node should be inserted 

within that event array. Since this is the first time event 'a' is seen, this node will be 

inserted at position 0, as shown in Figure 14. 

( ROOT ) 

<-1 > o < 1 ><><NULL> 
<lChild><NULL><> 

Link Header Array 

Event =a 
Occur =5 
insertPosition=l 
link * 

Event=b 
Occur =3 
insertPosition=0 
link* 

Event=c 
Occur =5 
insertPosition=0 
link * 

Figure 14 Transformed PLWAPLong-Tree with node a:3:l 
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Next we get the left child of this event which is b:3:ll and insert it into the event array 

'b' pointed by the link header array index 1. Since this is the first time event b is 

recorded, the inserfPosition is set to 0 and hence b:3:ll will be inserted at position 0 in 

the event array 'b' as seen in Figure 15. We will keep on traversing in the pre-order 

fashion until we get to the last event in leftmost branch of the original tree. The array 

values at that point will be as shown in Figure 16. 

ROOT 

<-1 > o < l ><><NULL> 
<lChild><NULL>o 

<a><3><2><><> 
<b><3><3><><> 

Link Header Array 

Event =a 
Occur =5 
insertPosition=l 
link* 

Event=b 
Occur =3 
insertPosition=l 
link * 

Event=c 
Occur =5 
insertPosition=0 
link * 

Figure 15 Transformed PLWAPLong-Tree with node b:3:ll 

f ROOT A 

<-1 > o < 1 ><><NULL> 
<lChild><NULL>o 

<a><3><2><><> 
<b><3><3><><> 
<c><2><5><><> 

<a><]><4><><> 

<c><1><6><7><> 

Link Header Array 

Event =a 
Occur =5 
insertPosition=2 
link * 

Event=b 
Occur =3 
insertPosition=l 
link * 

Event=c 
Occur =5 
insertPosition= 
link * 

=2 

Figure 16 Transformed PLWAPLong-Tree with node c : l : l l l l l 
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Since the event c: 1:11111 has a NULL left child, we will create a new node according to 

point 1.3 of Figure-21 and then set the end position according to the point 1.37 of Figure 

-21. The algorithm will then start going backwards till it finds any right sibling while 

assigning the endPosition to each of the nodes. The first node with right sibling is found 

at node a:2:l 11. The algorithm will start traversing the right sibling of a:2:l 11. It will 

create a new node and then set the right sibling of the leftChild to the new created node at 

this point. The transformed tree up to this point is shown in Figure 17. 

f ROOT A 

<-1 > o < 1 ><><NULL> 
<lChild><NULL><> 

<a><3><2><><> 
<b><3><3><><> 
<c><2><5><8><> 

<a><1><4><9><> 

< C > < 1 > < 6 > < 7 > < > <c><1><10><><> 

Link Header Array 
Event =a 
Occur =5 
insertPosition=2 
link * 

Event=b 
Occur =3 
insertPosition=l 
link * 

Event=c 
Occur =5 
insertPosition=3 
link* 

Figure 17 Transformed PLWAPLong Tree with c: 1:1110 

Continuing with the pre-order traversal from node c: 1:1110 we will get to the last node in 

this branch i.e. c: 1:111011 at which point algorithm will start backward traversal. Let us 

pause when the algorithm comes back to the node b:3:ll at which point it sets the 

endPosition of node b:3:l 1. The tree up to now is shown in Figure 18. 
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( ROOT ) 

<-1 > o < 1 ><><NULL> 
<lChild><NULL>o 

<a><3><2><><> 
<b><3><3><16><> 
<c><2><5><8><> 

<a><1><4><9><> 

<c>< 1 ><6><7>o 

<a><1><11><14><> 

< C > < 1 > < 1 0 > < 1 5 > < > <c><l><12xl3><> 

Link Header 
Event =a 
Occur =5 
insertPosition=3 
link* 

Array 
Event=b 
Occur =3 
insertPosition=l 
link* 

Event=c 
Occur =5 
insertPosition=4 
link * 

Figure 18 Transformed PLWAPLong Tree 

Since there is no right sibling of node b:3:l 1 the recursive call to transformTree() will go 

back to node a:3:l and assign the. Since the node a:3:l has a right sibling, the algorithm 

will make a call to the transformTree(). The algorithm will continue to traverse the 

branch downwards starting at node b: 1:10 and ending at node c: 1:101111. Since the left 

child of c: 1:101 111 is NULL, the algorithm will start backward traversal until it reaches 

back the node, at which point root node will be assigned the endPosition. The complete 

transformed tree is shown in Figure 19 along with the pointers to the left child and the 2 

left child. 

nd 

<event><occur><startPosition><endPosition><lastDesc> 
1st Left Child • 
Sibling ^ Description of labels used in Figure 20. 
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( ROOT ) 

<-1 > o < 1 ><2 8><> 

2-<ax~lxl9x26x> r < a x l x 2 l x 2 4 x > <a><3><2><17><> <a><l><4><9><> 

2 * 
:a><l><ll><14><> 

<b><3x3><16><>' '<bxl><18><27><^ <b><l><20><25><: 
<c><2><5><8><>_|,<c><l><6><7><> 

o 4 - i 
^c><l><10><15><> <c><l><12><13><> <c><l><22><23><> 

Link Header 
Event =a 
Occur =5 
insertPosition=5 
Jihk* ^ 

Array 
Event=b 
Occur =2 
insertPosition=3 

--finkj: — " 

Event=c 
Occur =5 
insertPosition=5 
link * 

Figure 19 Complete Transformed PLWAPLong tree 

3.2.2. PLWAPLong2 

PLWAPLong2 algorithm differs from PLWAPLong 1 in a sense that it does not transform 

the PLWAP tree to array based representation. Instead, it uses the same linked list based 

tree structure that is used by PLWAP algorithm implementation. PLWAPLong2 

algorithm implementation is same as PLWAP algorithm with the addition of new position 

code scheme and maintaining the last descendant. 

There are four main steps of PLWAPLong2 algorithm implementation, which are given 

below. 

• Step 1: Frequent-1 events are obtained by scanning the access sequence database. 

All events that have support equal or greater than the minimum support are frequent. 

Each node in the tree stores following items 

{ event; /*event name of the node*/ 
occur; /*occurrence for the node*/ 
startPosition; /*start position of the node*/ 
endPosition; /*end position of the node*/ 
CountSon;/*the sum of occurrence of sons*/ 
*nextLink; /*the linkage to next node with same event name*/ 
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*lastDesc; /*pointer to its last descendant*/ 
*lSon;/*the pointer to its left Son*/ 
*rSibling;/*the pointer to its right sibling*/ 
*parent;/*the pointer to its parent*/ 

} 
. The root of the tree is a special virtual node with an empty label and count 0. 

• Step 2: Database is scanned for the second time to obtain the frequent sequences 

from each transaction. The non-frequent events in each sequence are deleted from the 

sequence, similar to PLWAP algorithm implementation. PLWAPLong2 algorithm also 

builds a prefix tree data structure, same as PLWAP tree, by inserting the frequent 

sequence of each transaction in the tree the same way the PL WAP algorithm would insert 

them. The insertion of frequent subsequence is started from the root of the tree. Taking 

first sequence 'abac' from Table 26, node with label 'a' will be inserted as a left child of 

the Root. Since there is no immediate child of the root labeled 'a' , we will assign count 1 

to this node 'a'. Event 'b ' follows 'a' in this sequence and it will be made the left child of 

node labeled 'a' with count set to ' 1'. After that we will insert 'a' as the right child of the 

node 'b ' . At the end we will insert 'c ' as the right child of the just created node 'a'. 

Once all of the sequences are inserted in the PLWAP-tree from table 26, the tree is 

traversed in pre-order fashion (by visiting the root first, the left subtree next and the right 

subtree finally), to create the frequent header node linkage. To assist node traversal 

during mining process, auxiliary node linkage structure is constructed. All the nodes in 

the tree with the same label are linked by shared-label linkages into a queue, called event-

node queue. The event-node queue with label ei is also called ei -queue. There is one 

header table for tree, and the head of each event-node queue is registered. After this 

another pre-order traversal is used to assign startPosition and endPosition for all of the 

nodes. 
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Let us now go through an example and see how new position codes are assigned during 

transformation. Since the PLWAPLong2 tree will be the same as the PL WAP tree with 

the exception that it will not have the binary position codes, we will assign the new 

position codes, i.e. startPosition and endPosition, to the PLWAP-tree of Figure 13. 

Taking figure 13, algorithm will start in a pre-order fashion i.e. starting from the root and 

assigning it the value o f 1' to the 'left' label. It will then go to the left child of the root 

and assign the value 2 to the left label of node a:3. It will keep on going and assign the 

value 6 to the 'left' label of c:l. Since there is no more left or right child of c:l, algorithm 

will assign the value 7 to its 'right' label and traverse back by assigning value 8 to the 

'right' label of c:2 and 9 to the 'right' label of a:l. Here the parent of a:l has a right child 

i.e. c:l and hence the traversal will continue to assign 'left' label values in this new 

branch. Once the pre-order traversal comes back to the b:2, it will get value 16 for its 

'right' label. The traversal will continue and it terminates when it reaches back the root 

where value 28 will be assigned to the 'right' label of the root. The complete numeric 

position coding for 'startPosition' and 'endPosition' labels is shown in Figure 26. 

• Step 3: After assigning the start and end positions, the tree is traversed once 

again in a pre-order fashion to create the last descendants for each node. PLWAPLong2 

algorithm also uses the same algorithm used by PLWAPLongl to create these last 

descendants by employing algorithm shown in Figure 27. 

• Step 4: In step 4, PLWAPLong tree is mined. 
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3.2.3. Maintaining Last Descendant 

A new feature added with the array implementation of the PL WAP tree is to maintain the 

index of the last descendant of the same event in its subtree for each node. By adopting 

this technique we can eliminate browsing and checking ancestor-descendant relationship 

of many unwanted nodes. This approach is very useful and efficient in mining long 

sequences, although our test results show that this technique is also effective for short 

sequences. Since it's not possible to run example of long sequences on paper, we will 

create arbitrary PLWAP tree and show how this technique benefits in creating root sets. 

Figure 20 Example PLWAP Tree 
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From figure 20, assume that we are finding the first occurrence of event labeled 'a' that is 

descendant of root. The first such event is colored light grey happened to be the first 

event in 'a' linked header as well. Original PLWAP algorithm after recording this node 

in the rootSet will keep on traversing through the event 'a' link and check for the 

ancestor-descendant relationship of all of the event 'a' nodes that are descendant of the 

grey colored node. Count for these nodes will not be added to the total count and neither 

will they be added to the root set. Hence, PLWAP algorithm spent time in doing 

comparison of events that we should have avoided. The only way we could avoid this is 

to keep track of the last descendant for each event. Going back to Figure 22, the last 

descendant of light grey colored event 'a ' is the node that is colored dark grey. In 

between there are seven event 'a' nodes that are also checked for the ancestor-descendant 

relationship before the node with event 'a' represented with black stripes is checked and 

found to be the next descendant of root that should be added to the root Set. To maintain 

the last descendant, we are introducing a new method buildDesc() that is called as soon as 

the transformed tree is ready. In the example above when the code had found that grey 

colored event 'a' is added to the root Set, it would have jumped directly to the last 

descendant +1, ignoring all of the descendant nodes and hence saving time from doing 

unnecessary checks. Let us go through the array represented PLWAPLongl tree shown 

in Figure 20 and build the last descendants for event a. Please note that in example 

below, wherever we use notations like ej or e^j, we mean event at index j or event at 

index j+1. 

Starting with index j=0 for event 'a' array and using point 1.1.2 from Figure 25, we find 

out that event at index j i.e. event 'a' with startPosition=2 and endPosition=17 is ancestor 
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of event at index j + 1 i.e. event 'a' with startPosition=4 and endPosition=9. We will 

push event at index j to the stack. 

Stack 

<a><3><2><!7><> 

Next, we will test the ancestor-descendant relationship between j=l and j +1. In this 

case, event at index j=l has startPosition=4 and endPosition=9 and event at index j+1 has 

startPosition=ll and endPosition=14. It turns out that ej is not ancestor of ej+i. Using 

point 1.1.3 from Figure 25 we will set the lastDesc of ej to the value of j , which in this 

case is 1. Updated event 'a' array as shown below with lastDesc updated for node at 

index =1 . 

Event 'a' array 
<a><3><2><17><> 

0 
<a><1><4><9><1> 

1 
<a><1><11><14><> 

2 
<a><l><19><26><> 

3 
<a><1><21><24><> 

4 

Updated stack and index j shown below 

Stack 

<a><3><2><17><> 

Next we will test events at j=2 and j+1 and find out that ej is not ancestor of ej+]. Again 

using point 1.1.3 from Figure 25, algorithm will set the lastDesc of ej to the value of j . In 

this case, value of j=2 hence updating the lastDesc of event at index = 2 is shown below. 

Event 'a' array 

<a><3><2><17><> 
0 

<a><1><4><9><1> 

1 
<a><l><ll><14><2> 

2 
<a><1><19><26><> 

3 
<a><1><21><24><> 

4 
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From point 1.1.3.1 from Figure 25 the stack is not empty so we will test if stack.front is 

not ancestor of ej+i. Stack has only one event with startPosition=2 and endPosition=17 

and it turns out that this event is not an ancestor of ej+i hence algorithm will pop the stack 

and set the lastDesc of popped event to j , which in this case is 2. The updated event 'a' 

array looks like this 

Event 'a' array 
<a><3><2><17><2> 

0 
<a><1><4><9><1> 

1 
<a><l><ll><14><2> 

2 
<a><l><19><26><> 

3 
<a><1><21><24><> 

4 

Updated stack and j 

Stack 

Next we will test for j=3 and j+1. Event ej has startPosition=19 and endPosition=26 and 

ej+1 has startPosition=21 and endPosition=24. Event ej turns out to be the ancestor of 

ej+1 and hence will be pushed to the stack. Updated stack and j looks like 

Stack 

<a><l><19><26><> 

Now since j=4 and j+1 is greater than the event 'a' array size, following point 1.1.1 from 

Figure 25 we set the ej.lastDesc to 4. Since stack is not empty, algorithm will assign 

value of j as the lastDesc to all of the items still in the stack. In our example only item in 

the stack is event with startPosition=19 and endPosition=26. The updated event 'a' array 

is shown below. 

Event 'a' array 
<a><3><2><17><2> 

0 
<a><1><4><9><1> 

1 
<a><l><ll><14><2> 

2 
<a><1><19><2 6><4> 

3 
<a><1><21><24><4> 

4 
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The algorithm here finishes assigning lastDesc for all of the events in event 'a' array. It 

will perform the same algorithm on the remaining two event arrays i.e. event 'b' and 

event 'c' arrays and the resulting arrays will look like as shown below 

<a><3><2><17><2> 
<b»<3><3><l6><0> 
<c><2><5><8><1> 

0 

<a><1><4><9><1> 
<b><lxl8><27><2> 
<c><1><6><7><1> 

1 

<a><l><ll><14><2> 
<b><l><20><25><2> 
<C><1><10><15><3> 

2 

<a><1><19><26><4> <a><1><21><24><4> 

<c><l><12><13><3> 
3 

<c><1><22><23><4> 
4 

3.2.4. Mining Process - PLWAPLongl 

The PLWAPLongl is the version of the algorithm, which transforms the linked list tree 

to its array representative before mining. The main logic of mining process is the same as 

that of the PLWAP algorithm. PLWAPLong-Mine algorithm uses last descendant and 

binary search to speed up the mining process for long sequences. The other main 

difference between the PLWAP mine and PLWAP-Long mine process is how both 

algorithms build the suffix trees. Let us see how these two algorithms differ in that 

respect. PLWAP algorithm implementation when starts the mining process and finds first 

occurrence of event from the event queue, the subtrees of all those first occurred event 

become the roots of the suffix trees of these events. Considering Figure 12 as an 

example, we see that when PLWAP algorithm starts the mining process, it starts with 

finding the first occurrence of event 'a'. First occurrences of these events are found at 

node a:3:l and a:l: 101. The suffix trees of these two nodes will then be rooted at b:3:l 1 

and b: 1:1011. These two nodes will become the rootset and passed to the next round of 

mining. In the next round of mining, algorithm will first attempt to find pattern 'aa'. In 

order to find this pattern PLWAP mine algorithm will start from the beginning of event 
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'a ' queue and see if any event in that queue is descendent of rootSet roots b:3:11 and 

b:l:1011. 

On the other hand, when PLWAP-Longl algorithm starts mining the same Figure 13, it 

will add the first occurrence events of event 'a' in the rootSet, i.e. a:3:l and a:l:101, 

instead of adding roots of their suffix trees. Advantage of this approach is that rootSet 

will always have events of same label. This will help when the mining process attempts 

to find repetitive events (e.g. aa, aaa, acbb, abaa, etc). When rootSet a:3:l and a:l:101 is 

passed to the next round of mining to find frequent pattern 'aa', PLWAP-Longl mining 

algorithm implementation will test, in the event 'a' array, the very next event after event 

'a:3:l ' to see if it is descendant of it or not. Here, notice the advantage of this new 

approach. PLWAP-Longl mining algorithm already knew the last occurrence of frequent 

event 'a', i.e. a:3:l, and hence did not need to start searching from the start of the event 

'a ' array for the first occurrence of event 'a ' that is descendant of a:3:l. 

The algorithm PLWAPLongl-Mine is shown in Figure 28. Let us run through the 

example of PLWAP-Long tree shown in Figure 20 and updated event array shown in 

Figure 24. First time root node will be in the root set R. Following the link header array, 

event 'a' array is the first one explored to find the descendants of root. Binary search 

function is called with iteration = 0 (since it is the start of the event 'a' array exploration), 

last = size of event 'a' -1 and key is 1 (root's start position is 1). Binary search will 

return the index 0 of event 'a' array and this event is the descendant of root, hence its 

count is added to C and this event is added to the R' Next iteration is set to the last 

descendant +1 of the just found event and binary search is called again. This time binary 

search will return the index 3. The event at index 3 is also the descendant of root and 
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hence its count is also added to C and event itself added to R'. Next iteration is set to the 

last descendant + 1 of the just added event. This time, the value of iteration is 5 which is 

greater than the value of last. The algorithm will check if the count is greater than the 

minimum support, which turns out to be true and hence event 'a' is added to the F' and 

outputted. For clarity of representation, let us color the linked list PL WAP tree as we 

continue with the mining process. The PLWAP tree at this moment is shown in figure 

27. Next algorithm will try to find the descendants of event <a:3:2:17:2> and 

<a:l:19:26:4> in event 'a ' array in hope of fining frequent event aa. The algorithm will 

set the variable last to the lastDesc of root event <a:3:2:17:2> and calls the binary search 

using point 2.1.1 of Figure 26. The first descendant of this event is found at index 1 i.e. 

<a><l><4><9><l> and added to R' and count to C. It again sets the iteration to the last 

descendant value +1 of just found descendant. Next descendant of <a:3:2:17:2> is found 

at index = 2 and its count added to C and event itself added to R'. At this point the 

iteration value is set to the last descendant +1, which turns out to be not descendant of 

<a:3:2:17:2> hence causing the next root node to be retrieved from the root set R. 

Algorithm will continue with point 2.1.1 of Figure 28 and in next binary search will 

return index 4. Event at this index is <a><l><21><24><4> and it is the immediate 

descendant of the root <a:l:19:26:4>. This event is added to R' and its count added to C. 

iteration is set to the last descendant +1 of the just found event i.e., 5. Next, binary 

search will run out of bounds of event 'a' array. At this point, algorithm will check if the 

count is greater than the minimum support. In this case it is, hence 'a' is appended to F' 

which already contains 'a'. Hence our new frequent pattern is aa. The updated PLWAP 

tree is shown in Figure 22. Algorithm PLWAPLongl-Mine will continue mining rest of 
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the event arrays using the algorithm presented in Figure 28. The final set of frequent 

patterns using minimum support of 75% is {a,aa,aac,ab,aba„abac,abc,ac,b,ba,bac,bc,c}. 

Item ID Node-Link 

\ / 

null {} 

Figure 21 PLWAPLong Mine with root set a:3 and a:l 

Item ID Node-Link 

\ / 

null {} 

Figure 22 PLWAPLong Mine with root set a:2, a:l and a:l 
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3.2.5. Mining Process - PLWAPLong2 

The PLWAPLong2 is the version of the proposed algorithm, which is based on the linked 

list tree without transformation to an array. Formal definition of PLWAPLong2-Mine 

algorithm is given in Figure 29. Taking Figure 13 as an example with minimum support 

of 75%, let us find frequent access patterns. 

o PLWAPLong2 Algorithm starts mining with the first element from the header linkage 

table. In our example it is 'a'. Please note that we will reference node in our 

example below by starting with node label followed by its occurrence count, 

followed by its start and end positions. Following the 'a' link, the first occurrence of 

'a' node in the two suffix trees of the root at a:3:2:17 and b: 1:18:27 is mined. The 

first occurrence in both suffix trees is found at node a:3:2:17 and a:l:19:26. During 

the mining process once we find that a:3:2:17 is descendant of the root and should be 

added to the new root set, we discard checking all of the descendants of node 

a: 3:2:17 in its subtree with label 'a' because none of them will be added to the root 

set during this iteration. We accomplish this by jumping to the last descendant of 

node a:3:2:17. The last descendant of node a:3:2:17 is a: 1:11:14. The sum of counts 

of both these nodes, i.e. a:3:2:17 and a:l:19:26, is greater than the minimum support, 

hence 'a' is considered as frequent 1-sequence. 

o Next the algorithm will look at 2-sequence that starts with 'a'. The suffix trees of 

a:3:2:17 and a:l:19:26 rooted at b:3:3:16 and b:l:20:25 are mined. The first 
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occurrences of 'a' in these suffix trees are found at nodes a:2:4:9, a:l:11:14 and 

a: 1:21:24. Since the frequency count of these node is more than 3 hence 'a' is added 

to the last list of frequent sequence 'a' forming 'aa' frequent sequence. 

o The algorithm will next mine the suffix trees of nodes mentioned in last step. The 

roots of these suffix trees c:2:5:8, c:l:12:13 and c:l:22:23 will give 'c' frequent event 

to make 'aac' frequent sequence. The last suffix tree is c: 1:6:7 which is not frequent 

hence terminating the recursive search for 'a' and starts with the next event 'b' from 

the header linkage table. The algorithm backtracks and finds b:3:3:16 and b:l:20:25 

and generates 'b' frequent event giving 'ab' frequent sequence. The algorithm 

progresses and finds other frequent sequences with 'ab' as their prefix sequence i.e. 

'aba', 'abac' and 'abc'. The algorithm terminates here as no more frequent sequences 

are found and backtracks to find frequent sequences that have 'c' as prefix event. 

Algorithm finds frequent event 'c' from c:2;5:8, c: 1:12:13 and c:l:22:23 to give 'ac' 

as the frequent sequence. This completes finding all the frequent sequences that have 

'a' as their prefix. 

The PLWAPLong2 algorithm then finds the frequent sequences starting with 'b' and V . 

The complete set of frequent sequences found by PLWAPLong2 are 

{a,aa,aac,ab,aba„abac,abc,ac,b,ba,bac,bc,c}. 

3.3 Formal Definitions of PLWAPLongl and PLWAPLong2 
Algorithms 

This section includes formal definitions of all of the new algorithms proposed, namely 
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PLWAPLongl and PLWAPLong2, transformTree, buildDesc and PLWAPLongl-Mine 

and PLWAPLong2-Mine Methods. Below we will give definitions of the key terms used 

in these algorithms as well. 

Tree: A data structure of interconnected nodes whose access starts at its root. 

Node: A node of a tree could be a leaf of interior node. A leaf is an item with no child. 

Interior node has one or more child nodes and it becomes parents of these child nodes. 

Suffix tree: Branches from node e; to the leaf node represent suffix sequence and these 

suffix branches of e; are called suffix tree of ej. 

Last Descendant: 

Every node, except leaf, in a tree has at least once child node and hence has at 

least one suffix tree. The root of such a suffix tree will become ancestor of all of the 

nodes in its suffix tree. If there are more than once suffix trees for a given node, the node 

with same label as that of the root node in the right most suffix tree will become the last 

descendant of the root of this suffix tree. For example, the node a:3:2:17 in Figure 26 is a 

root of suffix tree rooted at b:3:3:16. The last descendant for this root node will be the 

farthest most node with same label in its suffix tree, i.e. a: 1:11:14. Complete tree with 

last descendants is shown in Figure 27-1. 
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Input: Web Access Sequence Database (WASD), Minimum Support A. 
Output: Complete set of frequent patterns Fj 
Begin: 

1. Scan WASD once, find all frequent f, events. 
2. Scan WASD again, build PLWAP tree with seq list without position code with preorders Fj header 

linkage 
3. Create link header data summary array with event label, occurrence, insert header event link position, link 

to the frequent first event occurrence on the header link 
4. Transform the PLWAP tree into Array representation by calling transformTree( Root-P, Root-PL, 

LChild-PL) as 
a. Traverse PLWAP tree pre-order fashion to generate the array as; Event, Occurrence, Start 

Position, End Position, Parent Link, Left Child, Right Sibling, Last Descendant index. 
5. Build Last Descendant, by calling buildDesc(Root-PL, Fl array), of each event node using its suffix 

trees and using both the array representation of the PLWAP-Long tree and the header linkage 
6. Mine the DB using both the header linkage array and the event array using binary search to quickly 

construct the suffix tree by calling PLWAPLong-Mine(Root-PL,Frequent m-sequence F). 
End //PLWAPLonglO 

Figure 23 Algorithm PLWAPLonglQ 

Input: Web Access Sequence Database (WASD), Minimum Support K 
Output: Complete set of frequent patterns Fj 
Begin: 

1. Scan WASD once, find all frequent fj events. 
2. Scan WASD again, build PLWAP tree with seq list with new F| header linkage and position code 
3. Build Last Descendant, by calling buildDesc(Root-PL, Fl array), of each event node using its suffix 

trees and using both the PLWAP-Long tree and the header linkage 
4. Mine the DB using the header linkage table by calling PLWAPLong2-Mine(Root-PL,Frequent m-

sequence F). 
End //PLWAPLong20 

Figure 24 Algorithm PLWAPLong2Q 
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Algorithm transformTree(): Formal definition of transformTree method is presented in 

figure ?. Running example of this algorithm is presented in section 3.2.1. 

Input: start-node , parent node, leftChild of the parent 
(start node here is the node from the linked list tree, at the start of the program root node 
will be passed) 
(parent node is the equivalent of the start node in the array represented tree. At the start 
of the method call, this will be NULL) 
(leftChild of the parent is the left child of 2nd parameter. At the start of the method call, 
this will be NULL. It will also be NULL when traversal of tree continues to browse the 
left child of the branch. It will not be NULL when traversal jumps to the sibling of the 
current node) 

Output: A complete tree presentation using arrays with numeric position code. 
Intermediate Variables: insertAt (position to insert the next event in the event array) 

positionNumber (position number given to the start and end position 
labels of newly created nodes in the array represented tree) 

Begin: 
1. Find the event of the start-node in the link header array. 

1.1. If event not found, meaning start-node is the root node, 
1.1.1 .Create a new root to point to the array represented tree. 

1.2. If start-node.lefftChild is != NULL /* i.e not a leaf */ 
1.2.1 .If we have created the root Then 

1.2.1.1 .assign startPosition = positionNumber++ 
1.2.1.2.Call algorithm transformTree with start-node.leftChild, node created in 

step 1.1.1 and NULL LeftChild. 
1.2.1.3.assign endPosition = positionNumber++ 

1.2.2.ELSE /*lf we did not create a root node*/ 
1.2.3. Set insertAt = Position of the array where next event should be inserted 
1.2.4. Create a new node, copying values from the start node. 
1.2.5. If leftChild != NULL link the newly created node to its left sibling. 
1.2.6. else Link to the parent if traversing in the left subtree 
1.2.7. Call transformTree with start-node.leftChild, parent of node created in 

step 1.2.4 and NULL pointer. 
1.2.8. assign the endPosition = positionNumber++ 

1.3. If event found and leftChild is == NULL /*i.e leaf node */ 
1.3.1.If root was created, assign positionNumber++ to the startPosition and endPosition 

of the newly created root node. 
1.3.2.If we did not create a root node Then 
1.3.3. Set insertAt = Position of the array where next event should be inserted 
1.3.4.Create a new node, copying values from the start node. 
1.3.5.If leftChild != NULL link the newly created node to its left sibling. 
1.3.6.else Link to the parent if traversing in the left subtree 
1.3.7.assign the endPosition = positionNumber++ 

1.4. If start->rSibling != NULL 
1.4.1.Call transformTree with start-node.rSibling, parent of the node created in either step 

1.2.4 or step 1.3.4 and node created in either step 1.2.4 or 1.3.4. 
End 

Figure 25 Algorithm transformTreeQ 
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Let us now go through an example and see how new position codes are assigned during 

transformation. To keep the example simple, we will assign the new position codes to 

the PLWAP-tree instead of the array based PLWAP-Long tree. Taking figure 13, 

algorithm will start in a pre-order fashion i.e. starting from the root and assigning it the 

value of ' 1' to the 'left' label. It will then go to the left child of the root and assign the 

value 2 to the left label of node a:3. It will keep on going and assign the value 6 to the 

'left' label of c:l. Since there is no more left or right child of c:l, algorithm will assign 

the value 7 to its 'right' label and traverse back by assigning value 8 to the 'right' label of 

c:2 and 9 to the 'right' label of a:l. Here the parent of a:l has a right child i.e. c:l and 

hence the traversal will continue to assign 'left' label values in this new branch. Once the 

pre-order traversal comes back to the b:2, it will get value 16 for its 'right' label. The 

traversal will continue and it terminates when it reaches back the root where value 28 will 

be assigned to the 'right' label of the root. The complete numeric position coding for 

'startPosition' and 'endPosition' labels is shown in Figure 25. 

Figure 26 Complete new numeric position code tree 
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Algorithm buildDesc(): After the transformation of the linked list based PLWAP tree to 

array based PLWAP-Long tree, buildDesc() method is called to create last descendant of 

each node. Running example was assigning last descendant was presented in section 

3.2.2. Formal definition of this method is given below. 

Input: Tree ,Frlist 
Output: All nodes assigned index of last descendant of same event. 
Intermediate variables: unassignedNode stack to keep track of nodes that have not yet assigned the 
lastDesc. 
Begin: 
1. for each event, ei, in link header 

1.1. for j = 0 to number of e, events 
1.1.1. If j - + 1 > number of ej events 

set ej.lastDesc = j 
1.1.1.1. if stack is not empty 

Set (stack.pop).lastDesc = j 
1.1.2. If ej is ancestor of ej+ipush (ej) to the stack 
1.1.3. Else set ej.lastDesc = j 

1.1.3.1. if stack is not empty 
while stack.front not ancestor of ej+i 

Set (stack.pop).lastDesc = j 
End 

Figure 27 Algorithm buildDescQ 

Figure 27-1 Complete PLWAPLong tree with Last Descendant references 
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Algorithm PLWAPLongl-Mine:. 

Input: PLWAP-Long tree T, header linkage table L, minimum support X(0<X< 1), Frequent 
m-sequence F, Suffix tree roots set R (R includes root and F is empty first time algorithm 
is called 

Output: Frequent (m+l)-sequence, F' 
Other Variables:S stores whether node is ancestor of the following nodes in the queue, C stores the total 

number of events e; in the suffix trees. I stores the event array index 
Begin 

(1) If R is empty, return 
(2) For each event, ei in L, find the suffix tree of ei in T (i.e, ej|suffixtree), do 

a. Save first event in ej-queue to S 
b. Following the ej-queue 

If event ej.label equals event.label in R 
while root set R is not empty, 

Set I = array index of event er of R 
If d+i is descendant of event er in R 

Insert ei+] into suffix-tree header set R' 
Add count of ei+] to C 
Set I = index of last Descendant of ei+i 

Else 
Set I = array index of event er of R 

Else 
If event ei is the descendant of any event in R, and is not descendant of S, 

Insert it into suffix-tree-header set R' 
Add count of ei to C 
Replace the S with ei 

c. If C is greater that X 
Append ej after F to F' and output F' 
Call Algorithm PLWAPLong-Mine passing R' and F' 

End 

Figure 28 Algorithm PLWAPLongl-Mine 
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Algorithm PLWAPLong2-Mine:. 

Input: PLWAPLong tree T, header linkage table L, minimum support X ( 0 < X < 1), Frequent 
m-sequence F, Suffix tree roots set R (R includes root and F is empty first time algorithm 
is called 

Output: Frequent (m+l)-sequence, F' 
Other Variables: S stores whether node is ancestor of the following nodes in the queue, C stores the total 

number of events ei in the suffix trees. I stores the event array index 
Begin 

(3) IfR is empty, return 
(4) For each event, ei in L, find the suffix tree of e* in T (i.e, ej|suffixtree), do 

a. Save first event in ej-queue to S 
b. Following the ej-queue 

If event ei is the descendant of any event in R, and is not descendant of S, 
Insert it into suffix-tree-header set R' 
Jump to the last descendant of e; 
Add count of e: to C 
Replace the S with e, 

c. If C is greater that X 
Append e; after F to F' and output F' 
Call Algorithm PLWAPLong-Mine passing R' and F' 

End 

Figure 29 Algorithm PLWAPLong2-Mine 
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4. Performance Analysis 

The PLWAPLongl and PLWAPLong2 algorithms have various advantages over the 

PLWAP algorithm, which include 

1. For very long sequences exceeding thirty two nodes, the PLWAP algorithm's 

performance begins to degrade because it employs linked lists to store conjunctions of 

long position codes and the linked list traversals slow down the algorithm both during 

tree construction and mining. PLWAPLongl and PLWAPLong2 use new position 

code numbering scheme that speeds up the processing of determining the 

ancestor/descendant relationship between two nodes. 

2. PLWAPLongl and PLWAPLong2 algorithm use 'last descendant' to skip 

unnecessary comparisons when creating new root set during mining. Once the node 

is found that is added to the root set PLWAPLong takes 0(1) time to jump to the next 

suffix tree. PLWAP algorithm, on the other hand, does not know that all the 

descendants of the node that is added to the root set should not be tested anymore for 

ancestor/descendant relationship. Hence it ends ups testing all of events in the event 

queue. 
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4.1 Expert men tal Evalua tion 

This section compares the experimental performance of PL WAP against PLWAPLongl 

PLWAPLong2 algorithms. All these algorithms are implemented in C++. 

PLWAPLongl experiments against PL WAP are performed on 2.26 GHz Intel machine 

with 2 GB of RAM. The operating system is Windows XP. PLWAPLong2 experiments 

against PL WAP are performed on high speed UNIX SUN microsystem with a total of 

16384 Mb memory and 8 x 1200 MHz processor speed. Synthetic datasets are generated 

using publicly available synthetic data set generation program of IBM Quest data mining 

project at http://www.almaden.ibm.com/cs/quest/. We performed experiments on two 

sets of data 1) Short sequence data (Sequence length < 32) and 2) Long sequence data 

(Sequence length > 32). Following parameters were used to generate the dataset |D| = 

Number of sequences in the database, |C| = Average length of the sequences and |N| = 

Number of events. The data generated with IBM quest had no repetition of events in any 

sequences meaning that no user ever visited the same web page more than once. This 

does not reflect the real life web usage model where users tend to visit same page of a 

given web domain more than once. To have this data behavior in our dataset we used 

modulus operator to decrease the values within a range and have repetitions. For 

example, if we have a sequence like 

10000 10 45 91 101 165 179 654 679 777 876 986 

After taking modulus by 15 we will have following resulting sequence with repetition as 

desired 

10000 10 0 1 11 0 14 9 4 12 6 11 
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For large sequences we used modulus 45 and for short sequences we used modulus 15. 

4.1.1 PLWAPLongl vs PLWAP 

4.1.2 Short Sequence Experiments 

First we used short sequence datasets and performed 4 experiments which are as follows. 

4.1.2.1 Experiment 1 

For experiment 1 we generated 

50K records (|D| = 50K) with 

|C| = 16 and |N| = 15. 

50K 
Records 
Min Support 
PLWAP 
P t W A P l o n g 
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Execution Times trend with different min Support and 50K Records 
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PLWAPLong 
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Support thresholds(%) 

25 

Figure 30 Short Sequence- Experiment 1 (PLWAPLongl) 

Tests were run with 4 different minimum support thresholds. From the results we can see 

that almost plwaplong outperformed plwap with all thresholds tested and the difference in 

the execution times was more than double as we lowered the min support. 
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4.1.2.2 Experiment 2 

100K Records 
Min Support 
PLWAP 
PLWAPtong 
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15 
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4 
3 

For experiment 2 we generated 

100K records (|D| = 100K) with 

|C| = 16and|N| = 15. 

Tests were run with 4 different 

minimum support thresholds. 

Figure 31 Short Sequence-
Experiment 2 (PLWAPLongl) 

From the results we can see 

that almost plwaplong 

outperformed plwap with all thresholds tested and the difference in the execution times 

was more than double as we lowered the min support. 
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4.1.2.3 Experiment 3 

For experiment 3 we generated 

300K records 

(|D| = 300K)with|C| = 16and 

|N| = 15. 

Figure 32 Short Sequence-
Experiment 3 (PLWAPLongl) 

Tests were run with 4 different 

minimum support thresholds. 

From the results we can see that 
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almost plwaplong outperformed plwap with all thresholds tested and the difference in the 

execution times was more than double as we lowered the min support. 
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4.1.2.4 Experiment 4 
In this experiment we ran the data 

generated in previous 4 experiments at 

minsupport of 5%. From 

the results we see that as 

the database size increases 

the execution time 

becomes double for plwap. 

Figure 33 Short Sequence-
Experiment 4 (PLWAPLongl) 
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4.1.3 Long Sequence Experiments 

For Long sequences we performed 4 experiments which are as follows 

4.1.3.1 Experiment 1 

For experiment 1 we generated 100K records (|D| = 100K) with |C| = 39 and |N| = 45. 

Tests were run with 4 different minimum support thresholds. 

From the results we can see 

that almost plwaplong 

outperformed plwap with all 

thresholds tested and the 

difference in the execution 

times was more than double 

as we lowered the min support. 
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100K 
Records 

Figure 34 Long Sequence- Min Support 10 20 40 50 
Experiment 1 (PLWAPLongl) PLWAP 388 40 3 1 

PLWAPLong 203 2? 2 1 

4.1.3.2 Experiment 2 

For experiment 2 we generated 300K records (|D| = 300K) with |C| = 39 and |N| = 45. 

Tests were run with 4 different minimum support thresholds. From the results we can see 

that plwaplong outperformed plwap with all thresholds tested and the difference in the 

execution times was more than double as we lowered the min support. 

300K 
Records 
Min Support 10 20 30 40 
PLWAP 1389 125 29 8 
PLWAPLong 653 86 22 7 

Execution Times trend with different min Support and 300K 
Records 
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Figure 35 Long Sequence- Experiment 2 (PLWAPLongl) 

4.1.3.3 Experiment 3 

For experiment 3 we generated 
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Tests were run with 4 different minimum support thresholds. Plwap program crashed 

with segmentation fault with minsupport 50. plwaplong program on the other hand was 

able to run up to min support 40. 

Figure 36 Long Sequence-
Experiment 3 
(PLWAPLongl) 
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Some tests were also conducted on UNIX machine for PLWAPLongl against PLWAP 

and results indicate that PLWAPLongl runs slower than PLWAP on UNIX machine. All 

tests were run at 50%. 
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4.2 PLWAPLong2 vs PLWAP 

4.2.1 Long Sequences 

We used the data from PLWAPLongl testing for testing PLWAPLong2 as well. The |C| 

was set at 39 and |N| at 45 for all of the data sets for long sequences. We performed 

several tests which are as follows 

4.2.1.1 Experiment 1 

In this experiment we tested small database samples in the range of 2K to 14K records 

with fix minimum support of 15%. From the results we can see that as we increased the 

database size the speedup of plwaplong2 algorithm was almost 50% as compared to 

plwap algorithm. 

Small DB 2K - 14K with 15% min support 
DB Size 

# of Freq Patterns 
plwap 
Plwaplong2 

2K 
5159 

225 
148 

4K 
4707 

583 
310 

6K 
4633 

942 
560 

8K 
4417 
1248 
746 

10K 
4708 
1754 
990 

12K 
4686 
2163 
1228 

14K 
4413 
2388 
1372 

Execution Times trend with different small DB sizes 
and fixed m in Support of 15% 

3000 

plwap 

plw aplong 

2K 4K 6K 8K 10K 12K 14K 

Variable DB Size 

Figure 37 Long Sequence- Expl (PLWAPLong2) 
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4.2.1.2 Experiment 2 

In this experiment we used 1 million records database and tested it with varying 

minimum support threshold, i.e. from 30% to 50%. From the experiments we can see 

that as we lowered the min support to 35% and 30%, plwaplong2 algorithm produced 

more frequent patterns and also ran much faster than the plwap algorithm. 

Large Size DB (1M) wi th variable support 30% - 50% 
Min Support 

# of Freq Patterns 
piwap 
Plwaplong2 

30 
282 

13749 
8095 

35 
124 

6799 
4281 

40 
61 

3512 
2369 

45 
47 

2622 
1852 

50 
32 

1571 
1029 

55 
16 

570 
462 

60 
7 

250 
235 

Execution Times trend with different min Support and Fixed Large size 
DB(1M records) 

16000 

•8 14000 
e 
8 12000 a 
^ 10000 

Support thresholds(%) 

plwap 

plw aplong 

Figure 38 Long Sequence- Exp2 (PLWAPLong2) 
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4.2.1.3 Experiment 3 

In this experiment we test fixed size small database sample of 40K records and tested it 

with varying minimum support threshold from 15% to 45%. From the experimental 

results we can see that plwaplong2 algorithm clearly outperformed plwap algorithm for 

all test points and especially when we lowered the min support. 

Small DB (40K) with variable support 15% - 45% 

# of Freq Patterns 
Plwap 
Plwaplong2 

15 
4581 
7307 
4283 

20 
1623 
2913 
1924 

25 
712 

1435 
917 

30 
280 
635 
414 

35 
123 
314 
214 

40 
61 

165 
124 

45 
47 

128 
92 

Execution Times trend with different min Support and Fixed Small size 
DB(40K records) 

8000 

,2 1000 

Support thres holds (%) 

40 

—•—plwap 

—•— plw aplong 

45 

Figure 39 Long Sequence- Exp3 (PLWAPLong2) 
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4.2.1.4 Experiment 4 

In this experiment we tested medium size database of 300K records with varying 

minimum support from 40% to 65%. Although plwaplong2 algorithm outperformed 

plwap algorithm for all test points but it was more effective when we tested these 

algorithms at min support threshold of 40%. 

Medium DB (300K) with variable support 
Min Support 

plwap 
Plwaplong2 

40 
1051 
821 

45 
888 
626 

50 
433 
335 

55 
182 
144 

60 
76 
70 

65 
61 
60 

Execution Times trend with different min Support and Fixed Medium 
size DB(300Krecords) 

1200 n 

•o 1000 

800 

600 

400 

S 200 

-plwap 

- plw aplong 

40 45 50 55 

Support thresholds(%) 

60 65 

Figure 40 Long Sequence- Exp4 (PLWAPLong2) 

4.2.1.5 Experiment 5 

In this experiment we tested varying medium size database sample from 20K to 200K 

with fix minimum support threshold of 35%. From the test results we can clearly see that 

plwaplong2 algorithm greatly outperformed plwap algorithm as we increased the dataset 

size. 
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Medium DB (20K - 200 K) with fixed min support of 
35% 

DB Size 

plwap 

Plwaplong2 

20K 

147 

93 

40K 

297 

186 

60K 

445 

278 

80K 

607 

381 

100K 

712 

474 

200K 

1494 

967 

Execution Times trend with different Medium Size DBand fixed min 
Support of 35% 

u< plw ap 

4 plw aplong 

20K 40K 60K 80K 100K 200K 

Variable DBSize(K) 

Figure 41 Long Sequence- Exp5 (PLWAPLong2) 

4.2.1.6 Experiment 6 

In this experiment we tested varying large database set from 400K to 900K records at fix 

minimum support threshold of 50%. As we increased the database size, plwaplong2 

algorithm showed great speedup as compared to the plwap algorithm. 

Large DB (400K - 900K) with fixed min support of 
50% 

DB Size 
plwap 
Plwaplong2 

400K 
525 
376 

500K 
876 
600 

600K 
1057 
714 

700K 
1207 
815 

800K 
1420 

960 

900K 
1581 
1060 
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Execution Times trend with different Large Size DBand fixed min 
Support of 50% 

1800 n 

200 

plwap 

plw aplong 

400K 500K 600K 700K 

Variable DB Size (K) 

800K 900K 

Figure 42 Long Sequence- Exp6 (PLWAPLong2) 

4.2.1.7 Experiment 7 

In this experiment we tested the memory usage of the two algorithms against varying 

large database sample from 400K to 900K records at fix minimum support threshold of 

50%. From the results we can clearly see that plwaplong2 algorithm managed memory 

more efficiently than plwap algorithm especially at large database sample of 900K. 

Large DB (400K - 900K) with fixed min support of 50%- Memory Usage 
DB Size 

plwap 
Plwaplong2 

400K 
591 
411 

500K 
991 
659 

600K 
1179 
807 

700K 
1375 
939 

800K 
1582 
1067 

900K 
1763 
1211 

Memory Usage trend with different Large Size DBand fixed min Support 
of 50% 

i™™ plwap 

plw aplong 

400K 500K 600K 700K 

Variable DBSize (K) 

900K 

Figure 43 Long Sequence- Exp7 (PLWAPLong2) 
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4.2.2 Short Sequences 

We used the data from PLWAPLongl testing for testing PLWAPLong2 for short 

sequences as well. The |Cj was set at 16 and |N| at 15 for all of the data sets for short 

sequences. We performed several tests which are as follows 

4.2.2.1 Experiment 1 

In this experiment we tested small database sample of 100K records with varying 

minimum support threshold from8% to 30%. We can see from the results that 

plwaplong2 algorithm outperformed plwap algorithm for every test point and showed a 

great speedup when we lowered the min support threshold. 

Small DB (100K) with variable min support ( 8% - 30%) 
Min Support 
plwap 
Plwaplong2 

8 
4724 
3388 

10 
3206 
2203 

15 
1267 
880 

20 
475 
341 

25 
341 
236 

30 
251 
170 

Execution Times wi th Fixed DB(100K) and variable min support 

-•«— plw ap 

-•— plw aplong 

30 

Support Threshold % 

Figure 44 Short Sequence- Expl (PLWAPLong2) 
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4.2.2.2 Experiment 2 

In this experiment we tested medium size database of 300K records against varying 

minimum support threshold froml5% to 45%. Experimental results show that 

plwaplong2 algorithm outperformed plwap algorithm for all test points. 

Medium DB (300K) with variable min support (15% - 45%) 
Min Support 
Plwap 
Plwaplong2 

15 
3691 
2594 

20 
1411 
1005 

25 
944 
667 

30 
742 
325 

35 
455 
185 

40 
285 
106 

Figure 45 Short Sequence- Exp2 (PLWAPLong2) 
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4.2.2.3 Experiment 3 

In this experiment we tested variable database size samples with fix minimum support 

threshold of 15%. Experimental results show that plwaplong2 algorithm outperformed 

plwap algorithm for all test points and especially for 200K dataset, plwaplong2 speedup 

was almost 50%. 

Variable DB (1K - 200K ) 15% min support 

plwap 
Plwaplong2 

1K 
10 
6 

10K 
148 
67 

20K 
334 
160 

40K 
725 
366 

80K 
1426 
721 

200K 
3436 
1772 

Execution Times with Fixed min support of 15%and variable DBSize 
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Figure 46 Short Sequence- Exp3 (PLWAPLong2) 
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4.2.2.4 Experiment 4 

In this experiment we tested the memory usage of the two algorithms by testing variable 

database size with fixed min support threshold of 15%. From the results we can see that 

plwaplong2 algorithm efficiently manage the memory usage for all test points as 

compared to plwap algorithm. 

Variable DB (1K - 200K ) 15% min support 

plwap 
Plwaplong2 

1K 
3.9 
3.7 

10K 
15 
11 

20K 
23 
19 

Memory Usage 
40K 

43 
35 

80K 
79 
63 

200K 
191 
143 

250 

Memory Usage with Fixed min support of 15%and variable DBSize 

- plw ap 

- plw aplong 

20K 40K 

Variable DB (K) 

200K 

Figure 47 Short Sequence- Exp4 (PLWAPLong2) 
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5. Conclusions & Future Work 

This thesis presented two new algorithms (PLWAPLongl and PLWAPLong2) for 

efficiently mining very long sequences from the web usage log. PLWAPLongl adapts 

the PL WAP tree structure to initially store the frequent patterns but later transforms it to 

an array data structure equivalent to the PL WAP tree. In order to avoid expensive and 

useless comparisons of event nodes to determine the suffix trees as done by PLWAP 

algorithm, PLWAPLongl algorithm employees using 'Last Descendant' technique that 

quickly eliminates the unwanted nodes from ancestor/descendant comparison and jumps 

to the next root to continue finding the suffix tree. PLWAPLongl algorithm also uses 

binary search to quickly find the next node that should be tested for suffix tree root set. 

The experiments indicate that PLWAPLongl outperforms PLWAP when tested on 

Windows based OS but PLWAP outperforms PLWAPLongl on UNIX based machine. 

PLWAPLong2 algorithm outperformed PLWAP with great improvement in both 

execution time and memory usage for all of the test scenarios. 

5.1 Future Work 

Since this is a very first effort to use very long sequence for sequential pattern mining, we 

feel there is still room of improvement. After careful study of the plwap and plwaplong 

algorithms, we feel that during the mining of the plwaplong tree, at times same suffix tree 

is mined more than once. Future work could look at eliminating this redundant 
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exploration of same suffix trees and instead use the frequent sequences that are already 

found in that suffix tree. 
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