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ABSTRACT 

Wind energy is the one of the most abundantly available forms of renewable energy, and has 

emerged as a viable alternative to conventional non-renewable energy sources. The wind electrical 

generation system is the most competitive of all the environmentally clean and safe renewable energy 

sources. Electricity derived from wind power provides an alternative to conventional generation that could 

be used to achieve substantial reductions in fossil fuel use and industrial effluents like carbon dioxide. 

Current utilization of renewable energy systems in the form of wind, small hydro and bio-gas has led to 

the massive use of grid-connected and self-excited induction generators (SEIG). Besides being commonly 

used as drives in the industry, three-phase induction machines have earned much attention as wind 

generators because of the qualities such as ruggedness, fault tolerance and constructional simplicity, and 

constitute the biggest sector in the present wind power industry. This thesis consists of theory and 

background of self-excited induction generators (SEIGs), their dynamic and mathematical modeling, 

development of a laboratory experimental set-up, development of a thermal model and computational and 

experimental results of thermal modeling and aluminum-rotor and copper-rotor SEIGs and comparative 

analysis between the two kinds of SEIGs. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

In the present scenario, most of the power generated in the world comes either from fossil fuels 

powered generating stations using fuels such as coal, oil and natural gas or through Nuclear 

power plants and large Hydro-electric generating stations. Majority of the countries still rely on 

fossil fuels as their main source of energy generation. The net effect being huge increase in 

pollutants emitted by these generating plants leading to deteriorating air quality and severe 

environmental and health hazards. Moreover, these fossil fuels have a finite supply and will 

eventually run out in years to come. The biggest dilemma facing the industrialized and 

developing nations at present is how to continue this massive growth and development without 

jeopardizing the environment. A Faster growth in economies is usually associated with increase 

in generation as well as consumption of power. The question then arises is as to how to keep a 

balance between economic growth and a clean and healthy environment. Renewable sources of 

energy such as Wind, Solar, Geo-fhermal and Biomass provide an alternative for this 

predicament. These sources of energy are not only clean but also found in abundance in nature 

and if effectively harnessed can contribute a lot towards making our planet a better place to live. 

Rapid increase in Green House Gas (GHG) emissions has led to a far greater understanding and 

use of alternate and renewable sources of energy. 

Electricity generated from wind provides an alternative to non-renewable sources of 

generation that could be used to achieve significant reductions in fossil fuel use and a subsequent 

reduction in emissions. Wind energy is the one of the most abundantly available forms of 

renewable energy, and has emerged as a viable alternative. The wind electrical generation system 

is the most competitive of all the environmentally clean and safe renewable energy sources. 

Electricity derived from wind power provides an alternative to conventional generation that 

could be used to achieve substantial reductions in fossil fuel use and industrial effluents like 

carbon dioxide, nitrous oxide, methane and other GHGs. 
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(a) 

Fig. 1.1. Melanchton 1 Wind Farm in Shelburne, Ontario, (a) A set of turbines in the wind farm, 

(b) A view of the generator on the back side of the turbine. 
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Current utilization of renewable energy systems in the form of wind, small hydro and bio-gas has 

led to the massive use of grid-connected and self-excited induction generators (SEIG). Use of an 

induction machine as a generator is becoming more and more popular for the renewable sources. 

Induction generators have many advantages over synchronous generators, which make them 

ideally suited to be used in this kind of an application. A few of them are namely reduced cost 

and size, ruggedness, brushless, absence of separate dc source, ease of maintenance, self-

protection against severe overloads and short circuits etc. Fig.l shows an operational wind farm 

in south western Ontario. 

Self-excitation phenomenon in induction machines although known for more than a half 

century is still a subject of considerable attention. The interest in this topic is primarily due to the 

application of SEIG in isolated power systems. The induction generator can work in two modes, 

grid connected and isolated mode. Self-excited induction generators are good candidates for 

wind powered electricity generation primarily in remote areas, because they do not need an 

external power supply to produce the excitation magnetic field. The main focus in this thesis is 

with respect to the stand alone mode of operation in induction generators. 

Another aspect that this research covers is the analysis of SEIG having a copper rotor 

rather than the conventional aluminum rotor. A majority of the induction motors in different 

horsepower range of sizes are made with die-cast aluminum rotor cages. With the present day 

push for higher efficiency of energy usage, the possibility of improving efficiency in such motors 

has become enough of a priority to cause renewed interest in the use of copper in the squirrel 

cage. 

1.2 Thesis Outline 

This thesis work has been divided into 6 sections and 2 appendices. The thesis is an attempt to 

make the reader more comfortable with the research work related to self excited induction 

generators, basic theories regarding self excitation, the saturation characteristic of induction 

generators, mathematical modeling and analysis of the machines used in this research work, 

addition of the developed thermal model to the conventional model and comparison between an 

aluminum-rotor and copper-rotor induction machines. 
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Section 1.3 of this chapter reviews the previous work done through the ages in this area of 

research. The main purpose of reviewing this material is to give the reader sufficient knowledge 

to fully understand the concepts of induction generators, their uses and above all to lay open the 

vast amount of research work that has been done and which provides the direction, guidance and 

lays the background for all kinds of future work. 

Chapter 2 of this thesis deals with the basic concepts of an induction generator. Starting off with 

the detailed theoretical and mathematical explanation of the process of self excitation in 

induction machines, the minimum capacitance required for self excitation and the saturation 

characteristics of the machines used in this research. 

In Chapter 3 of this thesis, development of the complete mathematical model of induction 

generators used has been developed and explained. The fundamentals of induction machine 

modeling are also explained in this section. This also includes the conventional induction 

machine model, the model used in this research work and subsequently the addition of the 

thermal model to the existing model. 

In chapter 4, the experimental set up used in this work has been explained. This includes details 

about the different tests done on the machines to obtain the machine parameters, physical 

descriptions of the machines used in the experiments and also a comparison between the 

aluminum-rotor and copper-rotor induction machine. 

In chapter 5, the various results obtained during this research work, theoretical as well as 

experimental are compared and analyzed. These include the individual as well as comparative 

results for both thermal model and the conventional model and also for aluminum and copper 

rotor induction machine. 

And finally in chapter 6, all the results from this work have been summarized and relevant 

conclusions drawn and this chapter also includes certain suggestions for any future works in this 

area. 
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1.3 Literature Review 

This section gives the background and a review of previous works done in the area of induction 

generators. 

1.3.1 Classification of Induction Generators 

Basset and Potter reported in 1935 for the first time the concept of self-excitation of induction 

machines. They reported that the induction machine can be operated as an induction generator in 

isolated mode by using external capacitor. But there was a problem with the poor voltage 

regulation. Then in the year 1939, Wagner gave a method of analysis of self-excited induction 

generator by splitting if the real and reactive parts of the induction machine circuit. For this work 

the terminal voltage was determined by equating reactive VAR to zero, and slip by equating real 

power to zero. In 1954 Barkle and Ferguson presented the approximate model of both grid-

connected and SIEG for studying the general aspects like power factor and short circuit 

behaviour. 

On the basis of rotor construction, induction generators are two types (i.e., the wound 

rotor induction generator and squirrel cage induction generator). Depending upon the prime 

movers used (constant speed or variable speed) and their locations (near to the power network or 

at isolated places), generating schemes can be broadly classified as [1-4] 

(i) Constant-speed constant-frequency 

(ii) Variable-speed constant-frequency 

(iii) Variable-speed variable-frequency 

Constant-Speed Constant-Frequency 

In this scheme, the prime mover speed is held constant by continuously adjusting the blade pitch 

and/or generator characteristics [5]. An induction generator can operate on an infinite bus bar at a 

slip of 1% to 5% above the synchronous speed. Induction generators are simpler than 

synchronous generators. They are easier to operate, control, and maintain, do not have any 

synchronization problems, and are economical. 
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Variable-Speed Constant-Frequency 

The variable-speed operation of wind electric system yields higher output for both low and high 

wind speeds [6]-[9]. This results in higher annual energy yields per rated installed capacity. With 

variable prime mover speed, the performance of synchronous generators can be affected. For 

variable speed corresponding to the changing derived speed, SEIG can be conveniently used for 

resistive heating loads, which are essentially frequency insensitive. Both horizontal and vertical 

axis wind turbines exhibit this gain under variable-speed operation. Popular schemes to obtain 

constant frequency output from variable speed are 

AC-DC-AC Link: With the advent of high-powered thyristors, the ac output of the three-

phase alternator is rectified by using a bridge rectifier and then converted back to ac using line-

commutated inverters. Since the frequency is automatically fixed by the power line, they are also 

known as synchronous inverters. 

Double Output Induction Generator (DOIG): The DOIG consists of a three-phase wound 

rotor induction machine that is mechanically coupled to either a wind or hydro turbine, whose 

stator terminals are connected to a constant voltage constant frequency utility grid. One of the 

outstanding advantages of DOIG in wind energy conversion systems is that it is the only scheme 

in which the generated power is more than the rating of the machine. However, due to 

operational disadvantages, the DOIG scheme could not be used extensively. The maintenance 

requirements are high, the power factor is low, and reliability is poor under dusty and abnormal 

conditions. This scheme is not suitable for isolated power generations because it needs grid 

supply to maintain excitation. 

Variable-Speed Variable-Frequency 

With variable prime mover speed, the performance of synchronous generators can be affected. 

For variable speed corresponding to the changing derived speed, SEIG can be conveniently used 

for resistive heating loads, which are essentially frequency insensitive. 

1.3.2 Modeling of Induction Generators 
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Various models and their applications [10],[11] have been presented to analyze the steady-state 

as well as transient performance of SEIG operating with either a regulated or unregulated prime 

mover . The following categories are the different models used. 

D-Q Reference Model: 

The d-q reference model was first proposed by Krause [12]. After a slight modification, many 

authors have formulated a reference model for a three-phase induction generator. Novotony [13] 

developed an analytical model of a system having an induction generator connected to a 

resistively loaded inverter using synchronously rotating d-q reference frame. 

Impedance Based Model: 

Murthy, Malik and Tandon studied the performance of the SEIG using an analytical model based 

on a conventional single-phase equivalent circuit with per-unit (p.u.) parameter. This model has 

been extended for the evaluation of various steady-state performance characteristics of stand­

alone generators, such as the effect of shaft variation [14], [15], change in generator pole number 

[16], and parallel operation [17]. Potter [18] studied the effects of injected harmonic currents due 

to the electronic controller on generator losses in the steady-state model of SEIG. Rajakaruna et 

al. [19] have included the unregulated prime mover characteristic in the steady-state model of a 

three-phase-balanced induction generator. 

Admittance Based Model: 

Quazene et al. [20] developed an admittance-based model of SEIG using a single-phase 

equivalent circuit model with a balanced three-phase resistive load. For the determination of 

operating frequency and magnetizing reactance, real and imaginary parts of the sum of 

admittances of the rotor, magnetizing, and stator branches are equated to zero. This method gives 

an algebraic expression for magnetizing reactance in terms of generator frequency and other 

machines parameters and given speed. Ammasaigounden [21] also used an admittance-based 

model for a given output frequency, where the performance equation becomes quadratic in terms 

of speed and other machine parameters. 
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1.3.3 Steady-State Analysis of SEIG 

A large number of articles have appeared on the steady-state analysis of the SEIG. In an isolated 

power system, both the terminal voltage and frequency are unknown and have to be computed 

for a given speed, capacitance, and load impedance. Steady-state analysis of SEIG is of interest, 

from both operation and design point of view. 

Many articles been appeared on the steady-state analysis of the SEIG. Murthy et al. [22] 

developed a mathematical model to obtain the steady-state performance of SEIG using the 

equivalent circuit impedance of the machine. Two nonlinear equations, which are real and 

imaginary parts of the impedance, are solved for two unknowns. Jain [23] proposed a method in 

which the algebraic equation is solved for the initial value of and then the Secant method is used 

for the exact solution. Rahim [24] used a nodal admittance technique to obtain a nodal equation 

and then separated it into its real and imaginary parts so as to solve them first for the frequency/ 

and then for the magnetizing reactance Xm. Chan [25] has proposed an iterative technique by 

assuming some initial value for and then solving for a new value considering a small increment 

until the result converges. Rajakaruna et al. [26] have used an iterative technique which uses an 

approximate equivalent circuit and a mathematical model for B-H curve and the solution is 

reduced to a nonlinear equation. Suitability of pole changing (4/6 pole) of SEIG for harnessing 

more wind energy under wide variation in wind speed is presented by, agarwal and singh [27] 

and chatterjee [28]. Sandhu et al. [29] have proposed an approach, which leads to a quadratic 

equation in slip making the steady-state analysis simple and comprehensive. Wang et al. [30], 

[31] have presented an eigenvalue-based approach to predict both minimum and maximum 

values of capacitance required for self-excitation of SEIG. 

Steady-state analysis and performance of SEIG driven by regulated and unregulated 

turbines have been presented by Chan [32] and Alghuwainem [33]. Alghuwainem also has 

examined the steady-state analysis and performance characteristics of stand-alone SEIG when a 

transformer is connected to its terminals to supply the load at different voltage levels or to step 

up the terminal voltage. The transformer tends to saturate at higher speeds and, thus, absorbs the 

excess reactive power, limits the increase in the terminal voltage, and improves the voltage 

regulation. Kumarasen [34] compared the performance of wind-driven SEIG with load matching 

using the capacitor alone and with the combination of shunt and series capacitors. Alolah et al. 



[35] have presented an optimization-based approach for the analysis of SEIG. The problem is 

formulated as a numerical optimization problem where no derivation of the analytical equation is 

needed. 

1.3.4 Dynamic Analysis of SEIG 

Many articles have appeared on the transient/dynamic analysis of SEIG and most of the transient 

studies of induction generators are related to voltage build-up due to self-excitation and load 

perturbation. 

Shridhar et al. [36] present the transient performance of short-shunt SEIG. It is seen that 

it can sustain severe switching transients, has good overload capacity, and can re-excite over no 

load after loss of excitation. Tandon et al. [37] present the voltage buildup of SEIG due to 

switching of the three-phase capacitor bank at rated speed at no load. It is observed that 

depending on the machine parameters, the generator voltage builds up from small voltage due to 

residual magnetism to its rated value. Jha et al. investigated [38] the transient analysis of SEIG 

feeding an induction motor to analyze the suitability of the SEIG to sudden switching, such as 

starting of the IM. It is seen that reliable starting of an IM on SEIG is achievable with the value 

of capacitance determined through steady-state investigation; however, the capacitance should be 

applied in two steps: first to self-excite the generator, and second along with the motor or after 

switching on the motor. 

Wang et al. [39] have presented the transient performance of stand-alone SEIG under the 

voltage buildup process, suddenly switching off one excitation capacitor and suddenly switching 

off two excitation capacitors. It is seen that when one of the three balanced excitation capacitors 

is switched off from the machine, SEIG can still maintain self-excitation and generates adequate 

voltage on other two phases. When two of the three balanced excitation capacitors are switched 

off from the machine, the generated voltage of the SEIG collapses and gradually reduces to zero. 

They have also presented a comparative study of long-shunt and short-shunt configurations on 

dynamic performance of an isolated SEIG feeding an induction motor load. Results show that the 

long shunt configurations may lead to unwanted oscillations while the short shunt provides the 

better voltage regulation. Levi [40] has presented an experimental study of the dynamic 

behaviour of SEIG. The emphasis is placed on the situation that leads to voltage collapse and the 
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total demagnetization of the machine and on the variable speed of the induction generator with a 

fixed capacitor bank. Jain et al. [41] presented the transient performance of three-phase SEIG 

during balanced and unbalanced faults, considering the effects of main and cross flux saturation 

for load perturbation, three-phase, and line-to-line short circuit, opening of one capacitor, two 

capacitors and a single line at the capacitor bank, opening of single-phase load, two-phase load, 

etc. 

1.3.5 Voltage Regulation of SEIG 

The need for reactive power support and poor voltage regulation are the two major drawbacks of 

induction generators. Induction generators and also load, which is generally inductive in nature, 

require the supply of reactive power. Unbalanced reactive power operation results in voltage 

variation. Malik et al. [42] have shown that the minimum capacitance requirement of SEIG is 

inversely proportional to the square of speed and maximum saturated magnetizing reactance. 

Sridhar et al. [43] have discussed a methodology to choose the appropriate value of capacitors 

for desired regulation of short-shunt SEIG. The short/long-shunt configurations of the SEIG give 

better performance in terms of voltage regulation than the simple shunt configuration, but the 

compensation used in these configurations causes the problem of sub-synchronous resonance 

while supplying power to inductive and/or dynamic loads. 

A fixed capacitor alone, as presented in [44], cannot provide the adequate amount of 

reactive power needed by the induction generator at all possible speeds and loading conditions. 

Even if fixed capacitors are used to provide the average value, self-excitation may result in 

undue overvoltage. A fixed and switched capacitors scheme presented by Elsharkawi et al. [45] 

consists of two discrete groups of fixed and switched capacitors, which furnish enough reactive 

power for an induction generator throughout its desired operating region of speed. The number 

of switched capacitors is kept to a minimum to simplify the switching circuit, and yet provides 

adequate and varying reactive power compensation. The controller senses the reactive power 

drawn by the machine and accordingly provides the needed reactive power to improve the power 

factor to as close to unity as possible. This method has limited applications because it regulates a 

terminal voltage in discrete steps. 
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Wind is the main conventional energy source that fluctuates highly in nature, and power 

produced from the wind varies with the cube of the speed. Static var compensators (SVCs) have 

been used in conventional power systems and can also be used conveniently in isolated power 

systems where continuous and fast control of reactive power is required. SVC has fast response 

and continuous control of reactive power and offers a large number of advantages over 

conventional reactive power compensation schemes. 

1.4 Thermal Effect 

Due to their high reliability and their robust construction, induction machines with squirrel cage 

rotors are installed in many areas of industrial practice. The most important features of squirrel 

cage induction machine that enhances its suitability in hostile environment are ruggedness and 

robustness [46]. However, when the machine is continuously operated on load, it may be 

necessary to monitor the temperature of the various parts of the machine if the aforementioned 

important features are not to be compromised due to excessive heating. In the past decade, 

research in protection techniques and instrumentation technology has brought some new methods 

for the measurement of protection relevant variables [47]. Effective supervisory systems have 

two positive effects: the lifetime of the machine can be prolonged and the operating range of the 

machine and of the following process can be expanded. 

Still, a critical variable for induction machines, in particular for those of high power, is 

the rotor temperature. Heat generated in the rotor and stator is dissipated by conduction, 

convection, and radiation. Anything that will obstruct the flow of air through or over the motor, 

or that will impede the radiation of heat from the motor parts, will cause an increase in winding 

temperatures. Therefore, it is important that the motor is kept clean inside and outside to assure 

that the flow of air is not restricted. 

Thermal failures of induction machines occur primarily because of breakdown of the 

stator winding insulation or mechanical fatigue of the rotor conductors. For instance, modern 

induction machine protective devices are often expected to accommodate temporary running 

overloads which are used to boost the efficiency and versatility of a drive. Other irregular 

conditions such as low speed operation, inverter harmonics, temporary phase imbalances and 

repeated starts also contribute to the complexity of protecting induction machines. Generally, 

11 



when the thermal limit of an electrical machine is exceeded, the following undesirable effects 

result: Loss of dielectric property of the insulating material, thermal bending of the rotor and 

consequent loss of eccentricity, bearing wear and vibration, deterioration of bearing lubricants 

and thermal stresses and changes in geometry of the machine elements due to thermal expansion. 

Due to these undesirable effects, the temperatures in electrical machines must be properly 

monitored and specified within certain limits to reflect the mechanical, electrical and 

environmental conditions in which the machine will operate. The methods of heat transmission 

are conduction, convection and radiation. Heat is transmitted through the stator and rotor by 

conduction and from them to the air by a combined effect of conduction and convection, with the 

prevalence of the latter. Between the stator and rotor the transmission is carried out 

fundamentally by conduction through the airgap. 

Maximini and Koglin [48] explained about the determination of absolute rotor 

temperature of squirrel cage induction motors. The study of transient thermal behaviour is useful 

to identify causes of failure in induction machines. Rajagopal et al [49] presented the transient 

thermal analysis of induction motors. This paper presented a two dimensional transient analysis 

of induction machines using the available heat transfer coefficients. Therefore, to have a better 

understanding of machine behaviour and performance it is of utmost importance that effect of 

temperature on machine performance is taken into account. Exact prediction of the temperature 

rise of all machine parts is an important design factor of a motor. Many publications only 

investigate the stationary heat transfer within a motor at rated conditions. The increasing 

demands on the reliability of motors, especially during switching operations with frequent 

reversing starts or run ups in automatic processes, require exact investigation of the thermal 

behaviour of a motor during transient conditions. 

In order to predict the temperatures in electrical machines, thermal models are used. 

Thermal models of electrical machines vary in degree of complexities depending on areas of 

applications and the level of accuracy to which the models are expected to give when compared 

to the physical temperature measurements of the test machine. Knowledge of the rotor 

temperature of an induction motor enables motor surveillance, protection and operation based on 

the thermal limits of the actual machine. However, rotor temperature measurement is a difficult 

and expensive task. Therefore, the only appropriate way of temperature acquisition is the 

estimation based on machine models. Rotor temperature can be determined with the help of the 
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estimated resistance of the rotor cage. This task can he performed by evaluating the equations of 

the induction machine accordingly. Consequently, some of the machine parameters have to be 

determined in order to be able to compute the rotor resistance. The accuracy of the estimated 

rotor temperature is mainly determined by the accuracy of the employed model and the involved 

machine parameters. 

1.5 Aluminum and Copper Rotor Induction Machines 

Most of the induction motors in the fractional and integral horsepower range of sizes are made 

with die-cast alum rotor cages. This is due to the fact that the related die-cast aluminum-rotor 

technology is easy and less expensive in terms of manufacturing and material costs as compared 

to its copper counterpart [50]. Also the trend in price in the world market is higher in case of 

copper. Fig 1.2 shows the comparative trend in the price of aluminum and copper in the market. 

With the present day push for higher efficiency of energy usage, the possibility of improving 

efficiency in such motors has become enough of a priority to cause renewed interest in the use of 

copper in the squirrel cage because of its substantially higher electrical conductivity [51]. 
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Fig. 1.2 Trend in the Price of Aluminum and Copper in World Market. 

Electrically conductive parts of the squirrel cage rotor are either made of aluminum or copper. 

Rotor bars and end-rings are usually designed for different current densities. Therefore, losses in 

the bars and end-rings are different, too. Different rotor losses and cooling conditions lead thus 

to different temperatures in the bars and end-rings. The bars of aluminum (and copper) die 

casting rotors are not insulated. Due to shrinkage, a small gap between bars and iron teeth can be 
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expected. This additional gap slightly decreases thermal conductivity between bars and iron 

teeth. In squirrel cage rotors with fabricated bars, a greater gap between bars and iron teeth is 

needed to mount the bars, even if no additional insulation is used. This gives rise to an even 

higher decrease of the thermal conductivity. Fig 1.3 shows a cut section view of a Siemens high 

efficiency NEMA standard copper-rotor motor. 

Fig. 1.3. Sectional View of Siemens Copper-Rotor Motor. (Picture courtesy Siemens) 

Induction motors have been made with fabricated copper rotors since long. However, the high 

melting point of copper leads to difficulties in casting. Short die life resulting from high 

temperature has, in the past, made cast copper rotors uneconomical. The possibility of improving 

the efficiency in such motors has become enough of a priority to cause renewed interest in the 

use of copper in the squirrel cage. Induction machines fabricated and tested by several 

manufacturers have shown that machines with rotors using copper bars would achieve an overall 

loss reduction of 15% to 20%. Cowie and Peters [52] also presented the data on performance of 

motors incorporating the die-cast copper rotors and compares the performance with the 

aluminum cast ones. 

Figs. 1.4 and 1.5 show the cross sectional view of the stator and rotor of the two 7.5 hp 

aluminum-rotor and copper-rotor induction machines used for experimental investigations. 
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(a) (b) 

Fig. 1.4. Cross sectional view of 7.5 hp aluminum-rotor induction machine, (a) Stator. (b) Rotor 

(a) (b) 

Fig. 1.5. Cross sectional view of 7.5 hp copper-rotor induction machine, (a) Stator. (b) Rotor. 

1.6 Objectives of This Research Work 

Investigations on the induction generators have been performed where saturation of the main 

flux was considered and the machines studied were either wound-rotor or aluminum bar squirrel-

cage rotor type. However, studies on the performance analysis of a squirrel-cage aluminum-rotor 

and copper-rotor SEIG considering both saturation and thermal effect have not yet been carried 

out extensively. Moreover, this research work gives a detailed description of machine behaviour 

and the effect of temperature on both aluminum and copper rotor machines. Also, comparative 

results have been presented between experimental and theoretical results. 
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Therefore, this research work presented in this thesis broadly covers the following objectives. 

1. Consideration of saturation and effects of temperature in the machine modeling. 

2. Comparison between experimental and theoretical results. 

3. Performance analysis of aluminum-rotor and copper-rotor SEIG. 
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CHAPTER 2 

INDUCTION GENERATORS 

2.1 Self-Excitation 

Self-excitation phenomenon in induction machines although known for more than a half 

century is still a subject of considerable attention [l]-[8]. The interest in this topic is primarily 

due to the application of SEIG in isolated power systems. Physical background of the self-

excitation process has been described in [9]. When an induction machine is driven at a speed 

greater than the synchronous speed (negative slip) by means of an external prime mover [10], the 

direction of induced torque is reversed and theoretically it starts working as an induction 

generator. In the negative slip region, it is seen that the machine draws a current, which lags the 

voltage by more than 90. This means that real power flows out of the machine but the machine 

needs the reactive power. To build up voltage across the generator terminals, excitations must be 

provided by some means. 

Therefore, the induction machine can work in two modes: 

1) Grid connected mode 

2) Isolated mode 

In case of a grid-connected mode, the induction generator can draw reactive power either 

from the grid but it will place a burden on the grid or by connecting a capacitor bank across the 

generator terminals. For an isolated mode, there must be a suitable capacitor bank connected 

across the generator terminals. This phenomenon is known as capacitor self-excitation arid the 

induction generator is called a "SEIG". 

An induction generator without any external source, using capacitors can self-excite if 

there is a remnant magnetic flux in the machine core or residual charge across the capacitor 

terminals. The residual magnetism in the field circuit produces a small voltage. That voltage 

produces a small capacitive current flow. This boosts up the voltage which further increases the 

capacitive current until the voltage reaches the steady-state value. Thus a three phase induction 

machine can be made to work as a self-excited induction generator provided the capacitance 
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connected across the stator terminals have sufficient charge to provide necessary initial 

magnetizing current. 

It is well known that when capacitors are connected across the stator terminals of an 

induction machine, driven by an external prime mover, voltage will be induced at its terminals. 

The induced emf and current in the stator windings will continue to rise until steady state is 

attained, influenced by the magnetic saturation of the machine. At this operating point the 

voltage and current will continue to oscillate at a given peak value and frequency. In order for 

self-excitation to occur, for a particular capacitance value there is a corresponding minimum 

speed. 

When an induction machine is driven by a prime mover, and if the capacitor is charged, 

that capacitor provides the exciting current required by the induction generator to produce a 

magnetic flux. The magnetic flux in the induction generator charges the capacitor to increase the 

terminal voltage. An increase in the capacitor voltage boosts up the excitation current to the 

generator to increase the flux which in turn increases the terminal voltage. In this way the 

voltage and current build up continues until the magnetizing inductance decreases to its saturated 

value and an equilibrium point is attained. The process will continue until steady-state is reached. 

Self-excited induction generators are good candidates for wind powered electric 

generation application especially in remote areas, because they do not need external power 

supply to produce the magnetic field. Permanent magnet generators can also be used for wind 

energy applications but they suffer from uncontrollable magnetic field, which decays over a 

period due to weakening of the magnets, and the generated voltage tends to fall steeply with 

load. The SEIG has a self-protection mechanism because the voltage collapses when there is a 

short circuit at its terminals. Further, As compared to conventional synchronous generators, the 

SEIGs have more advantages such as cost, reduced maintenance, rugged and simple 

construction, brush-less rotor (squirrel cage), etc. But, on the other hand they also suffer from 

some inherent disadvantages such as reactive power consumption, poor voltage regulation under 

varying speeds and low power factor. The following Fig. 2.1 shows the basic operation principal 

of a SEIG. 
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The process of self-excitation can also be explained by the following points. 

1. A three phase induction machine can be operated as a SEIG if its rotor is driven at a 

suitable speed and a capacitor bank of sufficient value is connected across its stator 

terminals. 

2. To build up voltage across the generator terminals, excitation must be provided. 

3. The residual flux in the rotor iron or initial charge on the excitation capacitor will induce 

a small emf in the stator winding. 

4. This induced voltage will continue to increase until a steady state is reached influenced 

by the magnetic saturation of the machine. 

5. This phenomena is known as capacitor self excitation, and the induction motor is called 

SEIG. 

\ i ̂ :.f 

Prime 
Mover 

Stator 

Induction Generator 

p. 

Excitation 
Capacitance 

Fig. 2.1. Basic operating principle of a self-excited induction generator. 

The process of voltage build-up in an induction generator is very much similar to that of a 

dc generator. There must be a suitable value of residual magnetism present in the rotor. In the 

absence of a proper value of residual magnetism, the voltage will not build up. So it is desirable 

to maintain a high level of residual magnetism, as it does ease the process of machine excitation. 
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When an induction generator first starts to run, the residual magnetism in the rotor circuit 

produces a small voltage. This small voltage produces a capacitor current flow, which increases 

the voltage and so forth until the voltage is fully built up. The no-load terminal voltage of the 

induction generator is the intersection of the generator's magnetization curve with capacitor load 

line. The magnetization curve of the induction generator can be obtained by running the machine 

as a motor at no load and measuring the armature current as a function of terminal voltage. 

2.2 Determination of Minimum Capacitance Required for Self-Excitation 

There must be an initial charge on the capacitor or residual magnetism in the rotor iron to 

initiate the voltage and current to build up. When the machine is driven by an external prime-

mover, the remnant flux in the rotating rotor induces a small voltage in stator windings, which 

carries a leading current if suitable terminal capacitors are connected. The steady-state 

performance characteristics of an isolated self-excited induction generator are influenced by the 

magnitude of the excitation capacitor and rotor speed. The terminal capacitor must have its value 

within a certain range to sustain self-excitation. If the value of the excitation capacitor is outside 

this range, self-excitation will not be possible. The capacitor in such a machine must have a 

minimum value, Cmin for self-excitation to take place. On the other hand in order to sustain 

operation, the terminal capacitor must also be below a certain maximum value Cmax. 

Since core losses do not have a significant effect in the Cmin estimation, they can be 

ignored. A SEIG must be in the saturated region at starting, it means that Xm is a saturated 

reactance. Higher saturation can reduce Xm, and its value is normally chosen the minimum 

saturated reactance X^M. 

The following flowchart as shown in Fig. 2.2 shows the basic steps to determine the 

minimum capacitance as well as minimum speed. 
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Increment 

No 

Fig. 2.2. Flowchart to determine the minimum speed and minimum 
capacitance for SEIG at no load. 



Initially, experiments were conducted on a 1/3 hp laboratory induction machine with the 

following machine parameters to obtain the required values. 

Fig. 2.3. 1/3 hp Laboratory induction machine on which experiments were conducted. 

Table 2.1 Rating of 1/3 hp IM 

Machine used for investigation 

Rated Voltage 

Rated Current 

Rated power 

Rated frequency 

RPM 

Poles 

230 V 

1.6 A 

1/3 HP 

60 Hz 

1,725 
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Table 2.2 Parameters of 1/3 hp IM 

Machine parameters 

Rs 

Rr 

xs 

Xr 

Xm 

Rm 

5.8433 Q 

3.2535 Q 

6.2048 Q 

6.2048 Q 

80.5604 0 

200.54 0 

The following figures show the various results for minimum capacitance of the induction 

machine, both experimental as well as mathematical. 

1) Comparison of experimental and calculated values of Cmin 

2) Experimental and calculated values of Cmin based on different values of Xm 

3) Variation of Frequency with Speed (No load & C=52.8 /iF) 

4) Fig 2.8 Variation of Frequency with Speed (No load & C=61.6 juF) 
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Fig. 2.7. Variation of Frequency with Speed (No load & C=61.6 /xF). 

Therefore, we can deduce the following inferences 

a) Value of minimum capacitance and mutual inductance varies inversely with speed. 

b) At any speed below the cut-off speed the machine will not build up terminal voltage 
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CHAPTER 3 

INDUCTION GENERATOR MODELING 

3.1 General Background 

The main aspect which distinguishes the induction machine from other types of electric 

machines is that the secondary currents are created solely by induction, as in a transformer, 

instead of being supplied by a DC exciter or other external power source, through slip rings or a 

commutator, as in synchronous and DC machines. Depending on the condition of operation, the 

induction machine can be used as a motor or generator. The steady state model of an SEIG is 

developed as per-phase equivalent circuit. In this circuit the slip and angular frequency are 

expressed in per unit quantities. When the stator is excited from a balanced three-phase supply, 

the three phases together create a constant magnitude, synchronously revolving mmf or field in 

the air gap with a crest value 3/2 times the peak value of the alternating field due to one phase 

alone [1]. 

This field rotates around the air-gap at synchronous speed Ns which can be calculated as 

* . = ^ (3.1) 
P 

Where, 

/ is the frequency of the source 

p is the number of poles 

Ns is the synchronous speed 

The slip of a motor, s, which is defined as the slip of the rotor with respect to the stator magnetic 

field, can be given as 

N-Nr 

Where Nr is the rotational speed of the rotor 

Now, if the speeds are expressed in radians per second the slip is given by 

(3.2) 



0Jb 

Where, 

0)£ is the synchronous speed in radians per second 

ur is the speed of the rotor. 

The relative speed between the synchronous speed and the rotor speed is expressed in its 

equivalent electrical speed where the electrical rotor speed is the product of the mechanical speed 

and the number of pole pairs. Rotation of the rotor changes the relationships between stator and 

rotor emfs. However, it does not directly change the inductance and resistance parameters. The 

angular frequency of the induced current in the rotor is saib and the induced voltage in the rotor 

will be sEr, where Er is the induced voltage in the rotor when the rotor is stationary. 

3.2 Conventional Induction Machine Model 

Earlier authors [2]-[7] have used the nodal admittance or the loop impedance method to 

analyze the machine performance. In nodal admittance method, the overall admittance of the 

induction generator with respect to a single node is taken as zero. For loop analysis technique, 

the total loop impedance including the capacitance is taken as zero. 

3.2.1 Nodal Admittance 

The nodal admittance method is used to determine the value of minimum capacitance and 

frequency. Based on the steady-state equivalent circuit model, and considering the circuit 

conductance a higher order polynomial in the per-unit frequency is obtained. 

The sum of the currents at node 'a' is 

Ia+Ib+Ic=0 (3.4) 

We can rewrite this equation as 
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Fig. 3.1. Per phase model of an induction machine for nodal analysis. 

r,(r,) = o (3.5) 

Where Vj is the node voltage at 'a' and 

Yt=Yl+Yc+Yc ad (3.6) 

The admittance between point c and d can be written as 

= _a_ _J_ 1 
cd Rc

+JXm
+^_ 

(a-b) + &> 
(3.7) 

2C,= — = Kd+JXt cd 
Lcd 

(3.8) 

Y,= 
aRl ja2Xl 

' (R?+a2X?) (R2+a2X2) 
(3.9) 

Y = 
JXC 

a 

- i - i 

(3.10) 

lad ^ + jXls) + {Rcd+jXcd) 
- i - l 

(3.11) 

Replacing the equivalent impedance between c and d by RCd +jXc cd-



Now, since at steady state condition V} ?%), then 

Yt=Yi+Ye + Y^=0 

R jX 

(3.12) 

(3.13) 

Therefore, 

Real(7() = 0 

and Imag(7/) =0 

Equating real and imaginary terms separately to zero, we get 

a2X1 X ad a 
Xc Rf+aX2 Rj+Xj 

0 

and 

aR, 
• + • 

R ad 

Rf+a'X,2 Ra/+Xt 
= 0 

ad 

This polynomial can now be solved for finding the roots. 

3.2.2 Loop Impedance 
j*s 

K 

vwwyir-^ 
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i 

Z < ^ 

"Y~ 
V. 

JXr 

J*. 

" V 

(3.14) 

(3.15) 

' Rr 

J 

Fig. 3.2. Per phase model of an induction machine for loop analysis. 

The loop equation in Fig. 3.2 may be written as 



I,Zt =0 (3.16) 

where Is is the loop current in the loop 'abed' and 

Zt = Zab + Zac + Zcd is the total loop impedance. (3-17) 

(3.18) 
1 1 

a 

Zac=^ + jXls 
a 

1 a 1 
= — + 

Zcd Rc JXm 

.a2 

~Jxc 

1 

Rr , iY. 

(3.19) 

(3.20) 

{a-b) 

Since in steady state conditions Is 7^0, then Zt = 0, therefore 

Real (Z,) = 0 and Imag (Zt) = 0. 

By equating real and imaginary components, two non-linear equations can be formed. These 

can be solved simultaneously for finding out the unknown values. 

3.3 Induction Machine Thermal Model and Dynamic Model 

Using the d-q representation, the induction machine can be modeled as shown in Fig. 3.3. This 

representation is a general model based on the assumption that the supply voltage can be applied 

to both the stator and/or rotor terminals. In squirrel cage induction machines voltage is supplied 

only to the stator terminals. In general power can be supplied to the induction machine (induction 

motor) or power can be extracted from the induction machine (induction generator). It all 

depends on the precise operation of the induction machine. If electrical power is applied to the 

stator of the induction machine then the machine will convert electrical power to mechanical 

power. 



Q- axis 

HKH 
Vds 

ids D- axis 

Fig. 3.3. D-Q axis representation of induction machine. 

As a result the rotor will start to rotate and the machine is operating as a motor. On the 

other hand, if mechanical power is applied to the rotor of the induction machine then the 

machine will convert mechanical power to electrical power. In this case the machine is operating 

as an induction generator. When the induction machine operating as a generator is connected to 

the grid or supplying an isolated load, driven by an external prime mover, then the rotor should 

be driven above synchronous speed. When the machine is operated as a motor, power flows from 

the stator to the rotor crossing the air gap. However, in the generating mode of operation, power 

flows from the rotor to the stator. 

The conventional model and the d-q axes model are the same for steady state analysis. 

The advantage of the d-q axes model is that it is powerful for analyzing the transient and steady 

state conditions, giving the complete solution of any dynamics. 



Fig. 3.4 and Fig. 3.5 show the direct and quadrature axes representation of a squirrel-cage 

induction machine. 

Rs uAqs L,s 

VWV^O 
Lir (u-u)r)Aqr Rr 

Fig. 3.4. Equivalent circuit of an SEIG in d-axis. 

Rs wAds Lk 

VWV-O^ 
L,r (w-wr)\dr Rr 

Fig. 3.5. Equivalent circuit of an SEIG in q-axis. 

The d-q axis stator and rotor voltages of an induction machine can be expressed in matrix form 
as 

qs 

vds 

qr 

vdr 

li+pli coLs /?4 coLm 

-Q)LS Rs+pl^ -G)Lm pl^ 

pi* (a-CQr)Lm Rr+plf (o)-cDr)Lr 

-(Q)-cor)Lm pl^ -(co-a)r)Lr R, +plf 

qs 

Lds 

qr 

"dr. 

(3.21) 

Where, 

Rs stator winding resistance, Q. 
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Rr rotor winding resistance, 0 . 

Lm magnetizing inductance, H. 

Ls stator leakage inductance, H. 

Lr rotor leakage inductance, H. 

w r electrical rotor angular speed in rad/sec. 

p d/dt (differential operator) 

Equation can be written in a first order differential equation form in an arbitrary rotating 

reference frame 

A L,s+Lm 

Lr=Llr+Lm 

These four first order differential equations are solved with the well known fourth order Runge-

Kutta method to obtain the d- and q- axis leakage fluxes. These fluxes are related to the machine 

currents by the following equations 

X =Li +L i 
qs s qs m qr 

/L =L i, +L i, 
as s as m dr ,-3 T2\ 

\r =Lriqr ^Lmlqs 

Kr =Lridr + A A 

Equation may be written as 

[vdq] = [RLdg] [ijg] + [Ldg] p[idg] (3.24) 

where 

[Vdq] = [Vgs Vds Vqr Vdrf (3.25) 

\}dq\ = Uqs ids iqr UA (3.26) 



Kl= co{Lm+Lls) Rs 

0 (oi-o)r)Lm 

-{a-CDt.)Lm 0 

0 coLm 

-coLm 0 

Rr {cD-a)jLm+Llr) 

-{co-0)jLm+Llr) Rr 

(3.27) 

U-
+ Lls 

0 

Lm 

0 

0 

Lm+Lls 

0 

L„, 

Lm 

0 

Lm+Llr 

0 

0 

4 
0 

£„ + 

(3.28) 

Rearranging 

P\}dq[ = [Ldq]'1 [Vdg] ~ [Ldq\l [RLdq\ [idg] 

Since the rotor is squirrel-cage one, vqr and vdr are both equal to zero. 

The differential equations representing the capacitor circuit is given by 

V 
Jed _ 

= c p ca 

-co p 

V 

(3.29) 

(3.30) 

where the voltage across the capacitor is vqs and vds and the currents are icq and icd respectively. 

Equation can be re-arranged to give 

v„. 
qs 

yds. 
= 

~\IC 

0 

0 " 

1/C_ 

*„B 
qs 

Jds. 
+ 

0 - < y 

tf) 0 "A 

(3.31) 

For open circuit conditions, (3.29) and (3.31) form the set of differential equations to 

represent the system. 

For a resistive load connected across the terminals of the SEIG and noting that 



lqs lcq ~^~llq 

and 

(3.32) 

lds ~ lcd + lld (3.33) 

the load currents may be expressed as 

R, qs 

Vds. 

(3.34) 

In order to take the RL load impedance into account 

qs 

ds . 

(Ri+pLt) 
lld. 

(3.35) 

or 

P --L; 
vds. 

-L, R (3.36) 

Effective supervisory systems have two positive effects: the lifetime of the machine can 

be prolonged and the operating range of the machine and of the following process can be 

expanded. Still, a critical variable for induction machines, in particular for those of high power, 

is the rotor temperature. The increasing demands on the reliability of motors, especially during 

switching operations with frequent reversing starts or run ups in automatic processes, require 

exact investigation of the thermal behaviour of a motor during transient conditions [8]-[l 1]. 

Now, from the previous equations we know that 

qs 

V. ds 

qr 

vdr 

Rs+pli o)Ls pl^ coLm 

-o)Ls Rs+pli -coLm pl^ 

pi*, {G)-(Or)Lm Rr+plf (o)-o)r)I^ 

-((D-cor)Lm pl^ -{p)-(or)Lr Rr+plf 

qs 

lds 

qr 

Ldr 



and also that 

cq 

lcd 
= c 

p co 

-a> p vds. 

and 

i, 

i 
Id V ds 

{Ri + piJ 

Therefore, substituting the following four equations 

Ri = aiRw + j3i 

Ri = a2RiG + Pi 

Xlr = CCAXlrQ + y04 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

Where, Rj, Rio, R2 and R20 are the initial and final values of the rotor and stator resistance. 

a and /? are the temperature co-efficient and the initial value of the temperature respectively. 

All the values that are obtained for the parameters are obtained from the experimental 

data and these values are then used to further calculate the new set of parameters. These 

parameters then give us a clear indication of the effect of temperature on the machine parameters 

and subsequently give us an overall improved idea of the performance and behaviour of any 

particular induction machine. The MATLAB code used for these investigations is given in 

Appendix A. 



3.4 References 

[I] P. L. Alger, The nature of induction machines, Gordon and Breach Inc., New York, 1965. 
[2] M. B. Brennen and A. Abbondanti, "Static exciters for induction generator," IEEE 

Transactions, IA-13, pp. 422-428, 1977. 
[3] N. H. Malik and A. H. Al-Bahrani, "Influence of the terminal capacitor on the 

performance characteristics of a self excited induction generator," IEE Proceedings, Vol. 
137, Pt. C, No. 2, pp. 168-173, March 1990. 

[4] N.H. Malik and S. E. Haque, "Steady state analysis and performance of an isolated self-
excited induction generator," IEEE Transactions on Energy Conversion, Vol. EC-1, No. 
3, pp. 134-139, 1986. 

[5] T. F. Chan, "Analysis of self-excited induction generators using and iterative method," 
IEEE Transactions on Energy Conversion, Vol. 10, No. 3, pp. 502-507, Sep 1995. 

[6] R. J. Harrington and F. M. M. Bassiouny, "New approach to determine the critical 
capacitance for self-excited induction generators," IEEE Transactions on Energy 
Conversion, Vol. 13, No. 3, pp. 244-249, Sep 1998. 

[7] A. K. Tandon, S. S. Murthy and G. J. Berg, "Steady-state analysis of capacitor self-
excited induction generator," IEEE Transactions, PAS-I03, pp. 612-618, 1984. 

[8] G Pascoli, F Pirker, H Kapeller and C Krai, "Comparison of two rotor temperature 
estimation models of a surface cooled squirrel cage induction machine," IEEE 
International conference on electric machines and drives, Vol.1, pp. 207-211, May 2005. 

[9] M Maximini and H. J. Koglin, "Determination of the absolute rotor temperature of 
squirrel cage induction machines using measurable variables", IEEE Transaction on 
Energy Conversion, Vol. 19, No. 10, March 2004. 

[10] A.Boglietti, A. Cavagnino, L. Ferraris and M.Lazzari, "Energetic Considerations about 
the Use of Cast Copper Squirrel Cage Induction Motors," in Proc. 33rd Annual 
Conference of the IEEE Industrial Electronics Society, pp. 157-162, Taipei, 2007. 

[II] M.S. Rajagopal and K.N. Seetharamu, "Transient thermal analysis of induction motors", 
IEEE Transaction on Energy Conservation, Vol 13, No.l, March 1998. 

42 



CHAPTER 4 

EXPERIMENTAL SET UP OF INDUCTION GENERATOR 

4.1 Aluminum- and Copper-Rotor Induction Generator 

Most induction motors in the fractional and integral horsepower range of sizes are made with 

die-cast alum rotor cages. With the present day push for higher efficiency of energy usage, the 

possibility of improving efficiency in such motors has become enough of a priority to cause 

renewed interest in the use of copper in the squirrel cage because of its substantially higher 

electrical conductivity. Induction motors have been made with fabricated copper rotors since 

there were induction motors. However, the high melting point of copper leads to difficulties in 

casting. Short die life resulting from high temperature has, in the past, made cast copper rotors 

uneconomical. Because of higher energy costs and improvements to the metallurgy of casting 

apparatus, the economics of the situation appear to have changed and a number of manufacturers 

of induction machines are taking a look at die-cast copper rotors. For a given speed the EVI with 

copper rotor develops higher torque and also efficiency of a Cu-rotor EVI is higher than a 

conventional Al-rotor EVI. Copper has higher electrical conductivity and higher thermal capacity 

per unit volume than aluminum leading to lower copper losses and lower temperature rise. Also, 

the tensile strength and melting point of copper are more than that of aluminum. 

1.5 kW Motor -4 Pole-400V 

B 
. - * * • ' "• 

'u -t 
g » - • 

Standard Aluminum Copper high efficiency 

Fig. 4.1. Comparison of efficiency between copper and aluminum. 
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Fig. 4.2 Stators of Al-and Cu-rotor Induction Machine. 

Fig. 4.3 Rotors of Al-and Cu-rotor Induction Machine. 

Figs. 4.2 and 4.3 show the stators and rotors of the two machines used in investigation. 



-Jr 

Fig 4.4 Experimental set-up used for the investigations. 

Fig. 4.4 shows the experimental set-up in the laboratory which is used for conduction all the 

experimental investigations. The set-up consists of five different components namely 

1) Power Supply 

2) DC Motor 

3) Induction Motor 

4) Capacitor Bank 

5) Measurement & Recording Instrument 

• 

Fig. 4.5 Fluke Power Analyzer connected to the induction generator recording real-time data . 
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Fig. 4.6. Calculated torque-speed characteristics for the copper- and aluminum-rotor induction 
machines used in the investigations. 
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Fig. 4.7. Variation of rotor resistance coefficient and inductance coefficient with stator 
frequency. 

It can be seen from figure 4.6 that the starting and pull-out torques of the copper-rotor machine 

are relatively lower than the aluminum-rotor machine for rated condition. 

4.2 Determination of Machine Parameters 

In order to determine the performance of the induction machine precisely, the machine 

equivalent circuit parameters need to be determined accurately. The tests required to determine 

the machine parameters are based on the standardized experimental methods. The typical three 

tests that are conducted to find the machine parameters for an induction machine are: 

1) DC Test: The dc resistance test is carried out by passing a dc current through the phase 

winding of the stator and measuring the voltage drop across it. Several measurements are 



made and the dc resistance of the stator winding is taken to be the mean of all the 

calculated values of resistance. 

2) Open Circuit Test: Open-circuit test is conducted by driving the induction machine at its 

rated synchronous speed using an external prime mover which in this case is a dc motor. 

The stator terminals are supplied with rated voltage. When the machine is running at 

synchronous speed, the rotor slip is zero and hence the rotor circuit becomes open. 

3) Locked-Rotor Test: The locked-rotor or short-circuit test is conducted by blocking the 

rotor by some means to prevent it from moving. Since under this condition the slip s is 

equal to one the equivalent circuit is modified. At standstill condition of the rotor, the 

rated current is supplied to the stator terminals. 

Two 7.5 hp industrial type induction machines one with conventional aluminum-rotor 

and the other with copper-rotor. Table 4.1 shows the physical features of the two machines. It 

should be noted that these two machines are manufactured by two different companies. Even 

though the designs are consistent with NEMA guidelines, there are subtle dissimilarities in many 

areas. Table 4.2 Equivalent Circuit Parameters of the Machines Used in the Investigations. As 

can be seen, the aluminum cage rotor is skewed with the fan blades integrally cast on the end 

rings while the copper cage rotor is plain and without such blades attached to the end rings. The 

copper-rotor motor has comparatively longer core that lowers flux density while increasing 

cooling capacity and reducing magnetic and stray losses. Despite such subtle dissimilarities 

between these machines, a detailed qualitative analysis has been carried out. 
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Table 4.1 Induction Machine Data. 

Aluminum-rotor Copper-rotor 

Manufacturer 

NEMA Design 

NEMA efficiency 

Rated voltage 

Rated current 

Output power 

Connections 

Number of poles 

Rated speed 

Rated frequency 

Weight 

Diameter of rotor 

Length of rotor core 

Length of stator core 

Inside diameter of stator core 

Number of stator slots 

Height of rotor bar 

Width of rotor bar 

Length of rotor bar 

Number of conductors 

Conductivity of rotor bar 

General Electric 

B 

89.5 % 

346 V 

12 A 

7.5 hp 

Wye 

4 

1755 rpm 

60 Hz 

75.9 kg 

134.9 mm 

35.7 mm 

135 mm 

144.96 mm 

48 

25.79 mm 

5.62 mm 

136.8 mm 

40 

37.71 /xS/mm 

Siemens 

B 

92.4 % 

460 V 

9.5 A 

7.5 hp 

Wye 

4 

1775 rpm 

60 Hz 

90 kg 

129.9 mm 

165.8 mm 

166 mm 

139.86 mm 

48 

26.6 mm 

5.6 mm 

165.8 mm 

40 

59.61 iiS/mm 

48 



Table 4.2 Equivalent Circuit Parameters of the Machines Used in the Investigations. 

Rs 

Rr 

Xls 

Xy 

Xm 

RC 

hi 

p 
A rotation 

* core(stator) 

-* cu(stator) 

* cu (rotor) 

Tst 

'max 

Parameters of Al-rotor IM (pu) 
0.0232 

0.0491 

0.0556 

0.0834 

2.4440 

33.915 

0.4000 

0.029 

0.026 

0.0273 

0.0456 

3.89 

5.91 

Parameters of Cu-rotor IM (pu) 
0.0234 

0.0530 

0.0745 

0.1117 

2.4668 

36.8881 

0.3929 

0.0270 

0.024 

0.0245 

0.0414 

2.53 

4.55 

4.3 Saturation Characteristics 

It is well known that saturation takes place in almost all electrical machines and induction 

machines are no exception. In order to achieve a better representation of the induction machines, 

saturation should be included in the machine model. The performance of saturated induction 

machines and the accurate calculation of the stator and rotor parameters depend significantly on 

the saturation conditions of their main flux and leakage flux paths. It has been found that the 

inclusion of the saturation effects gives more accurate and realistic results [l]-[5]. 

Figs. 4.8 and 4.9 show the saturation characteristics and the magnetizing inductances of the two 

copper-rotor and aluminum-rotor induction machines. The saturation characteristics in Fig 4.8 

show that the relationship between the two is non-linear. 
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Fig. 4.8. Measured saturation characteristics of the two SEIGs. 
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CHAPTER 5 

RESULTS 

5.1 Build-up Time Variation with Temperature 

The following Figs 5.1-5.14 show the various build up time at different intervals of temperature 

for aluminum-rotor and copper-rotor machine. The Value T^ai and Tg^i represent the starting 

temperature and the final temperature. The simulation time in all the simulations conducted 

varies from 18 to 20 seconds. 
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Fig. 5.1. Al-rotor machine; Tfinai = 23 °C. 

Fig 5.1 represents the voltage build-up time for the aluminum-rotor induction machine. In this 

case the starting temperature T^ai and the final temperature Tfmai are both equal. For this 

condition, Timtial = 23°C; Tfinai = 23 °C. 
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Fig. 5.3. Al-rotor machine; Tfinai = 50 °C. 

Figs. 5.2 and 5.3 represents the voltage build-up time for the aluminum-rotor induction machine. 

In this case the starting temperature Tjn;tiai and the final temperature Tfjnai are given as Xinitiai - 23 

°C; Tfmai = 30 °C for Fig 5.1 and Tinjtiai = 23 °C; TfmaI = 50 °C for the second Fig. 
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Fig. 5.5. Al-rotor machine; Tfmai = 75 °C. 

Figs. 5.4 and 5.5 represents the voltage build-up time for the aluminum-rotor induction machine. 

In this case the starting temperature Tjnitjai and the final temperature Tfinai are given as T^iai = 23 

°C; Tfinai = 60 °C for Fig 5.4 and T^iai = 23 °C; Tfmai = 75 °C for the second case. 
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Fig. 5.6. Al-rotor machine; Tfinai = 85 °C. 
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Figs. 5.6 and 5.7 represents the voltage build-up time for the aluminum-rotor induction machine. 

In this case the starting temperature Ti^ai and the final temperature Tfmai are given as Tjnitjai = 23 

°C; Tfi^ = 85 °C for Fig 5.6 and T ^ , = 23 °C; Tfmal = 100 °C for Fig. 5.7. 
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Fig. 5.9. Cu-rotor machine; Tfmal = 30 °C. 

Figs. 5.8 and 5.9 represents the voltage build-up time for the copper-rotor induction machine. In 

this case the starting temperature T^iai and the final temperature Tfinai are given as Tinitiai = 23 °C; 

Tftaai = 23 °C for Fig 5.8 and Tinim = 23 °C; Tfmai = 30 °C for Fig. 5.9. 
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Fig. 5.11. Cu-rotor machine; Tfmai = 60 °C. 

Figs. 5.10 and 5.11 represents the voltage build-up time for the copper-rotor induction machine. 

In this case the starting temperature Tibial and the final temperature Tfmai are given as Tjnkiai= 23 

°C; Tfinaj = 50 °C for Fig 5.10 and Tinitial = 23 °C; Tfmai = 60 °C for Fig. 5.11. 



Fig. 5.12. Cu-rotor machine; Tfmai = 75 °C. 
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Fig. 5.13. Cu-rotor machine; Tfmai = 85 °C. 

Figs. 5.12, 5.13 and 5.14 represents the voltage build-up time for the copper-rotor induction 

machine. In this case the starting temperature T^iai and the final temperature Tfmai are given as 

Tinitiai = 23 °C; Tfinal = 75 °C for Fig 5.12, Tinitial = 23 °C; Tfmal = 85 °C for Fig. 5.13. and Tmitial = 

23 °C; Tfi„a, = 100 °C for Fig 5.14. 
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Fig. 5.14. Cu-rotor machine; Tfmai = 100 °C. 
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Fig. 5.15. Variation of voltage build-up time with temperature. 

Fig 5.15 shows the change in voltage built-up time as a function of temperature, for both 

aluminum- and copper-rotor induction machines. This graph confirms that gradual change in 

temperature effects the built-up times in induction machine. In this case, aluminum-rotor 

induction machine is affected more as compared to the copper-rotor induction machine. 
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5.2 Machine Parameters with Respect to Temperature 

Figs. 5.16-5.18 show the variation of machine parameters with respect to rise in temperature for 

both aluminum-rotor and copper-rotor machine. 
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Fig .5.16. Change in rotor resistance Rl for aluminum and copper machine 
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From the above given figures, it is clearly seen that rise in temperature makes a significant effect 

on the machine parameters. The change in parameters is more or less equal for both the 

machines, but the aluminum-rotor induction machine is slightly affected more as compared to the 

copper one. 

The following tables shown in Table 5.1 and 5.2 show the gradual change in the machine 

parameters with continuous rise in the temperature. 
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Table 5.1 Change in machine parameters w.r.t. temperature rise for 
aluminum-rotor induction machine 

Temp rise (°C) /?j,(ohm) /?2(ohm) X^ohm) X2(ohm) 

2.50 

8.50 

13.00 

16.50 

22.50 

27.50 

32.50 

37.50 

44.00 

53.00 

56.50 

0.1423 

0.1456 . 

0.1481 

0.1500 

0.1533 

0.1560 

0.1588 

0.1615 

0.1651 

0.1701 

0.1720 

0.2825 

0.2907 

0.2949 

0.2976 

0.3062 

0.3094 

0.3114 

0.3139 

0.3186 

0.3226 

0.3254 

0.3338 

0.3386 

0.3403 

0.3411 

0.3447 

0.3466 

0.3471 

0.3482 

0.3499 

0.3507 

0.3524 

0.5007 

0.5079 

0.5104 

0.5117 

0.5171 

0.5199 

0.5206 

0.5224 

0.5249 

0.5260 

0.5286 

Table 5.2 Change in machine parameters w.r.t. temperature rise for 
copper-rotor induction machine 

Temp rise 
(°C) ffifohm) /?2(ohm) Jf3(ohm) X2(ohm) 

5 0.157924 0.461274 0.551596 0.827394 

12 0.162152 0.465351 0.556413 0.834619 

17 0.165174 0.467792 0.560379 0.840568 

22 0.168169 0.469887 0.562005 0.843008 

26 0.170611 0.46861 0.563252 0.844878 

31 0.173631 0.476664 0.568527 0.852791 

37 0.177256 0.479056 0.570453 0.855679 

42 0.180277 0.482118 0.573858 0.860787 

48 0.183901 0.481065 0.574587 0.86188 

56 0.188734 0.488845 0.578293 0.867439 



5.3 Variation of Rotor Resistance and Temperature 

The following table shows real time experimental values obtained through continuous running of 

the induction machine. 

Table 5.3 Variation of temperature and rotor resistance w.r.t. time 

TimefMin) 

0 

5 

10 

15 

20 

25 

30 

37 

43 

60 

70 

80 

90 

100 

123 

127 

142 

174 

179 

190 

200 

224 

232 

Temp 

(°C) 
30 

52.5 

60 

67.5 

71 

77.5 

82 

86 

90 

102.5 

105 

110 

116 

120 

127.5 

129 

130 

135 

137.5 

138 

138 

139 

139 

Rr(Ohm) 

0.905 

0.94 

0.95 

0.975 

0.985 

1.01 

1.025 

1.042 

1.05 

1.093 

1.125 

1.16 

1.17 

1.225 

1.23 

1.235 

1.27 

1.275 

1.275 

1.28 

1.28 

1.28 

1.285 
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Fig 5.19 Change in rotor resistance as a function of temperature. 
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Fig 5.20 Change in Temperature as function of time. 

Figs. 5.19, 5.20 and 5.21 show the relationships between time, temperature and the rotor 

resistance. These curves clearly show that the rotor resistance increases linearly with respect to 

change in temperature. 
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Variation of Real and Reactive Power for the Two Induction Machines 
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Fig. 5.22. Calculated real and reactive power for aluminum-rotor SEIG under R-L loading 
condition. 
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Fig. 5.23. Calculated real and reactive power for copper- rotor SEIG under R-L loading 
condition. 

The real and reactive power build-up processes in Figs. 5.22 and 5.23 for aluminum- and copper-

rotor machines are similar to the ones under no load condition. It can be seen from these figures 

that there is a small transient rise in real power during the self-excitation process for both the 

machines. With the application of the load, reduction in the magnitude and frequency of the 

terminal voltage has been noticed. For stable operation, the equivalent impedance of the R-L load 

in parallel with the excitation capacitance C has to be capacitive. As a result, under loaded 

condition, the slope of the equivalent capacitive impedance will now be steeper than that for the 

no load condition. Hence the machine continues to run at steady state condition with a lower 

frequency and the operating point will shift to a lower point on the magnetizing characteristic 

curve of the SEIG. The measured values in Figs. 5.24 and 5.25 show closer agreement with the 

calculated ones. 
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5.5 Experimental Results from Power Quality Analyzer 
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Fig. 5.26. Inrush current for cu-rotor machine for no load condition. 
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Fig. 5.27. Inrush voltage for cu-rotor machine for no load condition. 

Figs. 5.26 and 5.27 show the values for inrush current and inrush voltage for a copper-rotor 

induction machine operating at no load and running at 1750 rpm. 
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Fig. 5.28. Inrush current for cu-rotor machine for R load. 
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Fig. 5.29. Inrush voltage for cu-rotor machine for R load. 

Figs. 5.28 and 5.29 show the values for inrush current and inrush voltage for a copper-rotor 

induction machine operating with a resistive load R load and running at 1750 rpm. 
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Fig. 5.30. Phasor current for cu-rotor machine for R load. 
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Fig. 5.31. Phasor voltage for cu-rotor machine for R load. 

Figs. 5.30 and 5.31 depict the phasor diagram showing the position of all the three phases 

system for a copper-rotor induction machine running with R load. 
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Fig. 5.32. Inrush current for cu-rotor machine for RL load. 
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Fig. 5.33. Inrush voltage for cu-rotor machine for RL load. 

Figs. 5.32 and 5.33 show the values for inrush current and inrush voltage for a copper-rotor 

induction machine operating with a resistive load RL and running at 1750 rpm. The values for 

both current and voltage go down as compared to the case of the machine running with only R 

load. 
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Fig. 5.34. Phasor current for cu-rotor machine for RL load. 
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Fig. 5.35. Phasor current for cu-rotor machine for RL load. 

Figs. 5.34 and 5.35 depict the phasor diagram showing the position of all the three phases 

system for a copper-rotor induction machine running with RL load. 
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Fig. 5.36. Inrush current for al-rotor machine for no load condition. 
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Fig. 5.37. Inrush voltage for al-rotor machine for no load condition. 

Figs. 5.36 and 5.37 show the values for inrush current and inrush voltage for an aluminum-rotor 

induction machine operating at no load and running at 1750 rpm. 
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Fig. 5.38. Inrush current for al-rotor machine for R load. 

I n r u s h I ——. ft 1 ft 
'- iss.zu 

• eoo.6 

' 180.0 

$ 0:00:09 (?p Ea-ct • 

aoo.i 

180.0 
20.0 

"V̂ __ 

B 

13/03/08 14:27:04 400U 6 0 H z 3 0 UVE DEFf tULT_ 
rrmwri 

Fig. 5.39. Inrush voltage for al-rotor machine for R load. 

Figs. 5.38 and 5.39 show the values for inrush current and inrush voltage for an aluminum-rotor 

induction machine operating with a resistive load R load and running at 1750 rpm. 
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Fig. 5.40. Inrush current for al-rotor machine for RL load. 

lis I n r u s h 

210.0 

170.0 

210.0T 

170.0 

j a i A 

T F \ 0:00:06 
"V. 

A —• -«*i fc^J..^.*^^ 

V 

<?F ED-Ct 

20.0 

13/03/08 15:49:14 400U 6OHZ30UVE DEFftULT 
•WF^-V 

CHI \mwn 

Fig. 5.41. Inrush voltage for al-rotor machine for RL load. 

Figs. 5.40 and 5.41 show the values for inrush current and inrush voltage for an aluminum-rotor 

induction machine operating with a resistive load RL and running at 1750 rpm. The values for 

both current and voltage go down as compared to the case of the machine running with only R 

load. 
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Fig. 5.42. Phasor current for al-rotor machine for RL load. 
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Fig. 5.43. Phasor voltage for al-rotor machine for i?L load. 

Figs. 5.42 and 5.43 depict the phasor diagram showing the position of all the three phases of the 

system for an aluminum-rotor induction machine running with RL load. 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This research work encompasses a wide range of topics dealing with induction machines and 

more specifically induction generators. An effort has been made so that the reader with a 

background in electrical engineering can easily understand the topics being discussed. The main 

research topics covered in this work include the theory and development of induction generators, 

conventional mathematical modeling of induction generators, taking into account the effect of 

thermal modeling on induction generators and finally a broad discussion and comparative 

analysis between an aluminum-rotor induction generator and a copper-rotor induction generator. 

The main conclusions that can be drawn are 

1) Comprehensive background and research literature related to induction generators has 

been presented. 

2) Consideration of saturation in the machine modeling. 

3) Temperature as a factor is considered in the machine modeling. 

4) Experimental and theoretical results are compared 

5) Performance analysis of aluminum-rotor and copper-rotor SEIG under varying conditions 

has been done. 

6) Value of minimum capacitance and mutual inductance varies inversely with speed. 

7) At any speed below the cut-off speed the machine will not build up terminal voltage. 

8) Starting and pull-out torques of the copper-rotor machine are relatively lower than the 

aluminum-rotor machine for rated condition. 

9) Gradual change in temperature effects the built-up times in induction machines. 

10) Rise in temperature makes a significant effect on the machine parameters. 
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11) Real-time ran diagrams from power quality analyzers for aluminum- and copper -rotor 

induction generators have been presented. 

6.2 Future Work 

In the current scenario, Wind Energy is one of the most promising areas of research. Not only in 

academia but in industry also there is a vast amount of research being done. Induction generators 

form an integral part of wind energy. A few suggested topics of research that can enhance this 

present work are: 

1) Consideration of temperature parameters of induction generators by conduction Finite 

Element analysis on the machine. This will give a more detailed analysis. 

2) Investigating the effect on the machine parameters by including material properties of the 

different components used in the induction generators. 

3) Thermal modeling can be enhanced by considering the machine to be made of different 

heat zones, while the machine is in operation. Even though this procedure is complex, but 

this will lead to a much better understanding of the fundamentals of the induction 

machine. 
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APPENDIX A 

Matlab code used for calculations 

% Parameters from Lab 7.5 hp machine 
%%%%uses state space matrix to solve the equations. 
%%% Im-Xm characteristics using Wang atan()function and piecewise 
%%% linearization. 
%%% included Vabc Iabc with transform matrix 
%%% implemented Find_Freq sub-routine to calculate frequency 

clear all 
global Rs RrO Xls Xlr Xm Rl XI v 
%%% machine parameters 

Tinitial = 23; 
Tfinal=100; 
DelTemp = Tfinal-Tinitial; 
Rs= .0006*DelTemp+. 1549; %7.5 hp motor stator resistance 
% RrO = 0.9239; %%% rotor resistance Auminum bars 
RrO = .0005*DelTemp+.4585; %%% rotor resistance Copper bars 
Lls= (-4*10A-6*DelTempA2+.0007*DelTemp+.548)/377; %stator inductance 
LlrO = (-5*10A-6*DelTempA2+.001 l*DelTemp+.822)/377; %%%rotor inductance 
Lm= 13.27/377; %magnetizing inductance 
fb=60; %base frequency 
p=4; %number of poles 
wb=2*pi*fb; %base speed 
we = 0; 
wr=377; 
Xls=wb*Lls; %stator impedance 
Xlr=wb*Llr0; %rotor impedance 
Xm = wb*Lm; 

C = .5*146.4e-6; 
% % % % % % % % % % % 
stop_time = input('Simulation for Open Circuit conditions.\nEnter simulation time in seconds: '); 

Rl =1000000000; 
XI =0; 
v = wr/wb; % per unit speed 

Finit = 1; %% per unit frequency (assumed) 
Xcinit= 43; %Impedance of exxcitation capacitance (assumed) 
Cx =[Finit Xcinit]; 

[XX] =frninsearch('Find_Freq', [Cx]); 
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Fpu = XX(1); %% calculated per unit frequency 
fb_new = fb*Fpu; %% new calculated frequency 

kappa = 5.5/(5.5+0.03); % ratio of bar width to width of slot (mm) 
hi = 27.77; %hieght of rotor bar (mm) 
%sigma= 37.71; %% aluminium 
sigma = 59.61; %copper 
eta = 2*pi*hl*sqrt(kappa*fb_new*(10A-7)*sigma); %%% use updated value of frequence 

Kr = eta*(sinh(2*eta)+ sin(2*eta))/(cosh(2*eta)-cos(2*eta)); 
Ke = (3/(2*eta))*(sinh(2*eta)- sin(2*eta))/(cosh(2*eta)-cos(2*eta)); 

alpha =144.5666; 
beta = 0.3626; 
gamma = 0.5668; 
Nu = atan(gamma); 

if flag <1 || flag >2 
disp ('Wrong info') 
return; 

elseif flag == 1 
Rr = RrO; 
Llr = LlrO; 
elseif flag == 2 
Rr = Kr*RrO; 
Llr = Ke*LlrO; 
end 

% % % % % % % % % % % % % % % 

theta = 0; 
T_matrix = (2/3)*[cos(theta), cos(fheta-2*pi/3), cos(theta+2*pi/3); 

sin(theta), sin(theta-2*pi/3), sin(theta+2*pi/3); 
0.5,0.5,0.5]; 

%stop_time = 8; 

% impedance and angular speed calculations 
IQS=[];IDS=[];Ia=[];ib=[];Ic=[]; 
IQR=[];IDR=[];Imag=[]; 
VQS= []; VDS = []; Va =[]; Vb =[]; Vc =[]; 
Pwr=[];Qwr=[]; 
Telec=[]; 
Lmag=[]; 
Tm = .12; Te= 0; J = 05; W =[]; 
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% initial conditions 
Lmatrix =[Lls+Lm 0 Lm 0; 0 Lls+Lm 0 Lm; 

Lm 0 Llr+Lm 0; 0 Lm 0 Llr+Lm]; 
Rmatrix =[Rs we*(Lm+Lls) 0 we*Lm; 

we*(Lm+Lls) Rs we*Lm 0; 
0 (we-wr)*Lm Rr (we-wr)*(Lm+Llr); 
-(we-wr)*Lm 0 -(we-wr)*(Lm+Llr) Rr]; 

ImatrixOld = [ 0 0 0 0 ] ' ; 
VmatrixOld = [.0015 0 0 0]'; 
%Vmatrix01d = [230 230 0 0]'; 

Omega = [0 -we 0 0; we 0 0 0; 0 0 0 0; 0 0 0 0]'; 
%Omega = [ 0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]'; 
Cmatrix =[1/C 0 0 0; 0 1/C 0 0; 0 0 0 0; 0 0 0 0]; 

h=.001; 
t = 0:h:stop_time; 
forn= l:length(t)-l 

XI = h*(-inv(Lmatrix)*Vmatrix01d - (inv(Lmatrix)*Rmatrix)*Imatrix01d); 
Yl = h*(Cmatrix*Imatrix01d + Omega* VmatrixOld); 
Wl = h*(p/(2*J))*(Tm-Te); 

X2 = h*(-mv(Lmatrix)*(Vmatrix01d+Yl/2) - (inv(Lmatrix)*Rmatrix)*(Imatrix01d+Xl/2)); 
Y2 = h*(Cmatrix*(Imatrix01d+Xl/2) + Omega*(Vmatrix01d+Yl/2)); 
W2 = h*(p/(2*J))*(Tm-Te); 

X3 = h*(-inv(Lmatrix)*(Vmatrix01d+Y2/2) - (inv(Lmatrix)*Rmatrix)*(Imatrix01d+X2/2)); 
Y3 = h*(Cmatrix*(Imatrix01d+X2/2) + Omega*(Vmatrix01d+Y2/2)); 
W3 = h*(p/(2*J))*(Tm-Te); 

X4 = h*(-inv(Lmatrix)*(Vmatrix01d+Y3) - (inv(Lmatrix)*Rmatrix)*(Imatrix01d+X3)); 
Y4 = h*(Cmatrix*(Imatrix01d+X3) + Omega*(Vmatrix01d+Y3)); 
W4 = h*(p/(2*J))*(Tm-Te); 

ImatrixOld = Imatrix01d+(Xl+2*X2+2*X3+X4)/6; 
VmatrixOld = Vmatrix01d+(Yl+2*Y2+2*Y3+Y4)/6; 
%wr = wr+(Wl+2*W2+2*W3+W4)/6; W =[W wr]; 

% ImatrixOld = ImatrixNew; 
% VmatrixOld = VmatrixNew; 

iqs = ImatrixOld(U); IQS=[IQS iqs]; 
ids = Imatrix01d(2,l); IDS=[IDS ids]; 
iqr = Imatrix01d(3,l); IQR=[IQR iqr]; 
idr = Imatrix01d(4,l); IDR=[IDR idr]; 
im = sqrt((iqs+iqr)A2+(ids+idr)A2); Imag =[Imag im]; 
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vqs = VmatrixOld(U); VQS =[VQS vqs]; 
vds = VmatrixOld (2,1); VDS = [VDS vds]; 

Vabc = inv(T_matrix)* [vds, vqs, 0]'; % transform to phase quantities 
va = Vabc(l,l); Va =[Va va]; 
vb = Vabc (2,1); Vb =[Vb vb]; 
vc = Vabc (3,1); Vc =[Vc vc]; 
Iabc = inv(Tmatrix)* [ids, iqs, 0]'; 
ia = Iabc(l,l); la =[Ia ia]; 
ib = Iabc(2,l);Ib=[Ibib]; 
ic = Iabc(3,l); Ic =[Ic ic]; 

Pinst = vqs*iqs+vds*ids; %Pwr =[Pwr Pinst]; 
Qinst = vqs*ids-vds*iqs; Qwr =[Qwr Qinst]; 
% Pabc= va*ia+vb*ib+vc*ic; Pwr=[Pwr Pabc]; 
Pabc= va*ia+vb*ib+vc*ic; Pwr=[Pwr Pabc]; 
Lamds = (Lls+Lm)*ids+ Lm*idr; 
Lamqs = (Lls+Lm)*iqs + Lm*iqr; 

Te = (0.75)*p*Lm*(-iqs*idr+ids*iqr); 
%Te = Lamds*iqs-Lamqs*ids; 
Telec = [TelecTe]; 

if im<10 %%%% Wang atan() function 
Xm = alpha*(atan(beta*im-gamma)+ Nu)/im; 

elseif im>=10 
Xm = 28; 

end 

%ifim<=1.5 
% Xm = 46.42; 
% elseif im >1.5 & im <=4.0 
% Xm=1035.1/(im+19.2); 
% elseif im >4.0 & im <= 6.5 
% Xm = 483.1255/(im+6.8); 
% elseif im >6.5 & im <=9 
% Xm = 343.5826/(im+3.0133); 
% elseif im > 9 
% Xm = 254.7902/(im+.0421); 
% elseif im> 12 
% Xm = 26; 
% end 

Lm = Xm/377; 
Lmag = [Lmag Lm]; 
Lmatrix =[Lls+Lm 0 Lm 0; 0 Lls+Lm 0 Lm; 
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Lm 0 Llr+Lm 0; 0 Lm 0 Llr+Lm]; 
Rmatrix =[Rs we*(Lm+Lls) 0 we*Lm; 

we*(Lm+Lls) Rs we*Lm 0; 
0 (we-wr)*Lm Rr (we-wr)*(Lm+Llr); 
-(we-wr)*Lm 0 -(we-wr)*(Lm+Llr) Rr]; 

% if n > 5000 %%% simulation of loss of capacitance 
% C = 50e-6 ; 
% end 

Cmatrix =[1/C 0 0 0; 0 1/C 0 0; 0 0 0 0; 0 0 0 0]; 
%% Rmatrix =[Rs we*(Lm+Lls) 0 we*Lm; 
%% we*(Lm+Lls) Rs we*Lm 0; 
%% 0(we-wr)*Lm Rr (we-wr)*(Lm+Llr); 
%% -(we-wr)*Lm 0 -(we-wr)*(Lm+Llr) Rr]; 
% % end 

end 

1=1 :n; 

plot (1/1000, Va); 
grid on 

%%% saving data in seperate file 
% % % Al =[l,,VQS,,VDS',IQS',IDS',IQR',IDR',Pwr',Qwr',Telec', Va',Ia']; 
% % % varname = input('Name of file to save data: \n ', 's'); %%% input name of file to 
data 
% % % fid = fopen(varname, W); %% create and open file to write 
% % % fork=l:n 
% % % fprintf(fid, '%f %f %f %f %f %f %f %f %f %f %f %f\n', Al(k,:)); % write to file 
% % % end 
% % % fclose(fid); % % % finally close the file 
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