
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2009 

Advanced Diagnostics, Control and Testing of Diesel Low Advanced Diagnostics, Control and Testing of Diesel Low 

Temperature Combustion Temperature Combustion 

Usman Asad 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Asad, Usman, "Advanced Diagnostics, Control and Testing of Diesel Low Temperature Combustion" 
(2009). Electronic Theses and Dissertations. 7985. 
https://scholar.uwindsor.ca/etd/7985 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7985?utm_source=scholar.uwindsor.ca%2Fetd%2F7985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


ADVANCED DIAGNOSTICS, CONTROL AND TESTING 
OF DIESEL LOW TEMPERATURE COMBUSTION 

by 

Usman Asad 

A Dissertation 

Submitted to the Faculty of Graduate Studies 

through Mechanical, Automotive and Materials Engineering 

in Partial Fulfilment of the Requirements for 

the Degree of Doctor of Philosophy at the 

University of Windsor 

Windsor, Ontario, Canada 

2009 

© 2009 Usman Asad 



Library and Archives 
Canada 

Published Heritage 
Branch 

Bibliothdque et 
Archives Canada 

Direction du 
Patrimoine de I'ddition 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Voire r6f6rence 

ISBN: 978-0-494-83468-8 

Our file Notre r6f6rence 

ISBN: 978-0-494-83468-8 

NOTICE: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distrbute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 

L'auteur a accord  ̂une licence non exclusive 
permettant d la Bibliothdque et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lntemet, prSter, 
distribuer et vendre des thdses partout dans le 
monde, d des fins commerciales ou autres, sur 
support microforme, papier, 6lectronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propri6t6 du droit d'auteur 
et des droits moraux qui protege cette thdse. Ni 
la thdse ni des extraits substantiels de celle-ci 
ne doivent £tre imprimis ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conform6ment £ la loi canadienne sur la 
protection de la vie priv£e, quelques 
formulaires secondares ont 6t6 enlev6s de 
cette th6se. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

Canada 



AUTHOR'S DECLARATION OF ORIGINALITY 

AUTHOR'S DECLARATION OF ORIGINALITY 

I hereby certify that I am the sole author of this thesis and that the framework and the 

details of the technical core of the thesis have not been published. The proof of the 

majority of findings has mostly been refereed and produced to original research 

publications in journals and professional conferences with I being the first author or the 

co-author. 

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's 

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or 

any other material from the work of other people included in my thesis, published or 

otherwise, are fully acknowledged in accordance with the standard referencing practices. 

Furthermore, to the extent that I have included copyrighted material that surpasses the 

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I 

have obtained a written permission from the copyright owner(s) to include such 

material(s) in my thesis and have included copies of such copyright clearances to my 

appendix. 

I declare that this is a true copy of my thesis, including any final revisions, as approved 

by my thesis committee and the Graduate Studies office, and that this thesis has not been 

submitted for a higher degree to any other University or Institution. 

iii 



ABSTRACT 

ABSTRACT 

The conventional high temperature diesel combustion is constrained by the classical 

NOx-soot trade-off, so that any technique to reduce one emission generally increases the 

other. The simultaneous low NOx and soot can be achieved by lowering the combustion 

temperature and by preparing a cylinder charge of high homogeneity. However, the 

lowered combustion temperature may significantly reduce the fuel efficiency of such 

combustion cycles. Therefore, the overall objective of this work was to conduct a detailed 

analysis of the diesel LTC cycles that result in simultaneous low NOx and low soot, and 

to improve the LTC performance through advanced diagnostics and combustion control 

strategies. The empirical and analytical analyses in this dissertation provide an in-depth 

understanding of diesel LTC and present an effective strategy for navigating the narrow 

LTC corridors. 

The in-cylinder gas sampling tests culminated with the identification of an LTC NOx 

mechanism whereby the NOx reduction in the presence of combustibles was quantified 

on a crank angle-resolved basis. The intake gas treatment through catalytic oxidation and 

fuel reforming of EGR stabilized the LTC cycles. Novel flow management strategies 

were applied to improve the thermal response and the energy efficiency of the reforming 

operation. 

Adaptive combustion control techniques were developed to improve the fuel efficiency of 

the LTC cycles and to enable navigation within the narrow LTC corridors. A 

computationally efficient 'Pressure Departure Ratio' algorithm for estimating the 

combustion phasing in real-time was proposed along with a methodology for engine load 

management within-the-same-cycle, and were shown to improve the LTC operational 

stability. The detailed EGR analysis helped to develop a systematic LTC control strategy 

by quantifying the effects of intake charge dilution and boost pressure on the LTC 

performance metrics. 

Based on the empirical and analytical analyses, the load management and efficiency 

improvements of the LTC cycles were demonstrated with three different fuelling 

strategies as follows: 
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ABSTRACT 

• Single-injection LTC with heavy EGR at low loads 

• Multi-shot LTC (early HCCI) with moderate EGR for mid-load operation, and 

• Split burning LTC for higher engine loads with DPF-tolerant soot. 

Keywords: Low temperature combustion, diesel, EGR, in-cylinder diagnostics, adaptive 

control, systematic control 
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CHAPTER 1: INTRODUCTION 

CHAPTERI 

1. INTRODUCTION 

1.1. The Diesel Engine 

The diesel engine has been considered an efficient work horse in a wide range of 

applications for more than a century. The North American heavy-duty transportation 

sector has relied primarily on diesel-powered prime movers. Besides the automotive 

industry, diesel engines are increasingly being used in the marine, agricultural and power 

industries, to name a few. The success of the diesel engine can be attributed to its high 

efficiency, excellent torque characteristics, mechanical reliability and robustness 

compared to the spark-ignition (SI) engine. An often overlooked advantage is the fact that 

the diesel engines emit significantly lower engine-out (raw) exhaust emissions than a 

similar sized gasoline-fuelled SI engine. The diesel engine emits extremely low 

concentrations of carbon monoxide (CO) and unburnt hydrocarbon (UHC) emissions, and 

the oxides of nitrogen (NOx) emission is also less than that for a typical gasoline engine 

[1,2]. A comparison of the emissions and exhaust conditions between the SI and 

compression ignition (CI) engines is presented in Figure 1.1 [3]. 

The stringent emission regulation set out by the United States Environmental Protection 

Agency (EPA) and concurrently by Environment Canada for automotive engines have 

required the engine-out emissions to be drastically reduced over the last 2 decades. The 

SI engine has benefited immensely from the use of the three-way catalytic converter 

(TWC) which requires the engine to operate close to stoichiometric conditions - essential 

for reducing the NOx to nitrogen (N2) while oxidizing the UHC and CO to carbon 

dioxide (CO2) and water. However, the application of the TWC to clean up the exhaust of 

compression ignition (CI) engines like diesel-fuelled engines is complicated by the 

following two facts. First, the diesel is essentially a lean-burn engine, that is, there is 

always an abundance of oxygen in the engine exhaust [4]. Second, the high compression 

ratios employed in diesel engines imply that the engine is able to extract more energy 

from the working fluid during the expansion stroke, and therefore, the exhaust 

temperature for diesels is generally low. Moreover, the diesel exhaust temperature also 
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varies widely with load. The TWC is therefore rendered ineffective in the diesel exhaust 

systems [2-4]. 

The diesel engine was considered to be dirty and noisy, among automotive consumers 

worldwide. In recent years, however, the diesel engine has benefited from tremendous 

technological advances in all the areas where it was traditionally weak such as 

combustion noise and smoke while its key advantage of high efficiency has been further 

improved. Modern turbo-charged diesel engines are quiet, cleaner and offer high fuel 

economy. Furthermore, the lower fuel consumption offers another intrinsic advantage: 

the diesel engine generally produces up to 20% less carbon dioxide (CO2), a greenhouse 

gas considered responsible for global warming compared to the gasoline engine [1,2]. 

Although the CO2 emission is currently not regulated in North America, it is being 

regulated in Europe. Therefore, the diesel engine has gained interest from parties with 

environmental concerns because of its potential to comparatively reduce the emissions of 

co2. 
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Figure 1.1: Comparison of CI & SI Engine Exhaust Characteristics (Adapted from [3]) 
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1.2. A Review of Available Energy Sources for Automotive Use 

Hydrocarbon fuels like diesel and gasoline are an efficient source of energy. They have 

high volumetric as well as gravimetric energy densities which make them suitable for use 

in vehicles and other non-stationary applications [5]. Moreover, the internal combustion 

engines have virtually been the sole source of propulsion in vehicles since they can 

provide high power-to-weight ratios and have the ability to use energy-dense fuels. 

However, the burning of hydrocarbon fuels results in the production of harmful pollutants 

including CO2, which are believed to be the major cause of global warming, acid rain and 

other detrimental health effects. 

In recent years, the focus has been to shift towards alternate energy sources such as bio-

diesel, hydrogen (H2) or electrical batteries for providing propulsion power in vehicles. 

However, a comparison of the energy densities of various alternate energy sources 

including electrical batteries in Figure 1.2 indicates that a number of major hurdles need 

to be overcome before fuels like hydrogen and electrical batteries can replace the 

hydrocarbon fuels in mobile applications. 

For instance, hydrogen has a very high gravimetric energy density (-120 MJ/kg) but an 

extremely low volumetric energy density - a major issue in mobile applications. 

Compressing H2 to 70 MPa (700 bar) increases the energy density to ~5 MJ/L but it is 

still considered non-viable for automotive use. There are also safety issues such as gas 

storage at such high pressures that need to be addressed. 

The state-of-the-art electrical batteries also have very low energy densities (~0.8 MJ/kg & 

-1.2 MJ/L) compared to the conventional hydrocarbon fuels [6,7]. This has implications 

on the weight of the battery pack required and the time interval between recharging. 

Although the production of hybrid-electric vehicles is on the rise, the replacement of 

conventional hydrocarbon fuels and internal combustion engines with electrical batteries 

and motors may still take a long time. 

Therefore, the current emphasis is to improve the fuel efficiency of the internal 

combustion engines while making them cleaner and more environmental friendly. The 
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diesel engine, with its high efficiency and lower CO2 emission as discussed in the 

previous section, provides an excellent platform for achieving these goals. 

40 
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Figure 1.2: Energy Density Comparison between Fuels & Rechargeable Batteries 

1.3. Combustion in Diesel Engines 

The combustion process in diesel engines is normally described on a heat release rate 

(HRR) diagram, such as the one shown in Figure 1.3. The heat-release rate is a 

representation of the rate of release of the chemical energy of the fuel during the 

combustion process and is estimated from the in-cylinder pressure data. In a conventional 

diesel engine, the intake air drawn into the cylinders is compressed to high compression 

ratios which increases its pressure and temperature (typically around 600~900°C). The 

diesel fuel (commonly at pressures between 30-160 MPa) is injected into this highly 

compressed and heated air in the liquid state shortly before the end of the compression 

stroke as the piston approaches the top-dead-centre (TDC). The ensuing diesel 

combustion process, from the commencement of the fuel injection can be divided into 4 

regions as identified on the heat-release rate diagram: ignition delay period (I), premixed 
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combustion phase (II), diffusion combustion phase (III), and the tail of combustion (IV) 

[4,8-10]. 

Ignition Delay Period (I): The ignition delay is the time between the start of fuel 

injection (SOI) and the start of combustion (SOC). The liquid fuel droplets absorb heat 

from their surroundings and vaporize quickly. The temperature of the thin layer of air in 

close proximity to the droplet decreases but is raised quickly through heat transfer from 

the main bulk of air. This process repeats itself at numerous locations in the combustion 

chamber until auto-ignition take place when the vaporized fuel is mixed with the air to 

within-flammability limits and the local temperature is above the auto-ignition 

temperature. The duration of this delay is related to the time needed for atomization, 

vaporization and mixing of the fuel and air to within-flammability limits (physical delay) 

and the chemical delay time (pre-ignition chemical reactions to bring the charge to 

combustible limits). 
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Figure 1.3: Typical Rate of Heat Release Diagram [4,8-10] 
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Premixed Combustion Phase: This phase is characterized by the rapid burning of the 

fuel-air mixture prepared during the ignition delay period and is also sometimes referred 

to as the uncontrolled combustion. The knocking sound of the diesel combustion process 

is generally attributed to this burning phase because of the increased rate-of-pressure 

rise (combustion noise). The premixed phase typically lasts for a few crank angle 

degrees. 

Diffusion Combustion Phase: Once the fuel-air mixture prepared during the ignition 

delay period has been consumed, the rate of combustion or heat release is controlled by 

the preparation rate of the fuel vapour-air mixture. During this mixing-controlled 

combustion phase, the ignition delay is much shorter because the cylinder pressure and 

temperature are much higher as a result of the burning of initial droplets during the 

premixed phase. 

Tail of Combustion: The late combustion phase, also referred to as the tail of 

combustion, occurs well into the expansion stroke. The rate of combustion is typically 

low as most of the fuel and oxygen have already been consumed, and depends on the 

mixing of combustible residuals with the excess oxygen. The energy present in soot and 

fuel-rich combustion products may also be released during this phase. 

The heat release in diesel engines is affected by a number of parameters including engine 

speed, engine load, exhaust gas recirculation (EGR) rate, fuel scheduling and boost. 

Figure 1.4 shows the effect of the engine load on the normalized heat release rates from a 

direct injection (DI) diesel engine with a single fuel injection per combustion cycle at the 

Clean Diesel Engine laboratory (CDEL), University of Windsor. 

At low engine loads, a relatively high fraction of energy is released during the premixed 

phase of combustion. Consequently, the diffusion combustion phase is small, resulting in 

a short combustion duration. However as the load increases, the premixed fraction is 

progressively reduced and the diffusion-controlled combustion becomes predominant. 

The combustion duration also increases as the combustion progresses well into the 

expansion stroke. 
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Figure 1.4: Effect of Load on the Heat Release Rate from a Classical Diesel Engine 

The duration and magnitude of the premixed and the diffusion combustion phases can 

have important implications on the engine-out exhaust emissions. The mechanism of 

pollutant formation inside the combustion chamber has been researched by direct in-
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cylinder sampling techniques, laser diagnostic procedures and computational fluid 

dynamics (CFD) studies tp provide a better understanding of the time- and space-resolved 

histories of pollutant formation [9-21]. The results from such studies indicate that the 

production of pollutant species is dependent on the intensity and duration of the different 

phases of combustion. For instance, a significant portion of NOx is believed to form 

during the premixed phase of combustion, which is characterized by locally near-

stoichiometric conditions and the resulting high flame temperatures. Soot, on the other 

hand, is generally thought to reach its maximum production during the mixing-controlled 

combustion phase. 

1.4. Exhaust Emissions from Diesel Engines 

The major emissions from conventional diesel engines can be considered to be the oxides 

of nitrogen and smoke. However, when diesel engines are run under alternate combustion 

regimes like low temperature combustion (LTC), the lowered combustion temperature 

usually results in high amounts of unburnt hydrocarbons and carbon monoxide. 

Therefore, the mechanisms believed to be responsible for the formation of each of the 

pollutant species are briefly discussed below. 

1.4.1. Oxides of Nitrogen (NOx) 

The term NOx is used to collectively refer to nitric oxide (NO) and nitrogen 

dioxide (NO2) that .are produced during the combustion process in diesel engines. 

Although NO is the dominant species in the conventional diesel exhaust 

(constituting more than 90% of the total NOx emission [22]), it is quickly oxidized 

to NO2 in the atmosphere. NO2 is believed to be the major precursor for smog 

formation, acid rain and is known to cause detrimental effects to the human health 

[9,10,23]. Therefore, the US EPA requires that the exhaust NOx should be 

regulated on an equivalent NO2 basis because it is the most prevalent form of NOx 

in the atmosphere that is generated by human activities [24]. 

NOx does not have a strong correlation to the fuel structure but depends largely on 

how the combustion is organized. Therefore, the NOx yield is affected primarily by 

the prevailing temperature, the oxygen concentration and the residence time during 
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the combustion [9,23]. For the combustion of fuel with very little or no nitrogen, 

the NOx formation is generally attributed to the thermal NOx mechanism that 

could be described by the extended Zeldovich mechanism as follows [4,9,23]: 

0+N 2 ^TN0+N (1.1) 

N + 0 2 ^N0+0 (1.2) 

N +  OH^NO + H (1.3) 

Using equilibrium assumptions, the rate of NO formation may be approximated by 

an overall reaction as follows [4,25]: 

^l = 40J^[Ar2i & r—(1.4) 
at  f /2  

where *: is an equivalent reaction-rate constant in (cm3/mol)'/7sec, T is the 

temperature in Kelvin, [NO], [O2] and [N2] are the mole concentrations in mol/cm3, 

a =6xl016 (K. cm3/mol)'/7sec and b =6.91xl04 K. Plotting the equivalent rate 

constant K against .the temperature as shown in Figure 1.5, it is evident that the 

prevailing charge temperature is the dominant factor affecting the NOx formation. 

Therefore, the thermal mechanism is considered responsible for the majority of 

NOx emissions from conventional diesel engines when the peak combustion 

temperatures are in excess of 2000K. 

Under the prevailing conditions in the diesel engine combustion chamber, the 

highest temperatures occur at near-stoichiometric conditions in the local diesel 

flame. Therefore, the thermal NO only appears in significant quantities after the 

start of the heat-release. The temperature sensitivity of this mechanism also 

suggests that as the combustion progresses well into the expansion stroke, the in-

cylinder temperature decreases and the thermal NO concentrations tend to freeze. 
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Figure 1.5: Dependence of NOx Formation on Temperature 

The N2O intermediate mechanism is considered important for NO formation during 

the lean premixed low-temperature combustion process. At sufficiently high 

pressures, N2O is formed as a result of the three body reaction [21,23]: 

O+N 2 +M^±N 2 O+M (1.5) 

where,' M' is a third body (molecule) of any compound that is needed to remove 

energy in order to complete the reaction. NO is then formed through the following 

reactions: 

H+N 2 O^±NO+NH (1.6) 

O+N 2 O^±NO+NO (1-7) 

The Fenimore prompt NO mechanism is another NOx formation pathway, 

considered significant during the rich combustion process and occurs in the 

presence of a high concentration of hydrocarbon, O and OH radicals [21,23]. It is 
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believed to contribute a small amount of NO in the diffusion portion of the diesel 

combustion process [19]. The prompt NO mechanism is initiated by the rapid 

reaction of hydrocarbon radicals from the fuel with the molecular nitrogen, leading 

to the formation of amines and cyano compounds that subsequently react to form 

NO. 

1.4.2. Particulate Matter 

The EPA defines the particulate matter as: "Particulate-matter (PM) includes dust, 

dirt, soot, smoke and liquid droplets directly emitted into the air by sources such as 

factories, power plants, cars, engines, construction activity, fires and natural 

windblown dust. Particles formed in the atmosphere by condensation or the 

transformation of emitted gases are also considered particulate matter" [3]. 

To measure the particulate matter from engines, PM is defined by the EPA as any 

matter (except unbound water) in the exhaust of an internal combustion engine that 

can be trapped on a sampling filter medium at a temperature not to exceed 52°C 

(125°F) [10]. The diesel PM is not considered a well defined physical species but 

can be broadly divided into three categories as listed in Table 1.1 [26]. 

Table 1.1: Major Constituents of Particulate Matter 

Category Constituents 1 

Soluble Organic Fraction 
Organic materials derived from engine lubricating oil 
and fuel 

Solid Fraction Soot, ash, trace metals 

Sulphate Particulates Sulphates and sulphuric acid 

The primary PM produced in conventional diesel engines is soot [4]. Soot forms on 

the rich side of the reaction zone during the predominantly diffused-controlled 

combustion by the pyrolysis of hydrocarbons [8]. However, if the temperature is 

sufficiently high and oxygen is available, part of the soot will be oxidized. The net 

soot emission from diesel engines is, therefore, the result of the difference between 

the soot production and soot oxidation processes [27,28]. 
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1.4.3. Unburnt Hydrocarbons 

Unbumt hydrocarbons (UHC) in DI diesel engines are generally the result of over-

or under-mixing of the fuel-air mixture and the flame quenching during the 

combustion process [4]. The injected fuel mixes with the air during the ignition 

delay period and produces mixture zones with widely varying air/fuel ratios. These 

can broadly be divided into lean, stoichiometric or rich zones depending upon the 

relative mixture strength. 

At the onset of conventional diesel combustion, the flames tend to initialize in and 

propagate to regions where the air/fuel ratios are near stoichiometric. The 

combustion continues till the localized air/fuel ratio decreases rapidly due to over-

mixing with the surrounding air or if the flame is quenched at the thermal boundary 

layer. The over-mixing/quenching can be a source of HC formation. Moreover, the 

lean mixture zones have to interact with additional evaporated fuel, and the rich 

zones have to find oxygen to form a flammable mixture to be able to take part in 

the combustion. However, if the lean mixture fails to find the necessary fuel or the 

rich mixture fails to find the air before the temperature drops significantly (as the 

combustion progresses into the expansion stroke), then both these mixtures will 

have a tendency to produce HC. 

1.4.4. Carbon Monoxide (CO) 

The combustion of hydrocarbon fuels is believed to include the formation of CO as 

one of the principal reaction steps [4]. The CO is then oxidized to CO2 provided 

two conditions are fulfilled: the availability of oxygen and a high temperature to 

drive the oxidation reaction. Although the diesel combustion is overall lean, 

combustion tends to initiate in regions at near-stoichiometric conditions, resulting 

in high flame temperatures. Therefore, the classical high temperature combustion 

in diesel engines produces very low quantities of engine-out CO. 

When the combustion temperatures are lowered such as with high amounts of EGR 

or during HCCI type of combustion, the combustion of such lean or EGR-diluted 

air/fuel mixtures usually produces high amounts of CO, mainly due to the 
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reduction in the oxidation of CO to CO2. Because of the prolonged ignition delay 

in LTC systems, over-mixing of the fuel may result in significant portions of the 

air/fuel mixture with very lean equivalence ratios. Under such conditions, the 

combustion temperatures can be too low for the oxidation of CO, to be completed 

on the engine time scales [29]. 

1.5. Exhaust Emissions Regulation 

The exhaust species discussed above are evidently undesirable as they have a harmful 

effect on the environment and our health. Therefore, the regulatory authorities like the 

US EPA and Environment Canada have introduced increasingly stringent emission norms 

to regulate the emission of pollutants from diesel engines in recent years. Figure 1.6 and 

Figure 1.7 show the compliance roadmap for heavy-duty diesel engines to meet the NOx 

and soot emission limits in North America over the last two decades. 

1988 1990 1991 1998 2004 2007 2010 

Year 

Figure 1.6: Compliance Roadmap for NOx Emission Regulations 

It is evident that the emission control features have evolved significantly to keep up with 

the regulations. The research focus now is on emission reduction strategies that would 
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result in ultra-low emissions of the pollutant species by the year 2010 and beyond. In 

North America, the EPA 2010 emissions standard is the bench mark for diesel engine 

applications. 

1988 1991 1994 2007 2010 

Year 

Figure 1.7: Compliance Roadmap for Soot Emission Regulations 

1.6. The Classical NOx-Soot Trade-off 

Conventional diesel engines are overall lean-burn systems; however, the classical 

heterogeneous nature of the high-temperature combustion (HTC) presents numerous 

challenges regarding NOx and PM emissions. In such diesel engines, the flames tend to 

initialize in and propagate to regions where the air/fuel ratios are near-stoichiometric 

[11,14,30,31], thus presenting an inherent NOx-PM trade-off. The NOx-PM trade-off is a 

major obstacle towards the use of in-cylinder emission control measures to meet the 

emission regulation requirements. The NOx-PM trade-off means that the application of 

any emission control technique that lowers the NOx, has a tendency to increase the PM or 

vice-versa. 
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Figure 1.8 shows the NOx-PM trade-off with the use of EGR for classical low-injection 

pressure diesel combustion and for diesel engines with modern common-rail high 

pressure injection systems. The use of EGR is effective to reduce the in-cylinder NOx 

formation [32] mainly because the thermal, dilution and chemical effects of EGR lower 

the flame temperature as well as oxygen concentration of the working fluid [30,33-37]. 

However, the application of EGR usually increases PM formation because of the 

predominant diffusion-controlled combustion where the lack of oxygen leads to soot 

formation on the rich side of the reaction zone especially at high load conditions [38]. 

18 

16 

14 

I12 o> 

o10 

Z 
•o 8 
Q) •M 

•3 6 
T3 6 

C 

4 

2 

0 

Sinale-lniection Experiments 
Combustion 

System 
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Figure 1.8: Empirical Results highlighting the Classical NOx-Soot Trade-off 

Similarly, retarding the injection timing decreases the NOx emission but tends to increase 

the soot formation that x:an be attributed to the decreasing temperatures during the 

expansion stroke [37,39]. When the injection occurs near or after the TDC, the decreased 

fuel-air mixing time caused by the shorter ignition delay leads to lower combustion 

temperatures. This reduction in the combustion temperatures tends to inhibit the soot 

destruction rates, thereby increasing the engine-out soot. 
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Note that the use of a higher injection pressure in the figure shows a tendency to suppress 

the soot formation but increases the NOx at a given EGR rate. Therefore, it is considered 

very challenging to reduce NOx and PM simultaneously to meet the future stringent 

emission norms, while retaining the power-density levels of the modern diesel engine. 

1.7. Scope of Work 

The overall objective of this dissertation was to carry out a detailed analysis of the diesel 

LTC cycles that result in simultaneous low NOx and low soot emissions, and to improve 

the LTC performance through advanced diagnostics and combustion control strategies. 

An elaborate and sophisticated experimental program that evolved in a series of phases 

was developed to accomplish this goal. The focus of each phase was as follows: 

Phase 1: The preliminary testing of the diesel LTC cycles highlighted the sensitivity 

of the LTC cycles to small variations in the engine operating conditions. Therefore, to 

enable the evaluation of the advantages and the shortcomings of the different LTC 

strategies, and to successfully implement and evaluate the control strategies, an advanced 

emission sampling and measurement, data acquisition, and a high performance 

combustion-control platform was developed during the initial phase of the research. 

Phase 2: The objective of the second phase was to perform advanced LTC 

diagnostics that included in-cylinder direct gas sampling tests to study the survivability of 

intake NOx in the presence of combustibles and the NOx evolution on a crank angle-

resolved basis during combustion. A detailed analysis of the cylinder pressure was 

performed to ascertain the suitability of pressure-based parameters as feedback for LTC 

combustion control under a variety of engine operating conditions. Heat release models 

based on the First Law were compared and a computationally efficient algorithm was 

proposed for predicting the combustion phasing. An elaborate EGR analysis was 

performed to quantify the dilution effect of EGR on the LTC cycles. Simplified 

relationships for estimating the composition differences between the in-cylinder, intake 

and exhaust conditions were proposed. A two-lambda sensor scheme was developed for 

implementation of the analysis during the engine tests. 
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Phase 3: The results of the diagnostics phase provided the essential guidelines for the 

detailed empirical analyses of the diesel LTC cycles. The HTC and the LTC cycles were 

investigated under different engine operating conditions. The individual effects of intake 

gas management (boost pressure and EGR), and fuelling strategies (injection pressure, 

injection scheduling and number of injections) on the LTC cycles were analyzed and 

quantified. Detailed emission and efficiency comparisons were made between the 

different modes of LTC and the limiting conditions for each mode were identified. The 

effects of the intake gas treatment through catalytic oxidation and fuel reforming of EGR 

on the LTC cycles were empirically investigated. 

Phase 4: The final requirement of this research investigation was to identify the 

critical control parameters (based on the testing and diagnostics phases) for an effective 

adaptive LTC control strategy that would enable stable engine operation while reducing 

the penalty on engine performance and exhaust emissions. An adaptive control strategy 

was devised to integrate the systematic control of boost and EGR with the combustion 

control performed on a cycle-by-cycle as well as with the same combustion-cycle basis. 

Tests were conducted to assess the performance of the control system for enabling and 

stabilizing the LTC cycles. 

1.8. Dissertation Outline 

The dissertation outline is schematically shown in Figure 1.9. The diesel combustion is 

described in Chapter 1 and a brief history of the emission regulations is presented. 

Thereafter, a brief literature review is presented in Chapter 2 which includes the current 

solutions for the diesel HTC NOx-Soot trade-off, mechanisms for simultaneous reduction 

of NOx and soot and a brief description of the diesel LTC. Chapters 3 outlines the 

research methodology for the research work and Chapter 4 presents the salient features of 

the experimental setup and the overall system development program in detail. 

The combustion diagnostics are reported in Chapter 5. The in-cyUnder sampling tests 

include the LTC NOx reduction mechanism, presented on the crank angle-resolved basis 

and the crank angle-resolved NOx evolution for Dimethyl Ether fuelled homogeneous 

combustion. The cylinder pressure analyses for providing a robust feedback for LTC 
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control are then described. The suitability of a number of cylinder pressure based 

parameters as control feedback is presented. Comparisons are also made between 

different heat release models, and the effects of combustion phasing and fuelling 

strategies on the CA50 prediction are analyzed. 

Chapter 6 presents the analysis of the exhaust gas recirculation in the context of LTC 

combustion. The efficacy of EGR under the LTC operating conditions is analyzed and the 

composition difference between the trapped and intake conditions is characterized with 

excess air ratios for the in-cylinder and intake conditions. A two-lambda sensor scheme is 

devised and implemented for the systematic control of the combustion. This is followed 

by the intake gas treatment through catalytic oxidation and fuel reforming of EGR to 

generate gaseous fuels. Novel flow management strategies with central heating and 

central fuelling are devised to improve the energy efficiency of the reformer. 

The empirical results highlighting the testing of diesel LTC combustion are presented in 

Chapter 7. The diesel high temperature combustion is first analyzed and the need for 

applying LTC regimes is discussed. This is followed by testing of the LTC combustion 

strategies including single-shot enabled LTC, multi-shot early LTC and split-burning 

LTC. Efficiency and emission comparisons are made and the individual effects of 

injection pressure and intake gas treatment (boost and EGR) are analyzed. Based upon 

the results, a LTC load management strategy is proposed. 

The test results for the adaptive and systematic combustion control to stabilize and 

improve the LTC performance are given in Chapter 8. Both the cycle-by-cycle and 

within-same-cycle control techniques are developed and implemented. The 

implementation of the systematic control of boost and EGR with the combustion control 

is demonstrated with engine tests. 

Finally, the most significant findings of the research investigation are summarized, 

conclusions are drawn and the future work is recommended in Chapter 9. 
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CHAPTER II 

2. LITERATURE REVIEW 

This chapter provides an overview of the previously published work, addressing 

improvements in the conventional diesel combustion as well as alternate clean diesel-

combustion strategies. The first part of the review was to study and gain insight into the 

various mechanisms used for improving the diesel NOx-soot trade-off. This included the 

management of combustion parameters like boost, EGR, injection pressure etc as well as 

the hardware improvements. Modifying the fuel properties is another venue of active 

research for achieving cleaner combustion in diesel engines. Therefore, a review of the 

alternative fuels and their performance has also been included. Combustion strategies for 

simultaneous NOx and soot reduction as reported in the literature were then examined 

and the salient features and limitations of each strategy were highlighted. 

2.1. Improving the Diesel NOx-Soot Trade-off 

The improvements in the classical NOx-soot trade-off have been achieved through a 

combination of hardware changes and combustion system modifications. The underlying 

objective was to enhance the mixing of the fuel-air charge so that the local strength of the 

mixture was reduced and a more global distribution of the fuel-air charge was achieved. 

This resulted in reducing the sooting tendency of diesel combustion while the NOx was 

suppressed with advanced EGR technologies that resulted in reducing the charge 

temperature. 

The primary hardware changes to shift the NOx-soot trade-off closer to the origin 

included improvements in the design of the piston bowl (Mexican hat, shallow 'w', re

entrant, double re-entrant profiles) and the injector nozzle (hole size, spray angle and 

number of holes), chamber swirl enhancement, advanced turbochargers with variable 

geometry turbines, enhanced EGR coolers, multi-valve cylinder head designs, higher 

injection pressures with common-rail injection systems and air-path optimization. 

The improvements in the combustion included multiple injections to improve the 

homogeneity of the cylinder charge, post-injection to facilitate soot oxidation during the 
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late combustion phase, higher boost pressures to improve the availability of oxygen for 

the injected fuel, injection rate shaping, injection timing retard and EGR to prolong the 

ignition delay, thereby increasing the premixed combustion phase while reducing the 

combustion temperature. The limitations of the current technologies in meeting the future 

emission standards with conventional diesel combustion are highlighted in Chapter 7. 

Some important SAE publications during the last 2 decades that describe the 

improvements made in the NOx-soot trade-off and the technologies involved are listed in 

APPENDIX A. 

2.2. Alternative Fuels 

In recent years, the concern over depleting world reserves of fossil fuels and more 

stringent emission regulations have led to resolute efforts for renewable alternative fuels 

and low-emission combustion strategies. Moreover, the fuel properties such as the boiling 

point and cetane number, among others, can have a significant effect on the LTC 

performance [40]. These fuel properties can alter the fuel/air mixing characteristics, 

ignitability and subsequent emissions formation. Therefore, a brief review of some of the 

commonly used alternative fuels for diesel engines is included. 

2.2.1. Fischer-Tropsch Diesel Fuel 

Fischer-Tropsch (FT) fuels are synthetic hydrocarbon fuels commonly made by 

synthesising coal or natural gas using Gas-to-Liquid (GTL) processes [41,42]. This 

involves the partial oxidation of a hydrocarbon fuel to produce synthesis gas (a 

mixture of CO and H2) which is then catalytically converted (usually iron or cobalt 

based catalyst) into various liquid hydrocarbon fuels. The resulting fuel is 

composed almost entirely of straight chain hydrocarbons and is free of sulphur and 

aromatics resulting in a high-cetane distillate. Fischer-Tropsch diesel is similar to 

conventional diesel fuel with regard to its energy content, density and viscosity and 

it can be blended with diesel in any proportion without the need for engine or 

infrastructure modifications [42]. 

Fischer Tropsch diesel fuels, in neat state or blended with conventional diesels, 

have been investigated to improve diesel engine exhaust emissions. Previous 
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results have shown that owing to their high cetane number and near zero sulphur 

and aromatic contents, FT diesel fuels are capable of reducing emissions on a 

variety of light and heavy-duty engines. The low aromatics content seems to 

contribute to the lowered particulate matter (PM) production from in-cylinder 

combustion [43,44]. 

2.2.2. Biodiesel Fuel 

Biodiesel is a non-toxic and biodegradable fuel that is made from vegetable oils, 

waste cooking oil, animal fats or tall oil (a by-product from pulp and paper 

processing). Biodiesel is produced from these feedstocks through a process called 

transesterification, by reacting the oil with an alcohol (usually methanol) and a 

catalyst (such as sodium hydroxide) [45]. The resulting chemical reaction produces 

glycerine and an ester called biodiesel. The majority of biodiesel is produced by 

this method. Biodiesel fuel, derived from agricultural products or recycled fat, is a 

renewable alternative for petroleum-derived diesel fuels [46-49]. 

In comparison with conventional diesel fuels, the fuel-borne oxygen in biodiesels, 

which could be over 10% by mass, is capable of reducing engine-out emissions of 

PM, CO and UHC in modern four-stroke compression-ignition engines 

[47,48,51,52]. However, a slight increase in emissions of NOx, which could be 

partially caused by the fuel property-incurred combustion timing variations, has 

been observed in the use of oxygenated fuels in general [50]. 

Biodiesel fuel is being increasingly endorsed by the engine manufacturers to be 

used in low blend levels (for e.g. B5 i.e. 5% of biodiesel blended with 95% of 

conventional diesel). However, the impact of higher blends of biodiesel like B20 in 

modern common-rail injection systems still needs to be identified. Additionally, 

biodiesel is known to degrade up to four times faster than diesel fuel [51]. The 

products of biodegrading could have detrimental effects on the injection 

components especially the high pressure fuel pump. 

A new category of biodiesel fuel has emerged recently called the second generation 

or Fischer Tropsch Biodiesel. FT biodiesel is a synthetic biodiesel fuel that is 

22 



CHAPTER 2: LITERATURE REVIEW 

produced using gasified biomass through the catalytic Fischer-Tropsch process 

[53]. Compared to the first generation biodiesel, the FT biodiesel is a non-

oxygenated fuel, and therefore has higher energy content per unit mass, 

approaching or exceeding that of the conventional diesel fuel. The FT biodiesel is 

reported to have good storage stability unlike conventional biodiesel and also has 

low water solubility [54]. However, the information is scarce on combustion 

mechanism studies for a FT biodiesel fuel-powered diesel engine. The impact of 

FT diesels, especially FT biodiesels, on LTC cycles has not been quantified 

sufficiently. 

2.2.3. Dimethyl Ether 

Dimethyl ether (DME, chemical structure: H3C-O-CH3) is an oxygenated fuel with 

~34% oxygen (O2) by weight that can be mass-produced by synthesising natural 

gas or coal. The high fuel-borne oxygen content leads to nearly soot-free 

combustion in diesel engines while the NOx can also be reduced with EGR without 

being restricted by the NOx-soot trade-off. DME has a high cetane number and 

fuel droplets sprayed into the cylinder have been shown to evaporate at a rate about 

three times that of conventional diesel fuel. The higher evaporation rate reduces the 

tendency of fuel pyrolysis which promotes soot formation. Therefore, DME is a 

strong candidate for enabling LTC operation in diesel engines using multiple-

injection strategies and a high level of EGR. However, the neat use of DME is 

hindered by its low lubricity and low viscosity that can shorten the life of the fuel-

injection system [25]. 

Recently, the United States Department of Energy investigated the use of neat 

DME in a diesel engine operating under LTC cycles [55]. The results showed that 

the NOx emissions were below the US 2010 emission levels while the soot 

emission was nearly zero. Therefore, diesel exhaust aftertreatment devices for NOx 

and soot reduction may not be required with DME-fuelled engines. 

Chapman et al. investigated the properties of DME-diesel fuel blends to assess the 

impact on the fuel-injection systems [56]. Their results showed that a 20% addition 
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of DME into diesel fuel significantly reduced the viscosity of the fuel mixture, 

below the minimum requirement for the fuel injection system components. 

Therefore, the long-term equipment durability concerns need to be adequately 

addressed before widespread use of DME in diesel engines can materialize. 

2.3. Mechanism for Simultaneous NOx and Soot Reduction 

To attain low levels of NOx and soot simultaneously in diesel engines, a number of 

experimental and modelling studies have been carried out to understand the mechanisms 

of soot and NOx formation so that the pathways for simultaneous low NOx and soot 

combustion could be identified. Aoyagi et al. studied the soot formation process through 

in-cylinder sampling tests on a diesel engine and observed significant soot formation 

during the diffusion-controlled combustion when the maximum combustion temperature 

was between 2100 to 2300K and the maximum equivalence ratio between 1.5 to 3.5 (air-

excess ratio, X ~ 0.67 to 0.29) [12]. Similarly, Uyehara observed that the temperature 

range for soot formation was 2000 to 2400K in diffusion flames [20]. Kamimoto et al. 

studied the soot formation phenomenon in a rapid compression machine. Based on the 

measured equivalence ratio and flame temperatures, they concluded that the soot was 

formed in that region of the flame where the average equivalence ratio was rich and the 

flame temperature was high enough to promote pyrolysis of the evaporated fuel [57]. The 

effect of temperature and pressure on the soot formation due to fuel pyrolysis was studied 

in shock tubes by Frenklach et al. and their investigation demonstrated that the soot yield 

became significant around 1800K, while no soot was formed below 1500K or above 

2300K [58]. 

Kamimoto et al. advanced their previous work with in-cylinder sampling studies on a 

diesel engine and in combination with their NOx modelling work, produced a local-

equivalence-ratio versus local-temperature or the "<J>-T" diagram that indicated the 

boundaries of the NOx and soot formation regions [17]. Their work is generally regarded 

as one of the first attempts to formulate the pathway for simultaneous low-NOx and low-

soot. Akihama et al. and Kitamura el al. used CFD modelling to show the variation of 

soot formation inside the soot region on the <|>-T map [35,59]. No soot formation was 

observed below 1500K regardless of the equivalence ratio. Similarly, for an equivalence 
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ratio less than 2, no soot was formed regardless of the temperature. The maximum 

sooting tendency was around 1800-2000K and at higher temperatures, the sooting 

tendency was reduced for a given equivalence ratio. 

All the above mentioned studies provided insights into the effect of in-cylinder 

temperature and air-fuel ratio on the formation of NOx and soot, typically shown on a 

<(» — T diagram such as Figure 2.1. 

1000 1400 1800 2200 2600 3000 

Temperature [K] 

Figure 2.1: <f>-T Diagram (Adapted from Kamimoto et al. [ 17]) 

The <|>-T correlation is applicable to a homogeneous cylinder charge or the locally 

homogeneous regions of a heterogeneous charge. For a conventional diesel engine, the 

non-homogeneity makes the local cylinder charge vary from rich to lean. Zheng et al. 

noted that the flame is prone to initialize in and propagate towards the locally 

stoichiometric regions [30]. The stoichiometric burning tends to produce very high flame 

temperatures that may also ignite the adjacent locally lean or rich mixtures. Thus, 

simultaneous NOx and soot formation is inevitable in such HTC processes. 

Based on the above-mentioned experimental and modelling studies, it was perceived that 

for a thoroughly-mixed cylinder charge, the tendency for soot formation would be low, 

largely regardless of the mixture strength. However, to have simultaneous low levels of 
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NOx, the flame temperature must be kept below the threshold temperature for thermal 

NOx formation (usually 1800-2000K). Therefore, the preparation of a homogeneous 

cylinder charge before the initiation of combustion was considered a pre-requisite for 

achieving low temperature combustion (LTC) that resulted in simultaneous low-NOx and 

low-soot emissions. 

2.4. Low Temperature Combustion 

The mechanism discussed in the previous section requires the implementation of the 

homogeneous LTC either by pre-mixing to very lean equivalence ratios or by reducing 

the combustion temperatures of homogeneous mixtures with high equivalence ratios. 

This can be achieved by the heavy use of EGR or the homogeneous charge compression 

ignition (HCCI)-enabling technologies [60]. Based on experimental and modelling 

studies conducted at the Clean Diesel Engine Laboratory (CDEL), University of 

Windsor, the pathways for simultaneous NOx and soot reduction are shown on a (1/<|>)-T 

map in Figure 2.2. To circumvent the NOx and soot formation zones, the combustion 

temperature must be kept low, regardless of the equivalence ratio. The burning of a diesel 

fuel in an excessively lean or rich homogeneous cylinder charge tends to release heat less 

intensively than under stoichiometric burning and thus LTC is prevailing, the 

representative cases of which are the low-load lean HCCI (<j><0.5) [61] and the fuel rich 

reforming (<|>~ 1.4-2) [62,63]. When the fuel/air ratio is closer to stoichiometric, 

however, the combustion process tends to render high flame temperatures that need to be 

lowered with heavy EGR in order to qualify for LTC, the representative cases of which 

are the high-load HCCI and the smokeless combustion on the lean and rich side of 

stoichiometry respectively. 

For the case of high load HCCI with heavy EGR, the combustion process is constrained 

to that part of the fuel that has homogenized with the highly diluted intake charge. Any 

left over fuel that has not vaporized or homogenized is likely to go to the exhaust or 

cause oil dilution because of the prevailing low temperatures and the high amount of 

dilution. However, if this portion of the fuel does burn, the combustion is prone to be a 

highly diluted diffusion process, approaching a high degree of homogeneity. 
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Figure 2.2: Pathways for Simultaneous NOx and Soot Reduction 

LTC combustion in diesel engines can be broadly classified into two categories based on 

the timing of the fuel injection- the 'early-HCCI' where the fuel is injected very early in 

the compression stroke and the 'late-injection LTC' where a single injection closed to the 

TDC is employed along with heavy EGR. In the early-HCCI strategy, multiple in-

cylinder fuel injections are usually employed to modulate the homogeneity history of 

diesel-HCCI cycles before the completion of the cylinder compression. Because of the 

high tendency of auto-ignition of diesel fuels, i.e. the high cetane numbers, EGR is 

normally employed to withhold the mixture from premature auto-ignition, which also 

helps with homogenization of the mixture. The late injection approach normally employs 

a single injection event near or after the end of piston compression, i.e. the TDC, to 

which high levels of EGR are normally applied concurrently. The effect of temperature 

reduction in the expansion stroke provides a prolonged ignition delay period thereby 

facilitating more mixing and resulting in a substantially enhanced premixed burning for 

such a main combustion event [33]. 

Stanglmaier and Roberts presented a review of the benefits, challenges and future engine 

applications of early-HCCI category of LTC [64]. They noted that altering the fuel/air 
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mixture's time-temperature history can provide a means of controlling the ignition 

timing. The time-temperature history can be altered by modulating the intake 

temperature, in-cylinder injection timing, variable compression ratio, variable valve 

timing (WT) or EGR, among others. 

Helmantel and Denbratt studied the HCCI mode in a diesel passenger car using two 

compression ratios (CR 13.4:1 and CR 11.5:1) with early injection of conventional diesel 

fuel [65]. Up to 5 early injections were applied during the compression stroke to form a 

homogeneous fuel/air mixture before the start of combustion. Using high EGR rates 

coupled with low compression ratio, the combustion phasing was shifted close to the 

TDC. Both NOx and soot were reduced to near-zero levels; however, the combustion 

efficiency was compromised due to the high HC and CO emissions by 10~20%. 

Kodama et al. [66] used a combination of different CRs, VVT, intake temperatures, a 

single early injection and. appropriate EGR rates to achieve simultaneous low NOx and 

low soot emissions in a heavy-duty DI diesel engine at different engine loads. With a CR 

of 16.8:1, they were able to achieve a brake mean effective pressure (BMEP) of 5 bar; 

CR 13:1 for 8 bar; CR 10:1 + VVT for 18.3 bar (full load). In all the above cases, the CO 

and THC emissions were very high (>5%). For the full-load HCCI operation, an intake 

manifold pressure of 4 bar abs was employed and the maximum cylinder pressure and the 

maximum rate-of-pressure rise were 175 bar and 18bar/°CA respectively, which are 

close to the upper limits for most production diesel engines. 

The early-HCCI mode has been given various titles such as PREmixed lean Diesel 

Combustion (PREDIC), UNIform BUlky combustion System (UNIBUS), Premixed 

Compression Ignition (PCI) combustion while the late-injection LTC has been described 

as smoke-less rich combustion and Modulated Kinetics (MK) combustion, depending on 

the methodology employed to improve the homogeneity of the mixture. Figure 2.3 shows 

the classification of these modes on the basis of the injection timing relative to the timing 

of the auto-ignition. The fundamental objective of all these combustion modes is the 

completion of the fuel injection before the initiation of the combustion. It should be noted 

that the range shown for the injection and ignition timing is a representation of the 
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operational limits and the actual timing would depend on the engine operating conditions. 

A brief review of these modes is therefore presented hereafter. 
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Figure 2.3: Classification of Conventional and LTC Modes based on Injection 
Scheduling (Adapted from Shimazaki et al. [67]) 

2.4.1. Early HCCI 

The HCCI process utilizes an appropriate lean homogeneous fuel/air mixture 

which is compressed until combustion occurs as a result of spontaneous auto-

ignition at multiple points through the chamber volume. As a result, HCCI 

combustion has no discernible flame propagation. The fuel-strength of the 

homogeneous charge has been found critical for stable HCCI combustion. An 

excessively lean mixture generally results in misfire or elevated hydrocarbon 

emissions, while a rich or insufficiently lean mixture may result in increased 

combustion noise (rapid rate of pressure rise) and even detrimental knocking. 

A number of fuelling techniques have been used to attain a homogeneous mixture 

for early-HCCI category and these can be classified as port injection, early in-

cylinder (single or multiple injections) and double in-cylinder injection. The port 
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injection HCCI consisted of injecting and pre-mixing the fuel with the air before it 

entered the cylinder. While this technique worked well with highly volatile and 

knock-resistance fuels like gasoline, it posed a number of disadvantages for diesel 

HCCI, the foremost being premature ignition, lack of ignition control and the need 

for relatively high intake temperatures to prevent oil dilution. Moreover, this 

technique also resulted in high HC and CO emissions and poor fuel consumption. 

The comparison of diesel port injection LTC with conventional diesel operation is 

shown in Figure 2.4 and Figure 2.5. These tests were run at the University of 

Windsor on a conventional diesel engine. It can be seen that for similar load levels, 

port injection HCCI had lower NOx and soot compared to the conventional diesel 

combustion but suffered from advanced combustion phasing and a high rate of 

pressure rise. Moreover, the CO and HC emissions were significantly higher 

compared to the conventional diesel combustion. The dilution of engine-oil with 

fuel was another significant drawback noticed during the port-injection 

experiments [68]. 
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Figure 2.4: Diesel Port Injection Experiments at the University of Windsor 
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Figure 2.5: Emission Comparison for the Port Injection Experiments 

2.4.1.1. PREDIC 

In PREDIC mode, the fuel is injected extremely early (60~180°BTDC) into 

the cylinder, providing sufficient time for the preparation of a lean 

homogeneous charge necessary for simultaneous low-NOx and low-soot. 

Results at part load conditions (k > 2.5) showed that the NOx concentration 

could be remarkably reduced to less than 1/10 of typical HTC values [69]. 

However, the formation of a premixed lean mixture is difficult as the 

quantity of fuel increases at higher loads. Moreover, fuel impingement on 

the cylinder walls is a major concern with this technique because of the 

very low cylinder charge densities at the time of the fuel injection [70,71]. 

2.4.1.2. UNIBUS 

In the UNIBUS combustion concept, the first stage of combustion 

corresponds to the premixed lean combustion, and the second stage of 

combustion corresponds to diffusion combustion under high temperature 
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and low oxygen conditions. A double injection is utilized for implementing 

this technique. The pilot injection is timed early in the compression stroke 

(40 - 60°BDTC). Injection timing and quantity, intake gas temperature and 

boost pressure are controlled precisely so that high temperature reaction 

does not appear before the main injection which takes place close to or after 

the TDC. The pilot-injected fuel undergoes low temperature reactions to 

break up the fuel to lower hydrocarbons and the main injection serves as an 

ignition trigger for the combustion of all the injected fuel [72]. The reported 

results for the UNIBUS combustion indicated a non-luminous flame with 

multiple ignition points in the bulk of the cylinder charge and low levels of 

NOx and soot emissions [73]. 

2.4.1.3. PCI 

In PCI combustion, the fuel is injected into the combustion chamber in the 

vicinity of the TDC (15~30°BTDC) to prevent fuel from wetting the 

cylinder walls, while the mixing of the fuel-air charged is enhanced by 

increasing turbulence in the fuel-air charge (piston bowl shape, high swirl 

ratio) and also by introducing a large amount of cooled EGR which tends to 

increase the ignition delay [37]. A decrease in the over-rich regions of the 

mixture during combustion with EGR-assisted pre-mixing reduces soot 

emissions, and at the same time lowers the combustion temperature to 

reduce NOx emissions. 

2.4.2. Late-Injection LTC 

The late-injection LTC category employs a single injection close to or after the 

TDC which enables combustion phasing to be controlled by the timing of the 

injection event, similar to conventional diesel combustion and provides an 

advantage over port-injection and early-DI HCCI techniques. Since a relatively 

short ignition delay normally precludes thorough pre-mixing of the fuel-air 

mixture, high levels of cooled EGR, coupled with injection timing adjustment are 

commonly employed to prolong the ignition delay and to lower the flame 

temperature. The increased ignition delay allows more time for the fuel-air mixing 
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and therefore improves the homogeneity of the cylinder charge. LTC tests run by 

the author (Figure 2.6) confirmed that an increase in the ignition delay over 50% of 

the baseline value (without EGR) was repeatedly seen to push the combustion into 

the LTC regime, at different engine operating conditions. Two variations of this 

LTC mode have been reported in the literature and are briefly discussed below. 
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Figure 2.6: Prolonging the Ignition Delay to Enable LTC 
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2.4.2.1. Modulated Kinetics Combustion 

The MK concept can be essentially characterized as a low-temperature, 

premixed combustion that is aimed at simultaneously reducing NOx and 

soot emissions. The lowered combustion temperature is accomplished by 

applying heavy EGR while smoke reduction is achieved by increasing the 

premixed combustion phase. The mixing time is increased by prolonging 

the ignition delay and dispersion of the injected fuel is promoted by 

increasing turbulence in the fuel-air charge (piston bowl shape, high swirl 

ratio, high injection pressure) to promote premixed combustion. The 

generation of turbulence also helps to lower the HC emissions [74-76]. 
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2.4.2.2. Smokeless Rich Combustion 

The smokeless rich combustion avoids the soot formation regions on the <)>-

T map by reducing the combustion temperature below the critical 

temperature for soot formation (approximately 1650 K) [35]. This can be 

realized by using large amounts of cooled EGR and the air-fuel ratio 

approaching near-stoichiometric or rich operating conditions instead of the 

lean-premixed conditions. However, the engine operation is characterized 

with high cycle-to-cycle variations, high HC and CO emissions and 

resultantly, a lower thermal efficiency. The same has been observed during 

experimental investigations carried out by the author and a typical result for 

an IMEP of 4.2 bar is shown in Figure 2.7 [77]. As the combustion 

transitions into the LTC cycles, the HC emission tends to rise sharply. 

Moreover, a significant drop in the IMEP is observed, which results in a 

significant penalty on the thermal efficiency. 
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The smokeless rich combustion can also be realized using early-HCCI 

strategy, coupled with heavy EGR as shown by the test results generated at 

the Clean Diesel Engine Lab (CDEL). This allows moderate engine loads to 

be achieved compared to the single-injection LTC while maintaining low 

levels of NOx and soot emissions. 
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Figure 2.8: Smokeless Rich Combustion with Multiple-Injection LTC [78] 

2.4.3. Diesel Fuel Reforming 

Another mechanism for enhancing the premixed combustion during LTC operation 

is the generation of gaseous fuels like hydrogen (H2) and CO, outside the engine 

cylinder. The participation of a gaseous fuel that increases premixed combustion 

may significantly alleviate problems with soot formation and may help to reduce 

the cyclic variations. Diesel exhaust normally contains significant amounts of 

surplus oxygen and has a temperature close to the level required for fuel reforming. 

Thus, it is reasonable to use the exhaust to catalytically reform some of the diesel 

fuel because the oxygen and heat of the exhaust can be utilized simultaneously. 
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The author has extensively investigated the diesel reforming process in the EGR 

loop of a conventional diesel engine and a detailed description and analysis of the 

EGR reforming is given in Chapter 6. 

2.4.4. LTC Load Range 

The maximum engine loads attained at different compression ratios as reported in 

the literature are shown in Figure 2.9. The results show that the load range of the 

LTC operation is significantly dependent on the compression ratio (CR) of the 

diesel engines since a higher compression ratio translates into a higher 

compression-end cylinder temperature. For diesel fuel injected in the intake port or 

very early in the compression stroke, the propensity of the cylinder charge to auto-

ignite early in the compression stroke is therefore increased. As the quantity of the 

injected fuel is increased to enhance the engine load, it is difficult to withhold the 

cylinder charge from auto-igniting since the ignition delay is adversely affected by 

> Reported Diesel LTC Research (without Hardware Modifications) 

I With Additional Technologies (VVT,VCR,Dual EGR, High Swirl) 

LTC Load Range Trend 
with Compression Ratio 

• ^ 

Ford Engine 
CR 18.2:1 

^ Typical IMEP Range 
of Reported Results • * 

10 12 14 16 
Compression Ratio [-] 

18 20 

Figure 2.9: Reported IMEP for LTC Cycles in the Literature 
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the temperature and the fuel strength of the cylinder charge (equivalence ratio). 

The combustion process tends to produce very high rates of cylinder pressure rise 

(dp/d0)max > 20 bar/°CA). Furthermore, the use of a higher boost pressure to reduce 

the equivalence ratio is restricted by the peak cylinder pressures of the early LTC 

which tend to increase above 160 bar, the nominal Pmax threshold for production 

diesel engines. 

Therefore, at compression ratios around 18:1 such as for the Ford test engine used 

in this research (details in Chapter 4), the maximum reported load is less than 

4 bar IMEP for LTC operation. 

2.5. Summary 

Based on the literature review and the extensive testing of the diesel LTC cycles by the 

author and colleagues at the CDEL, the diesel LTC enabling technologies are 

summarized in Figure 2.10. The LTC enabling technologies are those techniques that 

assist in the transition from the conventional heterogeneous cylinder charge to a more 

homogeneous charge before the onset of combustion. If an early injection strategy is 

applied (port injection or early in-cylinder injections), then a sufficiently long time is 

available for mixture preparation, and a lean- or weak-homogeneous (EGR diluted) 

mixture can be prepared before the start of combustion. Similarly, a late-injection close to 

the TDC is afforded a long ignition delay with heavy EGR to enhance the charge 

homogeneity. The combustion of a lean- and/or EGR-diluted homogeneous mixture has 

the potential to produce a low combustion temperature that can simultaneously yield low-

NOx and low-soot levels. 

The current status of the LTC implementation in high compression ratio diesel engines is 

summarized in Table 2.1. The major limitations of the LTC operation include the high 

CO and HC penalty, low engine loads and unstable engine operation. 
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Figure 2.10: Diesel LTC Enabling Technologies 

38 



CHAPTER 2: LITERATURE REVIEW 

Table 2.1: Summary of High Compression Ratio Diesel LTC Operation 

LTC Status I 

Enabling Requirement 
Separation of the fuel injection events from the 

combustion process 

Combustion 
Characteristics 

High cylinder charge homogeneity 
Low combustion temperatures 

Lean/EGR diluted 

Thermal Efficiency 10 ~ 20 % Penalty 

Emissions 
Simultaneous low NOx and low soot achievable 

Moderate to very high HC and CO (>5%) 

Load Range 
Low (< 4 bar IMEP) I 

Limited by Pmax, (dp/d0)max | 

Stability 
Close to flame-out limits 
Higher cyclic variability 

Fuelling Strategy 

Port Injection 

High CO & HC 
Significant oil dilution (low volatility of Diesel) 

Lack of ignition control 
Intake heating Requirement 

Early HCCI 
Lack of ignition control 

Pmax, (dp/d0)max restriction 
Moderate CO & HC 

Late-injection 
High CO & HC 

Unstable operation leading to mis-fire 

39 



CHAPTER 3: METHODOLOGY OUTLINE 

CHAPTER III 

3. METHODOLOGY OUTLINE 

The literature review provided the motivation and the framework for formulating the 

objectives of this research. An overview of the research plan is shown in Figure 3.1. The 

current limitations of the LTC operation in high compression ratio diesel engines were 

translated into the main objectives of the research that include improvement in the LTC 

fuel efficiency and stability, extension of the LTC load range and enabling transition 

between the HTC and LTC combustion modes. 

Objectives 

Motivation 
Diesel HTC 

• NOx-Soot Trade-off 

Diesel LTC 
• Simultaneous Low NOx 

and Low Soot 
• Fuel Efficiency Penalty 
• Stability Issues 
• Limited Load Range 
• Smooth Transition 

Diesel LTC 
Reduce Fuel Efficiency 
Penalty 
Improve Combustion 
Stability 
Extend Load Range 
Enable Smooth 
Transition between 
Combustion Modes 

Target 
Energy Efficient Diesel 
LTC 
Simultaneous Low NOx-
Low Soot 

Methodology 
Advanced Diagnostics 
• Direct In-cylinder Gas 

Sampling 
• Cylinder Pressure & 

EGR Analyses 
• Intake Gas Treatment 
Testing of LTC Combustion 
• EGR, Boost, Injection 

Pressure 
• Fuelling Strategies 
Adaptive & Systematic 
Control 

Figure 3.1: Overview of the Research Work 
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Figure 3.2 presents a summary of the research methodology employed in this work. The 

improvements of the diesel LTC cycles were primarily based on experimental 

investigations and observations. Therefore, the empirical work undertaken during the 

course of the research entailed an elaborate and sophisticated experimental setup, 

described in Chapter 4. Theoretical analyses were performed to understand the empirical 

results and to develop the boundary condition for the tests, and the details of the 

modelling tools used for the analysis have therefore been provided. 
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Figure 3.2: Schematic of the Research Methodology 
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3.1. LTC Diagnostics 

The formulation of the diesel LTC testing phase and the development of an effective 

control strategy in this research were supported with in-cylinder combustion diagnostics, 

cylinder pressure analyses and intake gas treatment studies. A brief description of each is 

provided below. 

3.1.1. In-cylinder Direct Gas Sampling 

The pollutant formation processes during the high temperature combustion in a 

conventional diesel engine have been investigated extensively through in-cylinder 

sampling studies, laser diagnostic procedures and high-speed imagery and high

speed exhaust gas analysis [11-20]. As a result, several mathematical models of 

various complexities have been reported in the literature to accurately simulate the 

diesel combustion and the resulting exhaust pollutants [21,26,31,80]. Some optical 

studies for diesel LTC have been recently reported in the literature but a 

quantitative picture of the in-cylinder LTC mechanism that results in simultaneous 

low NOx and low soot is generally not available. 

Therefore, to provide an insight into the combustion and pollutant formation 

processes during LTC mode and to help improve the methodology for LTC 

research, an elaborate in-cylinder sampling system was implemented. Engine tests 

were conducted to study the LTC NOx mechanism in the presence of high amounts 

of unburnt hydrocarbons on a crank angle-resolved basis. The in-cylinder NOx 

evolution was studied for the DME-fuelled combustion. DME, a fuel with cetane 

number and combustion characteristics similar to diesel, also has high oxygen 

contents which offer the intrinsic advantage of nearly soot-free combustion. The 

use of DME was primarily done to prevent damage to the in-cylinder gas sampling 

valve which would otherwise be clogged with the soot generated during the 

combustion of conventional diesel fuel. 

3.1.2. Combustion Analysis & Feedback 

The cylinder pressure was analyzed in the context of providing a robust feedback 

for LTC control. The suitability of a number of cylinder pressure based parameters 
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as control feedback was examined. Comparisons were also made between different 

heat release models, and the effects of combustion phasing and fuelling strategies 

on the CA50 prediction were quantified. A computationally efficient algorithm was 

proposed for predicting the combustion phasing with sufficient accuracy for a wide 

range of diesel combustion regimes. 

3.1.3. EGR Analysis & Catalytic Treatment 

An elaborate EGR analysis was performed to develop simplified relationships for 

estimating the composition differences between the in-cylinder, intake and exhaust 

conditions. The efficacy of EGR for LTC mode was quantified in terms of the 

intake gas composition and the load level. 

The composition and properties of the intake gas have been reported to 

significantly influence the performance of the LTC cycles [27,60,79]. Therefore, 

the test program was to investigate and quantify the effects of the major intake gas 

parameters including pressure and composition on the LTC operation as indicated 

in Figure 3.3. The catalytic treatment of EGR was also studied in detail as a means 

to reduce the fluctuations in the intake gas composition, pressure and temperature, 

and to reduce the detrimental effects of EGR. 

• Composition 
> 

• O2, CO2 
• Catalytic EGR 

• Oxidization 
• Fuel Reforming 
Intake Pressure. > 

Emissions 
• NOx, Soot, HC, CO 

• Efficiency 
• Ignition Delay 
• Combustion Phasing 

v» Air/Fuel Mixture Strength 

Figure 3.3: Intake Gas Treatment 

3.2. Testing of Diesel LTC 

The testing phase of the diesel LTC included a detailed analysis of the LTC performance 

metrics through engine tests. Emission, stability and efficiency comparisons were made 

between the different modes of LTC and the limiting conditions for each mode were 
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identified. The individual effects of injection pressure and intake gas treatment (boost, 

composition) on enabling the LTC cycles was also analyzed. 

3.2.1. LTC Fuelling Strategies 

A number of in-cylinder fuelling strategies to enable LTC combustion in diesel 

engines were investigated as shown in Figure 3.4. The late-injection approach 

normally employs a single injection event near or after the end of piston 

compression, i.e. the TDC, to which high levels of EGR are normally applied 

concurrently. The effect of temperature reduction by piston expansion stroke 

provides a prolonged ignition delay thereby facilitating more mixing, resulting in 

substantially enhanced premixed-burning in such a main combustion event. 

In the early-injection strategy, multiple in-cylinder fuel injections are usually 

employed to modulate the homogeneity history of diesel HCCI cycles before the 

completion of the cylinder compression. Because of the high tendency of auto-

ignition of diesel fuels, i.e. the high Cetane numbers, EGR is normally employed to 

withhold the mixture from premature auto-ignition, which also helps with 

homogenization of the mixture. 

To extend the load level of the LTC operation, a split-injection strategy was also 

investigated where a part of the fuel was delivered early with multiple injection 

events while the load enhancement was achieved with post-TDC fuelling. The 

post-TDC combustion can also benefit from the virtual EGR generated by the 

combustion of the early-injections. 
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Figure 3.4: In-cylinder LTC Fuelling Strategies 

3.3. LTC Control Methodology 

Based upon the experimental findings and the diagnostics results of the LTC cycles, there 

was a need to devise an adaptive LTC control strategy that would enable stable engine 

operation while reducing the penalty on engine performance and exhaust emissions. A 

composite strategy was formulated by developing systematic control of boost and EGR 

and integrating it with an adaptive combustion control technique performed on a cycle-

by-cycle as well as within-same-cycle basis. Confirmation tests were conducted to verify 

the improvement in the LTC operation with the proposed control system. 

3.4. Modelling Work 

The high complexity of the processes occurring in an internal combustion engine makes 

it difficult to develop mathematical models that can accurately predict the engine 

performance as observed with empirical investigations under a wide range of operating 

conditions. The scope of application of these modelling tools is narrow mainly due to the 
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complexity of the processes involved. This is also the reason why the field of internal 

combustion engine research is dominated by sophisticated experimental techniques. 

However, the use of modelling tools, primarily in the form of computer codes, is still 

widespread as it is less resource intensive and far less time consuming compared to 

conducting actual engine tests. The models after proper calibration and validation with 

experimental data can provide useful insights into some of the fundamental mechanisms 

governing the combustion. 

In this work, 0-D engine-cycle simulations were performed to perform a parametric 

evaluation of the diesel combustion. Engine-cycle simulation packages including Ricardo 

WAVE and Synthetic Atmosphere Engine-cycle Simulation (SAES) [81] were used to 

analyze the cylinder pressure and heat release characteristics. A 0-D EGR simulation 

program was developed to analyze the intake gas treatment of LTC operation and to 

facilitate the development of the control feedback. The liquid spray penetration for diesel 

sprays under the engine compression process was simulated by integrating a spray 

penetration model with a 0-D diesel engine cycle simulation program. The effect of 

injection pressure, boost pressure and the injection timing was analyzed to improve the 

selection criterion for the early injection HCCI cycles. Chemical kinetic simulations 

using CHEMKIN software were also performed to improve the understanding of the LTC 

regimes and to help explain the in-cylinder diagnostics results. 
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CHAPTER IV 

4. EXPERIMENTAL PREPARATION AND SYSTEM DEVELOPMENT 

In this chapter, the details of the hardware preparation work carried out including the 

baseline engine setup, engine sub-system development, fast-response emission analyzer 

repair, data acquisition, control system setup and fuel system are described. The 

modifications carried out on the engines for in-cylinder gas-sampling system installation, 

EGR reforming tests are explained in the subsequent chapters. The post-processing 

techniques employed for analyzing the test results are also briefly covered and include 

the quantitative and qualitative analysis of the engine performance and emissions of 

NOx, soot, THC and CO. 

4.1. Test Engines 

The engine tests have been carried out on two DI diesel engines. The first is a naturally-

aspirated, four-stroke, single-cylinder Yanmar NFD170 engine, coupled to a DC 

motoring dynamometer. The second is a modern common-rail Ford Duratorq DI diesel 

engine, coupled to an eddy current dynamometer. 

4.1.1. Yanmar Single Cylinder DI Diesel Engine 

The Yanmar NFD170 is a horizontal type, single cylinder DI diesel engine with the 

specifications given in Table 4.1. The original engine configuration was modified 

to include independent control of EGR, sequential intake port injection, intake air 

pre-heating and throttling. The resulting baseline configuration is shown in Figure 

4.1. 

The EGR flow rate was controlled through a combination of EGR valve opening 

and intake air throttling to achieve the desired levels of EGR. Conversely, an 

exhaust back-pressure control system could also be utilized for enabling EGR as 

was done for the Ford engine. The baseline engine setup was extensively modified 

for the in-cylinder gas sampling, EGR oxidation and fuel reforming tests. The 

details of the modifications are given in detail in the subsequent chapters. 
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Table 4.1: Geometric Specifications of the Yanmar Engine 

Displacement [Litre] 857 cm3 

Bore [mm] 102 mm 

Stroke [mm] 105 mm 

Connecting Rod Length [mm] 165 

Compression Ratio 17.8:1 

Deck Clearance [mm] 1.13 

Intake Valve Closing (IVC) -135°ATDC 

Exhaust Valve Opening (EVO) 45°BBDC 

Combustion System Direct Injection 

Injection System Inline Pump with Mechanical Governor 

Injection Timing Single Injection @ -17°ATDC 

Nozzle Opening Pressure 204 bar 
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Figure 4.1: Baseline Setup of the Yanmar DI Diesel Engine 
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4.1.2. Ford Common Rail DI Diesel Engine 

The Ford ZSD-420.Duratorq is a 2.0L, 4-cylinder, common-rail DI diesel engine 

commonly known as "Ford Puma", with the specifications as given in Table 4.2. 

Table 4.2: Geometric Specifications of the Ford Engine 

Displacement [Litre] 1988 cm3 

Bore [mm] 86 mm 

Stroke [mm] 86 mm 

CompressionRatio 18.2:1 

Combustion System Direct Injection 

Swirl Ratio 1.7 

Injection System 
DELPHI Common-rail 

(Rail pressure up to ~ 1600bar) 

The original engine configuration consisted of a single-stage variable geometry 

turbocharger (VGT) that provided the required levels of boost and EGR by 

adjusting the vane position and the opening of the EGR valve. The coupling of the 

boost pressure and the EGR in this manner limited the simultaneous availability of 

high boost pressure and high EGR required for investigating the alternate 

combustion regimes. Moreover, since the engine was coupled to an eddy current 

dynamometer, operating the engine at high cycle-to-cycle variation conditions 

which are inherent with the use of heavy EGR was not possible. 

The original Ford engine configuration was therefore modified by separating 

Cylinder #1 from the other three cylinders to run in a single-cylinder mode as 

shown in Figure 4.2. The 3 cylinders-to-1 cylinder configuration enabled the 

investigation of unstable combustion regimes with a non-motoring 

dynamometer [82]. The 3 cylinders were operated in the conventional HTC mode 

at low load for stable engine operation. The combustion in Cylinder #1 was then 

pushed into the LTC cycles by independently controlling the EGR, boost, exhaust 

back-pressure and the fuel injection scheduling. An alternate to this strategy could 
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be the use of a motoring dynamometer with the 3 cylinders operating under 

motoring conditions while the first cylinder is fired during the tests. 

The single-cylinder mode required the intake and the exhaust systems of 

Cylinder # 1 to be separated from the other three cylinders. A new intake manifold 

was constructed with the provision of running Cylinder #1 with either an 

independent intake system or using the same intake as the rest of the cylinders. The 

exhaust stream of Cylinder #1 was also separated from the rest of the cylinders 

because the exhaust gas from the single cylinder was required for measuring the 

emissions. Tests were carried out to ensure that there was no cylinder-to-cylinder 

cross-contamination during the emission measurements [82]. 

The engine coolant condition was monitored and controlled closely with an 

external conditioning system to minimize the discrepancies of the testing results. 

For all the tests described in this thesis, the coolant temperature was set at 80°C. 

To run the engine in the modified configuration, the original engine control unit 

(ECU) could not be used. Therefore, independent control of fuel injection 

scheduling and the common-rail fuel-injection pump was implemented using real

time (RT) controllers embedded with field programmable gate array (FPGA) 

devices. The details of the control hardware are given later in this chapter. 

4.2. Fuel System 

The fuel system for both the engines is schematically shown in Figure 4.3. The Yanmar 

engine could be supplied fuel either from the internal fuel tank, the external fuel system 

or from two glass bulbs having volumes of 37 ml and 57 ml. This provided flexibility in 

measuring and verifying the fuel consumption at different engine operating conditions. 

The fuel supply to the Ford engine consisted of a low-pressure supply circuit. Two 

volumetric fuel-flow detectors were used to provide an accurate measurement of the fuel 

consumption. Heat exchangers were installed in the fuel return lines to minimize the 

variations in the fuel supply temperature. 
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Figure 4.3: Fuel System Schematic for the Test Engines 
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4.3. Intake Boost and Exhaust Back-Pressure System 

To simulate the effect of turbocharging on the test engines, the intake air was supplied 

from an oil-free dry air compressor. An electro-pneumatic pressure regulator was 

installed in the intake system to maintain the desired intake boost pressure. To regulate 

the exhaust pressure, an exhaust back-pressure valve was installed in the exhaust stream. 

The position of the back-pressure valve was pneumatically controlled through another 

electro-pneumatic pressure regulator. 

An automatic closed-loop feedback control system was setup as a part of this research 

work to actively control the intake boost and exhaust back-pressure. The control system 

is schematically shown in Figure 4.4. 
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Exh Manifold 

BPV - Back-Pressure Valve 
EPR - Electro-pneumatic Pressure Regulator 

Exhaust Manifold 
Pressure Sensor 

Figure 4.4: Boost & Exhaust Back-Pressure Control Scheme 

The LabVIEW programming platform was utilized for the system implementation [84]. 

Both the boost and the back-pressure controllers are the proportional-gain type. An 

option of overriding the automatic control with manual control is also incorporated in the 

system. The exhaust back-pressure is primarily affected by the engine speed, engine load 

and the EGR valve opening while the intake pressure varies with the engine speed and 

the exhaust back-pressure. The closed-loop control system maintains the intake pressure 

and the exhaust back-pressure within prescribed limits around the desired setpoints. 
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4.4. Intake Flow Measurement 

The precise measurement of the engine intake flow rate is critical for the accurate 

analysis and estimation of the combustion characteristics such as the in-cylinder charge 

strength, the specific emissions and the EGR rate. The conventional mass air flow (MAF) 

sensors used in the production vehicles are based on the hot-wire anemometry principle. 

A major disadvantage of such meters is their inability to withstand high intake pressures 

and are therefore required to be installed upstream of the compressor (turbocharger). In 

case of using simulated boost using an air compressor such as in a research laboratory 

environment, conventional MAF meters cannot be used. 

For the current test setup, a Dresser ROOTS meter was installed in the intake system. The 

ROOTS meter is a positive displacement, rotary-type gas meter with a maximum 

operating pressure of 12 bar (175 psig). The meter was fitted with a 'counter with 

electronic transmitter' device (ICEX) that provided a non-compensated, high frequency 

pulse output. Each pulse of the ICEX indicated a volumetric flow rate of 

0.0002621931 m3 (0.2621931 L). The acquisition of the pulse output through the data-

acquisition hardware presented a problem since the ICEX pulse output was not 

Transistor-Transistor Logic (TTL) compatible and therefore, the pulses could not be 

acquired with a digital/counter input. 

This issue was resolved by the author as a part of the system setup and development. The 

ICEX pulse output signal was first acquired as an analog voltage signal at a very high 

sampling rate. The signal was analyzed online to extract the pulse data (width of each 

pulse, number of pulses) and a digital signal which was a TTL-compatible replica of the 

original ICEX pulse output was generated and output from a digital channel. A counter 

channel was then used to count the number of pulses in the generated digital signal within 

a small time step and the data was converted into the instantaneous volumetric flow rate. 

To convert the volumetric flow rate to the mass flow rate, the pressure and the 

temperature of the air stream were measured and using the ideal gas law, the mass flow 

rate of the fresh air intake was obtained. 
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4.5. Intake Heating System 

A 1500W inline electric heater, operated with 120VAC was installed in the intake system 

of the Ford engine as part of this research. The heater design incorporated a heating 

element which was electrically isolated from the flow stream. The heater was placed 

before the intake surge tank with a large thermal mass to maintain a stable intake charge 

temperature at different engine operating conditions. The heater was coupled with a 

proportional-integral-derivative (PID) controller that allowed the temperature to be 

closely monitored and controlled at the required temperature setpoint. 

Another electric heater was installed in the intake system of the Yanmar engine. The 

heater consisted of heat tapes made up of electrically insulated resistance wires, sewn 

between two layers of fibreglass cloth. The heater tape was wrapped around the stainless 

steel intake pipe to heat up the intake flow. This allowed injection of fuel through the 

intake system which would not have been possible if an inline heater was used. This 

heater was also coupled with a PID controller for monitoring and controlling the intake 

temperature. 

4.6. Exhaust Gas Recirculation Estimation and Control 

To precisely regulate the amount of EGR, the amount of EGR was regulated with a 

combination of the EGR valve opening and the exhaust backpressure was used, 

independent of the engine operating conditions. The control of the EGR valve was 

programmed using National Instruments' Controller Area Network (CAN) hardware and 

LabVIEW programming interface as a part of this research work. The CAN network 

utilizes a 'Bus' topology, meaning all the communication between the devices on the 

network is handled by only two wires that form the back bone of the communication link. 

The CAN Bus allows a multi-master architecture in which all the sensors (or nodes) 

connect to this central bus and send or receive messages using the bus. The CAN Bus 

incorporates non-destructive bitwise arbitration between the messages sent by the 

different nodes and allows data transfer speeds up to 1 Mbit/s (mega bits per second). 
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The amount of EGR can be estimated from Equation (4.1), where mEGR is the mass flow 

rate of the recycled gases, ma is the mass flow rate of the fresh air and mf, the mass 

flow rate of the fuel. 

EGR Fraction = ^ (4.1) 
ma+mf +rhEGR 

Empirically, the amount of EGR could be evaluated with sufficient accuracy by 

measuring the carbon dioxide (CO2) concentration in the intake and 

exhaust [3,4,9,30,83]. Alternatively, under steady operating conditions, the EGR rate 

could be evaluated from Equation (4.2) where MAFCuirent and MAFjnjtiai(w/o EGR) are the 

intake mass air flow rates with and without EGR application, respectively: 

____ ^ . , MAF Intake CO, 
EGR Fraction = 1 — » 2- (4.2) 

MAF-muaKw/oEGR) Exhaust C02 

In this work, the EGR was calculated based on the intake and exhaust CO2 

concentrations. This was done because the mass-based definition required the estimation 

of the total intake flow rate (EGR+ fresh air). This estimation is in turn dependent on the 

engine volumetric efficiency which is a function of the intake temperature, the intake 

pressure and the engine speed. During engine tests at different intake pressures and 

during the transient LTC tests with intake pressure and engine speed variation, the 

assumption of a constant volumetric efficiency does not hold true. Secondly, during the 

catalytic fuel reforming tests with EGR, the mass flow rate of EGR was not changed but 

the CO2 generated during the reforming process significantly increased the intake charge 

dilution. Since the mass-based definition of EGR did not account for this aspect, 

therefore, the CC^-based definition was used throughout the empirical work. 

4.7. Combustion Control System Setup 

The hardware setup to run the modified Ford engine in the 3 cylinders-to-1 cylinder 

configuration is shown in Figure 4.5. The RT-FPGA hardware provides a deterministic 

platform for fast data acquisition with a large computational capacity and reliable control 

at loop speeds up to 40 MHz. The RT-FPGA platform can perform thousands of complex 
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numerical operations during short time intervals, thereby providing immense capacity 

and flexibility for deterministic execution of control algorithms. 

ADAPTIVE FUELING CONTROL SYSTEM INTEGRATION 
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Figure 4.5: Combustion Control Platform [78] 

The precise fuel injection scheduling was implemented using a RT-FPGA system. The 

FPGA device generated the desired TTL compatible pulse patterns corresponding to the 

on-the-fly updated injection schedule. The timing of the commanded injection pulses was 

crank-angle resolved at 0.1 °CA intervals and the duration of the injection was time-

resolved in microseconds deterministically. This TTL output signal was amplified using 

the injector power drivers, which were programmed to drive the injectors with the 

suitable voltage and current profiles. The multi-pulse injection strategies were 

implemented for Cylinder No. 1 while for the Cylinder Nos. 2, 3 and 4, a single-shot 

injection strategy was implemented. The FPGA device was additionally used to perform 

cylinder pressure data-acquisition and to implement cylinder-pressure based control 

strategies. All the programming required for configuring the FPGA logic gates was done 

using the LabVIEW programming environment. The FPGA device was accommodated in 

a 'Peripheral Component Interconnect Extension for Instrumentation' (PXI) chassis that 
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also included the RT controller used for floating point calculations. Another RT-FPGA 

system was set-up for the fuel-rail pressure control. 

4.8. In-Cylinder Gas Sampling and Analysis System 

The in-cylinder gas sampling system consisted of the direct gas sampling valve (GSV), 

fast-response NOx and THC emission analyzers and a Fourier Transform Infrared 

Spectroscopy (FTIR) MultiGas Analyzer. Their operation is briefly described below. 

4.8.1. Direct Gas Sampling System 

The GSV-System manufactured by SMETEC GmbH consists of a gas sampling 

valve (GSV) and an electronic controller. The valve is electromagnetically actuated 

and does not require any hydraulic or pneumatic assistance for actuation. The gas 

tubes inside the GSV are heated to prevent the sampling gases from condensing. 

The system is capable of variable sampling lengths (< 1ms up to 3ms) and provides 

the option of setting the start of the sampling at any crank angle within the engine 

cycle (0 to 720°CA in 1°CA steps). The sampling frequency (the repetition of the 

valve stroke after a specified number of engine cycles) is user selectable and can be 

as low as 8. The controller requires a clock signal with 1°CA resolution (Index A) 

and a trigger signal (Index Z) once every 720°CA (one engine cycle) to 

synchronize the controller operation with the engine operation. The GSV needs to 

be supplied with pure Nitrogen (inert transportation gas) at a specified mass flow 

rate and the sampled gases + nitrogen mixture can then be fed to the analyzing 

systems. Mass flow meters are therefore required to be installed on both the inlet 

and the outlet of the GSV to accurately measure the mass flow rate of the sampled 

gases. The details of the GSV installation and system integration are provided in 

Chapter 5. 

4.8.2. Fast-Response Emission Analyzers 

A non-functional set of Cambustion HC and NOx fast-response emission analyzers 

was received from external sources. The fault tracing and rectification was 

undertaken as a part of this research work by the author and both analyzer systems 

were made operational. 

59 



CHAPTER 4: EXPERIMENTAL PREPARATION AND SYSTEM DEVELOPMENT 

4.8.2.1. Cambustion HFR500 Fast FID System 

The HFR500 is a Flame Ionisation Detector (FID) used for measuring total 

hydrocarbon (THC) concentration in a sample gas with a very fast response 

time. The system consists of two remote sampling heads which house the 

FID detector flame and are located close to the sample point. The sample 

heads operate at sub-atmospheric pressure; a vacuum pump induces the 

sample to flow through heated sample probes and into the detector with a 

typical T10-90% response time (time taken by the system output to reach 90% 

value of a step change at the source) of 1.3 milliseconds and a typical 

transit time (how long it takes a sample entering the sampling system to 

produce an electrical response) of 4-5 milliseconds. A standard PC is used 

to provide a user interface to the control unit [85]. 

4.8.2.2. Cambustion /N0x400 Fast CLD System 

The /N0x400 is designed to measure the NO concentrations with a typical 

T10-90% time response of around 4ms and a typical transit time of around 10 

milliseconds. The system uses the standard principle of chemiluminescence 

detection (CLD) in which a sample containing the NO to be measured is 

mixed with ozone, which results in a spontaneous light emission, the level 

of which is very nearly proportional to the NO concentration in the 

sample [86]. 

4.8.3. Fourier Transform Infrared Spectroscopy (FTIR) MultiGas Analyzer 

All compounds except for elemental diatomic gases such as N2, H2 and O2, have 

infrared spectra and most components present in the exhaust gas can be analysed 

by their characteristic infrared absorption. An infrared spectrum represents a 

fingerprint of a sample with absorption peaks that correspond to the frequencies of 

vibrations between the bonds of the atoms making up the compound. Because each 

compound is a unique combination of atoms, no two compounds produce the exact 

same infrared spectrum. Therefore, infrared spectroscopy can provide positive 
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identification (qualitative analysis) of different kind of compounds. In addition, the 

size of the peaks is a direct indication of the quantity of the compound. 

An MKS 2030 MultiGas FTIR Analyzer was used to analyze the species in the 

exhaust gas for the LTC combustion fuelled with DME. The MultiGas 2030 can 

perform analysis in gas streams that contain up to 30% water, and can 

simultaneously analyze and display more than 30 gases. 

4.9. Data Acquisition System 

A set of 14 personal computers (PCs) were used to acquire and record the data during the 

engine tests (Table 4.3). The programs was developed in-house using the LabVIEW 

programming environment to acquire, analyze and record the data on each computer. The 

PC designations marked with an asterisk (*) were developed by the author. 

Table 4.3: Overview of the CDEL Data Acquisition System 

PC Designation DAQ Model Details Applicable Engine 

TEMPERATURE* 
NI SCXI1102 96 Thermocouple 

Yanmar, Ford TEMPERATURE* 
NI PCI-6023E 16 AI, 8 DIO 

Yanmar, Ford 

EMISSION* NI PCI-6229 32 AI, 4 AO, 48 DIO Yanmar, Ford 
MAF/FUEL* NI PCI-6221 16 AI, 2 AO, 24 DIO Yanmar, Ford 
PRESSURE* NI PCI-6024E 16 AI, 2AO, 8 DIO Yanmar, Ford 

ONLINE HEAT 
RELEASE* 

NI6070E 16AI, 2 AO, 8 DIO Yanmar, Ford 

SIMULTANEOUS NI PCI-6122 
4 AI (Simultaneous), 
8 DIO Yanmar, Ford 

MAF BOSCH* NI PCI-6023E 16 AI, 8 DIO Yanmar, Ford 
BOOST* NI PCI-6024E 16 AI, 2AO, 8 DIO Yanmar, Ford 

SYNC MANAGER* - DataSocket Server Yanmar, Ford 
SUPPLEMENTAL 

FUELLING 
NI PCI-6602 

8 Counters/Timers, 
32 DIO 

Yanmar 

EGR* NI USB-8473 High Speed CAN Ford 

RAIL PRESSURE -

Host computer for 
Real-time Controller 

Ford 

FUEL INJECTION - Host computer for RT Ford 
COMBUSTION 

ANALYSIS* 
- Host computer for RT Ford 

NI: National Instruments DIO: Digital Input/Output 
AI: Analog Input AO: Analog Output 
* Developed as a part of this work 
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4.10. Cylinder Pressure Acquisition & Processing 

The cylinder pressure data was logged for 200 consecutive cycles at each operating 

condition. The number of consecutive cycles to be used for averaging was found by 

considering the variability inherent in the data and the accuracy required. To ensure the 

confidence level of 99.9% so that the sample mean was within 3% of the population 

mean, the sample average was based on 200 cycles [87]. 

The hardware used for acquiring the cylinder pressure is given in Table 4.4. The 

membrane of the pressure transducers was flush-mounted to minimize any resonance 

effect in the pressure data. 

Table 4.4: Instrumentation for Cylinder Pressure Acquisition 

Hardware Model Details 
Applicable 

Engine 

Piezo-electric 
Cylinder Pressure 

Transducer 

Kistler 6043A60 
Direct mounted, 
water cooled 

Yanmar Piezo-electric 
Cylinder Pressure 

Transducer AVLGU13P 
Glow-plug mounted, 
un-cooled 

Ford 

1 Kistler Charge 
Amplifier 

5010B Output: ±10 volts Yanmar, Ford 

Gurley Rotary 
Incremental Encoder 

9125S-03600H-
5L01 -C18SQ-06EN 

Index A: 3600 ticks 
Index Z: Aligned 
with physical TDC 

Yanmar, Ford 

For phasing the measured pressure data with the cylinder volume, the data acquisition 

was externally triggered at the TDC by the 'Index Z' generated by the encoder. The 

encoder 'Index A' with a crank angle resolution of 0.1°CA (3600 pulses per revolution) 

was used as an external clock to provide a Phase Locked Loop (PLL) signal that 

indicated when a certain amount of engine rotation has occurred [14]. The block diagram 

for the data-acquisition of the cylinder pressure is shown in Figure 4.6. The cylinder 

pressure data was processed both during the tests (on-line) and afterwards to provide 

information about the combustion process. 
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Engine 

Pressure 
Sensor 

Figure 4.6: System Layout for Cylinder Pressure Data Acquisition 

4.10.1. On-line Heat Release Analysis 

The LabVIEW programming environment was utilized for on-line processing of 

the acquired cylinder pressure data for each engine cycle as part of this research. 

The data acquisition and processing were programmed for parallel execution using 

a producer-consumer model to ensure cycle-by-cycle acquisition and analysis. The 

data was processed to calculate and display the following parameters during the 

on-line monitoring of the combustion process: 

• Heat Release Rate (J/°CA) & Crank Angle of 50% Heat Released (CA50- °CA) 

• Start of Combustion (SOC -°CA) & End of Combustion (EOC - °CA) 

• Crank Angle of the Peak of Heat Release Rate (° ATDC) 

• Rate of Change of Pressure (bar/°CA) & the Indicated Mean Effective Pressure 

(IMEP - bar) 

The last 200-cycle data (to ensure the confidence level of 99.9% so that the sample 

mean was within 3% of the population mean) was also continuously processed to 

report the following averaged values: 

• Maximum Cylinder Pressure (Pmax - bar) 

• Maximum Rate of Pressure Rise ((dp/d0)max - bar/°CA) 

Encoder 

X Index Z 

Index A 
(0.1°CA) 

Acquisition 
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• CA50 (°CA) & IMEP (bar) 

The heat-release rate at each crank angle was evaluated based on the First Law of 

Thermodynamics. A detailed description of the heat release analysis is given in 

Chapter 5. 

4.10.2. Off-line Post-Processing of Pressure Data 

The post-processing of the pressure data was also done using LabVIEW. A 

comprehensive code was written by the author to process the 200-cycle, 0.1°CA 

resolution pressure recorded for each data point as follows: 

• The pressure data was initially referenced to the intake pressure at the IVC. 

The pressure referencing was then checked and corrected by analyzing the 

polytropic index of the compression stroke against a fixed value of 1.37. 

• The IMEP was calculated for each cycle with 0.1 °CA resolution. 

• The cycle-to-cycle variation analysis was performed with either 0.1°CA or 

1°CA resolution. The cycle-by-cycle values of Pmax, crank angle of Pmax, 

(dp/d0)max, crank angle of (dp/d0)max and IMEP were calculated. The mean 

value, standard deviation and the coefficient of variance (COV) of these 

parameters were also evaluated. 

• The heat release analysis was performed using pressure data with 1°CA 

resolution for each cycle as well as for the 200-cycle averaged pressure data. 

The heat release rate at each crank angle as well as the normalized cumulative 

heat released trace were calculated and the SOC, EOC, CA50 were reported. 

The mean value, standard deviation and COV of CA50 were also calculated. 

• The 200-cycle averaged pressure data, the cycle-by-cycle evaluated parameters 

and the heat release analysis were saved as separate MS Excel files. 
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4.11. Automatic Data Synchronization & Processing System 

The sampling rate for the test data acquired and recorded on each computer was different 

and depended on the type of sensors and their response characteristics. The temperature 

and the emission data were acquired at a sampling frequency of 2 Hz. The cylinder 

pressure data was acquired at a variable sampling rate which depended on the engine 

speed. The mass flow rates, the intake and the exhaust pressures were sampled at 

frequencies of several kHz. 

The unification and management of the data from the individual computers presented a 

multifaceted problem. The problem was addressed as a part of this research work and a 

data synchronization program was developed in Lab VIEW. The salient features of the 

'Data Sync Manager' include: 

• Acquisition and synchronization of data from all computers 

• Absolute and relative time-stamping of the data 

• On-line processing of raw data including calculation of specific emissions, specific 

fuel consumption, efficiencies etc. 

• Graphical & tabulated plotting with threshold value detection 

• Summarized test report generation in Microsoft Word format 

• Synchronized data logging continuously at 2 Hz in a tab-delimited text file. 

• Synchronized data recording at discrete points in a tab-delimited text file. 

• Network communication status and fault indication 

An overview of the 'Data Sync Manager' is shown in Figure 4.7. The DataSocket 

communication protocol built into LabVIEW was utilized to establish a communication 

network over the local area network. The DataSocket technology allows publishing of 

data on the network and subscribing of the data from multiple computers. 
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Figure 4.7: Engine Test Data Synchronization and Processing 
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4.12. Emission Analyzers 

A dual-bank emission analyzer system, one for the exhaust emissions and the other for 

the intake gas concentrations was instrumented for the tests. Two sample conditioning 

units consisting of heated sampling lines, water-removal chiller units, heated pumps and 

filters condition the exhaust and the intake gases to provide clear and dry samples to the 

analyzer benches. One analyzer bank measured the concentrations of NOx, HC, CO, 

CO2, O2, in the exhaust while only the O2 and CO2 concentrations were monitored at the 

engine intake. The HC analyzer measured the total concentration of hydrocarbons within 

a gaseous sample on a CI basis. Table 4.5 summarizes the types and working principles 

of the emission analyzers used in the laboratory for the present research. The detailed 

specifications of the hardware are given in APPENDIX H. 

Table 4.5: Details of Dual-Bank Emission Analyzer System 

Species Working Principle Range 
Manufacturer & 

Model 

Intake 

C02 Non-Dispersive Infra-Red (NDIR) 0-2% 
0-10 % CAI 602P 

02 Paramagnetic 0-25 % 
CAI 602P 

Exhaust 

NOx Chemiluminescence 0-3000 ppm CAI 600 HCLD 

THC Heated Flame Ionization Detector 0-3000 ppm CAI 300M-HFID 

CO NDIR 
0-2000 ppm 
0-5000 ppm CAI 300 

02 Paramagnetic 0-25 % 
CAI 300 

C02 NDIR 
0-8% 
0-40% 

CAI 200 

Smoke / 
Dry Soot 

Variable Sampling Smoke Meter 
0-10 FSN 
(0-32) g/m3 AVL415S 

ppm: parts per million 
THC: total hydrocarbons 
FSN: filter smoke number 
CAI: California Analytical Instruments, Inc. 
AVL: AVL List GmbH 
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4.13. The Test Fuels 

The empirical work was primarily performed using a certified diesel fuel. 

Additionally, two gaseous fuels, propane and DME were also used during the in-

cylinder sampling experiments. 

4.13.1. Diesel 

A 2007 certification ultra low sulphur diesel (ULSD) was used during the engine 

experiment. This ensured consistency in the results by avoiding variations in the 

fuel properties that may occur when fuels from different sources are used. The 

properties of the ULSD fuel are given in Table 4.6. 

Table 4.6: Diesel Fuel Specifications 

Fuel Parameter Reported Value 

Type ULSD, Certified 

Specific Gravity [-] 0.846 

Viscosity 40°C [cSt] 2.5 

Distillation [°C] 

IBP 188 

Distillation [°C] 50% 256 Distillation [°C] 

100% 341 

Sulphur [ppm] 14 

LHV [MJ/kg] 43.1 

Carbon [wt %] 86.4 

Hydrogen [wt %] 13.6 

Hydrogen-to-Carbon Ratio [-] 1.88 

Cetane Number 46.5 

Stoichiometric Air/fuel Ratio 14.5 
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4.13.2. DME 

A separate fuel injection system was set up for the port injection of DME. The 

properties of the DME used during the tests are given in Table 4.7. DME has a 

hydrogen-to-carbon ratio of 3 and its energy contents are approximately 35% lower 

than those for the diesel fuel. The high oxygen contents of DME result in a 

stoichiometric air/fuel ratio of -9:1, much lower than 14.6, the typical 

stoichiometric air/fuel ratio of diesel. However, as a diesel fuel-substitute, the 

DME fuelling rate has to be nearly 1.5 times that for the diesel fuel under the same 

engine operating conditions. Therefore, the actual air requirement by mass for 1 kg 

of DME is-13.4 kg. 

Table 4.7: Physical and Chemical Properties of DME 

Fuel Parameter Reported Value 

Chemical Formula H3C-O-CH3 1 

Molecular Weight [kg/kmol] 46.07 1 

Carbon [wt %] 52.2 

Hydrogen [wt %] 13 

Fuel Oxygen [wt %] 34.8 

Hydrogen-to-Carbon Ratio [-] 3 
1 
Boiling Temperature [°C] -24.9 

Vapour Pressure @ 20°C [bar] 5.1 

Ignition Temperature [°C] 235 

LHV [MJ/kg] 28.4 

Stoichiometric Air/fuel Ratio [kg/kg] 8.95 

Cetane Number [-] 55-60 

Sulphur [ppm] <1 
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4.13.3. Propane 

To study the low temperature NOx LTC mechanism, propane fuel was used as the 

source for the hydrocarbon dosing in the intake stream. Propane has a very low 

cetane number and has a higher auto-ignition temperature (~540°C) than methane 

(~450°C). Since the tests were planned to be done without combustion, the use of 

propane was suitable for this purpose. The composition of the propane was 

analyzed with the FTIR, and is given in Table 4.8 along with some important 

properties of propane. 

Table 4.8: Composition and Properties of Propane 

Fuel Parameter Value 

Composition [Vol %] 

Propane (C3H8) 96.58 

Methane (CH4) 0.3 

Ethane (C2H6) 2.7 

Formaldehyde 0.15 

HNCO 0.27 

Physical & Chemical Properties 

Molecular Weight [kg/kmol] 44.1 

Carbon [wt %] 81.8 

Hydrogen [wt %] 18.2 

Hydrogen-to-Carbon Ratio [-] 2.67 

Vapour Pressure @ 20°C [bar] 8.7 

Ignition Temperature [°C] 540 

LHV [MJ/kg] 46.2 

Stoichiometric Air/fuel Ratio [kg/kg] 15.6 

Cetane Number [-] 5-10 
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CHAPTER V 

5. LTC DIAGNOSTICS 

This chapter presents the experimental setup, the hardware modifications and the results 

for the direct in-cyUnder sampling investigations on the Yanmar engine. The in-cylinder 

sampling system was used to investigate the LTC-NOx mechanism under engine 

motoring conditions and to study the NOx generation with DME-fuelled combustion. The 

later part of this chapter includes a detailed analysis of the cylinder pressure for 

producing a reliable feedback for LTC control. 

5.1. Challenges for In-cylinder Gas Sampling Implementation 

The task of direct in-cylinder gas sampling involves numerous challenges that must be 

realized and overcome for a successful implementation. The Valve is exposed to very 

harsh conditions that exist in the combustion chamber. Therefore, the valve must have a 

fast actuation, remain open for a short duration (1-2 ms) and be able to close quickly. 

This is critical to ensure that the combustion process is not adversely affected so as to 

change its characteristics. This results in extremely high mechanical and thermal stresses 

on the valve. 

The installation requires modifications to the cylinder head to gain access to the 

combustion chamber. The mounting of the valve is another critical issue that must be 

properly addressed. The combustion chamber sealing must be ensured to prevent damage 

to both the valve and the engine. For the GSV to function properly, the TDC position 

must be supplied to the controller as well as the position of the crank shaft (in terms of 

crank angle degrees). 

The operation of the GSV requires the integration of a number of systems. The 

transportation mechanism for the sampled gases involves the use of an inert gas like 

nitrogen to be supplied. The flow into and out of the GSV must be accurately determined 

since the measurement of the species concentration would require an accurate estimate of 

the dilution factor. Therefore, mass flow meters, pressure and temperature sensors need 
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to be integrated into the system. Fast response emission analyzers are also required so 

that the sample composition is as close as possible to the cylinder-charge composition. 

5.2. Experimental Setup & Verification 

The setting up of the GSV system required extensive hardware modifications and 

integration of the various components. A brief description of each aspect is provided 

below. 

5.2.1. Engine Modifications & Installation 

A new cylinder head of the Yanmar engine was modified to provide direct access 

to the combustion chamber. The engine modifications were validated through 

accurate three-dimensional parametric drawings shown in Figure 5.1 and the actual 

machining work was subsequently done. An adapter sleeve was fabricated to 

mount the GSV. The sleeve provides sealing between the combustion chamber and 

the coolant jackets, and also between the coolant jackets and the outside. The valve 

itself is inserted with a Teflon ring between the sleeve and the valve. The Teflon 

seal serves three purposes: first, it prevents leakage of the combustion gases 

through the central passage of the sleeve; second, it provides shock protection to 

the GSV; and third, it allows the valve depth (protrusion) inside the combustion 

chamber to be adjusted by changing the thickness of the Teflon ring. The GSV is 

held in place using a stainless steel (SS) plate and SS rods which also press the ring 

surface of the valve against the sleeve. An o-ring groove was machined into the 

cylinder head to provide a leak-tight seal between the adapter sleeve and the 

cooling water jackets. A hole in the cylinder head was also machined to 

accommodate a cylinder pressure transducer. 

The actual installation on the cylinder head and the combustion chamber surface of 

the head are shown in Figure 5.2. It can be seen that the sleeve is nearly flush 

mounted. 
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Figure 5.1: Cross-sectional View of the GSV Installation - Design Validation 
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Figure 5.2: Actual Installation & Flush Mounting of the GSV Adapter Sleeve 
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5.2.2. GSV Encoder Signals 

The GSV controller requires a TTL signal for every 1°CA of engine rotation 

(Index A) and one trigger pulse (Index Z) per combustion cycle (720°CA). The 

encoder installed on the Yanmar engine had a resolution of 0.1°CA and provided a 

trigger pulse (aligned with the TDC) every revolution (360°CA) of the crankshaft. 

To resolve this issue, the encoder Index Z (2 per combustion cycle) and Index A 

(7200 per combustion cycle) were acquired through an RT-FPGA system and using 

the LabVIEW programming interface, a modified Index Z (Index Z*) was 

generated once every combustion cycle. The Index A was also mathematically 

treated so that one modified Index A (Index A*) would be generated after every 

10th Index A of the encoder (720 pulses per combustion cycle). The program also 

identified the compression TDC based on the cylinder pressure to provide an 

absolute reference for the GSV System. The original and the modified pulse trains 

are shown in Figure 5.3. 
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Figure 5.3: Conversion of Encoder Signal to Conform to GSV Requirements 
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5.23. Fast HC & NOx Analyzer Setup 

The fast HC and the fast NOx analyzers were setup to provide sampling capability 

in both the intake system (Figure 5.4) as well as the gases being sampled out 

through the GSV. 

Figure 5.4: Fast Response HC/NOx Sampling Probes in the Intake System 

5.3. System Integration 

A schematic representation of the in-cylinder sampling system setup is shown in Figure 

5.5. Dry nitrogen gas was used as the transportation medium for the sampled gases. Two 

mass flow meters were installed to measure the flow into and out of the GSV, the 

difference being the sampled gas flow rate. An accurate measurement of the flows was 

essential since the dilution factor was required to be determined to ascertain the actual 

concentration of the species in the sample. The pressure and temperature were therefore 

closely monitored to ensure accuracy in the calculations. A LabVIEW program that 

acquired and processed the data from the GSV, the fast response analyzers as well as the 

flow meters, was written to synchronize and record the data. 
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Figure 5.5: Schematic of the In-cylinder Sampling System Setup 
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5.3.1. System Calibration 

The quantity of the in-cylinder gases sampled at every opening of the valve 

depends on the length of the sampling time and the in-cylinder conditions (pressure 

and temperature). The quantity of the sampled gases should be adjusted so as not to 

significantly affect the combustion process. Therefore, the determination of the 

sampling time duration is critical for accurate in-cylinder measurements. The 

results of the sampling time calibration are shown in Figure 5.6. The valve stroke 

was adjusted by turning a knob on the GSV. The GSV controller translated the 

stroke length into a pulse signal, the width of the pulse being the sampling 

duration. 
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Figure 5.6: GSV Sampling Time Calibration 

5.4. LTC NOx Mechanism 

The ultra low levels of NOx achieved during LTC cycles are commonly attributed to the 

lowered combustion temperature and the high dilution due to the heavy use of EGR. 
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However, during LTC experiments conducted at the University of Windsor, it was 

observed that reduction in NOx would mostly coincide with the increase in the HC 

emissions. Moreover, a higher proportion of NO2 relative to the NO concentration was 

seen in the LTC exhaust. To confirm if the LTC NOx mechanism was affected by the 

high levels of HC, dosing tests were carried out by introducing a known concentration of 

NO and propane in the intake, and observing the interaction of NO-C3H8, if any with the 

in-cylinder sampling system. During the tests, the engine was motored at a fixed speed. 

5.4.1. Experimental Results 

The initial testing to check the system integration was done by introducing 

-lOOppm of NO in the engine intake system. The start of sampling (SOS) was 

chosen as 380°CA and the sample repetition frequency (SRF) was 10 cycles (a 

sample was drawn after every 10 engine cycles). The sampling duration (SD) was 

3ms. The results are shown in Figure 5.7. The steady-state value of NO calculated 

from the sampling gas matched the dosing NO concentration. This test confirmed 

the correctness of the dilution factor calculation and the system integrity. 
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Figure 5.7: System Integration Test 
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The test was repeated by introducing propane gas in the intake along with NO. The 

GSV was operated with SOS at 390°CA, a SRF of 10 cycles and a SD of 3 ms. The 

results are shown in Figure 5.8. The introduction of ~6000ppmcl of propane 

resulted in a reduction of about 80% NO concentration in the sampled gas. The test 

was repeated with a reduced propane concentration of -2800 ppm01 and a similar 

reduction in the NO concentration of the sampled gas was observed. 
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Figure 5.8: NO-C3H8 Interaction with SOS @ 390°CA 

To confirm the above mentioned observations, the steady-state CO concentration in 

the engine exhaust has been plotted in Figure 5.9. The departure of the CO from 

zero to about 16 ppm indicated the occurrence of some reaction of the propane gas. 

The concentration of NO in Figure 5.10 also agreed with the levels observed with 

the in-cylinder sampling. However, the presence of 42 ppm of NO2 in the exhaust 

suggested that the NO was being converted to NO2 in the presence of propane. The 

overall NOx level of 58 ppm also indicated that about 40% of the NO was being 

destroyed or converted into some other compound. 
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Figure 5.9: Steady-state Exhaust Emissions for the Results of Figure 5.8 
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Figure 5.10: Break Down of NOx in terms of NO & NO2 
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A detailed test was then conducted by performing a crank angle sweep from 300 to 

390°CA at different HC dosing concentrations for a fixed NO dosing of ~100 ppm 

and the results are shown in Figure 5.11. It can be seen that there is no change in 

the NO concentration with SOS@300°CA, irrespective of the HC concentration. 

The mean cylinder temperature calculated from the cylinder pressure for the 

Yanmar engine came to about 490K which is much lower than 750K, the auto-

ignition temperature of propane. However, the change in the NO concentration was 

observed after SOS@330°CA, where the mean cylinder temperature was estimated 

as -700K. A rapid increase in the NO destruction was then observed for higher HC 

concentrations. A steady-state value of NO was approached with the 

SOS@360°CA. 
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Figure 5.11: Crank Angle Resolved NO Concentration in the Combustion Chamber 
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The corresponding steady-state exhaust emissions are shown in Figure 5.12. The 

effect of HC concentration on the NO and NO2 concentrations was significant up to 

1000-1500 ppmcl. Above this, the NO and the NO2 concentrations did not change. 
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About 50 ppm of the NO was converted into NO2 while the NOx reading indicated 

the destruction of approximately 40 ppm of NO. 
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Figure 5.12: Steady State Exhaust Emissions for the Results of Figure 5.11 

The effect of the HC concentration on ANO at different crank angles is shown in 

Figure 5.13. From 335 to 345°CA, a higher HC concentration resulted in a higher 

change in the NO concentration but the effect was reduced for HC concentrations 

above 1500 ppmcl. However, at 360°CA, the ANO values converged for all the HC 

concentration, suggesting that the higher compression temperature prevailing 

around TDC accelerated the reaction. 

Having observed that the HC concentration effect was not significant when the HC 

to NO ratio was roughly greater than 15, another test was run with lower 

concentrations of HC and the results are shown in Figure 5.14. A 1.2 ms sampling 

duration which translates into a 10°CA window at 1400 RPM was used. With 

1160ppmcl of propane, over 60% reduction in the NO concentration was seen. 
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However, reducing the propane concentration by half reduced the NO reduction to 

slightly above 30%. The NO reduction was negligible with 300 ppmCI of propane. 

All of the results discussed above suggested the existence of a critical ratio 

between the HC and NO concentrations. With a HC/NO ratio lower than a certain 

threshold value, the NO conversion was strongly inhibited. To confirm this 

observation, the NO concentration was varied from 50-300 ppm at three different 

HC values. The results are shown in Figure 5.15. With 100 ppmcl of HC, a sharp 

fall in the ANO was observed as the dosing NO concentration increased above 80-

100 ppm. A similar trend was seen for the HC concentration of 2000 ppmcl where 

the ANO value reduced rapidly for NO concentrations above 200 ppm. 
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Figure 5.15: Investigating the Critical HC to NO Ratio 

Based on these results, a critical HC/NO ratio of 10-15:1 was found to exist that 

resulted in a significant conversion and/or destruction of NO. A lower ratio 

considerably decreased the NO conversion while a high ratio indicated an 

insignificant or a small increase in the conversion. 
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5.4.2. Chemical Kinetics Simulations 

Chemical kinetics simulations were run in CHEMKIN Software to provide an 

understanding of the underlying mechanisms affecting the NO to NO2 conversion 

in the presence of propane. The chemical kinetics mechanism used for this study 

was obtained from the Lawrence Livermore National Laboratory, USA. The 

mechanism pertains to the effect of hydrocarbons (Ci to C3) on the NO-NO2 

conversion. It consists of 126 species and 639 reversible reactions. The details of 

the mechanism validation can be found in [88]. 

The simulation was setup using the 0-D internal combustion engine model in 

CHEMKIN that includes only the compression and the expansion processes. The 

model simulates the time evolution of a homogeneous reacting gas mixture under 

auto-ignition conditions. The Yanmar geometry was used in the simulation setup. 

The simulation was first calibrated to match the motoring pressure trace of the 

Yanmar engine as shown in Figure 5.16. The input parameters obtained from this 

calibration process were then used for the rest of the simulation work. 
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The composition of the propane gas determined with the FTIR (Table 4.8) was 

used as the input and the simulation was run with 100 ppm of NO and 1000 ppm of 

C3H8. The results shown in Figure 5.17 indicated a reduction in the NO 

concentration and an increase in the NO2 concentration. Moreover, about 15 ppm 

of CO was also produced similar to the empirical results (Figure 5.9). The 

reduction in the propane concentration indicated that some of the propane was 

consumed during the NO to NO2 conversion process. 
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Figure 5.17: Simulation Results showing the NO to NO2 Conversion with Propane 

The simulations were rerun at different HC concentrations and the results are 

shown in Figure 5.18. With 250 ppm of HC in the cylinder charge, only 5 ppm of 

NO was converted into NO2. However, as the HC concentration was progressively 

increased to 1000 ppm, the NO to NO2 conversion increased significantly. 

Moreover, it can be observed that all the NO was not converted into NO2. For 

example, with 1000 ppm of HC, only 3 ppm of NO remained at the end of the 

simulation. Out of the 97 ppm of NO that under went some chemical reaction, only 
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75 ppm were converted to NO2 and therefore, 22 ppm of NO remained 

unaccounted for. 

The simulation results indicated the initiation of the conversion process after 

350°CA. This is slightly later than the empirical results which showed the process 

beginning around 340 °CA. For the empirical results (Figure 5.14), an important 

point to remember is that the SOS represented the crank angle for the start of the 

sampling process and the valve opening duration was 1.2 ms (10°CA at 

1400 RPM). Therefore, the value shown at 340°CA actually represented the 

average concentration over a crank angle window from 340°CA to 350°CA. 
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Figure 5.18: Simulated NO-C3H8 Interaction (100 ppm NO) 

Another aspect of interest was the effect of the HC concentration on the change in 

the NO concentration at different crank angles. The simulations were run from 500 

ppm to 4000 ppm of HC and the ANO profiles at different crank angles were 

plotted in Figure 5.19. The resulted showed that the conversion process reached 

steady values by 370°CA. Moreover, for HC concentration above 1000 ppm, the 
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conversion efficiency was largely insensitive to the HC concentration. These 

results were in general agreement with the empirical results of Figure 5.11. 
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Figure 5.19: Simulated Results of Crank Angle Resolved NO Concentration 

An analysis of the product concentrations from the simulations indicated that the 

'disappeared' NO (as observed in both the empirical and the simulation results) 

was converted mostly into nitromethane (CH3NO2) and to a much lesser extent into 

nitrous acid (HONO) as shown in Figure 5.20. Therefore, the NO2 formed as a 

result of the NO oxidation further reacted to form these two chemical compounds. 

The general reaction for the combustion of nitromethane (commonly called 'Nitro' 

in the racing industry) is given by: 

With Oxygen: 4CH3N02 + 302 -• 4C02 + 6H20 + 2N2 

Without Oxygen: 4CH,N02 -> 4CO + 4H20+2H2 + 2N2 
(4'3) 

Therefore, the conversion of the NO into nitromethane can be assumed as the 

destruction of NO. 
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Figure 5.20: Accounting for the Disappeared NO (Simulated Results) 

The oxidation of NO to NO2 has been reported to occur predominantly through the 

following reaction [88] in the presence of C2 to C3 hydrocarbons from 600 to 

1100 K: 

NO + H02 ̂  N02 + OH (4.4) 

In the referred study [88], the effectiveness of the hydrocarbon type towards NO to 

NO2 conversion was suggested to depend on the hydrocarbon's propensity to 

produce reactive radicals like OH to sustain fuel oxidation while simultaneously 

producing the hydroperoxyl (HO2) radicals for subsequent NO to NO2 conversion. 

Propane and ethylene were shown to effectively oxidize NO to NO2 while the use 

of methane or ethane resulted in insignificant conversion rates. This was primarily 

attributed to the slow nature of methane oxidation that produced a limited amount 

of HO2 radicals and in case of ethane, to the destruction of the reactive radicals like 

ethyl (C2H5) that promote the production of the HO2 radical. 
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It is pertinent to mention here that methane was initially used as a dosing gas in 

this work but no conversion of NO was observed for the motored engine operation. 

Thereafter, it was decided to use propane as the dosing gas. 

To observe if the existence of a critical ratio between the HC and NO 

concentrations was also predicted with the simulations, the NO concentration was 

varied from 100 to 400 ppm at three different HC levels as shown in Figure 5.21. 

The results for 1000 ppm of HC indicated a trend similar to that obtained during 

the experiments. An increased concentration of HC resulted in a moderate increase 

in the conversion of NO to NO2, for NO levels above 100 ppm. However, the 

conversion was lower than that observed during the experimental investigations 

(Figure 5.15). It was noted that the chemical kinetic mechanism used in this study 

was produced with a HC/NO mixture containing 20 ppm of NO. Therefore, it was 

suspected that the application of the mechanism may have been limited to low 

concentrations of NO (up to 100 ppm). 
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During engine operation in the LTC regime, the NOx levels commonly observed 

are very low (as low as a few ppm) and therefore, the trends obtained with the 

experimental results and the simulation studies validate the existence of a critical 

HC to NO ratio for achieving ultra low emissions of NOx. 

5.5. LTC Combustion Analysis 

The second portion of the in-cylinder sampling study included the investigation of 

temporal evolution of NOx under actual engine operating conditions. The exhaust 

composition was also analyzed to characterize the HC speciation under LTC cycles. 

These tests were performed with Dimethyl Ether (DME) as the surrogate fuel for diesel. 

DME has a high cetane number, similar to diesel fuels but has high oxygen contents 

(32-34%). This results in ultra low levels of soot that enable the gas sampling valve to 

operate without getting clogged for extended periods. Moreover, DME vaporizes easily at 

room temperature and is therefore, suitable for port injection. 

A typical heat release rate for the DME port injection tests is shown in Figure 5.22. The 

DME combustion is characterized by two distinct heat release phases: a low temperature 

reaction (LTR) regime which signifies the cool-flame reactions and a high temperature 

reaction (HTR) regime which comprises of the main combustion event. Because of the 

high compression ratio of the Yanmar engine (17.8:1) and the high cetane number of 

DME, the phasing of the LTR regime was very early in the compression stroke. The HTR 

regime also occurred at ~10°CA BTDC. Increasing the quantity of the DME fuel resulted 

in engine knock. This placed a severe limit on the level of load that could be achieved. To 

investigate the effect of varying the air-fuel ratio, the intake of the engine was therefore 

throttled to vary the flow rate and in turn, modulate the fuel strength of the mixture. 

The test matrix for the DME port injection experiments is given in Table 5.1. The first 

five tests were run without EGR at various throttled intake conditions. For the EGR tests, 

the engine was throttled to maintain an intake flowrate of 8.7 g/s. Three different levels 

of EGR (33, 55 & 74%) were then applied and the effects on the combustion and the in-

cylinder NO history were investigated. 
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Figure 5.22: Typical Heat Release Rate for DME Combustion (CR = 17.8:1) 

Table 5.1: DME Port Injection Test Matrix (CR-17.8:1) 

MAF [g/s] DME [g/s] EGR [g/s] A/F Ratio [-] 
Fresh Air 
Lambda 

8.2 0.149 0 55:1 6.2 

8.6 0.141 0 60:1 6.8 

J 8.94 0.138 0 65:1 7.3 

1 9.35 0.137 0 68:1 7.7 

1 10.6 0.164 0 62:1 7.2 

5.86 0.128 2.84 46:1 5.1 

3.89 0.128 4.81 30:1 3.4 

2.29 0.128 6.41 18:1 2 

The in-cylinder NOx evolution for the test with Xfresh of 6.8 is shown in Figure 5.23. The 

in-cylinder gases were sampled with a sampling duration of 1.2 ms (10°CA) during these 

tests. The NOx values have been plotted at the centre point of the sampling window 

93 



CHAPTER 5: LTC DIAGNOSTICS 

(335°CA in case of SOS @ 330°CA) so that the trends can be related with the heat 

release rates. It was observed that around 20 ppm of NO formed during the first part of 

the heat release, i.e. the LTR regime. However, during the main combustion or the HTR 

regime, the NO reduced progressively. Looking at the engine-out emissions, it was seen 

that HC emission was nearly 1100 ppm which resulted in a HC to NO ratio of -50. 

Although NOx was generated during the combustion process, the presence of the unburnt 

hydrocarbons in sufficient amount presumably reduced the engine out NOx to 2 ppm. 

A similar trend was observed with the engine operating at Xfresh of 7.7 as shown in Figure 

5.24. With a leaner cylinder charge, the peak NO concentration during the combustion 

was slightly lower which may be attributed to the lowered combustion temperature 

during the burning of the homogeneous cylinder charge. 

DME Port Injection Experiments 
Engine Speed: 1400 RPM 

MAF: 8.6 g/s 
rirw 0.141 g/s 

IMEP: 1.1 bar 
Afresh-

EGR: 0% 

Engine-out 
NOx: 2 ppm 
CO: 11547 ppm 
THCC1:1096 ppm 
Smoke: 0.007 FSN 

330 
^ i 

350 360 370 
Crank Angle [°CA] 

Figure 5.23: In-cylinder NO Evolution (^fresh= 6.8, CR = 17.8:1) 
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Figure 5.24: In-cylinder NO Evolution (Xfresh= 7.7, CR = 17.8:1) 

The cylinder pressure and the heat release rates for the two cases presented above are 

shown in Figure 5.25. Since the engine intake was throttled to modify the strength of the 

cylinder charge, therefore, the pressure for the case with Afresh of 7.7 (less throttling) is 

higher than that for the case with Afresh of 6.8 (more throttling). However, two differences 

were seen between the heat release rates. First, the heat release rate of the main 

combustion event was lower for the leaner combustion (X,fresh= 7.7) and second, the 

phasing of the main combustion was also slightly retarded towards TDC as compared to 

the heat release rate with A^h of 6.8. 

A comparison of the in-cylinder NO concentration and the cumulative heat release traces 

is shown in Figure 5.26. It was observed that although the LTR accounted for only -20% 

of the total heat release, the NO concentration peaked during this period. The reduction in 

the NO thereafter indicated that the LTR phase also generated the lower chain 

hydrocarbons (Ci~C3) that are essential for the oxidation of NO to NO2. The low engine-

out NOx further indicated the conversion of NO2 into other species as shown earlier. 
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Figure 5.25: Cylinder Pressure & Heat Release Comparison (CR = 17.8:1) 
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Figure 5.26: In-cylinder NOx Evolution Comparison (CR = 17.8:1) 
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The summary of the crank angle-resolved in-cylinder NO concentration is shown in 

Figure 5.27. Although the A,ftesh was varied from 6.8 to 7.7, the NO was generated within 

the LTR regime for all the cases. The destruction of the NO was also observed to be 

similar for all the cases. 

DME Port Injection Experiments 
Engine Speed: 1400 RPM 

Sampling Duration: 1.2 ms (10°CA) 

Q. 

330 320 340 350 360 370 380 390 
'Start of Sampling' Crank Angle [°CA] 

Figure 5.27: Summary of Crank Angle-resolved In-cylinder NO (CR = 17.8:1) 

The summary of the tests without EGR is given in Table 5.2. The indicated thermal 

efficiency was quite low which can be attributed to the low engine loads, and the high 

HC and CO emissions. The engine out NOx was 1 to 2 ppm and there was virtually no 

smoke in the exhaust stream (FSN<0.008). 

Tests were then carried out with EGR to improve the phasing of the combustion. The 

cylinder pressure traces and the heat release rates for the tests with EGR are shown in 

Figure 5.28. As the EGR was increased, the off-phasing of the combustion from the TDC 

was reduced. However, the improvement in the phasing of the LTR was less than that 

observed for the main combustion event. Furthermore, the rate of heat release was 

considerably lower for the main combustion event as the main combustion can benefit 
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from the virtual EGR produced during the LTR regime. It was noted that the peak of the 

LTR portion was also suppressed with higher levels of EGR. Another consequence of the 

EGR was a reduction in the peak cylinder pressure. 

Table 5.2: Performance Summary for DME Experiments (No EGR; CR = 17.8:1) 

MAF [g/s] 
Fresh Air 
Lambda 

IMEP 
[bar] 

Indicated 
r|th 
[%] 

Engine-out Emissions 
MAF [g/s] 

Fresh Air 
Lambda 

IMEP 
[bar] 

Indicated 
r|th 
[%] 

NOx 
[ppm] 

CO 
[ppm] 

THCcl 

[ppm] 

1  8 2  6.2 1.55 29.9 2 8308 1106 

8.6 6.8 1.1 26.7 2 11547 1096 

8.94 7.3 0.97 24.3 2 11302 1080 

9.35 7.7 0.93 23.9 1 10907 1056 

10.4 7.2 0.87 24.4 2 9840 883 

60 i DME Port Injection Experiments 
Engine Speed: 1400 RPM 
MAF (w/o EGR): 8.7 g/s 
mfuei: 0.128 g/s 
IMEP: 0.86 - 0.91 bar 

5.1 (EGR: 33%) 
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Figure 5.28: Cylinder Pressure & Heat Release Rates with EGR (CR = 17.8:1) 
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The in-cylinder NO concentrations and the cumulative heat release traces are shown in 

Figure 5.29. The peak NO concentration was observed to decrease with increasing EGR 

as a result of the lowered combustion temperatures and the high dilution of the intake 

charge. Moreover, with 75% EGR, the phasing of the NO curve was also retarded in 

conjunction with the combustion phasing. The cumulative heat release traces for the three 

EGR levels indicate that the heat release during the LTR was reduced by half, from about 

20% to 10% of the total fraction. 

20 DME Port Injection Experiments 
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Figure 5.29: Crank Angle-resolved NO Concentration with EGR (CR =17.8:1) 

The summary of the tests with EGR is given in Table 5.3. It was seen that a slight 

increase in the engine load was observed up to 55% EGR that could be attributed to the 

improvement in the combustion phasing. However, operation with 74% EGR resulted in 

a significant deterioration in the fuel efficiency caused by the very high engine-out HC 

and CO emissions. The NOx and smoke emissions were nearly zero during these tests. 
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Table 5.3: Performance Summary for DME Experiments with EGR (CR = 17.8:1) 

MAF 
[g/s] 

Fresh 
Air 

Lambda 

EGR 
[g/s] 

EGR 
[%] 

IMEP 
[bar] 

Indicated 
rith 
[%] 

Engine-out Emissions MAF 
[g/s] 

Fresh 
Air 

Lambda 

EGR 
[g/s] 

EGR 
[%] 

IMEP 
[bar] 

Indicated 
rith 
[%] 

NOx 
[ppm] 

CO 
[ppm] 

THCcl 

[ppml 

5.86 5.1 2.84 33 0.89 24.7 1 13756 1365 

3.89 3.4 4.81 55 0.91 25.2 1 16874 1936 

2.29 2 6.41 74 0.59 16.3 1 22710 >3194* 

5.5.1. Exhaust HC Speciation 

The engine-out exhaust was analyzed with the FTIR in an effort to identify the 

major species comprising the HC emission and to understand the effect of the 

lowered combustion temperature (with the application of EGR) on the HC 

composition from the homogeneous DME combustion. A simplified overview of 

the DME combustion processes indicating the important species and the dominant 

reaction paths is presented in Figure 5.30 [89]. 

The by-products of the combustion process can be broadly grouped into four major 

categories as follows: 

• Hydrocarbons with no O: These include methane (CH4), ethane (C2H6), 

ethylene (C2H4) and acetylene (C2H2) 

• One O-containing species: These include alcohols, ether, epoxides such as 

methanol (CH3OH), iso-butanol (C5H11OH) and ethylene oxide (C2H4O). 

• Carbonyl Group: CO-containing species such as aldehydes, acetates, ketones. 

These are the precursors or the intermediate products in the generation of CO 

and CO2, and include formaldehyde (H2CO), benzaldehyde (C7H7O), iso-butyl 

acetate (C4H9-COO-C2H5), ethyl acetate (C2H5COOC2H5), acetone 

(CH3COCH3) and methyl iso-butyl ketone (C4H9COCH3). 

• Aromatics: These are hydrocarbons containing a benzene ring and include 

benzaldehyde (C7H7O), o-xylene (CgHio) and ethyl-benzene (CgHio). 
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Figure 5.30: Overview of DME Combustion Processes 

The data from the FTIR was analyzed and the species were grouped into the above 

defined four categories. The results are presented in Figure 5.31. It was observed that the 

concentration of the hydrocarbon group with no oxygen was very small while the 

carbonyl group displayed the highest concentration. For the tests without EGR, the effect 

of the air/fuel ratio variation (done by throttling the intake) was minor for all the four 

groups. Except the HC group, the concentrations increased slightly as the fuel strength of 

the cylinder charge was progressively increased. The application of EGR was found to 

increase the emissions for all the four groups compared to the values without EGR. 

A comparison of the relative fraction of each group in the exhaust HC for the test 

conditions is shown in Figure 5.32. It was observed that with EGR, the relative fraction 

of the O-containing group increased while that of the carbonyl groups decreased in the 

exhaust HC. The aromatics and the HC group did not show any appreciable change. 
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Figure 5.32: Relative Fraction of each Group in Exhaust HC (CR = 17.8:1) 
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5.6. Engine Compression Ratio Modification 

A review of the literature pertaining to DME combustion indicated that the compression 

ratio of 17.8 was too high for port injection DME. The reported compression ratio is 

between 9 to 12:1 for port injection homogeneous combustion [90,91]. However, at such 

low compression ratios, the conventional diesel operation was not possible. Therefore, it 

was decided to reduce the compression ratio of the Yanmar engine such that the engine 

could be operated with both the conventional diesel and DME. 

The existing piston bowl geometry and the combustion chamber cross-section are shown 

in Figure 5.33. The piston had a Mexican-hat shaped bowl. To reduce the compression 

ratio, a nominal compression ratio of 13:1 was chosen as a compromise between the 

diesel DI and DME port-injection performance. To reduce the propensity for HC 

emissions with a gaseous fuel, the crevices and the boundary layer need to be reduced. 

Therefore, a shallow piston bowl was designed as shown in Figure 5.34. The actual 

compression ratio after machining the piston was estimated to be 13.1:1. 
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Parameter Value 

Compression Ratio 17.8 

Swept Volume 857 cm3 

Combustion Chamber Volume 51.01 cm3 

Piston Bowl Volume (measured) 41.46 cm3 

Clearance Volume (calculated) 9.55 cm3 

Piston Crown to Cylinder Head 
Gap at TDC (calculated) 

1.13 mm 

Figure 5.33: Original Combustion Chamber & Piston Details (Compression Ratio - 17.8:1) 
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All dimensions in 'mm 

Parameter Value 

Compression Ratio 13.1 

Swept Volume 857 cm3 

Combustion Chamber Volume 70.98 cm3 

Piston Bowl Volume (measured) 61.43 cm3 

Clearance Volume (calculated) 9.55 cm3 

Piston Crown to Cylinder Head 
Gap at TDC (calculated) 

1.13 mm 

Figure 5.34: Modified Combustion Chamber & Piston Details (Compression Ratio -13.1:1) 
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5.7. DME Port Injection Tests-13.1:1 Compression Ratio 

The effect of the lowered compression ratio on the cylinder pressure and heat release 

rates was compared with the pressure and heat release traces for the original compression 

ratio of 17.8:1 as shown in Figure 5.35. The MAF was similar in both the tests. The 

IMEP was 0.87 bar in case of CR 17.8:1 and was limited by the onset of knocking. The 

IMEP was 2.1 bar for CR 13.1:1. It was seen that even with a higher engine load, the 

peak cylinder pressure was significantly lower. The phasing of the LTR heat release was 

retarded by about 3°CA while the phasing of the HTR heat release was retarded or 

improved by about 2°CA. 

The mean cylinder temperatures were calculated for the motored pressure traces (not 

shown) and the reduction in the mean cylinder temperature was estimated to be ~81K 

(maximum Tmean: 865K for CR 17.8:1 and 784K for CR 13.1:1). The reduced in-cylinder 

temperature during the compression stroke delays the onset of auto-ignition and therefore 

results in an improved phasing of the combustion. 
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Figure 5.35: Effect of Compression Ratio on the Cylinder Pressure & Heat Release Rates 

106 



CHAPTER 5: LTC DIAGNOSTICS 

Another consequence of the reduced compression ratio was noted to be a reduction in the 

compression work as highlighted on the Log (p) vs. Log (V) plot in Figure 5.36. The 

reduced compression work and the improved phasing resulted in an increase in the net 

useful work output. 
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Figure 5.36: Log (p) vs. Log (V) Traces for the two Compression Ratios 

The test matrix for the DME port injection tests with CR 13.1:1 is given in Table 5.4. The 

first run with MAF 10.4 g/s was an unthrottled operation at an IMEP of 2.2 bar. The 

engine intake was then throttled to 8.8 g/s and the engine load was increased to 

-2.5 bar IMEP. This served as the baseline condition (A,fresh= 3.9) for the following two 

tests with EGR. Two levels of EGR, 8% (low) and 30% (moderate) were applied to 

investigate the effects on the in-cylinder NOx history as well as the phasing of the 

combustion. 

Since the load (2.5 bar IMEP) was low, the 8% EGR case did not show any difference 

from the 0% EGR test results. At low loads and low EGR rates, the recycled gases 

contain very little carbon dioxide and contain mostly oxygen. Therefore, the results 
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presented henceforth compare the operation at 10.4 g/s ( Xfresh= 4.6), 8.8 g/s (A,fresh= 3.9 

& 0 % EGR), and 6.2 g/s (A.fresh= 3 & 30% EGR). 

Table 5.4: DME Port Injection Test Matrix (CR-13.1:1) 

MAF [g/s] DME [g/s] EGR [g/s] A/F Ratio [-] 
Fresh Air 
Lambda 

10.4 0.251 0 41.4:1 4.6 

8.8 0.254 0 34.6:1 3.9 

8.1 0.256 0.7 31.6:1 3.5 1 

6.2 0.234 2.6 26.5:1 3 J 

The cylinder pressure and heat release rates for the 3 cases highlighted above are shown 

in Figure 5.37. The apparent location of the heat release peaks (LTR & HTR) was similar 

for both the unthrottled (10.4 g/s) and the throttled (8.8 g/s) operation without EGR. 

However, the fraction of the LTR heat release reduced as the fuel strength of the cylinder 

increased with the lower MAF as indicated in Figure 5.38. Therefore, the phasing of the 

combustion process, represented by the crank angle of 50% heat released (CA50) was 

improved slightly (357°CA versus 355°CA), although the location of the heat release 

peaks did not change. 

With the application of EGR, both the LTR and the HTR heat release phases were 

postponed, with a larger delay of the main combustion (HTR) event as the effect of EGR 

was enhanced by the virtual EGR produced during the LTR regime. As a result, the 

CA50 was shifted to ~360°CA. The fraction of the LTR heat release remained -20%, 

similar to that seen without EGR (8.8 g/s). However, the fraction of heat released till 

TDC was reduced significantly from about 70% (8.8g/s) to 52%. This implied a 

significant reduction in the compression work and therefore, the fuelling had to be 

slightly reduced during the test to maintain the same IMEP. 
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Figure 5.37: Comparison of Cylinder Pressure & Heat Release Rates (CR = 13.1:1) 
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Figure 5.38: Cumulative Heat Release Traces (CR =13.1:1) 
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The crank angle-resolved histories of the in-cylinder NO for the three tests are shown 

from Figure 5.39 to Figure 5.41. The sampling duration was kept constant and equal to 

1.2 ms (10°CA) during these tests. The results have been plotted at the centre point of the 

sampling window to improve the correlation with the heat release rates. 

For the test with unthrottled operation (10.4 g/s), the sampling was done after every 

2°CA within the combustion regime to provide a better estimate of the in-cylinder NO 

history. As shown in Figure 5.39, the start of NO production coincided with the LTR heat 

release but the concentration decreased during the dwell time between the two heat 

release events. This can be attributed to the generation of lower chain hydrocarbons as a 

result of the dissociation of DME during the LTR phase. A small peak in the NO 

concentration was observed in the HTR phase but the NO concentration reduced steadily 

thereafter. The maximum in-cylinder NO concentration was ~10 ppm. 
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Figure 5.39: In-cylinder NO Evolution (A,fresh= 4.6, CR = 13.1:1) 
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The results of the in-cylinder sampling with throttled operation (8.8 g/s & 0% EGR) are 

shown in Figure 5.40. The sampling was done after every 5°CA in this case and 

therefore, the NOx history is not as detailed. However, the trend was observed to be 

similar, with the NO generated during the LTR phase and the oxidation of the NO 

occurring during the main combustion event. 
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Figure5.40: In-cylinder NO Evolution (A,fresh= 3.9, CR = 13.1:1) 

When 30% EGR was applied, the peak of the NO concentration was observed to shift 

towards the second heat release peak (HTR zone) as shown in Figure 5.41. The higher 

heat capacity and the reduced oxygen concentration of the cylinder charge with EGR may 

be responsible for reducing the rate of oxidation of the NO. However, the NO was rapidly 

oxidized during the main combustion event, similar to the trends observed previously. 

The summary of the tests without EGR is given in Table 5.5. The indicated thermal 

efficiency was higher compared to the test results with CR 17.8:1. This is a consequence 

of the reduced compression work as shown earlier. Moreover, the efficiency was 

observed to improve with the application of EGR. There exists a trade-off between the 
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off-phasing of the combustion, and the engine-out HC and CO emissions (quantitatively 

described in Chapter 7). It can be seen that the HC emissions did not change considerably 

with the application of EGR but a significant improvement in the combustion phasing 

was achieved (Figure 5.38). Therefore, the improvement in the efficiency can be 

attributed to the improved combustion phasing. 

The engine-out NOx was only 1 ppm and there was virtually no smoke in the exhaust 

stream (FSN<0.008). The HC emission was comparable to the values seen during tests 

with CR 17.8:1 (Table 5.2 and Table 5.3) even though the loads were different. However, 

the CO emission was significantly less at 2.5 bar IMEP compared to the 2.1 bar IMEP 

(CR= 13.1:1) and 1 bar IMEP (CR= 17.8:1) results. The burning of a lean or EGR-diluted 

air/fuel mixture is believed to produce high amounts of CO, mainly due to the reduction 

in the oxidation of CO to CO2 because of the low combustion temperatures. 

20 DME Port Injection Experiments 
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Figure 5.41: In-cylinder NO Evolution (Xfresh= 3, CR = 13.1:1) 
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Table 5.5: Performance Summary of the DME Port Injection Tests (CR = 13.1:1) 

MAF 
[g/s] 

Fresh Air 
Lambda 

EGR 
[%] 

IMEP 
[bar] 

Indicated 
r|th 
[%] 

Engine-out Emissions MAF 
[g/s] 

Fresh Air 
Lambda 

EGR 
[%] 

IMEP 
[bar] 

Indicated 
r|th 
[%] 

NOx 
[ppm] 

CO 
[ppm] 

THCU1 

[ppm] 
10.4 4.6 0 2.2 30.5 1 11215 1315 
8.8 3.9 0 2.53 35.1 1 5718 1408 
8.1 3.5 8 2.59 35.6 1 5380 1383 
6.2 3 30 2.56 38.5 1 10457 1517 

5.7.1. Exhaust HC Speciation 

The results for the test with CR=13.1:1 are shown in Figure 5.42. The trends 

between the four groups were found to be similar to those obtained during the 

CR=17.8:1 tests. The concentration of the hydrocarbon group with no oxygen was 

very small while the carbonyl group displayed the highest concentration. For the 

tests without EGR, as the engine was throttled to decrease the air/fuel ratio, the 

concentrations increased slightly for all the groups except the HC group, for which 

it slightly decreased. The application of 8% EGR did not have any noticeable effect 

on the emission levels. With 30% EGR, the emissions increased for all the groups 

except the carbonyl group. The O-containing group showed the highest increase 

while a slight decrease was observed in the carbonyl group. 

A comparison of the relative fraction of each group in the exhaust HC for the test 

conditions is shown in Figure 5.43. It was observed that with 30% EGR, the 

relative fraction of the O-containing group increased by about 5% while that of the 

carbonyl group decreased by the same amount in the exhaust HC. The aromatics 

and the HC group did not show any appreciable change. This trend was the same as 

observed during the low load tests with CR=17.8:1. 
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5.8. Producing Reliable Feedback for LTC Control 

The process of heat release can largely reflect the performance and emission 

characteristics of a diesel engine, when certain additional information is available such as 

the exhaust oxygen concentration, engine load level or ignition delay [92]. The mid heat 

release of conventional diesel engines has traditionally been phased close to the end of 

the compression stroke i.e. the top dead centre (TDC) and commonly with a profile of 

single hump or double humps for light and heavy load operations respectively. A number 

of phenomenological models for the steady-state heat release analysis can be found in the 

literature [93-98]. Such models are normally capable of calculating the heat release 

characteristics of the conventional diesel combustion with sufficient accuracy [4,98-100]. 

However, the modern diesel engines utilize a multitude of advanced combustion 

strategies to enable compliance with the diesel emission norms as presented in Chapter 2. 

The current trend has been to split the heat release into multi-events or even to shift the 

heat release away from the TDC in order to lower the combustion temperature when low 

emissions of oxides of nitrogen (NOx) or low combustion noise are targeted [101-104]. 

The phasing could be early (before TDC) or late (after TDC), for example, to 

accommodate high boost pressure and heavy exhaust gas recirculation (EGR) under high 

engine loads. Figure 5.44 shows the experimental heat release rates for a number of 

fuelling strategies and alternate combustion modes, obtained from tests run on the Ford 

Puma engine during light-duty diesel research. It can be seen that the phasing and the 

duration of the heat release can vary extensively depending upon the mode of operation. 

For example, the noise control may be achieved with split injection events while a 

delayed phasing is necessary with high boost pressure to reduce the maximum cylinder 

pressure. Post flame control may also be employed for torque modulation or the 

destruction of soot in certain cases [105]. Since the previous heat release analysis 

techniques were developed for the conventional cases where the phasing is close to the 

best fuel efficiency timing, the impact of the combustion off-phasing and splitting on the 

heat release analysis was required to be evaluated. 
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Figure 5.44: Heat Release Rates for Modem Diesel Engines 

The combustion examples presented in Figure 5.44 include a significant premixed 

combustion part. This is typical of light-duty operation with high injection pressures so 

that the injection event is separated from the combustion and the longer ignition delay 

results in a large premixed part. With alternate fuels like biodiesel, the higher cetane 

number reduces the ignition delay and the premixed phase is low compared to the 

diffusive part. The same is true for heavy-duty, high load operation where the combustion 

can be purely diffusive. 

As discussed in Chapter 2, the lowered combustion temperature prevalent during 

alternate combustion modes like HCCI and low temperature combustion (LTC) may 

reduce the combustion efficiency that is manifested by the increase in the emissions of 

carbon monoxide (CO) and unburnt hydrocarbons (HC) under extreme conditions. 

Lubricating oil dilution can also be another significant attribute of the combustion 

inefficiency. The empirical results for such an operating regime are given in Figure 5.45, 

which shows the consecutive 200 pressure traces and the 200 cycle-averaged heat release 

rate for neat bio-diesel experiments [106]. The off-phasing of the heat release from the 
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TDC and the use of multi-event combustion imply that the heat release may be 

significantly affected by the extended change in the cylinder volume (increased surface 

area for heat transfer), and the high CO and HC emissions. With the simplified heat 

release algorithms (constant specific heat ratio and neglecting the cylinder charge-to-wall 

heat transfer), the general shape of the heat release curve may still be attained but the 

magnitudes of the heat release rates are generally incorrect [4,97]. While normalizing the 

cumulative heat release (Cum. HR) with the total apparent energy release simplifies the 

analysis by not considering the effects of the combustion inefficiency, nevertheless, the 

uncertainty in the calculated combustion phasing and hence the estimation of the crank 

angle of 50% heat released which is of paramount importance for control purposes may 

be increased. 

IMEP: 6.5 bar Single Injection @353°CA 
CO: >5200 ppm Speed: 1500 RPM 
THC: 3194 ppm 
EGR: 70% 
Boost: 50 kPa 

200 Cycle 
Averaged 
Data 

320 340 360 380 400 420 
Crank Angle [°CA] 

Figure 5.45: Unstable Combustion due to Lowered Flame Temperature with Heavy EGR 

Moreover, the implementation of such combustion modes is challenging due to the higher 

cycle-to-cycle variation of heavy EGR operation and the narrower operating corridors. 
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While the transition from the high temperature combustion (HTC) to the LTC regime is 

relatively easier to control, maintaining stable engine operation in the LTC mode is 

generally not possible. Therefore, it is preferable to apply adaptive control to lock the 

phasing of the combustion process in a desired crank angle window to alleviate the 

problems associated with cyclic dispersion and to stabilize the combustion process. 

Adaptive diesel combustion control strategies have the potential to navigate through the 

narrow operating corridors for achieving low emissions of NOx and soot while 

maintaining stable engine operation as will be demonstrated in Chapter 8 [103,107,108]. 

To enable adaptive control, the fast heat release calculation should be able to capture the 

transient nature of the combustion and provide the necessary feedback for control. 

However, the cycle-by-cycle calculation in real-time of the heat release characteristics in 

the above perspective is quite a challenging task. While the existing heat release models 

typically work well for general laboratory data analysis, their use in combustion control 

applications requiring on-the-fly calculation of the heat release is difficult because of the 

numerical complexity and computational time-constraints. 

The control problem is compounded by the complexities of the modern diesel combustion 

systems, as outlined below: 

• Increased technological sophistication (common rail high pressure injection 

systems with multiple fuel injections per cycle, variable geometry turbines, 

advanced EGR handling techniques). 

• A wide variety of combustion modes including LTC, HCCI, and enhanced 

premixed combustion. 

• Combustion phasing adjustment to address a number of issues including limiting 

the peak cylinder pressure, reduction of combustion noise/emissions and 

aftertreatment control. 

The cycle-by-cycle adaptive control of the diesel combustion process requires a robust 

and fast feedback that can effectively identify the heat release characteristics. The heat 

release phasing is often used as the main feedback signal since it can be directly 

118 



CHAPTER 5: LTC DIAGNOSTICS 

correlated to the combustion efficiency, emissions or power production capability 

[109,110]. Therefore, experimental and analytical comparisons were performed to 

estimate the characteristics of heat release from the cylinder pressure histories. A number 

of heat release models such as apparent heat release model, Rassweiler- Withrow model, 

and Diesel Pressure Departure Ratio model were investigated under the various cycle 

conditions. The emphasis of this research was on the fast and accurate estimation of the 

heat release phasing over a wide range of engine operating conditions on a cycle-by-cycle 

basis, and therefore, the key issues addressed in this section are as follows: 

• Analysis of a number of cylinder-pressure derived parameters for representing the 

heat release phasing 

• Implementation of a new computationally-efficient algorithm for estimating the 

heat release characteristics and its performance comparison with other models 

• Demonstration of the efficacy of the new algorithm against selected cases of boost, 

engine load and exhaust gas recirculation on the Ford engine. 

5.9. Heat Release Phasing Feedback 

The selection of the feedback parameters can strongly influence the dynamics of the 

closed-loop adaptive control system. The selection is constrained by the speed and 

capacity of an engine control unit and the numerical complexity of the control algorithms. 

Requirements for a practical feedback for the cycle-by-cycle control of combustion 

phasing are that the feedback should be accurate, stable and feasible for real-time control. 

Therefore, a comparison of the following parameters was made on the basis of numerical 

complexity, applicability to different fuelling strategies, shape of the heat release curve 

and the relative accuracy. 

• Crank angle of maximum cylinder pressure, CA Pmax 

• Crank angle of the maximum rate of pressure rise, CA {dPjdd)mm 

• Crank angle of 50% heat released, CA50 
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5.9.1. Crank Angle of Maximum Cylinder Pressure 

This is the simplest of the parameters as it requires minimum computational 

resources. The use of CA Pmax as a rough estimation of the heat release phasing is 

only valid when a global maximum pressure due to combustion occurs such as in 

case of HCCI/LTC combustion or with single-shot conventional high temperature 

combustion. With early or late combustion, or multiple injection events per cycle, 

CA Pmax is a poor representation of the heat release phasing since it is closely 

coupled to the combustion volume. The accuracy of the CA Pmax can be somewhat 

improved by subtracting the motored pressure from the fired pressure. The new 

pressure curve, thus obtained, represents the change in the cylinder pressure due to 

combustion and would provide a better estimate for late combustion phasing of 

conventional diesel combustion as shown in Figure 5.46. 

5.9.2. Crank Angle of Maximum Rate of Pressure Rise 

The CA(dP/d0)mm is generally able to identify retarded combustion events (since 

it is the derivative of the pressure) as shown in Figure 5.46 that are otherwise not 

detectable using the CA Pmax as far as providing an estimate for the heat release 

phasing is concerned. However, there are a few aspects that need to be mentioned. 

First, it requires more than double the computational resources required for the 

calculation of CA Pmax. Second, for late combustion timing, the accuracy can be 

improved by subtracting the motoring dP/dO trace from the fired dP/d0, to 

obtain the combustion dP/dO only. However, if for example, oscillations exist in 

the pressure signal (unstable combustion) or the pressure transducer is not flush-

mounted in the cylinder head, the fluctuations in the pressure signal are amplified 

during the calculation of the (dP/dO)max, resulting in large errors (up to 20°CA) in 

the estimation of the heat release phasing. Therefore, filtering or smoothing of the 

pressure signals becomes necessary. 
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Figure 5.46: CA Pmm & CA(dP/dd)mm as the Feedback Parameters 

5.9.3. Crank Angle of 50% Heat Released 

Although diesel engines are overall lean-burn systems, the combustion is 

predominantly and locally stoichiometric burn, because the flames tend to initialize 

and propagate to approximately stoichiometric regions. Therefore, the heat release 

slope is generally steep and the CA50 represents a stable and robust measure of the 

phasing of combustion, compared to CA Pm!K and CA{dP/d6) , as shown in 

Figure 5.47. However, the calculation of the CA50 is computationally quite 

intensive and therefore, simplifications to the heat release analysis are generally 

made to reduce the numerical complexity while maintaining sufficient accuracy of 

the calculation. Therefore, three heat release models for estimating the CA50 with 

varying degrees of complexity and accuracy were considered in the following 

section. 
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Figure 5.47: Comparison of the Feedback Parameters for a Split Heat Release Pattern 

5.10. Heat Release Modelling 

The basis for the modelling of the heat release is the first law of thermodynamics for an 

open system. Assuming the cylinder charge as a single zone and using the ideal gas law, 

the heat release during combustion, dQgr on a crank angle basis is given by: 

dQt gr _ 1 

d0  y - \  

dV ir dp ( dm, 
yp—  + V  —  + (u - c  T )—^  
rF dO dO y v ; dO 

-Z», 
dm, | dQht 

d0 dO 
(5.1) 

where mc is the mass of the cylinder charge, cv is the specific heat at constant volume, 

u is the specific internal energy, T is the mean charge temperature, p is the cylinder 

pressure, V is the cylinder volume, y (gamma) is the ratio of the specific heats, dQhl is 

the charge-to-wall heat transfer and y£_himi represents the enthalpy flux across the 

system boundary. 
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Equation (5.1) gives the gross heat release rate during the period from intake valve 

closure (IVC) to exhaust valve opening (EVO) for the crank angle interval, d9. It also 

forms the basis for three different heat release models of reduced levels of complexity 

that have been analyzed in this work. APPENDIX B gives detailed information on the 

First Law equation derivation, the implicit assumptions made, the nomenclature used, and 

the empirical correlations to estimate the in-cylinder heat transfer and the temperature 

dependence of the specific heat ratio. 

5.10.1. Apparent Heat Release Model 

By neglecting the heat transfer, crevice volume, blow-by and the fuel injection 

effects in Equation (1), the resulting heat release rate is termed as the apparent or 

net heat release rate, dQ^ [4-8]. Substituting dQapp=dQgr-dQht and 

dmc = dm, = 0, Equation (5.1) gives the apparent heat release rate (AHRR) as 

follows: 

AHRR = ^^app 
= _ ^Qht _ 1 

d9  dd  d0  y -1  

dV  u dp  
YD + V — 

do de 
(5.2) 

The cumulative apparent heat release (Cum. AHR) is obtained by summing the 

incremental values from Equation (5.2) over the combustion period. Apparent heat 

release values are typically 15% lower than those obtained on a gross heat release 

basis [4,97]. Apparent heat release values are very often used in preference to gross 

heat release values because this reduces the amount of computation and avoids the 

need for heat transfer parameters to be specified. 

Equation (5.2) can be used to calculate the apparent heat release rate and the 

normalized cumulative fraction of heat released either by using a temperature 

dependent specific heat ratio or a fixed value of the specific heat ratio (1.32—1.37). 

The apparent heat release rate calculated with a constant gamma value of 1.37 for 

the conventional diesel combustion phased close to the TDC with the start of 

combustion (SOC) @ -10°ATDC, is shown in Figure 5.48. The baseline (BL) heat 

release rate was calculated using Ricardo Wave software and Synthetic 

123 



CHAPTER 5: LTC DIAGNOSTICS 

Atmosphere Engine Simulation (SAES) software. The SAES uses a comprehensive 

validated model for heat release calculations and includes the effect of heat 

transfer, crevice volume, charge composition etc. on the heat release rate. 

It can be seen that the AHRR curve was in good agreement with the baseline heat 

release rate curve. Although the apparent heat release analysis generally provides 

reasonable accuracy for heat release phased close to the TDC, however, under 

certain operating conditions, the use of a fixed value of the specific heat ratio and 

neglecting the cylinder charge-to-wall heat transfer can lead to errors in the 

calculated results as shown in Figure 5.49. 

For the case with SOC @ -30°ATDC, a considerable difference in the magnitudes 

of the heat release rates and a large deviation in the end of combustion (EOC) were 

observed between the baseline curve and the AHRR curve computed with a 

constant gamma value of 1.37. Since the calculation of the CA50 with the apparent 

heat release approach requires an accurate estimation of the EOC crank angle, a 

large error was observed in the calculation of the CA50. 
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Figure 5.48: Apparent Heat Release Analysis with SOC @ -10°ATDC 
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Figure 5.49: Apparent Heat Release Analysis with SOC @ -30° ATDC 
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The specific heat ratio varies primarily with the temperature inside the combustion 

chamber and may also be affected by the charge composition. The variation of the 

specific heat ratio with the mean cylinder temperature is shown in Figure 5.50. It is 

a common practice to use the value of the specific heat ratio based on the mean 

cylinder temperature for the calculation of the AHRR. 

The AHRR for the case of SC>C@-30oATDC (Figure 5.49: Lower) was plotted 

again in Figure 5.51 by using the temperature dependent specific heat ratio and 

also including the charge-to-wall heat transfer. The inclusion of the temperature 

dependent specific heat ratio caused a change in the magnitudes of the burn rates 

and the error in the EOC was slightly reduced. Consequently, the prediction of the 

CA50 also showed a slight improvement. However, the inclusion of the charge-to-

wall heat transfer estimation into the analysis caused the calculated HRR and the 

CA50 to nearly match with the baseline results. 
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Figure 5.50: Variation of the Specific Heat Ratio with the Mean Cylinder Temperature 
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Figure 5.51: Inclusion of Specific Heat Ratio Variation and Heat Transfer in the Heat 
Release Analysis 

5.10.2. Rassweiler-Withrow Model 

The Rassweiler-Withrow model (referred to as RW Model) is commonly used to 

estimate the mass fraction burnt (MFB) and can be taken as a normalized version 

of the cumulative heat released [111-113]. It is based on the assumption that the 

change in pressure due to the piston motion and charge-to-wall heat transfer can be 

represented by polytropic processes. In this method, the pressure change during 

any crank angle interval is assumed to be made up of a pressure rise due to 

combustion Npmmb and a pressure rise due to the volume change Apvol. Therefore, 

by assuming that the pressure rise due to combustion is proportional to the mass of 

the fuel that burns, the MFB at the end of the i'th interval can be approximated by 

MFBgw (9) = t AP«^(0/Z (0 
(=0 

K 

£ /=o 
(5.3) 

where K is the total combustion duration. 
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The detailed information on the RW Model derivation is given in References 

[97,111,112]. 

5.10.3. Diesel Pressure Departure Ratio Model 

The Diesel Pressure Departure Ratio algorithm (referred to as PDR algorithm 

hereafter) is a new approach proposed by the author for fast and reliable estimation 

of the mass fraction burnt for diesel combustion. It is based on the principle of RW 

Model which states that the fractional pressure rise due to combustion can provide 

an estimate of the MFB. The PDR algorithm utilizes the fired and the motoring 

traces for cycle-by-cycle estimation of the CA50 and the calculated MFB closely 

matches the normalized cumulative heat release trace. 

It is pertinent to mention here that a somewhat similar approach was applied for 

spark-ignition engines by Sellnau [114] and Matekunas [115], and is called the 

Pressure-Ratio Management (PRM). PRM involves the calculation of the ratio 

between the fired pressure and the corresponding motored cylinder pressure at 

every crank angle. The ratio is then normalized by its maximum value (also called 

the final pressure ratio) which typically occurs around 55°CA ATDC for spark-

ignition engines. The resulting trace is a close approximation of the MFB trace at 

every crank angle and published results indicate that the technique works well for 

spark ignition engines. 

The direct application of the PRM to diesel engine pressure data results in a MFB 

curve that may differ from the actual cumulative heat release trace because of a 

number of reasons. First, the much higher compression ratios of the diesel cause 

the maximum pressure ratio to occur towards exhaust valve opening. Second, 

unlike the spark ignition engines where the combustion typically occurs as a single 

event, the diesel combustion process can consist of discrete heat release events 

with a multitude of fuel injection scheduling strategies (split injections, post 

injection etc.). Therefore, the PRM estimation departs from the actual diesel 

combustion characteristics even for the conventional high temperature diesel 

combustion with a single fuel injection as shown in Figure 5.52. 
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To identify the diesel combustion characteristics, a Diesel Pressure Departure Ratio 

(PDR) is proposed that is expressed at any crank angle, 0 as: 

PDR(0) = f{p(0),pmo,(0),V(8),n,C„C1} (5.4) 

where p{0 )  is the fired cylinder pressure data, pmo,{0) is the motored cylinder 

pressure data, V(0) is the cylinder volume, n is the polytropic index and C,,C2 

are constants. 

The basis of the PDR algorithm is the fact that the cylinder pressure and the 

volume data during the compression and the expansion processes can be described 

by the polytropic relation pV" = Constant. The exponent n is comparable to the 

average value of y during the compression phase, prior to combustion, but the 
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increased heat transfer to the cylinder walls during combustion and the expansion 

process makes the exponent n greater than the corresponding y [4]. 

To determine the polytropic relationship from Equation (5.1), the following 

assumptions are made: 

• The effects of crevice volume and piston ring blowby are neglected, i.e., 

dmc = dml = 0 

• Cylinder charge-to-wall transfer is not explicitly accounted for, i.e., dQht = 0 

and therefore, dQ = dQgr - dQhl 

• The constant polytropic index, n, accounts for the specific heat ratio of the 

charge 

• There is no release of chemical energy before and after combustion, and 

therefore dQ = 0. 

For the period before and after combustion, this reduces Equation (5.1) to yield 

where dpcomb is the pressure change due to combustion and dpvol is the pressure 

change due to volume change. In the PDR method, the actual pressure change, 

Ap = p, , during any crank angle interval A0 = A0i-A0i_l is assumed to be 

(5.5) 

and for the combustion duration 

dp ~ ~~~ dQ - dV = dpcomb + dpml (5.6) 
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made up of a pressure rise due to combustion Apcom6 and a pressure rise due to the 

volume change Apvoi. Therefore, 

&P = APcon,b+&PVol (5-7) 

where Apvol and Apcomi can be approximated using the polytropic relationship as 

& *p^(i)=p-pM(vMlv,)" (5-8) 

The incremental heat release rate can then be estimated from Equation (5.6) as 

follows: 

AeW=^TT'Sp'(i) (59) 

(K  +  V . . )  
where Vavg (z) = -—-—- is the average volume over the interval A9. 

The total heat released up to any crank angle can then be calculated as follows: 

t AG(0 = G(0 = ;r7 t ̂(O-Ap—C) (5.10) 
i=SOC "~l i=SOC 

The heat release traces calculated using Equations (5.9) and (5.10) are compared 

with the baseline heat release for the pressure data of Figure 5.52 and the 

comparison is shown in Figure 5.53. It is evident that the estimation of the heat 

release rate shows good agreement with the baseline results. 
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Figure 5.53: Comparison of HR Results from Equations (5.9) & (5.10) with Baseline 
Results (Figure 5.52) 

A comparison of Equations (5.2) and (5.9) indicates that both equations involve the 

calculation of the derivative of pressure. During fast signal processing applications 

such as those required for fast estimation of the diesel combustion characterization, 

the process of differentiating a measured signal may result in the amplification of 

the electrical noise which make the estimation susceptible to errors. 

Moreover, the implementation of Equations (5.2) and (5.9) involve the same 

number of steps, that is, the calculation of the heat release rate, followed by the 

cumulative heat released and its normalization by the maximum value of 

cumulative heat released, Qmax before the combustion parameters like CA50 can 

be obtained from Equations (5.2) & (5.9). 

For fast feedback of the combustion process, it is necessary to reduce the number 

of calculation steps and the numerical complexity involved. Also, the desired 

objective of the analysis is the estimation of the mass fraction burnt within the 
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interval {0,1} and not the actual heat release rate. Therefore, a numerically reduced 

form of Equation (5.9) that is computationally efficient was devised as follows: 

The value of the cylinder volume is very small compared to the pressure change 

due to combustion over the crank angle interval AO. Therefore, if a constant value 

of the cylinder volume is used in Equation (5.9), the equation can be rewritten as 

A G ( 0 * ^ 7 y 4 P c ( 0  ( 5 - 1 1 )  

and similarly, Equation (5.10) becomes 

T Z AP,(0 (5.i2) 
" ~ 1 i=SOC 

Using the volume at TDC, the approximate heat release rate is shown in Figure 

5.54. It can be seen that the general shape of the trace remains similar to the actual 

heat release rate traces. 
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: 1 barabs intake1 
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0.05- HRR (BL) 

— HRR (Eq 5.9) 

Approx. HRR (Eq 5.11) 
$ 0.03-

0.01 • 

360 380 400 340 420 
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Figure 5.54: Approximate Heat Release using Equation (5.11) 
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To further reduce the numerical complexity of Equation (5.12), at the end of the 

i'th interval immediately after the start of combustion, the pressure can be 

represented as p(i) = Apcomb (/) + pmol (i) 

Similarly, 

p(i +1) = Apcomh (/ +1) + Apcomb (i) + pmo, (/ +1) 

p(0) = Apcomb (9)+--+Apcomb (i +1) + Apcomb (i) + pmot (0) 

P { 0 )  =  P m o < { 0 ) ~  Z  * P c o m > { 0  
i=SOC 

Therefore, the pressure change due to combustion can be rewritten in terms of the 

fired and the motored pressure values as 

Z *Pcomb (0 = P {0) - Pmo, (0) (5-13) 
i=SOC 

Substituting Equation (5.13) into Equation (5.12), we get 

Q { e )  p ( 0 ) - p m ( 0 ) ]  

"pj['(fl)-'-(')] <514) 

The proportionality has been introduced in Equation (5.14) because of the 

underlying assumption that at the end of crank angle interval A0, the pressure 

change due to the change in volume during the fired cycle Apv0/Jired (0) will be 

equal to the pressure change due to the change in volume, Apvo/ mo, {0 )  if the engine 

was motored (no combustion), that is, 

Fired Cycle: p (0 )  =  Ap c o m h  ( 0 )  +  A P v o l  f i r e d  ( 0 )  +  p m o l  (0-1) 

Motored Cycle: pmol (0) = Apvol mol (0) + pmot (0 -1) 

Assumption: ApwlJired {0) = Apvol mol (0) 
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However, Apml fired (#) * APw/,mor (&) because of the different in-cylinder 

conditions (primarily in-cylinder temperature and charge composition) prevailing 

during the motoring and the fired cycles, which would significantly affect the ratio 

of the specific heats and the cylinder charge-to-wall heat transfer. 

For a given engine configuration, the cylinder volume versus crank angle 

relationship is fixed and the term 
n -1  

can be related to the motoring pressure, 

since the motoring pressure is a consequence of the changing cylinder volume 

( pV"  =  Cons tan t ) .  Plotting 
v V 

Figure 5.55, it can be seen that 

and pmot as a function of the crank angle in 

( n - \  
\ ^ P m  (5.15) 
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Figure 5.55: Profiles for Reciprocal of Cylinder Volume & Motoring Pressure 
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At this time, re-introducing the variation of volume and therefore, the motoring 

pressure with the crank angle, and substituting Equation (5.15) in Equation (5.14), 

Q(0)KEVtP-M (5.16) 
Pmo, (0) 

Equation (5.16) is the representation of the cumulative heat released up to any 

crank angle based on the departure of the fired pressure from the motoring 

pressure, and therefore, can be rewritten as 

PDR(0)acP^~Pmo'^ (5.17) 
v ; pmoXe) 

To remove the proportionality constant, two constants have been introduced such 

that 

PDR(B)= P(0)*FFC , (518) 

/>-,(»)+MPC 

where FPC is the 'fired pressure characterization' coefficient, and MPC is the 

'motored pressure characterization' coefficient. The MPC is a correction for the 

polytropic relationship between the volume and the motoring pressure while the 

FPC is a correction for the difference between the Apml of the fired and the 

motored cycles as explained earlier. The coefficients, FPC and MPC are 

constants for a given engine configuration and are largely not affected by the boost 

pressure, EGR etc. as is shown later. The PDR has a nearly zero value before 

combustion and rises to maximum value which corresponds to the end of 

combustion (EOC). 

An estimate of the mass fraction burnt is then obtained by normalizing the PDR 

from Equation (5.18) with its maximum value PDRmw as follows: 

MFBpm (6)= PDR(6) (5.19) 
V 1 PDRm3x 
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To illustrate the PDR algorithm, the calculated PDR and the MFBPDR are shown 

in Figure 5.56 for the data shown in Figure 5.52. It can be seen that the PDR 

reaches a maximum value close to the crank angle where the combustion ends. 

Also the MFBpm is in good agreement with the baseline normalized cumulative 

heat release trace which includes the effects of charge-to-wall heat transfer and the 

temperature dependence of the specific heat ratio. 

-I f . 
340 360 380 400 420 

Crank Angle [°CA] 

Figure 5.56: MFBpm for the data of Figure 5.52 

The empirical model constants (FPC and MPC) are calibrated by first adjusting 

the MPC value so that the MFBPDR approximately matches the baseline heat 

release trace as shown in Figure 5.57. Small changes in the MPC value cause the 

curve to pivot about a point. The FPC is then adjusted to shift the pivotal point so 

that the predicted CA50 is as close as possible to the actual CA50 as shown in 

Figure 5.58. This also ensures that small deviations on the extreme ends of the 

curve will have minimal effect on the prediction of the C450. The calibrated 

137 



CHAPTER 5: LTC DIAGNOSTICS 

values of the constants are then checked against few traces representing early/late 

phasing and different fuelling strategies. Once this trial and error process is 

completed, the constants have been calibrated for the engine under consideration 

and are not required to be adjusted. Using the procedure outlined above, the 

calibrated values of MPC and FPC were 4.8 and 4.0 respectively for the Ford 

engine used in the experimental investigation. 

The calibration of the PDR 
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Figure 5.57: Effect of MPC on the MFBpm 
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Figure 5.58: Effect of FPC on the MFBPDR 

5.11. Experimental Apparatus and Procedures 

A number of researchers have previously carried out an analysis of the apparent heat 

release model for errors in the gross heat released (in joules) due to constant specific heat 

ratio, heat transfer and pressure data errors [97,98,116-119]. However, the pressure data 

used was typical of the conventional high temperature combustion regime for both low-

load and high-load diesel operation. The modern diesel engines utilize multiple injections 

per cycle and unconventional combustion modes like HCCI, LTC. Moreover, for control 

applications, the phasing of the heat release (given by CA50) is of far more importance 

than the absolute value of the heat released. Therefore, the prediction of the apparent heat 

release model was required to be critically analyzed in this new perspective. Moreover, 

for feedback-control purposes, a compromise must be made between the required 

accuracy and the system resource constraints such that the simplest algorithm with the 

minimum required accuracy can be implemented for real-time control. 
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The methodology for evaluation of the errors with the assumption of a constant specific 

heat ratio value and neglecting the heat transfer was investigated for four different fuel 

burn rate patterns as shown in Figure 5.59. These burn rates were adapted from empirical 

data and comprehensively summarize the modern diesel combustion operating regimes. 
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z 

0 20 D 40 £ 
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Figure 5.59: Fuel Burn Rate Patterns 

These fuel burn rate patterns were categorized as follows: 

• Diffusion Controlled mode (DIFF) - corresponding to conventional high 

temperature diesel combustion 

• Single hump (SH) - representing homogeneous charge or highly premixed types of 

combustion modes 

• Double hump (DH) - representing split combustion events by fuel injection 

strategies including early or multiple injections 

• Compound (CMPD) - representing complex combustion by split injections along 

with late/post injections for enabling aftertreatment or soot destruction 
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The evaluation of the errors was carried out using both simulated and experimental 

pressure data. The fuel burn profiles of Figure 5.59 were entered as the user-defined fuel 

burn rate input to generate the simulated pressures using Ricardo WAVE and SAES 

softwares. The calculated gross heat release from the softwares and the resulting CA50 

was taken as the baseline reference against which all errors have been evaluated. A 

timing sweep was performed for each of the four burn rates by varying the start of 

combustion (SOC) from -30°CA ATDC to 30°CA ATDC. The motored pressure used 

during the analysis was calculated by starting with a baseline experimental motoring 

pressure trace for naturally aspirated conditions at zero EGR and corrected for boost and 

EGR using the fired pressure trace. The effect of charge-to-wall heat transfer, trapped 

residual mass, etc. was therefore accounted for. The details of this technique are 

explained later in the RT-FPGA programming section. The engine tests were run on the 

Ford Puma Diesel Engine and the same specifications were used in the simulations. The 

assumed engine operating conditions are given in Table 5.6. 

Table 5.6: Engine Operating Conditions 

Engine Speed 1200 RPM 

Intake Pressure 1 bar abs 

Intake Temperature 298 K 

Injection Timing -35°CA ATDC -• 25°CA ATDC (10° Increment) 

Ignition Delay 5°CA 

Burn Duration 10° -• 80°CA 

Residual Fraction 0.08 

Combustion Efficiency 100% 
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5.11.1. PDR Algorithm Application 

The PDR algorithm was programmed on a National Instruments' Real-time (RT) 

embedded controller with a field programmable gate array (FPGA) device that 

conditioned the cylinder pressure signal, processed/analyzed the data and provided 

the necessary feedback to the fuel-injection controller. 

A reliable feedback that is robust and minimally affected by external disturbances 

is essential for acceptable performance of the model-based algorithms. The 

computation of the feedback should be fast enough to capture the characteristics of 

each combustion cycle and the algorithm for the feedback estimation should be 

able to capture the effect of changes in the engine operating conditions. Therefore, 

the experimental results presented investigate the robustness of the PDR algorithm 

against variation in a number of engine variables. 

5.11.2. RT-FPGA Programming 

The FPGA code [103,107,108] acquires the cylinder pressure (16 bit resolution) 

with a crank angle resolution of 0.1°CA and performs a number of operations 

including detection and filtering of the pressure data, and the estimation of the 

motoring cylinder pressure trace. The calculation of the MFBPDR and CA50 is then 

carried out on a cycle-to-cycle basis and the value is passed on to the adaptive fuel 

injection control algorithms, to enable control of the next combustion cycle. 

The baseline condition, i.e., the motoring pressure for naturally aspirated 

conditions without EGR is programmed into the FPGA memory (4 kB block size 

with 16 bit resolution) at the start of the tests. The code execution occurs every 

time the external clock signal (Index A) from the engine-mounted encoder is 

detected. The key sequence of the calculation includes the following: 

• The fired pressure is referenced at -60°CA ATDC (no combustion) to 

automatically adjust the motoring trace for the current operating conditions 

(boost, intake temperature, EGR etc). 

142 



CHAPTER 5: LTC DIAGNOSTICS 

• A correction to the estimated motoring trace is made by referencing the actual 

pressure at -30°CA ATDC (no combustion). This enables the effect of EGR to 

be approximated in the motoring trace. 

• The PDR trace is calculated for the crank angle window from -30°CA ATDC 

to 100°CA ATDC. 

• The maximum value of the PDR is used to get the MFBpm trace. 

• The crank angle corresponding to the 50% heat released is then identified and 

provided as feedback for control purposes. 

• The calculation is then repeated for the next cycle. 

A problem encountered during programming of the FPGA was the inability to 

perform floating point calculations in the FPGA. The FPGA can only perform 

integer arithmetic operations and therefore, division in the FPGA is limited to a 

quotient and remainder (QR) function. The QR function works by repeatedly 

subtracting the divisor from the dividend in a while loop until the difference 

becomes less than the divisor. The difference is reported as the remainder value 

and the while loop number is the quotient. The execution of this operation is 

diagrammatically shown in Figure 5.60. 
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Figure 5.60: Implementation of Division Function in the FPGA 

The QR function is useful if the dividend is much larger than the divisor so that the 

use of the quotient only (and ignoring the remainder) still yields an acceptable 

solution. However, to scale the baseline motoring pressure to match the actual 

pressure, the actual pressure needs to be divided by the baseline motoring pressure 

at the referencing crank angle to generate a multiplication factor that will be used 

for the scaling operation. This multiplication factor is commonly in the range of 0.9 

to 2. Therefore, for the implementation of the PDR algorithm, the use of the QR 

function was not suitable since the division of the actual cylinder pressure by the 

baseline motoring pressure would normally result in a quotient of one and the 

difference between the actual and the baseline pressures simply becoming the 

remainder. 

Another method for division in the FPGA involves a scaling technique with bit-

level manipulation to obtain the approximate floating-point division. This 

technique is useful if the divisor does not change. Since the value of motoring 

pressure varies at each crank angle, therefore, this method also does not provide a 

viable solution to the problem at hand. 

To address this issue, an algorithm to enable floating-point division in the FPGA 

was devised as shown in Figure 5.61. At the referencing crank angle, that is, 

-60°CA ATDC, the actual (or fired) pressure is divided by the baseline motoring 
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pressure. If the remainder is a non-zero number, then the following operations are 

performed: 

• The fired and the motoring pressure are multiplied by a constant value of 1000. 

• The 1000 x fired pressure value is then divided by the remainder to obtain the 

scaling multiplier. 

• The 1000 x baseline motoring pressure value is also divided by the remainder to 

obtain the scaling divisor. 

• The scaling multiplier and the scaling divisor are then stored in memory for the 

duration of the engine cycle and are used to adapt the baseline motoring trace at 

each crank angle to the current operating conditions. 

urrent 
ankAnolel HTruc 

HF£> 
Fired Pressure! 

True 

Wufciofer 

Divisor 

Figure 5.61: Algorithm for Floating-point Division in the FPGA 

A few sample conversions using the algorithm are given in Table 5.7. It can be 

seen that the algorithm provided a high level of accuracy for use in estimating the 

actual motoring pressure trace. 
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Table 5.7: Examples of the Floating-point Division in the FPGA 

Actual Pressure 
Baseline Motoring 

Pressure Scaling 
Multiplier 

Scaling 
Divisor 

Scaled Motoring 
Pressure 

bar 
FPGA 
Integer 
Value 

bar 
FPGA 
Integer 
Value 

Scaling 
Multiplier 

Scaling 
Divisor FPGA 

Integer 
Value 

bar 

30.20 4948 31.9 5226 1000 1056 4948 30.20 1 

37.60 6160 22.8 3736 2541 1541 6160 37.60 1 

48.30 7913 27.5 4505 2321 1321 7915 48.31 | 

61.70 10109 31.4 5145 2036 1036 10111 61.71 1 

95.40 15630 28.1 4604 8597 2532 15632 95.41 1 

5.12. Evaluation of Errors 

Selected results for each of the four fuel burn rate patterns for the injection timing sweep 

from -35°CA ATDC to 25°CA ATDC (SOC from -30°CA ATDC to 30°CA ATDC) for 

the heat release models under investigation are given below. The error in the CA50 was 

considered to be negative if the model prediction was earlier than the baseline value. An 

error of ±1°CA or less was considered as acceptable in this study and is indicated on the 

figures. 

5.12.1. Apparent Heat Release Model Analysis 

The apparent heat release rate (AHRR) computed with a constant gamma value of 

1.37, was compared against the baseline (BL) results to compute the difference in 

the prediction of the CA50. The timing sweep result such as the one shown in 

Figure 5.62 for the DIFF mode was repeated for all the fuel burn rate patterns and 

the resulting error analysis is summarized in Figure 5.63. In Figure 5.62, once the 

cumulative heat release curves reached a value of one, the curves was assigned a 

constant value of one to improve the figure readability. 
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Figure 5.62: Comparison of the Cumulative Heat Released Traces for DIFF Mode 

5.12.1.1. Diffusion Controlled Mode 

The error in the prediction of the CA50 was large for the cases with the 

CA50 before the TDC. However, for combustion phasing at and after TDC, 

the prediction of the AHR model matched the baseline results. This can be 

attributed to the higher heat transfer rates for the early combustion because 

of the larger combustion chamber surface area and the sustained high 

temperatures due to the longer combustion duration (50°CA) and the 

ongoing compression process. 

5.12.1.2. Single Hump Mode 

A short combustion duration of about 10°CA and low-load operation is 

typical of homogeneous charge or highly premixed types of combustion 

modes. Since the combustion is quite rapid, the AHR analysis was able to 
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Figure 5.63: Summary of the AHR Error Analysis 
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effectively capture the combustion phasing. Therefore, the cumulative AHR 

traces matched the baseline results for all the timing sweep cases. 

5.12.1.3. Double Hump Mode 

The results shown are for a typical split injection strategy, with a ratio of 

the pilot injection to the main injection quantity equal to 0.7, and a dwell of 

15°CA between the two injections. The cumulative AHR error in the early 

phased cases did not affect the calculated CA50 significantly as the less 

quantity of the pilot injection confined the error below the CA50 level. 

However, if a ratio greater than 0.8 is employed, significant errors may 

result in the CA50 calculations for the early phased cases. 

5.12.1.4. Compound Mode 

The use of a post or late injection for enabling aftertreatment or destruction 

of soot was categorized under the compound fuel-burn pattern. The 

simulated combustion duration was quite long, about 80°CA in this case. 

However, as long as the pilot and main injections represented the majority 

of the fuel injected, the error in the calculated values was small. 

The largest error in the heat release calculation is most likely incurred by ignoring 

the charge-to-wall heat transfer. However, it can be seen that the AHR analysis 

provided a reasonable estimate of the CA50 for all the four fuel burn patterns 

considered, for most of the timing sweep. 

5.12.2. Rassweiler-Withrow Model Analysis 

The error analysis was repeated with the RW model for the SOC timing sweep 

from -30°CA ATDC to 30°CA ATDC. The results for the four fuel burn patterns 

with the SOC at -10°CA ATDC are shown in Figure 5.64. The MFB traces have 

been staggered on the x-axis (crank angle) for the same SOC to make the 

comparison easier to understand. The MFB traces showed very good agreement for 

the first three fuel burn patterns. However, for the compound mode of combustion, 

the MFBRW showed a deviation from the cumulative HR trace. Analysis of similar 

traces for different SOC revealed that for early combustion phasing, the error was 
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similar to that observed with the AHR model. However, for the compound mode of 

combustion, a significant error was observed for all cases of the combustion 

phasing sweep. 

For the compound mode, the combustion duration was 80°CA so that the 

combustion progressed well into the expansion stroke. At this stage, the change in 

pressure due to the volume change becomes significantly higher than that due to 

combustion, especially so because of the higher compression ratio of the diesel 

engines. Therefore, the assumption of a fixed polytropic index caused the MFBRW 

to deviate significantly. Care should be taken in using the MFBRW for delayed 

combustion phasing or for combustion modes with late injection events. 

intake 

intake' 

DIFF SH DL CMPD 

Figure 5.64: Comparison of G450 Prediction between MFBRW and Cum. HR 

5.12.3. Diesel Pressure Departure Ratio Model Analysis 

The estimation of the CA50 using the MFBpm is presented for all the four modes 

of combustion in Figure 5.65. The FPC and MPC were determined initially and 
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kept constant through out the analysis. For the DIFF mode, the MFBPDR showed 

large errors in the CA50 for the early SOC cases. For combustion starting around 

TDC, the results were similar to those obtained with the AHR analysis, and the 

MFBPDR generally followed the baseline results except for the late SOC cases 

where a small deviation was observed. When the combustion duration was short 

(SH mode), the performance of both the AHR and the PDR models matched the 

baseline cumulative HR traces. As already discussed for the AHR model in the SH 

mode, the combustion phasing has negligible effect on the calculations of the 

simplified algorithms for the SH mode. 

For the DH Mode, although deviations from the baseline results were observed 

similar to the AHR predicted traces, the estimation of the CA50 was not affected. 

The reasons for this were highlighted during the error analysis of the AHR model. 

For the compound mode, the MFBPM traces for the early phasing were similar to 

those from the AHR model. Unlike the results from the RW model, the MFBPM 

was able to capture the heat release characteristics for combustion phased around 

the TDC. However, for late combustion phasing with the CA50 occurring after 

380°CA, the MFBPM traces deviated from the baseline results. Although such late 

phasing might be considered impractical for engine applications, nevertheless, the 

results indicated a limitation of the PDR model for compound type of heat release 

patterns with late phasing. 

The PDR analysis provided a reasonable estimate of the G450 for all the four fuel 

burn patterns considered, for most of the timing sweep. It can be seen that the 

results were quite similar to those obtained with the AHR model. 

A comparison of the three models for the compound mode with SOC at -10°CA ATDC is 

shown in Figure 5.66. Although being the simplest of the three models, the MFBPM was 

able to capture the CA50 with reasonable accuracy while the error with the RW model 

was significant. It is pertinent to add here that a situation may arise where the MFB value 

between the two combustion events (from 370 to 390°CA) may be 0.5. Although the HR 
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algorithms would predict 370°CA as the CA50 (the first crank angle at which the trace 

reaches the 0.5 value), the G450 determination in such cases would be imprecise. This 

also highlights the limitations of the CA50 as a measure of the combustion phasing under 

such combustion modes. 

Pintake: 1 bar abs 
Tjntake: 25°C 

•a 0. 0.5 
MFBRW 
Cum AHR 
MFBPDR 

Cum HR (BL) 

340 360 380 
Crank Angle [°CA] 

-i— 
400 420 

Figure 5.66: Comparison between MFBPM, MFBRW and AHR Models (CMPD Mode) 

5.13. Quality of Pressure Data 

The quality of the pressure data can affect the prediction and thereby the robustness of 

the heat release models. The AHR model is more susceptible to disturbances in the 

pressure signal as it includes the derivative of the pressure which amplifies any 

disturbance present in the signal. This is clearly shown in Figure 5.67 and has significant 

implications on the calculation of the cumulative heat released since it requires the EOC 

to be identified with reasonable accuracy. Therefore, heavy smoothing or filtering of the 

pressure data needs to be performed before any reasonable estimate of the G450 can be 

made, which significantly increases the computational overheads. On the other hand, the 

PDR model was able to predict the G450 with sufficient accuracy without any treatment 
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applied to the pressure data. This makes the model more robust and suitable for real-time 

applications than the apparent HR model. 
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Figure 5.67: Model Comparison for a Noisy Pressure Trace; Upper: AHRR; Lower: 
MFB PDR 
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5.14. PDR Algorithm Performance Tests 

Additional experiments were performed to demonstrate the PDR algorithm performance 

for selected cases with variation in boost, EGR, engine load, and fuel injection strategies. 

The baseline cumulative heat release was calculated using both the AHR model and the 

comprehensive model including the heat transfer estimation and specific heat ratio 

variation with temperature. If a difference existed between these two models, then the 

baseline value shown in the figures represents the value from comprehensive HR model. 

High values of EGR are presented in these results to test the performance of the 

algorithm at the extreme conditions of EGR with high cycle-to-cycle variation and 

increased emissions of CO and HC so that the limitations of the model may be better 

identified. 

The estimation of the motoring pressure trace can have a significant effect on the PDR 

model performance. The predicted motoring traces for different levels of EGR are shown 

in Figure 5.68. High levels of EGR cause a reduction in the cylinder pressure during the 

compression stroke. The RT-FPGA code was able to track this trend and modify the 

motoring traces as the amount of EGR was changed. This also implies that the algorithm 

can to some extent, account for changes in the composition, the specific heat ratio and the 

charge-to-wall heat transfer. 

The effects of EGR variation with a single injection per cycle on the MFBPM are shown 

in Figure 5.69. As the amount of EGR was increased from zero to 56%, the start of 

combustion was progressively delayed. It can be seen that the PDR model was able to 

accurately predict the retarded combustion phasing. 

The effects of changing the boost pressure and the fuel injection strategy are shown in 

Figure 5.70. With multiple injections per cycle (3 early injections and one main 

injection), the heat release curve takes the shape of the double hump pattern. The PDR 

model was able to reasonable predict the CA50 within the prescribed limits of accuracy, 

that is, ±1°CA. 
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EGR Experiments (Single Injection per Cvcle) 
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Figure 5.68: Estimation of Motoring Pressure 
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Figure 5.69: EGR Sweep Experiments 
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The variation of the engine load while the boost pressure was held constant is shown in 

Figure 5.71. The low indicated mean effective pressure (IMEP) case represents the single 

hump type of combustion, while the higher load case falls in the double hump category. 

The PDR algorithm in these cases was also able to fairly predict the occurrence of the 

CA50. 

Boost Variation Experiments 
Sinale/Multi-Shots per Cvcle 

Speed: 1450 RPM 
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Figure 5.70: Variation of Boost & Fuel Injection Strategy 

The application of the PDR algorithm for various combustion modes and fuel injection 

strategies showed that the estimation of the heat release characteristics using the PDR 

algorithm was least affected by the combustion off-phasing and split combustion events. 

Moreover, the numerically simplified form of the PDR algorithm given in 

Equation (5.19) provided the normalized heat release comparable to the baseline and 

apparent heat release data by using significantly less computational resources. 
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120 - Load Variation Experiments 
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Figure 5.71: Load Variation Experiments 

5.15. Smart NOx Sensor 

The aim of developing a control strategy for the LTC cycles is to improve their stability 

while maintaining low emissions of NOx and soot. Therefore, feedback on these 

emissions is necessary for the control system to guarantee efficient operation. To provide 

such a feedback, a smart NOx sensor was installed in the exhaust of the cylinder # 1 of 

the Ford engine. 

The sensors uses the CAN bus communication protocol which was implemented with 

LabVIEW software as a part of this work. The sensor can measure ultra low levels of 

NOx with sufficient accuracy and also provides feedback on the excess air ratio (k). The 

specifications of the NOx sensor are given in Table 5.8. 
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Table 5.8: Specification of the Smart NOx Sensor 

Type Zirconia (Zr02)-based multilayer sensor with 3 oxygen pumps | 

Measuring Range 
NOx: 0-1650 ppm 

X: 0.75 to Air 

Accuracy 
NOx: ±10 ppm at 0 ppm 
±10 % ppm at 1500 ppm 

X: ±0.06 at X=l 

Response Time (T66) 
NOx: 750 ms 1 

X: 550 ms 

Control Built in Controller for internal heater & communication 

Communication 
Interface 

CAN Bus 
Standard 500 kbaud, 11 bit 
Data Update Rate: 10 ms | 

Initial testing of the sensor showed that the sensor response was susceptible to the 

exhaust pressure and especially, to the flow rate fluctuations. In case of a single cylinder 

configuration, the flow fluctuations are more distinct compared to a multi-cylinder 

configuration and therefore, the sensor output was not usable. To overcome this problem, 

a bleed line was installed upstream of the exhaust surge tank and the exhaust 

backpressure valve (Figure 4.7). The sensor was installed in the bleed line and the other 

end of the bleed line was connected downstream of the backpressure valve. A throttling 

valve was also installed to adjust the flow. This allowed a steady flow to be maintained 

over the sensor while providing a fast response time as well. 

The sensor was tested over a wide range of engine operating conditions and the results 

for X and NOx are shown in Figure 5.72 and Figure 5.73 respectively. The results for the 

X output were compared with the reference values (Xref) calculated using the carbon 

balance method. Since the data presented involved transient engine operation that 

included load transients as well, the fuel flow rate reading was not accurate to calculate 

the X. The carbon balance method (APPENDIX C) provides a fairly accurate estimate of 

the air/ftxel ratio based on the exhaust concentrations, and the intake fresh air mass flow 

rate (MAF). The results showed that the sensor accurately captured the changing trends 

and provided a reasonable estimate of the air excess ratio. 
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The NOx output of the sensor was compared with the NOx readings (obtained from the 

exhaust NOx emission analyzer marked as NOxref in the figure). The results indicated 

that the sensor was able to provide a fairly accurate estimate of the engine-out NOx, 

especially at low levels of NOx seen during LTC operation. The actual response time was 

the sum of the digital delay (the sensor response) and the physical delay (a consequence 

of the sensor location, delay in the exhaust system as dictated by the flow characteristics), 

and was observed to be a few seconds (typically 1 to 2 seconds). 

The feedback from the smart NOx sensor was used to ensure the emission level 

conformity while navigating the narrow LTC operating corridors as part of the systematic 

combustion control system (Chapter 8). 
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Figure 5.72: Air Excess Ratio estimated by the Smart NOx Sensor 
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1800 Smart NOx Sensor - NOx Feedback 
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Figure 5.73: NOx Emission estimated by the Smart NOx Sensor 

5.16. Conclusions 

The work presented in this chapter can be summarized as follows: 

• An LTC NOx reduction mechanism was identified through direct in-cylinder 

sampling experiments. The low NOx levels in the exhaust were confirmed to be the 

result of the NO-HC interaction. 

• A critical HC/NO ratio of 10—15:1 was found to exist that resulted in a significant 

conversion and/or destruction of NO. A lower ratio considerably decreased the NO 

conversion while a high ratio indicated an insignificant or a small increase in the 

conversion. 

• In-cylinder sampling studies for lean homogeneous charge combustion fuelled with 

DME confirmed the production and subsequent oxidation/destruction of NO within 

the combustion regime. The engine-out NOx was 1-2 ppm for all the testing 

conditions. 
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• To enable closed-loop control of the diesel combustion, a number of cylinder 

pressure based parameters were analyzed for their numerical complexity accuracy 

and robustness under different diesel combustion modes. The crank angle of 50% 

heat released (CA50) was found to provide a stable and robust feedback on the 

phasing of the combustion process. 

• A computationally efficient 'Diesel Pressure Departure Ratio' algorithm for 

estimating the combustion phasing for a multitude of combustion strategies was 

proposed, implemented and validated with engine tests. The algorithm performance 

was empirically compared against the conventional heat release algorithms and 

was found to provide accurate feedback within ±1°CA. 
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CHAPTER VI 

6. EGR ANALYSIS AND CATALYTIC TREATMENT 

The heavy use of EGR was considered unnecessary during conventional diesel 

combustion as a low rate of EGR in combination with injection timing retard and low 

boost pressure was sufficient to enable compliance with the emission regulations. 

However, the introduction of stringent emission standards has resulted in alternate 

combustion regimes to be applied to the diesel engines. The use of heavy EGR is an 

important enabler for LTC cycles as will be shown in Chapter 7. Moreover, the stability 

of the LTC operation is very sensitive to the EGR rates as shown in Figure 6.1. 
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Figure 6.1: Sensitivity of LTC Cycles to EGR 

The use of higher boost pressures changes the fuel-strength of the cylinder charge and in 

turn has a significant effect on the quality and effectiveness of the EGR. Therefore, a 

detailed analysis of the EGR was decided to be carried out to characterize the efficacy of 

EGR for LTC operation as well as to develop suitable parameters that can provide 
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feedback for the LTC control. Moreover, an extensive study was carried out by reforming 

a small quantity of diesel fuel in the EGR loop to generate gaseous fuels on demand. The 

participation of these gaseous fuels in the combustion enhanced the premixed combustion 

and reduced the soot emission while maintaining low levels of engine out-NOx. Novel 

flow-management strategies were also applied to improve the efficiency of the reforming 

process. 

6.1. Defining EGR 

To quantify the amount of the recirculated exhaust gas, a number of mathematical 

definitions have been adopted in the literature [83]. As such, there is no standard 

definition of EGR to quantify the amount of recirculation. However, two basics formulae 

have been most commonly used to define the amount or rate of EGR. 

6.1.1. Mass Based EGR 

The definition of EGR on a mass basis is schematically shown in Figure 6.2. 

Engine 

mEGR ~ °EGR- mexh 

(1 -REGR)mexh 

Figure 6.2: Defining EGR on a Mass Basis 

Mathematically, it can be expressed as follows: 

R 
m EGR 

EGR 
mair+mf+mEGR 

(6.1) 

where 

mEGR = mass flow rate of recirculated exhaust gas 

- mass flow rate of fresh air 
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mf = mass flow rate of the injected fuel 

R-F.GR = mass fraction of the recirculated exhaust gas 

A simplified form of this equation is usually used: 

Regr=— (6.2) 
mintake 

where 

rnmiake = total intake charge mass flow rate with EGR (minlake = mair + mEGR) 

Alternatively, under steady operating conditions, the EGR rate can be evaluated 

from Equation (2) where MAFcurrent and MAFinitiai(w/o EGR) are the fresh air mass 

flow rates with and without EGR application, respectively. 

MAP 
REGR^~mT (") 

initial(w/o EGR) 

6.1.2. Carbon Dioxide Concentration Based EGR 

CO -CO CO 
EGR CO -CO ~ CO 2(exh) ^^2 (amb) ^^2(exh) 

where 

int = CO2 concentration in the intake (by volume) 

exh = CO2 concentration in the exhaust (by volume) 

amb = CO2 concentration in the ambient air (by volume) 

These definitions do not provide exactly the same results for a given engine operating 

condition but the trends have been found to be consistent over a wide range of engine 

operating conditions including engine load and boost. However, from the point of view of 

estimating the EGR for control feedback purposes, as long as the same definition of EGR 

is used, the repeatability of the results takes precedence over the absolute accuracy of the 

results. 
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6.2. EGR Analysis 

A molar-based analysis can provide helpful insight into the applicability of the EGR and 

its effect on the composition of the intake charge. For combustion without EGR, the 

global combustion reaction for the complete combustion of any hydrocarbon fuel with 

fresh air can be written as 

C„HtO, +AL+l-lW +3.76JV,) ->• 

<*C02 +^H,0+ ̂ ^ + 1-^3.76^ +(A„-!)(« + 

(6.5) 

where 

Xa = air excess ratio without EGR 

With the application of EGR, the reaction is modified as follows: 

+ (»-•*«* K (« + f "§ )(»2 + 3.76*,) 

aC02+|//;0+A^a + |-|j3.76iV2+a-l)fa+|-| 

3.76Af!+(A„-l-«IOT)^+£-| 

(6.6) 

(l + REGR ) aCOy + — H70 
2 2 2 

+ A 0 f  a  + — 
\  4  2 .  

O, 

The application of EGR is commonly represented by Equation (6.6) in the literature. 

However, if Equation (6.6) is used to estimate the intake and exhaust concentrations at 

any EGR level (R,.;(;r), the results would be grossly incorrect. The recirculation of some 

of the exhaust CO2 to the intake results in a higher level of CO2 in the exhaust during the 

next engine cycle. This translates into a higher CO2 concentration in the intake system as 

well. The process continues until equilibrium is reached between the intake and the 

exhaust concentrations. Therefore, the steady state EGR levels observed during engine 

operation are the result of an iterative process that results in the convergence of the EGR 

value over a number of engine cycles. 
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To express this phenomenon mathematically so that the steady-state concentrations could 

be easily estimated at any engine load and EGR level, an expression was derived as 

detailed in the following section. 

6.2.1. Estimation of Steady-State EGR 

Equation (6.6) represents the calculation of the concentrations for the first engine 

cycle after EGR is applied. The process was repeated for a number of engine cycles 

and a single equation has been proposed that can be used for determining the intake 

and the exhaust concentrations for any cycle. Using Equation (6.6) as the starting 

point, the reactant and the products for the 2nd cycle, after the recycling of the 

exhaust products from the 1st cycle can be expressed as 

For the n'h cycle, the general equation for the reactants and the products becomes: 

CaHfO, + (1 - Rx,) A"+f- f)(02 + 3:16N,) 
V  ̂ J 

C„HfOr +3.76JV,) 

(6.7) 
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Combining the fresh air and the recycled concentrations and simplifying, Equation 

((6.7) can be written as 

C.Hpr+*,[a + £-Q3.16N, +(*tc, + + -+«;o„)faCO! +\H70 

+ ^ + ̂ CG/t ^  *~4~~* 

(i+^™+*ii,+-+^»)(»co2+|w!o)+4f'-' p 7 

(6.8) 

a + -
4 2 

3.7 6N, 

+ 
M ̂ 

+ ̂ ECR + ̂ K,R ^ ^EGR ) J f a + t - r - ] o 2  
4 2 J 2 

The term \ + REGR + R2
EGR+—h R"EGR can be expressed as a geometric series 

n 

^ark =ar° +arl +ar2 +--- + arn, with the common ratio r = REGR * 1 and a scale 
k=0 

factor of a = 1. Therefore, Equation (6.8) can be expressed as: 

C„UeOr + 4 f a +| -Y- j3.76JV2 + Rm 

^ 1 — P " ^ 
1 IXEGR 

V ^ _ ̂ EGR J 
aC02 +—U2 O 

+ a + L-L  
4 2 

U -R 
f 1_ D « ^ 

1 "-EGR 
•o EGR 

\ ̂ ^EGR J \ 
'o: 

1 -R n+1 \ 
EGR 

\ ̂ REGR J 

P Y a + — ~ — 
4 2 

aC02 + — H20 J + A0 ^a+—13 .76JV ,  
v 4 2 

X-
L - R  /t+1 

EGR 

1 ^EGR J 
>0, 

(6.9) 

Equation (6.9) can be used to track the cycle-by-cycle effect of EGR on the intake 

and the exhaust species concentrations. Moreover, for steady state concentrations, 

selecting an n value greater than or equal to 20 was found to provide satisfactory 

results over a wide range of EGR and Aa values. 
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From Equation (6.9), the molar concentrations of the intake species are determined 

by the following equations: 

aR 
1 -R » \ 

EGR 
EGR 1 -R 

yco, (int) 
EGR / 

^EGR a + 
1 -R EGR 

1  - R  EGR y 

f \ — P " ^ 
1 "EGR 

^~^EGR J  

(6.10) 

« + f - § )  U - *™ 

yO} (int) — 

( 1 _ J? " ^ 
1 EGR 

1 ~ RfiGR J 

^KOR f  ̂  + 2 
fi=W 

i-« £Gfl 4 2 EGR 1 -R 

(6.11) 

EGR 

R EGR 

^//20( int) 

^ 1 _ J? " ^ 
1 EGR 

^£GK <* + 1  V LLLZ  N4.764 - * ^  
V1-*£GJ I 4 2n 

' 1 _ D " ^ 1 K-EGR 

^~^EGR J  

(6.12) 

y N2 (int) 

3.76A fa + —^ 
°l 4 2 

R-EGR a + 
P\ (  l -R  n ^ 

£GS 
1 ^EGR J 

+\ a + fL-i. 
4 2 

4.76 A-R EGR 

1 -R n ^ 
(6.13) 

EGR 

l - R  EGR / 

Similarly, the molar concentrations of the exhaust species are: 

a ^ ^EGR 
l - R  

n+1 \ 

yC02(exh) f 
EGR 

l - R  n+1 
EGR 

l - R  EGR 

a + : 
a + H J W-

/ 1 _ n 1+1 
1 EGR 

l - R  EGR / 

(6.14) 

P y a + — - — 
4 2 

\ x -
1 - R  n+1 

EGR 

l - R  
y02(exh) 

EGR 

\ _ J? n+1 
1 "-EGR 

^ ~ R-egr J 
a+tyL  + l -L  4.762 

^ 1 p n+1 
* EGR 

l - R  EGR 

(6.15) 
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1 
2 

rt+1 

yHjO (exh) /  n+1 \ 
1 kegr 

1 _ D  
1 EGR 

v j _  & E G R  /  

1-/? EGR / -  +  f  +  

P Y a + — 
4 2 

4.76^- 1-W+1 

1-/? 

(6.16) 

3.761 

y^Oiah) f n+1 
I — A 

Y a + — ~-
4 2 

V£G« 
1-/C y 

a + ! - + 

/ 

fi y 
a + — ~— 

4 2 
4.76A-

^ 1 _ n »+l ^ 
1 EGR 

1 -R EGR y 

(6.17) 

The results for a calculation using Equations (6.9) to (6.17) for the intake and 

exhaust concentrations are shown in Figure 6.3 and Figure 6.4. Cycle # 0 

represents the concentrations obtained without the application of EGR. When EGR 

is applied and the exhaust gases are recycled back into the intake, the 

concentrations obtained at the end of Cycle #1 are CO2:2.2%, 02:17.5%, 

H20: 1.9%, N2: 78.3% for the intake, and C02: 5.1%, 02: 13.2%, H20: 4.4%, 

N2: 77.4% for the exhaust. It should be noted that these are not the steady state 

concentrations because of the application of EGR. The recycling of the exhaust 

gases after each cycle results in the concentrations reaching a steady state value by 

Cycle # 19 in this case; the concentrations being CO2: 9.7%, O2: 6.2%, H2O: 8.4%, 

N2: 75.8% for the intake, and C02: 12.4%, 02: 2%, H20:10.7%, N2: 74.9% for the 

exhaust. A summary of the results for O2 and C02 concentrations at different 

cycles is provided in Table 6.1. 

Table 6.1: Comparison of 02 & C02 Concentrations After EGR Application 

Cycle # Intake 02 [%] Intake C02 [%] Exhaust 02 [%] Exhaust C02 [%] 

0 20.9 0 16.5 2.9 

1 17.5 2.2 13.2 5.1 

5 10.1 7.1 5.9 9.9 1 

20 6.14 9.69 1.96 12.43 

30 6.07 9.73 1.89 12.48 
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EGR is an effective technique to lower the combustion temperatures because of its 

thermal, dilution and chemical effects [4,23], and is one of the key enablers for 

LTC cycles. The thermal effect of EGR is attributed to the increased heat capacity 

of the cylinder charge because of the higher specific heat capacity of recirculated 

CO2 and H2O compared with O2 and N2. This results in lowered in-cylinder peak 

compression and thus, lower combustion temperatures. 

The dilution effect describes the reduction in the intake O2 concentration whose 

main consequence is the deceleration of the mixing between O2 and fuel. This 

results in the extension of the flame region and therefore the gas quantity that 

absorbs the released heat is increased, subsequently leading to a lower flame 

temperature. It is noted that since the oxygen is replaced with inert gases, one 

consequence of the charge dilution is the reduction of local temperatures which can 

also be considered as a local thermal effect. Furthermore, the dilution effect 

contributes to the reduction of the oxygen partial pressure and thus effects the 

kinetics of the elementary NO formation reactions. 

The recirculated H2O and CO2 are dissociated during combustion. The dissociation 

of H2O and CO2, constituting the chemical effect, is believed to affect the 

combustion process and the NOx formation. In particular, the endothermic 

dissociation of H2O results in a decrease of the flame temperature. 

To identify the effect of EGR on the air/fuel ratios, two different types of air excess 

ratios have been defined as shown in Figure 6.5. At any given EGR level, the fresh 

air lambda (X ) represents the air/fuel ratio based upon the amount of fresh air 

entering the engine cylinder. If EGR is changed, the fresh air in the intake reduces 

and so the values of X also decreases (towards 1). However, since the diesel 

engines are inherently lean-burn systems, thus the re-circulated gases will also 

contain some oxygen. As such, X is not a true representation of the in-cylinder 

conditions but is commonly used because of the availability of the MAF sensors in 

almost all production diesel engines. The in-cylinder lambda (Xa) represents the 

actual air/fuel ratio existing inside the cylinder and accounts for the exhaust 
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oxygen that has been added to the intake stream through the EGR. A special case 

of k is also defined as ka which represents the fresh air/fiiel ratio without EGR. 

Engine 

k : Fresh Air Lambda 
ka : In-cylinder Lambda 

K : Special case of X without EGR 

m exh N C"^EgR)mexh 

mEGR ~ ^EGR" mexh 
I  

Figure 6.5: Defining the Air Excess Ratios with EGR 

Based on the above description, some important correlations can be developed 

from the molar analysis. Although these correlations are approximate, yet these 

provide a simple method of estimating the operating conditions of the engine at any 

EGR level. 

Without EGR, the air excess ratios k and ka should be the same and equal to kg. 

As EGR is applied, the fresh air lambda k would decrease linearly with the EGR 

rate. From Equation (6.7), it can be seen that the fresh air part of the intake, i.e., the 

oxygen decreases by the amount (1 - REGR ) at any given EGR level. Therefore, the 

fresh air lambda k can be expressed as: 

^ ~ 0 ^EGR ) (6.18) 

In case of the in-cylinder lambda ka, the oxygen contained in the EGR will result 

in comparatively more oxygen available in the cylinder and as such, the in-cylinder 

lambda would be leaner than the fresh air lambda at any given EGR level. It should 
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also be noted that when Xa attains stoichiometric condition, there would be no 

oxygen in the exhaust to recirculate. Accordingly, Xa = X = 1 at stoichiometric 

conditions. 

From Equation (6.7), it can be seen that the Xa can be expressed by the 

contribution of both the fresh air and the EGR streams such that: 

which is essentially the same as the coefficient of the intake oxygen term in 

Equation (6.9). 

6.2.2. Formulation of the EGR Analysis Technique 

To develop a deeper understanding of the efficacy of EGR and to look at ways for 

formulating a control strategy, a zero-dimensional EGR simulation program was 

written so that the intake and exhaust concentration could be calculated based on 

the mass basis. The residual mass fraction was also included so that the effect of 

increased residuals because of higher exhaust back-pressure could be analyzed. 

The flowchart for implementation of zero-dimensional EGR simulations is shown 

in Figure 6.6. The implementation of the EGR simulation was done in the 'C' 

programming environment. The assumptions for the calculation are as follows: 

• The moles of the in-cylinder charge are fixed, based on the initial conditions 

that include the intake pressure and temperature, the engine geometric 

constraints, volumetric efficiency r|Voi, and the engine speed. 

Fresh Air EGR 

Simplifying, the final equation for Xa can be written as: 

(6.19) 

174 



CHAPTER 6: EGR ANALYSIS AND CATALYTIC TREATMENT 

• The EGR stream is assumed to be fully cooled and at the same temperature as 

the fresh air part of the intake charge. 

• The EGR ratio is taken as the mass fraction of the exhaust. Therefore, the 

quantity of the recycled gases is calculated by multiplying the EGR ratio with 

the mass of the exhaust (mass of intake charge + mass of injected fuel). 

• The compositions of the intake and the residual portions of the cylinder charge 

are updated at each iteration until a stable exhaust composition is attained. 

• The air-excess ratios (Aa,/l) are obtained by first calculating the air/fuel ratio 

on a mass basis and then dividing it with the mass-based stoichiometric air/fuel 

ratio for the diesel fuel. 

• The output is written as a tab-separated text file at the termination of the 

simulation. 
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Input Engine Geometric Data 
Set Initial Conditions 

Initialize Cycle Variables 

Start 
Combustion Calculations 

Global Combustion 
Reaction 

0-D Engine Cycle 
Simulation 

Pintake>"Tjntakei Residual Fraction, 
EGR Ratio, tivoi, Fuel Flow Rate, 

Engine Speed 

Trapped Composition & Mass 
(Fresh Air, Residual, EGR) 

Corresponding Moles 

1 r 

Exhaust Composition 
Update EGR, Intake & 
Residual Composition 

Stabilized 
Values 

Calculate Xa, New Exhaust & 
Intake Compositions 

Output Results 
Intake & Exhaust Compositions, 

In-cylinder Lambda Xa 

Figure 6.6: Flowchart for the Implementation of Zero-Dimensional EGR Simulation 
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The difference between the two definitions of lambda, i.e. ka and X calculated 

with the 0-D simulation is highlighted in Figure 6.7. At low loads, the EGR 

contains a significant amount of oxygen. Therefore, the difference between the in-

cylinder lambda and the fresh-air lambda is significant. As the engine load 

increases, the difference between the two values reduces. It can be seen that as the 

exhaust oxygen tends to approach a very low value, the contribution of the EGR-

borne oxygen to the intake is diminished and the two lambda values tend to 

converge as the EGR pushes the in-cylinder charge towards stoichiometric 

operation. 

Figure 6.7 also shows similar trends obtained from the experimental investigations 

with diesel fuel using the MAF-based EGR rate up to 55%. The results were in 

good agreement with the analysis. Because the combustion inefficiency in diesel 

HTC mode is normally <2% [4], the assumption that the diesel engine exhaust gas 

is composed of N2, CO2, H2O and O2 only is thermodynamically reasonable. 

Fresh Air lambda 
In-Cylinder Lambda 

Simulation Assumptions Experiment (EGR Sweep) 
Complete Combustion 
Constant Speed & Pintake 

Fully Cooled EGR 
L Residual Fraction: 0% 

Speed: 1500 RPM 
înjection- 850 

Pintail 1 bar abs 
" întake- 30~35°C 

IMEP: 5 bar 
K,: 2.46 

EGR Ratio 

Figure 6.7: Effect of EGR on the Air Excess Ratios 
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A comparison of the molar analysis and the 0-D EGR simulation at two different 

Aa is shown in Figure 6.8. The residual fraction was set equal to zero to make a 

fair comparison. It was observed that the general trend of the Xa variation with 

EGR was captured by the molar analysis. However, the magnitudes were predicted 

to be slightly higher compared to the 0-D simulation results. This is because with 

molar analysis, the intake moles are not constant at each iteration and increase 

slightly during the calculation at each cycle repetition. 

4 "T 

^ 3 
CO "O A 
E 

d> 
"O 

I 2  
•  
c 

Similar trend predicted 
with the molar analysis 

Molar Analvsis-Eauation (6.19) 
Complete Combustion 

Constant Speed & Pintake 
Fully Cooled EGR 

Residual Fraction: 0% 

0-D Simulation 
Complete Combustion 

Constant Speed & Pintake 
Fully Cooled EGR 

Residual Fraction: 0 % 

: Molar Analysis 
10-D Simulation 

—i i i i i i i i 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

EGR Ratio 

Figure 6.8: Comparison of the Molar Analysis & 0-D EGR Simulation 

A higher exhaust backpressure should increase the amount of residuals that remain 

in the cylinder at the end of the exhaust stroke. This in turn reduces the amount of 

the fresh intake charge entering the cylinder. The effect of increasing the exhaust 

back pressure was analyzed with the 0-D simulation by changing the residual 

fraction at two different intake pressure levels as shown in Figure 6.9. As the 

proportion of the fresh intake is reduced, the fuel strength of the cylinder charge 
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increases (become slightly rich) for the same fuelling. Therefore, the effective in-

cylinder air excess ratio is reduced across the EGR range. 

Simulation Assumptions 
Complete Combustion 

Constant Speed 
Fully Cooled EGR 

4.5 

mfc*: 99.5 mg/cyc 
V 4.71 (0% Residuals) 

Residuals 
0% 

— 5% 

— 10% 
2.5 

rhfu :̂ 99.5 mg/cyc 
tS K 2.01 (0% Resdiuals) 

0 0.2 0.4 0.6 0.8 

EGR Ratio [-] 

Figure 6.9: Effect of Residuals on the In-cylinder Lambda 

6.2.3. Effect of Engine Load 

The dilution and the heat capacity enhancement are strongly affected by the engine 

load. As EGR is increased, the strength of the in-cylinder charge increases but the 

relationship is not linear. As shown in Figure 6.10, the application of 60% EGR at 

low loads (k0 = 5) changes the in-cylinder lambda from 5 to about 3.4. However, 

further increasing the EGR from 60 to 80% only, results in the in-cylinder lambda 

reducing by about '2' units (from 3.4 to 1.4). At higher engine loads without EGR, 

the exhaust already contains less oxygen. The application of a low EGR level is 

also sufficient to push the exhaust oxygen towards zero, thus limiting the 

application of EGR at high load conditions. 

Therefore, the efficacy of EGR needs to be quantified or standardized so that the 

load dependency of EGR can be adequately integrated in the control system. 
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Figure 6.10: Effect of Engine Load on Efficacy of EGR 
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6.2.4. Effect of Boost Pressure 

Increasing the boost pressure at a given engine load (constant fuelling) has a direct 

effect on the efficacy of the EGR. To understand the interaction between the boost 

and EGR, the simulations were run with an initial air/fuel ratio of 30:1 without 

EGR at 3 bar abs intake pressure. The effects of increasing the EGR and boost 

pressure were then studied while keeping the fuelling constant. The results in terms 

of the in-cylinder lambda Xa and the fresh lambda A are shown in Figure 6.11 and 

Figure 6.12 respectively. The solid lines represent lines of constant EGR while the 

broken lines indicate a constant intake pressure. 

If the EGR is held constant while the boost pressure is increased, the cylinder 

charge becomes leaner as more fresh air is forced into the cylinder for the same 

injected fuel. This increases the intake oxygen concentration and therefore, reduces 

the effectiveness of the EGR as marked in the figures as Path (1). Additionally, the 

higher O2 concentration with the increased boost allows higher levels of EGR to be 
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employed, therefore extending the EGR application range. Conversely, to attain the 

same intake O2 concentration with higher boost, higher levels of EGR need to be 

employed as indicated the Path (2). 

The results in these figures again highlight the difference between basing the 

calculations on the actual in-cylinder conditions or on the fresh-air contribution to 

the intake charge only. The fresh-air air/fuel ratio indicates a comparatively richer 

operation than the actual in-cylinder conditions. It is noted that the fresh-air based 

metrics are generally used because of the availability of the mass-air-flow (MAF) 

sensors in nearly all production vehicles. 

30 Simulation Conditions 
Fuelling: 99 mg/cyc (constant) 
Combustion Efficiency: 100% 
Residuals: 5% 

27-  /  !  

10 11 12 13 14 15 16 17 18 19 20 
Intake 02 [%] 

Figure 6.11: Understanding the Boost-EGR Interaction (In-cylinder Lambda) 
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Simulation Conditions 
Fuelling: 99 mg/cyc (constant) A 

Combustion Efficiency: 100% 
Residuals: 5% w 

10 11 12 13 14 15 16 17 18 19 20 

Intake 02 [%] 

Figure 6.12: Understanding the Boost-EGR Interaction (Fresh-air Lambda) 

6.2.5. Intake Oxygen Concentration 

Based upon the discussion in the previous section, intake O2 is an effective 

indicator of the intake charge dilution with EGR. Therefore, while analyzing the 

effect of variations in the boost pressure, it is beneficial to plot all the results 

against the intake O2 concentration so that a fair comparison can be made between 

the results. 

The LTC results shown in Chapter 7 indicate that the combustion enters the LTC 

cycles once the intake O2 concentration is reduced to approximately 10~14%, over 

a wide range of engine operating conditions. Therefore, using intake oxygen as a 

representation of the EGR level, the effect of boost and load on the in-cylinder 

lambda was incorporated into a single map as shown in Figure 6.13. A similar map 

for the fresh air lambda is given in Figure 6.14 . 

The effect of increased boost is to make the cylinder charge leaner at any given 

fuelling and to increase the intake O2. Therefore, the effect can be visualized on the 
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map as an increase in the lambda value, indicated by the path (1). The increase in 

the intake O2 can then be readjusted by increasing the EGR, indicated by the 

path (2). From a control point of view, this approach is not feasible for LTC cycles 

since the increase in the boost pressure can cause the combustion to move out of 

the LTC regime. The desired path during LTC cycles is indicated by the path 

marked with an asterisk (*) which would require the boost and EGR to be adjusted 

simultaneously to maintain a constant level of O2 in the intake. 

From the figures, it is evident that the fuel strength of the cylinder charge (Za or 

X) retains a higher value (leaner) even after the intake O2 is adjusted back to its 

original value with higher EGR. Thus, the effect of boost is not only to extend the 

EGR range but also to move the combustion to leaner operating conditions. An 

implication of the leaner charge is the possibility of increasing the fuelling to make 

use of the available oxygen in the intake charge. 

Sensitivity of ka to EGR 
1) is LESS at LOW EGR ratios 
arid LOW loads, but increases 
at higher EGR ratios. 
2) is MORE at LOW EGR ratios 
and HIGH Loads 

A 0:Fresh air lambda w/o EGR 
In-cylinder lambda 

Lines of 
.Constant Fuelling 

Lines of 
Constant Intake [0: 

0.4 0.5 
EGR Fraction 

Figure 6.13: Theoretical Operating Map for LTC Cycles based on Xa 
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Boost Pressure 
1) Increasing boost at constant 
fuelling reduces XD (leaner), thereby 
extending the EGR range 
2) Increasing boost at 
constant has no effect 
on the EGR range 

X  0 :  Fresh air lambda w/o EGR 
X: Fresh Air Lambda 

\ Lines of 
.Constant Fuelling 

Lines of 
Constant Intake [ 

& 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
EGR Fraction 

Figure 6.14: Theoretical Operating Map for LTC Cycles based on X 

6.3. EGR Characterization 

The analyses presented so far indicate the effectiveness as well as the complexity of 

EGR. EGR is one of the key techniques for enabling the LTC cycles. However, the use of 

heavy EGR during LTC cycles escalates the consecutive cyclic variations of the cylinder 

charge in terms of temperature, pressure and composition. This problem is further 

compounded by the fact that the burning of a homogeneous charge that is lean and/or 

EGR-diluted is inherently close to the flame-out limits. Therefore, the LTC cycles for 

diesel engines are bounded within narrow operating pathways and a small disturbance in 

the operating conditions normally results in a sharp deterioration in exhaust emissions, 

fuel efficiency, combustion noise, and operational stability (presented in detail in Chapter 

7). Therefore, a robust feedback on the EGR and the quantification of the EGR effects on 

the LTC combustion are deemed essential. 
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To develop such a feedback for the control of the LTC combustion, a number of 

parameters were defined based on the oxygen concentrations in the intake and exhaust 

systems (Figure 6.15). 

[OJexhaust 

K LOAD LEVEL 

[O2] intake [OJfresh 

EGR 

(1-REGR) mexh Ifiexh 

EGR 
Cooler Regr ni«xh 

mfu«i 

Level 

""int ""fTMh 

Intake 

Exhaust 

Cooled EGR 

Figure 6.15: Defining New Parameters for EGR Feedback 

One of the main consequence of the EGR is the departure of the intake oxygen 

concentration from that of the fresh air (-20.9%). Therefore, an 'EGR level' to account 

for the intake concentration deviation from that of the fresh air was defined as: 

EGR Level = [02 ]FRESH — [02 ]mtake (6.20) 

Furthermore, the departure of the intake oxygen concentration from that of the fresh air at 

any EGR level is dependent on the engine load. At low loads, the difference between the 

intake and the exhaust oxygen concentrations is less, and the difference progressively 

increases as the fuelling and thus the load is increased. Therefore, the engine 'load level' 

was defined in terms of the oxygen consumption during the combustion process as: 

Load Level = [02]MAKE (6.21) 
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Since the effectiveness of EGR at any given level is also dependent on the engine load, a 

new 'Charge Dilution Index' (CDI) was created to normalize the effect of the engine load 

so that the CDI at any EGR level should be the same across the load range. Therefore, 

CDI was defined as: 

Charge Dilution Index = EGR Level 
= ^ (6 22) 

Load Level [02 ]MLAKE - [02 ]EXHAUST 

Simulation were run to map the CDI for a wide range of engine operating conditions 

(Pintake* 1 to 5 bar abs, :1.1 to 10, EGR: 0 to 77%) and the results were plotted against 

the EGR as shown in Figure 6.16. The CDI is a representation of the EGR independent of 

the engine load and the boost pressure and its value ranges from 0 to 3.5 for 0 to 77% 

EGR. Empirical data from a vast array of engine operating conditions was used to 

calculate the CDI and showed a good agreement with the simulated CDI. 

The CDI could therefore be used to estimate the EGR at any engine operating condition. 

The simulated data was curve-fitted to obtain the following two correlations: 

EGR Fraction = 0.456CDI2 + 0.891 CDI + 0.00433 

for 0 < CDI < 0.67 

EGR Fraction = 0.0159CZ)/3 -0.142CD/2 +0.486CD/ +0.138 

for 0.67 < CDI <3.5 

(6.23) 

(6.24) 

In a research laboratory environment, a single polynomial of order 5 or 6 can also have 

been used since the available computational resources are significantly more as compared 

to those available in production vehicles. However, a lower order polynomial requiring 

less computational resources is generally preferred by the automotive industry because 

the computational resources of the production engine control units are usually limited 

(cost being the main factor). A lower order algorithm can readily be applied by the 

industry without major hardware modifications. Therefore, throughout this research 

work, the effort was to minimize the computational complexity of the proposed control 

algorithms while maintaining a sufficient level of accuracy. 
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Experiment #1 
Speed: 1200-2100 RPM 
Boost: 2-2.4 bar abs 
IMEP: 3-14 bar 
EGR: 12-70% 

Experiment # 2 
Speed:1200-2250 RPM 
Boost: 1.5-2.5 bar abs 
IMEP: 4.3-10.7 bar 
EGR: 35-71% 

Experiment # 4 
Speed: 1200 RPM 
Boost: 1-1.75 bar abs 
IMEP: 6.1-8.5 bar 
EGR: 47-64% 

Experiment # 5 
Speed: 1200 RPM 
Boost: 1 bar abs 
IMEP: 6.2-7.2 bar 
EGR: 62-71% 

—Simulation 
• Experiment # 1 
• Experiment # 2 
A Experiment # 3 
• Experiment # 4 
• Experiment # 5 A 

& 

Experiment # 3 
Speed: 1200-1600 RPM 
Boost: 1.75-2.8 bar abs 
IMEP: 3.7-10 bar 
EGR: 15-72% 

EGR Level = [C^jfresh - [OJ intake 
Load Level = [02]intate - [OJexhaust 

i 1 1 I i 

0.1 0.2 0.3 0.4 0.5 0.6 
EGR Fraction 

—4 
0.8 0.7 

Figure 6.16: Defining the Charge Dilution Index 

The oxygen concentration in the intake can be assumed to represent the total oxygen 

utilization potential available during the combustion process. The exhaust oxygen 

concentration can then be taken as a measure of the potential that has been wasted or not 

utilized for a given intake oxygen concentration. A low exhaust oxygen concentration 

therefore signifies a high utilization of the available potential. Since the oxygen 

utilization is also a representation of the load level, the 'oxygen utilization' was 

quantified in terms of the load level, and defined using the exhaust and intake oxygen 

concentrations as: 

Oxygen Utilization = 1 - ̂ l^exhaust = L°ad Level (6.25) 
m intake [^2 Jintake 

The simulated 'oxygen utilization' was plotted against the in-cylinder lambda as shown 

in Figure 6.17. The simulation showed that the calculated oxygen utilization for different 

operating conditions collapsed into a single curve. Therefore, the oxygen utilization can 

be used to provide a direct estimate of the in-cylinder lambda Xa. The empirical data 
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plotted over the simulation result showed reasonable agreement with the simulated 

results. The dispersion seen in the empirical data can be partly due to the transient 

operation data where the fuel flow measurement is not accurate; which in turn affects the 

in-cylinder lambda calculation. 

Simulation Conditions 
Boost: 1-5 bar abs 

1.2 to 10 
EGR: 0 to 80% 

—Simulation 
• Experiment # 1 
O Experiment # 2 
• Experiment # 3 
A Experiment # 4 

Experiment #1 
Speed: 1200-2100 RPM 
Boost: 2-2.4 bar abs 
IMEP: 3-14 bar 
EGR: 12-70% 

Experiment # 2 
Speed: 1200-2250 RPM 
Boost: 1.5-2.5 bar abs 
IMEP: 4.3-10.7 bar 
EGR: 35-71% 

A 

Experiment # 3 
Speed: 1200 RPM 
Boost: 1 bar abs 
IMEP: 2-8.5 bar 
EGR: 0-64% 

Experiment # 4 
Speed: 1200-1600 RPM 
Boost: 1.75-2.8 bar abs 
IMEP: 3.7-10 bar 
EGR: 15-72% 

4 5 
In-cylinder Lambda Aa  [-] 

6 8 

Figure 6.17: Oxygen Utilization as a function of In-cylinder Lambda 

To estimate the fresh air lambda X, it was found that the exhaust oxygen concentration 

alone was sufficient to quantify the fresh air lambda independent of the engine load or 

boost pressure as shown in Figure 6.18. Since the amount of fresh air reduces linearly 

with the increasing EGR, which in turn modifies the exhaust oxygen, the change in the 

fresh air lambda follows the trend observed in the exhaust oxygen. The mathematical 

expression for the X -exhaust O2 relationship is included in the next section. 

188 



CHAPTER 6: EGR ANALYSIS AND CATALYTIC TREATMENT 

20-r 

16 

fc 12 

8-

—Simulation 
• Experiment #1 
o Experiment #2 
• Experiment #3 
A Experiment #4 

° off 

Experiment #1 
Speed: 1200-2100 RPM 
Boost: 2-2.4 bar abs 
IMEP: 3-14 bar 
EGR: 12-70% 

Experiment # 2 
Speed: 1200-2250 RPM 
Boost: 1.5-2.5 bar abs 
IMEP: 4.3-10.7 bar 
EGR: 35-71% 

2 3 4 
Fresh Air Lambda X[-\ 

Experiment # 3 
Speed: 1200 RPM 
Boost: 1 bar abs 
IMEP: 2-8.5 bar 
EGR: 0-64% 

Experiment # 4 
Speed: 1200-1600 RPM 
Boost: 1.75-2.8 bar abs 
IMEP: 3.7-10 bar 
EGR: 15-72% 

6 

Figure 6.18: Exhaust Oxygen as a function of the Fresh Air Lambda 

All the above figures showed that the experimental data from a large pool of tests done at 

different operating conditions was in good agreement with the simulated data. Therefore, 

by using the parameters as defined above, it should be possible to estimate the engine 

operating conditions such as the in-cylinder lambda, the intake and exhaust oxygen 

concentrations, and the EGR at any engine load or boost pressure. 

6.4. Two-Lambda Sensor Approach 

For the implementation of the EGR analysis, a two-lambda sensor approach was devised, 

with one sensor installed in the intake and the other in the exhaust. The lambda sensors 

were the heated wide-band type made by Bosch (model no: LSU 4.9) that enabled the air 

excess ratio to be determined from near-stoichiometric to oo. These sensors also required 

a special controller for operation. The main specifications of the sensors are given in 

Table 6.2 [120]. 
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Table 6.2: Wide-band Lambda Sensor Specifications 

Type Zirconia (Zr02)-based sensor with current-limiting dual-
oxygen pump cells and an integrated heater 

Measuring Range X: 0.65 to Air 

Accuracy ±0.1 at X>\ 

Response Time -500 ms 

Operating Pressure 
Continuous Operation: < 2.5 bar abs 

Transient Operation: < 4 bar abs 

Control 
Tech Edge 3H1 Dual-channel programmable controller with 

analog signal outputs | 

The typical output of the lambda sensor is in terms of the fresh air lambda k and is 

related to the exhaust oxygen concentration as shown in Figure 6.19. The correlation 

given by Bosch for the X -to-Exhaust O2 conversion is also displayed in the figure. This 

expression is for a hydrogen-to-carbon {^/(^ mass ratio of 2. 

5 Wide-band Lambda Sensor Output 
Bosch LSU 4.9 

T3 

2-

0 2.5 5 7.5 10 12.5 15 17.5 
Oxygen Concentration [%] 

Figure 6.19: Typical Wide-band Lambda Sensor Output at 1 bar Absolute Pressure 
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The fuel used throughout this research had a [^/Q] rati° °f 1 -88 (Table 4.6). Therefore, 

the relationship between lambda and the O2 concentration was corrected as follows: 

From Equation (6.5), the oxygen concentration in the exhaust on a dry basis can be 

written as 

(A-l) a + 
4 2 

a r  +  A f a  +  — l 3 . 7 6  +  ( A - l ) f a  +  — -  —  
I 4 2 4 2 

(6.26) 

Solving for lambda, we get 

A = -

or 

,, (HK 
f P y a  +  - ~ -
l 4 2, 
1-4.76*, 

(6.27) 

For a diesel fuel with a \^/q) rati° of 2 {a = 1,(5 = 2, y = 0) , the equation reduces to 

1 + 
yo, 

JL = -
1-4.7 6y0i 

which is exactly the same equation as given by Bosch [120]. 
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Substituting the values of (a = 1,/? = 1.88,^ = 0) for the laboratory diesel fuel in 

Equation (6.27) yields 

1 + 
A = -

y0l 

3.13 
1-4.76*, 

(6.28) 

The results shown in the following sections use Equation (6.28), for converting the output 

of the wide-band lambda sensors into the corresponding oxygen concentrations. 

The Bosch LSU 4.9 sensor maintains a constant temperature (~780°C) of the pump cell 

with the built-in heater and operates by pumping more or less current (/,,) to maintain 

the mixture in the pump cell at stoichiometric conditions. The pump cell current is related 

to the oxygen concentration of the working fluid (normally the exhaust gas). For the 

Bosch sensor, the pump cell current characteristics are shown in Figure 6.20. The curve-

fit equation for the sensor characteristics is also shown in the figure. 
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Figure 6.20: Bosch Wide-band Lambda Sensor Characteristics 
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6.4.1. Pressure Dependency of the Sensor Signal 

The use of the wide-band lambda sensors in pressurized environment is 

complicated because a change of the intake/exhaust gas pressure leads to a 

deviation of the sensor signal, which can be approximately described as shown in 

Figure 6.21. 

25 Wide-band Lambda Sensor Output 
Bosch LSU 4.9 

20- £ = ll.Q91P-5.627 for 1.4<P<2.5 

R2 = 0.9994 

<  10-

A/, 
£ = 24.2P-24 for l<i><ci.4 5-

R2 = 0.9978 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 
Pressure, P (bar abs) 

Figure 6.21: Pressure Dependency of the Bosch Wide-band Lambda Sensor 

The procedure adopted for correcting the output of the wide-band lambda sensor 

for the intake/exhaust pressure, is as follows: 

• The output of the sensor in terms of lambda values is first converted into the 

equivalent oxygen concentration using Equation (6.28). 

• The current of the pump cell (lP) is then calculated from the oxygen 

concentration using the relationship shown in Figure 6.20. 
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• Next, the influence of the intake or exhaust pressure on Ip is determined. The 

measured pressure is used to find the deviation (A/p) from the relationships 

shown in Figure 6.21. 

• The new Ip (corrected for the deviation) is then used as the input to estimate 

the correct oxygen concentration and the lambda values. 

6.4.2. Testing of the Two-Lambda Sensor Technique 

An extensive test matrix was setup to ascertain the accuracy of the two-lambda 

sensor approach over a wide range of engine operating conditions. One result for 

an EGR sweep is presented in Figure 6.22. The engine was naturally aspirated so 

that the sensor signal was not required to be corrected for the pressure. The exhaust 

lambda sensor was programmed to measure the X values from 1 to 50, while the 

intake lambda sensor's measurable range was programmed for X from 1 to 100. 

The EGR was varied from a low value up to -55% and the lambda value output of 

the sensors was recorded. The lambda value was then converted into the intake and 

the exhaust oxygen concentrations, based on the conversion expression described 

previously. These concentrations were then compared with the oxygen 

concentrations recorded with the laboratory emission analyzers as shown in Figure 

6.23. It can be seen that the general trend of the concentrations in the intake and the 

exhaust is quite similar. The exhaust oxygen values calculated from the lambda 

sensor were in better agreement with the reference values compared to those from 

the intake sensor. 

The deviation of the intake sensor output can be primarily attributed to two factors. 

First, the intake oxygen concentration span (-21% for fresh air to approximately 

zero) is large compared to that for the exhaust. This reduces the resolution of the 

output signal since the maximum output voltage span is fixed (-8V for the 3H1 

controller). This is evident by the fluctuations seen in the intake lambda values in 
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Figure 6.22: Two-Lambda Sensor Response to EGR Sweep 
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Figure 6.23: Comparison of the Oxygen Concentrations 
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Figure 6.22. Second, the flow in the manifolds of a single cylinder engine is highly 

periodic. Compared to the exhaust system, the intake temperature is very low. 

Since the sensor temperature must be maintained at ~780°C for the sensor output to 

be accurate, the fluctuating flow combined with the low temperatures is presumed 

to make it difficult for the controller to efficiently maintain the sensor temperature 

within close limits. 

The EGR ratio was calculated using Equations (6.23) and (6.24), and compared 

with the EGR ratio based on the measured CO2 concentrations from the emission 

analyzers. The result is shown in Figure 6.24. The EGR estimation from the two-

lambda sensor approach was generally in agreement with the CO2 concentration 

based value except at the lower and higher ends. The deviation at the extremes was 

the result of the inaccuracy of the intake lambda sensor output as discussed above. 
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Figure 6.24: EGR Estimation from the Two-Lambda Sensor Approach 

The two-lambda sensor approach was then tested under a wide range of both steady 

state and transient engine operations. Three different cases are presented below. 
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The results for the first dataset are shown in Figure 6.25 and Figure 6.26 for the 

exhaust sensor and the intake sensor respectively. Without applying the correction 

for the exhaust pressure, the raw signal deviated from the reference exhaust 

concentration. The application of the pressure correction as outlined earlier 

improved the sensor accuracy and the results were in close agreement with the 

reference values for most of the testing conditions. 

0 I i i i i i i i 
5000 5500 6000 6500 7000 7500 8000 8500 

Time [s] 

Figure 6.25: Pressure Dependency Correction of the Exhaust Sensor Output (Dataset #1) 

For the intake sensor, the error in the raw signal was significantly higher compared 

to that for the exhaust. The application of the pressure correction improved the 

sensor accuracy but significant errors were still observed for intake oxygen 

concentration greater than -14%. 

Since the intake oxygen concentrations for LTC operation are generally below 

14%, it was decided to modify the upper limit of the intake lambda sensor 

measurement range from k =100 to A =50. 

Exh O2 Analyzer 
Raw k Signal 
Corrected X Signal 
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Figure 6.26: Pressure Dependency Correction of the Intake Sensor Output (Dataset #1) 

The results for the second dataset are presented in Figure 6.27 and Figure 6.28 for 

the exhaust sensor and the intake sensor respectively. The exhaust oxygen 

concentration was in good agreement for values below 12%. For the intake oxygen, 

a reasonable agreement was generally seen for oxygen concentration below 14%. 

The intake oxygen concentration range generally observed for the LTC cycles has 

also been marked on the figure. The results for the dataset # 3 are presented in 

Figure 6.29 and Figure 6.30 for the exhaust sensor and the intake sensor 

respectively. The exhaust oxygen concentration was again in good agreement for 

values below 12%. For the intake oxygen, a reasonable agreement was also seen 

for oxygen concentration below 14%. 

To provide feedback for the LTC control, the values of the intake concentration are 

not as critical as detecting a change in the concentration itself, because of a change 

in the operating conditions. Based on the above results, the two lambda sensor 

technique was seen to provide an adequate response for both the intake and the 

exhaust oxygen concentrations. 
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Figure 6.27: Pressure Dependency Correction of the Exhaust Sensor Output (Dataset #2) 
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Figure 6.28: Pressure Dependency Correction of the Intake Sensor Output (Dataset #2) 
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Figure 6.29: Pressure Dependency Correction of the Exhaust Sensor Output (Dataset #3) 
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Figure 6.30: Pressure Dependency Correction of the Intake Sensor Output (Dataset #3) 
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6.5. Catalytic EGR Treatment and Fuel Reforming 

EGR is effective in reducing the NOx emission because it lowers the flame temperatures 

due to the dilution and increased heat capacity of the recirculated gases. However, 

excessive soot formation occurs as EGR is progressively increased during the HTC 

regime. Moreover, the excessive use of EGR pushes the combustion into the LTC cycles 

that may result in the engine operation reaching zones of high instabilities (increased 

cycle-to-cycle variation) and even power loss. 

EGR induced cyclic variations are largely associated with the prolonged ignition delay 

caused by increased CO2 and decreased O2 in the intake. An increased ignition delay 

deteriorates combustion efficiency that, in turn, causes fluctuations in the combustion 

products. These variations escalate the consecutive cyclic variations of the cylinder 

charge in terms of temperature, pressure and composition. However, to alleviate 

problems associated with the excessive use of EGR, the participation of a gaseous fuel 

that increases premixed combustion may result in the simultaneous reduction of both 

NOx and soot emissions and may help to reduce the cyclic variations [77,121,122]. When 

a gaseous fuel forms a homogeneous charge in the engine cylinders, the combustion 

process tends to use oxygen more efficiently. 

To enhance the premixed combustion, gaseous fuels such as hydrogen can be generated 

by catalytically reforming diesel fuel in the EGR stream. Since the diesel exhaust 

normally contains significant amounts of surplus oxygen, therefore, it is reasonable to use 

the exhaust to catalytically reform some of the diesel fuel because the oxygen and heat of 

the exhaust can be utilized simultaneously. 

In this work, tests were conducted to improve the use of EGR on the Yanmar engine with 

different EGR stream treatment techniques. The effect of treated EGR on the engine 

operational stabilities and pollutant emission was investigated at different loads and EGR 

rates. The research was aimed at stabilizing and expanding the limits of heavy EGR 

during steady and transient operations so that the individual limiting conditions of EGR 

could be better identified. 
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6.6. Concept of Catalytic EGR System 

The EGR catalytic fuel reforming is a departure from conventional EGR operations. 

Conventional or raw EGR (Figure 6.31a) circulates untreated raw exhaust to the engine 

intake, while the CEGR modifies the exhaust contents before recirculation. The CEGR 

can have two modes of operation- an oxidization mode (Figure 6.31b), where the 

incomplete products of combustion are oxidized on a palladium/platinum based catalyst 

to reduce the instabilities introduced with the application of EGR, and a reforming mode 

(Figure 6.31c), where a small amount of diesel fuel is injected in the EGR stream and 

catalytically reformed on the catalyst in the rich combustor to generate gaseous fuels like 

hydrogen which can improve the overall combustion efficiency [123]. 
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Oxidization 
Catalyst 

(b) CEGR-Oxidization Mode 

EGR 
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EGR 
Valve 

(a) Conventional EGR Loop 
(EGR bypass) 

Diesel (Pilot) 
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Diesel 
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Engine 

Diesel 
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Diesel 
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(c) CEGR-Reforming Mode 

Figure 6.31: Conventional vs. Catalytic EGR 

To conduct fuel reforming, liquid diesel fuel supplied to the EGR fuel reformer is 

vaporized and brought in contact with hot exhaust in the presence of catalysts. Through 

partial oxidation and water-gas shift mechanisms, the resulting gas mixture can contain 

significant amount of hydrogen, carbon monoxide, nitrogen, carbon dioxide, water and 
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traces of partial oxidization radicals. The sequence of catalytic EGR operation 

characterizes temporally and spatially discrete rich-quench-lean combustion processes. 

Rich combustion occurs in the EGR combustor followed by quench processes 

downstream of the combustor and in the EGR cooler. Lean burn combustion then occurs 

in the engine combustion chamber. 

The potential benefits of the reformed gases include: 

• Increasing the EGR application limits 

• Generating synthetic EGR at low-load conditions 

• Simultaneous reduction of engine-out emissions of NOx and soot 

• Stabilization of the combustion process in unconventional combustion modes 

• Improve the transient performance of exhaust aftertreatment devices. 

The EGR reforming process can also have advantages over conventional engine intake or 

engine cylinder fuel-reforming systems [124], from considerations such as thermal 

energy regeneration, oxygen content usage, and partial bypass-flow control. 

6.7. EGR Treatment Strategies 

The EGR treatment techniques explored in this work were based on a flow-through DOC 

installed in the EGR loop of the Yanmar engine. A number of flow strategies were 

investigated to improve the thermal response as well as the energy efficiency of the 

CEGR reformer. The effect of electric heating and supplemental fuelling at two different 

locations in the CEGR loop were studied and some work was done to observe the effect 

of water injection on the reformer output. The EGR techniques are summarized in Figure 

6.32. 

203 



CHAPTER 6: EGR ANALYSIS AND CATALYTIC TREATMENT 

Fuel 
Reforming < 

EGR 
Treatment ^ 

(DOC) 

Water 
Injection 

Fueling/ 
Heating 

Flow 
Strategies 

Inlet 

Central 

Flow 
Capacity" 

Flow 
Control 

Oxidization 

Full Flow 

Partial Bypass Flow 

Uni-Directional 

Flow Reversal 

Figure 6.32: EGR Treatment Strategies based on a Flow-through DOC 

6.8. Unidirectional Flow Experimental Setup 

The modified Yanmar engine setup is schematically shown in Figure 6.33. The setup was 

based on the conceptual usage of EGR reformer, proposed by Zheng et al. as a technique 

to increase EGR application limits and reduce soot in modern diesel engines [30]. The 

EGR system consisted of two loops in parallel - a conventional EGR loop (called an 

EGR bypass loop hereafter) and a CEGR loop with a rich combustor incorporated into 

the system so that gaseous fuels could be generated on demand. The CEGR loop also 

included an electric heater with a variable DC power supply to heat up the exhaust gas 

when needed. A measured quantity of diesel fuel was vaporized through atomization and 

by mixing with the hot exhaust gas to generate a homogeneous rich mixture, upstream of 

the CEGR combustor. The mixing zone constituted a leading section of the combustor. A 

water injection system was also added upstream of the CEGR combustor. An advanced 

EGR cooler was installed downstream of the CEGR combustor to quench the reformed 

gases to the desired temperature before the gases mixed with the intake air stream. 

A number of thermocouples and pressure sensors were placed at several locations in the 

system for monitoring the system operation. A Heated Exhaust Gas Oxygen Sensor 
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(HEGO) and a wide-range lambda sensor placed down stream of the rich combustor 

provided the necessary feedback for the CEGR fuel injection calibration and control. 

The properties of the flow-through diesel oxidation catalyst (DOC) used in the CEGR are 

given in Table 6.3. All the components including the CEGR combustor, electric heater 

etc. were fabricated as a part of this project. The electric heater could provide up to 

0.8kW of heating power using a (MOV, 25 A variable DC power supply. The actual setup 

of the dual-EGR loop system on the Yanmar engine is shown in Figure 6.34. 

Table 6.3: Diesel Oxidation Catalyst Properties 

I Type Palladium/Platinum 

| Catalyst Loading 150 g/fit3 

I Diameter x Length 60 mm x 140 mm 

1 Cell Density 200 cpsi 

| Substrate Material Cordierite 

cpsi - cells per square inch 
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6.9. CEGR in Oxidization Mode 

If the combustion process can be stabilized at high EGR rates commonly employed for 

LTC cycles, it may help to improve the combustion efficiency so that the benefits of 

simultaneous low emissions of NOx and soot can be exploited. 
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Figure 6.35: Effects of Excessive EGR on Engine-out THC & CO 

To verify if the application of CEGR would enable the engine to be run continuously in 

the otherwise unstable regions with high cycle-to-cycle variations (using raw or untreated 

EGR), the effect of treated EGR on the engine operational stability in the LTC regime 

was investigated by replacing the raw EGR with CEGR (oxidization mode) at two 

different engine loads. The EGR was switched between the untreated and treated EGR, 

keeping the EGR mass flow rate and other engine operating conditions as constant. 

6.9.1. Oxidization Tests - 3.3 bar IMEP 

The analysis of 1000 consecutive pressure traces for the engine load of 

3.3 bar IMEP is shown in Figure 6.36. The operation with untreated EGR 
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displayed significant variations in the IMEP. In fact, the flame progressively 

weakens and continuous operation can lead to higher engine operational 

instabilities resulting in 'mis-fire'. CEGR, on the other hand, reduced the 

fluctuations in IMEP, enabling continuous operation. The corresponding crank 

angle of 50% heat released (CA50) is shown in Figure 6.37. A similar trend (like 

IMEP) was observed for the CA50. It is pertinent to mention here that some of the 

engine cycles 'mis-fired' (Figure 6.38), so that the actual scatter in the CA50 was 

more than that seen in the figure. 

The continuous cylinder pressure traces for engine operation with untreated EGR 

are shown in Figure 6.38. The results show a high variation in the peak combustion 

pressure (to differentiate from the peak cylinder pressure which for a number of 

cycles was the compression pressure). From the pressure traces for the treated EGR 

shown in Figure 6.39, it can be seen that by oxidizing the combustibles in the EGR 

stream, the cycle-to-cycle variations are reduced and the combustion process tends 

to be relatively stable. Raw EGR caused cyclic variations are largely associated 

with the prolonged ignition delay which deteriorates the combustion efficiency 

that, in turn, causes fluctuations in the combustion products. 
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Figure 6.37: CA50 Comparison between Untreated EGR & Treated EGR (Oxidization) 
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During LTC, the combustion efficiency drops with high CO & THC emissions. 

These variations escalate the consecutive cyclic variations of the cylinder charge in 

terms of temperature, pressure and composition. CEGR oxidizes a significant 

amount of these combustibles, lowering the cyclic fluctuations of the cylinder 

charge and thus, helps to stabilize the combustion process. The efficacy of the 

treated EGR is also evident from a comparison of the engine-out emissions. Table 

6.4 summarizes the results for the cycle-to-cycle variation analysis and the engine-

out emissions for both the untreated and treated EGR cases. 

Table 6.4: Summary of the Oxidization Test Results at 3.3 bar IMEP 

Untreated EGR 
Treated EGR 
(Oxidization) 

IMEP (bar) 

Mean 3.3 3.5 

IMEP (bar) Standard Deviation 1.52 0.44 IMEP (bar) 

COV (%) 46 12.6 

CA50 (%) 

Mean 373.8 373.4 

CA50 (%) Standard Deviation 1.84 0.96 

| COV (%) 0.5 0.26 

EGR Ratio (%) 69 

Indicated Thermal Efficiency (%) 35.3 37 

NOx (ppm) 9 9 

Indicated NOx (g/kWh) 0.05 0.05 

Soot (FSN) 0.5 0.03 

Indicated Soot (g/kWh) 0.02 0.001 

CO (ppm) >5000* >5000* 

Indicated CO (g/kWh) >17 >17 

THC (ppmcl) >3200* 1848 

Indicated THC (g/kWh) >6 3.5 

'Limited by the upper range of the CO/T iC Emission Analyzers 
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6.9.2. Oxidization Tests - 4.2 bar IMEP 

The EGR stream may need to be heated up to enable catalytic reactions if the EGR 

stream temperature is low. The catalyst light-off temperature depends on the type 

of the catalyst, the characteristics of the fuel and the catalyst aging. The engine 

tests at 3.3 bar IMEP were done using a fresh catalyst which generally did not 

require any heating at EGR stream temperatures above 250°C. Moreover, the 

exhaust pipe and the EGR loop up till the CEGR combustor were heavily insulated 

to reduce the heat loss and to minimize the requirements of electrical heating. 

For the tests at 4.2 bar IMEP, the insulation was removed and an aged catalyst was 

used to study the impact on the performance of the CEGR system. The EGR stream 

was heated up with the electric heater (set at 0.75 kW) to enable catalytic reactions. 

The combustion was pushed into the LTC regime as shown in Figure 6.40. At high 

EGR levels, the standard deviation of IMEP was considerably lower than that with 

raw EGR while maintaining low levels of soot emission. 
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Figure 6.40: Effect of Treated EGR (Oxidization Mode) on Engine Stability 
(4.2 bar IMEP) 
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To verify if the application of CEGR would enable the engine to be run 

continuously in the otherwise unstable regions with high cycle-to-cycle variations 

(using raw EGR), the analysis of 600 consecutive pressure traces is shown in 

Figure 6.41. The operation with raw EGR displayed significant variations in both 

the IMEP and the CA50. In fact, the engine operation could not be sustained with 

raw EGR as 'mis-fire' occurred. 

Engine Speed: 1400 RPM 
Torque: ~22 Nm 
IMEP: 4.2 bar 
Pintake: 1 bar abs 
Tin,ake: 30°C 
EGR: -65 % 

• IMEP-Raw EGR 
• IMEP-Treated EGR 
a CA50-Raw EGR 
o CA50-Treated EGR 

Cycle # 

390 

•385 

380 « 

375 

370 

365 

360 
600 

Figure 6.41: Engine Operation Comparison between Raw & Treated EGR (4.2bar IMEP) 

The 200 cycles-averaged heat release rates for the 600 cycles in Figure 6.41 are 

shown in Figure 6.42. The results show a higher variation in the heat release rates 

with raw EGR. Treating the EGR helped to reduce the cyclic variations, thereby 

stabilizing the combustion and improving the engine operation. 
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Figure 6.42: Heat Release Rate Comparison between for Raw & Treated EGR 

The summary of the 4.2 bar IMEP tests is given in Table 6.5. The heater power of 

0.75kW was included in the efficiency calculations. It can be seen that the indicated 

thermal efficiency dropped considerably below that obtained with raw EGR. If the heater 

power was excluded from the calculations, the resulting indicated thermal efficiency was 

35.2%. It is considered that the heater power can be reduced significantly with a compact 

design of the CEGR system and proper thermal insulation. 

The improvement in the cycle-to-cycle variations was significant as the catalytically 

treated EGR reduced the fluctuations in the composition of the EGR stream while 

maintaining ultra-low emissions of NOx and soot. The longer path provided by the 

CEGR loop may also help to reduce the consecutive cyclic variations of the cylinder 

charge in terms of temperature and pressure. 
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Table 6.5: Summary of the Oxidization Test Results at 4.2 bar IMEP 

Untreated EGR 
Treated EGR 
(Oxidization) 

IMEP (bar) 

Mean 4.1 4.2 

IMEP (bar) Standard Deviation 0.31 0.15 IMEP (bar) 

COV (%) 7.5 3.6 

CA50 (%) 

Mean 376.6 374.5 

CA50 (%) Standard Deviation 1.37 0.86 CA50 (%) 

COV (%) 0.36 0.23 

1 EGR Ratio (%) 65 

Indicated Thermal Efficiency (%) 34.9 32.5* 

NOx (ppm) 5 4 

Indicated NOx (g/kWh) 0.022 0.02 

Soot (FSN) 0.17 0.16 

Indicated Soot (g/kWh) 0.004 0.004 

CO (ppm) >5000* >5000* 

Indicated CO (g/kWh) >16.6 >16.6 

THC (ppm01) 2622 2170 

Indicated THC (g/kWh) 4.6 4.1 

Including electrical heater power of 0.75kW 
Limited by the upper range of the CO Emission Analyzer 

6.10. Unidirectional CEGR in Reforming Mode 

In the CEGR reforming operation, there are two streams of diesel fuel supplied to the 

engine - one stream to the CEGR combustor and the other to the engine cylinders. The 

fuel quantity directly injected in the engine cylinder (called the pilot fuel hereafter) is 

used for both ignition control and power production while the fuel supplied to the rich 

combustor is converted to gaseous fuels that subsequently burn in-cylinder to produce 

power. Therefore, the total energy for power production comes from the combination of 

the gaseous fuel and the pilot fuel. 
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The fuel reforming process in the EGR loop can be carried out using either the full-flow 

or the partial flow modes. Since CEGR operation generates gaseous fuel on demand, 

power requirements largely determine the total fuel supplied to the engine cylinders and 

therefore affect the gaseous fuel generation rate. If the entire EGR stream is used for fuel 

reforming particularly at low engine-loads, conflicts exist between the NOx control and 

the fuel reforming processes. During low torque operations, the engine exhaust contains 

high concentrations of oxygen and low concentrations of CO2. A high EGR rate is 

required to achieve significant NOx reduction. However, a low EGR rate is required for a 

low rate of reformer fuel injection. Therefore, a partial or reduced EGR flow is needed 

for gaseous fuel reforming during low torque operation, which requires implementing a 

scheme for by-passing EGR around the reformer. 

Partial bypass-flow control was enabled by dividing the EGR stream between the bypass 

loop and the CEGR loop so that only the desired flow passed through the CEGR while 

the remaining flow, required for NOx control followed the bypass loop. 

6.10.1. CEGR Reformer Fuel Calibration 

The reformer fuel injection quantity was calibrated at the start of the research 

work. With the EGR flow rate held constant, the injected quantity was changed to 

identify the fuel quantity that results in a stoichiometric mixture in the rich 

combustor. The results of one such calibration test are shown in Figure 6.43. When 

the mixture is rich, the mixture undergoes partial oxidization and water gas-shift 

reactions. The overall reaction is normally endothermic and the gas temperature at 

the reformer outlet decreases (compared to stoichiometric/lean operation). The 

HEGO sensor output in this instance was high (> 1 volt). As the mixture was 

brought to stoichiometric proportions, the gas temperature rose due to the complete 

oxidization of the mixture. 
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Figure 6.43: CEGR Reformer Fuel Calibration Tests 

The fluctuations in the HEGO sensor output can be due to several reasons. Fuel 

slip through the catalytic reformer due to non-homogeneities in the fuel-EGR 

mixture, will create local rich pockets in the mixture. Secondly, some of the fuel 

can deposit on the pipe walls in the mixing zone during rich operation and this 

deposit evaporation will transiently and sporadically enrich the stoichiometric 

mixture. Another parameter affecting the mixture strength can be the fluctuating 

nature of the EGR stream. 

6.10.2. CEGR Full Flow Operation 

Tests were conducted by holding one of the fuel streams constant and varying the 

other to identify the individual limiting conditions of CEGR. In the first set of 

experiments, the reformer fuel injection was kept constant and the pilot injection 

quantity was changed. The EGR was kept at 32%. The results are shown in Figure 

6.44. The engine baseline conditions in the figures represent the engine operation 

without CEGR operation and all comparisons for emission and power production 
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have been referenced against the baseline. Moreover, the pilot quantity was varied 

by changing the engine speed through the dynamometer (the mechanical governor 

adjusts the fuelling). The EGR stream was heated up with the electric heater (set at 

0.75 kW). 

As the pilot fuel was progressively reduced, the oxygen contents in the exhaust gas 

increased. This reduced the strength of the rich mixture which resulted in an 

increase in the oxygen excess ratio of the CEGR Reformer. The contribution of the 

gaseous fuel (from CEGR) to power production also increased. The soot emission 

reduced due to the progressively enhanced premixed combustion phase. This, 

however, did not increase the NOx emission as the overall flame temperature was 

thought to be lower due to decreased intake oxygen contents and the overall lean 

mixture inside the cylinder. 

Engine Baseline Conditions 
Speed: 1400 -> 1460 RPM 
Pilot Fuel: 23 -> 13 mg/cyc 
BMEP: 3.7->1.2 bar 
^intake- ^ bar abs Tjntake. 28 C 
"^coolant- ~70 C  ̂

EGR Reformer 
EGR Ratio: -32% 
Raw EGR [02]: 6.4-> 10% 
Fuel Injection: 0.157 g/s 
02 Excess Ratio: 0.43 -> 0.65 

Brake Thermal Efficiency 

• NOx 
• ABMEP 
• Soot 
• Brake Thermal Efficiency 

• ••-
ABMEP 

NOx 
-* 

Soot. 

"A 

12 14 16 18 20 

Pilot Injection [mg/cyc] 

22 24 

Figure 6.44: Full-Flow EGR Reforming - Pilot Injection Quantity Variation (32% EGR) 
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The experiments were repeated at a lower EGR level of 20%. As the EGR was 

reduced, the oxygen concentration in the exhaust increased. However, the flow 

through the CEGR also reduced. Thus when using the same CEGR fuel injection 

quantity as with moderate EGR, the strength of the fuel rich mixture increased, 

which reduced the oxygen excess ratio. The heating requirement with the electric 

heater also reduced to 0.4 kW. The results are shown in Figure 6.45. The thermal 

efficiency was higher as compared to the 32% EGR case since the gaseous fuel 

quantity was increased (ABMEP is higher). NOx decreased as the pilot diesel was 

reduced (the combustion became leaner). The soot emission remained low at this 

EGR level. 
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Figure 6.45: Full Flow EGR Reforming - Pilot Injection Quantity Variation (20% EGR) 

The procedure was repeated by varying the reformer fuel injection quantity 

(thereby changing the CEGR oxygen excess ratio) while keeping a fixed pilot 

quantity of 23.1 mg/cyc (EGR: 20%). The contribution of gaseous fuel was 

therefore referenced against the baseline BMEP at the fixed pilot injection 
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quantity. The results are shown in Figure 6.46. With the full-flow operation, an 

increase in the hydrogen production was observed around oxygen excess ratio 

greater than 0.65. Moreover, the maximum increase in the BMEP was around 

2 bar. However, no substantial gains in the BMEP were observed by further 

increasing the reformer fuel injection quantity and therefore a decrease in the 

overall system efficiency occurred. 
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Figure 6.46: Full-Flow EGR Reforming (20% EGR) - Reformer Fuel Quantity Variation 

To observe the effect of varying the reformer injection quantity at a lower quantity 

of pilot fuel, tests were conducted with a fixed low pilot injection quantity and 16% 

EGR and the results are shown in Figure 6.47. As the reformer fuel injection 

quantity was increased, it resulted in an increase in the gaseous fuel production 

which was evident by the increase in ABMEP and the brake thermal efficiency. 
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Figure 6.47: Full Flow EGR Reforming - Pilot Injection Quantity Variation (16% EGR) 

The reformed gas composition is shown in Figure 6.48. As the ratio of the reformer 

fuel injection to the pilot fuel was increased, the HC emission and the CO2 quantity 

started to increase. However, a reduction in the CO concentration was observed as 

the hydrogen production started together with an increase in the BMEP (Figure 

6.47). Since the oxygen excess ratio indicated a significantly rich operation, it is 

believed that a substantial amount of hydrogen was generated under these 

conditions via partial oxidation mechanisms and water gas-shift reactions. Previous 

research [123,125,126] also suggests that under rich conditions, hydrogen is 

generated from the partial oxidation of the fuel vapour. It was also observed that 

the contribution of the reformed gases to the engine power was at a maximum 

when the CO concentration was nearly half of the hydrogen concentration. 

However, beyond a certain limit, the efficiency started to drop possibly due to 

reduction in the production of the gaseous fuels. 
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Figure 6.48: Reformed Gas Composition - Full Flow (16% EGR & Low Fixed Pilot) 

A comparison of the NOx and soot emissions with CEGR, to the baseline 

emissions with raw EGR is given in Table 6.6. The NOx emission was found to be 

significantly lower with CEGR due to the overall lean combustion. The soot 

emission also reduced, indicating the possible enhancement of the premixed part of 

the combustion. 

Table 6.6: Exhaust Emission Comparison for Full Flow CEGR 

EGR 
NOx 

(g/kW-h) 
Soot 1 

(g/kW-h) 

32M 
Untreated 1.3 0.21 

32M 
Treated (Reforming) 0.25 0.17 

20% 
Untreated 4.1 0.11 I 

20% 
Treated (Reforming) 2 0.06 
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6.10.3. CEGR Partial Bypass-Flow Operation 

The CEGR partial bypass-flow operation was first investigated at different CEGR 

injection quantities with a fixed pilot quantity. The results shown in Figure 6.49 

indicated that the brake thermal efficiency was not significantly affected since the 

low EGR flow through the reformer required less fuel for rich operation. Thus the 

contribution to power production can be relatively higher as compared to the full 

flow operation at the same CEGR fuelling rate. 
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Figure 6.49: Partial Flow EGR Reformer with Fixed Pilot- Ratio of the Two Fuel 
Injections 

The partial-flow operation was repeated at a lower EGR (20%). At low load 

operation, the production of hydrogen was around 10-12% over a wider oxygen 

excess ratio range as shown in Figure 6.50. The increase in the BMEP was less as 

the partial exhaust stream limited the quantity of gaseous fuel that could be 

generated during the reforming process. Since the reformer fuelling in this case 

was nearly the same as for the full flow operation of Figure 6.46, the thermal 
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efficiency during partial-flow operation was also lower. This can be attributed to 

the inability of the fuel to mix thoroughly with the slower exhaust stream, resulting 

in fuel-slip through the reformer, and locally very rich and lean monolith channels 

which do not contribute to gaseous fuel production. 

Speed: 1400 RPM Baseline Torque: 26 Nm 
CEGR Flowrate: 1.3 g/s CEGR Fuelling: 0.14~0.23 g/s 
02 Excess Ratio: 0.2~0.35 Electric Heater: 0.45 kW 
Torque Increase: 6-10 Nm Pilot Injection: 23.1 mg/cyc 
Bypass EGR Flowrate: 0.7 g/s 
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Figure 6.50: Partial-Flow EGR Reforming with Fixed Pilot - Reformer Fuel Quantity 
Variation 

The exhaust emission comparison between the full-flow and the partial flow for the 

same baseline condition is given in Table 6.7. The partial flow CEGR operation 

helped to reduce the NOx but the reduction was less than that with full flow CEGR 

operation. However, the soot emission was similar to that with the full-flow 

operation and indicated that a small increase in the premixed combustion can be 

quite effective to reduce the soot emission. 
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Table 6.7: Exhaust Emission Comparison (Full vs. Partial Flow) 

EGR 
NOx 

(g/kWh) 
Soot 

(g/kWh) 

Untreated 1.3 0.21 

32% Full Flow (Treated) 0.25 0.17 

Partial Flow (Treated) 0.8 0.15 

Untreated 4.1 0.11 

20% Full Flow (Treated) 2 0.06 

Partial Flow (Treated) 2.7 0.07 | 

During both the CEGR partial-flow and the full-flow modes, the hydrogen content 

of the reformed gases was typically around 10-12% which was similar to values 

reported in the literature [122,125,126]. The CO content was approximately half of 

the corresponding hydrogen content and was almost produced entirely in the 

reformer since the engine-out CO concentration was very low. 

6.10.4. Effect of Reformed Gases on Engine Power 

For the results shown in Figure 6.46, the pressure-time history and the heat release 

rate for the EGR reforming were compared against those for the baseline operation 

with untreated EGR in Figure 6.51. The pressure trace deviated significantly from 

the baseline pressure, indicating an increase in the power output. A maximum 

increase of 2.2 bar in the BMEP was obtained over the baseline BMEP of 3.8 bar 

for a reformer-to-pilot fuel ratio around 0.65. Moreover, the premixed combustion 

in the heat release was observed to increase, because of the addition of the 

reformed gases to the cylinder charge. 

Taking into account the electric power for the heating, there was a slight decrease 

of about 1~2% in the brake thermal efficiency. However, no substantial gains in 

the BMEP were observed by further increasing the reformer fuel injection quantity 

and therefore a decrease in the overall system efficiency occurred. 
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Figure 6.51: Pressure-time History and Heat Release Rate for CEGR Reforming 
Operation 

The results presented above indicated that an optimal ratio exists between the 

CEGR fuel injection quantity and the pilot fuel quantity. The total energy for 

power production comes from the combination of gaseous fuel and pilot diesel. 

These two quantities are largely related to each other for a given power demand. 

With the baseline condition set at 1400 RPM (BMEP = 3.8 bar) during the 

experiments, the contribution of the two fuel streams to power production was 

investigated at different flow rates and fuelling of the CEGR, and the result for one 

set of operating condition is shown in Figure 6.52. 

Since the Yanmar engine had a mechanical fuel injection pump fitted with a 

governor, the pilot injection at a fixed fuel rack position was reduced by increasing 

the engine speed through the dynamometer controller (the governor cuts the fuels 

at a fixed fuel rack position). 
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The CEGR operation was started with a fixed injection quantity while reducing the 

pilot injection quantity from the baseline quantity of 23 mg/cyc. It was observed 

that the CEGR increased the BMEP above the baseline value (at 1440 RPM). By 

progressively reducing the pilot injection, the BMEP matched the baseline value at 

1450 RPM with a pilot injection of 14.4 mg/cycle. The penalty in the BMEP and 

therefore the thermal efficiency started to increase once the pilot quantity was 

reduced further. 
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Figure 6.52: CEGR Fuel Injection &and Pilot Fuel Injection Matching for a Given 
Power Demand 

The emissions corresponding to the data shown in Figure 6.52 are given in Table 

6.8. The baseline emissions at 1400 RPM were 0.71 and 0.24 g/kWh for NOx and 

soot respectively. As the reforming operation was started, the NOx reduced by half 

but the soot increased since the engine load was also increased. At 1450 RPM 

when the load matched the baseline load, the NOx emission was 0.27g/kWh while 
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the soot emission was 0.21g/kWh. Thus, the two fuel quantities or their ratio can be 

matched for the best fuel efficiency or reduced exhaust emissions. 

Table 6.8: NOx & Soot Emissions for Figure 6.52 

Speed (RPM) 1400 1400 1420 1430 1440 1450 1460 I 

NOx (g/kWh) 0.71 0.32 0.34 0.34 0.33 0.27 0.24 I 

Soot (g/kWh) 0.24 0.6 0.39 0.26 0.22 0.21 °-12 1 

The gain in the BMEP was higher for the full-flow mode as shown in Figure 6.53. 

This is because the whole of the EGR stream was used during the reforming 

process, resulting in a higher yield of gaseous fuels. However, the partial-flow 

operation was more energy efficient (r|th: ~30% vs t]th: -27% for full flow) during 

low torque and high EGR operation, as the engine exhaust contained high 

concentrations of oxygen and low concentrations of CO2. 
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Figure 6.53: Percentage Increase in Baseline BMEP with CEGR Reforming 
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6.10.5. Effects of Water Addition on Reformer Operation 

Application tests were conducted to ascertain the effects of water injection on the 

reformed gas production and the in-cylinder combustion. The pressure-time history 

and the heat release rate for EGR reforming operation with water addition were 

compared against those for the baseline operation with raw untreated EGR in 

Figure 6.54. It was observed that the pressure trace deviated from the baseline 

pressure, indicating a small increase in the power output (ABMEP=0.6 bar). 

Moreover, the premixed combustion in the heat release was increased slightly, 

indicating a possible enhancement of the charge homogeneity with the addition of 

the reformed gases to the cylinder charge. 
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Figure 6.54: Pressure-time History and Heat Release Rate for CEGR Reforming 
Operation with Water Injection 

The change in the engine torque as the reformed gases were recycled to the engine 

intake is shown in Figure 6.55. The engine torque started to increase immediately 

as the fuel was injected into the reformer. The increase in the torque stabilized as 
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the reformer temperature reached steady state conditions. A constant amount of 

fuel (0.09 g/s) was injected into the EGR stream during these experiments. 

A significant advantage of the EGR reforming process (with or without water 

addition) is the potential to generate higher levels of EGR (CO2), especially at low 

load conditions. The generation of the synthetic EGR is due to the high CO2 

concentration (12-14%) in the reformed gas because a part of the injected fuel 

undergoes partial or complete oxidation while the rest of the fuel is used in the 

endothermic reforming process [63]. 

For the results shown in Figure 6.55, the EGR rate was about 15% once calculated 

on the mass flow rate basis. The EGR rate based on the CO2 concentrations in the 

intake and the exhaust gases was also close to 14% before the start of the reforming 

process. However, it is evident that the synthetic EGR enhanced the effective EGR 

rate to about 25% during the reforming process. This can have significant 

implications on the engine-out emissions as is discussed later. 

Reforming Experiments with Water Injection 
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Figure 6.55: Synthetic EGR Generation with CEGR Reforming with Water Injection 
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The effect of water injection on the power increase is also indicated in Figure 6.55. 

It was observed that a surge in the torque was seen corresponding to each water 

injection event. Moreover, the increase in the torque was momentary and was not 

sustained during the entire duration of the water injection. To verify this 

phenomenon, the cycle-by-cycle IMEP was calculated from continuously recorded 

pressure traces and is presented in Figure 6.56. 

Effect of Water Addition-Reforming Experiments 
Engine Speed: 1400 RPM EGR Flowrate: ~1.6 g/s 
Pilot Injection: 23.1 mg/cyc CEGR Fuelling: 0.09 g/s 
Water Injection: 0.09->0.2 g/s ^ Fue) injection 

A A 

it •• Water Injection 

2000 4000 6000 
Cycle # 

8000 10000 12000 

Figure 6.56: Cycle-by-cycle IMEP Calculation - Effect of Water Injection 

The cycle-by-cycle IMEP clearly showed the transient effect of the water injection 

on the engine power output. First, a surge in the power output was accompanied by 

a decrease in the CO2 concentration in the EGR loop (CO2 based EGR- Figure 

6.55). A brief explanation for this phenomenon is presented here. The decrease in 

CO2 may have initiated the dry reforming process of hydrocarbon fuels where a 

part of the fuel and carbon dioxide may react to produce more hydrogen at elevated 

temperatures. This highlighted the importance of closely monitoring the reformer 

substrate temperature to see if any localized high temperature regions developed 
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during the reforming process. Second, the catalytic substrate in the reformer 

consisted of two portions with a gap of about 13 mm. This was done to facilitate 

mixing so that any mal-distribution of the fuel-gas-water mixture at the reformer 

inlet may be corrected by allowing the mixing and redistribution of any rich 

channel streams with the lean channel streams. It is thought that some of the 

hydrogen produced may have been destroyed during this redistribution as any 

interaction with oxygen (from lean channels) at such high temperatures would 

certainly result in hydrogen reacting with the oxygen. 

A comparison of the emissions and other performance parameters is given in Table 

6.9. It can be seen that NOx was reduced considerably without an increase in the 

soot emission. The emissions of CO and THC were slightly higher but these can 

easily be dealt with diesel oxidation catalysts in the exhaust system. 

Table 6.9: Performance Comparison of Untreated & Treated EGR (Water Addition) 

Raw EGR 
(Baseline) 

Treated EGR 
(Reforming 
with Water) 

Pilot Injection [g/s] 0.27 0.27 

Reformer Injection [g/s] - 0.09 

Torque [Nm] 26 33 

BMEP [bar] 3.8 4.4 

IMEP [bar] 4.9 5.5 

Indicated Thermal Efficiency [%] 42.3 36 

NOx [g/kWh] 7.4 4.9 

Soot [g/kWh] 0.13 0.1 

CO [g/kWh] 1.6 6.8 

THC° [g/kWh] 0.23 0.55 
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6.11. Flow Reversal CEGR Reformer 

The active management of the exhaust flow through periodic flow reversal, flow 

stagnation and parallel flow was first proposed and implemented in the exhaust system of 

a diesel engine by Zheng et al. [127,129,130]. Periodic flow reversal operation is, in 

essence, a heat energy trap that performs active heat recovery in addition to the heat 

retention capability of the monolith structure. By cyclically alternating the direction of 

exhaust flow, a thermal wave is produced along the catalyst at the frequency of flow 

reversal, so that the central catalyst temperature is elevated above the reformer 

inlet/engine exhaust temperature. Thus, the averaged temperature level of the catalytic 

monolith is raised substantially independent of the inflow gas temperature from the 

engine exhaust, while an ordinary flow-through catalyst reformer would lose light off 

(unable to sustain catalytic reactions) following similar operations with low exhaust 

temperatures. 

The flow-reversal catalytic reformer can have three modes of operation: forward flow 

where the exhaust gas flows as in a conventional unidirectional reformer; reverse flow 

where the inlet and the outlet are switched to reverse the flow direction through the 

catalytic monolith and bypass flow where the catalytic monolith is bypassed and the 

exhaust gas flows directly from the inlet to the outlet. 

6.12. Flow Reversal Experimental Setup 

The test setup for the flow reversal reformer with central heating/fuelling is schematically 

shown in Figure 6.57 and the actual test setup is shown in Figure 6.58. The flow reversal 

setup is a novel departure from the unidirectional reforming setup. For the flow-reversal 

setup, the CEGR loop includes the flow-reversal reformer with an electric heater, a fuel 

dispenser, a water dispenser and a mixer at the central portion of the catalyst. A measured 

quantity of diesel fuel is vaporized through atomization and by mixing with the localized 

hot exhaust gas in the central portion to generate a homogeneous rich mixture. 
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Figure 6.57: Schematic Representation of the Experimental Setup - Flow Reversal 
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Figure 6.58: EGR Fuel Reformer in a Flow Reversal Central Fuelling Embedment 
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6.13. Flow Reversal CEGR in Reforming Mode 

The potential of the flow reversal CEGR for gaseous fuel generation was investigated by 

keeping the ABMEP approximately constant while changing the pilot and the reformer 

fuel quantities. The results, shown in Figure 6.59 indicate that the contribution of the 

reformed gaseous fuel towards power production can be optimized for each pilot fuel 

injection quantity. The maximum hydrogen production during this test was about 10%. It 

should be noted here that the baseline BMEP and IMEP reduced as the pilot injection was 

progressively decreased. However, the increase in the reformer fuel injection was used to 

maintain the same ABMEP. The percentage increase in the baseline IMEP signified the 

relative contribution of the reformed gases towards power production. 

The effective of the reforming operation was similar to that observed with the uni

directional flow. However, the lower heating requirements (the heater was switched off 

once the reformer operation started in the flow reversal tests) resulted in recovering a part 

of the fuel efficiency penalty (1 to 2%). 
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Figure 6.59: Flow Reversal CEGR for Constant ABMEP 
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6.13.1. Heat Retention Capability 

The biggest advantage of the flow reversal operation is the excellent heat retention 

capability. Periodic flow reversal operation is, in essence, a heat energy trap that 

performs active heat recovery in addition to the heat retention capability of the 

monolith structure. By cyclically alternating the direction of exhaust flow, a 

thermal wave is produced along the catalyst at the frequency of flow reversal, so 

that the central catalyst temperature is elevated above the reformer inlet/engine 

exhaust temperature. Thus, the averaged temperature level of the catalytic monolith 

is raised substantially independent of the inflow gas temperature from the engine 

exhaust, while an ordinary flow-through catalyst reformer would lose light off 

(unable to sustain catalytic reactions) following similar operations with low 

exhaust temperatures because the thermal energy stored in the monolith will 

quickly migrate out of the reformer with the EGR flow. Therefore, in case of the 

unidirectional flow reformer, a large amount of supplemental heating is generally 

required to sustain catalytic reactions. 

The efficiency of the flow reversal setup in retaining a high temperature at the 

centre of the substrate with significantly less external energy compared to the 

unidirectional flow setup in the exhaust system has been extensively demonstrated, 

both empirically and theoretically previously [127,129,130]. A typical result is 

shown in Figure 6.60. It can be seen that the flow reversal is able to maintain 

nearly 40% of the reformer substrate over 500°C with 300 W of external heating. 

However, even a smaller sized unidirectional reformer of the flow reversal 

reformer in terms of the monolith volume) with inlet heating will require 

approximately 1 kW of external heating to maintain a temperature above 500°C. 
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Figure 6.60: Temperature Profile (FR Cycle @ 30 sec) - Simulated Result 

It is pertinent to mention here that the triangular temperature profile (high central 

temperature with lower inlet and exit temperatures) is also effective with inlet 

fuelling once gaseous fuels like methane are used. Since methane has reduced 

reactivity at temperatures lower than 500°C, the gaseous fuel effectively combusts 

in the high-temperature central region of the substrate and is in effect, equivalent to 

the central heating approach as demonstrated by Zheng et al. [127]. However, with 

highly reactive fuels like diesel, the inlet fuelling approach will result in heat 

release reactions occurring closer to the ends (inlet/exit) so that with flow reversal, 

the thermal wave will be pushed out of the monolith. Therefore, the central fuelling 

approach is more effective when using reactive fuels like diesel fuel. 
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6.14. Comparison Between Unidirectional and Flow Reversal CEGR 

Compared to the unidirectional EGR reformer with inlet fuelling and heating, the 

localized central heating/fuelling with flow-reversal has the potential to effectively 

reduce the heating/fuelling energy requirements by an order of magnitude because of the 

prevalent high temperatures in the localized central zone of the reformer. 

6.14.1. Inlet Heating vs. Central Heating 

To enable fuel reforming in the EGR loop, the catalyst monolith must be heated up 

to temperatures generally above 300°C. The exhaust temperature from modern 

diesel engines, especially in an EGR loop, is commonly insufficient to enable 

and/or sustain a high yield of reforming. Supplemental heating is therefore required 

to raise the exhaust gas temperature to a level that is sufficient to maintain the 

reformer monolith temperature above the catalyst light-off temperature and to 

enable the vaporization of the diesel fuel injected into the EGR stream. 

The boiling range for the common automotive fuels is given in Figure 6.61 [128]. 

Compared to gasoline, diesel fuel has a much higher boiling range and requires a 

temperature above 300°C to vaporize most of the injected fuel. In case of 

biodiesels, the boiling range is quite narrow and a higher temperature is required 

for the fuel vaporization. This has important implications for the supplemental 

heating requirements in the EGR loop. 

The experimental results for the unidirectional EGR reformer with inlet heating are 

shown in Figure 6.62. The exhaust gas temperature in the EGR loop at the heater 

inlet was about 230°C. With supplemental electrical heating of 560 W, a 

temperature close to 350°C was attained at the heater outlet. However, due to heat 

loss from the mixer, the temperature of the exhaust gas was only 245°C at the 

reformer inlet. When fuel (or water) was injected in the mixing section (Figure 

6.33), the temperature dropped further as the fuel vaporized. Therefore, in order to 

maintain the temperature of the EGR stream around 300°C at the reformer inlet, 

experiments indicated that a supplemental heating of about 1 kW was required. 
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Figure 6.61: Boiling Range for Automotive Fuels 
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Figure 6.62: Unidirectional Reformer with Inlet Heating 
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Compared to the unidirectional EGR reformer with inlet heating, the results for the 

heating process with the flow reversal reformer and central fuelling are shown in 

Figure 6.63. The engine was motored in this case so that the temperature at the 

reformer inlet was 25°C. The EGR flow rate was maintained at 2 g/s with a flow 

reversal interval of 10 to 20 sec. It can be seen that the gas temperature at the 

centre rose sharply with a similar trend for the two solid temperatures Tsi & Ts2 

(see Figure 6.57 for thermocouple locations). However, the reformer inlet and 

outlet temperatures were negligibly affected by the heating process since the flow 

reversal operation was able to effectively lock-in the heat at the central section 

only. With 420 W of supplemental heating, the gas temperature at the central 

region was increased by about 300°C. This was in sharp contrast to the temperature 

rise of only 120°C with inlet heating of 560 W for the unidirectional flow. The 

temperature of the substrate also followed closely because of the reduced heat loss 

and the superior thermal energy retention with the flow reversal strategy. 
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Figure 6.63: Flow Reversal Reformer with Central Heating 
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Similar test were then conducted at different flow rates and electrical heating input. 

The results indicated a reduction of up to 50% external heat energy with reversal 

flow and central fuelling compared to the unidirectional reformer with inlet 

heating. 

The temperature profiles during the CEGR fuel reforming process are shown in 

Figure 6.64. It was observed that once the central fuel injection was started, the 

reforming process was generally able to sustain itself (the electric heater switched 

off in this case). This was not possible with the unidirectional CEGR reformer as 

the catalytic reforming was not able to sustain the process (the energy migrated out 

of the reformer). Therefore, a continuous supply of external energy was required 

with the unidirectional flow. Even without optimizing the setup, a comparison of 

the two flow modes indicated a reduction of more than 50% external heating 

requirement with the flow reversal strategy. 
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Figure 6.64: Temperature Profiles for Flow Reversal CEGR during Reforming Process 
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6.14.2. Over Heat Performance 

Another important advantage of the flow reversal reforming is its ability to prevent 

overheating of the reformer monolith once the fuelling is turned off. As the fuel 

already present inside the reformer is consumed, the process turns highly 

exothermic (mixture goes from rich-to-stoichiometric-to-lean). The flow reversal 

operation prevents overheating by distributing the fuel alternately between the two 

solid sections, thereby allowing the solids to cool down as is evident in Figure 

6.64. The results for the unidirectional CEGR reformer are shown in Figure 6.65. 

Even with reduced exhaust oxygen levels of ~8% (exhaust oxygen was -10.5% for 

the flow reversal in Figure 6.64), the fuel accumulated at the entrance of the 

reformer burned exothermically across the length of the reformer monolith, 

resulting in a sharp rise in the reformer temperature. Therefore, a large quantity of 

CO2 had to be dumped in the CEGR reformer to limit the oxygen supply and 

prevent overheating which would otherwise result in thermal failure of the 

reformer. 
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Figure 6.65: Over Heat Performance of the Unidirectional Reformer 
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6.14.3. EGR Cooling loads 

An important consideration with the EGR fuel reforming is the increase in the 

loading of the EGR cooler. The reforming process generally occurs at elevated 

temperatures between 500°C to 700°C. The EGR cooler must be able to maintain a 

consistent EGR stream temperature regardless of the upstream temperature so that 

the engine efficiency is not adversely affected. In case of the unidirectional flow 

reformer as shown in Figure 6.66, the reformed gas temperature at the reformer 

outlet was close to 600°C which is much higher than the temperatures usually 

associated with raw EGR. Assuming the EGR stream temperature to be 100°C after 

the EGR cooler (with typical engine coolant temperature of 90°C), it was estimated 

that the EGR cooler would have to remove approximately 0.9 kW of heat energy 

from the EGR stream with the unidirectional flow strategy. 
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Figure 6.66: EGR Cooling Load - Unidirectional Flow CEGR 
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The results for the reforming process with flow reversal and central 

heating/fuelling are shown in Figure 6.67. Although the temperature at the central 

portion was close to 600°C, the flow reversal operation was able to localize the 

high temperature within the central region of the reformer. Therefore, the reformer 

inlet temperature was close to 200°C and the reformer outlet temperature was also 

much lower (about 170°C). Although the EGR flow rate was slightly higher during 

the test with the flow reversal strategy, the EGR cooler load was drastically 

reduced to only 0.14 kW, a reduction by a factor of six. 
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Figure 6.67: EGR Cooling Load - Flow Reversal CEGR 
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6.15. Other Considerations 

Compared with unidirectional EGR reformer, the reversal and central fuelling 

configuration has the following advantages: 

• Save energy during heating up the reformer by trapping the heat in the central 

section of the reformer; 

• Minimize the external heating requirement to sustain endothermic reforming; 

• Reduce EGR cooling by maintaining a lower reformer outlet temperature. 

Monolith solids have only a moderate heat retention capability (evident as AT) when 

operating with conventional unidirectional flow. The unidirectional flow loses the solid 

heat relatively fast, even at a reduced gas flow rate. The energy stored in the monolith 

solid will migrate out of the monolith boundaries if the duration of a unidirectional 

operation is sufficiently long. Empirical observations in this regard have been reported by 

Zheng et al. [129,130]. Therefore, the requirement for external heating is higher to ensure 

sustained reforming operation. 

With the integration of a CEGR loop with the engine, the effective path for the EGR flow 

increases. This can reduce the effect of pressure wave action on the stability of the in-

cylinder combustion by reducing the fluctuations in the EGR flow. 

The soot in the diesel exhaust adversely affects the durability of the EGR valve. EGR 

valve fouling is still a challenge for effective implementation of advanced EGR strategies 

in modern diesel engines. The application of CEGR can help alleviate this problem. The 

high temperature reformed gases can be used to destroy the soot deposits and clean the 

EGR valve. 

Unlike the reforming process for fuel cell applications, hydrogen is not needed in a pure 

form in the diesel CEGR, making the system operation simpler. A separate water-gas 

shift mechanism may not be needed in the EGR reformer since the CO can be combusted 

again in the diesel engine. In a fuel cell however, the catalyst used in the common 

polymer-electrolyte-membrane fuel cell, the device most likely to be used in 
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transportation roles, is very sensitive to any leftover carbon monoxide in the gaseous fuel 

generated in the reformers. The membrane is poisoned by the carbon monoxide and its 

performance degrades [131]. 

The reformer fuel delivery is mainly subjected to an exhaust stream of high uncertainties. 

When the engine operating condition varies, the diesel exhaust is characterized by 

extensive variations in temperature, pressure, flow rate, oxygen concentration, and 

combustible contents. The pressure wave action along the exhaust plenums further 

compounds such complications. For the unidirectional CEGR reformer, all these factors 

can result in poor mixing of the fuel with the EGR stream, causing over-rich and lean 

pockets in the catalytic reformer. Hence, fuel slip can occur through the reformer and the 

reformer temperature can also go very high. 

In case of the flow reversal reformer, the central fuelling is not significantly affected by 

the EGR fluctuation and pressure wave action. Hence, a more uniform thermal loading of 

the CEGR reformer can be achieved, possibly enhancing the production of gaseous fuel 

and preventing oxidation and reforming to occur at different regions in the reformer 

simultaneously. 

Another possible application of the CEGR is in the diesel afitertreatment system 

[132,133]. The decrease in the overall system efficiency with CEGR may be 

compensated by the reduced fuel penalty for the aftertreatment system. The H2 generation 

may also help in diesel aftertreatment system during the regeneration process in a lean 

NOx trap [134]. The thermal energy of the reformed gas can also be used for decreasing 

the requirement of attaining the soot regeneration temperature in diesel particulate filters. 

The sequence of CEGR operation is characterized by temporally and spatially discrete 

rich-quench-lean combustion processes. Downstream of the rich combustor, the reformed 

gases are cooled rapidly before being mixed with the intake air. This quenching process 

must be regulated so that the temperature of the reformed gases after the EGR cooler is 

about 80~120°C. Over-quenching can result in condensation of any fuel vapour that has 

slipped through the catalytic reformer. The thermal management of the fuel injector 
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exposed to a fluctuating high temperature exhaust stream also presents an implementation 

challenge that must be adequately addressed. 

6.16. Conclusions 

The work presented in this chapter can be summarized as follows: 

• A detailed EGR analysis was carried out to characterize the efficacy of EGR for 

LTC operation as well as to develop suitable parameters that can provide feedback 

for the LTC control. The effects of engine load and boost pressure on the EGR 

were identified and a theoretical operating map for the LTC cycles was proposed. 

• A 0-D EGR simulation was setup along with the approximate molar analysis to 

study the EGR convergence and to estimate the steady-state concentrations after 

the application of EGR. A single equation was derived that included the effects of 

the transient build-up of EGR and the eventual convergence of the intake and 

exhaust concentrations to the steady state values. 

• The actual fuel strength of the cylinder charge was quantified in terms of an in-

cylinder lambda ka and its difference from the fresh air lambda A was also 

quantified. 

• A 'Charge Dilution Index' was proposed to present a standard measure for the 

estimation of the EGR independent of the engine operating conditions (load, boost 

etc). A dimensionless 'Oxygen Utilization' term was also defined to represent the 

engine load in terms of the intake and exhaust oxygen concentrations. 

• A two-lambda sensor technique was proposed and tested to provide fast feedback 

on the combustion characteristics for the control of LTC cycles. 

• The diesel fuel reforming process was tested to generate gaseous fuel on demand in 

the EGR loop. Novel flow management strategies including flow reversal, partial 

flow control together with central fuelling and central heating schemes were 

applied to improve the energy efficiency of the reforming process. The results 
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indicated a reduction of up to 50% supplemental energy with reversal flow and 

central fuelling compared to the unidirectional reformer with inlet heating. 

• The gaseous fuels generated by the diesel fuel reforming process in the EGR loop 

were shown to enhance the premixed combustion phase and significantly decrease 

the NOx emission without incurring a soot penalty. 
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CHAPTER VII 

7. TESTING OF DIESEL LOW TEMPERATURE COMBUSTION 

The LTC testing phase was divided into two parts. Engine tests were conducted to study 

the effects of commonly-used techniques that included injection timing retard and EGR 

on the NOx-soot trade-off for the conventional diesel high temperature combustion. The 

use of a pilot injection to reduce the combustion noise was also investigated and its effect 

on the emissions was studied. The tests were done on the Ford engine. The aim of this 

study was to develop a better understanding of the challenges associated with the 

emission reduction strategies and to provide useful guidelines for the control of the diesel 

LTC cycles. 

The diesel low temperature combustion was then investigated to realize ultra-low levels 

of NOx and soot. Three different LTC strategies were experimentally explored to achieve 

ultra low emissions under independently controlled EGR, intake boost, exhaust 

backpressure, and multi-event fuel injection events. Empirical comparisons were made 

between the fuel efficiencies of such LTC cycles. The results were crucial to develop an 

effective LTC load management strategy as well as to confirm the findings of the EGR 

analysis. 

7.1. Strategies for Reducing NOx and Soot Emissions 

Significant improvements in the NOx-soot trade-off can be achieved with injection 

timing retard, EGR, higher boost and fuel-injection pressures. Therefore, the individual 

effects of these parameters are presented below. 

7.1.1. Injection Timing Retard 

The timing of the fuel injection events has a strong influence on the combustion 

characteristics including the combustion phasing, the peak combustion temperature 

and pressure. These parameters in turn affect the useful cycle work, emissions, 

combustion noise and the fuel efficiency. 
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The effect of injection timing variation was studied by performing a timing sweep 

at different engine operating conditions. The test results for such a sweep at a 

baseline engine load of 6.2barIMEP are presented. The timing sweep was 

performed initially by keeping the fuelling rate constant and then the test was 

repeated by varying the fuelling rate to keep the IMEP constant. The baseline 

IMEP was achieved with the commanded SOI at 356°CA. The start of injection 

(SOI) was then varied, by advancing till 340°CA and then by retarding till 

365°CA. A single fuel injection was used during these tests. 

The NOx and the smoke trends are presented in Figure 7.1. As the injection timing 

was advanced till 350°CA, the NOx and soot emissions increased, but further 

advancing the injection timing resulted in reduced smoke levels. This can be 

explained as follows: The advanced fuel injection timing results in the fuel being 

injection into a lower temperature environment. Since the ignition delay is 

exponentially related to the cylinder temperature, a longer ignition delay results in 

increased premixing of the fuel with the air. Since soot formation primarily occurs 

during the diffusion-controlled combustion which is significantly reduced because 

of the enhanced premixing, therefore, the engine-out smoke is reduced. 

Retarding the injection timing on the other hand, resulted in simultaneous 

reduction of NOx and smoke. For the fixed fuelling case, as the timing was 

retarded to 365°CA, a sharp drop in the NOx was observed. This can be explained 

by plotting the NOx and smoke emissions against the combustion phasing 

(represented by the crank angle of 50% heat released) as shown in Figure 7.2. 

With the SOI at 364°CA, the combustion was phased well in to the expansion 

stroke (CA50: 379.6°CA) where the temperature was considerably lower due to the 

piston progressing into the expansion stroke. A small change of 1°CA in the SOI 

(365°CA) caused a 6°CA retarding of the CA50. With such late combustion 

phasing, the combustion was observed to be close to the flame-out condition, with 

high cycle-to-cycle variations and a significant drop in the IMEP. Therefore, the 

NOx emission reduced significantly. 
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The above reasoning was further supported by analyzing the heat release traces. 

The heat release rates for the fixed fuelling case are plotted in Figure 7.3. With the 

SOI at 340°CA, the combustion phasing was much earlier than the TDC and the 

combustion was comprised primarily of a premixed phase of very short duration 

(~5°CA). The absence of the diffusion-controlled combustion agreed with the low 

smoke values while the higher NOx was the result of the short premixed phase. As 

the SOI was retarded towards TDC (CA50: 360~366°CA), the increasing diffusion 

controlled combustion coincided with the rising soot values, while the reduction of 

the premixed phase agreed with the falling NOx emission. Retarding the SOI 

beyond TDC, the heat release was characterized by a diminishing diffusion-phase 

(longer ignition delay). The enhanced premixing did not result in an increase in the 

NOx because of the lower temperatures during the expansion stroke. However, 

with the SOI at 365°CA, the heat release peak reduced significantly with a marked 

increase in the combustion duration and was characterized by higher cycle-to-cycle 

variations, reduced thermal efficiency and a sharp drop in the NOx emission. 
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The pressure traces corresponding to the heat release traces are shown in Figure 

7.4. The early combustion phasing was marked with a high maximum rate of 

pressure rise (20.1 bar/°CA) and a maximum cylinder pressure close to 110 bar. 

Retarding the SOI progressively reduced the maximum cylinder pressure while the 

maximum rate of pressure rise was around 12 bar/°CA (CA50: 360~370°CA). For 

the very late combustion phasing, both the maximum cylinder pressure and the 

maximum rate of pressure rise were significantly reduced. Similar trends were seen 

for the fixed IMEP case and therefore have not been plotted. 
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Figure 7.4: Cylinder Pressure Traces for the Injection Timing Sweep (Fixed Fuelling) 

To correlate the effect of the injection timing retard with the thermal efficiency, the 

thermal efficiency and its percentage decrease from the baseline value were plotted 

against the CA50 in Figure 7.5 for both the fixed fuelling and the fixed IMEP 

cases. It was observed that the highest efficiency was achieved with the CA50 

phased between 365 to 370°CA (5-10°ATDC). Up to 20% reduction in the 

efficiency was observed by advancing or retarding the combustion phasing 
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(through SOI adjustment). This small window of ~5°CA (marked as A* on the 

figure) represented the combustion phasing for the best efficiency. 

50 Injection Timing Sweep 40 
SOI: 340°CA to 365°CA 

~ Pintake: 1 • 15 bar abs P**,,**,: 85 MPa 
21 45" Speed: 1500 RPM 
^ A * IMEP: 6.2 bar (baseline) • 30 

| 4 0 .  g  

i # • / 1 
^ 3 5 .  /  F i x e d  F u e l l i n g  - 2 0  ~  
| / • a Fixed IMEP $ 

® • A* # £ 
£ 3 ° -  A \  jm ^ 
I • \ . -

350 360 370 380 390 
CA50% Heat Released [°CA] 

Figure 7.5: Thermal Efficiency Trends versus CA50 for Fixed Fuelling and Fixed Load 

The relationship between the SOI and the CA50 is shown in Figure 7.6. The CA50 

and the SOI exhibited a linear relationship for SOI ranging from 340 to 358°CA. 

However, as the SOI was retarded further, the combustion phasing was delayed 

sharply. The ignition delay curve indicated that the off-phasing (retard) of the 

combustion from the best efficiency window (A*) was accompanied by a rapid 

prolonging of the ignition delay. The resulting lowered combustion temperatures 

reduced the NOx but the CO and HC emissions increased rapidly (Figure 7.7), 

thereby deteriorating the combustion efficiency. 

The results of Figure 7.6 and Figure 7.7 are important for understanding the 

complexities involved in the control of diesel low temperature combustion. The 

control system must be able to maintain the combustion at the borderline between 
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the stable and unstable regimes to achieve the highest efficiency and the lowest 

emissions. Any deficiency in the control would result in either an increase in the 

emissions or high cycle-to-cycle variations, possibly leading to misfire. The near-

linear S01-CA50 relationship was used extensively for the single-shot enabled 

LTC combustion control, as demonstrated subsequently in Chapter 8. 

The efficacy of retarding the injection timing in reducing the NOx emission is 

shown in Figure 7.8. The NOx emission was reduced significantly without 

increasing the smoke as the combustion phasing was optimized for the highest 

efficiency. Further retarding the SOI beyond A* resulted in a sharp increase in the 

ignition delay at a nearly fixed NOx level. This can be attributed to a trade-off 

between the increased premixed combustion (with the prolonged ignition delay) 

and the reducing temperatures during the expansion stroke. The reduction in NOx 

from this point was accompanied by a sharp rise in the CO and HC emissions. 

These results also indicated the limitation of the injection timing retard alone to 

meet the current and future NOx emission levels of ~0.2 g/kWh. 
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To confirm if the observed trends were consistent over a wide load range, the 

injection timing sweep was repeated at 4.2 and 8.2 bar IMEP (baseline values at 

the best efficiency) while keeping a fixed fuelling rate. The low load SOI sweep 

was performed from 330 to 364°CA while the higher load sweep was done from 

345 to 367°CA. The NOx and IMEP trends are shown in Figure 7.9. 

The NOx increased as a result of advancing the injection timing in both the cases. 

However, the NOx was seen to decrease for SOI earlier than 340°CA at 

4.2 bar IMEP. The CA50 was retained close to 350°CA for SOI around 330°CA so 

that the long ignition delay allowed for a more thorough mixing of the injected fuel 

with the cylinder charge. Therefore, a lean charge of high homogeneity existed at 

the start of combustion that resulted in lower NOx emission. The IMEP trends for 

the SOI sweep were similar to the results of the 6.2 bar IMEP tests. At 8.2 bar 

IMEP and retarded injection timing, the NOx was seen to increase. To understand 

this phenomenon, the cumulative heat release rates were plotted as shown in Figure 

7.10. 
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Figure 7.9: NOx and IMEP Trends for SOI Sweep at 4.2 and 8.2 bar IMEP 

257 



CHAPTER 7: TESTING OF DIESEL LOW TEMPERATURE COMBUSTION 

A sharp increase in the ignition delay (from ~ lms to 1.8 ms) was observed for the 

late injection timing as the SOI was retarded from 345 to 366°CA. In case of the 

lower loads (Figure 7.3), the retarded timing after TDC resulted in a long ignition 

delay and a long combustion duration as well. However, at higher load, it can be 

seen that despite the significantly longer ignition delay, the combustion duration 

was reduced from ~34°CA to 14°CA. Therefore, the rapid burning of the cylinder 

charge was able to overcome the lower temperatures of the expansion stroke. 

Conversely, at higher loads, the range of the injection timing retard can be 

increased before deterioration in the combustion occurs. 
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Figure 7.10: Cumulative Heat Release Traces for SOI Sweep at 8.2 bar IMEP 

The CO and HC emissions for the 4.2 and 8.2 bar IMEP tests are shown in Figure 

7.11. With the very early SOI, the combustion phasing was retained around 

350°CA but a sharp rise in the CO emission was observed. For the retarded timing, 

the onset of the increase in the CO was earlier at 4.2 bar IMEP. A higher engine 
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load, therefore, extends the timing retard range and improves the combustion 

efficiency for the same SOI. 
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Figure 7.11: CO & THC Emissions versus CA50 at 4.2 and 8.2 bar IMEP 

The CA50-S01 relationship for the two loads is shown in Figure 7.12. The results 

indicated that the CA50-S01 relationship was not affected significantly by the 

engine load. Furthermore, even though the CA50-S01 trend could be divided into 

three distinct regions, the relationship could be approximated with linear fits. For 

retarded phasing, the actual CA50 values were for 4.2 and 8.2 bar IMEP but the 

slopes were very similar. Therefore, the CA50-S01 relationship should be able to 

provide a consistent and reliable mechanism for enabling control of the combustion 

phasing (with a single HR peak) with the injection timing adjustment. 

To observe if similar trends could be seen with other pressure-based parameters, 

the crank angle of the maximum cylinder pressure CA(Pmax) and the crank angle of 

the maximum rate of pressure rise CA(dp/d0)max were plotted against the SOI as 
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shown in Figure 7.13. For the early SOIs, the CA(Pmax) was found to be insensitive 

to a change in the SOI. Moreover, the effect of load was also found to effect the 

CA(Pmax), thereby making it less suitable as a feedback parameter for the 

combustion phasing control. The CA(dp/d0)max on the other hand, displayed a 

linear relationship with the SOI, similar to the CA50. Although the absolute values 

differed slightly from the actual CA50 values, yet the CA(dp/d0)max was found to 

provide an indirect but a stable measure of the combustion phasing for heat release 

rates with a single peak. This is important from the point of view of combustion 

control since the calculation of the CA(dp/d9)max is simpler than that of CA50, and 

therefore, less computational resources are required (Chapter 5). 

The observations and the results of the injection timing sweep were summarized 

and are given in Table 7.1. 

Table 7.1: Summary of the Injection Timing Sweep Tests 

Parameter Observed Effect 

NOx 

• Generally increases with advanced timing* 
• Very early timing reduce NOx as combustion 
approaches a lean homogeneous mixture 
• Decreases as the timing is retardedt at low loads 

Soot 

• Decreases as the premixed combustion is enhanced 
(for both advanced and retarded timings) 
• Increases as the diffusion-controlled phase increases 
in proportion to the premixed phase 

CO&HC • Increase for both advanced and retarded timings 

CA50 
• Displays a linear relationship with the SOI 
• Largely insensitive to the engine load 

Thermal Efficiency 

• Decreases on both sides of the CA50 window for best 
efficiency (5~10°ATDC) 
• Up to 20% decrease for both advanced and retarded 
timings 

CA(Pmax) 
• Insensitive to the advanced timing | 
• Is affected by the engine load 

| CA(dp/d0)max 
• Displays a linear relationship with the SOI 1 
• Largely insensitive to the engine load j 

* Before TDC T After T1 DC 
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7.1.2. EGR, Boost and Injection Pressure 

The application of EGR results in the classical NOx-soot trade-off for the diesel 

high temperature combustion (Figure 1.8). To alleviate the soot emissions and to 

shift the NOx-soot trade-off closer to the origin, the effects of boost pressure and 

injection pressure on the NOx and soot emissions were investigated using a single 

fuel injection. The combustion phasing was maintained at 366°CA while EGR 

sweeps were performed at different boost and injection pressures. The results for 

the NOx emissions are shown in Figure 7.14. 
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Figure 7.14: Reducing NOx Emission with EGR 

The effectiveness of EGR to reduce NOx emission is evident as NOx decreased 

monotonically with increasing EGR irrespective of the boost level. At low EGR 

ratios, the NOx emissions exhibited some sensitivity to the boost pressure. On the 

other hand, a higher fuel injection pressure adds more energy into the mixing 

process which results in better air utilization. Therefore, at the same EGR level, a 
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slight increase in the NOx emission was observed with a higher injection 

pressure [135]. 

At low EGR ratios, the NOx emissions exhibited a higher sensitivity to the 

injection pressure than to the boost. This is because at low EGR levels, the intake 

already contains a significant amount of oxygen. Therefore, improvement in the 

fuel-air mixing due to the higher injection pressure should have a dominant effect 

as compared to the change in the fuel-charge strength with higher boost. 

The soot emission corresponding to the NOx data are shown in Figure 7.15. 

Increasing the boost helps to lower the fuel strength of the cylinder charge as the 

availability of the oxygen in the fuel/air charge increases. Therefore, the effect of 

boost on the soot reduction was significant only at higher soot levels corresponding 

to lower intake [O2] (at high EGR rates). Increasing the injection pressure, on the 

other hand, reduced the soot emissions across the EGR range. 

A higher injection pressure allows for increased atomization and penetration of the 

fuel spray within the cylinder charge, thereby enhancing the premixed part of the 

diesel combustion. Since soot is believed to be the formed during the diffusion-

controlled combustion which is significantly reduced with higher injection 

pressure, the engine-out soot was curbed even at lower intake [O2] corresponding 

to high EGR levels. 

These results indicated a significant effect of EGR, boost pressure and fuel 

injection pressure on the NOx and soot emissions. Therefore, a detailed analysis of 

these parameters was carried out over a wide range of engine operating conditions 

and is presented in the single-shot enabled LTC section. 
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Figure 7.15: Effect of Boost and Injection Pressure on the Soot Emission 

7.2. Diesel Combustion Noise 

Combustion noise in diesel engines is a consequence of the high rate of pressure rise 

(pressure gradient or dp!dO) due to the rapid combustion of the premixed fuel-air 

mixture. The amount of fuel that takes part in the premixed phase of diesel combustion is 

strongly related to the time available for mixing and the cylinder temperature history 

between the SOI and the SOC - the ignition delay period. Therefore, any means to reduce 

the ignition delay can help to reduce the combustion noise. 

The pilot injection can help to reduce the ignition delay duration by elevating the 

temperature and the pressure before the commencement of the main injection. As a result, 

the ignition delay of the main injection can be significantly shortened so that the 

premixed portion of the heat release is reduced, along with a significant decrease in the 

maximum rate of pressure rise (combustion noise) [136]. Experiments were therefore, 

conducted to investigate the effect of the two-injection strategy (pilot injection + main 
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injection) on the diesel combustion noise compared to the conventional single-injection 

strategy. 

7.2.1. Single-Shot vs. 2-Shots Strategy 

The test matrix for the single and two-injection tests is given in Table 7.2. An EGR 

sweep was performed to assess the effect of these injection strategies on the noise 

and NOx and soot emissions. EGR was regulated by changing the opening of the 

EGR valve while keeping the backpressure constant (~4 kPa). This ensured that the 

NOx emissions in particular would be minimally affected by the amount of 

residuals in the cylinder. To maintain the same combustion phasing for both the 

single- and 2-injection tests during the EGR sweep, the SOlMain (commanded pulse 

width (PW): 615ns) and SOI2 (commanded PW: 550ns) were progressively 

advanced for the single- and 2-injection strategies respectively. The pilot SOIi and 

pulse width (commanded PW: 280ns) were fixed and not changed during the tests. 

Table 7.2: Single and 2 Injection Test Matrix 

Number of Injections 

1 2 

SOI, [°CA ATDC] - -25 

SOI2 [°CA ATDC] - -10* 

SOlMain [°CA ATDC] -11.4* -

I Projection [MPa] 80 

Pintake [bar abs] 1.45 

Tjntake [°C] 29-32 

IMEP [bar] 7 

EGR Sweep 

CA50% Heat Released [°CA] 361,366 

* at baseline EGR of 10% 
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compared to the single injection strategy [136,137]. To investigate the reasons for 

the emissions results of Figure 7.17, the combustion duration was plotted in Figure 

7.18. It was observed that although the combustion duration increased with 

increasing EGR, it was the same for both the injection strategies. However, the 2-

injection strategy showed a significant drop in the combustion noise (Figure 7.18) 

up to 40% EGR. 
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Figure 7.17: NOx and Soot Emissions for Single- and 2-Injection Strategies 
(CA50 at 361°CA) 

To further analyze this aspect, the heat release rates for 3 different levels of EGR 

are shown in Figure 7.19. For all the 3 cases of 10%, 40% and 51% EGR, the SOC, 

the CA50 and the combustion duration were the same. The use of the pilot 

injection reduced the ignition delay of the main injection (indicated in the figures) 

and suppressed the premixed combustion, thereby resulting in a significant noise 

reduction. The reduced ignition delay can be attributed to the cool-flame reactions 

of the pilot fuel and the resulting higher charge temperature during the main 

injection event. Although reducing the premixed phase may help to reduce NOx 
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[138,139], the phasing of the combustion is also critical to the production of NOx 

and soot. Previously published results showed a retarded phasing beyond TDC for 

the 2-injection strategy [137]. The off-phasing of the combustion after TDC 

reduces the combustion temperature which may reduce the NOx and increase soot 

(soot destruction is inhibited). Since the combustion phasing was maintained nearly 

at TDC during the current work, the diffusion-controlled combustion occurred 

around TDC. Also, the tail of the combustion matched for both the injection 

strategies. Therefore, the effect of the 2-injection strategy on the NOx and soot was 

negligible in this particular case. 

As EGR was increased, the dilution effects of EGR increased the ignition delay 

and the diffusion-controlled combustion was observed to reduce. However, the 2-

injection strategy still benefited from lower pressure gradients (combustion noise) 

compared to the single-injection combustion. 
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The summary of the two injection strategy results with CA50 @ 361°CA along 

with the fuel efficiency is given in Table 7.3. 

Table 7.3: Summary Results for CA50 @ 361°CA 

1 EGR 1 

10% 40% 51% 1 

Single Injection 

(dp/d0)max [bar/°CA] 11.9 12.1 16.5 

Fuelling Rate [mg/cyc] 20.8 

Indicated Thermal Efficiency [%] 41.3 40.8 40.1 

2-Injections 

(dp/dG)max [bar/°CA] 8 9.5 14.2 

Fuelling Rate [mg/cyc] 21.9 

J Indicated Thermal Efficiency [%] 38.5 38.3 36.7 

The EGR sweep was performed again with the CA50 fixed at 366°CA but the SOC 

and the combustion duration were not regulated. The NOx emissions for the two 

cases were again similar but the soot was observed to increase for the 2-injection 

strategy with increasing EGR as shown in Figure 7.20. 

The reduction in the combustion noise was again observed for the 2-injection 

strategy (Figure 7.21), consistent with the previous results. The amplitude of the 

combustion noise was lower in this case as the combustion phasing was away from 

the TDC. However, the combustion duration for the 2-injection strategy was longer 

than that for the single injection case and the difference in the combustion duration 

progressively increased with higher EGR. It was therefore suspected that the longer 

combustion duration could affect the observed soot increase. 
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To further investigate the soot increase, the heat release rates were compared and 

one such comparison for an EGR rate of 33% is shown in Figure 7.22. For the 2-

injection strategy, the combustion started earlier, the premixed phase was 

significantly smaller; however, the diffusion-controlled phase was visibly larger. 

Moreover, the reduced peak of the premixed phase implied that the prevailing 

combustion temperatures during the diffusion part were less. Since a lower 

combustion temperature can reduce the soot oxidation rates during the later part of 

the combustion, therefore, any increase in the diffusion-controlled phase was prone 

to negatively affect the engine-out soot emissions. 
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The summary of the experiments targeting the diesel combustion noise using the two-

injection strategy at 7 bar IMEP is given in Table 7.4. 

Table 7.4: Summary of Two-Injection Strategy Tests 

Parameter Observed Effect 

NOx 

• Decreased with EGR. Trend same as that seen with the 
single-shot strategy 
• Value reduced with retarded combustion phasing for both 
the fuelling strategies. 

Soot 

• Increased with EGR for both the strategies. 
• Higher for the two-injection strategy when the 
combustion duration is more than that for the single-
injection strategy 

Combustion Noise • Significantly reduced compared with the single injection 
strategy across the EGR range 

Premixed Combustion • Reduced significantly and considered the major reason 
for reducing the combustion noise 

Diffusion Combustion 
• Contributes to the higher engine-out soot levels. 
• A higher fraction of the diffusion phase with the two-
injection strategy increases soot 

Thermal Efficiency • Slightly lower than the single-injection strategy 

7.3. The Necessity of Alternative Combustion Regimes 

The results presented above highlight the limitations of the conventional diesel 

combustion in achieving simultaneous low NOx and low soot emissions. The future 

emission standards targeting ultra low values of NOx (0.2 g/kWh) and soot (0.01 g/kWh) 

cannot be met with the strategies presented for the high temperature combustion. 

Therefore, to ensure compliance with the emission norms, two alternatives exist: the use 

of diesel exhaust aftertreatment devices or the use of clean combustion technologies. 

The aftertreatment device for soot treatment is primarily the diesel particulate filter (DPF) 

with or without a diesel oxidation catalyst (DOC). Since 2007, DPFs are being 

increasingly used in production diesel vehicles in North America for meeting the 

emission standard. However, an aftertreatment device for NOx treatment is still being 

researched for meeting the 2010 emission standards. The potential NOx treatment 
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technologies include the selective catalytic reduction (SCR) or the lean NOx trap. The 

functioning and proper functioning of these devices requires a complex system. 

The use of clean combustion technologies such as homogeneous charge compression 

ignition, low temperature combustion etc. is another viable alternative to simultaneously 

reduce the NOx and soot emissions through in-cylinder combustion optimization and 

engine hardware improvements. The use of such advanced combustion technologies to 

meet the emission standards can potentially be more cost effective compared to the diesel 

aftertreatment devices. Furthermore, any improvement in the combustion process (with 

the alternate combustion regimes) that reduces the engine-out emissions can potentially 

reduce or in an ideal scenario, eliminate the necessity of aftertreatment devices. 

Therefore, the rest of this chapter describes the testing and control of the diesel low 

temperature combustion. 

7.4. Diesel Low Temperature Combustion 

The Diesel low temperature combustion was investigated to realize ultra-low levels of 

NOx and soot. The implementation challenges for the diesel LTC were quantified and 

new LTC control strategies were explored experimentally to achieve ultra low emissions 

under independently controlled EGR, intake boost, exhaust backpressure, and multi-event 

fuel injection events. The narrow operating regions of LTC cycles which are close to the 

flame-out limits [140-142] and are generally considered non-viable for continuous 

engine operation were targeted. Empirical comparisons were made between the fuel 

efficiencies of such LTC cycles. 

7.5. Diesel LTC Challenges 

The enhanced premixed burning of lean and/or EGR weakened mixtures in LTC cycles 

predominantly reduces NOx. A natural consequence of high EGR rates is a substantial 

increase in the ignition delay period as shown by the test results (Figure 7.23). An 

increase in the ignition delay above 50% of the baseline value (without EGR) (or greater 

than 1.5ms) was repeatedly observed during the experimental work, to push the 

combustion into the LTC regime at different engine operating conditions. The increased 

ignition delay allows more time for the fuel-air mixing and therefore improves the 
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homogeneity of the cylinder charge. However, the fuel-efficiency of HCCI engines is 

commonly compromised by the high levels of HC and CO emissions that may drain 

substantial amount of fuel energy (5-20% for instance) from the engine cycle [30]. The 

major factors affecting the LTC operation that included the fuel efficiency, load level and 

the emission trade-off are therefore discussed hereafter. 
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Figure 7.23: Ignition Delay for Enabling LTC 

7.5.1. Fuel Efficiency of LTC Cycles 

The high HC and CO emissions during LTC cycles can be attributed to the 

following reasons: 

• Off-phasing of the combustion event; 

• The lowered combustion temperature of the lean and/or EGR diluted cylinder 

charge; 

• Low volatility of the diesel fuels; 
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• The flame-out of the locally excessive lean mixture caused by the non-

homogeneity of the cylinder charge; 

• The fuel condensation and flame quenching on the surfaces of the combustion 

chamber. 

Unlike conventional diesel engines where the phasing of combustion is tightly 

controllable via fuel injection timing modulation [4,143], the scheduling of fuel 

delivery in LTC cycles has less leverage on the exact timing of auto-ignition 

because of the prevailing prolonged ignition delay and compounded cycle-to-cycle 

variations. In cases of diesel LTC cycles, the crank angle for 50% heat released 

(CA50) may occur 7~14°CA BTDC, which may result in a substantial fuel-

efficiency penalty and combustion roughness [144]. Additionally, any departure 

from an optimized setting of EGR, intake boost, and charge homogeneity may 

severely destabilize the combustion process and thus deteriorate the fuel efficiency 

of the engine cycle [107,145]. 

Due to the relatively higher boiling temperatures of conventional diesel fuels [146], 

a cylinder charge of high homogeneity is more difficult to achieve and retain than 

with gasoline, especially when the temperature level and/or the mixing duration of 

the cylinder charge is insufficient. In an extreme scenario, attaining homogeneity is 

more difficult with bio-diesels that commonly have an even higher and narrower 

boiling range than conventional diesels [106]. Conversely, if such a diesel fuel has 

been homogenized with the cylinder charge for too long while the charge 

temperature is insufficiently high for vaporization, the diesel fuel is prone to 

condense on the surfaces of the combustion chamber as the vaporized diesel fuel 

would be in prevailing contact, for a few milliseconds or longer, with the surfaces 

of the piston-cylinder enclosure that significantly departs from a close-to-TDC 

designated combustion chamber. In comparison, conventional diesel sprays 

normally only have partial and momentary contacts, typically as fuel impingements 

with the chamber wall (primarily the bowl of the piston). 
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An ideal homogeneous charge with diesel fuel should be produced shortly before 

the cylinder TDC. If the homogeneous charge is produced too early, fuel 

condensation on the cylinder walls and the piston crown is inevitable. If the charge 

formation process starts too late or proceeds slowly, a homogeneous charge cannot 

be produced within the available time window, which may lead to premature 

ignition, and thus elevated NOx and soot production. Conversely, a large quantity 

of fuel per injection event may also lead to high HC and CO emissions as 

demonstrated empirically in Figure 7.24. Therefore, the homogeneity history needs 

to be controlled to produce the best fuel efficiency, for which multiple fuel 

injection events of short duration have been found to be effective, a representative 

case of which is shown in Figure 7.25. A significant improvement in the HC and 

soot emissions was achieved with the multiple injection strategy. Moreover, the 

fuel efficiency was also seen to improve as the injected fuel quantity had to be 

reduced to maintain the load at the same IMEP of 7.3 bar. 

Multi-pulse HCCI-3 Iniections/cvcle: IMEP: 7.3 bar 
Speed: 1800 RPM 
Pi injection' 750 bar 
Fuelling: 35.1 mg/cyc 
Pintake: 15 bar abs 
"'"intake: ~45°C 
EGR: 58% 
Indicated Emissions 
NOx: 0.1 g/kWh 
Soot: 0.03 g/kWh 
THC: 5.6 g/kWh 
CO: 15.8 g/kWh 

— Pressure 
— Injection Signal 

— HRR 

260 310 335 360 385 
Crank Angle [°CA] 

Figure 7.24: Relatively High CO & HC Penalty due to Large Injection Quantity per Shot 
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Multi-pulse HCCI- 7 Iniections/cvcle: IMEP: 7.3 bar r 0.4 
Speed: 1800 RPM 

înjection- ^50 bar 
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NOx: 0.13 g/kWh 
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Figure 7.25: Multiple Injections to Improve Charge Homogeneity and Fuel Efficiency 

7.5.2. LTC Emission Trade-off 

The simultaneous high NOx and soot are inevitable for heterogeneous high 

temperature combustion (HTC) where a large fraction of the heat is released in a 

mixing-controlled process and peak combustion temperatures can approach the 

adiabatic flame temperature for a stoichiometric mixture. EGR is commonly used 

to dilute the cylinder charge and to lower the combustion temperature; this results 

in the classical HTC trade-off between NOx and soot formation. 

Simultaneous low NOx and low soot are attainable for homogeneous LTC. Low 

combustion temperatures can be achieved by either premixing to very lean 

equivalence ratios or by employing EGR to reduce the combustion temperatures of 

mixtures with high equivalence ratios and thus reduce the NOx formation. The 

ensuing increase in the ignition delay allows more time for the fuel-air mixing and 

therefore improves the homogeneity of the cylinder charge that may eventually 

lead to simultaneous soot and NOx reductions as demonstrated in Figure 7.26. 
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Figure 7.26: NOx-Soot Trade-off in LTC Regime 

Thus, the high homogeneity of a cylinder charge, i.e. the parity of local and global 

air/fuel ratio, is a precursor to simultaneous soot and NOx reductions, which also agrees 

with the essences of HCCI whose lean and homogeneous cylinder charge typically results 

in ultra low levels of NOx and soot [35,60,74,147] especially under light loads [35]. The 

burning of a homogeneous cylinder charge that is lean and/or EGR diluted, i.e. LTC, is 

closer to non-combustion regions (flameout limits) and therefore, is prone to produce 

higher CO and HC emissions and to dwell in narrower operating regions. Therefore, a 

new LTC trade-off, that is, CO and HC vs. NOx and Soot exists, a representative case of 

which is shown in Figure 7.27. The CO emissions generally tend to follow a similar trend 

as that for the HC emissions. 
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Figure 7.27: LTC Emission Trade-off 

7.5.3. Engine Load Level with LTC Cycles 

The load level of the LTC cycles is limited by the peak cylinder pressure, the 

maximum rate of pressure rise and the peak combustion temperature. The low 

combustion temperature and high homogeneity are more difficult to achieve as the 

engine load, and thus the fuelling rate, increases. The excess oxygen depletes with 

higher fuelling rates and the proportion of the premixed fuel reduces within the 

given ignition delay period. Without employing higher EGR rates to push down the 

temperature, any non-homogeneity may therefore increase the local flame 

temperature in regions close to the stoichiometric air/fuel ratio. 

The implementation of the LTC cycles is commonly in low compression ratio (CR) 

engines such as 16:1,14:1 or even lower [33,66,137]. Engines with a CR of 17:1 or 

higher are generally considered not suitable or are commonly restricted to low load 

operation only while operating under LTC cycles. This is so because a higher 

compression ratio translates into a higher peak compression temperature (assuming 
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EGR and other conditions to be the same). Therefore, the transition from the high 

temperature combustion to the LTC cycles requires higher EGR rates to lower the 

temperature which normally result in very high levels of soot during the transition 

phase (Figure 7.23). 

7.6. LTC Cycle Efficiency Calculations 

Automotive diesel engines traditionally produced high burning efficiency especially in 

high temperature combustion (HTC) cycles. The heat release phasing and shaping were 

also proximate to the peak cycle efficiency, i.e. the mid heat release CA50 was placed 

5~10°CA ATDC, and the duration and the rate of burning were kept short and integrated 

without splitting. However, new constraints in emission and combustion noise control 

often compromise the fuel efficiency, i.e. a reduction in the burning efficiency by LTC, 

off-peak heat release phasing by HCCI, and widened or postponed heat release by heavy 

EGR application. Additionally, under high loads and high boosts, the combustion process 

needs to be split or highly delayed to confine the peak cylinder pressure. Furthermore, the 

technique of post injection has often been applied to incinerate the combustibles after the 

main combustion or to enable the exhaust aftertreatment, in which the burning energy is 

released significantly late. 

The efficiency of the LTC cycles was evaluated in terms of the indicated thermal 

efficiency and the combustion efficiency, and all comparisons with the conventional HTC 

operation were also done based on these two efficiencies. Therefore, it was essential to 

clearly define the efficiency terms and then compare the efficiency terms for the 

conventional and the LTC combustion based on these definitions. 

7.6.1. Combustion Efficiency 

Combustion efficiency is defined as the fraction of the supplied fuel energy that is 

the released during the combustion process [4]. Mathematically, it is expressed as: 

H R( T A)~Hp(Ta) 
%= ' (7.1) 

™ fQnV 

and 
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( 
[H„(TA)-Hr(TA)ym £ £ n.bit',, 

^i,reactants i, products j 
(7.2) 

where 

m = mass that passes through the control volume surrounding the engine. It 
includes both the fuel and the air. 

n, = the number of moles of species i in the reactants or products per unit 

mass of the working fluid. 

bh°f j = standard enthalpy of formation of species / at ambient temperature TA. 

m
fQHy ~ amount of fuel energy supplied 

H = enthalpy at the standard state 

The combustion efficiency metric was primarily used to account for the incomplete 

products of combustion in the exhaust. The typical products of incomplete 

combustion are CO, HC, soot and very small fraction of hydrogen. For the present 

research, the CO and HC were only considered. The ultra low levels of soot during 

the LTC cycles indicated that ignoring the contribution of soot should not have a 

significant effect on the energy efficiency considerations. In case of hydrogen, 

previously published results in the literature have shown that the hydrogen 

becomes a significant contributor to incomplete combustion only when the engine 

is operated under rich combustion mode [4]. The EGR reforming experiments 

(Chapter 6) showed that the hydrogen was produced under significantly rich 

combustion modes. Since all the LTC experiments were done under lean 

conditions (X>1), the contribution of the exhaust hydrogen was excluded from the 

calculations. An additional source of decrease in the combustion efficiency can be 

oil dilution if the injection scheduling is very early in the compression stroke. This 

issue was addressed by setting a criterion for the earliest injection timing that 

would minimize the oil dilution (explained later in this chapter). However, no 

attempt was made to quantify the oil dilution. 
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If the concentration of the exhaust species is known, an alternative expression for 

combustion efficiency is given by Equation (7.3). In this expression, the chemical 

energy carried out of the engine by the combustibles is considered as a 

representative of the combustion inefficiency [4]. 

where 

x i  = mass fraction of CO or HC 

QHV, = lower heating value for CO & HC 

The lower heating value of CO was taken as 10.1 MJ/kg and the lower heating 

value of HC was assumed to be the same as that of the diesel fuel (a value of 

42.9 MJ/kg was used for the analysis). As mentioned before, only the combustibles 

in the form of CO and HC were considered while the chemical energy carried by 

the soot and hydrogen was ignored. 

Modern HTC diesel engines may have a burning efficiency exceeding 99.5%. 

However, as strict in-cylinder NOx control techniques are implemented, the flame 

temperature reduces, and the exhaust HC and CO rise. The diesel LTC cycles may 

even downgrade to approach the conventional gasoline engine cycles giving a 

combustion efficiency of approximately 90-95%. 

7.6.2. Indicated Thermal Efficiency 

The indicated thermal efficiency is defined as the ratio of the useful work produced 

per cycle, to the total amount of the fuel energy supplied per cycle that can be 

released in the combustion process. This efficiency is also called the cycle thermal 

efficiency or the fuel conversion efficiency. Mathematically, it can be expressed by 

the following expression: 

YjX'Qhv, 
(7.3) 
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(7.4) 

where, 

Wc  = net useful work produced per cycle and is given by: 

Wc  =(j)pdV (7.5) 

7.6.3. Effect of Combustion Inefficiency 

The amount of the combustibles in the exhaust is not a direct representation of the 

combustion efficiency. The efficiency is affected by the engine load which is 

directly related to the fuelling rate for the conventional diesel engine. Therefore, 0-

D engine cycle simulations were performed to correlate the exhaust combustibles 

with the engine load. 

For the fuel injected into the engine cylinder mf, the burned fuel mh normally 

completes combustion, while a small portion of fuel, i.e. the fuel loss 

m, = {mf -mh}, fails to release energy or to release energy fully in the cylinder. 

The combustion or burning efficiency is thus: 

The fuel energy loss was evaluated herein that the exhaust HC was counted to have 

the same LHV and H:C ratio as diesel fuel; the LHV of CO was counted as lA of 

diesel; however, the soot constituent was ignored. Figure 7.28 shows a calculation 

for the fraction of exhaust HC (CiHi.88) with respect to the cylinder input fuel. The 

results indicate that the fuel fraction of exhaust HC is highly dependent on the load 

level. As highlighted in Figure 12, at high loads for instance, 4000 ppm of exhaust 

HC would translate to ~4% of fuel energy while the same would equal -10% at 

low loads. The same was observed during the testing and control of the diesel LTC 

cycles (Table 8.3). 
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Figure 7.28: Exhaust Energy with respect to Input Fuel at Different Engine Loads 

7.6.4. Effect of Combustion Phasing 

The effectiveness of the burning efficiency^ can be further evaluated in relevance 

to the impact of the heat release phasing. The heat release phasing efficiency is 

defined as: 

* » = —  ( 7 - 7 )  

pmm. 

In Equation (7.7), 7 is the actual cycle thermal efficiency when the phase of heat 

release departs from the timing of maximum thermal efficiency ijpmax, while the 

heat release rates for both 7 and 7pmax are fixed to the actual shape. When the 

phasing departs from the timing of maximum thermal efficiency, this off-phasing 

causes an additional efficiency penalty that may be greater than the burning 

inefficiency, especially at higher loads. If the phasing is early (before TDC), the 

combustion occurs during the compression stroke. The resulting high pressure and 
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temperature can substantially increase the compression work and therefore, result 

in a significant decrease in the IMEP (shown in Figure 7.9). A late combustion 

phasing, on the other hand, effectively results in a shorter expansion stroke so that 

the amount of useful work is reduced. This can also cause a significant decrease in 

the IMEP (Figure 7.5, Figure 7.9). 

The phasing efficiency penalty was quantified in terms of 'Equivalent Exhaust 

HC'. Figure 7.29 relates the degree of CA50 off-phasing to the equivalent THC 

that would result in the exhaust for the same amount of fuel loss. For the LTC 

types of combustion where the off-phasing of the CA50 can be up to 12°CA BTDC 

and 20°CA ATDC, the contribution of the CA50 to the fuel-efficiency penalty may 

be similar or higher than that due to the actual HC and CO emissions in the 

exhaust. For instance, an off-phasing of -10°CA (advanced) from the best 

efficiency CA50 at 8 bar IMEP would be equivalent to ~2000ppm THCC1 in the 

exhaust; a similar loss would be encountered when the timing is retarded by ~ 

5.5°CA from the best efficiency CA50. 

Assumptions 
Pintake: 1 bar abs 
EGR: 0 % 
LHV: 42.9 MJ/kg 
CArjmax : ~365°CA 

Lines of 
Constant IMEP 

5000! 

-20 -15 -10 -5 0 5 10 15 

Off-phasing from CA ri^x [°CA] 

Figure 7.29: Equivalent THC Penalty with CA50 Off-phasing 
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i <d 
a. 

The equivalent exhaust HC because of the off-phasing of the combustion from the 

best efficiency window were also related to the decrease in the indicated thermal 

efficiency through 0-D engine cycle simulations as shown in Figure 7.30. A higher 

penalty in the combustion efficiency is incurred as the off-phasing of the 

combustion increases (represented by the HC in this figure). The experimental data 

for an SOI sweep from 342 to 344.8°CA was performed without EGR. The IMEP 

was maintained at 6.1 bar by adjusting the fuelling at each SOI. The actual 

combustion phasing data and the indicated thermal efficiency data was used to 

estimate the equivalent HC penalty based on Figure 7.29 and the result has also 

been plotted in Figure 7.30. 
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Figure 7.30: Drop in Indicated Thermal Efficiency as a function of the Equivalent 
Exhaust HC 

The actual combustibles for this SOI sweep test (HC + counting CO as !4 of HC) 

are shown in Figure 7.31 and were very low (< 200 ppm). Therefore, the decrease 

in the indicated thermal efficiency observed in the test can be taken as the result of 

the combustion off-phasing. The effect of the combustion off-phasing has been 
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empirically demonstrated in the multi-shot (early HCCI) LTC tests presented later 

in this chapter where the earlier-than-TDC burning of the homogeneous cylinder 

charge resulted in a significant reduction in the efficiency. 
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Figure 7.31: Effect of Combustion Phasing on the Indicated Thermal Efficiency and 
Engine-out Combustibles 

7.7. Stability of the LTC Cycles 

The burning of a homogeneous cylinder charge that is lean and/or EGR diluted, i.e. LTC, 

is closer to non-combustion regions (flameout limits). Thus, the LTC cycles are 

inherently inclined to produce higher unburned combustibles and to dwell in narrower 

operation regions in stark contrast to the conventional HTC combustion. 

The coefficients of variance (COV) of the IMEP and Pmax have been regarded as suitable 

measures to quantify the stability of the combustion process [4]. The COV evaluates the 

data scattering or deviation from the mean value and is mathematically expressed as: 

COV = (7.8) 

288 



CHAPTER 7: TESTING OF DIESEL LOW TEMPERATURE COMBUSTION 

where a is the standard deviation of the dataset and x is the arithmetic mean. The COV 

of IMEP and Pmax can therefore be written as: 

The COV was calculated for each dataset with 200 consecutive cycles of the recorded 

pressure data and was used as a measure of the stability of the combustion process in this 

research. 

7.8. Implementation of Diesel LTC Cycles 

The implementation of the diesel LTC cycles was done on the basis of the fuel injection 

strategies (Figure 3.4) to prepare a homogeneous cylinder charge (lean or EGR diluted) 

before the combustion process. The test matrix for the LTC experiments is given in Table 

7.5. The single-injection (single-shot) LTC, the multi-shot LTC (early-HCCI) and the 

split combustion categories were tested under different engine operating conditions and 

energy efficiency comparisons were made. For the single-shot strategy, the effect of 

boost and injection pressure on the transition from the HTC to the LTC cycles was 

investigated and quantified. The minimum levels of boost and fuel injection pressure 

were identified for both the single-shot LTC and the early HCCI strategies, and efficiency 

comparisons were also drawn between these two strategies. 

COV.mp = \ 
IMEP \ mean 1 

^(IMEP-IMEP^J 

N-1 
(7.9) 

and 

mean 

(7.10) 
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Table 7.5: Test Matrix for Diesel LTC Experiments 

Test # LTC Strategy Implementation Investigated Parameters 

1. Single-shot LTC 
Speed: 1500 RPM 
Load: 5.2 bar IMEP 

EGR 

2. Single-shot LTC 
Speed: 1500 RPM 
Load: 8 to 7.4 bar IMEP 

Injection Pressure, Boost, EGR 

3. Multi-shot LTC (Early HCCI) 
Speed: 1500 RPM 
Load: 6.8 & 7.4 bar IMEP 

Injection Pressure, Boost, EGR 

4. 
Single-shot LTC vs. Multi-shot LTC 
(Performance Comparison) 

Speed: 1500 RPM 
Load: 3.1, 5.2 & 7 bar IMEP 

EGR 

5. Single-shot LTC 
Speed: 1500/1800 RPM 
Load: 5.2 bar IMEP 

Injection Pressure, Engine Speed 

6. Multi-shot LTC (Early HCCI) 
Speed: 1500/1800 RPM 
Load: 5.2 bar IMEP 

Injection Pressure, Engine Speed 

7. Split Combustion LTC Speed: 1500 RPM 
Load: 8 & 9.7 bar IMEP 

Injection Pressure, Boost, EGR 
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7.8.1. Single Shot LTC with Heavy EGR - 5.2 bar IMEP (Test # 1) 

The first experiment was performed at a baseline IMEP of 5.2 bar (9%EGR). The 

boost was 1.5 bar abs and the injection pressure was lOOMPa. An EGR sweep was 

performed to push the combustion in to the LTC cycles. The NOx and the soot 

emissions for the test are shown in Figure 7.32. As EGR was applied, NOx reduced 

significantly with initially minimal rise in soot. Further increases in EGR led to 

additional NOx reduction but caused a significant rise in soot (Slope 1-Classical 

NOx-soot trade-off). However, as heavier EGR was applied, the combustion 

process resulted in simultaneous reductions of NOx and soot emissions as the 

combustion essentially entered the LTC regime (Slope 2). 
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Figure 7.32: NOx & Soot Emissions for EGR-enabled Single Shot LTC (Test # 1) 

The heavy use of EGR prolongs the ignition delay and provides more time for the 

fuel-air mixing. In the HTC combustion, the cylinder charge during combustion is 

essentially heterogeneous where the global equivalence ratio (decided by the total 

charge mass and the total injected fuel) is not the same as the local equivalence 
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ratio existing around the fuel spray. However, as the mixing duration is enhanced 

with EGR, the disparity between the local and the global equivalence ratio is 

minimized, leading to a more homogeneous cylinder charge. 

The terms 'slope 1' and 'slope 2' have been extensively used for the EGR enabled 

single-shot LTC in this work and are therefore defined as follows: 

• Slope 1- the segment of soot climbing but NOx declining curve when EGR 

increases during HTC combustion. It represents the classical NOx-Soot trade

off. 

• Slope 2 - the segment of simultaneous soot and NOx declining curve when 

EGR increases during LTC combustion. It represents the reduction in NOx and 

soot enabled with a single injection using heavy EGR. 

The CO and THC emissions for the test are shown in Figure 7.33. The HTC 

combustion was characterized by low CO and HC emissions, an inherent 

advantage of the conventional diesel combustion process. With Increasing EGR, a 

rapid rise in the CO emission was observed as the oxygen concentration of the 

charge and combustion temperatures reduced. With heavier EGR, as the 

combustion entered the LTC cycles, a sharp rise in the HC emission was also 

observed, signifying the LTC emission trade-off. 

The heat release rates at three EGR levels are shown in Figure 7.34. At 38% EGR, 

the intake oxygen was still high (17.5%) since the load was low. This is the free 

NOx reduction region where the enhanced premixing reduced the NOx with 

minimal soot penalty. At 63% EGR, the combustion had entered slope 2 but the 

soot was higher than the 2010 target of 0.01 g/kWh. The heat release peak was 

lower and the premixed combustion phase was wider. At 65% EGR where the soot 

was below 0.01 g/kWh, the heat release was characterized by a much lower rate of 

rate release and an enhanced premixed combustion compared to the other two heat 

release traces. This can primarily be attributed to the high intake charge dilution 

and can be taken as an indicator of a high level of charge homogeneity. 
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The performance of the LTC was compared with the conventional HTC and the 

results are summarized in Table 7.6. Since the phasing was tightly controlled at 

366°CA, only a slight deterioration in the combustion efficiency was observed and 

the thermal efficiency dropped by 1%. The coefficient of variance (COW) of IMEP 

is an indicator of the cycle-by-cycle variations. The COVIMEP was 2.9 % which was 

just at the limit of the generally acceptable threshold of 3%. The combustion noise 

((dp/d0)max) was reduced significantly. A tight control on the engine operating 

conditions that included EGR and combustion phasing helped to retain the 

efficiency of the LTC operation, similar to the conventional HTC operation. 

Table 7.6: Summary of Single Shot LTC - 5.2 bar IMEP (Test # 1) 

Parameter HTC LTC 

EGR [%] 30 65 

IMEP [bar] 5.2 5 

Intake O2 [%] 18.5 9.1 

Indicated Thermal Efficiency [%] 40.7 39.7 

NOx [g/kWh] 4.38 0.05 

Soot [g/kWh] 0.013 0.002 

CO [g/kWh] 1.34 >17* 

THC [g/kWh] 0.03 0.46 

Combustion Efficiency [%] 99.83 97.82 

Pmax [bar] 98.4 93.7 

(dp/d0)max [bar] 10.7 4.8 

CA50 [°CA] 366 366.3 

COV Pmax[%] 0.74 1.98 

| COV IMEP [%] 2.3 2.9 

* Exceeded the measurement limit of5000 ppm 
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7.8.2. Single Shot LTC with Heavy EGR - 8 bar IMEP (Test # 2) 

The implementation of the single-shot LTC in Test # 1 employed a moderately 

high injection pressure and a moderate boost pressure as well. To investigate the 

factors that affect the selection of the boost and injection pressure required for 

enabling LTC cycles, as well to highlight the implementation challenges (identify 

the limiting conditions) for the single-shot LTC, an extensive set of tests was run at 

a relatively high IMEP of 8 bar. Two levels of boost (1.45 bar abs & 1.75 bar abs) 

and four levels of fuel injection pressure (60 MPa, 90 MPa, 120 MPa & 150 MPa) 

were used. The baseline IMEP was set at 8 bar with 10% EGR and the fuelling was 

kept constant for the rest of the tests. A typical SOI adjustment is shown in Figure 

7.35. A slight modification in the SOI was required as the EGR was increased up to 

-40%. However, as the dilution effect of EGR became stronger at higher EGR 

levels, the prolonging of the ignition delay resulted in a large change to be made in 

the SOI to maintain the same combustion phasing. The 
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Figure 7.35: SOI Adjustment to maintain Combustion Phasing at 366°CA 
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effect of boost on the SOI was minor at low EGR levels but was pronounced as the 

combustion reached the slope 2. Moreover, the higher boost level shifted the 

deviation of the SOI towards higher EGR values. 

In the following sections, an attempt was made to identify the individual effects of 

EGR, boost and injection pressure on the attainment and the efficiency of the 

single-shot LTC. 

7.8.2.1. Efficacy of EGR in Single-shot LTC 

The NOx and soot trends for the injection pressure of 150 MPa and 

1.75 bar abs boost are shown in Figure 7.36. The results indicated that the 

combustion was pushed into the LTC cycles but the soot level was still 

higher than 0.01 g/kWh. The combustion phasing (CA50) was maintained 

at 366°CA by adjusting the SOI as the EGR was progressively increased. 

The efficacy of EGR in pushing the combustion into the LTC cycles can be 

attributed primarily to the dilution of the intake charge and the increased 

charge heat capacity. EGR reduces the intake oxygen concentration by 

replacing part of the fresh air intake with inert combustion products, 

namely carbon dioxide (CO2), water (H2O) and nitrogen (N2). The higher 

heat capacity of the inert gases, together with the reduced oxygen 

concentration results in reduced local flame temperatures during the 

combustion process and thus, a reduced rate of NOx formation. 

Additionally, the lowered compression temperature during the fuel injection 

events also causes an increase in the ignition delay as the reaction rates are 

reduced (strongly temperature-dependent) [148]. This effect is similar to 

that observed with retarding the injection timing. Since the peak 

combustion temperature is widely believed to the most significant variable 

affecting NOx production, EGR has proven to be very effective in reducing 

the engine-out NOx. 

However, the soot emissions tend to increase as the EGR is progressively 

increased during HTC (slope 1) [36]. Soot emissions from diesel engines 
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are the result of the difference between the soot production and soot 

oxidation processes [28]. The lowered combustion temperature and the 

charge dilution are thought to reduce the soot oxidation rates associated 

with the low flame temperatures of diluted mixtures, hereby increasing the 

soot emissions [34]. However, as the combustion enters the LTC cycles 

with very high EGR levels (slope 2), the soot emissions decrease sharply. 

Previous studies suggest that the flame temperature is lowered to levels at 

which the soot production is inhibited [35]. 
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Figure 7.36: NOx & Soot Emissions for EGR-enabled Single Shot LTC (Test # 2) 

The lowering of the flame temperature and the EGR-diluted charge 

produces higher CO and THC emissions as shown in Figure 7.37. The CO 

emission was generally observed to be a characteristic of Slope 1 (classical 

NOx-soot trade-off) and was considered to be the result of the reduced 

oxygen concentration [4,148], while THC increased shaiply as the 

combustion was pushed into the LTC cycles. The indicated thermal 
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efficiency also decreased rapidly (riind: 42-45% for Slope 1, 36-38% for 

Slope 2). Compared to the results of test # 1, the CO and HC emissions 

were observed to be significantly higher, even with the higher injection 

pressure and the higher boost. 
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Figure 7.37: High CO and HC Emissions for LTC Cycles 

7.8.2.2. Effect of Boost Pressure 

The effects of boost pressure on the formation of NOx at a given engine 

load with the single-shot injection strategy are indicated in Figure 7.38. The 

effectiveness of EGR to reduce NOx emission was evident as NOx 

decreased monotonically with increasing EGR irrespective of the boost 

level. At low EGR ratios, the NOx emissions exhibited some sensitivity to 

the boost pressure but with heavy use of EGR, it was observed that NOx 

was virtually grounded and the effect of boost variation became 

insignificant. 
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Figure 7.38: Effect of Boost on Engine-out NOx (8 bar IMEP) 

The soot emissions corresponding to the NOx data are shown in Figure 

7.39. As the boost pressure was increased, the intake [O2] at which the peak 

soot occurs was observed to shift towards lower values. A small decrease in 

the magnitude of the peak was also observed. Increasing the boost helps to 

lower the fuel strength of the cylinder charge as the availability of the 

oxygen in the fuel/air charge increases. Therefore, the effect of boost on the 

soot reduction was significant only at higher soot levels corresponding to 

lower intake [O2]. It was also noted that the peak soot levels were 

suppressed as the combustion proceeded into the LTC regime. 

The effect of boost on the soot-NOx trade-off is shown in Figure 7.40. At 

high intake [O2], the already low soot levels do not necessitate the use of 

higher boost as a small penalty in NOx is generally incurred. However, a 

significant improvement in the soot-NOx trade-off can be achieved at lower 

intake [O2] with higher boost pressures as the NOx is essentially grounded. 

Similar observations have been previously reported in the literature [135]. 
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Figure 7.39: Effect of Boost Pressure on Engine-out Soot (8 bar IMEP) 
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Increasing the boost pressure helps to lower the CO emissions by as much 

as 50% at low intake [O2] since CO is the consequence of the reduced 

oxygen concentration in the combustion chamber as indicated in Figure 

7.41. Additionally, a higher boost can also help to delay the onset of CO 

emissions. A similar trend was observed for the THC emissions as shown in 

Figure 7.42. The onset of THC emissions was observed to occur later than 

that of CO and is thought to be the result of both the lowered combustion 

temperatures and the reduced oxygen concentration. 
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Figure 7.41: Effect of Boost Pressure on Engine-out CO (8 bar IMEP) 
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Figure 7.42: Effect of Boost Pressure on Engine-out THC (8 bar IMEP) 

The heat release rates for an EGR level of 42% are shown in Figure 7.43. 

As boost was increased at a constant EGR and constant load level, the 

effectiveness of the recycled exhaust gases decreased since the combustion 

became leaner overall. Therefore, the ignition delay was shortened and the 

premixed part of the combustion was reduced. In other words, increasing 

the boost serves to lowering the fuel strength of the cylinder charge and can 

help to extend the EGR application limits. The same trend was shown with 

0-D EGR simulations in Chapter 6. 

The heat release rates were plotted again for the same intake [O2] as shown 

in Figure 7.44. It was observed that the ignition delay was not affected by 

the change in the boost. Moreover, a higher EGR rate was required at the 

higher boost to achieve the same oxygen concentration. The decrease in the 

premixed part of the combustion was observed to be less than that seen for 

the same EGR results. 
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Figure 7.44: Heat Release Rates at different Boost for the same Intake O2 (8 bar IMEP) 
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The indicated thermal efficiency and the indicated specific fuel 

consumption (ISFC) for two boost levels (1.45 bar abs and 1.75 bar abs) at 

150MPa injection pressure are shown in Figure 7.45. The fuel efficiency 

dropped as the combustion entered the LTC cycles in both the cases. 

However, the efficiency penalty was lower at the higher boost pressure 

compared to the lower boost operation. Since a higher boost level is 

effective to reduce the engine-out CO and HC emissions, therefore some of 

the efficiency penalty can be recovered while achieving simultaneous low 

NOx and low soot emissions. 
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Figure 7.45: LTC Fuel Efficiency Trends (8 bar IMEP) 

7.8.2.3. Effect of Injection Pressure 

The effects of increasing the injection pressure on the formation of NOx 

with the single-shot injection strategy are indicated in Figure 7.46. A higher 

fuel injection pressure adds more energy into the mixing process which 

results in better air utilization. Therefore, a slight increase in the NOx 

304 



CHAPTER 7: TESTING OF DIESEL LOW TEMPERATURE COMBUSTION 

18 

15 

DJ 
X 
O 
z 
"O d> 

12 

emission is usually observed for the same EGR [135]. At low EGR ratios, 

the NOx emissions exhibited a higher sensitivity to the injection pressure 

than to the boost. This is because at low EGR levels, the intake already 

contains a significant amount of oxygen. Therefore, improvement in the 

fuel-air mixing due to the higher injection pressure has a dominant effect as 

compared to the change in the fuel-charge strength with higher boost. With 

heavy use of EGR, it was observed that NOx was essentially grounded and 

the effect of injection pressure was not evident, similar to the boost case. 
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Figure 7.46: Effect of Fuel Injection Pressure on Engine-out NOx (8 bar IMEP) 

For the soot emissions, increasing the injection pressure reduced the soot 

emissions across the EGR range as shown in Figure 7.47. A higher 

injection pressure allows for increased atomization and penetration of the 

fuel spray within the cylinder charge, thereby enhancing the premixed part 

of the diesel combustion. Since soot is believed to be the formed during the 
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diffusion-controlled combustion which is significantly reduced with higher 

injection pressure, the engine-out soot is curbed even at lower intake [O2]. 
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Figure 7.47: Effect of Fuel Injection Pressure on Engine-out Soot ( 8 bar IMEP) 

The effect of injection pressure on the CO and THC emissions is similar to 

that observed with higher boost as shown in Figure 7.48 and Figure 7.49 

respectively. A higher injection pressure not only reduces the CO across the 

EGR range but also helps to delay the onset of the rapid rise in the CO. In 

these tests, the CO results for slope 1 are only shown since the CO emission 

exceeded the analyzer measurement range (indicated on the figure as well). 

The THC emissions tend to increase rapidly as the simultaneous reduction 

in NOx and soot is realized (slope 2). A higher injector pressure is effective 

at curbing the THC at intermediate to low intake [O2] and can help in 

attainment of the LTC (slope 2). 
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Figure 7.48: Effect of Fuel Injection Pressure on Engine-out CO (8 bar IMEP) 
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Figure 7.49: Effect of Fuel Injection Pressure on Engine-out THC (8 bar IMEP) 
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The effect of higher injection pressure on the heat release rates is shown in 

Figure 7.50. It was observed that the premixed combustion was 

significantly enhanced with increasing injection pressures. Also, the 

combustion duration was slightly reduced while maintaining the same 

combustion phasing (CA50). However, a higher injection pressure had 

implications on the combustion noise as discussed next. 
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Figure 7.50: Heat Release Rates at different Injection Pressures (8 bar IMEP) 

400 

With regards to the maximum rate of pressure rise (a representation of the 

combustion noise), it was observed that for Slope 1, a higher injection pressure at 

constant boost and fixed intake [O2] tends to increase the combustion noise (due to 

enhanced premixed combustion). A higher boost at a fixed injection pressure on 

the other hand, tends to alleviate the noise levels (since combustion is leaner). The 

comparison can be made either on the constant EGR or on the constant intake [O2] 

basis. For example, at 41% EGR, the (dp/d0)max was 10.9 bar/°CA for the case of 

150 MPa injection pressure and 1.75 bar abs boost (15.8% intake [O2]) while it was 
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13.1 bar/°CA for 150 MPa & 1.45 bar abs (14.6% intake [O2]). At the same intake 

[O2] of 14.6%, the (dp/d0)max increased to 11.8 bar/°CA (150 MPa, 1.75 bar abs). 

Therefore, the efficacy of boost in alleviating the combustion noise was found to 

be less at the same intake oxygen as compared to the same EGR level. However, as 

the combustion entered the LTC regime (Slope 2), the combustion noise levels 

dropped to ~8 bar/°CA for both the cases (-9.6% intake [O2]). 

The results for the effects of boost and injection pressure on the attainment of 

slope 2 are summarized in Table 7.7. The values given in the table show the best 

achievable NOx for each case and all the other parameters have been reported for 

that engine operating point. 

Table 7.7: Summary of Single Shot LTC - 8 bar IMEP (Test # 2) 

Parameter 90 MPa 150 MPa I Parameter 
1.45 bar abs 1.75 bar abs 1.45 bar abs 1.75 bar abs I 

NOx [ppm] 26 24 14 11 

NOx [g/kWh] 0.142 0.14 0.07 0.05 

IMEP [bar] 7.67 7.9 7.1 7.4 

EGR [%] 55 60 61 65 

Intake O2 [%] 11.9 11.8 9.5 8.6 1 
Indicated Thermal 
Efficiency [%] 

38.2 38.5 38.1 38.4 

Smoke [FSN] 5.3 4.9 2.6 0.46 

Soot [g/kWh] 0.86 0.66 0.15 0.012 

CO [ppm] >5200* >5200* >5200* >5200* 

THC [g/kWh] 1.35 0.92 3.63 3.22 

Combustion 
Efficiency [%] 

97.3 97.1 96.6 97.2 

Pmax [bar] 99.5 115.2 102.1 115.9 

(dp/d0)max [bar] 8.2 7.4 8 8.1 1 

COVPmax[%] 1.7 0.64 1.1 1.01 

COV IMEP [%] 2.7 1.4 1.87 1.91 

* Exceeded the measurement limit of the analyzer 
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The use of a higher boost pressure and a higher injection pressure was able to push 

the combustion into the LTC cycles. A moderate recovery in the combustion 

efficiency was observed and the penalty in the thermal efficiency was also seen to 

reduce. However, the HC and CO emissions were very high and indicate the load 

limit for the single-shot LTC injection strategy. The simultaneous low NOx and 

low soot are the result of the separation of the fuel injection from the combustion. 

As more fuel is injected into the cylinder, the prolonging of the ignition delay is 

limited by the availability of high injection and high boost pressures. Even if 

higher boost and injection pressures could be achieved, the engine operation would 

be limited by the physical constraints such as Pmax and (dp/d0)raax. Therefore, 

further tests were performed to determine an effective LTC load management 

strategy as described later on. 

7.8.3. Criteria for Timing of Multiple Injection LTC (Early HCCI) 

The timing of the multiple injections is critical to maintain the fuel efficiency of 

the early HCCI cycles as discussed in section 7.5.1. When fuel is injected early in 

the compression stroke, the major factors affecting the fuel spray are the volatility 

of the fuel, the prevailing in-cylinder temperature and the density of the charge at 

the time of injection. The volatility of diesel fuels is much lower than gasoline, 

making it hard to vaporize the diesel fuel at low temperatures. For a typical diesel 

fuel, the boiling temperature range is between the initial boiling point (IBP) 

~200°C and the final boiling point (FBP) ~340°C. If the injection occurs before the 

in-cylinder temperature has crossed the IBP threshold, the injection would have a 

strong propensity to condense on the cylinder walls and the piston crown, resulting 

in high HC emissions, lower fuel efficiency and even oil dilution. Therefore, to 

reduce the fuel condensation during early-injection diesel LTC and to form a 

cylinder charge of high homogeneity, the earliest SOI should be scheduled after the 

IBP of the fuel has been attained during the compression stroke. The criteria for 

determining the earliest injection timing that minimizes fuel condensation and also 

the oil dilution on a crank angle basis is depicted in Figure 7.51. 
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Figure 7.51: Determination of SOI for Early Injection LTC to Minimize Fuel 
Condensation 

The density of the cylinder charge at the time of injection has a direct consequence 

on the likelihood of the spray impinging on the cylinder walls. A lower charge 

density at the time of early injection would favour a higher spray penetration. The 

effect of the injection timing on the wall impingement has been empirically 

investigated with spray visualization studies by Hiroyasu and Arai [149], Naber 

and Siebers [150] for non-evaporating sprays. Hiroyasu et al. [149] proposed 

empirical correlations for spray break-up length, spray-penetration, spray-angle 

and drop size distribution. Naber et al. [150] investigated the effects of gas density 

on the penetration and dispersion of diesel sprays and proposed empirical equations 

for estimating the spray penetration length. 

The expressions for the spray penetration length S are divided into two parts: one 

before the time for spray break-up th and the other after the time of spray break-up 

as follows. 

311 



CHAPTER 7: TESTING OF DIESEL LOW TEMPERATURE COMBUSTION 

For 0 <t<th, Hiroyasu et al. [149] proposed the following expressions: 

and for t>tb, the correlation by Hiroyasu and Naber is of the form [149,150] 

where 

Dn ~ nozzle diameter, m 

pa = Ambient pressure, Pa 

pf = Injection pressure, Pa 

S = Spray penetration length, m 

t = Time, seconds 

tb = Break-up time, seconds 

pg = Density of cylinder charge, kg/m3 

pf = Density of fuel, kg/m3 

C, = 2.95, x = y = 0.25 (Hiroyasu - Mechanical fuel-injection system) 

C, = 2.25, x = 0.25,y = 0.345 (Naber -Common-rail fuel injection system) 

(7.11) 

(7.12) 

Pa 
(7.13) 
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The effect of injection pressure, start of injection timing and boost pressure on the 

spray penetration length was numerically investigated using the constants proposed 

by Naber since these are applicable to common-rail injection systems [151]. Unlike 

previous studies where a fixed density and ambient pressure are assigned for the 

calculations, the spray breakup and penetration calculations were integrated into a 

0-D diesel engine cycle simulation program. This allowed the variations in the 

cylinder charge density and the cylinder pressure to be accounted for at each time 

step. A time step of 11.1 ̂ is (corresponding to 0.1 °CA resolution at 1500 RPM) was 

used and the results are shown from Figure 7.52 to Figure 7.54. 
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Figure 7.52: Effect of SOI on the Liquid Penetration Length at 90MPa Injection Pressure 

The >/2 x Bore Radius represents the minimum distance from the nozzle tip to the 

cylinder wall, assuming an injector cone angle of 90°. Among the three analyzed 

parameters (SOI, Intake Pressure and Injection Pressure), the start of injection had 

the most significant impact on the liquid spray length followed by the intake 

pressure and the injection pressure. 

Liquid Spray Penetration - Effect of Injection Timing 
Nozzle Hole Diameter: 150 |am 
"injection- lv,r« 

Pintake: 1 bar abs 
Fuel Density: 830 kg/rrv 

V2 x Bore Radius 

^ * SOI 
^ 300°CA 

320°CA 
— 340°CA 

Nozzle backpressure (in-cylinder pressure) & 
charge density calculated using 0-D engine 
cycle simulation (Ford Engine Geometry) 

0 400 800 1200 1600 2000 
Time [us] 

313 



CHAPTER 7: TESTING OF DIESEL LOW TEMPERATURE COMBUSTION 

It is important to note that the presented numerical analysis does not include the 

effect of the spray evaporation and predicts the penetration if the spray remains in 

the liquid phase. Empirical results by Naber et al. [150,151] indicate that the spray 

penetration length reduces for evaporating sprays and reaches a maximum stable 

value. In view of this, if an injection of a long duration (for example 1ms at 

300°CA) is employed (Figure 7.52), the spray impingement on the wall is almost 

certain. Reducing the pulse width of the injection and dividing the fuel into 

multiple injections of short duration (300~400|is) has a higher probability of 

evaporating before wall impingement can occur. This hypothesis was indirectly 

confirmed with engine tests and the results presented in Figure 7.25 show that 

multiple injections of short duration scheduled very early in the compression stroke 

result in significantly less HC emissions compared to less number of injections of 

longer duration (Figure 7.24). 
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Figure 7.53: Effect of Intake Pressure on the Spray Penetration for SOI@330°CA 
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Figure 7.54: Effect of Injection Pressure on the Liquid Spray Penetration Length 

The above analysis for the liquid penetration length and the earliest crank angle to 

avoid condensation helped to decide the injection strategy for the multi-shot LTC 

experiments. To minimize the chances of wall impingement, the maximum pulse 

width (injection quantities) for the early injections was always kept less than 

400ns. 

To determine the latest SOI that would still provide sufficient time for fuel mixing 

and charge preparation, a timing sweep was performed with 3 injections per cycle 

at 1500 RPM. The SOI of the 3rd injection was changed from 335°CA to 346°CA 

while the dwell between the injections was kept constant. Soot was observed to 

rapidly increase as the SOI of the last injection moved beyond 340°CA. Therefore, 

the latest SOI timing for the last injection was set at 338°CA during all the tests. 

The Ford engine is fitted with solenoid injectors and the minimum dwell between 

the SOI of any two injections for reliable operation of the injector was observed to 

be 10°CA or higher. Another sweep was performed by varying the dwell from 
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11°CA to 18°CA with 3 injections per cycle and the trade-off between CO-THC 

emissions vs. NOx-soot was mapped. Based on the data, a constant dwell of 

12~13°CA was used in the tests at 1500 RPM. 

7.8.4. Multi-Shot LTC (Early HCCI) - 6.8 to 7.4 bar (Test # 3) 

The first multi-shot LTC tests were done at an engine load of 6.8 bar IMEP. The 

testing conditions are given in Table 7.8. The load was then slightly increased to 

7.4 bar to observe the effect on the performance metrics. Based on the testing 

results of the single-shot LTC that achieved a load of 7.4 bar IMEP, the same 

injection pressure was used. The injection duration (pulse width) was kept the same 

for all the injections. 

Table 7.8: Test Conditions for Multi-Shot LTC (Test # 3) 

No of Injections 4 

SOI, [°ATDC] -58 

SOI2 [°ATDC] -46 

SOI3 [°ATDC] -34 

SOL, [°ATDC] -22 

Dwell [°CA] 12 

Injection Pulse Width [|as] 
290 (6.8 bar IMEP) 
295 (7.5 bar IMEP) 

IMEP [bar] 6.8 

Pintake [bar abs] 2 

Pinjection [MPa] 150 

Targeted Indicated NOx 0.15 g/kWh 

J Targeted Indicated Soot 0.01 g/kWh 

The NOx and soot trends at 6.8 bar IMEP are shown in Figure 7.55. The minimum 

EGR required to meet the targeted NOx was set as the baseline for these tests and 

was 61% EGR (intake [O2]: 11%). in this case. The combustion phasing at this 
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EGR was early, about 11°BTDC as shown in Figure 7.56. To improve the 

combustion phasing, the EGR was increased up to 7%. This further reduced the 

NOx to -0.07 g/kWh and improved the combustion phasing by nearly 7°CA to 

4°BTDC. It was noted that the soot emission was ultra low throughout the test 

(<0.0008 g/kWh). 
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Figure 7.55: NOx and Soot for Early HCCI Experiments - 6.8 bar IMEP (Test # 3) 

The improvement in the combustion phasing was also desirable to reduce the peak 

cylinder pressure. As shown in Figure 7.56, the heat release with 61% EGR was 

characterized by a mainly premixed combustion of a very short duration. This 

coupled with the high compression ratio of the Ford engine (18.2:1) resulted in the 

peak cylinder pressure, reaching the nominal threshold of 160 bar Pmax for 

production diesel engines. The use of higher EGR levels diluted the strength of the 

homogeneous charge, resulting in a delayed as well as a slower heat release rate 

(the ignition delay was significantly prolonged). This effectively reduced the peak 

cylinder pressure to -150 bar. 
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Figure 7.57: CO and THC for Early HCCI Experiments - 6.8 bar IMEP (Test # 3) 
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The improvement in the combustion phasing with EGR was accompanied by 

deterioration in the combustion efficiency as shown in Figure 7.57. Both the CO & 

HC emissions increased significantly with EGR. As already presented with 

simulation studies (Section 7.6), there exists a trade-off between the gain in the fuel 

efficiency with the improved combustion phasing versus the increased loss of the 

fuel through the higher HC and CO emissions. 

The summary of the performance metrics for Test # 3 is given in Table 7.9. 

Although the combustion efficiency was reduced by increasing the EGR, this was 

more than compensated by the improvement in the combustion phasing 

(manifested by an increase in the IMEP) at 66.8%. Therefore, the overall indicated 

thermal efficiency was still higher than that for the lowest EGR value. However, 

the IMEP reduced with a further increase in the EGR indicating that the optimal 

trade-off point had been passed. 

Table 7.9: Summary of Multi-shot LTC (Test # 3) 

1 Parameter 
EGR 

1 Parameter 
60.5% 66.8% 69.6% 

NOx [ppm] 22 13 13 

NOx [g/kWh] 0.15 0.07 0.06 

IMEP [bar] 6.75 6.92 6.84 

Soot [g/kWh] 0.0002 0.0007 0.0008 

CO [ppm] 2437 4289 >5200* 

THC [ppm] 281 465 720 

Pmax [bar] 165 157 153 

(dp/d0)max [bar] 20.6 14.5 12.1 

COVPmax[%] 1 1.33 1.68 

COV IMEP [%] 2.7 2.2 3.2 

CA50 [°CA] 348.9 354 356.2 

Fuelling [g/s] 0.25 0.25 0.25 

Indicated Thermal Efficiency [%] 38.1 39.3 38.7 

Combustion Efficiency [%] 98.6 97.8 97.5 

Exceeded the analyzer measurement limit 
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The load was then increased to 7.4 bar IMEP and the results were compared with 

the single-shot LTC (7.4 bar) as shown in Figure 7.58. The higher HC with the 

single shot was compensated by the phasing within the best efficiency window of 

5~10°CA ATDC. However, the efficiency was still slightly lower compared to the 

multi-shot LTC despite the significant off-phasing of the early HCCI combustion. 

The soot emission was at the borderline (O.Olg/kWh) with the single-shot LTC 

while the multi-shot LTC produced ultra low levels of soot. The CO emission was 

within the measuring range of the emission analyzer (-4600 ppm) for the multi-

shot LTC while the CO emission for the single-shot LTC had exceeded the 

measurement range close to the start of the slope 2. The main advantage of the 

single-shot LTC was visible in the much lower peak cylinder pressure compared to 

the multi-shot strategy. 
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Figure 7.58: Single-Shot vs. Multi-Shot LTC (7.4 bar IMEP) 

Based on the above tests and analysis, a detailed performance comparison between 

the single and multi-shot LTC strategies was carried out in order to help define the 
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boundary limits (engine load, achievable emissions, efficiency, stability) for each 

strategy. 

7.8.5. Performance Comparison of Single- &Multi-shot LTC (Test # 4) 

Tests were run to compare the emissions and efficiency of the multi-shot early 

HCCI (3 or 4 early injections per cycle) against those of the single-shot LTC for 

three engine load levels. The test matrix is given in Table 7.10. All the injections 

had the same pulse width for a given IMEP. The boost and injection pressure were 

kept the same during the comparison process at each load level and are indicated in 

all the figures. The SOI for the single injection strategy (SOlMain) is also indicated. 

An EGR sweep was performed to obtain the best LTC emission trade-off between 

NOx-soot and THC-CO for each of the 3 load levels. 

Table 7.10: Test Matrix for the Early HCCI Tests (Test # 4) 

No of Injections 

3 
4 

soil [°ATDC] -48 -61 

SOI2 [°ATDC] -35 -48 

SOI3 [°ATDC] -22 -35 

SOI4 [°ATDC] - -22 

Dwell [°CA] 13 13 

IMEP [bar] 3.1,5.2 7 

Pintake [bar abs] 1.3,1.5 1.45-»2 | 

P injection [MPa] 80,120 100->145 

Targeted Indicated NOx 0.15 g/kWh 

Targeted Indicated Soot 0.01 g/kWh 
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The emission results for the case of 3.1 bar IMEP are shown in Figure 7.59 and 

Figure 7.60. Both the injection strategies were observed to meet the set emission 

targets; however, the soot emissions for the 3 injections were significantly lower 

(< 0.001 g/kWh) than those achieved with the single injection. 
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Figure 7.59: NOx & Soot Emissions for Single- & 3-Injection Strategies at 3.1 bar IMEP 

For the best NOx and soot emissions as highlighted in Figure 7.59, the THC 

emissions were slightly lower for the 3 injections. However, the CO emissions 

were observed to be considerably lower (Figure 7.60). In fact, the CO emission for 

the single- injection strategy exceeded the measurement limits of the CO analyzer 

(5000 ppm) and therefore, the results are slightly biased towards the single 

injection strategy, once the fuel efficiency calculations are compared later on. 

322 



CHAPTER 7: TESTING OF DIESEL LOW TEMPERATURE COMBUSTION 

3 i 

2.5 

2 
cn 

o 
x 1.5 

8 
•O 
c 

0.5 

Comparison of Single and 3-Shot LTC Strategies 
Speed: 1500 RPM 
^intake : 1.30 bar abs *co exceeded measurement 
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Figure 7.60: THC & CO Emissions for Single- & 3-Injection Strategies at 3.1 bar IMEP 

For the case of 5.2 bar IMEP, the NOx and soot emissions are shown in Figure 

7.61. Both the injection strategies enabled NOx to be pushed below 0.15 g/kWh. 

However, the soot was nearly 4 times more than the targeted limit for the single 

injection case once the best combination with the CO-THC emissions was done 

(Figure 7.62). The 3 injection strategy again resulted in ultra low levels of soot. It 

is pertinent to mention here that soot was reduced to around 0.01 g/kWh by 

increasing the EGR with the single injection but a significantly high CO and THC 

penalty was incurred. This may have severe implications for the fuel-efficiency as 

the high levels of THC and CO emissions can drain substantial amount of fuel 

energy from the LTC cycles. 

The 3 injection strategy resulted in considerably lower THC emission and 

significantly lower CO emission compared to the single injection strategy (CO was 

more than halved). 
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Figure 7.62: THC & CO Emissions for Single- & 3-Injection Strategies (5.2 bar IMEP) 
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The cylinder pressure traces and the heat release rates for the selected data points 

in the above figures are shown in Figure 7.63. The pressure gradient for the early 

LTC was much higher than the single-shot enabled LTC due to the off-phasing of 

the combustion from TDC. This also has implications on the fuel efficiency of the 

LTC cycles. As demonstrated for the 7.4 bar IMEP comparison (Figure 7.58), 

when the phasing departs from the timing of maximum thermal efficiency, this off-

phasing causes an additional efficiency penalty that may be greater than the 

burning inefficiency (due to CO and THC), especially at higher loads. To improve 

the phasing, higher EGR levels can be employed but this generally deteriorates the 

combustion efficiency as evident in Figure 7.60 and Figure 7.62. Therefore, any 

attempts to improve the combustion phasing must be evaluated in terms of the net 

gain or loss in the thermal efficiency. 
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A comparison of the log(p)-log(V) traces is presented in Figure 7.64. It was noted 

that although the CA50 for the 3-shot strategy was much earlier (352.9°CA) which 

resulted in a larger amount of compression work compared to the single-shot 

strategy (CA50: 367.4°CA), the early-HCCI diesel LTC operation still produced 

positive net indicated work output per cylinder swept volume, i.e. IMEP, thus the 

engine should be able to produce reasonable effective power output when using a 

multi-cylinder configuration even with combustion occurring before the TDC. 

Moreover, the identical compression and expansion traces highlight the importance 

and benefits of exercising independent control on the boost, exhaust backpressure 

and EGR. 
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Figure 7.64: Logarithmic Pressure vs. Volume for the Single and Early HCCI Multi-
pulse Injections at 5.2 bar IMEP 

For the case of 7 bar IMEP, a slightly different approach was used. The tests were 

first performed at the baseline injection pressure of 100 MPa and intake pressure of 

1.45 bar abs. The limiting conditions for EGR application were the CO and THC 
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emissions. As shown in Figure 7.65, the combustion could not be pushed into the 

LTC cycles for the single-injection strategy. The intake and fuel injection pressures 

were progressively increased until the combustion entered the LTC regime. Figure 

7.65 and Figure 7.66 exclude the emission results at intermediate steps and only 

show the final results. 
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Figure 7.66: THC & CO Emissions for Single- and 4-Injection Strategies (7 bar IMEP) 

The single-injection LTC required a much higher boost and injection pressure to 

enter the LTC regime compared to the multi-injection strategy. This was essential 

to curb the peak soot levels during the transition and was discussed in detail in 

context of Figure 7.39. Also, a higher boost and/or injection pressure reduces the 

brake mean effective pressure (BMEP) and therefore, the fuel efficiency may be 

significantly affected. 

The NOx target was met for both the injection strategies but the soot was nearly 

5 times the targeted value of 0.01 g/kWh for the single-injection. The THC and CO 

emissions were similar for both the cases. However, it must be kept in mind that 

the 4-injection strategy had considerably lower boost and injection pressures. An 

increase in boost for the 4-injection strategy was also restricted by the peak 

cylinder pressure as shown in Figure 7.67. 
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Figure 7.67: Cylinder Pressure Traces and Heat Release Rates for the Best Emissions 
(7 bar IMEP) 

An energy efficiency analysis for the experimental results of 3.1 bar and 5.2 bar 

IMEP (Figure 7.59 to Figure 7.63) is presented in Table 7.11 [4,9]. For 3.1 bar 

IMEP, the indicated thermal efficiency of the single injection strategy was higher 

than that of the 3-injection scheme. For the 5.2 bar IMEP case, the thermal 

efficiency of the 3-injection strategy slightly improved over that of the single-

injection. However, the combustion efficiency of the 3-injection strategy was 

observed to be higher than that of the single injection strategy at both 5.2 bar IMEP 

and 3.1 bar IMEP. It should be noted that for the LTC cycles, the combustion 

inefficiency caused by the excessive HC and CO emissions is not negligible as is 

generally the case for HTC combustion. 
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Table 7.11: Energy Efficiency Analysis (Test # 4) 

No of Injections 

1 3 

3.1 bar IMEP 

Indicated NOx [g/kWh] 0.09 0.09 

Indicated Soot [g/kWh] 0.006 0.001 

Indicated THCcl [g/kWh] 1.1 0.8 

Indicated CO [g/kWh] 23* 18 

Indicated Power [kW] 2.0 2.0 

Fuelling Rate [mg/cyc] 10.2 10.9 

Combustion efficiency [%] 97.2 97.9 

Ind. Thermal Efficiency [%] 36.7 34 

COY IMEP [%] 2.8 3.1 

5.1 bar IMEP 

Indicated NOx [g/kWh] 0.07 0.12 

Indicated Soot [g/kWh] 0.08 0.001 

Indicated THCcl [g/kWh] 1.05 0.6 

Indicated CO [g/kWh] 23* 8.5 

Indicated Power [kW] 3.3 3.3 

Fuelling Rate [mg/cyc] 15.7 15.2 

Combustion efficiency [%] 97 98.7 

Ind. Thermal Efficiency [%] 38.9 40.1 

COY IMEP [%] 3.2 2.5 

Measurement exceeded analyzer range of 5000ppm 

Moreover, at higher loads with the single injection strategy, the increased soot 

levels (above the target value) will require the use of diesel particulate filters (DPF) 

and hence, supplemental fuel to regenerate the DPF will be required. Therefore, a 

fuel efficiency penalty to enable DPF operation will further degrade the 

performance of the single-shot LTC at higher loads. 
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To compare the engine stability between the two injection strategies, the 

coefficient of variance (COV) of IMEP was compared. The COV was generally 

low (~ 3%) with the single injection strategy for both the 3.1 bar and 5.2 bar IMEP 

cases. However, as the load level increased, the COV of IMEP for the multi-

injection strategy was seen to slightly decrease from about 3.1% at 3.1 bar IMEP to 

2.5% at 5.2 bar IMEP and 1.96% at 7 bar IMEP. 

7.9. Parametric Analyses of LTC Cycles 

A higher boost requires a higher EGR rate to push the combustion into the LTC cycles. In 

production engines with conventional turbochargers, the simultaneous availability of high 

boost and high EGR presents a significant challenge, especially at low loads. A higher 

boost requires more of the exhaust to be diverted to the exhaust turbine. However, a high 

EGR rate requires more of the exhaust gases to be recycled back to the intake. Moreover, 

the low diesel exhaust temperature at low loads places limits on the practically achievable 

boost pressure. Therefore, the current trend of the industry has been to employ the lowest 

possible boost and EGR rates. Another important implication of a higher boost is the 

necessity of a high exhaust back pressure. To force more exhaust gases back into the high 

pressure intake, the exhaust pressure needs to be raised. This may significantly increase 

the pumping work during the exhaust stroke and compromise the engine cycle efficiency. 

The higher boost also increases the compression work as the piston has to compress a 

cylinder charge with a high ambient density. Therefore, the mechanical strength of the 

engine components needs to be substantially enhanced to endure the increased bearing 

pressures and mechanical stresses. 

A similar situation exists for providing a higher injection pressure. The higher the 

injection pressure, the greater is the engine friction power with the result that the brake 

power is reduced for the same indicated power output. Therefore, the industrial trend has 

been to use the minimum necessary injection pressure as warranted to meet the prevalent 

emission regulations. 

Unlike boost pressure whose availability is linked to the amount of EGR required, it is 

easier to vary the injection pressure since it is largely independent of other engine 
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operating conditions. Moreover, increasing the injection pressure was observed to reduce 

the soot emissions across the EGR range (Figure 7.47) and was more effective in curbing 

the soot at a given boost level. In view of the above, it was decided to analyse the effect 

of injection pressure in the LTC regime only (intake oxygen < 14%) and ascertain the 

effects on the engine-out emissions and the efficiency of the LTC cycles. The effect of 

engine speed on the LTC performance was also studied. It is pertinent to mention here 

that the cost of conducting such parametric analyses can be significant if a number of 

parameters (for instance boost, intake temperature, engine speed) and their interactions 

need to be examined. Other analyses techniques such as the 'Design of Experiments' can 

be employed to reduce the time and the cost associated with such analyses. 

7.9.1. Single Shot LTC at 5.2 bar IMEP (Test # 5) 

All the test were carried at a load of 5.2 bar IMEP. The combustion phasing was 

maintained at 366°CA by adjusting the combustion phasing. The boost pressure 

was fixed at 1.5 bar abs and the engine speed was 1500 RPM during these tests. 

Four injection pressure levels (60 to 120 MPa) were studied by performing an EGR 

sweep. 

The results for the effect of injection pressure on the NOx emissions are given in 

Figure 7.68. The results of this test indicated that the injection pressure produced a 

noticeable change in the NOx trends and the NOx was found to be higher with 

higher injection pressures even in the LTC regime. Moreover, the decrease in the 

NOx emissions by half from 30 to 15 ppm (marked in the figure) suggested that the 

NOx reduction may be the result of LTC-NOx mechanism (Chapter 5) with the 

generation of a high amount of combustibles with increased EGR. 

Regarding the soot emissions (Figure 7.69), the peak soot was significantly curbed 

by increasing the injection pressure from 60 to 100 MPa. However, a further 

increase in the injection pressure (120 MPa) did not result in a significant drop in 

the peak soot levels. Moreover, the higher injection pressure (both 100 and 

120 MPa) was able to reduce the minimum soot to within the targeted level of 

O.Olg/kWh. 
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The efficacy of injection pressure for LTC cycles becomes evident when the CO 

and HC emission trends are observed as shown in Figure 7.70. Increasing the fuel 

injection pressure from 80 to 100 MPa reduced the HC from 0.8 g/kWh to 

0.35 g/kWh at the same intake oxygen. The reduced HC penalty allows higher 

levels of EGR to be used to push the soot levels to below the desired level. The CO 

trend was not clearly identified because of the measurement constraints. However, 

a higher injection pressure delays the onset of the CO emission and may help to 

reduce CO as well. 
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Figure 7.70: Effect of Injection Pressure on THC & CO (5.2 bar IMEP - Test # 5) 

The summary of the emissions, LTC efficiency and stability is provided in Table 

7.12. The results for the 60 MPa EGR sweep have been shown for reference since 

the soot levels could not be reduced because of the onset of very high HC and CO. 

The indicated thermal efficiency improved slightly at a higher injection pressure. A 

higher injection pressure was also able to limit the deterioration in the combustion 

efficiency but the COY of IMEP was also found to increase. The recycling of the 
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CO and HC with heavy EGR and the lowered combustion temperature of the LTC 

cycles escalate the consecutive cyclic variations of the LTC operation. To improve 

the cycle-by-cycle performance, either the composition of the recycled gases can 

be regulated as demonstrated during the CEGR oxidization tests (Chapter 6) or a 

closed-loop feedback control is required to improve the cycle-by-cycle 

performance. 

Table 7.12: Summary of Injection Pressure Variation Test (Single-Shot LTC, Test # 5) 

Parameter Injection Pressure fMPal Parameter 
60 80 100 120 

NOx [ppm] 11 7 8 12 

NOx [g/kWh] 0.06 0.034 0.05 0.07 

Intake O2 [%] 10.8 9.1 9.1 9.2 

Indicated Thermal 
Efficiency [%] 

40.9 39.2 39.7 40.5 

Smoke [FSN] 3 0.45 0.11 0.06 

Soot [g/kWh] 0.22 0.01 0.002 0.0014 

CO [ppm] >5200* >5200* >5200* >5200* 

THC [g/kWh] 0.35 0.81 0.47 0.36 

Combustion 
Efficiency [%] 

97.8 97.9 97.9 98 

Pmax [bar] 96.4 91.9 93.7 94.6 

(dp/d0)max [bar] 6.8 4.2 4.8 3.4 

COV Pmax[%] 1.03 1.99 1.98 1.5 

COVIMEP [%] 1.9 2.7 2.9 4.2 

Exceeded the analyzer measurement limit 

To study the effect of engine speed on the attainment of LTC combustion, the 

single-shot enabled LTC was tested at a higher speed of 1800 RPM. The injection 

pressure was 80 MPa and the CA50 was fixed at 366°CA by adjusting the SOI. All 

the other parameters were also retained within close limits. A comparison of the 
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performance metrics with those at 1500 RPM is shown from Figure 7.71 to Figure 

7.73. 

The cylinder pressure and the heat release rates at the two engine speeds indicate a 

precise control on the combustion. At 1800 RPM, the premixed phase of the 

combustion was decreased and the combustion duration was slightly increased. To 

maintain the combustion phasing, the SOI at 1800 RPM was advanced. While the 

ignition delay did not change in terms of crank angle degrees, it was reduced once 

seen in the time domain. This had severe implications on all the emissions as 

presented below. 
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Figure 7.71: Cylinder Pressure & Heat Release Rate at Different Speeds (5.2 bar IMEP 
Test # 5) 

NOx was found to reduce at higher speeds but a large increase in the soot was 

observed. This was the result of the reduced ignition delay and the corresponding 

increase in the diffusion controlled combustion. The CO and HC emissions were 
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also observed to be significantly higher (Figure 7.73) and the onset of the rapid 

deterioration in the emissions was at a much higher intake oxygen (lower EGR 

rate). The soot could therefore not be reduced to ultra low values. 

A brief discussion on the effect of speed is presented here. At higher engine 

speeds, the time available between the fuel injection and the start of combustion, 

that is, the ignition delay (in ms) is reduced. Since the underlying enabler for the 

LTC is the separation of the fuel injection event from the combustion, a higher 

injection pressure in combination with advanced injection timing are necessary to 

ensure the separation of the two events. However as the speed is increased further, 

it is not physically possible to further increase the ignition delay and therefore, the 

load level has to be reduced to maintain the combustion in the LTC regime, with 

ultra low levels of NOx and soot emissions. Similar trends have been reported in 

the literature for high compression ratio diesel engines [74-76]. A lower 

compression ratio decreases the propensity for premature ignition with the fuel 

injection advanced further into the compression stroke, provides for an inherently 

longer ignition delay because of the lower temperatures during the compression 

process, and therefore, the speed range of the single-shot LTC should be higher for 

lower compression ration engines. Alternately, the load level of the LTC cycles can 

be increased at low engine speeds with low compression ratio engines [152]. 

7.9.2. Multi Shot LTC (Early-HCCI) at 5.2 bar IMEP (Test # 6) 

The injection pressure variation was repeated for the multi-shot LTC at 5.2 bar 

IMEP. The injections were scheduled at 312, 325 and 338°CA, and the pulse width 

of each injection was the same for a given injection pressure. Since the early 

injections have a higher propensity for cylinder wall impingement and are affected 

by the fuel injection pressure, therefore, an effort was made to correlate the 

injection pressure with the fuel efficiency deterioration. The results for the effect of 

injection pressure on the engine performance metrics are shown from Figure 7.74 

to Figure 7.78. It is noted that the maximum possible error in the reported results is 

about 5% and this aspect should be given due consideration while analyzing the 

minor variations within the reported results. 
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The NOx emission displayed an increasing trend with the injection pressure 

(Figure 7.74), similar to the single-shot LTC tests. Ultra low NOx levels were 

achieved at all the injection pressures. 
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Figure 7.74: Effect of Injection Pressure on NOx (5.2 bar IMEP - Test # 6) 

The CO and HC results are shown in Figure 7.75 and Figure 7.76 respectively. The 

CO emission was the lowest at 80 MPa and showed an increasing trend with higher 

injection pressure. However, the CO trend at 60MPa was inconsistent and 

displayed a higher level for the same charge dilution. A similar observation was 

made for the HC emissions at 60MPa where the HC emission was found to be 

insensitive to the EGR. Moreover, the HC results provided an insight in to the 

effect of the injection pressure on the combustion efficiency deterioration. The HC 

values were very similar for both 80 & 100 MPa pressures. However, a significant 

increase in the HC emissions was observed for the 120MPa test results. As shown 

with the spray penetration calculations (Section 7.8.3), a higher injection pressure 
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increases the spray penetration length and therefore, the spray has a higher chance 

of impinging on the cylinder walls, given all the other parameters (charge density, 

temperature, composition) are the same. 

To understand the different behaviour observed at 60MPa, the soot emissions were 

plotted as shown in Figure 7.77. Ultra low soot values were achieved for all the 

four injection pressures. However, the soot levels still showed a distinct increase at 

60MPa as the EGR was increased. The increase in soot can be attributed to the 

reduced homogeneity of the cylinder charge as a result of the low injection 

pressures. The reduced penetration of the fuel spray may result in locally richer 

pockets of the cylinder charge, despite the combustion being overall lean and 

highly diluted. This also agrees with the slight reduction seen in the CO and HC 

levels at 60MPa. 
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Figure 7.77: Effect of Injection Pressure on Soot (5.2 bar IMEP - Test # 6) 

Based on these observations and results, the CO and HC were plotted as a function 

of the injection pressure at the same intake oxygen (-11.5%) and the results are 
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shown in Figure 7.78. It was found that the CO and HC emissions were the lowest 

at 80 and 100 MPa. A lower injection pressure resulted in an HC and CO rise, with 

the CO rising more rapidly than HC (reduced homogeneity). A higher injection 

pressure, on the other hand, caused a higher rise in the HC compared to the CO 

(higher propensity for wall wetting). These observations had synergy with the 

spray penetration length calculations which provided indicators for the selection of 

the boost and injection pressure to minimize the spray impingement on the cylinder 

walls. 
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The summary of the results at the same intake oxygen of-11.5% is given in Table 

7.13. A slight improvement in the combustion efficiency at 80 and 100 MPa was 

seen, as a result of the lower CO and HC emissions. Between the results for 80 and 

100 MPa, the NOx, Pmax and (dp/d0)max were lower for 80MPa. The COVs of Pmax 

and IMEP also indicated that the overall performance in terms of stability of the 

combustion process was slightly improved at 80MPa. 
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Table 7.13: Summary of Injection Pressure Variation Test (Multi-Shot LTC, Test # 6) 

Parameter Injection Pressure [MPa] Parameter 
60 80 100 120 

NOx [ppm] 11 13 19 21 

NOx [g/kWh] 0.07 0.08 0.14 0.16 

Intake 02 [%] -11.5 

Indicated Thermal 
Efficiency [%] 

39.6 39.9 39.8 39.3 

Soot [g/kWh] < 0.002 

CO [g/kWh] 9.8 6.7 6.8 7.9 I 

THC [g/kWh] 0.38 0.29 0.29 0.59 

Combustion 
Efficiency [%] 

98.7 99 99 98.6 

Pmax [bar] 122.5 121.4 122.9 124.6 

(dp/d0)max [bar] 12.9 12.6 14.3 16.5 

COV Pmax [%] 1.06 0.65 0.66 0.91 

COV IMEP [%] 3.4 2.1 2.3 2.5 

The effect of higher engine speed (1800 RPM) on the multi-shot LTC was also 

investigated at 5.2 bar IMEP. The injection pressure was chosen as 80MPa, based 

on the results of the injection pressure variation test. The SOIs for the multiple 

injections were 312, 325 and 338°CA at 1500 RPM. To maintain the same dwell 

between the injections (in ms), the timing of the injection pulses at 1800 RPM was 

modified to 305, 320.5 and 336°CA. 

The results for the NOx and soot emissions are shown from in Figure 7.79. No 

clear trend was observed in the NOx emissions between the two speeds although 

the values were very low. The soot emission at both the speeds was ultra low and 

no difference could be detected. The corresponding CO & HC emissions shown in 

Figure 7.80 indicate an increase in both the CO and HC at higher speed, similar to 

the single-shot LTC. However, the CO emission was much lower than the single-

shot LTC at high speed and within the measuring range of the emission analyzer. 
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The cylinder pressure and the heat release traces for the two speeds are plotted in 

Figure 7.81. The phasing of the combustion was slightly delayed at the higher 

speed. The advanced timing of the first injection and the improved combustion 

phasing could partly explain the rise in the CO and the HC emissions. It was also 

noted that the peak cylinder pressure was almost the same. 

At higher speeds, it was possible to enable the multi-shot LTC and achieve ultra 

low NOx and soot levels. This was an improvement over the single-shot LTC 

where the low soot emissions could not be achieved at 1800 RPM. These tests 

provided the necessary foundation to ascertain an effective LTC load management 

strategy, explained later in this chapter. 
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7.10. Strategy for Extending the LTC Load Level 

Raising the load level for LTC cycles requires the use of higher boost. However, with the 

multi-shot LTC, the early phasing of the combustion results in higher maximums for the 
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cylinder pressure and the rate of pressure rise. This places a restriction on the load level 

that can be attained with the multi-shot strategy as demonstrated in Figure 7.82. To 

highlight the restrictions on the achievable LTC load levels imposed by the high CR, the 

boost was set at 2.5 bar abs and 3 early injections (SOIj: 299°CA, SOI2: 312°CA, SOI3: 

325°CA) were enabled. The maximum cylinder pressure reached the 160 bar threshold at 

an IMEP of only 2.2 bar and 58% EGR (Figure 7.83). 

Therefore, an alternate strategy for high load operations can be the mode of split burning 

LTC, in which a partial amount of fuel is delivered to produce HCCI combustion before 

the TDC and the remaining for post-TDC late combustion. The latter may benefit from 

the virtual EGR produced by the HCCI burning and timed to eliminate combustibles and 

raise power output. 
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Figure 7.83: Strategy to Increase the LTC Load Level for High CR Diesel Engines 

7.11. Implementation of Split Burning LTC (Test # 7) 

Engine tests were conducted for the split burning LTC. A comparison of the early-HCCI 

and split burning strategy was first performed at a relatively moderate baseline load of 

5 bar IMEP. The split burning LTC was then enabled to exceed the early-HCCI load and 

the impact on the emissions and the combustion characteristics was analyzed. The timing 

and the injection durations for all the tests are marked on the figures. The results for the 

comparison are shown in Figure 7.84. 

The contribution of the early HCCI combustion phase of the split burning LTC produced 

an IMEP of 3.8 Bar. The post-TDC injection was the enabled to increase the engine load 

to 5.9 bar IMEP. It was observed that the peak cylinder pressure was significantly 

reduced even at a higher engine load because of the leaner HCCI phase of the split 

burning. LTC and also resulted in an improvement in the CA50 from 350.1°CA to 

352.1°CA. With the post burning enabled, the overall combustion phasing was moved 

towards TDC, as a result of the late combustion phase (Figure 7.85). 
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The performance comparison between the early HCCI and the split burning LTC is given 

in Table 7.14. It must be mentioned here that the split burning LTC had a higher load 

compared to the early HCCI test. The split burning LTC had higher combustion 

efficiency (lower HC & CO) despite the higher load. It was observed that the post-TDC 

combustion helped to oxidize the CO & HC and therefore improve the efficiency. 

However, the late burning during the expansion stroke also resulted in a significant rise in 

the soot. The smoke number corresponding to 0.16 g/kWh for the split combustion was 

1.9. Although this is much higher than the targeted soot limit of 0.01 g/kWh, nonetheless, 

it was still below the DPF-tolerant soot level of -2.5 FSN [153]. The DPF-tolerant soot is 

a new terminology being used in the industry to allow for more aggressive combustion 

technologies to reduce the NOx below the regulated level since the aftertreatment of NOx 

is considered more challenging than the soot aftertreatment. Therefore, for the split 

burning strategy, the DPF-tolerant soot level of 2.5 FSN was taken as an alternate target 

as long as the NOx target was being met. 

Table 7.14: Performance Comparison for Split Burning LTC ( Test # 7) 

Parameter Early HCCI LTC Split Burning LTC 

1IMEP [bar] 5 5.9 

1 NOx [g/kWh] 0.3 0.18 

Intake O2 [%] 13.2 13.8 

Indicated Thermal 
Efficiency [%] 

38.9 39.6 

Soot [g/kWh] 0.001 0.16 

CO [ppm] 2240 1849 

THC [g/kWh] 1.11 0.63 

Combustion 
Efficiency [%] 

98.4 98.8 

| P max [bar] 125.7 112.6 

(dp/d0)max [bar] 18 11.7 

COVPmax[%] 1.21 1.82 

I COV IMEP [%] 3.5 4.6 
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The split injection LTC was then tested to extend the load limit of the LTC cycles. The 

results of one such test is shown in Figure 7.86. The target IMEP was 8 bar IMEP and the 

injection scheduling comprised of 4 early injections to produce an HCCI-type early 

combustion while a single injection at TDC was configured for the post-TDC 

combustion. The other engine operating conditions are given in the figure. The use of a 

higher boost (1.95 bar abs) with a moderate injection pressure (120 MPa) allowed the 

NOx target (0.15 g/kWh) to be easily exceeded. The soot was also 1.49 FSN, within the 

DPF-tolerant soot range. The CO and HC were low, compared to the single-shot LTC 

results (Figure 7.37 & Table 7.7). The maximum cylinder pressure and the maximum rate 

of pressure rise were also lower than the results obtained with the early HCCI combustion 

tests (Table 7.9). The combustion efficiency was 98% and the indicated thermal 

efficiency was 40.9%. Although the combustion efficiency was low, the combustion 

phasing was nearly at TDC; therefore the gain due to the combustion phasing versus the 

HC & CO emissions resulted in an indicated thermal efficiency above 40%. 

180 

150 

120 

s 90 

Indicated Emissions 
NOx: 0.08 g/kWh 
Soot 0.06 g/kWh 
THCC1:1.08 g/kWh 
CO: 9.6 g/kWh 

Split-Combustion Experiments (5 Iniections/cvcle) p 0 22 

Early lnjections:340^s@280, 290, 300, 310°CA 
Main Injection: 300^s@360°CA 

Speed: 1500 RPM 
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Figure 7.86: Split Burning LTC (8 bar IMEP - Test # 7) 
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It was then attempted to increase the load level to ~10 bar IMEP with the same engine 

operating conditions as for the 8 bar IMEP test. The NOx emission was pushed below the 

limit but the smoke was very high (--4 FSN) and the HC emission also exceeded 

4 g/kWh). Therefore, the boost pressure was increased slightly to 2 bar abs and the 

injection pressure was increased to 150 MPa compared to the 8 bar IMEP test. The fuel 

injection scheduling and the injection pulse widths are marked in the figure. The results 

of the test are shown in Figure 7.87. 

An IMEP was 9.7 bar was attained for this test. The NOx was 0.06 g/KWh and satisfied 

the target limit of 0.15 g/kWh. The smoke was 2.8 FSN, close to the DPF-tolerant soot 

limit. The HC and the CO were high which resulted in a combustion efficiency of 

96.1 %. Since the load was high, an indicated thermal efficiency of 38.6% was still 

achieved. A higher boost could have helped to reduce the CO & HC penalty while 

reducing the soot as well, but was limited by the peak cylinder pressure which was close 

to 170 bar. 
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Figure 7.87: Split Burning LTC (9.7 bar IMEP -Test # 7) 
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7.12. Diesel LTC Load Management 

Based upon the above results and analysis, the load management of the LTC cycles was 

devised as follows: 

7.12.1. EGR Enabled Single-Shot LTC 

The mode of EGR enabled LTC is suitable for low load operations, in which a 

single shot of fuel is delivered close to the end of cylinder compression, i.e. TDC. 

The heat release phasing is fully controllable via injection timing and thus high 

energy efficiency is attainable. The implementation of the single shot LTC mode 

with heavy EGR is straight forward and can be achieved as long as sufficient boost 

pressure and high injection pressure can be attained. The test results indicated that 

for high compression ratio diesel engines like the Ford engine used in this work, 

the single-injection LTC should be limited to ~4 bar IMEP. 

7.12.2. Multi-Shot LTC (Early HCCI) 

The mode of early injection HCCI is suitable for mid load operations 

(4 to 7 bar IMEP), in which the fuel is delivered in multiple events and by 

milliseconds prior to TDC, and thus the heat release phasing is not directly 

controllable. The combustion phasing is largely decoupled from the injection 

timing and is controlled by chemical kinetics and modulation of the charge 

temperature history. EGR is usually applied to suppress premature ignition and 

combustion noise. 

7.12.3. Split Burning LTC 

The mode of split burning LTC is suitable for high load operations (greater than 

7 bar IMEP), in which a partial amount of fuel is delivered to produce HCCI 

combustion and the remaining for post-TDC late combustion. The latter may 

benefit from the virtual EGR produced by the prior HCCI burning and timed to 

best eliminate combustibles and raise power output. 

This strategy can further be integrated to account for the full range of engine load as 

summarized in Figure 7.88. As the load requirements change, there is a need to switch 
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between diesel and LTC combustion modes for maintaining emissions below the desired 

levels which can be implemented with different EGR strategies. For example, idle and 

full load operations can be enabled with conventional diesel operation and high amounts 

of EGR. For low to high loads, LTC cycles can be employed using the strategies outlined 

above. 

Load Level LTC strategies 

Low Single Injection with Heavy EGR 
and close to TDC burn 

Medium Multiple early injections 
(homogenous lean/weak) 

High Split-burning (multiple early plus 
late main flame) 

Mode Switch 
LTC Diesel 

High EGR 

High EGR 

um EGR 

Figure 7.88: Diesel LTC Load Management 

7.13. Conclusions 

For high compression ratio diesel engines such as the Ford engine used in this work, the 

attainment of-10 bar IMEP during the LTC cycles has not been previously demonstrated 

in the literature without the use of advanced engines technologies. Such advanced 

technologies include the variable valve timing (VVT), variable compression ratio (VCR) 

and dual-loop EGR with DOC, to name a few. One of the objectives of this research was 

to extend the LTC load level for the high compression diesel engines which was 

successfully demonstrated. 

The fundamental criteria for achieving the low temperature combustion is the separation 

of the fuel injection events from the combustion to provide sufficient time for fuel-air 

mixing and the preparation of a cylinder charge of high homogeneity. Three strategies to 

improve the charge homogeneity were investigated. The empirical and analytical work 

presented in this chapter can be summarized as follows: 

• Single-shot LTC: The single-shot LTC was enabled with heavy EGR to realize 

ultra low NOx and soot emissions at low loads (3~5 bar). 
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• The efficacy of boost, EGR and injection pressure was demonstrated in 

enabling this mode of combustion and also to reduce the CO and HC emissions 

that otherwise deteriorate the combustion efficiency. 

• A higher injection pressure reduces soot emissions across the EGR range but 

the effect of boost on the soot reduction is significant only at higher soot levels. 

Moreover, the peak soot values are observed to shift towards lower intake [O2] 

values. 

• NOx reduces monotonically with increasing EGR. NOx shows a higher 

sensitivity to the injection pressure than the boost at low EGR ratios. Moreover, 

at high EGR levels, although the NOx appears to be virtually grounded, the 

effect of injection pressure is still discernible. 

• An intake oxygen concentration less than 14% was generally found to reduce 

NOx to very low levels and an intake oxygen of 8-11% was found necessary 

for achieving simultaneous low-NOx and low-soot combustion. 

• The onset of the simultaneous low-NOx and low-soot combustion is preceded 

by a significant increase in the un-burnt hydrocarbons and carbon monoxide. In 

general, CO rises with heavy EGR because of reduced oxygen availability 

(11~14%) and is largely attributed to the NOx-Soot trade-off. THC is more 

sensitive to the lowered combustion temperature and the further reduced 

oxygen concentration (8-12%) with heavy EGR. 

• The effect of higher injection pressure or boost in combination with higher 

EGR was shown to be capable of reducing the HC and CO emissions, and 

therefore mitigate the efficiency loss. 

• The single-shot LTC at moderate engine loads (up to 8 bar IMEP) incurs a very 

high CO and HC penalty and the ultra low soot levels are difficulty to attain. 

• At higher engine speeds, the HC and CO penalty tends to rise rapidly and 

therefore, the attainable load level would reduce significantly. 
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• Multi-shot (early HCCI) LTC: For this strategy a diluted homogeneous cylinder of 

high homogeneity charge was prepared prior to the combustion with the 

implementation of precisely timed multi-pulse fuel-injection events early during 

the compression stroke and a heavy use of EGR. 

• A criterion for the earliest injection timing was presented based on the fuel 

boiling characteristics and the phenomenological spray penetration model to 

minimize spray wall-impingement and therefore reduce the HC emissions. 

• The effect of the injection on the combustion efficiency was empirically 

demonstrated to emphasize the correct selection of the injection pressure. A 

lower injection pressure resulted in an HC and CO rise, with the CO rising 

more rapidly than HC (reduced homogeneity). A higher injection pressure, on 

the other hand, caused a higher rise in the HC compared to the CO (higher 

propensity for wall wetting). 

• The effect of the combustion off-phasing from the best efficiency crank-angle 

window was quantified in terms of equivalent exhaust HC. A trade-off between 

the contribution of the off-phasing and the exhaust combustibles to the cycle 

efficiency penalty was analytically calculated and empirically demonstrated. 

• This combustion mode was largely applicable to mid-load engine operating 

conditions and was realized up to 7.5 bar IMEP with ultra low NOx and soot 

emissions with a low HC penalty. 

• The load range of this strategy was primarily limited by the high compression 

ratio that resulted in very high peak cylinder pressures, exceeding 160 bar and 

also very high maximum rate of pressure rise (>20 bar). 

• At higher engine speed, the multi-shot strategy was demonstrated to achieve 

ultra low NOx and soot, with a moderate CO and HC penalty. 
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• Split Burning LTC: This strategy consisted of delivering a part of the fuel early in 

the compression stroke to prepare a cylinder charge of high homogeneity that 

underwent an HCCI type of combustion earlier than TDC. The remaining fuel was 

delivered close to the top-dead-centre (usually after the end of the first heat-

release) to produce a post-TDC combustion that was primarily used to increase the 

engine load. This part of fuel had a short ignition delay and had combustion 

characteristics similar to the conventional combustion. 

• The splitting of the heat release helped to reduce the peak cylinder pressure and 

the maximum rate of pressure rise associated with the multi-shot LTC. The 

containment of the pressure levels enabled the load level to be increased up to 

9.7 bar IMEP. 

• The post-TDC part of the combustion helps to destroy the carbon-monoxide 

and hydrocarbons produced earlier in the cycle, thereby improving the 

combustion efficiency. The late combustion also tends to benefit from the 

virtual EGR produced during the first part of the combustion, thus maintaining 

the low NOx without significant EGR addition. 

• Ultra low soot is not attainable at high loads because of the conventional burn 

of the near-TDC injection. The smoke readings were >2 FSN An alternate DPF-

tolerant soot limit of 2.5 FSN was used as the criteria. 

Based on the efficiency comparisons, analyses and test results, the major characteristics 

of the LTC strategies and the applicable load ranges are summarized in Table 7.15. 
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Table 7.15: Major Characteristics of LTC Strategies 

Strategy 
Single-Shot LTC Early HCCI LTC Split Burning LTC 

Demonstrated 
Load Range 

3.1 to 7.2 bar IMEP 
3.1 to 7.5 bar 

IMEP 
5.9 to 9.7 bar 

IMEP 
Suitable Load 
Range 

Up to 4 bar IMEP 4 to 7 bar IMEP >7 bar IMEP 

CO & HC Penalty Moderate to high Low to moderate Moderate to high 
Phasing Penalty No High Low 
EGR Heavy High Moderate 

Phasing Control Direct SOI Control No 
Yes, for Post-TDC 
Combustion only 

Limiting 
Conditions 

High CO & HC, 
Peak Soot Level 

Pmax(>160 bar), 
(dp/d0)max 

(> 20 bar/°CA) 

P max (>160 bar), 
High Soot, CO & 

HC 
NOx <0.15 g/kWh <0.15 g/kWh <0.15 g/kWh 

Soot 

Low (<0.01 g/kWh), 
Boost & injection 

pressure to suppress 
peak soot levels 

Ultra Low 
<0.005 g/kWh 

DPF-tolerant 
< 2.5 FSN 
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CHAPTER VIII 

8. CONTROL OF DIESEL LOW TEMPERATURE COMBUSTION 

The implementation of LTC modes is challenged by the higher cycle-to-cycle variation of 

heavy EGR operation and the narrower combustion mode corridors. The EGR-induced 

prolonged ignition delay is largely associated with the cyclic variations that deteriorate 

the combustion efficiency which, in turn, causes fluctuations in the combustion products. 

While the transition from the HTC to the LTC regime is relatively easier to implement, 

maintaining of stable engine operation for LTC is generally less feasible. The LTC 

combustion is sensitive to small variations (or drift) in the EGR (Figure 6.1) with the 

result that a tight control on the various operating parameters is essentially required. For 

the single-injection test results, the LTC cycles were prevented from entering the zones of 

high instability by manually adjusting the combustion phasing through SOI modification 

to keep the phasing within the crank angle window (5~10°CA) for best efficiency. It was 

therefore desirable to devise and implement an automatic LTC combustion control 

strategy using a suitable feedback for cycle-by-cycle or if possible, within-the-same-cycle 

control. The details of the control methodology and the system development are first 

presented, followed by the actual control test results. 

8.1. Prerequisites for the Combustion Control System 

This section describes the work done to realize the implementation of the control 

strategies. 

8.1.1. Pressure-Data Smoothing Techniques 

The filtering or smoothing of the pressure data is essential for a stable and robust 

feedback. A disturbance in the pressure signal can be due to the pressure sensor not 

flush-mounted with the cylinder head or electrical noise interfering with the signal. 

Any extraneous noise in the pressure signal must not affect the stability of the 

control system. The preferred way to prevent such a scenario is to remove or 

reduce any noise from the pressure signal before it reaches the controller. 

Therefore, a data smoothing algorithm which was simple enough to be 
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implemented in the FPGA but effective enough to remove sharp spikes in the data 

was devised and implemented as explained below. 

8.1.1.1. Smart Smoothing Algorithms 

A sharp spike in the pressure data can be mistaken for the maximum rate of 

pressure rise which would render the control system susceptible to over- or 

under-compensate the control action, thereby resulting in unstable 

behaviour. To identify and remove such a sharp spike, a smart algorithm 

was devised. 

The sequence of events in a 4-point window for detection of a spike is 

shown in Figure 8.1. As indicated in the left window, points 2 and 3 are 

both above the set threshold. The algorithm checks the second last point 

(Point # 3) against both Points # 1 & # 4 to see if it is above a certain 

threshold value. If so, it is replaced by the average of the two end points 

(i.e. 1 and 4). As the data passes through this 4-point window, it is 

corrected if the value lies outside the limits set due to the noise. 

A major advantage of this algorithm is that it introduces a fixed delay in the 

pressure data, 0.2°CA in the case of a 4-point window. As long as the delay 

is fixed and known, the control action can be suitably adjusted to account 

for such a delay. 
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Figure 8.1: Smart Smoothing Algorithm 
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The size of the window can be selected based on the maximum width of the 

spike that is anticipated. An example of the algorithm application is shown 

in Figure 8.2. With a 4-point window, a spike up to 2 points wide is 

detected and removed. However, a 3-point wide spike is reduced in 

amplitude but is not totally eliminated. Therefore, the size of the analysis 

window must be 2-point greater than the maximum width of the anticipated 

noise. In this work, a 5-point window was used to filter the pressure data. 

110 • 

90 • 

3 points 
spike 

2 points 
spike — Raw Pressure 

—4 Point Window 
— 5 Point Window 

50-

1 point 
spike 

370 340 345 350 355 360 
Crank angle [°CA] 

365 375 

Figure 8.2: Application of Smart Smoothing Algorithm 

8.1.1.2. Crank Angle Resolution 

The LTC cycles for diesel engines are bounded within narrow operating 

pathways where the excursions are sharply punished by the deteriorations 

in exhaust emissions, fuel efficiency, combustion noise, and operational 

stability. To enable accurate control on the LTC cycles, the feedback on the 

combustion phasing must be accurate and be able to account for small 

changes. The crank angle resolution of the cylinder pressure data is 
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therefore critical for improving the quality of the control system. To high 

light this aspect, the cylinder pressure for an engine test with 0.1°CA 

resolution is shown in Figure 8.3. The data was also reduced to 1°CA 

resolution by extracting every 10 data point to simulate a 1°CA resolution 

encoder. The heat release rates were calculated and have also been plotted 

in the figure. 

It can be observed that the heat release is defined by 6 data points for the 

1°CA resolution compared to the 60 data points for the heat release 

calculated from the 0.1°CA resolved pressure. The 1°CA resolution data 

assumes a linear fit between the points which can introduce errors in the 

calculation of the combustion phasing as shown in Figure 8.4. 

• 195 Resolution 
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« 40-
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80 MPa 
'intake 

^injection 

IMEP: 4 bar 
EGR: 56% 
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360 365 370 
Crank Angle [°CA] 

375 380 385 

Figure 8.3: Effect of Crank Angle Resolution on Cylinder Pressure based Feedback 

The reduced resolution of the cylinder pressure data resulted in an error of 

0.5°CA in the prediction of the CA50. Although this might seem trivial in 

the normal analysis of the data, but for LTC control, half a degree crank 
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angle error in the SOI adjustment can result in mis-fire since the LTC 

cycles are inherently close to the flame-out limits. Therefore, for all the 

control work, a resolution of 0.1 °CA for the pressure data was employed 

and the estimation of the combustion parameters (explained in the next 

section) was done in the FPGA-RT systems with 0.1°CA resolved data. It is 

also noted that the results shown in these figures highlight the possibility of 

getting an erroneous estimate under certain engine operating conditions and 

the effect of the crank angle resolution may not be significant otherwise. 
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Figure 8.4: Error in CA50 caused by Crank Angle Resolution 

8.1.2. Estimation of Combustion Parameters 

With a retarded combustion phasing, the peak of the maximum combustion 

pressure can be lower than the peak motoring pressure. An algorithm programmed 

to simply detect the amplitude and crank angle of the peak cylinder pressure would 

detect the peak motoring pressure. If such a parameter is being used as feedback, 

then this would render the feedback useless for control. As discussed in Chapter 5, 
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if the motoring pressure could be estimated and subtracted from the actual (or 

fired) pressure, then the resulting trace could be conveniently used to find the 

desired parameter's amplitude as well as the position. The actual motoring pressure 

trace estimated in the FPGA according to the procedure detailed in Chapter 5 is 

shown in Figure 8.5. 

4.80ms 
23.5ms 

A: 80. 
<8>: -80 

OmV 
.OmV 

M4.00ITIS A Ch3 J 620mV 
1.00 V Ch4 5.00 V 

O>^3.S2000ms 

Figure 8.5: Motoring Pressure Estimation in the FPGA 

If the peak combustion pressure is lower than the motoring pressure, the detection 

of the peak combustion pressure is not possible since the peak compression 

pressure is higher than the actual combustion pressure. The cylinder pressure for a 

delayed combustion phasing obtained during an injection timing sweep experiment 

is shown in Figure 8.6. The estimated motoring pressure is also plotted in the 

figure. The maximum rate of pressure rise for the pressure data is shown in the top 

part of Figure 8.7. It can be seen that the maximum rate of pressure rise for the 

combustion is masked by the compression part of the curve. 

Since the maximum rate of pressure rise was shown to provide a reasonable 

estimate of the combustion phasing in Chapter 7, the procedure to determine the 

location and the amplitude of the maximum rate of pressure rise was programmed 

in the FPGA (shown in Figure 8.7) as follows: 
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Figure 8.6: Cylinder Pressure for Delayed Combustion Phasing 

• The combustion pressure is first obtained by subtracting the motoring pressure 

from the fired pressure. 

Pcomb{Q) = P(0)~ PmoA6) (8.1) 

Next, the rate of change of the generated motoring pressure is calculated: 

' dp\ _ 

d0)„ 
= Pmo<{0)-Pn,o,(&-l) (8.2) 

• The rate of change of the combustion pressure is calculated in a similar manner. 

The resulting trace allows the location (or the crank angle) of the maximum rate 

of pressure rise to be determined as indicated in Figure 8.7. 

v d9 j cnmt> 
= Pcom b{d)-Pcom k(0- ]) (8.3) 
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• The actual rate of pressure rise is then obtained by adding the motoring rate-of-

pressure-rise to the combustion rate-of-pressure-rise. The resulting trace is the 

actual rate-of-pressure-rise and the amplitude is determined by reading the data 

corresponding to the identified location of the combustion peak. 
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Figure 8.7: Calculation Steps for Estimating the Combustion Parameters 
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The combustion rate of pressure rise calculated using this procedure in the FPGA 

during an actual test is shown in Figure 8.8. The value of the maximum rate of 

pressure rise was only 3.2 bar/°CA in this case which would not be detectable if 

only the original pressure trace was used. 
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Figure 8.8: Estimation of Fired (Combustion) Parameters in the FPGA 

8.1.3. Within Same Cycle IMEP Estimation 

To reduce the cycle-to-cycle variations in the combustion that may occur due to 

either a transient change in the intake boost or the EGR, it was thought necessary 

to be able to detect that change before the completion of the combustion cycle. To 

enable adaptive combustion control within the same engine cycle, an IMEP 

estimation methodology was proposed and devised as follows: 

The partial history of IMEP for the previous cycle is tracked along that of the 

intake and compression strokes for the current cycle as schematically shown in 

Figure 8.9. The contributions of the previous and the current cycles are further 

weighted as given by Equations (8.4) and (8.5). 
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IMEP = 

! p~,dv 

previous 
J P^dV 

(8.4) 

W, 

and 

W 
W,+W2=l & 0.7 <^-<1.3 

1 2 W2 
(8.5) 

where pmg is the average pressure over the crank angle interval (0.1°CA), Vd is 

the displacement volume (499 cm3 for the single cylinder), Wx is the weighting 

factor applied to the previous cycle's contribution to the IMEP, W2 is the 

weighting factor applied to the current cycle's contribution to the IMEP, and dV is 

the rate of change of cylinder volume over the crank angle interval. The dV data 

for a complete engine cycle was mapped as a function of the crank angle in the 

distributed RAM of the FPGA. 
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Figure 8.9: IMEP Estimation for Within-Same-Cycle Estimation 
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The weighting factors decide the crank angle window for which the IMEP estimate 

is done. The selection of the weighting factors is done by the controller on-the-fly 

as follows: 

• Based on the CA50 of the previous cycle, the starting point of the estimation 

window is adaptively modified by the controller and the weighting factors are 

calculated. Two possible scenarios exist: 

a) If the CA50 feedback of the previous cycle occurred before the TDC, a 

weighting factor proportional to the off-phasing of the CA50 from the TDC 

is calculated and an IMEP estimation is done promptly near the TDC of the 

current cycle to check if the targeted IMEP is being met. Therefore, 

W]>W2 in this case. 

b) If the CA50 occurred after the TDC of the previous cycle, the controller 

reduces the weighting factor of the previous cycle such that the IMEP 

estimation includes the effect of the main combustion event. The crank 

angle window is therefore shifted after the TDC and Wx < W2 in this case. 

• The final IMEP estimate is calculated over the crank angle window 

(representing one complete cycle) decided by the controller and can be 

represented by the conventional definition given in Equation (8.6). 

6p dV 
IMEP = X_f!E— (8.6) 

y, 

If a shortfall in the IMEP estimate exists (due to either a transient change in the 

intake boost, EGR or the fuelling), a decision to meet the deficiency with post-

TDC torque modulation within the same cycle is communicated to the fuel 

injection controller. The timing of the post-injection is decided by the fuel injection 

controller based on relevant cylinder pressure characteristics (CA50, Pmax) and the 

SOI of the last injection (to ensure separation from the main combustion event) 

while the pulse-width of the post-injection is decided by a standard PI controller 
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implemented on the FPGA of the combustion characterization system (described in 

the next section). The corrective action generated by the PI controller is then 

executed by the fuel injection control system. The tuning of the PI controller was 

performed along with gain scheduling for different engine operating conditions. A 

simplified schematic of this process for the case of CA50 occurring before the 

TDC is shown in Figure 8.10. 
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Figure 8.10: Scheme for Adaptive Control within Same Cycle 

8.2. Combustion control Platform 

Three sets of real-time controllers embedded with FPGA devices were used concurrently 

to analyze the cylinder pressure data and to generate the necessary control signals for 

dynamically and precisely commanding the fuel injection strategies as shown in Figure 

8.11. The functioning of each of the FPGA/RT system is as follows: 

• The 'Fuel Injection' controller can configure up to 6 independent injections/cycle 

(injection timing, pulse width) and generates a TTL pulse train that serves as the 

input for the injector power drives. The controller can perform prompt combustion 
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pattern recognition using the maximum cylinder pressure pmax or the maximum rate 

of pressure rise, (dp/d0)max as the feedback parameters. 

• The 'Combustion Characterization' controller is programmed to provide an 

estimate of the IMEP for within same-cycle control. The controller also calculates 

the combustion phasing represented by the CA50 either by using the apparent heat 

release analysis or the 'Pressure Departure Ratio (PDR)' algorithm for cycle-by-

cycle combustion control. The programming and integration of this controller 

(FPGA #1) was done as a part of this research work. 

• The 'System Pre-control' maintains the rail pressure using a PID controller for the 

Pressure control valve (PCV) and the volume control valve (VCV) of the fuel 

injection pump. The controller can operate either independently or in collaboration 

with the fuel injection controller. 
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The data transfer between the FPGA devices is done using the high speed digital/analog 

channels. The FPGA devices are based on the Virtex-II FPGAs (28,672 LUTs per device) 

with each slice containing two 4-input LUTs, two flip-flops, wide-function multiplexers, 

and carry logic. 

The injector power drives enable the injector opening/ closing voltages to be adjusted 

between ±200 V and the current between ±20 A. An RS-485 link is used to program the 

power drives. 

8.3. Adaptive Control Tests 

To test and validate the developed adaptive control methodologies, engine tests were 

done for the single-shot LTC and the results are presented in the following sections. 

8.3.1. Within-same-cycle Adaptive Control 

Validation tests for within-same-cycle control were conducted at an IMEP setpoint 

of 4.5 bar. The proportional gain of the controller was set at 8 and the correction 

generated for the pulse width quantity was limited to ±10|is. This was done to 

safeguard the engine in case of a sudden change in the injection quantity. The 

nominal post injection quantity was 250|*s. To study the transient response of the 

control system, the engine speed and boost pressure were rapidly changed from 

1000 RPM/1.5 bar abs to 1500/2 and then again to 100/1.5. The results for the 

adaptive control within the same cycle are shown in Figure 8.12. 

It can be seen that a stable IMEP was maintained during the transients. A small 

spike in the IMEP was noted. It was because of the limited change allowed in the 

injection pulse-width per cycle. Once the control was switched off and the 

procedure was repeated, a large deficit (~1 bar) in the IMEP was observed as the 

engine speed increased to 1500 RPM and the boost increased to 2 bar abs. The 

variation of the post-injection quantity was calculated by the RT-FPGA controller 

processing the pressure data and provided to the fuel injection controller for 

modifying the injection quantities. 
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Figure 8.12: Torque Modulation with Post-TDC Injection 

Another set of the test data is shown in Figure 8.13. The proportional gain of the 

controller was increased to 14 and the rate limiter set to ±1 5jj.s. The crank angle of 

the maximum rate of pressure rise was fixed at 365°CA through the combustion 

characterization controller. The IMEP setpoint was fixed at 6 bar such that the 

main injection initially produced an IMEP of 3.5 bar and the post injection 

produced the remaining 2.5 bar IMEP. The EGR was then rapidly increased to 

push the combustion into the LTC cycles. 

Once the combustion had entered the LTC regime, a large change in the setpoint 

was introduced by suddenly reducing the quantity (commanded pulse width) of the 

main injection from 400|is to 375|is to observe the response of the post-TDC load 

modulation. From the results, it is clear that the post-injection quantity was 

modified by the control system to compensate for the sudden drop in the load. The 

procedure was repeated again by further decreasing the main injection quantity to 

330ns and the control system was able to adequately respond to the load transient. 
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Figure 8.13: Post-TDC Load Modulation with CA(dPjdO)^ Control 

To confirm if the error (reduction in the main injection quantity) and the control 

action (increase in the post-TDC injection quantity) were performed within the 

same cycle, a small section of the data from Figure 8.13 has been plotted in Figure 

8.14. It was seen that the control action and the corrective action by the controller 

were carried out in the same cycle (Cycle # 5601). Moreover, the increased gain of 

the controller and the relaxation of the injection quantity change within one cycle 

permitted the control system to compensate for the disturbance with one cycle. The 

IMEP was retained within ±0.25 bar in this test. 

The cylinder pressure and the heat release traces for the data in Figure 8.13 are 

shown in Figure 8.15. It is evident that the controller effectively locked the phasing 

of the main heat release event at 365°CA during the transients. 
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Figure 8.15: Cylinder Pressure and Heat Release Traces for Transients in LTC Mode 
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The cumulative heat release traces are shown in Figure 8.16. The contribution of 

the main injection was reduced from 60 to 40% and the post-injection was adjusted 

on-the-fly by the control system to maintain a constant IMEP. It is pertinent to 

mention here that the load (IMEP) transients tested during these tests are much 

larger than those normally encountered during normal engine operation. This was 

done to test the robustness and the response of the control system. As such, the 

control system should be able to correct and adjust any minor fluctuation in the 

load during the normal operation. 
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Figure 8.16: Cumulative Heat Release Traces 

The summary of the results is given in Table 8.1. As the contribution of the main 

injection towards power production decreased, the combustion noise also reduced 

significantly. However, the thermal efficiency decreased primarily due to the off-

phasing of the post-combustion event from the phasing window for best efficiency. 

The NOx and soot emissions were maintained while the HC and CO emissions also 

showed an insignificant increase. Moreover, the prompt adaptation of the post-
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TDC fuel injection to maintain the IMEP during LTC mode also partially 

eliminated the cycle-to-cycle variations compared to LTC engine operation without 

control. To quantify the cyclic variations, the COV of IMEP was calculated for 

both the cases. For LTC operation without adaptive control (main injection only), 

the COV of IMEP was 2.8 % while with post-TDC IMEP modulation, the COV of 

IMEP ranged from 1.6-2.2%, corresponding to the reduction in the main injection 

from 400ns to 330ns. 

Table 8.1: Summary of Results for IMEP Transients in LTC Mode 

Heat Release [%] (dp/d0)max 
Indicated 

Tlth 
Indicated Emissions 

[g/kWh] 

Main Post [bar] [%] NOx Soot THCcl CO 

100 - 7.3 47.1 0.08 0.06 0.52 10.6 

60 40 5.7 44.6 0.08 0.07 0.53 10.1 

50 50 5.3 42.8 0.07 0.1 0.58 10.6 

40 60 3.8 42.8 0.07 0.1 0.7 11.9 

8.3.2. Cycle-by-cycle Adaptive Control 

The second phase of the adaptive tests included the cycle-by-cycle control of the 

single-shot LTC. The control tests were performed by using a number of different 

parameters as feedback for the control system and the results are presented in the 

following sections. 

8.3.2.1. CA (dp/d6)max as the Feedback 

The transition into LTC mode of operation and maintaining stable operation 

in the LTC regime for conventional diesel is demonstrated in Figure 8.17. 

A high load of ~7 bar was selected to test the robustness of the control 

system. The setpoint of the CA (dp/d0)max was 365°CA. The phasing was 

estimated by the 'combustion characterization' controller and 

communicated to the 'fuel injection' controller which modified the timing 

(SOI) of the injection proportional to the phasing error. The adaptive fuel-
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injection control was able to successfully anchor the combustion phasing 

within a narrow band with heavy EGR (up to 65%). The soot measurements 

unlike other emission measurements were performed at discrete points and 

therefore show a step-wise pattern. 
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Figure 8.17: LTC Cycles Stabilized with Adaptive Control 

8.3.2.2. CA(dp/d6)max & (dp/d6)max as the Feedback Parameters 

It was shown in Chapter 7 that the combustion noise (maximum rate of 

pressure rise) was effectively reduced with the use of a two-injection 

(pilot+main) strategy. To enable the control system to regulate the 

combustion noise in addition to the combustion phasing, engine tests were 

configured to regulate both the amplitude and the crank angle of the 

maximum rate of pressure rise. An overview of the test results is shown in 

Figure 8.18. The engine load was 4.5 bar IMEP and a two-injection strategy 

was applied, with the pilot injection primarily for combustion noise control. 

The control action was performed as follows: 
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• To maintain the CA(dp/d0)max at the desired setpoint, the timing of 

the main injection was adjusted by the controller. Since a minimum 

dwell time was essential between the two injections, the timing of the 

pilot and the main was advanced simultaneously so that the dwell 

between the two injections was kept constant. 

• For maintaining the amplitude below the desired setpoint level, the 

(dp/d0)max was controlled by increasing the pilot injection quantity 

while simultaneously decreasing the main injection quantity to 

maintain the same load level. 
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Figure 8.18: Adaptive Control tests with CA (dp/d0)max & (dp/d0)max Modulation 

Speed and boost transients were applied to check the response of the 

control system at three levels of (dp/d0)max while maintaining the 

CA(dp/d0)max (a representation of the combustion phasing) at 363°CA. 

With the engine operating at 1500 RPM and 2 bar abs boost pressure, the 

378 



CHAPTER 8: CONTROL OF DIESEL LOW TEMPERATURE 

(dp/d0)max was low (~8 bar/°CA) because the combustion was overall lean. 

When the transition was made to the 1000 RPM/1.5 bar abs condition, the 

control system was able to restrict the (dp/d0)max below the setpoint value 

of 13bar/°CA. The tests were repeated by successively setting the setpoint 

at 11 and 9 bar/°CA and the desired control action was realized. It is noted 

that with the control switched off, the (dp/d0)max value increased up to 16 

bar/°CA. However, with the adaptive control applied, the system was able 

to effectively maintain the desired noise level during the transients. The 

CA(dp/d0)max was also maintained within a narrow band. 

8.3.2.3. CA50 as the Feedback 

It was shown in Chapter 5 that the CA50 provides a robust and accurate 

estimation of the combustion phasing over a wide range of engine operating 

conditions. Engine tests were therefore conducted using CA50 as the 

feedback parameter for enabling the single-shot LTC strategy and to 

stabilize the LTC cycles during heavy EGR use. The CA50 was calculated 

using the PDR algorithm (Chapter 5.10.3) programmed with an FPGA/RT 

controller. An EGR sweep was performed at an engine load of 6 bar IMEP 

to push the combustion into the LTC cycles while maintaining the 

combustion phasing at 367°CA. The fuelling was also kept constant at 

500ns. The emission results are shown in Figure 8.19 and Figure 8.20. 

As EGR was progressively increased, the NOx and soot displayed the 

classical trade-off during the high temperature combustion. Increasing the 

EGR further pushed the combustion into the LTC regime where 

simultaneous reduction in NOx and soot was realized. The THC and CO 

emissions in Figure 8.20 increased with the higher dilution and lowered 

combustion temperature during LTC. A comparison with the LTC results at 

5.2 bar IMEP (Figure 7.33) showed that the HC and CO emissions were 

comparable, although the load was higher in this case. 
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The cylinder pressure and the heat release rate at two different EGR levels 

(slope 1 and slope 2) are shown in Figure 8.21. The control system was able 

to maintain the phasing at 367°CA by cycle-by-cycle adapting the SOI. 

Adaptive Combustion Control using PDR Aloarithm 

0.03 <P 

38.3 % 
57.7 % 0.01 x 

340 350 
T 
360 370 
Crank Angle [°CA] 

380 390 

Figure 8.21: Enabling LTC Cycles with CA50 as the Feedback Parameter 

A comparison of the crank angle of maximum rate of pressure rise 

(CA^dP/dO)^) and the crank angle of 50% heat released (C450) is 

shown in Figure 8.22. It can be seen that the CA^dP/dO)^ is an indirect 

approximation of the combustion phasing and can provide reasonable 

accuracy for combustions characterized by a single peak of the heat release. 

However, the CA50 is a direct and more accurate representation of the 

combustion phasing and therefore, provides for more robust operation. 

Furthermore, with the split burning LTC or a complex heat release pattern 

(2 or more than two peaks with the phasing away from the TDC), the 

CA^dP/dO)^ becomes ineffective in providing an accurate feedback. 
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Figure 8.22: Comparison between CA(dP/dd) & C450 as Feedback Parameters 

To observe the performance of the control system on a cycle-by-cycle 

basis, the CA50 and the CA{dPjd6)max for 200 consecutive pressure 

cycles have been plotted in Figure 8.23. The CA50 was controlled within 

±1°CA of the setpoint during the LTC cycles. The data for the 

CA^dP/dO)^ has been shown for reference purpose only to indicate that 

it is an indirect representation of the combustion phasing. 

The summary of the test is given in Table 8.2 . The combustion efficiency 

penalty was slightly higher compared to the test without the control (Table 

7.6 and Table 7.11). However the major benefit of the automatic control 

was the improvement in the stability of the LTC operation, quantified in 

terms of the coefficient of variance of IMEP and Pmax. There was a 

negligible increase in the COVs, thereby indicating the ability of the control 

system to stabilize the combustion process. 
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Figure 8.23: Cycle-by-cycle Control with CA50 as Feedback 

Table 8.2: Single-shot LTC Control using CA50 as Feedback 

—i 
200 

Parameter 
EGR [%] 

Parameter 
38.3 57.7 

IMEP [bar] 6.13 5.98 

NOx [g/kWh] 1.2 0.05 

Intake O2 [%] 13.1 10 

Indicated Thermal Efficiency [%] 42.3 41.1 

Soot [g/kWh] 0.003 0.015 

CO [g/kWh] 0.84 14.8 

THC [g/kWh] 0.05 0.68 

Combustion Efficiency [%] 99.7 97.9 

Pmax [bar] 104.2 99.8 

(dp/d0)max [bar] 14.8 6.4 

COV Pmax [%] 1.1 1.3 

1 COV IMEP [%] 1.81 1.86 
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83.2.4. CA50 & IMEP Modulation 

A decrease in the engine load is generally observed as the combustion is 

pushed into the LTC cycles - a result of the combustion off-phasing and the 

deterioration in the combustion efficiency. The last test indicated that 

maintaining the combustion phasing within a narrow band helped to 

improve the combustion efficiency and the IMEP penalty was also reduced. 

To maintain the same engine load in the LTC regime, the last test was 

configured by enabling a post-TDC injection to make up for any decrease 

in the IMEP. The engine operating conditions are marked in the figures. 

The IMEP in this case was estimated after each cycle and the corrective 

action was performed in the next cycle. The phasing was maintained by 

modulating the timing of the main injection. A constant dwell of ~13.6°CA 

was maintained between the two injections. 

The main injection was first enabled and its contribution to the IMEP was 

set at 4.5 bar IMEP. The post injection was configured to increase the 

engine load to 6.1 bar IMEP, the setpoint for this test. The combustion 

phasing setpoint was 367°CA. An EGR sweep was performed to move the 

combustion into the LTC regime. 

The cylinder pressure and the heat release rates for the test are shown in 

Figure 8.24. The main injection has been shown for comparison purpose. 

As the combustion was split into two phases, a significant drop in the heat 

release peak was observed. Moreover, with higher EGR, the timing of the 

main and post were advanced to correct of for the combustion phasing 

while the post injection duration was modified by the controller to maintain 

the IMEP. The cylinder pressure and heat release traces are an indicator of 

the quality of the control action. 

This aspect was further examined with the cumulative heat release traces 

shown in Figure 8.25. The CA50 was maintained at 376°CA while both 

EGR and the fuelling quantities changed. The figure also indicated that the 

main injection contributed about 75% of the total heat released. 
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Figure 8.24: LTC Operation with CA50 & IMEP based Feedback Control 
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Figure 8.25: Cumulative Heat Release Traces for CA50 & IMEP based Feedback 
Control 
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The NOx and soot emissions for the test are shown in Figure 8.26. The 

NOx levels were very low; however the soot was within the DPF-tolerant 

level. The CO and THC emissions were also low. It is pertinent to mention 

here that the use of the post-injection with the single-shot injection is not an 

effective combination to enable LTC cycles. However, the aim was to 

gauge the performance of the control system. Tests were performed (shown 

later in this chapter) where both the IMEP and the combustion phasing 

were adjusted with the main injection timing and the pulse width to achieve 

the LTC cycles (consistent with the definition of the single-shot LTC). 
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Figure 8.26: NOx and Soot for the CA50 & IMEP based Feedback Control 

To analyze the response of the control system to transients in the engine 

operation, a large change in the commanded pulse width (quantity) was 

introduced by suddenly reducing the commanded pulse width of the main 

injection from 440|is to 410ns and again from 410jas to 390|is at a fixed 

EGR rate of 41%. The cylinder pressure and the heat release results are 
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shown in Figure 8.27. The reduction in the main injection quantity was 

compensated by the controller by increasing the post injection quantity by 

the controller. The timing of both the injections was also modified to 

maintain the phasing at 367°CA. 

100-

Adaptive Combustion Control - IMEP & CA50 Modulation 
Engine Speed: 1200 RPM • 0.55 

injection- 90 MPa 
Pintake: 1-5 bar abs 

CA50 Fixed @ 367°CA 
IMEP: 6.1 bar 

EGR: 41% 

Main - 440 
Main -410 |xs 
Main - 390 

370 380 
Crank Angle [°CA] 

•0.4 
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Figure 8.27: Cylinder Pressure and Heat Release after Load Transients 

The injection pulse widths and the timing for both the main and the post 

injections are given in Figure 8.28. The change in the main injection 

quantity reduced its contribution to about 60% of the total heat released. 

This reduction was compensated by the post injection as its quantity was 

increased from 185ns to 236ns. The cycle-by-cycle response of the 

controller during the transients is shown in Figure 8.29. The CA50 was 

retained with the desired limits. The IMEP setpoint was also followed 

except for a few cycles during the transient which was because of the 
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Figure 8.29: Transient Response of the Control System 
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post injection quantity correction limited to ±10 us per cycle. The 

CA{dPjdO) has also been plotted to highlight the fact that as the post 

injection contribution to the heat release increased, the CA^dPjdQ)^ 

started to change for the same combustion phasing, determined by the 

CA50. 

8.4. Integrating the Systematic and Adaptive Control 

The control results presented till now indicated that the adaptive control of the 

combustion based on the cylinder pressure-based feedback can improve the stability and 

combustion efficiency of the LTC cycles. In all these tests, the selection and application 

of the EGR and boost parameters was done manually to attain the ultra low NOx levels. 

An effort was therefore made to integrate the systematic control of EGR and boost 

pressure with the adaptive combustion control system and the overall structure of the 

proposed control strategy is presented in Figure 8.30. The fast feedback estimator (FFE) 

will condition the cylinder pressure signal, process the data and provide the necessary 

feedback to the fuel-injection control system (FCS) on either a cycle-by-cycle basis or 

within-same-cycle basis. 

The SFE will provide feedback on the exhaust and intake conditions that include the 

oxygen concentrations, fresh-air lambda and the in-cylinder lambda to help optimize the 

boost and EGR for improving combustion stability and emissions, based on the output of 

the intake and exhaust lambda sensors. The NFE (smart NOx sensor, being the slowest 

element, will provide feedback on the engine-out NOx using the smart NOx sensor that 

will be used to ensure the emission level conformity while navigating the narrow 

operating corridors of LTC. Moreover, the NFE could also be used to provide an overall 

verification feedback on the control strategy. 

The parametric analysis and correction (PAC) will be a look-up table (LUT) oriented 

approach, based on the theoretical operating maps for LTC operation (from the EGR 

analysis - Chapter 6) that will provide the approximate boundary conditions for the 

desired LTC operation. The boost-EGR controller will adjust the boost and EGR based 

on the feedback from the SFE and the corrective actions generated by the PAC. 
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Figure 8.30: Structure of the Proposed Adaptive Control System 
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The overall control strategy was partially implemented in this work. The details are as 

follows: 

• The existing 'combustion characterization' FPGA-RT controller was used as the 

FFE. The FFE ran the PDR heat release estimation algorithm in real-time for fast 

cycle-by-cycle feedback. The IMEP calculation for within-same-cycle control 

using the methodology described earlier was also run concurrently on the FFE, 

including the P/PI controller for the injection quantity correction. 

• The existing 'fuel-injection' controller running on another RT-FPGA controller 

was designated as the FCS. The FCS implemented the SOI modulation based on 

the feedback from the FFE. 

• The smart NOx sensor was controlled using the CAN Bus with Lab VIEW running 

on a Windows based PC. 

• The Wide band lambda sensors were run though their own dedicated controller that 

was configured using the RS-232 link. The output of the controller was processed 

using Lab VIEW running on a Windows based PC. 

• The Boost-EGR control (BES) system was also a LabVIEW based PC system that 

built upon the boost-back pressure controller already configured as a part of this 

work. The LUT based PAC was also programmed on the same PC. However, the 

full automatic execution of the BES and the PAC was not realized in this work and 

during the engine tests, the control action was performed manually based on the 

feedback from the other sub-systems. 

• The communication between the various elements of the PC based control system 

was done using the DataSocket technology built into LabVIEW. The DataSocket 

uses the Ethernet TCP/IP protocol and efficiently transferred data over the 

laboratory local area network. 

391 



CHAPTER 8: CONTROL OF DIESEL LOW TEMPERATURE 

8.5. Control Strategy for Navigating LTC Corridors 

A strategy for attaining low temperature combustion with the minimum of penalty was 

devised as shown in Figure 8.31. At low loads with moderate injection pressures and low 

boost, the soot emission is low regardless of the intake charge dilution as already 

demonstrated during the testing of the single-shot LTC (Figure 7.59). Therefore, the 

combustion can be pushed into the LTC cycles at low load levels and the engine load can 

then be increased inside the narrow LTC operating corridors while managing the 

injection pressure, boost and EGR to minimize the associated penalties. 
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Figure 8.31: Strategy for Attaining LTC and Navigating Narrow LTC Corridors 

The implementation of the strategy is empirically demonstrated from Figure 8.32 to 

Figure 8.34. The setpoint of the combustion phasing was fixed at 374°CA, quite late into 

the expansion process. This was intentionally done to increase the instability in the 

combustion and move the combustion close to the flame-out region. The combustion 

phasing of the single-injection enabled LTC was based on the crank angle of the 

maximum rate of pressure rise. The engine speed was 1500 RPM and the injection 
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pressure was 90MPa. The intake pressure was set at 2 bar abs, relatively high to ensure 

that sufficient oxygen was available to the combustion process during the load 

transitions. The targeted IMEP was 6 bar and the test was started at a low IMEP of 2 bar 

(Initial Setpoint). 

Heavy EGR was manually applied based on the feedback from the NOx sensor and the 

wide-band lambda sensors to push the combustion into the LTC cycles with ultra low 

NOx and soot. The IMEP setpoint was then increased to 3.9 bar while managing the EGR 

to maintain the NOx below 20 ppm. The engine was run for a few minutes at this load to 

ensure stable operation and to obtain steady-state emission values. The IMEP setpoint 

was then increased to 6.5 bar and the procedure repeated. The emission history during the 

test is shown in Figure 8.32. The load increase from 2 bar to 3.9 bar IMEP did not cause 

any change in the CO and HC emissions. The NOx dropped slightly as the effectiveness 

of EGR was enhanced with the load. The next increase to 6.5 bar IMEP reduced NOx 

further, caused a minor change in the HC emission but the CO levels rose sharply and 

reached the measurement limits of the emission analyzer. Although CO increased, its 

contribution to the combustion inefficiency was much lower than HC (LHV of CO ~ one-

fourth of HC) and therefore, the stability of the combustion was not compromised as 

later. Moreover, the increase in CO indicated the need for a higher injection pressure or 

boost since the load can be considered high for the single-shot LTC. 

The cylinder pressure traces for the three IMEP setpoints at the same EGR level of 63% 

are shown in Figure 8.33. The results showed that the control system was able to 

effectively stabilize the combustion at such a late phasing. The smoke level was also ultra 

low and below 0.001 g/kWh during the test. 
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Figure 8.32: Emission History during LTC Load Management 
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Figure 8.33: LTC Load Management with Overall Control Strategy 
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The heat release rates corresponding to the cylinder pressure traces are shown in Figure 

8.34. The control system was able to maintain the phasing even when the combustion was 

highly diluted for the case of 6.5 bar IMEP. The heat release trace for the 6.5 bar IMEP 

indicates that the heavy EGR reduced burning rate significantly, thereby pronging the 

combustion duration. The late burning of the cylinder charge also suggests an increase in 

the CO where the oxidation of CO into CO2 may freeze because of the lowered 

combustion temperatures. 
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Figure 8.34: Heat Release Rates for Overall Control Strategy 

The results for the test are summarized in Table 8.3. Once the emissions are examined on 

a g/kWh basis, the performance at 2 bar IMEP was inferior to the 3.9 bar IMEP. The 

COV of IMEP was also higher than that for the 3.9 and 6.5 bar IMEP. From the results, 

the load of 3.9 bar IMEP was found to have the highest indicated thermal efficiency 

along with the lowest CO and HC emissions compared to the other two loads. The COV 

of IMEP, an indicator of the process stability was also low (~1.8%) at 3.9 bar IMEP. 
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These results provided further evidence to support the LTC load management strategy 

that proposed the use of the single shot LTC at low loads. The results of the testing and 

control phases suggest that for the Ford Engine (CR 18.2:1), the single-shot LTC strategy 

should be employed up to an IMEP of 4 bar and then the combustion mode should be 

switched to the multiple-shot (early HCCI) LTC strategy. The results also indicate that 

the integration of the systematic and adaptive combustion control can help to stabilize the 

combustion process while navigating the LTC pathways with ultra low emissions of NOx 

and soot. 

Table 8.3: Summaiy of LTC Load Management 

Parameter IMEP fbar] Parameter 
2 3.9 6.5 

NOx [ppm] 14 11 19 

NOx [g/kWh] 0.18 0.09 0.04 

Intake O2 [%] 17 11.7 11.2 

Indicated Thermal 
Efficiency [%] 

37.9 39.9 38.6 

Smoke [FSN] 0.03 0.03 0.4 

Soot [g/kWh] 0.001 0.0006 0.009 

CO [ppm] 2736 2653 >5200* 

CO [g/kWh] 24 12.8 >15.9* 

THC [ppm] 559 532 712 

THC [g/kWh] 2.5 1.28 1.01 

Combustion 
Efficiency [%] 

98.9 99.5 99.5f 

(dp/d0)max [bar] 3.1 5.6 3.2 

COVPmax[%] 0.14 0.14 0.29 

COY IMEP [%] 3.51 1.82 1.91 

* Exceeded the measurement limit 
t Actually lower because of the higher CO 
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8.6. Conclusions 

LTC control strategies based on cylinder pressure characteristics were formulated based 

on the diagnostics and testing of diesel LTC cycles. The LTC control strategies were 

explored experimentally to enable and stabilize the LTC when heavy EGR is applied. 

• An IMEP estimation methodology for within-same cycle control was proposed and 

shown to stabilize the LTC load level with post-TDC torque modulation. 

• A methodology for recognizing the pressure characteristics of retarded combustion 

events was detailed and shown to be effective for closed loop feedback control. 

• Application tests were conducted to assess the performance of various cylinder 

pressure based feedback parameters in improving the stability of single-shot LTC 

cycles while maintaining ultra low NOx and soot emissions. 

• An overall strategy for integrating the systematic and adaptive combustion control 

was proposed and partially implemented. 

• A LTC control strategy for navigating the narrow LTC corridors was devised and 

implemented with the combined systematic (in manual mode) and closed loop 

combustion control. 

• The control system was demonstrated to maintain the stability of the LTC cycles 

during load, boost and speed transients 
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CHAPTER IX 

9. CONCLUSIONS AND FUTURE WORK 

Extensive experimental research was carried out to investigate and improve the diesel 

low temperature combustion through diagnostics, testing and control work. The 

conclusions and the recommendations from the research are presented below. 

9.1. LTC Efficiency and Load Range Improvements 

Based on the empirical and analytical analyses, the load management and efficiency 

improvements of the LTC cycles were demonstrated with three fuelling strategies. 

Single-shot LTC: The single-shot LTC was enabled with heavy EGR to realize ultra low 

NOx and soot emissions at low loads (3-5 bar). The significant findings for this 

combustion mode were: 

• An intake oxygen concentration of less than 14% was generally found to reduce 

NOx to very low levels and an intake oxygen of 8-11% was found necessary for 

achieving simultaneous low-NOx and low-soot combustion. 

• In general, the CO rises with heavy EGR because of reduced O2 availability 

(11-14%). The THC is more sensitive to the lowered combustion temperature and 

the further reduced oxygen concentration (8-12%) with heavy EGR. 

Multi-shot (early HCCI) LTC: This combustion mode was largely applicable to mid-load 

engine operating conditions and was realized up to 7.5 bar IMEP with a low HC penalty. 

The significant contributions were: 

• An injection timing scheduling criterion to minimize the HC emissions based on 

the fuel boiling characteristics and the phenomenological spray penetration model. 

• Quantification of combustion off-phasing with equivalent-exhaust HC and the 

demonstration of a trade-off between the off-phasing and the exhaust combustibles. 
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Split Burning LTC: The splitting of the heat release helped to reduce the peak cylinder 

pressure and the maximum rate of pressure rise. The containment of the pressure levels 

enabled the load to be increased up to 9.7 bar IMEP. The significant contributions were: 

• The post-TDC part of the combustion helps to destroy the CO and HC produced 

earlier in the cycle, thereby improving the combustion efficiency. 

• Ultra low soot was not attainable because of the conventional burn of the post-TDC 

combustion. An alternate DPF-tolerant soot limit of -2.5 FSN was satisfied for this 

mode. 

The demonstrated LTC load range without engine hardware modifications for the 

compression ratio of 18.2:1 is plotted in Figure 9.1. 

• Reported Diesel LTC Research (without Hardware Modifications) 

• With Additional Technologies (VVT,VCR,Dual EGR, High Swirl) 

LTC Load Range Trend 
with Compression Ratio 

Demonstrated 
Load Range 

-10 bar IMEP 

^ Typical IMEP Range 
of Reported Results 

—i 
20 10 12 14 16 

Compression Ratio [-] 
18 

Figure 9.1: LTC Load Range Reported in this Research Work 
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9.2. Control of Diesel Low Temperature Combustion 

LTC control strategies based on the cylinder pressure characteristics were formulated in 

accordance with the results obtained from the diagnostics and testing of diesel LTC 

cycles. The significant contributions of the control work are as follows: 

• An IMEP estimation methodology for within-same-cycle control was proposed and 

shown to stabilize the LTC load level with post-TDC torque modulation. 

• A methodology for recognizing the pressure characteristics of retarded combustion 

events was detailed and shown to be effective for closed-loop feedback control. 

• An overall strategy for integrating the systematic and adaptive combustion control 

was proposed and partially implemented. 

• A LTC control strategy for navigating the narrow LTC corridors was devised and 

implemented with the combined systematic (in manual mode) and closed-loop 

combustion control. 

• The control system was demonstrated to maintain the stability of the LTC cycles 

during load, boost and speed transients. 

9.3. LTC Combustion Diagnostics 

The diagnostics work was crucial to develop the research methodology employed for 

investigating the diesel LTC and provided essential guidelines for the testing and control 

work. The significant contributions resulting from the diagnostics work are as follows: 

• The in-cylinder gas sampling studies established the efficacy of this research 

methodology for the homogeneous charge type of combustion where the local 

charge characteristics are in parity with those of the global cylinder charge. 

• With the in-cylinder sampling tests, a LTC NOx reduction mechanism was 

identified for nitric oxide (NO) levels up to 300 ppm in the engine intake stream. 

The low NOx levels in the exhaust were confirmed to be the result of the NO-HC 

interaction. A minimum HC/NO ratio of 10-15:1 was quantified for the significant 
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oxidation of NO. A lower ratio considerably decreased the NO conversion while a 

high ratio indicated an insignificant or a small increase in the conversion. 

• In-cylinder sampling studies for lean homogeneous charge combustion fuelled with 

DME confirmed the in-cylinder production (up to 20 ppm) and the subsequent 

oxidation/destruction of NO within the combustion regime. The engine-out NOx 

was only 1-2 ppm. 

• A computationally efficient 'Diesel Pressure Departure Ratio' algorithm for 

accurately estimating the combustion phasing for a multitude of combustion 

strategies in real-time was proposed and validated with engine tests. The algorithm 

was demonstrated to provide a reliable and accurate feedback in real-time during 

the LTC control tests with less demand on the hardware resources. 

• A theoretical operating map for the LTC cycles was proposed based on the detailed 

EGR analysis. The actual fuel strength of the cylinder charge was quantified in 

terms of an in-cylinder lambda Xa and its difference from the fresh air lambda X 

was quantified. 

• The transient build-up of EGR and the concentration convergence was described 

with a single mathematical expression. A 'Charge Dilution Index' was proposed to 

present a standard measure for the estimation of the EGR independent of the 

engine operating conditions (load, boost etc). 

9.4. Catalytic EGR Treatment 

The diesel fuel reforming process was tested to generate gaseous fuel on demand in the 

actual EGR system of a diesel engine at the Clean Diesel Engine Laboratory. This was 

among the first empirical demonstrations of the diesel fuel reforming process in the EGR 

loop, based on a review of the published literature. A sophisticated setup for enabling the 

EGR reforming process and maintaining control over the critical process parameters was 

established. Novel flow management strategies including flow reversal, partial flow 

control together with central fuelling and central heating schemes were applied to the 

EGR reforming process for the first time to improve the energy efficiency of the 
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reforming process. The results indicated a reduction of up to 50% supplemental energy 

with reversal flow and central fuelling compared to the unidirectional reformer with inlet 

heating. The gaseous fuels (H2 +CO) generated by the diesel fuel reforming process in 

the EGR loop were shown to enhance the premixed combustion phase and significantly 

decrease the NOx emission without incurring a soot penalty. 

9.5. Advanced Research Platform 

The preliminary testing of the diesel LTC cycles highlighted the sensitivity of the LTC 

cycles to small variations in the engine operating conditions such as EGR (0.5%), 

injection timing (0.2°CA) and pulse-width (5|is). Therefore, to enable the evaluation of 

the different LTC fuelling/control strategies, an advanced emission sampling and 

measurement, data acquisition, and a high performance combustion-control platform was 

developed during the course of this research. 

The test engines' sub-system development included the setting up of the automatic boost 

and back-pressure control system, fuel and intake flow measurements, CAN Bus-based 

EGR control system, and an online data processing and synchronization system. The 

installation of a NOx transient sensor was devised and successfully implemented to 

provide fast feedback (~750ms) and the validation of the control strategies. A two-

lambda sensor technique was devised and implemented to provide fast feedback 

(~500ms) on the intake dilution and exhaust parameters prevalent during the LTC cycles. 

The in-cylinder gas sampling system was setup by integrating a number of sub-systems 

and through extensive hardware modifications to gain access to the combustion chamber. 

The resulting combustion research platform enabled the detailed testing and precise 

control of the LTC fuelling strategies. Furthermore, the implementation challenges for 

the LTC cycles were identified and quantified, thereby making it possible to devise and 

evaluate the systematic control of the LTC cycles. In addition, this setup provides a high 

quality, advanced platform for future engine research and development work at the Clean 

Diesel Engine Laboratory. 
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In conclusion, the objectives of the research work and the achieved results are 

summarized in Table 9.1. 

Table 9.1: Stated Objectives and Achieved Results 

Objective 
Based on 

Literature Review 
Results of Current Work 

Extend LTC Load Range 
(18.2 Compression Ratio) 

< 4 bar IMEP Demonstrated up to 
9.7 bar IMEP 

Indicated Thermal Efficiency 
10 to 20% 

Penalty 
Reduced up to 6% penalty 

Combustion Inefficiency Up to 5 % <3% 

Stability 
Unstable, high 

cyclic variability 

Stable engine operation with 
Adaptive Control 
(COV,MEP < 3%) 

Navigation (Load Transients) 
within LTC regime 

Not available 
Enabled with Adaptive & 

Systematic Control System 

9.6. Significant Contributions of the Dissertation 

Low temperature combustion strategies are being actively considered as part of the 

solution for achieving simultaneous reduction of the NOx and soot emissions from diesel 

engines - a requisite proviso for conforming to the future emission regulations. The 

author has successfully conducted a systematic investigation, with refereed (peer-

reviewed) publications, of the testing, diagnostics and control of LTC cycles in modern 

diesel engines. The contributions of the dissertation include the following: 

• The theoretical operating map for the diesel LTC cycles (Section 6.2.5) presents 

the basic framework for enabling this combustion mode. It also provides the 

essential guidelines for the development of the control strategies, including the 

identification of the boundary conditions for navigating the narrow LTC corridors. 

The map incorporates the effects of the boost pressure-EGR interaction on the fuel 

strength of the cylinder charge and is applicable to any modern direct-injection 

diesel engine. 
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• The 'Diesel Pressure Departure Ratio' algorithm (Section 5.10.3) provides a robust 

and efficient means of estimating the combustion phasing for a multitude of 

combustion strategies. The calibration of the algorithm for a given diesel engine is 

a trail and error process, requiring a set of cylinder pressure traces corresponding to 

different combustion strategies. The nominal time for the calibration procedure is a 

few hours and may typically involve 2-3 iterations. Once the model is calibrated to 

a specific engine configuration, it is largely not affected by the operating 

conditions. The reduced numerical complexity compared to the apparent heat 

release model may enable the use of this algorithm with production engine control 

units. 

• The LTC NOx mechanism (Section 5.4) provides a new analytical pathway 

towards quantifying the combustion efficiency associated with the LTC operation. 

The generation of a significant amount of NO2 (a much strong oxidizer than 

oxygen) can be utilized in the exhaust aftertreatment, for instance, during the DPF 

regeneration. This may not only reduce the supplemental energy requirements of 

the aftertreatment systems, but may also favour the use of mix-mode combustion 

systems where the LTC operation can be utilized for supplying the combustibles 

and NO2 to the aftertreatment systems while maintaining simultaneous low NOx 

and low soot as well. 

• The IMEP estimation algorithm (Section 8.1.3) for enabling control within-the-

same-cycle offers a new approach to improve the stability of the LTC cycles. Since 

the LTC cycles are close to the flame-out limits, the application of this algorithm 

can aid in the engine load management while navigating through the narrow LTC 

corridors. The algorithm is also able to adapt the estimation to the different 

combustion modes within-the-same-cycle basis, thus improving the robustness of 

the estimation. 

• The quantification of the combustion phasing efficiency in terms of the 'Equivalent 

Exhaust HC' (Section 7.6.4) allows the possibility of optimizing the thermal 

efficiency of the early HCCI cycles. The trade-off between the phasing and the 
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combustion efficiency can also be utilized to offset the disadvantages of the HCCI 

cycles, such as the high maximum cylinder pressure and the maximum rate of 

pressure rise. 

9.7. Future Work 

The following are the recommendations for the future work: 

• The in-cylinder gas sampling studies of LTC cycles with DME should be extended 

to higher engine loads and the crank angle-resolved evolution of hydrocarbons 

correlated with the NO oxidation/destruction. The HC speciation under both HTC 

and LTC conditions should be quantified (Chapter 5). 

• The Yanmar engine should be converted to a common-rail configuration with 

independent control of the SOI, rail pressure and boost for enabling in-cylinder gas 

sampling studies for direct injection diesel LTC cycles (Chapter 5). 

• The in-cylinder sampling studies should be extended to include the pollutant 

evolution for both high-temperature and low-temperature biodiesel combustion 

(Chapter 5). 

• The PDR algorithm should be extended to include the effects of heat transfer and 

specific heat ratio variations (Chapter 5). The algorithm should be implemented 

using a standard engine control unit to make it viable for use in production diesel 

engines. 

• The EGR analyses should be extended to include the effect of the EGR stream 

temperature and the combustion inefficiency (Chapter 6). 

• The generation of gaseous fuels with EGR reforming should be tested for its 

potential benefits in the aftertreatment systems to improve the regeneration 

efficiency while reducing the supplemental energy requirements (Chapter 6). 
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• The effect of temperature modulation on the LTC cycles should be examined with 

variable-valve timing or variable compression ratio systems to extend the load 

range for high-compression ratio diesel engines (Chapter 7). 

• The effect of engine speed on the LTC cycles should be investigated. At higher 

speeds, the time available for the preparation of a homogeneous mixture is 

considerably reduced. Therefore, the speed range for the three LTC strategies 

needs to be identified (Chapter 7). 

• The systematic control should be fully implemented to include the automatic 

estimation and control of the boost pressure and EGR. This would help in the 

model-based control of the LTC cycles (Chapter 8). 

• A theoretical investigation of the IMEP control methodology within-the-same-

cycle should be carried out to develop a mathematical formulation for model-based 

control (Chapter 8). 
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APPENDIX A: SIGNIFICANT SAE PAPERS ON DIESEL LTC & HTC 
STRATEGIES 

Table A.l lists some of the important SAE publications during the last 2 decades 

describing the LTC strategies for simultaneous reduction of NOx and soot in diesel 

engines. 

Table A. 1: Significant Publications on LTC 

Publication Major Engine Specifications Tested Fuels 

Early-HCCI 

SAE 830264 
(Port Injection) 

CR 7.5:1 
Iso-octane ,n-heptane, 

isopropyl-benzene 
SAE-961160 

(Port Injection) 
CR 7.5:1 to 17:1, SR 2.7, 

Mexican hat re-entrant bowl 
Diesel 

SAE 2003-01-2293 
(Port Injection) 

CR 14:1 to 18:1, co bowl Diesel fuels and blends 

SAE 2006-01-3281 
(Port Injection) 

CR 17.8: 1, Mexican hat bowl Diesel, Bio-diesel 

SAE 2005-01-2127 
(Port Injection) 

CR 11.4:1, shallow bowl n-heptane 

SAE 1999-01-3679 
(Port Injection) 

CR 9.6:1 to 22.5:1 
Diesel, Gasoline, Iso-

octane, n-heptane 
SAE 961163,970898 

(PREDIC) 
CR 16.5:1, Shallow dish bowl Diesel 

SAE 980533, 
1999-01-0181 
1999-01-0183 

(PREDIC) 

CR 16.5:1, Shallow dish bowl Diesel, DME, Propane 

SAE 2003-01-0745, 
2003-01-1817 

(UNIBUS) 
CR 18.4:1, Squish lip type bowl Diesel, n-heptane 

SAE 1999-01-0185 
(PCI) 

CR 12:1 Diesel 

SAE 2004-01-1907 
(PCI) 

CR 14.5:1, Shallow dish toroidal 
bowl 

Diesel 

SAE 2007-01-3614 
(PCI) 

CR 12.5, 14,16.5 and 20:1, 
SR 2.1, Re-entrant bowl 

Diesel 

SAE 2007-01-0215 
(Early HCCI) 

10 to 16.8:1, Variable valve 
timing, Re-entrant, shallow dish 

and deep-bowl 
Diesel 
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Single-Injection LTC with Heavy EGR 

SAE 2001-01-0655 
(Smokeless Rich 

Combustion) 
CR18.6:1 Diesel 

SAE 2006-01-3386 
(Smokeless Rich 

Combustion) 
CR 16:1, Swirl Ratio 2.2 Diesel 

SAE 1999-01-3681 
(MK Combustion) 

CR 18:1, SR 3-5, Toroidal Diesel 

SAE 2001-01-0200 
(MK Combustion) 

CR 16 to 17.5:1, SR 3.6 -10, 
Toroidal bowl 

Diesel 

Catalytic EGR Fuel Reforming 

SAE 2007-01-1083 CR 17.8:1, Mexican hat bowl Diesel 

SAE 2007-01-2044 NA Diesel 

J SAE 2007-01-4035 CR 17.8:1, Mexican hat bowl Diesel 

Some important SAE publications during the last 2 decades that describe the 

improvements made in the NOx-soot trade-off and the technologies involved are 

presented in Table A.2. 

Table A.2: Publications detailing the NOx-Soot Trade-off Improvements 

Publication Improvement Technique 

SAE 930592 Boost, Injection Timing, Pressure &Rate Shaping, Swirl Ratio 

SAE 941926 2-valve to 4-valve per cylinder, Swirl Ratio 

SAE 950604 Injection Pressure, Nozzle Geometry 

SAE 960633 Multiple-Injection Schemes 

SAE 960840 EGR Cooling 

SAE 981931 Air Path Optimization, Common-rail Injection 

SAE 1999-01-1502 Combustion Chamber Design, Swirl Ratio 

SAE 2000-01-0510 
SAE 2000-01-0946 

Combustion Chamber Design 
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SAE 2001-01-0197 Injection Pressure, Swirl Ratio 

SAE 2001-01-3260 Advanced Turbocharging Technologies 

SAE 2002-01-0502 Post Injection Patterns 

SAE 2003-01-1793 Boost, Combustion Chamber & Nozzle Designs 

SAE 2003-01-1783 Nozzle Hole Size 

SAE 2005-01-0907 Fuel Injection Rate Shaping 

SAE 2008-01-0641 Post Injection 
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APPENDIX B: FIRST LAW HEAT RELEASE MODEL 

The basis for the modelling of the heat release is the first law of thermodynamics for an 

open system and is stated as: 

SQr=dU+SIT + '£. h,dm, + SQy (B. 1) 

where SQgr is the chemical energy released during combustion, dU is the change in the 

sensible energy of the charge, SW represents the piston work, equal to pdV. The mass 

flux term is the flow across the system boundary due to the fuel injection and flows into 

and out of crevice regions and piston ring blow-by. 

The cylinder charge is treated as a single zone with the following assumptions: 

• Uniform thermodynamic properties and gas composition throughout the 

combustion chamber; Heterogeneity of the charge is neglected. 

• The heat release process is based on the averaged properties in a single zone. 

• Equilibrium thermo-chemistry is assumed (chemical dissociation is ignored). 

• Piston blow-by is neglected. 

• The gas mixture follows the ideal gas law. 

The change in the sensible energy can therefore be written as: 

dU = mccv(T)dT + u(T)dmc (B.2) 

where mc is the mass of the cylinder charge (kg), cv is the specific heat at constant 

volume (J/kg K) and u is the specific internal energy (J/kg K). 

From the ideal gas law, neglecting the change in the specific gas constant, R , the 

following equation can be written: 
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dT = —(pdV + Vdp~RTdmc) (B.3) 
mcR 

(B-4> 
y-1 

where T is the mean charge temperature (K), p is the cylinder pressure (Pa), V is the 

cylinder volume (m3), y - cp/cv (gamma) is the ratio of the specific heats. 

Inserting Equations (B.2), (B.3), (B.4) in Equation (B.l), the heat released during 

combustion is: 

SQ" 'JI$JpdV + ydp + (u-cj)dmcy£h,dm, +SQ„ (B.5) 

or on a crank angle basis, 

igr 
d d  y - 1  

dV dp , _x dm, yp— + V —+(u-c„T) 
' ̂  AO AO ' v > d6 d6 v v ' dd 

y\hi— + ^L (B.6) 
^ * dd dd K ' 

Equation (B.6) gives the gross heat release rate during the period from intake valve 

closure (IVC) to exhaust valve closure (EVC) for the crank angle interval, dO. The 

cumulative heat release QLlim is obtained by summing the incremental values from 

equation (B.6) over the combustion period, from the start of combustion (SOC) to the 

estimated end of combustion (EOC) so that 

EOC 

- I dQr , (B.7) 
i=SOC 

The in-cylinder heat transfer rate in Equation (B.6) can be estimated from empirical heat 

transfer correlations by Annand [154] or Woschni [155]. 

428 



APPENDIX B 

Annand's Heat Transfer Correlation: 

= aA(Re),(7•-7"„)+c(7•'-7;,) 

(B.8) 

where Ac is the combustion chamber surface area (m2), Tw is the mean wall temperature 

(K), t is the time (s), k is the thermal conductivity (Wm"2K''), p is the density (kg/m3), 

p is the dynamic viscosity of the cylinder charge (Pa.s), Re is the Reynolds number, 

a,b,c are Annand's empirical coefficients, D is the cylinder bore (m) and vp - 2NS is 

the mean piston speed (m/s) with S as the piston stroke (m) and N as the engine speed 

in revolutions per second. 

For direct injection diesel engines, the typical values of the constants are a  = 0.26 -0.375, 

b = 0.75 ±0.15and c = 3.88±1.39xl0'8 (Wm'2K~4). 

Woschni 's Correlation: 

where C,,C2,C3 are Woschni's empirical coefficients, vc is the characteristics velocity 

(m/s), pr,Vr,Tr are the pressure (Pa), volume (m3) and temperature (K) at a convenient 

reference state and pmol is the motored cylinder pressure at the same crank angle as p 

(Pa). For the closed cycle calculations, C, = 2.28 + 0.308^/^) where v5 =tiDNSR is 

the swirl velocity (m/s) and SR is the swirl ratio. C3 =0.0128, C2 =0 before combustion 

and C2 =3.24x10"3(/M5"iA^"1) during combustion. The reference state is usually chosen 

as the crank angle of the intake valve closing. 

(B.9) 
Vc=ClVp+C2—^{p-Pmo<) 

PrK 
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Ratio of Specific Heats: 

The ratio of specific heats or gamma varies with the charge temperature and composition, 

and has a significant effect on the rate of heat release. Variation in the EGR, air excess 

ratio (X), the charge pressure and temperature affect the gamma value to varying degrees 

but generally, it is found sufficient to vary gamma as a function of temperature only [98]. 

A number of correlations exist in the literature for estimating the temperature dependence 

of the ratio of specific heats [81,119]. Most are of the form: 

r = a0 + a]T + a2T2+a3T3 +a4T* (B.10) 

where a0,a,,a2,a3,a4 are coefficients from curve fitting the empirical data. A good 

estimation can be made by taking a0 =1.439, ax = -1.295xl0~4, a2 = 2.138xl(T8, 

a3 = 7.047xlO"12, a4 = -1.877xlO"'5. 
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APPENDIX C: CARBON BALANCE METHOD FOR ESTIMATING 
COMBUSTION METRICS 

The calculation of the air/fuel ratio from the composition of the exhaust gases is based on 

the general equation for the complete combustion of a hydrocarbon fuel with air, suitably 

modified to account for the actual combustion conditions. It is often assumed that air is a 

simple mixture of oxygen and nitrogen. Actually, air contains a number of other gases, 

notably about 1.8% argon and 0.035% CO2. The inert gases do not take part in the 

combustion and can be lumped together with the nitrogen. The CO2 quantity is small and 

ignoring it causes a 0.2% error in the calculated results [156]. The following equation 

represents the combustion of a hydrocarbon fuel with air: 

However, the actual exhaust composition also contains the incomplete products of 

combustion namely CO and HC. Therefore, Equation (C.l) can be rewritten as follows: 

Note that the mole quantities of carbon, hydrogen and oxygen are not balanced in 

Equation (C.2). 

The carbon contained in the fuel that is added to the system should be quantitatively 

equal to the carbon that is contained in the engine exhaust. Therefore, by measuring the 

actual concentrations of the CO2, CO and HC in the exhaust, a number of combustion 

metrics can be determined. It is important to note that the application of EGR results in 

the recirculation of the exhaust gas back into the intake stream and the composition of the 

(C.l) 

(C.2) 
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EGR is the same as that of the exhaust gases. Therefore, the application of EGR does not 

affect the calculations using the carbon balance method. 

Reactants: Fuel + Fresh Air (ma) +EGR (mEGR) 

Products: Exhaust (m f  +rha+ mE G R)  

The measurement of the exhaust species is done on a dry basis at standard temperature 

and pressure. Therefore, the amount of water removed during the conditioning of the 

exhaust gas needs to be accounted for. Moreover, the molecular weight of the exhaust gas 

can be calculated or can be assumed to be equal to that of the air (28.97 g/mol) without 

incurring a significant error in the calculation [156]. 

The following calculations are shown for a hydrocarbon fuel with no oxygen (y = 0), i.e. 

CaHp . It is assumed that all the carbon in the reactants comes from the fuel and 

therefore, the mass of carbon in the fuel can be written as: 

Mass of Carbon in Fuel = mf ^ 
f MWf 

The mass of carbon in the exhaust can be written as follows: 

12.011 (m f+ma  ~rhH 2 0)-(yC 0 i  + y c o  +ayH C)  
Mass of Carbon in Exhaust= 

Combining these expressions, the carbon mass balance for the combustion is given by the 

following equation: 

arh f  ^(m f+ma-mH i Q)•  (ya ) 2  + y c o  + ayH C)  

MWf ~ MWah 

where 

mf is the mass flow rate of fuel (g/s) 
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ma is the mass flow rate of fresh air (g/s) 

mHi0 is the mass flow rate of water removed from the exhaust sample (g/s) 

yt is mole fraction of the exhaust species (/ = C02,C0,HC) 

MW f  is the molecular weight of the fuel and equal to 12.01 \a +1.008/? g/mol 

MWexh is the molecular weight of the exhaust gas and equal to 28.97 g/mol. 

Similarly, the hydrogen balance can be written as: 

f im f  (rh f  +ma-  mH i 0)  /}(yH C  )  2m^ 

MW, MW, exh 18.016 
(C.4) 

Equations (C.3) and (C.4) are two equations with two unknowns, mf and mHi0 

Equation (C.3) can be rewritten in terms of mH Q as follows: 

m H-jO 

(rh f+ma)-  (yC O i  + y c o  + ayH C)  am, 

MW„ exh MW f  

yco,+ yco+ayHc 

(C.5) 

Substituting Equation (C.5) in Equation (C.4) and solving for the air/fuel ratio (AFR), we 

get: 

AT?n ma 9.008^ -(y^ + y c o)  + «•  MW e x h  -  MW f  •  (yC O i  + + ayH C)  
AFR = —- = J ; H (C.6) 

m 
'/ MWf \ y Co2 +yco+<xyHc) 

Using the measured mass flow rate of the fresh air intake, the fuel flow rate, mf can be 

determined as: 

mf = 
MWf • • (yco, + yco+ayHc) 

9.008/? '(yco2 
+ yco)+a' Mwexh MWf • (yCo2 

+ yco + ay»c) 
(C.7) 
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The value of a and ft are fixed for a given fuel CaHp and the ma is the measured mass 

flow rate of the fresh air. In this research work, the fuel had a (%) ratio of 1.88 (Table 

4.6). Therefore, Equation (C.7) becomes 

13.906 -[yCo2 yco yHC ) 

16.935+y c o)  + 2*-9 7  ^.906*(_yc<3j +>;co+^'//c) 

The air excess ratio, X can also be calculated from Equation (C.6) by: 

(C.8) 

A = ma/mf 

k/"/), 
(C.9) 

where the stoichiometric AFR, [ma/mf^ is calculated from Equation (C.l) for A.=l. 

A comparison of the AFR calculated using the above method with the measured AFR is 

shown in Figure C. 1. 
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Figure C. 1: AFR calculated using the Carbon Balance Method 
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APPENDIX D: MATHEMATICAL DEFINITIONS OF EGR 

Table D. 1: Some Common Mathematical Expressions for EGR found in the Literature 

EGR Definition Explanation of Term Operating Conditions Reference 

,_(cod 

d= charge dilution fraction 
(C02 )c= volumetric % of CO2 before 

combustion 
(C02 )e= volumetric % of CO2 in the exhaust 

SI engine Benson ,1971 

CO 
% EGR = 2-m,ake 100 

CO 2,exhaust 

Single cylinder, DI 
diesel engine 
0-20% Cooled EGR 

Yu, 1981 

% EGR = V°~ V°'r -100 
K 

V0 = flow rate of intake fresh air without 
EGR 
Vmr = flow rate of intake fresh air with EGR 

DI diesel engine 
0-70% EGR (cooled 
and un-cooled) 

Narusawa, 1990 
Sato, 1993 
Yoshikawa, 
1993 

EGR = mEGR 

min, 

ma = mi„, (1 - EGR) 

mFGR = mass of recirculated exhaust gas 

mml = total mass of intake 

ma = mass of intake fresh air 

DI diesel engine, 
0-40% un-cooled 
EGR 

Lapuerta, 1995 

%EGR ~ ^/°^2("") ~ 0//°^2(amb) 
%C02(exh) - %C07(amb) 

DI diesel engine, 
0-10% un-cooled 
EGR, high engine 
load 

Pierpont, 1995 
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EGR Definition Explanation of Term Operating Conditions Reference 

EGR(%) = Wegr 100 
ma+m f+mEGR 

mEGR ~ mass °f recirculated exhaust gas 

ma = mass of intake fresh air 

mf = mass of injected fuel 

IDI diesel engine, 
10~25% cooled and 
un-cooled filtered 
EGR 

Abd-Alla, 2002 

 ̂ t  ̂1w/7/k>u/ t.GR [ ® EGR ^QQ 

In^Z/iouf EGR 

\m„ 1 , = mass flow rate without EGR 
L » J withouihGR 
[ml .. r„D = mass flow rate with EGR 
L a J with EGR 

DI diesel engine, 
5-20% EGR 

Jothi, 2008 
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APPENDIX E: CONTROLLER AREA NETWORK 

The Controller Area Network (CAN) is an International Standardization Organization 

(ISO) defined serial communication bus originally developed for the automotive industry 

to replace the complex wiring harness with a two-wire bus. The specification calls for 

high immunity to electrical interference and the ability to self-diagnose and repair data 

errors. The CAN bus was developed by BOSCH as a multi-master, message broadcast 

system that specifies a maximum signalling rate of 1 megabit per second (Mbps). Unlike 

a traditional network such as USB or Ethernet, CAN does not send large blocks of data 

point-to-point from node 1 to node 2 under the supervision of a central bus master. In a 

CAN network, many short messages like temperature or RPM are broadcast to the entire 

network, which provides for data consistency in every node of the system. The CAN 

network topology is shown in Figure E.l. 

CAN (System) Bus 

Node 4 

Node 3 Node 1 

Node 2 

Node 5 

Figure E. 1: CAN Bus Topology 

The CAN Bus consists of two wires (usually a twisted pair that can be shielded or 

unshielded) as shown in Figure E.2. The pair of signal wires (CAN H and CAN L) 

constitutes a transmission line. The transmission line needs to be electrically terminated 

so that each signal change on the line is prevented from being reflected back from the 

end, causing interference. Because communication flows both ways on the CAN bus, the 

CAN bus requires both ends of the cable be terminated. However, this requirement does 

not mean that every device should have a termination resistor. If multiple devices are 
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placed along the cable, only the ends of the cable should have the termination resistors. 

The termination resistors on a cable should match the nominal impedance of the cable. 

ISO 11898 requires a cable with a nominal impedance of 120 Q, so a 120 Q resistor 

should be used at each end of the cable. Each termination resistor should be capable of 

dissipating 0.25 W of power. 

CAN H 

CAN Bus 
(Two Wire) 

Terminator 
120 O 

120 Q 
CAN L 

Node 1 Node 3 

Node 2 Node 4 

Node 5 

Figure E.2: Bus Termination 

Bit Encoding 

CAN uses the Non-Return-to-Zero (NRZ) encoding for data communication on a 

differential two wire bus as shown in Figure E.3. Unlike the Return-to-Zero (RZ) 

encoding in which the signal returns to zero between each pulse, the NRZ encoding uses 

two different voltage levels for the two binary digits with no other neutral or rest 

condition. Therefore, the NRZ code requires only half the bandwidth to achieve the same 

data-rate as compared to the RZ format. However, the NRZ is not inherently a self-

synchronization code so some additional means to ensure synchronization is required to 

prevent bit slip. 
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RZ 

NRZ 

Figure E. 3: Bit Encoding 

A fundamental CAN characteristic (Figure E.4) is the opposite logic state between the 

bus, and the controller input/output. Normally, a logic-high is associated with a one, and 

a logic-low is associated with a zero - but not so on a CAN bus. The two signal lines of 

the bus, CAN H and CAN L, in the recessive state (1), are passively biased to -2.5 V 

(~0V Differential Signal). The dominant state (0) on the bus takes CAN H ~1V higher to 

-3.5V, and takes CAN L ~1V lower to -1.5V, creating a typical 2V differential signal. 

2 2-5 
CD d) 
B 
5 

1 0 1 

Controller Input/Output 

- - -

CAN_H ' i 

m 2V 
Differential 

CAN Bus Signal 

• 

' 

CAN_L 

Recessive Dominant Recessive 

Figure E.4: CAN Dominant and Recessive Bus States 
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Bit Stuffing 

Bit stuffing is the insertion of non-information bits into the data stream to limit the 

number of consecutive bits of the same value in the data to be transmitted. A bit of the 

opposite value is inserted after the maximum allowed number of consecutive bits to 

ensure reliable transmission. With the NRZ encoding, the receiver must count the time 

between transitions to determine the number of bits, and if that time is too long, the 

receiver can lose count. In case of the CAN, when 5 bits of the same logic level occur in 

succession during normal operation, a bit of the opposite logic level is stuffed into the 

data as shown in Figure E.5. 

1 2 3 ; 4 

Desired 
Data 

Actual 
Data 

Stream 
i i 

5 6 8 

8 9 

10 11 

10 i 

12 

11 

13 

12 

14 

13 

15! 16 

14 15 16 

i i 

Stuff Bits 

Figure E.5: Bit Stuffing 

Non-Destructive Bitwise Arbitration 

To determine the priority of messages, CAN uses the established method known as 

Carrier Sense, Multiple Access protocol with Collision Detection and Arbitration on 

Message Priority (CSMA/CD+AMP) to provide collision resolution with the enhanced 

capability of bitwise arbitration, and to deliver maximum use of the available capacity of 

the bus. CSMA means that each node on a bus must wait for a prescribed period of 

inactivity before attempting to send a message. CD+AMP means that collisions are 

resolved through a non-destructive bitwise arbitration, based on a preprogrammed 

priority of each message in the identifier field of a message. Bus access is event-driven 
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and takes place randomly. If two nodes try to occupy the bus simultaneously, access is 

implemented with a nondestructive, bit-wise arbitration. Nondestructive means that the 

node winning arbitration just continues on with the message, without the message being 

destroyed or corrupted by another node. The higher priority identifier always wins bus 

access. That is, the last logic-high in the identifier keeps on transmitting because it is the 

highest priority. The CAN communication protocol is summarized in Table E.l. 

Table E.l: CAN Communication Protocol 

Carrier Sense 
Listen until network is idle, must wait if another 
node is transmitting 

Multiple Access Many nodes can access an idle network at any time 

Collision Detection + 
j Arbitration on Message Priority 

Method of resolving collisions through a non
destructive bitwise arbitration based on the 
message priority | 

The allocation of priority to messages in the identifier is a feature of CAN that makes it 

particularly attractive for use within a real-time control environment. The lower the 

binary message identifier number, the higher its priority. An identifier consisting entirely 

of zeros is the highest priority message on a network because it holds the bus dominant 

the longest. Therefore, if two nodes begin to transmit simultaneously, the node that sends 

a last identifier bit as a zero (dominant) while the other nodes send a one (recessive) 

retains control of the CAN bus and goes on to complete its message. A dominant bit 

always overwrites a recessive bit on a CAN bus. 

Note that a transmitting node constantly monitors each bit of its own transmission. The 

CAN arbitration process that is handled automatically by a CAN controller is shown in 

Figure E.6. Because each node continuously monitors its own transmissions, as node 2's 

recessive bit is overwritten by node l's higher priority dominant bit, node 2 detects that 

the bus state does not match the bit that it transmitted. Therefore, node 2 halts 

transmission while node 1 continues on with its message. Another attempt to transmit the 

message is made by node 2 once the bus is released by node 1. 
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Tx Pin 

Node 1 

Rx Pin 

Tx Pin 

Node 2 

Rx Pin 

System 

Dominant Bit (Node 1) 
overwrites 

Recessive Bit (Node 2) 

N<xte2l08es 
arbitration 
and stops 

transmission 

Dominant Bit: 0 (Low) Recessive Bit: 1 (High) 

Figure E.6: Bitwise Arbitration 

Message Based Communication 

CAN protocol is a message-based protocol, not an address based protocol. This means 

that messages are not transmitted from one node to another node based on addresses. 

Embedded in the CAN message itself is the priority and the contents of the data being 

transmitted. All nodes in the system receive every message transmitted on the bus (and 

will acknowledge if the message was properly received). It is up to each node in the 

system to decide whether the message received should be immediately discarded or kept 

to be processed. A single message can be destined for one particular node to receive, or 

many nodes based on the way the network and system are designed. 

Another useful feature built into the CAN protocol is the ability for a node to request 

information from other nodes. This is called a Remote Transmit Request (RTR). Instead 

of waiting for information to be sent by a particular node, a node specifically requests 

data to be sent to it. 

One additional benefit of this message-based protocol is that additional nodes can be 

added to the system without the necessity to reprogram all other nodes to recognize this 
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addition. This new node will start receiving messages from the network and, based on the 

message ID, decide whether to process or discard the received information. 

CAN Message Frame Description 

The CAN protocol defines four different types of messages (or frames). The first and 

most common type of frame is a Data Frame. This is used when a node transmits 

information to any or all other nodes in the system. Second is a Remote Frame, which is 

basically a Data Frame with the RTR bit set to signify that it is a Remote Transmit 

Request. The other two frame types are for handling errors. One is called an Error Frame 

and the other is called an Overload Frame. Error Frames are generated by nodes that 

detect any one of the many protocol errors defined by CAN. Overload errors are 

generated by nodes that require more time to process messages already received. 

The most common frame utilized is the data frame and is described in detail below. 

CAN Data Frame 

The ISO-11898:2003 Standard, with the standard 11-bit identifier, provides for signaling 

rates from 125 kbps to 1 Mbps. The standard was later amended with the "extended" 29-

bit identifier. The standard 11-bit identifier field in Figure E.7 provides for 211, or 2048 

different message identifiers, whereas the extended 29-bit identifier in Figure E.8 

provides for 229, or 537 million identifiers. 

Data Frames consist of fields that provide additional information about the message as 

defined by the CAN specification. The meaning of each bit field of the standard data 

frame (Figure E.7) is given in Table E.2. 

CAN 2.0: Standard Data Frame 

SOF 
11-bit 

Identifier 
RTR IDE rO DLC 

0...8 Bytes 
Data 

CRC ACK EOF IFS 

Figure E.7: Standard CAN Data Frame 
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Table E.2: Explanation of Bit Fields in the Standard Data Frame 

Field Name 
Length 
(bits) Purpose 

Start of Frame (SOF) 1 
The single dominant SOF bit marks the start of a 
message and is used to synchronize the nodes on a 
bus after being idle. 

Identifier 11 
The Standard 11 -bit identifier establishes the I 
priority of the message. The lower the binary value, 
the higher its priority. 

Remote Transmission 
Request (RTR) 1 

The RTR is dominant when information is required 
from another node. All nodes receive the request, 
but the identifier determines the specified node. 
The responding data is also received by all nodes 
and used by any node interested. 

Identifier Extension 
Bit (IDE) 

1 
A dominant IDE means that a standard CAN 
identifier with no extension is being transmitted. 

Reserved Bit (rO) 1 
Reserved bit (for possible use by future standard 
amendment) - should be set to dominant. 

Data Length Code 
(DLC) 4 

The DLC indicates the number of bytes of data 
being transmitted. 

Data Field 0-64 bits Up to 64 bits (0-8 Bytes) of data to be transmitted. 

Cyclic Redundancy 
Check (CRC) 

15+1 

The 16-bit (15 bits plus recessive delimiter bit) 
CRC contains the checksum (number of bits 
transmitted) of the preceding application data for 
error detection. 

Acknowledge (ACK) 1+1 

Every node receiving an accurate message 
overwrites this recessive bit in the original message 
with a dominant bit, indicating an error-free 
message has been sent. Should a receiving node 
detect an error and leave this bit recessive, it 
discards the message and the sending node repeats 
the message after rearbitration. In this way, each 
node acknowledges (ACK) the integrity of its data. 
ACK is 2 bits, the second being a delimiter (always 
recessive) 

End of Frame (EOF) 7 

The EOF field (normally recessive) marks the end 
of a CAN frame (message) and disables bit-
stuffing. It indicates a stuffing error when 
dominant. 

Interframe Space 
(IFS) 3 

Indicates the time required by the controller to 
move a correctly received frame to its proper 
position in a message buffer area. 
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The Extended CAN data frame shown in Figure E.8 is the same as the Standard data 

frame with the addition of 3 new bit fields as explained in Table E.3. 

CAN 2.0: Extended Data Frame 

SOF 
11-bit 

Identifier SRR IDE 18-bit 
Identifier RTR r1 rO DLC 0...8 Bytes 

Data CRC ACK EOF IFS 

Figure E.8: Extended CAN Data Frame 

Table E.3: Additional Bit Fields in the Extended Data Frame 

Field Name 
Length 
(bits) 

Purpose 

Substitute 
Remote 
Request 
(SRR) 

1 
The SRR bit replaces the RTR bit in the standard message 
location as a placeholder in the extended format. Must be 
recessive (1). 

Identifier 
Extension Bit 
(IDE) 

18 
A recessive bit in the IDE indicates that more identifier 
bits follow. The 18-bit identifier extension follows the 
IDE. 

Reserve Bit 
(rl) 

1 
Following the RTR and rO bits, an additional reserve bit is 
included ahead of the DLC bit and should be set to 
dominant 

The last two message types are Error Frames and Overload Frames. When a node detects 

one of the many types of errors defined by the CAN protocol, an Error Frame occurs. 

Overload Frames tell the network that the node sending the Overload Frame is not ready 

to receive additional messages at this time, or that intermission has been violated. These 

errors will be discussed in more detail in the next section. 

Fast. Robust Communication 

Because CAN was initially designed for use in automobiles, a protocol that efficiently 

handled errors was critical if it was to gain market acceptance. The initial version 1.0 of 

the CAN specifications was updated to version 2.0B and specified a maximum 

communication rate 1 Mbit/sec. At this rate, even the most time-critical parameters can 

be transmitted serially without latency concerns. In addition to this, the CAN protocol has 

a comprehensive list of errors it can detect that ensures the integrity of messages. 
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CAN nodes have the ability to determine fault conditions and transition to different 

modes based on the severity of problems being encountered. They also have the ability to 

detect short disturbances from permanent failures and modify their functionality 

accordingly. CAN nodes can transition from functioning like a normal node (being able 

to transmit and receive messages normally), to shutting down completely (bus-off) based 

on the severity of the errors detected. This feature is called Fault Confinement. No faulty 

CAN node or nodes will be able to monopolize all of the bandwidth on the network 

because faults will be confined to the faulty nodes and these faulty nodes will shut off 

before bringing the network down. This is very powerful because Fault Confinement 

guarantees bandwidth for critical system information. 

There are five error conditions that are defined in the CAN protocol and three error states 

that a node can be in, based upon the type and number of error conditions detected. The 

following section describes each one in more detail. 

Detected Errors 

CRC Error. A 15-bit Cyclic Redundancy Check (CRC) value is calculated by the 

transmitting node and this 15-bit value is transmitted in the CRC field. All nodes on the 

network receive this message, calculate a CRC and verify that the CRC values match. If 

the values do not match, a CRC error occurs and an Error Frame is generated. Since at 

least one node did not properly receive the message, it is then resent after a proper 

intermission time. 

Acknowledge Error. In the Acknowledge Field of a message, the transmitting node 

checks if the Acknowledge Slot (which it has sent as a recessive bit) contains a dominant 

bit. This dominant bit would acknowledge that at least one node correctly received the 

message. If this bit is recessive, then no node received the message properly. An 

Acknowledge Error has occurred. An Error Frame is then generated and the original 

message will be repeated after a proper intermission time. 

Form Error. If any node detects a dominant bit in one of the following four segments of 

the message: End of Frame, Interframe Space, Acknowledge Delimiter or CRC Delimiter 
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(Figures E.7 & E.8), the CAN protocol defines this to be a form violation and a Form 

Error is generated. The original message is then resent after a proper intermission time. 

Bit Error. A Bit Error occurs if a transmitter sends a dominant bit and detects a recessive 

bit, or if it sends a recessive bit and detects a dominant bit when monitoring the actual 

bus level and comparing it to the bit that it has just sent. In the case where the transmitter 

sends a recessive bit and a dominant bit is detected during the Arbitration Field or 

Acknowledge Slot, no Bit Error is generated because normal arbitration or 

acknowledgment is occurring. If a Bit Error is detected, an Error Frame is generated and 

the original message is resent after a proper intermission time. 

Stuff Error. As explained earlier, the CAN protocol uses the NRZ bit encoding method. 

This means that the bit level is placed on the bus for the entire bit time. CAN is also 

asynchronous, and bit stuffing is used to allow receiving nodes to synchronize by 

recovering clock information from the data stream. Receiving nodes synchronize on 

recessive to dominant transitions. If there are more than five bits of the same polarity in a 

row, CAN will automatically stuff an opposite polarity bit in the data stream. The 

receiving node(s) will use it for synchronization, but will ignore the stuff bit for data 

purposes. If, between the Start of Frame and the CRC Delimiter, six consecutive bits with 

the same polarity are detected, then the bit stuffing rule has been violated. A Stuff Error 

then occurs, an Error Frame is sent, and the message is repeated. 

Error States 

Error-Active. An Error-Active node can actively take part in bus communication, 

including sending an active error flag, which consists of six consecutive dominant bits. 

The Error Flag actively violates the bit stuffing rule and causes all other nodes to send an 

Error Flag, called the Error Echo Flag, in response. An Active Error Flag, and the 

subsequent Error Echo Flag may cause as many as twelve consecutive dominant bits on 

the bus; six from the Active Error Flag, and zero up to six more from the Error Echo 

Flag. A node is Error-Active when both the Transmit Error Counter (TEC) and the 

Receive Error Counter (REC) are below 128. Error-Active is the normal operational 

mode, allowing the node to transmit and receive without restrictions. 
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Error-Passive. A node becomes Error-Passive when either the TEC or the REC exceeds 

127. Error-Passive nodes are not permitted to transmit Active Error Flags on the bus, but 

instead, transmit Passive Error Flags which consist of six recessive bits. If the Error-

Passive node is currently the only transmitter on the bus then the passive error flag will 

violate the bit stuffing rule and the receiving node(s) will respond with Error Flags of 

their own (either active or passive depending upon their own error state). If the Error-

Passive node in question is not the only transmitter (i.e. during arbitration) or is a 

receiver, then the Passive Error Flag will have no effect on the bus due to the recessive 

nature of the error flag. When an Error-Passive node transmits a Passive Error Flag and 

detects a dominant bit, it must see the bus as being idle for eight additional bit times after 

an intermission before recognizing the bus as available. After this time, it will attempt to 

retransmit. 

Bus-Off. A node goes into the Bus-Off state when the Transmit Error Counter is greater 

than 255 (receive errors can not cause a node to go Bus-Off). In this mode, the node can 

not send or receive messages, acknowledge messages, or transmit Error Frames of any 

kind. This is how Fault Confinement is achieved. There is a bus recovery sequence that is 

defined by the CAN protocol that allows a node that is Bus-Off to recover, return to 

Error-Active, and begin transmitting again if the fault condition is removed. 

The fault confinement states are summarized in Figure E.9. 

le network may be in one of the three 

• Node transmits/receives messages 
• Upon detecting an error, an active 

error frame (6 dominant bits) is sent 
• TEC & REC <=127 
• Node Transmits/receives messages 
• Upon detecting an error, a recessive 

error frame (6 recessive bits) is sent 
• TEC and/or REC >=128 & TEC<=255 
• Node does not transmit/receive 

messages until reset from host 
microcontroller 

Figure E.9: Fault Confinement States - CAN Protocol 

255-
Bus Off Each node on th 

127 

Reset-

j states: 
Error-Active 

Error-Passive 

j : Error-Passive 

Error-Active 

1 ' * r Bus-Off 

TEC/REC 
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The error counters are incremented/decremented based on successful/unsuccessful 

messages as shown in Table E.4. 

Table E.4: Error Counters 

Receive Error Counter (REC) 

If receiver sends an error frame REC=REC+1 

If receiver was first to start an error frame REC=REC+8 

If receiver monitors a Bit Error while sending an error frame REC=REC+8 

After successfully receiving a message REC=REC-1 

Transmit Error Counter (TEC) 

If transmitter sends an error frame TEC=TEC+8 

If transmitter monitors a Bit Error while sending an error frame TEC=TEC+8 1 

After successfully transmitting a message TEC=TEC+1 1 

CAN Documents 

A number of standards have been published for the CAN protocol depending on the 

automotive application and are given in Table E.5. 

Table E.5: CAN Documents 

Passenger Car 

1 SAEJ2411 Single Wire CAN 

1 ISO 11898 High Speed CAN 

J ISO 11519-2 Low Speed CAN 

ISO 15765 Diagnostics on CAN 

Heavy Truck and Bus/Agriculture 

SAE J1939 Truck and Bus 

ISO 11783 Agriculture and Forestry 
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The CAN Bus 

The CAN data and physical layers, which are normally transparent to a system operator, 

are included in any controller that implements the CAN protocol. Connection to the 

physical medium is then implemented through a line transceiver, to form a system node 

as shown in Figure E.10. 

Node 1 Node 2 Node ri 

CAN H 

120 Q CAN Bus 
CAN L 

CAN 
Transceiver 

CAN 
Transceiver 

CAN 
Transceiver 

CAN 
Controller 

CAN 
Controller 

CAN 
Controller 

Figure E.10: Details of a CAN Bus 

Signalling is differential which is where CAN derives its robust noise immunity and fault 

tolerance. Balanced differential signalling reduces noise coupling and allows for high 

signalling rates over twisted-pair cable. Balanced means that the current flowing in each 

signal line is equal but opposite in direction, resulting in a field-cancelling effect that is a 

key to low electrical noise. The use of balanced differential receivers and twisted-pair 

cabling enhance the common-mode rejection and high electrical noise immunity of a 

CAN bus. 

The High-Speed ISO 11898 Standard specifications are given for a maximum signalling 

rate of 1 Mbps with a bus length of 40 m and a maximum of 30 nodes. It also 

recommends a maximum un-terminated stub length of 0.3 m. 
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Conclusion 

The CAN protocol was optimized for systems that need to transmit and receive relatively 

small amounts of information (as compared to Ethernet or USB, which are designed to 

move much larger blocks of data) reliably to any or all other nodes on the network. 

CSMA/CD+AMP allows every node to have an equal chance to gain access to the bus, 

and allows for smooth handling of collisions. Since the protocol is message-based and not 

address based, all nodes on the bus receive every message and acknowledge every 

message, regardless of whether they need the data or not. This allows the bus to operate 

in node-to-node or multicast messaging formats without having to send different types of 

messages. 

Fast, robust message transmission with fault confinement is also a significant advantage 

of the CAN because faulty nodes will automatically drop off the bus, thereby preventing 

any one node from bringing down the complete network. This effectively guarantees that 

bandwidth will always be available for critical messages to be transmitted. 
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APPENDIX F: DETAILS OF SELECTED REFERENCES 

Ref 
# Publication Research Area Tested Parameters Significant Results 

1 SAE 972684 Summary 
advantages of 
diesel engines 

Up to 30% higher fuel-economy for diesel powered 
vehicles on US FTP cycle. 

A comparison of exhaust emissions over a period of 
160,000 km showed that diesel engines produced lower 
CO and HC compared to the gasoline engine, but at the 
same time had a higher NOx and particulate emission. 

11 SAE 902062 Crank-angle 
resolved 
pollutant 
formation 
studies 

Fuel: Diesel 
4-Cylinder, CR: 16.5:1 
Load: 10 bar IMEP 
Emissions 
NOx: 600-800 ppm 
PM: 0.05~0.1 mg/mg 
of fuel 

NOx and particulate form rapidly, reaching peak values 
before a late stage of the diffusion burning period. The 
NOx concentration froze during the expansion stroke and 
showed an almost constant value after the end of the 
diffusion combustion. 
The particulate concentration showed a decrease from their 
peak values due to oxidation 

13 SAE 942046 Crank-angle 
resolved 
pollutant 
formation 
studies 

Fuel: Diesel, 
CN=48/62.5 
Single Cylinder, CR: 
16.0:1 
Load: 6,10 bar IMEP 
Emissions 
NOx= 700-1600 ppm 
PM: Not reported 

For the turbo-charged engine with no EGR the NO 
formation took place throughout the burn duration. This 
was contrary to the other reported results that NOx was 
primarily formed during the premixed combustion. 
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14 SAE 961168 Crank-angle 
resolved 
pollutant 
formation 
studies 

Fuel: Diesel 
Load: 3,5 bar BMEP 
Emissions 
NOx <100 ppm with 
EGR 
PM: - 0.05 mg/Liter of 
Free gas. 

The NOx concentrations rose rapidly after SOC, and 
reached peak concentration within a ms from the SOC. 
NOx declined slightly after reaching its peak and the 
chemistry effectively froze after 90°ATDC. Tests with 
EGR showed its effectiveness in reducing the NOx through 
out the combustion process. 
The peak particulate concentration in the cylinder was up 
to 20 times greater than the exhaust concentration. The use 
of even a moderate amount of EGR resulted in almost three 
times increase in the maximum particulate concentration. 

15 SAE 780227 In-cylinder 
sampling 
studies for 
emission 
formation 

Fuel: Diesel, 
CN=48/62.5 
Single Cylinder, IDI 
CR: 16.0:1 
Load: 5.5 bar BMEP 
Emissions 
NOx= 700~1600 ppm 
Smoke: 0-0.5 g/m 

Maximum concentrations of the unburnt HC, CO and soot 
occurred near the combustion chamber wall whereas most 
of the NO was formed in the central region of the chamber. 
This was attributed to the formation of mixtures with a 
high equivalence-ratio towards the periphery of the 
combustion chamber and more homogeneous-
stoichiometric mixture at the center of the chamber. 
The combustion was divided into three phases: 
a) In the first phase, a small amount of heat is released by 
the combustion of a rich air-fuel mixture. The soot and the 
CO were mainly formed in this stage of the combustion. 
b) In the second phase, approximately half of the heat was 
released by combustion of a slightly lean-mixture. The 
availability of excess oxygen and high-temperature led to 
the formation of NOx & this stage was also characterized 
by the oxidation of the soot and CO formed in the first 
stage of the combustion. 
c) In the last phase, the CO to CO2 conversion took place 
and released the remainder of the heat. 
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17 SAE 880423 Constant 
volume 
combustion 
bomb 

Based on the soot formation studies in the flame studies, 
constant volume chamber experiments and the NOx 
simulation results, an equivalence ratio and temperature 
map was prepared that depicts the regions of soot and NOx 
formation. Based on this map, pathway for simultaneous 
low-NOx and soot was formulated 

18 SAE 960030 Crank-angle 
resolved 
pollutant 
formation and 
combustion 
visualization 
study 

Fuel: JIS No.2 
Single Cylinder Diesel, 
CR: 18.5:1, <|>=0.69 
without EGR. 
Emissions 
NOx: 200 ppm 
Smoke at 200ppm = 8 
Smoke number (Bosch) 

The pollutant formation was investigated in the presence of 
EGR and high injection pressure. The soot emission 
decreased at higher injection pressure due to accelerated 
soot-oxidation. 
The NOx formation was lowered with EGR due to 
reduction in oxygen concentration and slower combustion. 

19 SAE 930971 Diesel 
combustion 
studies in 
optical engine 

Reference Fuel: 67.6% 
heptamethylnonane and 
32.4% n-hexadecane 
with cetane no. 42.5) 
2) Low-sooting fuel: 
80% 2-ethoxyethyl 
ether and 20% 
heptamethylnonane 
Single Cylinder Optical 
Engine, CR: 11:1 
Load: <|>: 0.21 and 0.43 
without EGR 

The soot was distributed throughout the cross section of 
the combusting fuel jet. 
For the time period from the initiation of the luminous 
combustion to the end of the fuel-injection the soot 
concentration was higher in the head-vortex region 
compared to the upstream region. However, at the end of 
the injection the soot concentration and the soot particle 
size increased significantly 

22 SAE 2006-01-
3324 

Diesel low-
temperature 
combustion 
with DME 

A 3-injection strategy with timing for the main injection 
determined by the cylinder temperature has been proposed 
to realize the LTC cycle. 
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25 SAE 2006-01-
0053 

Diesel low-
temperature 
combustion 
withDME 

Miller cycle for the low load operations and the multiple 
injection strategy with high rates of EGR for high load 
operations proposed as a solution to meet US 2010 
emission standards with DME engine. 

27 SAE 2005-01-
3837 

Diesel low-
temperature 
combustion 

Conventional Diesel 
Fuel, Single Cylinder 
Optical Engine 
CR: 18.7:1 
Load: 3.3 bar IMEP 
Emissions 
NOx: 8ppm 
Soot luminosity: 
0.0001 to 1 [a.u] 

The ignition delay was prolonged as the charge was 
increasingly diluted with EGR. <|> at ignition not reduced 
with dilution. Therefore, a greater quantity of ambient fluid 
was mixed with the fuel to achieve the same fuel/02 ratio. 
Consequently, the mixing process remained important 
under dilute operating conditions as well. 
The NOx, CO emissions and the soot luminosity correlated 
with the peak adiabatic flame temperature. The NOx 
emission and soot luminosity were lowered as the flame 
temperature decreased while CO emissions increased due 
to the decline in the oxidation rates. 
At the highest dilution levels and most retarded injection 
timing, the NOx-temperature correlation exhibited lower 
activation energy or a reduced sensitivity to peak flame 
temperature. 

28 SAE 900640 Soot formation 
for diesel fuel 
with laser 
extinction 
methods. 

Conventional Diesel 
fuel, Single Cylinder 
Optical Engine 
CR: 17:1 
Load: X= 1.8 
Emissions 
NOx: Not reported 
Soot concentration: 
<5g/m3 

Soot formation initiated at ignition and reaches its peak 
value immediately after ignition. During the later part of 
the combustion, soot oxidized. This sequence of soot 
formation & oxidation was observed for ignition-delays up 
to 2ms. The maximum and the final soot concentrations 
decreased with increasing ignition delay. 
The increased soot formation with shorter ignition delay 
was due to formation of rich-mixture and increased fuel 
amounts injected directly into the flame. At shorter ignition 
delays the soot formation also shifted to hotter regions of 
the flame. 
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29 Proceedings of 
the Combustion 
Institute, (30), 
pp. 2719-2726. 

HCCI 
combustion for 
hydrocarbon 
fuels 

Fuel: Iso-octane, 
primary reference fuel 
80, Single Cylinder 
CR: 18.0:1 
Load: <)>=0.08 to 0.28 
Emissions 
NOx: Not reported 
Soot: Not reported 

31 SAE 970873 Diesel 
combustion 
study using 
laser sheet 
studies 

Reference Fuel: 67.6% 
heptamethylnonane and 
32.4% n-hexadecane 
with cetane no. 42.5) 
2) Low-sooting fuel: 
80% 2,ethoxyethyl 
ether and 20% 
heptamethylnonane 
Single Cylinder Optical 
Engine, CR: 10:1,11:1 
Load: <(>= 0.21 and 0.43 
without EGR 
Quantitative NOx 
values not reported. 
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At 1200RPM,, the model predicted a peak charge 
temperature of 1500 K for complete CO oxidation. The 
lowest acceptable peak charge temperature did not change 
with fuel type and auto-ignition characteristics. 
The lowest acceptable peak charge temperature was also 
independent of the combustion phasing relative to TDC. 
The onset of CO was more gradual for the experiment 
compared to the single-zone model, attributed to a thermal 
distribution caused by crevices & thermal boundary layer. 
Engine speed affects the lowest acceptable peak charge 
temperature since it directly affects the time available at 
the peak temperature. 
The effect is relatively modest since the OH level is highly 
sensitive to peak temperature. 
The chemiluminescence imaging showed ignition occurred 
progressively at multiple points across the downstream 
regions of all the fuel jets, beginning well before the start 
of the premixed burn spike. The imaging data also 
suggested that the premixed burn spike occurred under 
fuel-rich conditions (equivalence ratios of 2-4), and that 
the initial soot formation took place during the premixed 
combustion. 
In contrast to the classical calculations a short liquid-fuel 
penetration was observed and all the fuel in the main 
combustion zone was observed to be in vapour phase. 
Soot was formed throughout the jet cross-section, instead 
of the jet-periphery as assumed earlier. 
The NOx formation was noticed in the mixing controlled 
burn 
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33 SAE 2005-01-
3726 

Diesel low-
temperature 
combustion 

European diesel fuel, 
CN = 54, C/H = 1.96 
Single Cylinder Engine 
CR: 14:1, lObarBMEP 
Emissions 
Lowest NOx reported: 
<0.5 g/kWh 
Smoke at lowest NOx 
< 0.04 g/kWh 

The soot emissions were reduced by a factor of 5 with an 
early pilot-injection strategy. 
The implementation early pilot-injection strategy also led 
to oil-dilution. 
The implementation of the post-injection enhanced the 
oxidation of soot and CO. 

34 Applied 
Thermal 
Engineering, 
(18), pp. 963-
980. 

Diesel engine 
combustion 

The dilution of intake charge with EGR had the strongest 
effect on emissions. The higher specific heat capacity of 
the CO2 or H2O in comparison to that of the O2 it replaced, 
had little effect on NOx and particulate emissions. 
The chemical effects, resulting from the dissociation of the 
CO2 or H2O, also had little effect on emissions. 
Adding EGR to the engine air flow rate, rather than 
displacing some of the inlet air, allowed to reduce NOx 
with little penalty of increased particulate emissions. 

35 SAE 2001-01-
0655 

Diesel low-
temperature 
combustion 

Fuel: Diesel 
4-Cylinder, CR: 18.6:1 
Load: 2 bar BMEP 
Emissions 
NOx: -0.0 g/kW-hr 
Smoke: ~0.0 g/kW-hr 

The smokeless combustion was obtained by significant 
reduction in the combustion flame temperature by 
application of large of EGR. At such low temperatures the 
soot formation the soot formation was suppressed by 
suppression of soot formation from PAH mixture. 
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37 SAE 2005-01-
0166 

Diesel premixed 
combustion 

Fuel: LSD CN=52 
4-Cylinder, CR: 16:1 
Load: 4 bar BMEP 
Emissions: Lean PCI 
NOx: 1.2 g/kWh 
Smoke: ~0.3 g/kWh 
Emissions: Rich PCI 
NOx: 0.16 g/kWh 
Smoke: 0.03 g/kWh 

Low-temperature combustion strategy was demonstrated 
with higher rates of exhaust gas recirculation, high fuel 
injection pressures, and injection timings near TDC 

38 SAE 2005-01-
3834 

Diesel low 
temperature 
combustion 

Fuel 
n-heptane 
No.2 Diesel 
(70% tetraethoxy-
propane + 30% 
heptamethyl-
nonane) 

Configuration: 
Constant volume 
combustion vessel 

The planar laser-induced incandescence (PLII) imaging & 
soot measurements showed that the peak soot volume 
fraction (fv) decreased & the width of sooting region grew 
with increasing EGR. <j> computed at the flame lift-off 
length location was same at different ambient O2 values 
implying that there was equal amount of fuel-oxygen 
mixing prior to combustion in the diesel fuel jet 
irrespective of the ambient oxygen concentration. 
The PLII imaging showed there was a reduction in soot 
formation rate with decreasing O2 concentration because of 
the lower combustion temperature. However, there was an 
increase in the residence time for soot formation, allowing 
more time for accumulation of soot. Therefore, with EGR, 
the trend in soot formation was determined by a 
competition between decreased soot formation rates and 
increased residence time considerations. 
An increase in the ambient temperature when employing 
EGR led to an increase in the soot formation. This was 
consistent with modelling studies which predicted that both 
the soot-formation and the residence time increase with 
increasing ambient temperature 
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39 SAE 2003-01-
1794 

Diesel 
combustion 

Fuel 
No.2 diesel, CN=39 
Ultra-low sulphur, 
CN=53 

Single Cylinder, 
CR: 13.1:1 
Load: 25% and 75% 
Emissions (25% load) 
NOx: ~30 g/kg of fuel 
PM: 0.55 g/kg of fuel 
Emissions (75% load) 
NOx: -20 g/kg of fuel 
PM: ~4.5 g/kg of fuel 

The advanced injection timing decreased both elemental 
carbon and organic carbon at high loads. 
The fuel composition did not have a significant impact on 
organic carbon emissions 

41 SAE 2003-01-
0763 

Fischer-Tropsch 
diesel review 

Daimler Chrysler 1.9L 
14, Ford 1.2L Diata 14, 
GM1.26L 1-3, Dodge 
Ram 2500, VW Golf 
TDi, Navistar T444E, 
Cummins 5.9B Engine, 
DDC Series 60, 
Peugeot 405 

Most FT diesel fuels had a near zero sulphur content, high 
cetane number, and low aromatic content which made 
them an attractive alternative to conventional diesel. 
Average PM reduction was 26% compared to conventional 
diesel fuel, the NOx emissions however increased due to 
higher cetane number. 

44 SAE 2002-01-
2725 

Fischer-Tropsch 
diesel 

1.9 L, 1999 VW Golf 
GL TDI. 
Tests procedure: 
Federal Test Procedure 
driving cycle, Highway 
fuel-economy test, US-
06 driving cycle 

The fischer-tropsch's diesel produced lower particulate 
emission on all the three test-cycle. The PM reduction was 
up to 90% on the US06 driving cycle. However, the NOx 
emissions increased up to 4% with the use of fischer-
tropsch diesel 
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46 Fuel, (78), pp. 
1303-1317 

Experimental 
studies with 
oxygenated fuel 
(biodiesel) with 
multiple 
injection 

Fuels 
a) No.2 diesel, CN=54 
b) 20% & 40% 
biodiesel blend 
c. 7.8% and 15.6% 
TGME blend 
Single Cyl, CR: 16.1:1 
Load: <j>: 0.5 and 0.25 
with no EGR 
Emissions (High-load) 
NOx: 3.0-6.0 g/kWh 
PM: 0.2-0.6 g/kWh 
Emissions (Low-load) 
NOx: 4-9 g/kWh 
PM: 0.15-0.5 g/kWh 

The experiments showed that it was possible to reduce soot I 
emissions with little or no penalty on NOx emissions with 
oxygenated fuels at high engine load. The greatest benefits 
in emissions were observed with single injection strategy at 
retarded SOI timings. With the split-injection strategies the 
soot reducing influence of oxygenates was less significant 
than the injection strategy itself. 
For the tests at low engine loads, the oxygenated fuel 
blends had a little effect on particulate emissions due to the 
excess oxygen under these conditions 
TGME: tripropylene glycol monomethyl ether 

47 Fuel, (85), pp. 
298-305 

Experimental 
studies with 
biodiesel 

No.2 diesel, CN=51 
Commercial biodiesel 
Four-Cylinder 
CR: Not provided 
Load: Up to 4 bar 
BMEP 
Emissions (Biodiesel) 
NOx: -50 ppm/[g/hr] 
Emissions (Diesel) 
NOx: -50 ppm/[gflir] 

In comparison with ASTM No. 2D diesel, the three kinds I 
of biodiesels showed higher fuel consumption rate. 
The biodiesel with the additional peroxidation process 
showed the lower NOx emission index. 
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48 SAE 2006-01-
0234 

Experimental 
studies with 
biodiesel 

No.2 diesel, CN=54 
5, 50 and 100 (% v/v) 
blends of Soya, 
Rapeseed & Waste 
biodiesel 
Four-Cyl, CR: 18.5:1 
Load: < 7 bar BMEP 
Emissions (100% load, 
Rapeseed) 
NOx: -10 g/kWh 
Smoke: -1.5 FSN 
Emissions (100% load, 
Diesel) 
NOx: -10 g/kWh 
Smoke: -3.5 FSN 

It was possible to use 5% biodiesel without any 
deterioration in the performance or the emission 
characteristics. 
At the full-load condition, with 100% biodiesel there was a 
smoke reduction of up to 1.5 FSN for a similar NOx. 
However, there was a decrease in power production as 
well. For instance, at 2000 rpm, a ten percent reduction in 
maximum power was observed with the rapeseed and soy 
derivative fuels. 
For the fuels considered, in the unmodified engine, 
rapeseed based biodiesel gave significant advantage with 
respect to the combustion and emissions characteristics. 

49 SAE 2005-01-
3674 

Injection 
characteristics 
studies with 
biodiesel 

No.2 diesel, CN=54 
Used cooking-oil 
Injection-test rig 

A biodiesel type fuel was produced from waste vegetable 
oil using the base catalyzed method. 
The important physical properties of the biodiesel were 
close to or within the requirements of the international 
standards concerning biodiesel fuels. 
The cyclic fuel delivery, pressure wave propagation time, 
average injection rate and maximum pressure during 
injection were significantly affected when pure biodiesel 
was used as fuel. 
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50 SAE 952518 Experimental 
studies with 
dimethyl 
carbonate 
addition 

No.2 diesel, CN-45 
Blends of diesel and 
dimethyl carbonate 
(DMC) up to 12% 
Single-Cylinder/ 
Optically accessible 
combustion bomb. 
CR: Not available 
Load: < 5.3 bar BMEP 
Emissions (5.3 bar 
BMEP, Diesel) 
NOx: -200 ppm 
Smoke: -4.7 BSU 
Emissions (5.3 bar 
BMEP, Diesel with 
10% DMC) 
NOx: -200 ppm 
Smoke: -4.1 BSU 

For the test with no EGR, the smoke reduced almost 
linearly with DMC concentration. With 10% of DMC 
contained in fuel, a smoke reduction of 35-50% was 
attainable. In addition noticeable reductions of HC and CO 
were observed. However, the increasing oxygen content of 
fuel led to a small increase in NOx. 
The combined test of EGR and DMC also showed a 
simultaneous reduction in both NOx and smoke. 
The combustion bomb studies showed that the particulate 
formation was reduced and its oxidation speed increased in 
the presence of DMC. 
The thermal cracking test confirmed that most particulate 
formation prone species were reduced when DMC was 
blended with diesel fuel. 
For addition of small amounts of DMC, even though the 
thermal efficiency of DMC engine was maintained at the 
diesel fuel level, there was a slight increase in the specific 
fuel consumption 

54 SAE 2005-01-
3670 

Experiments 
with diesel and 
bio-fuel 

No.2 diesel, CN=47 
Bio-fuel, CN = 80 
Four-Cylinder, with 
optical access from 
cyl#4, CR: 19.0:1 
Load: 7 bar BMEP 
Emissions (No.2 diesel) 
NOx: 3-7 g/kWh 
Emissions (Bio-fuel) 
NOx: 3-7 g/kWh 

The lower sulphur and aromatic content reduced the 
number of nucleation sites for soot, thus promoting 
improved late-cycle oxidation for the bio-fuel. The 
improvements in soot-oxidation rates were able to 
overcome the effect of higher soot production rates due to 
shorter ignition delays with the bio-fuel. 
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[55  SAE 2007-01-
4093 

Experimental 
tests with DME 
at high-injection 
pressure 

No.2 diesel, CN=40~45 
DME, CN = 65-68 
V-6 engine in single-
cylinder mode. Spray 
chamber studies. 
CR: 18.0:1 
Load: <16 bar IMEP 
Emissions (DME) 
NOx: < 0.27 g/kWh 
Smoke: < 0.2 FSN 

A hydraulically intensified fuel injection system for DME 
was developed that was capable of nearly 1500 bar peak 
injection pressure. 
It was possible to achieve N0x<0.27 g/kWh and smoke < 
0.5FSN with the application of EGR and high-injection 
pressure system. 

57 SAE 871610 Soot formation 
studies in a 
rapid 
compression 
machine 

Both the Sauter Mean Diameter and the air-entrainment 
rate increased at higher injection pressures. 
For an evaporating spray, the length of the liquid-phase of 
the spray was not influenced by the injection pressure. 
The soot-concentration and the combustion duration 
decreased as the injection pressure was increased 

63 SAE 2007-01-
4035 

Diesel EGR 
Fuel Reforming 

Flow control strategies 
(straight flow vs flow 
reversal, full-flow vs 
partial flow) 
Inlet vs central heating 
and fuelling 

First application of active flow management in EGR loop. 
Compared to the straight flow, an energy saving of more 
than 50% is possible with flow reversal. 
Overheat protection. 
Reduced EGR cooling requirement. 
Recycled reformate enhances premixed combustion 

65 SAE 2004-01-
0935 

Diesel HCCI Fuel: Diesel, CN=53 
Single cylinder. 
CR: 17.0,13.4,11.1 
Load: Up to 9bar IMEP 
Emissions 
Ind NOx: < 0.2 g/kWh 
Ind soot: ~ 0.01 g/kWh 

With a combination of low-compression ratio, cooled 
intake-temperature and large amounts of EGR it was 
possible to achieve HCCI combustion up to a load of 9bar 
IMEP with close to TDC combustion phasing. 
The increased CO and HC lead to decrease in fuel-
efficiency by 10-20% for most of the operating points 
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66 SAE 2007-01-
0215 

Diesel HCCI Conventional Diesel 
Single Cylinder 
CR of 16.8,13,10 and 
VVT, Load: up to 
18.3 bar BMEP 
Emissions 
NOx: 0.01 g/kWh 
Smoke: 0.1 BSN 
BSFC: 224 g/kWh 

Highest HCCI shown with details. 
Main enablers: CR10+AFR 15.1 + VVT 

69 SAE 961163 Premixed lean 
diesel 
combustion 

Diesel, CN=19,40, 62 
Single cylinder. 
CR: 16.5, Load: A.-2.5 
with no EGR 
Emissions 
NOx: 10-20 ppm 
Soot: - 0.0 FSN 

It was possible to prepare a lean air-fuel mixture with an 
extremely early injection. 
The combustion of the lean-premixed mixture produced 
simultaneous low-NOx and soot combustion. 
This combustion was accompanied by an increase in THC 
and CO levels that occurred to the fuel-air mixture 
becoming over-lean and entering quench areas. 

70 SAE 1999-01-
0181 

Premixed lean 
diesel 
combustion 

Diesel, CN=62 
Dimethyl ether, 
Propane 
n-pentane 
Single cyl, CR: 16.5 
X-2.0 with no EGR 
Emissions 
NOx: - 0 ppm 
Soot: - 0.0 FSN 

Gaseous fuel was used to prepare a homogeneous lean 
mixture before the combustion process. 
The mixture heterogeneity had an impact on the start of 
combustion/combustion phasing. 
The operation limit of high load condition was restricted to 
an equivalence ratio of 2.0 - 2.4. This limit was decided by 
knock limit or the increase in the NOx emission. 
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71 SAE 1999-01-
0185 

Premixed diesel 
combustion 

Diesel, CN=58 
Single cylinder 
CR: 18,13.5,12 
Load: X ~2.3 with no 
EGR. -1.23 with EGR 
Emissions 
NOx: ~ 0 ppm 
Soot: ~ 0.0 FSN 

Premixed combustion was achieved with an early injection. 
This combustion was characterized by lack for luminous 
flame. 
"Impinged-spray" was implemented to lower the spray 
penetration. The modified spray led to improved fuel-
economy and better smoke emission. 
The use of supercharging enabled to expand the operating 
range of premixed combustion. 

73 SAE 2003-01-
0745 

Diesel HCCI 
combustion 

Diesel, CN=53 
Single cylinder 
CR: 18.4 
Load: 6 bar BMEP 
Emissions 
NOx: ~ 10 ppm 
Soot: ~ 0.2 FSN 

2-injection strategy was adopted for the ignition control in 
HCCI combustion. The first fuel was injected at early 
injection timing. Injection timing and quantity, intake gas 
temperature and boost pressure are controlled precisely so 
that the first fuel undergoes only low-temperature reaction. 
The high temperature reaction of all fuel is controlled by 
the second injection. 

74 SAE 1999-01-
3681 

Diesel low-
temperature 
combustion 

Conventional Diesel 
Both Single & Multi-
Cylinder, CR: 18:1, 
17.5:1,16:1 
Load: 7 bar BMEP 
Emissions 
NOx: 95% reduction 
Smoke: < 1 BSU 
BSFC: Up to 10% 
penalty 

Introduction of the concept of Modulated-Kinetics for 
simultaneous low-NOx and low-soot 
Implementation of low-temperature combustion with 
premixed combustion 
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79 SAE 2007-01-
4063 

Diesel low-
temperature 
combustion 

No.2 Diesel 
Single Cylinder 
CR: 16.7:1 
Load: 3, 6 and 8 bar 
IMEP 
Emissions 
NOx: ~5 ppm 
Smoke: ~0 FSN 

Two different LTC strategies were examined: 
a) dilution-controlled regime characterized by high rates of 
exhaust gas recirculation (EGR) with early-injection 
(roughly 30° BTDC), 
b) a late-injection (near TDC) regime employing moderate 
EGR levels. 
-For both LTC strategies, increased intake pressure reduces 
emissions of HC and CO. 
Increased intake pressure also reduces peak soot emissions 
at high load and shifted the "Slope-2" region of the soot-
EGR curve towards lower oxygen concentrations 

87 SAE 750026 Measurement 
and analysis of 
cylinder 
pressure data 

Fuel: Gasoline 
Eng Configuration: 
Single Cylinder 
CR: Not provided 
Load: 5 bar IMEP 
Emissions 
NOx: ~ Not provided 
Smoke: ~ Not provided 

Earliest paper to discuss the digital data-processing of 
cylinder pressure. 
Detailed procedure provided for the scaling of the pressure 
data, averaging of the raw-data and analysis of the fired 
pressure traces. 

94 SAE 900445 Review of heat-
release 
computations 

Diesel, CN=53, 50.1, 
36, 34 
Eng Configuration, CR, 
load: Not provided 
Emissions 
NOx: ~ Not provided 
Smoke: ~ Not provided 

A 2-cylinder pressure transducer based heat-release rate 
computation was compared to a 1 pressure transducer 
based computation. 
1 pressure transducer based method was comparable to the 
dual-pressure transducer based method for both direct and 
in-direct injection diesel engine. 
The heat-release rate based on the combustion pressure (1 
transducer method) was able to detect the variations in 
fuel-property and engine operating characteristics such as 
engine speed. 
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97 SAE 981052 Heat-release 
analysis 

Simulated pressure 
used 
Fuel: Gasoline 
CR: 10.0:1 
Load: 7-8 bar IMEP 
Emissions 
NOx: Not provided 
Smoke: Not provided 

The most significant errors in the computation of the gross-
heat release rate were due to incorrectly assigned ratio of 
specific heats and charge to wall heat transfer rates. 
The use of a heat transfer multiplier in conjunction with a 
First Law equation provided improvements to the gross-
release rate computation 

98 SAE 1999-01-
0187 

Heat-release 
analysis 

Fuel: Diesel 
Multi-cylinder engine 
CR: Not provided 
Load: up to 10 bar 
BMEP 
Emissions 
NOx: Not provided 
Smoke: Not provided 

The most significant errors in the computation of gross 
heat-release analysis were observed to be due to are due to 
incorrectly assigned ratio of specific heats and charge to 
wall heat transfer rates. 
An alternative heat release model, called the polytropic 
index first law model, was developed. This model uses a 
variable polytropic index to approximately cater for the 
charge to wall heat transfer. 

101 SAE 2006-01-
0917 

Partially 
premixed 
combustion 
with multiple 
injections 

Fuel: Diesel 
Single-cyl, CR: 16.1:1 
Load: up to 11 bar 
BMEP 
Emissions 
NOx + HC: < 2.7 
g/kWh 
Soot: <0.0134 g/kWh 

Early premixed injections produced simultaneous lowering 
of NOx and PM through better mixing 
It was possible to optimize injection timings to obtain 
better spray targeting emissions. 
Use of a close-coupled post injection increases in-cylinder 
mixing and decreases PM emissions. 
Splitting the pilot injection into two premixed injections 
reduced fuel spray wall impingement, which helped to 
lower the PM emissions 
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103 12th DEER 
Conference 

Diesel HCCI 
combustion 

Conventional Diesel 
Single Cylinder 
CR: 18.2:1 
Load: 7 bar IMEP 
Emissions 
NOx: <10 ppm 
Smoke: <0.1 FSN 

104 Fuel, (86), pp. Diesel HCCI Conventional Diesel 
2871-2880 Single Cylinder 

CR: 15:1 
Load: Up to 6 bar 
IMEP 
Emissions 
NOx: <10 ppm 
Smoke: <0.1 FSN 
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Diesel HCCI combustion provided an cycle thermal 
efficiency that was comparable to the diesel engines with 
heavy-emission control but was lower than the efficiency 
of the conventional diesel cycle due to phasing and un-
burnt CO and HC considerations. 
It was possible to obtain a better combustion-phasing with 
very early injection strategy but this method this method 
was limited by high HC emissions. 
Close to TDC injection strategy had lower HC emissions 
but this method was associated with higher rates of 
pressure rise. 
The fuel injection cone angle was modified from 156° to 
60° to reduce the wall wetting problem & avoid an out of 
bowl injection for early timing required for HCCI cycles. 
The narrow angle concept was effective in maintaining a 
high IMEP when the fuel was injected at an early timing 
for HCCI combustion. This was primarily due to higher 
combustion efficiency with the narrow-cone angle. 
NOx emissions were greatly reduced as the injection 
timing was advanced ahead of 30°BTDC. 
For the dual injection strategy, the pilot injection at 
50°BTDC and the second injection close to TDC provided 
an adequate compromise between the emission and the 
efficiency considerations. 
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108 SAE 2006-01-
3426 

Cylinder 
pressure based 
control to 
extend the 
limits of EGR 
application 

Conventional Diesel 
Single Cylinder 
CR: 18.2:1 
Load: Up to 5.7 bar 
BMEP 
Emissions 
NOx: <10 ppm 
Smoke: <0.1 FSN 

A simplified approach based on crank-angle for maximum 
rate-of-pressure rise was demonstrated for the cylinder 
pressure based control. 
The use of cylinder pressure based control extended the 
EGR application range and showed simultaneous low-NOx 
and soot combustion. 
The cylinder pressure based control allowed to keep the 
combustion phasing locked during the transients of major 
LTC enablers such as boost and EGR. 

110 SAE 852067 Cylinder-
pressure 
measurement 
and its use 

Review paper Reviews of cylinder pressure measurement techniques 
have been provided. 
Techniques of phasing for the pressure signal and 
determining the cylinder volume have been discussed. 
Procedure for calculating mass-fraction burnt has also been 
discussed 

114 SAE 2000-01-
0932 

Cylinder 
pressure based 
control 

Fuel: Gasoline 
4-cylinder engine 
CR: Not provided 
Load: up to 4 bar IMEP 
Emissions 
NOx: Not provided 
Smoke: Not provided 

The ratio of fired-to-motored pressure was established as a 
means to efficiently estimate combustion phasing and 
mixture dilution for each cycle. 
The system adaptively optimizes combustion for every 
cycle in each cylinder. Precise engine control was 
demonstrated for a variety of functions such as spark 
timing control, misfire detection, and knock detection. 

116 SAE 870270 Heat-release 
analysis 

Diesel, CN = 48.9 
Single-cylinder 
CR: 15.9,15.5: 1 
Load: up to 9bar IMEP 
Emissions 
NOx: Not provided 
Smoke: Up to 7 BSU 

High frequency oscillations introduced in the cylinder 
pressure after the beginning of combustion effected the 
computation of heat-release rate analysis. This was 
overcome by using averaged cylinder pressure over 100 
non-consecutive cycles and smoothing the cylinder 
pressure data using a cubic spline curve-fitting technique. 
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117 SAE 870271 Heat-release 
analysis 

Diesel, CN = 48.9 
Single-cylinder 
CR: 15.9,15.5: 1 
Load: Not provided 
Emissions 
NOx: Not provided 
Smoke: Up to 6 BSU 

Effect of swirl-ratio, injection-rate, bowl-size and engine 
speed on heat-release rate. 

118 SAE 710135 Heat-release 
analysis 

Review paper The sources of errors associated with the derivation of 
heat-release rate equation have been identified as the use of 
mass-averaged property, heat-transfer approximations, and 
resolution of pressure measurement 

119 SAE 930595 Heat-release 
analysis 

Diesel Single-cylinder 
CR: 18:1 
Load: Not provided 
Emissions 
NOx: Not provided 
Smoke: Not provided 

The effect of TDC error was evaluated on the heat-release 
rate after compensating the error due to heat-transfer. 
In some cases, an error of 1 °CA resulted in up to 10% 
variation in estimating the net heat released. Similarly the 
TDC phasing error had a significant impact on the 
estimation of the cycle-work. 

121 Energy & Fuels 
(19), pp. 418-
425. 

Diesel 
combustion 
with EGR-
reformer 

Diesel, CN=53.9 
Single cyl, CR: 15.5:1 
Load: 4.5 and 6.1 bar 
IMEP 
Emissions 
NOx : 300~700 ppm 
Smoke: 1-5 BSU 

The use of reformed EGR instead of the conventional EGR 
was able to reduce smoke for a similar NOx value. 
The smoke reduction with the use of reformed-EGR was 
attributed to increased premixed combustion-phase and use 
of hydrogen as a fuel. 

122 Energy & Fuels, 
(17), pp. 1464-
1473 

CI combustion 
of diesel and 
bio-diesel in the 
presence of 
reformed EGR 

Diesel, CN=53.9 
Single cyl, CR: 15.5:1 
4 and 5.5 bar IMEP 
NOx: 200-800 ppm 
Smoke: 1~4 BSU 

The use of EGR produced the traditional NOx-smoke 
trade-off. However, when reformed EGR was used (up to 
2% hydrogen in the intake) it was possible to reduce NOx 
and smoke simultaneously. For a similar value of NOx 
reformed EGR reduced smoke by up to 0.5BSU 
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126 SAE 2004-01-
2918 

EGR Reformer Simulation study with 
propane as the fuel for 
EGR-reformer 

Energy efficiency analysis for the EGR reformer system 
using CHEMKIN and engine-simulation software SAES 
showed that a small amount of gaseous fuel can be 
generated with marginal decrease in the overall system 
efficiency 

134 SAE 2004-01-
0582 

NOx trap with 
reformed 
hydrogen as the 
reducing agent 

Diesel, CN= 51.2 
Multi-cylinder engine 
CR: Not provided 
Load: Up to 8.2 bar 
BMEP 
Emissions 
NOx :-100 ppm 
Smoke: Not-provided 

The hydrogen-rich reformate was able to regenerate NOx 
traps and achieve a conversion efficiency of 90% with a 
fuel-penalty of 4.7%. For a similar NOx conversion 
efficiency the fuel-penalty with diesel fuel was close to 
8%. 
The reformate was able to perform regenerations at 
temperatures of 150°C, whereas the minimum regeneration 
temperature with the diesel fuel was close to 450°C. 

135 SAE 2007-01-
0914 

Diesel 
experiments 

Diesel, CN= 51.2 
Single-cylinder 
CR: 14:1 
Load: 8.8 bar BMEP 
Emissions 
NOx : 0.8 g/kWh 
Smoke: 0.0134 g/kWh 

Higher charge air pressure and higher EGR levels gave a 
simultaneously low-NOx and low-soot combustion. 
Increasing the needle opening pressure results in lower 
soot emissions, lower HC and CO emissions and a slight 
increase in NOx emissions. Increased EGR cooling helped 
to lower the soot emissions for a constant NOx. 
For a given EGR level, no soot-reduction was obtained 
with the use of the post-injection strategy 

136 SAE 2008-01-
1191 

Experiments 
with multiple-
injection 
strategy 

Diesel, CN= 53.6 
4-cylinder 
CR: 18.3:1 
Load: up to 6.4 IMEP 
Emissions 
NOx : ~ 200 ppm 
Smoke: < 0.3 FSN 

The use of pilot-injection strategy helped to lower the NOx 
at a slight smoke penalty. 
The use of a late main injection strategy with as short 
dwell helped to reduce CO and HC emissions compared to 
the single injection strategy. 
The use of post injection strategy helped in the 
simultaneous reduction of NOx and soot. 
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137 SAE 2008-01-
1329 

Experiments 
with multiple-
injection 
strategy 

Diesel, European Norm 
EN 590 (minimum 
CN= 51) 
4-cylinder and single-
cylinder, CR: 14,15 
and 16:1, Load: 4, 7 
and 13 bar IMEP 
Emissions (13 bar 
IMEP) 
NOx: 3.3 g/kWh 
Smoke: 1.5 FSN 

At low load, the split injection strategy reduced the EGR 
requirements to maintain the similar NOx level as the 
single injection strategy. The split injection strategy also 
had the advantage of lower CO, HC and combustion noise. 
Multi injection strategy was particularly helpful for smoke 
reduction at high-loads. 
Pressure waves had an impact on the fuelling quantity of 
the secondary and later injections. 
The multiple-injection strategy with very small pilot 
injections was not considered challenging from the point of 
view of repeatability. 

139 SAE 2008-01-
0639 

Diesel low-
temperature 
experiments 

Diesel, CN= 43 
Single cyl, CR: 15:1 
Load: 3 & 6 bar IMEP 
Emissions (6bar IMEP) 
NOx: ~20 ppm 
Smoke: ~ 0.25 FSN 

Single injection strategy was developed to 3 bar IMEP 
condition; triple injection strategy was developed at 6 bar 
IMEP condition. 
Small pre-injection and post-injection of 1 mg/cycle was 
implemented at 6 bar IMEP to reduce combustion and 
noise and soot emissions 

148 SAE 2008-01-
0643 

Diesel low-
temperature 
combustion 

Diesel, CN= 53 
Single-cylinder 
CR: 15.8:1 
Load: 13barIMEP 
Emissions (13 bar 
IMEP) 
NOx: <0.4g/kWh 
Smoke: ~ 0.2 g/kWh 

- By combining higher swirl, injection pressure and higher 
boost-pressure it was possible to reduce the NOx to 
0.34 g/kWh at 13bar IMEP without a significant penalty on 
fuel-economy. At this condition the soot was observed to 
be 0.2 g/kWh. 
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APPENDIX G: GLOSSARY OF TERMS 

SOC - refers to the 'Start of Combustion' and is defined as the crank angle at which the 

value of the normalized cumulative heat release curve is 0.05. 

CA50 - is the crank angle at which the value of the normalized cumulative heat release 

curve is 0.5. This is taken as a measure of the combustion phasing. 

EOC - refers to the 'End of Combustion' and is defined as the crank angle corresponding 

to the first zero crossing of the heat release rate curve after its maximum. 

Combustion Duration - is the duration from the SOC to the crank angle at which the 

value of the normalized cumulative heat release curve becomes 1. 

Slope 1- the segment of soot climbing but NOx declining curve when EGR increases 

during HTC combustion. It represents the classical NOx-Soot trade-off. 

Slope 2 - the segment of simultaneous soot and NOx declining curve when EGR 

increases (during LTC combustion). It represents the reduction in NOx and soot enabled 

with a single injection using heavy EGR. 

Heavy EGR - refers to large amounts of recycled exhaust gases that result in nearly 

halved oxygen and high carbon dioxide contents in the engine intake. This indicates EGR 

levels (typically 50-70%) beyond those commonly applied in production diesel engines. 

LTC - refers to any combustion mode that results in ultra low emissions of in-cylinder 

NOx and PM in conventional diesel engines. 

Ignition delay - The time duration between the start of injection (the last injection in case 

of multiple-shots) and the start of combustion. 

SOS - The start of sampling crank angle at which the direct gas sampling valve is 

commanded to be opened. 

SRF -The number of engine cycles after which the valve operation is repeated is the 

sampling repetition frequency. 
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SD - The opening time of the direct gas sampling valve (sampling duration) at each 

opening event. 

Index Z - The TTL signal from the encoder corresponding to the physical TDC of the 

engine (commonly called the trigger). 

Index A - The TTL signal from the encoder used as an external clock to provide 

information on the position of the crank angle with respect to the TDC. 

Combustion Noise - The audible noise associated with the premixed or uncontrolled 

combustion phase and generally represented by the maximum rate of pressure rise. 
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APPENDIX H: HARDWARE SPECIFICATIONS 

The major specifications of the hardware components (engine sensors, data acquisition devices, emission analyzers, control actuators 

and sensors) that were used to develop the engine testing and control platform for this research are given below: 

Table H. 1: Data Acquisition Devices 

Device Model SCXI 
1102 

PCI-6023E PCI-6024E PCI-6070E PCI-6221 PCI-6229 PCI-6122 

Analog 
Input 

Number of Channels 32 DI 
16 SE/ 

8 DI 
16 SE/ 

8 DI 
16 SE/ 

8 DI 
16 SE/ 

8 DI 
32 SE/16 

DI 
4 SE/ 
4 DI 

Analog 
Input 

Maximum Range ±100 mV ±10 V ±10 V ±10 V ±10 V ±10 V ±10 V 
Analog 
Input 

Sampling Rate 333 kS/s 200 kS/s 200 kS/s 1.25 MS/s 250 kS/s 250 kS/s 500 kS/s/ch 

Analog 
Input 

Resolution 12 bits 12 bits 12 bits 16 bits 16 bits 16 bits 

Analog 
Output 

Number of Channels 

- -

2 2 2 4 

-

Analog 
Output 

Maximum Range 
- -

±10 V ±10 V ±10 V ±10 V 
-

Analog 
Output Update Rate 

- -

lOkS/s 1 MS/s 833 kS/s 833 kS/s 
-

Analog 
Output 

Resolution 

- -

12 bits 12 bits 16 bits 16 bits 

-

Digital 
Input / 
Output 

Number of Channels 

-

8 8 8 24 48 8 
Digital 
Input / 
Output 

Logic Level 
-

TTL TTL TTL TTL TTL TTL Digital 
Input / 
Output Maximum Range 

-

0 - 5  V  0 - 5  V  0 - 5  V  0 - 5  V  0 - 5  V  0 - 5  V  

Digital 
Input / 
Output 

Clock Rate 

-

1 MHz 1 MHz 1 MHz 1 MHz 1 MHz 10 MHz 

Counters 

Number of Channels 

-

2 2 2 2 2 2 

Counters 
Logic Level 

-

TTL TTL TTL TTL TTL TTL 
Counters Maximum Range - 0 - 5  V  0 - 5  V  0 - 5  V  0 - 5  V  0 - 5  V  0 - 5  V  Counters 

Resolution 
-

24 bits 24 bits 24 bits 32 bits 32 bits 24 bits 
Counters 

Source Frequency 

-

20 MHz 20 MHz 20 MHz 80 MHz 80 MHz 20 MHz 
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Table H.2: Hardware for Cylinder Pressure Measurement 

Hardware Piezo-electric Cylinder Pressure Transducer Charge Amplifier 

Model 
Kistler 6043A60 

(Yanmar) 
AVLGU13P 

(Ford) 
Kistler 5010B 

Range 0-250 bar 0-200 bar 10-999000 pC 

Sensitivity 20 pC/bar 15 pC/bar 0.01-9990 pC/bar 

Output - - ±10 V 

Accuracy < ±0.5 % < ±0.6 bar < ±0.5 % 

Table H.3: Air Flow and Fuel Flow Measurement 

Hardware Air Flow Fuel Flow 

Model BOSCH HFM5-3.5 Dresser Roots Meter 
5M175 

FP-213 
Flow Detector 

FP-2140H 
Flow Detector 

DF-210A 
Flow Meter 

Measurement Range 1.6-102 g/s 
2.36 m3/min 

175 psig maximum 
1-1000 ml/min 5-2000 ml/min -

Resolution 0.02 g 2.622 x 10"4 m3 0.01 ml 0.1 ml 

Output 0-5 V Pulse Output 0.01 ml/pulse 0.1 ml/pulse 
0 1 ov 

TTL Pulse 

Accuracy < ±3 % < 0.3 % <±0.5% < ±0.2 % -
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Table H.4: Boost & Exhaust Backpressure Control 

Hardware Electro-pneumatic Pressure Regulator Pressure Sensor 

Model ITV 3051-31N4N4 ITV 1031-21N4N4 BOSCH DS-K-TF 

Range 
0.005 to 0.9 MPa 

Programmable 
0.005 to 0.5 MPa 

Programmable 
0-5 bar Differential 

Control Signal (Input) 0-10 VDC 0-5 VDC -

Output Signal 1-5 VDC 1-5 VDC 0.5-5 VDC 

Sensitivity < 0.2 % < 0.2 % -

Accuracy <±0.5% < ±0.5 % < ±2 % 

Table H.5: CAN Hardware for EGR Valve Control 

Model NIUSB-8473 

Number of Ports 1 

Termination External 

Data Transfer High Speed (up to 1 Mbit/s) 

CAN API Full Frame API 

Transceiver Philips TJA1041 

Time Stamping Hardware Ijas Resolution 

CAN Compliance 
CAN 2.OA (11-bit) and CAN 2.0B (29-bit) 

Arbitration ID 
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Table H.6: Emission Analyzers 

Manufacturer & 
Model 

Species Working Principle Range Resolution Output Miscellaneous 

CAI602P C02 
Non-Dispersive 
Infra-Red (NDIR) 

0-2% 
0-10 % 

0.001 % 0-10 VDC Programmable output 

CAI602P o2 Paramagnetic 0-25 % 0.01 % 0-10 VDC Programmable output 

CAI 600 HCLD N0/N02/N0X Chemiluminescence 0-3,000 ppm 0.01 ppm 0-10 VDC 
4 programmable 

ranges, 
Programmable output 

CAI 300M-HFID THC Heated Flame 
Ionization Detector 

0-3,000 ppm 0.01 ppm 0-10 VDC 8 selectable ranges 

CAI 300 CO NDIR 
0-2,000 ppm 
0-5,000 ppm 0.01 ppm 0-10 VDC -

CAI 300 o2 Paramagnetic 0-25 % 0.01 % 0-10 VDC -

CAI 200 C02 NDIR 
0-8% 
0-40% 

0.01 % 0-10 VDC -

AVL415S Smoke / Dry 
Soot 

Variable Sampling 
Smoke Meter 

0-10 FSN 
(0-32) g/m3 

0.001 FSN/0.01 
mg/m3 0-10 VDC Programmable output 

Cambustion 
/N0x400 

N0/N02/N0x Chemiluminescence 0-10,000 ppm 0.1-50 mV/ppm 0-10 VDC 
9 programmable 

ranges 
Cambustion 
HFR-500 

THC 
Heated Flame 
Ionization Detector 

0-1,000 to 
200,000 ppm 

0.05-10 mV/ppm 0-10 VDC 8 selectable ranges 
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