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Abstract 

This thesis proposes a method to manage the interaction between the user and the system 

dynamically, through speech or text input which updates the user goals, select system actions and 

calculate rewards for each system response at each time-stamp. The main focus is made on the 

dialog manager, which decides how to continue the dialogue. We have used POMDP technique, 

as it maintains a belief distribution on the dialogue states based on the observations over the 

dialogue even in a noisy environment. Four contextual control modes are introduced in dialogue 

management for decision-making mechanism, and to keep track of machine behaviour for each 

dialogue state. The result obtained proves that our proposed framework has overcome the 

limitations of prior POMDP methods, and exactly understands the actual intention of the users 

within the available time, providing very interactive conversation between the user and the 

computer. 

IV 



Dedication 

To my Parents and all my Friends 

v 



Acknowledgements 

First, I would like to thank and express my sincere gratitude to my supervisor Dr. Xiaobu 

Yuan, for his support and encouragement with his valuable hints and stimulating suggestions to 

proceed with this thesis. Without his support and guidance, this work would be impossible. 

Secondly, I would like to take this opportunity to thank Dr. Dan Wu and Dr. Fritz Rieger, 

for being in the thesis committee and spending their valuable time in providing me with 

encouraging feedback. 

I am deeply indebted to express my gratitude to my colleagues Libian Bian and Mohit 

Sud for their moral support and valuable suggestions. 

Finally, I would like to thank all my friends who were with me by providing moral 

support and took care of me when I had my nasal surgery while I was doing my thesis. 

VI 



Contents 

Abstract iv 

Dedication v 

Acknowledgements vi 

List of Figures x 

List of Tables xii 

1 Introduction and Motivation 1 

1.1 Introduction 1 

1.2 The Origin 1 

1.3 Overview of Spoken Dialog System 3 

1.4 Motivation 4 

1.5 Problem Statement 4 

1.6 Thesis Structure 5 

2 Background 6 

2.1 Dialogue Management - An Overview 6 

2.1.1 Input Mode 7 

2.1.2 Fusion 8 

2.1.3 Dialogue Manager 8 

2.1.4 Fission 9 

2.1.5 Output Mode 10 

2.1.6 Multimodal Dialogue Management 10 

vii 



2.2 Review of existing Approaches 10 

2.2.1 Finite state-based Approach 11 

2.2.2 Frame-based Approach 12 

2.2.3 Information state-based Approach 13 

2.2.4 Probabilistic Approach 14 

2.2.5 Plan-based Approach 15 

2.2.6 Agent-based Approach 16 

2.3 Contextual Control Model 16 

2.3.1 Four Control Modes 17 

2.4 Conclusion 19 

3 Literature Review of Dialogue Management techniques 20 

3.1 Dialogue Management Techniques 20 

3.1.1 Handcrafted Dialogue Managers 20 

3.1.2 Bayesian Network for Dialogue Management 22 

3.1.3 Supervised Learning and Markov Decision Process 24 

3.1.4 Semi- Markov Decision Process 30 

3.1.5 Partially Observable Markov Decision Process 32 

3.1.5.1 Factored POMDP 40 

3.1.5.2 Hidden Information State model 43 

3.1.6 Limitations of Existing POMDP Approaches 45 

3.2 Review of Contextual Control Model 45 

3.2.1 Testing COCOM by assessing team behaviour 45 

3.2.2 COCOM for Dynamic Decision Making 48 

vii i 



3.3 Conclusion 49 

4 Four Mode Based Dialogue Management 50 

4.1 Method Description 50 

4.2 COCOM for Decision Making in DM 51 

4.3 Modified POMDP Approach 52 

4.3.1 Rewards 54 

4.3.2 Confidence Scores 55 

4.4 Conclusion 59 

5 Evaluation and Results 60 

5.1 Implementation 60 

5.2 Results 63 

5.3 Discussion 67 

5.4 Conclusion 68 

6 Conclusions and Future Work 69 

Bibliography 71 

Vita Auctoris 79 

IX 



List of Figures 

2.1 General Architecture of Dialogue Management System 7 

2.2 General architecture of Dialogue Manager 9 

3.1 HC1 handcrafted Dialogue Controller 21 

3.2 Dependency graph for Spoken Dialogue Management 23 

3.3 Supervised Learning for action selection 25 

3.4 Sequential decision Process of ATIS 27 

3.5 Three possible strategies of ATIS Spoken Dialog System 28 

3.6 A graph of basic MDP underlying the Dialog Manager 29 

3.7 The simulated environment interaction for Human-Machine conversations 31 

3.8 Structure of a Spoken Dialog System 33 

3.9 The agent - Environment Interaction 34 

3.10 Influence diagram of continuous POMDP 37 

3.11 Example conversation in Pizza- Ordering domain 38 

3.12 Frameworks for modeling uncertainty and policy optimisation 40 

in Spoken Dialogue Systems 

3.13 HIS Dialogue Manager 44 

3.14 Internal structure of Contextual Control Model (COCOM) 46 

3.15 Contextual Control Model by Eric Hollnagel in 1998 48 

4.1 Flow-chart of Proposed Model 58 

5.1 User Interface of Proposed system 61 

x 



5.2 Dialogue Manager updates all the activities of the system 62 

5.3 User Interface for case 1 experiment 63 

5.4 The updated history component of proposed dialogue manager for case 1 64 

5.5 User interface for case 2 experiments 64 

5.6 The updated history component of proposed dialogue manager for case 2 65 

5.7 User Interface for case 3 and 4 experiment 65 

5.8 The updated history component of proposed dialogue manager for case 3 and 4 66 

XI 



List of Tables 

4.1 Pseudo- code of Proposed Model 57 

5.1 Experimental Results of Modified POMDP model 67 

XII 



Chapter 1 

Introduction and Motivation 

1.1 Introduction 

This chapter introduces the origin and overview of the thesis. First, we have narrated the 

origin of the dialogue management systems briefly and the related fields associated with it. 

Then the subsequent sections we have illustrated an overview with several examples. Then, 

the next section follows the motivation of this thesis followed by the problem statement. 

Finally, the chapter ends with a detailed summary of this thesis. 

1.2 The Origin 

Human- Computer Interaction is concerned with the joint performance of tasks by human 

and the machines [Oldsig]. The basic goal is to make the computers interact with the human 

users, guide and help them in various domains. This area explored in 1963 by Ivan 

Sutherland in Sketchpad, where visible objects on the screen are directly manipulated with a 

pointing device such as alight-pen. Then, the actual work started with gesture recognition 

using a light-pen which is considered as the first application in HCI [Brad98]. Even though, 

many methods and applications in HCI find their application in various products, still some 

of basic applications are in the state of research since 1980. 

HCI has collaboration with different fields of science. Many of its methods and 

techniques play a significant role in the field of Artificial Intelligence and other related fields. 

Sometimes, people think HCI as part of AI, as some of the basic learning techniques for HCI 
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are extracted from AI. In AI, few concepts such as gesture and speech recognition are used 

for robot navigation. In Multimedia, HCI concepts such as integrated text and graphics are 

used to make a movie using video and computer graphics. The basic research is done using 

speech, text or gesture as input to process the HCI and AI based systems. The growth and 

demand of video games are one such example. 

Consequently, lot of research has been done in HCI particularly focussing on the field of 

natural language understanding and generation. With the growing demand of various 

applications of HCI, gives evolution to a new technology in 1980s known as dialog system in 

which text, speech or gestures are used as input to interact with the humans. Even though, lot 

of prior research has been done in this field, dialogue systems emerged in various 

applications in 1990s. One such application is in the field of telecommunications. It uses a 

telephone or text wizard to interact with the human, process and offer services requested by 

user using natural language processor. Dialogue management consists of several components 

to understand the request and provides service to the user. Basically, these types of systems 

are domain- oriented and works according to the background of intelligent systems. 

Different applications where dialogue management technology is used are listed below: 

• Telephone based system to provide information or support to human users. 

• It has a wide application in the field of Robotics such as Robot Navigation System. 

• In the field of virtual reality, the users can interact with the computer using sensory 

information like speech and gestures in the simulated environment to experience the real-

world environment. 

• In medical care, various applications such as access and assistive systems are developed 

to help/assist children, elderly and disability people. 
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• In multimedia and 3-D technology, it has a wide growth in developing video games. 

1.3 Overview of Spoken Dialogue System 

A Spoken Dialogue system is a computational device or agent that engages in interaction 

with other human, uses human language in some form such as speech, text, or gesture and 

typically engages with human such interaction across multiple turns or sentences [Jods]. It 

uses a discourse generator or computational linguistics to extract the information from the 

user and provide services according to the request. Several researches have been done to 

answer the following questions: 

1. What information should be extracted to process the user query? 

2. How the information is extracted? 

3. How the system decides, what response should be given to the user query? 

4. Does the system understand the exact intension of the user? 

The first two questions are answered using the existing techniques and deals with input 

components of the dialogue management. Next two questions deals with the dialogue 

manager which is still under research. The final question is the most challenging part of 

Dialogue management and it's been taken care of in this thesis. 

1.4 Motivation 

In the last decade, though lot of systems are developed on the basis of dialogue management, 

a number of issues arise to be taken care of. With the growth and development of different 

techniques to solve the prior issues, several limitations also increased which makes the 

researchers to concentrate more on numerous applications. Though, the applications use 

natural language processor for understanding user request, it is not appropriate in several 
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circumstances. It fails in the case that it is not language independent. Due to higher error rate 

and reliability of these types of systems in real-time, lot of applications failed to handle exact 

interaction between the human and the computer. Though, it consists of various components, 

dialog manager is considered as the heart of the dialogue management system as it is 

responsible for decision making. In order to handle the above situations, researchers 

developed different techniques to make the dialog manager to make exact decision and give 

appropriate response to the user. One such technique is Partially Observable Markov 

Decision Process (POMDP). Though, Pomdp has emerged to overcome the failures of prior 

techniques, it has its own limitations to be taken care of. This motivates me to conduct a 

research on this particular technology and solve the challenges associated with Pomdp based 

dialog manager by introducing a decision making mechanism based on four-mode concept. 

1.5 Problem Statement 

This thesis addresses the limitations of Pomdp and methods proposed to overcome the 

limitations by introducing a different decision-making mechanism using Contextual Control 

Modes which is addressed as four-mode concept in this thesis. We have modelled a dialogue 

manager for a real time Pizza-ordering system and modified the Pomdp dialog manager in 

which the application tracks the transition of system states, actions taken by the system to 

respond accurately to the user, system response time for the user query, confidence score for 

the dialog and change in mode for making decisions. We have also modelled a new reward 

model based on the four-mode decision making mechanism. 
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1.6 Thesis Structure 

The rest of the thesis is organized as follows. Chapter 2 gives a brief background about 

dialogue management systems and its components. Literature review of existing techniques 

is also discussed in this chapter with examples. Finally, Contextual control model which is 

the main heart of the thesis is discussed. Chapter 4 describes the proposed model and 

modified POMDP approach in accordance with four Contextual Control Modes. 

Experimental results and performance analysis of the proposed method are presented in 

chapter 5. Finally, we conclude this thesis with some discussion and future work. 
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Chapter 2 

Background 

This chapter gives a brief background on different dialog manager. First, the section starts 

with Dialogue Management and we have also explained its architecture with some potential 

applications. Then the components of the dialog system are discussed, giving main focus on 

dialog manager. The main task of dialog manager is decision making. In this thesis, we have 

used contextual control modes for making decisions according to user's request. Finally, this 

chapter ends with a brief background on contextual control modes followed by its existing 

applications. 

2.1 Dialogue Management: An Overview 

A dialogue management system is a machine that interacts with the people by understanding 

their intention/goal and provides the required information services [Infriek]. With the recent 

advances in Robotics and Human - Computer Interaction, dialogue management has grabbed 

more attention from the researchers. In Nineteenth century, where the computers had less 

importance, people used to travel to the shop to get the reviews, choices, merits and demerits 

of a particular product from the sales persons. But nowadays, computers play a vital role in 

our day to day life. With the advancement of computer Avatars, we can shop anything from 

anywhere, talk to a virtual sales person regarding the product on the web sitting in your 

drawing room. The Virtual sales assistant is nothing but a computer program which acts like 

a human, understands the user requirement and provides service according to human request. 

But, the question which arises that, what does it expects the user could possibly intend to do? 
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Does the machine offer the user a clear picture of its possible actions? And is it clear what 

the results of these actions are and whether they were successfully performed? Do these 

machines know what context of interaction is that they are in? [Infriek] These types of 

questions always rise up among the researchers while designing a virtual avatar. These types 

of dialogue systems are flexible and practical enough to control a natural human - computer 

dialogue. They are mostly task-oriented and provide domain portability in order to allow 

users in various applications. 

Figure 2.1: General Architecture of Dialogue Management System 

A dialogue management system consists of the following components: Input mode, 

Fusion, Dialogue Manager, Fission and Output mode. 

2.1.1 Input Mode 

Input of a dialogue system can either be speech, text, touch, human gesture etc. Inputs are 

classified into two categories depending upon the modes. They are active input mode such as 

speech that are deployed by the user intentionally as an explicit command to the computer. 
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Another, passive input mode denotes the behaviour of the user that is recognized by the 

system which doesn't involve any explicit command to the computer [Bui06]. 

2.1.2 Fusion 

The input from the human/user given to the system is extracted and processed in this level. 

After it extracts the information from the input, it assigns a semantic representation to the 

information which can be understandable by the computer. If there are two or more 

combined input is given by the user, then the information is processed and fused using 

different levels of fusion. Then, the fused information is integrated and sent to the dialog 

manager along with the semantic information. 

2.1.3 Dialogue Manager 

Dialogue manager is considered as the core component of the dialogue management system 

which is nothing but a program which coordinates the activity of several subcomponents in a 

system. It acts as the interface to process any task or domain-based actions. The fused 

information is processed at this level by updating dialogue context. It is also responsible for 

choosing an action, which results in the change of dialogue state. It also stores and updates 

dialogue states, decides which dialogue act to perform next and how to continue the dialogue. 

If any component has insufficient input to perform its task, the dialogue manager gets an 

alert, which can reconsult the previously invoked component for different input. It also 

increases the overall performance of the system [Susann98]. 
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Figure 2.2: General architecture of Dialogue Manager 

2.1.4 Fission 

Fission is the next component of dialogue systems in which the abstract message is received 

from the dialogue manager in which the information is in machine understandable format. In 

fission level, the semantic level information is converted into the output format which is 

understandable by the user depending upon the input. The fission module is categorized into 

3 types [Foster02]: Content selection and structuring, where the content is arranged in a 

structure. Modality Selection in which the type of modality is identified according to the user 

output component. Output Coordination, in which different output from the channels are 

coordinated and sent to the output component of the user. 
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2.1.5 Output Mode 

In this mode, various outputs coordinated in the fission component are displayed to the user 

depending upon the user's hardware specification. Output modalities include text, speech, 

gesture, graphics, haptics etc. 

2.1.6 Multimodal Dialogue management 

Previously, the system processes single user input mode such as text, speech or gesture 

recognition. Recently, it has been extended to two or more user input modes such as speech 

and text, speech and gesture, text and gesture, Facial expression, touch, head and body 

movements etc. in a coordinated manner with multimedia system output [Oviatt02]. Such 

types of systems are called multimodal dialogue systems. 

2.2 Review of Existing Approaches 

Dialogue management is classified into different approaches depending upon the task and 

domain model. According to [McTear02], dialogue management is classified with three types 

of strategies such as: finite state-based, frame-based and agent-based. In [Xu02], Dialogue 

management is classified into four categories which is approximately same as the above three 

categories. In [Cohen97] and [Catizone02], three categories are mentioned namely, dialogue 

grammars, plan-based approach and cooperative approach which are collectively known as 

agent-based approaches. Since these approaches are not mutually exclusive and have to 

combine any two approaches in a dialogue system, researchers come up with a new type of 

approach which is information state and probabilistic approach. To implement this type of 

approach, researchers develop a toolkit based on the concept, which can be directly 

integrated with any type of system. 
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2.2.1 Finite state-based Approach 

This approach is the basic and simplest approach used in the dialogue management system. 

In this approach the system's utterances are represented in the form of state transition 

network which are pre-determined. According to [Xu02], in this approach both the task 

model and dialogue model are implicit. In this approach, the dialogue consists of sequence of 

pre-determining steps. To control the dialogue, system produces prompts at each dialogue 

state. It can only understand certain words or phrases which are pre-coded in the back end. 

So, the user has to answer in a single word or phrase in order for the system to produce next 

action. Since, it contains sequence of steps, until the system complete all the steps it is not 

possible to verify the previous answer or state. 

An example for finite state-based approach is Nuance automatic banking system 

[McTear02]. The systems is designed with UK based English and it enables the user to 

conduct bank transactions over the telephone. The dialogue flow is modelled by a set of 

interconnected dialogue states, in which the system is directed with pre-determined sequence 

of questions. For example, consider this dialogue flow [McTear02]: 

System: What would you like to do? 
User: Pay a bill. 

System: What company would you like to pay? 
User: Midland Bank. 

System: How much would you like to pay? 
User: One hundred and twenty-jive pounds fifty-seven pence. 

System: What date would you like the payment to be made on? 
User: Monday. 

System: You want to pay HSBC one hundred fifty-five pounds and fifty seven pence on 
April 5th? Is this correct? 

User: Yes. 

11 



System: Your payment will be sent. Would you like to pay another bill? 

The systems is pre-designed to get three specific value from the user in order to maintain 

the flow of the transaction, values such as payee, amount and payment date. Sometimes, if 

the user try to give multiple slot values in one dialogue state, the system fail to update the 

user's over-informative response and it again prompts a question to answer probably the user 

has to respond with the same answer once again. For example, 

System: How much would you like to pay? 
User: One hundred pounds next Monday 

System: What date would you like the payment to be made on? 
User: Monday. 

If user wants to complete the transaction very quickly, the system fails to update all the 

information provided by the user. It understands only pre-set values for a particular question 

and again proceeds with the sequence of questions. Sometimes, the system fails to correct 

more than one error at a time, it happens when the user reconfirms multiple values with the 

system. These types of limitations may lead to a frustrating and unnatural dialogue system. 

Irrespective of these limitations, Nuance automatic banking system was considered as one of 

the best applications of Spoken Dialogue System which can handle simple transactions 

efficiently and effectively. 

2.2.2 Frame-based Approach 

To overcome the flexibility issue of finite-based approach, frame-based approach is 

developed as an extension. Instead of continuing the dialogue with some sequence of pre

determined questions, this approach has a form with multiple slots in which the user has to 

fill in the information. Here, the task model is represented explicitly and the dialogue model 

is represented implicitly [Bui06]. 
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In [McTear02], an example to frame-based approach, given the Philips automatic train 

timetable information system. It provides information over the telephone about the trains 

between German cities. This system is a research prototype and developed in German 

language. The aim of the dialogue is to enable the system to construct an appropriate 

database query that retrieves the information required by the user and then to present that 

information in a suitable form. 

[Hulstijn96] developed a theatre booking system and [VanZ96] developed a train 

timetable enquiry system which relates the entities in the domain to another which has a 

meaningful structure for the user queries. In [Goddeau96], an E-form (electronic form) type 

has been discussed for the advertisement which is more complex type of form. The E-form 

differs from normal type of forms developed in other frame-based systems. These types of 

systems are basically developed to get one or multiple entries from the user. However, they 

failed to concentrate more on the transition of dialogue states and more natural dialogue 

which results the system actions to be very limited and hard to handle complex systems. In 

[Bohus03], this E-form type is extended to task structure graphs to handle complex 

transaction over telephone which provides the similar structure used in previous models. This 

system is designed to determine the behaviour of dialog control and language understanding 

module. The applications of this approach include various toolkits such as RAD, UNISYS's 

Dialogue Design Assistant (DDA), etc. 

2.2.3 Information state-based Approach 

To overcome the limitations of previous approaches, Information state-based approach is a 

dialogue theory with five different components; each has its own functionality [Traum03]. 

An informational component is to track the intentional structure and user models. Formal 
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representation is for the discourse representation structures, modal operators within a logic 

etc. A set of update rules for updating the information state and a set of dialogue moves to 

trigger the update of information state. An update strategy is to decide which rule to apply. 

The general idea of this approach is to develop the multi-layer dialogue model. In this model, 

each level contains an information state representing current status of the layer. Trindikit 

toolkit is developed based on this approach followed by GodiS [Larsson20] and EDIS 

[LarsTrau20]. Several other applications of this approach include MATCH system for 

multimodal city help [Johnston02], Virtual Music Center [Hofs03], etc. 

2.2.4 Probabilistic Approach 

This approach is an extension of Information state approach which uses probabilistic 

techniques. The techniques include Markov Decision Process (MDP) or Partially Observable 

Markov Decision Process (POMDP). The basic idea is to overcome the limitations of Multi

layer dialogue model and to provide dynamically changing actions and dialogue strategy 

based on rewards of the current state. The dialogue model is designed to use optimal strategy 

using some reinforcement learning. The system actions are modelled to system's question 

and answers, the rewards are pre-set by the system to rate the dialogue or it is provided to the 

user to rate the system at the end of each dialogue [Singh02]. In [Young99], dynamic 

programming, Q-learning or sampling-based reinforcement learning is used to optimize the 

dialogue cost function. In [LecoOl], inductive logic programming is to extract rules from the 

result of reinforcement learning. Apart from the MDP and POMDP techniques, Bayesian 

Networks are also used to recognize the dialogue acts or to control the dialogue strategy. 
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2.2.5 Plan-based Approach 

This approach is developed to overcome the complexity of dialogue modelling in the 

previous approaches. In this approach, the main task or goal of the user is discovered and 

respond appropriately to the user's requirement. The dialogue acts here are considered as 

speech acts. The basic idea of this approach is that, the main job of the system is to identify 

and respond to the user plan and the user's speech acts are considered as part of the plan. In 

Verbmobil project, the dialogue is divided in sub-goals by a set of plan operators derived for 

the example dialogues [Churcher97]. This approach is criticized on practical and theoretical 

experiments. In some of the cases, it is even hard to predict how this system understands the 

actual goal of the user. Sometimes, it lacks to handle plans or goals of the dialogue model. In 

some cases, there is no actual specification that what the system should do, that is the actual 

interpretation is quiet different form the illocutionary acts. 

To overcome these types of issues, a conversational games theory is developed. This 

extension combines the dialogue grammars and plan-based approaches by including a goal in 

its structure, in order to provide more natural language dialogue. It actually handles the actual 

human-computer dialogue in a task-oriented basis. A task-oriented dialogue consists of one 

or more levels of conversations, each represents a task. Since, this extension of approach 

mainly developed for games, it allows two or more games to be embedded on one game. It 

consists of an opening move and an ending move with double checking options and side 

sequences. Applications developed on the basis of this approach includes, SUNDIAL 

(Speech UNderstanding in DIALogue), TRAINS-96, etc. 
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2.2.6 Agent-based Approach 

This approach is developed on the basis of viewing dialogue management as collaborative 

process between intelligent agents. In this approach, both the user and the system are the 

agents and the interaction and dialogue process takes place by mutual understanding between 

two agents in a simulated environment. Here, it is designed to capture the motivations behind 

the dialogue mechanisms and the discourse phenomena such as confirmation and 

clarification. Here the intentions or goal of the agents are modelled as beliefs and the main 

goal of this type of system is that the goal of the agent is shared as beliefs among the agents 

and the number of agents involved in this system work cooperatively to achieve the 

appropriate goal. It also uses several techniques used by the plan-based approach and 

previous approaches. Though this approach can handle complex applications, it uses the 

concept of dialogue grammars and combined techniques of plan-based approach to 

understand the goal of the agent in the environment. So, it cannot handle more complex 

applications effectively and efficiently. The application of this approach includes 

COLLAGEN, TRIPS, ViewGen, etc. 

2.3 Contextual Control Model 

In the Human-Computer Interaction, we determine the human performance such as actions, 

goals etc. by the context or the situation of the dialogue. Sometimes, to choose a particular 

action for the user response, the system should not only understand the intention of the user 

but also the current situation of the dialogue between the user and the system. Even there are 

lot of techniques been developed to determine the user goals and actions, but to choose action 

according to the situation in a dynamic environment, Hollnagel came out with new idea of 

Contextual Control Model in 1993. These types of systems work on the basis of assumption 

16 



for every situation to make an action. This model is developed based on three concepts 

namely, competence, control, and constructs [COCOM]. 

• Competence represents the possible actions the system can take to respond to the user 

depending upon the situation according to the user requirements. 

• Control represents the characteristics and the performance of the competence and the 

way it is applied. This model deliberately sets four control modes namely scrambled, 

opportunistic, tactical and strategic. These modes changes from one mode to another 

depend on the situation in an application. In some situation, these modes range from 

no control at all to completely deterministic performance. Another mode has to do 

characteristic performance in a particular mode, that is how the actions are 

determined. 

• Constructs represents what and how the system assumes about the particular situation 

in which the actions take place. This feature is included in this model for selecting 

actions and interpreting information. 

The important part of this model is planning and the goal should be achieved in given 

time-horizon. The planning is influenced by the context and knowledge between the actions 

or expectations about the situation. The sequences of actions are the outcome of the planning 

which is constructed rather than pre-defined. 

2.3.1 Four Control Modes 

The control modes are modelled depending upon their characteristics and performance in the 

model. Each control mode is associated with its characteristics and type of performance. 

These modes of team behavior vary in terms of the degree of forward planning. The 

following are the four control modes [COCOM]. 
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• Scrambled mode: In this mode, the choice of next action is basically irrational or 

completely unpredictable. The type of performance is thus, paradoxically 

characterized by the lack or absence of any control. In this case, the situation is 

paralysed and zero in control, so no corresponding actions will be taken which means 

the situation is out of control from planning. 

• Opportunistic mode: In this mode, the next action is predictable depending upon the 

current context. Here the information is inadequate and due to less competence, 

planning and time is limited and the context is not completely understood. In that 

situation, there is a possibility of making useless attempts because of the choice of 

choosing actions are limited. The application will be in unusual state of environment. 

It will not be able to fully assess the situation, often having difficulty finding and 

assessing relevant aspects of the environment. For example: providing 'one-click' 

mechanisms to delay or cancel it. 

• Tactical mode: In this mode, the performance of the application follows a certain 

procedure corresponds to the situation. The amount of information sought in this 

mode is expected to be beyond what is immediately observable, but may be limited to 

what routine procedure requires. Here, the planning is also limited and sometimes the 

more features are taken into account in order to select appropriate action for the 

situation. For example: Double checking the solution and provide feedback to the 

agent on a set of evaluation criteria. 

• Strategic mode: This mode has the higher level of control and concentrates on the 

long term planning (global view). The amount of information sought and coordination 

required between the user and the machine is expected to be extensive. It compares 
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multiple feasible solutions and iterates several times to make the "best" decision 

possible. It has less influence on choosing choice of actions. For example, in airline 

support system, the system may compute "optimal" solutions to minimize passenger 

delay, maximize aircraft usage, etc. 

The Contextual Control Model is used in developing and testing various applications 

such as Airline rescheduling tasks, for dynamic decision making in Airline operations to 

improve airline recovery from irregular operations, assessing team behaviour in a human 

supervisory control task, human reliability analysis, in traffic environment to track the single 

driver behaviour, etc. 

2.4 Conclusion 

Various approaches have been developed to make the dialogue systems to provide services 

efficiently and effectively. Also, the complexity increases with the increase in number of 

approaches, dialogue model and domain models. We have mentioned various approaches 

from finite state-based to agent based which has the simple structure and less complexity. 

But all such systems fail to handle critical situations and completely understand the actual 

intention of the user because of its construction and pre-defined response. This chapter 

address the approaches to achieve goal and select actions according to the user requirement. 

Also, Contextual Control model also discussed for planning and select actions according to 

the situation and user requirements. 
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Chapter 3 

Literature Review of Dialogue Management Techniques 

Dialogue manger is core component of the dialogue management system as it is responsible 

for analysing user goals and decision making. This chapter gives a brief discussion about 

various techniques used in the dialogue manager to understand user's intention to provide 

required services. Since the decision making mechanism in our model is dominated by this 

contextual control model, we have discussed some of its previous works at the end of this 

chapter. 

3.1 Dialogue Management Techniques 

3.1.1 Handcrafted Dialogue Managers 

When the researchers started concentrating on spoken dialogue systems, they designed a 

handcraft dialogue manager to map the system states to the system actions and maintain one 

dialogue state. Handcrafting process was very time-consuming and more effective in care of 

handling speech act errors. Historically, the issue of uncertainty arises in dialogue systems, 

the main goal of the researchers were to make the system interact with the human effectively. 

Various applications are developed using this handcrafted design and developed using high-

level specification language such as VoiceXML [Balantine99]. This type of dialogue 

managers are specified as a policy graph which is a finite-state controller consisting of set of 

nodes M. Each controller node is assigned an action M -> A. Arcs are labelled with an 

observation and each controller node has an observation represented by an outgoing arc. 
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[Jason05] created three handcrafted policies for dialogue managers known as HC1, HC2 and 

HC3. A logical diagram of HC1 handcrafted dialogue controller is shown below. 

Figure 3.1: HC1 handcrafted Dialogue Controller 

HC2 and HC3 handcrafted policies are the extension of HC1 to overcome its limitations. 

The system start with the action greet in all three handcrafted controllers. The actions are 

performed to fill the from and to fields without any confirmation. It repeats the same action 

again and again till it receives a response from the user which is not sensible. HC2 

handcrafted controllers overcome this issue by taking a fail action immediately if it receives 

any non-sensible observation. Other than this feature, HC2 is identical to HC1. HC3 is also 

same as HC1 and HC2, except it confirms each response from the user while filling the slots. 

The policy graph uses value function to represent the return from the explicit node. But, in 

this case the policy graph does not make an expected return from the nodes. [Hasen98] solve 

a linear equation to solve the expected return from each controller node given in V, 

Vm(s) = Immediate reward + discount * future reward 

Vm(s) = r (s,7tFSC(m)) + y £s> £0- P(s'| s, 7tFSC(m)) P(o'| s\ 7tFSC(m)) Vi(m>0-) (s*) 
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The expected value for starting node m and belief state b can be calculated by evaluating 

Yjs^m(s)b(s). The result of the above equation leads a set of vectors; one vector for each 

node gives the expected return. The belief state b can be calculated from m*, 

m* = argmaxmYjVm(s)b(s) 

Even though this dialogue manager is handcrafted and simple in its construction and 

handling, it has lot of limitations to overcome such as maintaining one dialogue state leads to 

an issue in handling complex applications. In spoken dialogue system, it performs least well 

as it fails to handle speech act errors and uncertainty in the application. 

3.1.2 Bayesian Network for Dialogue Management 

A Bayesian Network (BN) is a graphical model used to describe dependencies in a 

multivariate probability distribution function (pdf) defined over a set of random variables 

[PlamenCB]. Since researcher couldn't handle complexity of developing dialogue systems, 

they tried to use Bayesian network in dialogue management which is also a handcrafted 

technique in order to have a more sophisticated human- computer interaction. In 2003, 

[Plamen03] proposed Bayesian Networks method to develop a spoken dialogue system for 

tour-guide robot and visitors in mass exhibition condition. An interpretation of user goal at 

each dialogue state is clearly determined in this application. Bayesian network is introduced 

to infer the exact goal of the user which exhibit to attend next. Since, it is difficult to predict 

the user's intention in an exhibit as more crowds will be gathered and more chance of speech 

recognition errors considering acoustic conditions. A laser scanner has been used to detect 

the unaffected data assuming user's intentions as dependent data patterns. As such other 

spoken dialogue systems, the tour-guide takes the initiative to start the dialogue process and 

observes the user's behaviour which is modelled as user goals in this application. Bayesian 
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network is used in the form of directed acyclic graph which consists of nodes and arcs. 

Nodes correspond to the variable and arcs represent the conditional dependency assumption 

between the variables. Plamen further calculated a continuous probability distribution from 

the data for all parent nodes in order to map the exact interference on each node. They also 

defined few variables to calculate the probability distribution over the dialogue states. In 

[Prodanov04], error handling for this application is introduced as an extension to the prior 

work. He stated that during interaction between the visitor and the tour guide, the speech 

utterances can be mapped into dialogue states depending upon the user goals which are used 

to infer next dialogue state. He has also given a graphical representation of the process in 

which the UG stands for the user goal and DS for the dialogue state. Initially, the dialogue 

state is at time t and user goal at time t-1 which can also affect the user goal at time t. 

DS^ 
»***w» 

i ' 

UGM 

/ 
/ 

OS, 

* 
' 

UGt 

Figure 3.2: Dependency graph for Spoken Dialogue Management 

Here, tour guide has to interpret the visitor behaviour to user goals which corresponds to 

each dialogue state in low-level behavioural events. The basic connection of Bayesian 

Network in this application is provided by the evidence that the initiated variable can pass 

through the series of diverging connections until an intermediate variable is available. If there 

exists, a common child for two or more parents nodes which can affect the state of the other 

parent node. [Sang09] developed a Skilligent robot to control the robot behaviour during run

time. Sub-goals are determined first by clustering similar features of state transition tuples 

which are composed of current state, action and next state. They developed a method for 
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reconstructing learned networks and increment learning for increasing sub goals. They 

further developed a simulated environment with skills like Dribbling-Box-Into-a-Goal 

(DBIG) and Obstacle-Avoidance- While-Dribbling-Box (OAWDB) to validate the methods. 

[Prodanov05] proposed a probabilistic model based on a Bayesian network framework for 

error handling in human-robot spoken dialogue systems under adverse audio conditions. As 

the system is based on different multimodal information sources with a complex combination 

of spoken dialogue system, it fails to process the sub goals which in some exceptional case, 

the entire system has to be reconstructed. 

3.1.3 Supervised Learning and Markov Decision Process 

Considering more complex systems, handcrafted dialogue managers needs iterative process 

to test and is more expensive. Then, the action taken by the system may also affect the long -

time goal of the system for some unusual situation. In order to choose the actions Am 

automatically, researcher came out with the idea of Supervised learning and Markov-

Decision process. 

Supervised learning is a simplification techniques in which we can maintain the single 

dialogue and the actions are learnt from the corpus. Though this techniques has lot of 

limitations due to maintain single dialogue state, creating a dialog policy is difficult because 

of collecting training data for the corpus. It simply learns the approximate data from a corpus 

to create a policy, so the overall performance of the system will be limited. If wizard style 

dialogues are included in the system, selecting proper actions at each time step is a tedious 

process using this technique. It always tries to map the machine state Sm directly to the action 
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Timestep n Timestep n+1 

Figure 3.3: Supervised Learning for action selection 

In the figure, the node Am is trained on a corpus of dialogue states. A decision node Ac is 

introduced to state which action to be taken next. Though supervised learning techniques are 

a simple one, it does not perform effectively in human computer dialogue as the actions are 

learnt from a corpus of training data. It will be quite expensive to test and maintain 

applications developed using this technique. 

Due to increase in complexity and level of uncertainty in decision making process, there 

arise many questions which are not answerable. How to choose best actions which won't 

affect the long- term goal? Sometimes, the current action gives a solution for long-term goal 

but affects fewer states. How to calculate the exact value where the actions are affected? 

How to make an assumption that this action doesn't affect the immediate and long-term 

goals? How to solve the decision problem? Markov decision process takes care of all this 

issues and automates all the processes. E. Levin et. al, introduced the Markov Decision 

Process for dialogue management for ATIS Air travel domain in 1997 [Levin97]. MDP 
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consists of four components namely, states, actions, transitions and rewards. The transition in 

MDP takes care of which action to take for each state. Also, we have to mention the effective 

of action for each state. It maintains a probability distribution over the dialogue states. 

Rewards are the measures to compare different actions. The rewards are calculated for each 

system action for each dialogue state. The solution of mdp is policy (n) which represents the 

best action taken for each dialogue state for which the next resulting state, for each state and 

action are specified. 

Let S be the set the states and for each state s e S, there is an action taken As. Since, the 

current state is known and the policy is represented as function of states which is given by, 

Tt: S -> A. At time t, the system is initiated to enter a state st and choose an action at 

determined by the policy Tt. For each action at time t, a reward is assigned to Tt. If the system 

choose the best action, it will receive a positive reward else negative reward to choosing 

wrong actions for each state. The system transitions from one state to another at time t+1 

from t and so on. MDP maintains a probability over this transitions which is given by, 

T(s' , a, s) = P(st+i = s'| st = s, at = a) 

Where, T (s\ a, s) denotes the probability to enter state s' at time t + 1, given state S and 

action a at time t. For deterministic transitions and actions corresponding probabilities can 

take only 0 or 1 values. The actual goal of the system is to find the policy %\ which 

maximizes the total reward [Ragni06]. 

R = S r = O r r + 1 

In [Levin20], MDP approach has been tested for learning the strategy of airline task 

information system (ATIS). They used the concept of "Day and Month Dialog', in which the 

system has to get the day and month values exactly from the user in shortest time and in few 
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interactions to reserve a ticket. To accomplish this, the objective function is introduced as 

follows. 

C = Wi {Ni) + Wr {Nr} + Wa {MNo)) + Wm (Fs) 

Where, C is the expected cost to achieve the goal and W is the weight to determine the 

tradeoffs between the costs. Nj is the number of interactions, Nr denotes the number of errors 

obtained from expected value and Nf is the duration of achieving the goal. A set of possible 

actions are also given to the system for the day and month values. While executing the 

system, it first executes the actions for the values and it then it starts the speech recognition 

system to get the user response. The description of the system is as follows: 

Initialization: St=0 = S{ 

For Each Iteration t: { 

LtiS^Sp) { 

compute current action a, according to the strategy-

execute at 

update current state 
t = t + \ 

} 
else 

END 
} 

Figure 3.4: Sequential decision Process of ATIS 

A dialogue strategy of MDP specifies what action to be performed next for each state. 

Here, they introduced two assumptions to describe the dialogue system as MDP to find the 
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optimal strategy. The first assumption is that assigning probabilistic model to the state 

transitions. According to transition probabilities, while in state st at time t an action is taken 

at. Then it transitions to st+i state which is given by, 

P(st+i | st, st_i,...., so, at, at_i,..., ao) = P(st+i | st, at) 

The second assumption relates to the modelling cost of the system in which the system 

receives a feedback cost ct when an action at is executed at state st. 

P(c t | st, st-i,...., So, at, a t.i,..., ao) = P(ct | st, at) 

The dialogue session mentioned in this model is the path in the state space between the 

initial and end state which is illustrated in the following diagram [Levin20]. 

Strategy 1: 

C^lWj+2-Wp 

Figure 3.5: Three possible strategies of ATIS Spoken Dialog System. 
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[Young20] introduced a probabilities framework for spoken dialogue systems by making 

an assumption on the behaviour of the system as Markov Decision Process. He used 

sampling method to obtain optimal strategy for the model. [Roy20] proposed a method to 

handle noisy and ambiguous utterances from the user by inverting the dialogue state to 

represent the user intentions. He used a mobile robot called Florence Nightingale (FLO), a 

nursing home assistant to carry out experiments. The MDP is specified by the following, 

• A set of states SE {SI,S2, ,sm} 

• A set of actions AE {ai, &2, •••-, am} 

• A set of transition probabilities T(s', a, s) = P(s' | s,a) 

• A set of rewards R : S x A -> R 

• An initial state s0 

Figure 3.6: A graph of basic MDP underlying the Dialog Manager 
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With the increase in different methods of MDP, increases the complexity and limitations. 

Even though, MDP try to find the optimal strategy of the application by interacting 

effectively with the users, there are fond of reacting to recognition errors and lack in domain 

knowledge. The main drawback of MDP is that, it makes decisions based on the current state 

alone which cannot be possible in real-world applications. 

3.1.4 Semi-Markov Decision Process 

[Cuayahuitl09] proposed a hierarchical reinforcement learning to evaluate the dialogue 

behaviours of a simulated agent in a simulated environment. He used Semi-Markov Decision 

Process to learn the dialogue behaviours in a realistic conversational environment. He mainly 

concentrated on the dialog manager part of the spoken dialogue system as the main principle 

of the system is to choose best action which results in the change of dialogue states. The 

agent in this model learns the behaviour by interacting with the environment, maximizes the 

reward model, where the actions are mapped to situations by aiming long-term goal. They 

solve an MDP by mapping the current state st to an action at correspond to the dialogue 

policy 7i*(st) = arg max Q*(st, at). The Q function denoted the cumulative rewards for each 

state - action pair. His proposed method generated both coherent and distorted conversations 

which are used as test bed for information-seeking spoken dialogue systems. It consists of 

two simulation models namely, ASR error simulation and Simulated user behaviour. The 

figure 9 shows the execution of simulated environment. It tracks the machine behaviour 

using the dialogue strategy and chooses actions accordingly, updating the conversational 

history in the knowledge base. 
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Figure 3.7: The simulated environment interaction for Human-Machine conversations. 

A human-machine dialogue is modelled by the perception and actions of both conversant. 

The user respond with errors are distorted into ASR error simulation and then it is sent to the 

knowledge base. The conversant at time t, observes the current knowledge state, selects the 

appropriate dialogue type to respond, update the knowledge rich state. The dialogue control 

is modelled as Semi-Markov Decision Process (SMDP) in discrete time is denoted as 

M = (S, A, T, R). S denotes the set of states, A denotes the set of actions, T denotes the 

transition from state s to next state s' with a probability P(s',x | s,a) and R denotes the reward 

function for choosing an action. The variable T denotes the time-steps taken to execute an 

action a in a state s. 
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This method is applied to flight booking domain and travel planning domain to cany out 

several levels of testing to learn the dialogue agents outperform in deterministic behaviour in 

realistic environment. Even though there is lack in training data, finally they proved that 

simulated agents make fewer errors in realistic environment. 

3.1.5 Partially Observable Markov Decision Process 

Partially Observable Markov Decision Process (POMDP) is an extension to Markov 

Decision Process, which is introduced into dialogue management to overcome the issues 

addressed by MDPs such as uncertainty, choosing actions upon current state and 

experiencing speech act errors in noisy environment. Pomdp concept was developed in 1965 

by Astrom, which was basically used in the field of engineering. Later, researchers 

incorporate this concept to Artificial Intelligence for analysing the behaviour of agents or 

robot using sensors. Since MDP failed to handle ambiguous data, researchers tried to 

incorporate Pomdp concept into dialogue management as it maintains probability distribution 

over MDP dialogue states called belief state and set of observations to choose a best action 

am for each dialogue state st at particular time t. The dialog policy n is based on the belief 

state rather than the underlying state. [Roy20] used a nursing home assistant robot 

application to compare the results of MDP and POMDP and proved that POMDP performs 

better than MDP in some situations and in noisy environment. The following figure shows 

the different between conventional and probabilistic dialog managers [Young06]. 
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Figure 3.8: Structure of a Spoken Dialog System 

The above figure shows that the conventional dialogue manager maintains a single state 

estimation, whereas the probabilistic dialogue manager maintains a distribution over all 

dialogue states. The tilde on the system state and actions represents some noise in 

environment. This framework provides a mechanism for modelling uncertainty, i.e., what 

actually the user requires. 

POMDP is defines the set of tuples same as MDP, in addition it has observation O and 

observation function Z which is given as {S, A, T, R, O, Z}. 

S - set of states 

Am - set of actions that a machine may take 

T - transition probability, T (s' | s, a) 

R - reward for each action, 

O - set of observations 

Z - observation probability, p (o | s', a) 

b(s) - probability of being in one state. 
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Figure 3.9: The agent - Environment Interaction 

At time t, the systems will be in some unobserved state s s S [Young06]. The initial state 

s is not known exactly, so Pomdp based systems maintains a probability distribution over the 

machine states at time t is known as belief state, b(s). The system selects an action a e A, 

based on the current belief state b and receives a reward r(s, a) and transitions to a new 

unobserved state s . The system receives an observation o ' e O depends on s' and a. Finally, 

the belief state b is updated based on o' and a at a time step t, which is illustrated below. 

ti(s) = p(s\o1a^b) 

p(o! \sf, a, b)p(sf \a, h) 

p(ot\a, b) 
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pioy,a)^sp(J\a,b,s)p(s\a,b) 

p(o'W, afEs„sP¥\ai s)h(s) 
p((^\a, b) 

The machine receives a reward r(bt, am,t) at each time step t. So, the expected reward over 

belief states is given by, 

P(f>t>amt) = T,bt(S)r(S>amt) 
seS 

The return R is computed by cumulative, infinite horizon and discounted reward. 

r=0 /=0 seS 

[Roy20] proposed a probabilistic technique for spoken dialogue management. He 

compared MDP and POMDP by applying on a home nursing assistant robot. First, he applied 

MDP method to analyse how the system performs in the noisy environment. Moreover, the 

voice reliability of the mobile robot is poor; MDP does not accurately understand the user 

goals and the responses are not related to the user requirement. The solution of MDP is 

neither sufficient nor robust. To increase the performance of the mobile robot and perform 

partial observability on the dialogue states, Roy et. al introduced POMDP to improve the 

performance of mobile robot. He also track step by step process of performance of POMDP 

reacting to the dialog states. He also tested with noisy environment, but the results of belief 

state values and confidence scores remain the same. Further, it replaces the initial state s0 

with initial belief state, P(s0 : s0 e S). During planning phase it finds an optimal strategy for 
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all belief states. The performance is reduced when dealing with uncertainty and finding 

optimal policy for all POMDP applications are computationally expensive. He further 

introduced Augmented POMDP by applying some restriction on the belief states in order to 

deal with uncertainty problems. 

[Pineau03] introduces the point-based value iteration algorithms (PBVI) for POMDP 

planning. He selected few belief values, evaluated an exact value iteration solution and 

tracked the solution for only those selected belief points. He applied this technique in a Laser 

tag application and the results showed that PBVI for POMDP can be applied for large 

systems. 

In 2004, Poupart introduced a scalable algorithm for large POMDPs by combining Value 

Directed Compression (VDC) technique with Bounded Policy Iteration (BPI). He added that 

value functions of very good policies are often represented using small vectors. So, the 

application can perform better only if the dialogue states are less than 1000. By using this 

technique for POMDP, the scalability issue and complexity of the policies are reduced. He 

tested these techniques with some network management problem which has 33 million 

dialogue states [Poupart04]. 

In 2005, (Jason, Poupart and Young) introduced a framework for discrete and continuous 

observation component for POMDP. They used a simulated dialogue test bed for travel 

domain to prove that the optimal policy for continuous POMDP outperforms previous 

traditional approaches. Also, the proposed method improved the performance of handcrafted 

dialogue manager by incorporating confidence score and belief monitoring. This method 

takes additional information of confidence score into account and creates a policy for 

continuous POMDP solution, whereas the discrete POMDP doesn't use confidence score 

36 



information for planning. By contrast, MDP uses lot of confidence score information for 

planning but does not have belief monitoring [William05]. The influence diagram of 

continuous POMDP is given below. 

Ttmestep n ' Timestep n+1 

Figure 3.10: Influence diagram of continuous POMDP 

In the above figure, the shaded circle shows that the system is in unobserved state and the 

dotted box indicates the composite POMDP state, s. The tilde symbol in user action au 

denotes that the user may in noisy environment. The system actions am depends on the belief 

state b(s), not the unobserved state. 

In 2006, William et. al. extended the POMDP with continuous observation for Pizza 

ordering domain. The point-based value iteration algorithm used to measure the performance 

of this system is Perseus [Spaan04]. To speed up the system processing, Perseus heuristically 

selects a small set of representative belief points. They evaluated the confidence score by 

assuming two distributions namely, correct and incorrect recognition. Figure 13, shows an 

example conversation between user and the system for Pizza-ordering domain. The first 
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column shows a sample dialogue, confidence score and how the speech recognisor 

understand the utterance (shown in brackets). The second column shows how the dialogue 

manager understands the user utterance by tracking the dialogue states and confidence 

bucket. The third column shows how the POMDP belief state tracks the same dialogue 

[William06]. 

System/User/ASR Traditional dialogue state P0MDP belief state 

Prior to start of dialogue 

S: How can I fcelp you? 
U: A smafl peppefoni pizza 

|a smaB pepperoni pizza] 
Ctmfkimw score: CM 

S: And what type of crust? 
U: Uh |ust noitnai 

iiarge normal] 
Confidence score: OM 

mm: l 
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I 
size: large f?] 
confidence: fow |?] 

> 

Smi Med Lrg 

Sirt Wed Lrg 

$m! Med Lrg 

Figure 3.11: Example conversation in Pizza- Ordering domain. 

In 2007, Bui with his colleagues proposed a DDN-POMDP approach which focuses on 

real- time online belief state for affective frame-based models. Their experiments proved 

that, this approach outperforms 3 handcrafted dialogue managers, handle large number of 

slots and able to keep track of user's affective state [Bui07]. [Thomson07] proposed a new 

framework for training real world POMDP based dialogue system. His approach discuss 
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about the new policy optimization based on grid- based Q-learning with a summary of belief 

space. This type of system allows real time conversation between the user and the system by 

recording new dialogues. In summary POMDP, the original actions and belief space are 

called master actions and master space respectively, while the summary space actions and 

belief space are called summary actions and summary space respectively. When the 

conversation starts between the user and system, the system chooses an action at each point 

of time which is mapped to summary belief space. The nearest summary point in the grid is 

determined and the optimal summary action given by that point is chosen. The experiments 

showed that this policy works well with human user as it performed 90% well even without 

accessing the training data. 

Bui developed a practical dialogue manager using POMDP in 2007 [Bui et. al.07]. They 

applied factored POMDP model in three applications such as QA dialogue system, Virtual 

guide and route navigation system. The basic goal is to improve the handcrafted policies with 

POMDP approach. To accomplish the task, they developed a software toolkit to conduct 

experiments and track the performance of this approach. The results of these applications are 

compared with the handcrafted dialog managers using two different solvers to evaluate the 

performance of the system. In 2008, Jason extended the POMDP approach for tracking 

multiple dialogue states using ASR N-best list [Jason08]. In 2010, Thomson and Young 

proposed a new framework of POMDP known as Bayesian update of dialogue state using 

loopy belief propagation (LBP) algorithm. This approach has been the most effective of 

spoken dialog systems because the prompts can be designed to elicit highly restricted user 

responses. However, the choice questions for the user are limited. This approach has been 

tested with both simulated and real user environment. 
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Figure 3.12: Frameworks for modeling uncertainty and policy optimisation in spoken 

dialogue systems. 

This method improves the standard algorithms and made belief space update tractable. It 

also uses Natural Actor Critic (NAC) algorithm of [Peters et al. 05] for optimising policies of 

POMDP dialogue manager over a factorised state space. 

3.1.5.1 Factored POMDP 

In 2005, William et al. casted the spoken dialogue system as a factored POMDP to use this 

model as general framework for existing POMDP dialog manager. In this model, the 

POMDP state variable s s S into three components such as: 1) the user's goal, su s Su; 2) the 

user's action au £ Au; 3) history / state of the dialogue Sd s Sd. Thus, the POMDP state s is 

given by the tuple (s„, au, Sd) and from the system's perspective, all those components are 

unobservable [Jason05]. 

1) The user's goal, su gives the current goal or intention of the user. For example, user goal 

include a complete travel itinerary, a product the user would like to purchase or 

requesting information about a calendar. 
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2) The user's action au, gives the user's most recent actual action. For example, specifying a 

place the user would like to travel, responding to yes/no question, or a null response 

indicating the user took no action. 

3) The dialogue history/state Sd, indicates any relevant history or state information. For 

example, particular slot has not been stated, if there any ungrounded items, a dialogue 

designer might wish to penalise asking an open question. 

The POMDP action am G Am is the action the machine takes in the dialog such as greeting 

the user or asking a question. At each time step /, the POMDP receives a single observation 

but it maintains a distribution over all possible user actions au. The factored POMDP is given 

by decomposing the POMDP transition function which is as follows: 

p(/\s,am) = p(s'u7s'd,au | s u , s d M^aJ 

= P(4 \sa,sd,au,am)p{au \sf
tl,su7sd^u,ajp(sd \a'ns^u,sd,a^aj 

The first term indicates the user goal model. At each time step t, it is assumed that the 

user's goal depends on the previous goal and the machine action. 

p(K I w^«-0=P(K I v J 
The second term is the user action model which indicates what action the user is likely to 

take at each time step t. It is assumed that the user's action depends on the current goal and 

preceding machine action. 
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The third term is the dialogue model which indicates how the user and system actions 

affect the dialogue history. The current state or history of the dialogue depends on the 

previous history / state of the dialogue, user's action and system action. 

PiSd ! a'uX>Su*S<l>a*>am) = f(Sd I a'«>Sd>am) 

Thus, the transition function of POMDP is given by, 

Pis \s7am) = p( 
am)P(aulSu^m)P(Sd\au^d^m) 

The observation function of POMDP is given by, 

p{o | s\am) = p(o | sv,sd,a'u,am) 

The confidence score and rewards are not specified as this model is associated with a 

particular user goal and design objectives of the target system respectively. At each time t, 

the actions are selected depends on the belief state to maximize the cumulative long-term 

reward by substituting and simplifying the above equations. 

k-pio'laOpiKlK^Jj^piK K > O Z p(sd K ^ O Z ^ s ^ > ^ ) 
*aeSB SjeSj a^eA^ 

This model is tested with a simulated dialogue management problem in a travel domain 

in which the user is trying to buy a ticket to travel and compared the results with handcrafted 

policies and MDP baseline [Young06]. The results proved that POMDP maintains a well-

formed distribution over user goals and in case of certainty; it reflects in particular user goals. 

Since this model assumes the flat listing of flat components, the spoken dialogue systems 

with hierarchical components may result in poor performance. 
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3.1.5.2 Hidden Information State model 

In 2005, Young et al. proposed a model to integrate the knowledge representations with the 

appropriate statistical model known as Hidden Information State (HIS) model for statistical 

dialogue systems. The main idea behind this model is that a belief state distribution can 

represented efficiently by partitioning the states and grouping them together for extremely 

large state space [Steve et al.05]. The HIS model deals with two components of factored 

POMDP; User goal and user action components. In user action model, the value of the 

previous user action is not required to apply the update belief state equation if the system is 

memoryless. The user goal model targets on the database inquiry applications in which the 

user goal is deemed to a specific entity. User goal partitions are represented as forest of trees 

where each tree represents a single partition which has been illustrated in the following figure 

15. Each user utterance is decoded into an N-best list of dialog acts and each incoming act 

plus the previous system act are matched against the forest of user goals and partitions are 

split as needed [Young06]. The space of all user goals are described as a set of ontology rules 

and these rules specifies the hierarchical structure of data. When a conversation starts, each 

incoming user act is matched with each state partition. If there is no match, the system 

consults the ontology rules and creates a match by expanding the tree. 
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Figure 3.13: HIS Dialogue Manager 

In 2008, Young et al. developed a framework to evaluate the HIS dialog manager in 

noisy environment [Gasic08] and for modelling user behaviour [Keizer08]. In first case, they 

used HIS dialogue manager as example and MDP - based dialogue manager as baseline to 

evaluate the results for both simulated and real environment for the tourist information 

domain. The results proved that the HIS dialogue manager in real environment performed 

better that MDP based dialogue manager, whereas in simulated environment it fails to model 

the uncertainty which made POMDP model to exploit alternative hypothesis for spoken 

dialogue systems. In later case, they designed a User Act Model (UAM) as part of HIS to 

evaluate the user behaviour in the spoken dialogue systems in noisy environment. This 

system proved its robustness at higher error rates, providing good quality N-best are 

provided. 
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3.1.6 Limitations of existing POMDP Approaches 

Though POMDP based dialog managers are used to develop lot of spoken dialogue systems, 

the questions to be answered and issues to be solved remains the same. It considers the real 

world state as static and the decision made by POMDP depends on the current belief state. 

The dialogue manager consists of a component to update the dialogue history, but those 

dialogue histories are not considered for making effective decisions. The issue of handling 

uncertainty remains the same and continues till date in all existing approaches of POMDP 

dialogue manager. 

3.2 Review of Contextual Control Model 

Hollnagel in 1993 developed a Contextual Control Model (COCOM) to control and analyse 

team behaviour based on cognitive modes. This model argued that the system decides what 

action to take next according to the context of situation. He observed that this approach is 

reactive both in the environment and individual perspective of the user. The degree of control 

varies between four modes namely; scrambled, opportunistic, tactical and strategic modes. 

He further argued that the team behaviour should be analysed as macro rather than micro 

level. These control modes of team behaviour varies in terms of forward planning. 

3.2.1 Testing COCOM by Assessing Team Behaviour 

In 2001, Stanton et al tested this COCOM with a team of people in a simulated energy 

distribution system. The results confirmed Hollnagel's model in two different ways. First, the 

team behaviour could be categorised reliably into the four control modes provided a useful 

way of distinguishing between experimental conditions. Second, the progression between 

control modes conformed to the linear progression [StantonOl]. This model depicts the 

dynamism of the environment by determining how the operator should quickly shift to 
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another mode depending upon the situation. If the action taken is correct then we can achieve 

the goal in short time and if the situation is already in a scrambled mode and the decision 

taken is incorrect, the goal will be removed and sets a panic situation in the environment. 

They explored the relationship between control modes and system states to see if different 

interfaces and proximity of personnel provide control teams with greater opportunity for 

strategic control and less demand for scrambled control. A framework is also set to transfer 

the control directly from scrambled to tactical and vice versa. 

Figure 3.14: Internal structure of Contextual Control Model [COCOM] 

They tested the method with 24 groups of people, 4 in each group who has some 

experience or interest in engineering background. There were 74 males and 22 females of the 

age between 19 and 55. The study tested between factors using four different conditions, 

46 



where six teams of four people were asked to perform a simulated task of balancing a gas-

network system. The dependent variable measures were time spent in each control mode by 

each team and transitions between control modes [StantonOl]. Four networked pc's were 

used for experiments, video cameras to capture the behaviour and telephones for 

communication between the team members. The data analysis was carried out using Mann 

Whitney U test to check any statistical difference between the groups. They also analysed a 

transition from scrambled to strategic mode. The results showed that the teams spend more 

time on tactical mode supporting Hollnagel's COCOM. 

In 2004, Eric Hollnagel developed a framework to use COCOM in human reliability 

analysis known as Cognitive Reliability and Error Analysis Method (CREAM) to model the 

human performance as a set of control modes. The transition between modes depends on the 

following strategy; the strategic mode based on long-term planning, tactical mode based on 

set of procedures, opportunistic mode based on the present context and the scrambled mode 

based on random response. In 2006, Kim et al., proposed a probabilistic method namely 

Bayesian network for determining the control modes [Kim06]. Renner and Johansson used 

the COCOM in traffic environment to test the single driver behaviour, coordination and 

interaction between drivers in traffic environment [Renner06]. 
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Figure 3.15: Contextual Control Model by Eric Hollnagel in 1998 [Renner06] 

To accomplish this work, they proposed a framework called ECOM which is nothing but 

the extended version of COCOM. ECOM provides a framework for analysing single driver 

behaviour aiming at both lower- level and higher-level goals. While considering about 

coordination between drivers on the road or intersection each driver makes an assumption on 

other driver's intention based on traffic rules. 

3.2.2 COCOM for Dynamic Decision Making 

In 2006, Karen Feigh and Amy Pritchett introduced this COCOM in the design of support 

systems for dynamic decision making in Airline operations. They tested this model with the 

human operator and concluded that the regulation for dynamic systems has implication for 

both internal and external dynamic systems, for example: flight schedule. In the dynamic 

system, the individuals transition between COCOM control modes to maintain the control 

over the dynamic condition, which in turn depends on the current context of the situation. 

The main feature of this model is availability of time. If there is time available is too short, 

then the control will be in opportunistic mode. There are several behaviours which they 
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determine using this model namely, perception, situation assessment, communication, 

coordination, analysis, alternative generation and comparison of alternatives and tracked how 

these behaviours changes under different contexts. Traditionally, support systems are 

designed to use single human activity, decision making and ignores several behaviours 

required to obtain successful goals. This analysis proved that, along with decision making 

other activities like judgment, coordination, information gathering, and solution generation 

can also be considered to achieve optimal solution for a particular situation [Feigh06]. They 

further extended their framework of COCOM to design and test multi-mode support systems 

for airline operations to improve airline recovery from irregular operations and airline 

rescheduling tasks [Karen06]. It provides a useful framework to view the changes in 

cognitive work in response to contextual features such as time limit and information 

availability. Control in this model is conceptualized as planning what to do in the short-term 

and within the time horizon of the system with which the human is interacting. 

3.3 Conclusion 

In this chapter, we discussed briefly about the proposed works of Partially Observable 

Markov Decision Process and Contextual Control Modes from literature. From the literature, 

it is evident that the issues and limitations of both the research areas are still remain 

unsolved. As the coin has two sides, each approach has its own drawback to be taken care of 

in future. 
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Chapter 4 

Four Mode Based Dialogue Management 

This chapter gives a detailed explanation about the contribution of this thesis. First, the 

overview of the method description is presented. Second, we have integrated COCOM to 

spoken dialogue systems for decision making purpose. Then, we discussed how the modified 

POMDP chooses best action to respond the user's requirement, as the system is dominated 

by COCOM for control and decision. Finally, the flow chart and pseudo code of the modified 

approach is presented. 

4.1 Method Description 

The previous chapter provided a clear idea about how POMDP can be incorporated with 

dialogue management to get the actual intention of the human user. There are several 

techniques have been proposed from finite state based approach to hidden information state, 

aiming at providing more interaction between the human and the computer. Though all the 

POMDP techniques have better approach by overcoming issues of the previous models, they 

have their own limitations. As evident from the literature, it is clearly know that these 

approaches fail to handle uncertainty and predicts the real-world state as static. And the 

decision made the machine depends only on the current state alone in long- term and short-

term goals. These models were developed to handle extremely large systems with millions of 

dialogue state and complex applications but none of the models concentrate to overcome the 

POMDPs natural property of predicting static belief states. 
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To provide natural interaction between the human and machine, it is always wise to 

equally concentrate more on both the technical and decision making mechanism. The 

machine should be trained to handle random situations and able to hold overall control of the 

system in order to provide a more natural way of service to the users. We have proposed a 

framework to provide a dynamic system by modifying the POMDP model and incorporating 

Contextual Control Modes for dynamic decision making mechanism. We have also modified 

the reward model depending upon the four control modes. 

We have made two contributions in this thesis. First, we have incorporated Contextual 

Control Modes in Dialogue Management for handling decision making mechanism in the 

dialogue manager. Second, we have modified the mathematical evaluation of POMDP model 

depending upon the framework proposed. 

4.2 COCOM for Decision Making in DM 

Though POMDP based spoken dialogue systems provide better outcomes in lot of 

applications, still the researchers put lot of their effort on the decision making part of 

POMDP as it choose the actions based on the current dialogue state. This can be used in 

applications which can provide services based on short time goals. On the other hand, to 

make a system to behave and provide required services in a natural way, it has to react to the 

situation and not deal with pre-defined words. Theoretically speaking, it is a very tedious 

effort to develop a system which has the ability to control over the situation and within the 

time availability, even which is not hundred percent successful with the intervention of 

humans. To accomplish this type of system, we have integrated Hollnagel's four control 

modes to the POMDP model, as the dialogue controlling mechanism is taken care of by these 

modes. Four mode based system choose the best action by the context of the dialogue and 
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switch between the modes depends on the dialogue states, current action, context of the 

situation and available time. The system plans what to perform, how to react to the situations 

depends on the users and the environment. Switching between the four control modes makes 

the systems reliable and provides services exactly what the user wants. The system maintains 

its mode in strategy level depends on the context of the dialogue and time availability, aiming 

at providing higher level goal. If the system is in scrambled mode, which means a panic 

situation occurred and the system lost its control on the dialogue. In this case, the system is 

allowed to take random decisions depends on the context of the situation. If a user failed to 

provide any information, instead of throwing errors or repeating the same query, here the 

system decides to change its mode to opportunistic and gives options to the user in which he 

has select the information from the list. So that, the user won't repeat the same mistake in the 

next dialogue state which increases the timestamps and time to achieve the optimal goal. 

Sometimes, repeating same questions (pre-set) to the user annoys the user and switches the 

system into scrambled mode. So, it is always wise to plan what to do in short-term within the 

time- horizon by considering all the factors before choosing an action rather than repeating 

the same pre-set of queries. Because the situation in an environment does not remain the 

same as it varies according to the type of users and the services requested by them in a 

dialogue management system. By Hollnagel's hypothesis, these four modes are designed to 

carry out forward planning depending the control, competence and constructs [COCOM]. 

4.3 Modified POMDP Approach 

Unlike, previous POMDP approaches our method provides the services considering all 

factors from the perspective of the user to achieve the optimal goal with few dialogue states 

with short time. We have also concentrate more on pruning the number of dialogue states at 
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least by ten percent depending upon the type of domain. Our dialogue manager has the same 

components exactly like the previous dialogue managers composed of such as knowledge 

base, updated dialogue history, discourse generator and session model. 

The system starts with the greet message followed by the system query to request for 

what type service to be provided to the user. Initially, at time t the system is normally in 

some unobserved state, s s S. When the conversation established between the user and the 

system, the dialogue states transition from s to s' by the increment of time stamps. Choosing 

the best action for the dialogue in our system is dominated by the four control modes in our 

system. The decision making or the switch between the control modes depends on the time 

available to make decisions on the particular context of the dialogue. So, we have introduced 

a factor TA which represents the available time for choosing the best action which depends on 

the machine state sm, set of observations o', machine actions am and the belief state b(s) of the 

machine, is denoted by TA(S„„ am, o \b) at each time t. Depending upon the values of TA, and 

the machine states sm the switching between the modes takes place, which does not mean that 

the decision is taken now. The decision making is done by comparing the state of the system 

sm, machine actions am, observation o', belief state b and the type of control mode TA at 

present the dialogue is in (i.e. at time t). To calculate the belief distribution of the dialogue, 

we have also introduced a factor tr which represents the response time of the system to the 

user in milliseconds. So, the belief state distribution is updated based on o' and action a are 

as follows: 

6'(s') = P(s ' |o ' , a ,b , t r ) 

= P(p'\ s', a, b, tr) P (s' | a, b) P (s' | a, t r) 

P(o'\a,b,tr) 
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= P(o'\s',a)1ZSES P(s'\a,b,tr ,s) P(s \a,b) P(s\a,tr) 

P{o'\a,b,tr) 

= P(o \s ,a) SS£5 P(s \a, s) b(s) tr (s) 

P(o'\a,b,tr) 

Here, the dialogue states and actions represent the machine states and machine actions 

respectively. And the value of TA depends on the current action and belief state distribution, 

which is given by TA (O' | s, a, b'). Based on the current belief state and available time, the 

machine selects an action a s A, receives an reward r(sm, am) and transitions to a new 

unobserved state s'. Then, the system receives an observation o ' e O depends on the system 

state sm and the system action am. Finally, the belief state is updated with a new one at 

particular time t. In our system, the belief state value depends on the fields: type of crust, 

pizza size, number of pizza, pizza toppings. 

4.3.1 Rewards 

We have also changed the reward model depending upon the modified POMDP approach 

with four control modes. Previous POMDP model, has two types of reward with some 

positive values for correct dialogue, i.e., the system exactly understand the user utterances 

and provide service exactly what the user wants. Negative values or zero for incorrect 

dialogue in which the system does not understand the user utterances exactly. In out model, 

we have modelled the rewards type depending upon the control modes: +100 if the dialogue 

state is in strategic mode and tactical mode as the system understands what the user wants, -

100 if the dialogue is in opportunistic mode as the user doesn't provide correct information 

or if there any conflict in the information provided by the user. Here, the system receives a 

negative reward and instructed to provide options to the user to provide interactive dialogue 
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between the user and the system. Zero if the system is in scrambled mode because in this 

mode, the user doesn't receive any proper information or query from the user which may be 

some disturbances, error or some corrupted information. X is used as discount factor at time t, 

and the reward R is given by, 

00 00 

R=2_i^
t r(bt, amX, tr) =2_,^2_, *tCs)£r (s)r(s, am>t) 

t=0 t=0 seS 

Each action is determined by a policy n and POMDP system involves in finding the 

optimal policy n* for the application which maximizes the rewards. 

n* (s t) = a[argmaxaeA (bt, t r)] 

4.3.2 Confidence Scores 

We have also incorporated the confidence score by providing an estimation of real value to 

show how exactly that the system understands the user utterances denoted by c with a pre

defined threshold value 0, which in turn affects the rewards received for each dialogue state. 

We haven't made any changes to the confidence buckets as it depends on the user's 

utterances and system observation denoted as user action au. So, we have used the same 

evaluation for calculating confidence score as it doesn't make any change choosing system 

actions. But we have included an option of paraphrasing or double checking mechanism to 

increase the confidence scores. In this case, the system transitions to tactical mode because at 

this case the system reconfirms the user utterance by providing him an option in order to 

understand the user requirement exactly and reach the optimal goal within the available time. 

For example, consider this dialogue for Pizza - ordering domain [William05]. If the user 

asks for normal size pizza, the system here gets confused with the size field "normal", and 

here the confidence score will be low or the application assumes the size with the pre-defined 

55 



values for the size field and continues the dialogue. Finally, the user goal will not be reached 

which may switch the system to panic situation or deliver the user with wrong size of pizza. 

S: Ami *ftat type of crust? order: | 
U: Uti lust mrmi m»: mm PI 

fterge normal confidwict: tew pj 
CmMmm score: 03$ } 

But our model, transitions to the tactical mode and double checks with the option we have 

pre-defined in the size field. 

S: What type of crust? 

U: Regular 

S: Thank you. So you need a Regular (12") pizza? 

In this case, the confidence score is 0.63 and the system understands the user's 

requirement exactly in one time step. So, the optimal goal will be reached in few time steps 

which makes the system more reliable and less recognition error. If the environment is noisy 

or lot of speech error, the system is reported to be in scrambled mode. Then it is instructed to 

transition to change in to opportunistic mode, so that the system can display or tell the 

options to the user to select from the list. The change in modes depends on the user action, 

availability time and the rewards received. The developed dialogue manager also handles if 

there any conflict in the dialogue like, if the user request for vegetarian pizza with the 

toppings cheese, green olives and pepperoni which shows a conflict with the type field. Since 

there is a conflict, the belief state value for topping will be 0 and the confidence score will be 

low and rewards received will be in negative which makes the systems to transitions to 

opportunistic mode and provides available toppings for the vegetarian pizza. 

56 



A graphical representation of our framework and its pseudo code is also given as 

follows. In the pseudo code and flow chart, M represents the four control modes namely, X -

Scrambled mode, O- Opportunistic mode, T- Tactical mode and S- Strategic mode. 

Pseudo - Code of Proposed Model 

1. function PIZZAORDERINGDOMAINO 

2. t -> initialize time- stamp 0 

3. sm -> initialize system state (unobserved) 

4. am -> initialize system action 

5. b -> initialize belief state 0 

6. M -> initialize control mode 0 

7. repeat 

8. su "^ user dialogue state 

9. au -> user dialogue acts Jt(su) 

10. Calculate belief-state b(s) 

11. Calculate Confidence Score C 

12. Calculate system response time Tr 

13. Check mode M(X, O, T, S) 

14. Generate machine action, am = dialogue act type am in the context 

15. Generate Rewards r(s,a,tr) 

16. If machine action, am ^ dialogue act type am in the context 

17. Change mode M (X, O, T, S) 

18. Update belief-state b(s) 

19. t -> t+1 

20. until the conversation terminates 

21. end function 

Table 4.1 Pseudo - Code of Proposed Method 
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Figure 4.1: Flow-Chart of Proposed Model 
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4.4 Conclusion 

In this chapter, we have discussed about the contributions made in the POMDP based 

dialogue management systems to make dynamic decision making depending on the four 

control modes. We have also presented the modified approach of POMDP for handling real-

world state and uncertainty. Also, we have discussed how our approach extends the reward 

model and confidence scores. The main advantage of our proposed model is the dynamism 

and robustness compared to the different dialogue management system approaches. 
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Chapter 5 

Experimental Analysis 

This chapter describes about the implementation of our proposed system such as software 

and hardware requirements. Then, the tools used to develop and test the system followed by 

the dialogue manager developed to carry out experiments with an example domain. Finally 

discussions about the experimental results are presented. 

5.1 Implementation 

Since we are using two software modules; one for user output and other one for knowledge 

base we need a computer with 2 GB RAM, Pentium Dual core with 2 GHz processor and the 

system should be connected to a mike and speaker. The proposed system is implemented 

using JAVA under Eclipse 3.5 and the knowledge base has been designed using MS SQL 

Server and a connection has been established between both front - end and back - end 

applications. We have also used an audio system known as Mary TTS system which is also 

started with the execution of dialogue manager in order to provide speech input and output 

for the system. It synthesis the input and output data in wave file format. It provides voice 

input to the system and generates the speech format output to the user. Figure 16, shows the 

actual output display of our proposed system with an example between the human user and 

the system. 
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Figure 5.1: User Interface of Proposed system 

In the user interface/chat screen, we have also displayed the response time, rewards, 

mode of the dialogue and confidence scores just for our own tracking purpose to test whether 

the system performs efficiently. As we use the history of the dialogue to make decisions or 

choose system actions, the developed dialogue manager tracks the system actions, confidence 

scores, rewards, mode of the dialogue and transition between the modes, response time of the 

system for every dialogue states and the belief states. The following figurel7, shows the 

dialogue manager of our proposed system. The results collected at the end of each dialogue. 
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################################# dialog manager 
###################################################us er Type: syst em Act i on: 
Rewards: confidence score: Mode: Response Time s 
welcoueMessage 0 0.0 OU u s e r q u e s t i o n - 100 2 5 . 0 
O p p o r t u n i s t i c Mode 2141s ask u s e r q u e s t i o n 0 0 . 0 Oil 
u s e r q u e s t i o n 100 63 .636364 T a c t i c a l Mode 10005 ask c r u s t T y p e 0 
0 . 0 OU crustType -100 25.0 opportunistic Mode 
1735S ask crustType 0 0.0 OU crustType 100 
65.21739 Tactical Mode 1265s ask pizzaSize 0 0.0 OU 
pizzasize 100 53.846157 Tactical Mode 1234s ask pizzaTopping 
0 0.0 OU pizzaTopping 100 100.0 strategic Mode 
1063S ask userquestion 0 0.0 0 
################################# Response Time 
###################################################1280675816890-0.0:1280675816921 
-0.0:1280675831781-42.857143:1280675831812-33.333336:1280675831843-
50.0:1280675831875-63.636364:1280675843265-0.0:1280675843281-0.0:1280675854781-
25.0:1280675854796-0.0:1280675854812-0.0:1280675863031-53. 846157:1280675870468-
0.0:1280675870484-0.0:################################# Round, Beli ef State 
ent ry, val ues ###################################################Round#: Bel i ef 
state:(crustType-pizzaTopping-pizzasize) value: 0 0-0-0 0.0 1 
0-0-0 0.0 2 0-0-0 0.083333336 3 1-0-0 0.21739131 4 
1-1-0 0.3968785 5 1-1-1 0.73021185 

Figure 5.2: Dialogue Manager updates all the activities of the system 

To compare the experimental results with the previous and existing approaches of 

POMDP, we have used a toolkit known as POMDP Toolkit developed by Bui in 2007 to 

carry out experiments and analyse the results of the POMDP dialogue manager [Tool07]. We 

have specified our problem in a specification POMDP file which is included in the toolkit. 

Then we have to parse the specification file to generate a canonical POMDP file in Tony 

Cassandra's format. We also have installed a solver in order to create an alpha and policy 

graph file. The solvers mentioned in the toolkit are ZMDP and Perseus. In these solvers, we 

have create alpha and policy graph files separately. For time consuming and accuracy, we 

used a different solver known as pomdp-solver, as it creates both the alpha and policy graph 

files in single execution. We have used this policy graph file for comparing our results with 

existing POMDP based dialogue management systems. 
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5.2 Results 

We have tested our proposed system using Pizza -Ordering domain. We have done several 

experiments to test our system on considering four cases. 1) Normal dialogue between the 

user and the system, 2) With speech and text errors, 3) To handle conflicts in the user 

requirement, 4) To check whether the system updates the dialogue states and provide services 

depends on the history of the dialogue. 

The following figures show the result for the first case which is the normal dialogue between 

the human user and the system followed by the belief state values and transition in modes are 

illustrated. After each dialogue, the updated history of dialogue manager is viewed. Several 

experiments have been done and the belief state values and change in modes are presented as 

follows. Here, the results are arranged to show exact difference in values. 

aaiawtotBsfPttM 
A n Hi*i At tf »fvtt is *«•! <.'-k" F ~ <j'Ah it A'otj'd (o j liVf--o ot-lef ̂  Response Tine 30772&61 3079 28^6 

,st»n 'tart-nu A*iat*pe of Crust youiiks to have? 

t)t ~ » I •!> iSF , - 1 ! 

H ^ k r t ' JHi^Pd! Pl~3 JrUSt 
> tu SK ji >ufP) 'c * be i r i t i s irr? 

System: Regular nr '3 
•vrist type of roc-pings yc-y iike tc risve'' 

lyiitefn: Chute'i 
rsar:*: you for ordering y*itn lis youroraerwi* he dsir-rerect in 1 Hour 

Re*ards:*100:*100:»100>100: Tactical Mocfe:Strategjc ModeTacscat Mods:Strategic Moos: 

Confidence Score 63.636354:90 0:53.845157:100 0: 

Type SMS.) 

Figure 5.3: User Interface for case 1 experiment 
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################################# chat Log 
################################################### 
user Type: system 
Response Time 
s welcomeMessage 
u userQuestion 
s ask crustType 
u crustType 
s ask pizzasize 
u pizzasize 

Act 

0 
100 
0 
100 
0 
100 

s ask pizzaTopping 
u pizzaTopping 
s endQuestion 

100 
0 

Rewards: confidence score: Mode: 

0 
Tactical Node 
0 
strategic Mode 
0 
Tactical Mode 
0.0 
strategic Mode 

0 

2946 

2892 

3038 
0 
2768 

0.0 
71.42857 
0.0 
86.95652 
0.0 
53.846157 
0 
100.0 

0.0 
################################# Response Time 
###################################################12 8 2 640 5 7 3171-
21.428572:1282640573176-27.272728:1282640573180-71.42857:12S2640573183-3.7037036: 
1282640593845-86.95652:1282640593857-47.61905:1282640593867-50.0:1282640593877-
0.0:1282640593887-38.46154:1282640593896-0.0:1282640593906-0.0:1282640593916-
0.0:1282640593926-27.777779:1282640614148-0.0:1282640614149-0.0:1282640614150-
53.846157:1282640622589-0.0:1282640622590-0.0:1282640622591-0.0:1282640622592-
0.0:1282640622593-0.0:1282640622594-0.0:1282640622595-0.0:1282640622596-
0.0:1282640622597-0.0:1282640622598-0.0:1282640622599-0.0:1282640622600-
0.0:1282640622601-0.0:1282640622602-0.0:1282640622603-0.0:1282640622604-
0.0:1282640622605-0.0:################################# Round, Belief state 
entry,valties ###################################################Round#: Beli ef 
state:(crustType-pizzasize-pizzaNos-pizzaTopping) conflict value: 
1 0-0-0-0 N 0.0 

1-0-0-0 N 0.2173913 
1-1-0-0 N 0.35200667 
1-1-0-1 N 0.6020067 

Figure 5.4: The updated history component of proposed dialogue manager for case 1 

Case 2: The experiment shows how the dialogue manager reacts to speech or text errors. 

G s*5ir "?«o .Ve'cc ne *3 cfia'arid c d e - F z a .'vf~3: Ai f j ICvj i f i 'e to&'de-^ \ RespcnseTtms 3103 47332878 288"? 2858 

M» \\\\ <i +5 h 3V4 a £ i ' a 

:Sys?3m: i>.sf3t< yot.i.vvhaj type cf "rus! you ::Ks to have' 

Me SoyFisur Pizza C;usi 

py:;t?[r: 8<jy Fir>tsr Pi::r.a Ct ur4 
Nvisatss tnesize ofpizzate-oe marie •A*' 

System: ^sqijlaf {12*-
.Vhatryrye ot Toppings you ii*s to nave? 

s r3i t uij*~wc ds trig with us.vour order wiii 5e cjsljysfed in 1 Hour 

liR»ani5:*iao>1i)O:»1O0--10O>10ffi ;egic MsdeTadicsi Mcde:OpportunisSc Mode Strategic Mode: 

i ̂ Confidence Score 53836354:85.71429 53.846157:1C0.O: 

TypefterEJj 

Figure 5.5: User interface for case 2 experiments 
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#*«#»•»###»#*#*#**«»«#*«#*#*•«#»# chat Log ##########»######################################## 
«s«r Typ#; 
$ 
y 

s 
0 

s 
y 

s 
w 
s 
u 
s 

system Ac t ion : 
MticoMwwssag* 
yser<ju«st1a« 
ask crustTyp* 
erustTyp* 
ask pizzasize 
pftza&im 
ask pizzaToppirsg 
p1«araTO«rtn$ 
ask pIzzaTopping 
pljsjraTopping 
efwtoerQtiestion 

Rewards: 
0 
too 
0 

ioo 
0 

100 
0 

-too 
0 

100 
0 

0 
tactical xori* 

o 
strategic »od« 

o 
Tact ical Mode 

opportunist ic m4* 
0 

Strategic **od« 
0 

3103 

4793 

2S78 

Cowfldeftce Score: «od#: Response T1*« 
0,0 
63.636364 
0 .0 
85.71429 
0 .0 
53.84615? 
0 .0 
2 5 . 0 
0 .0 
3.00,0 
0 .0 

#**##*#««»*#»##»«#»«#######»«*##i* Response Tl me »#«###*###**###»####•###»*##»###################*>## 
1282638198638-50.0:I28263819S6«2-63.$36364:1282638198670 
-42,85^43:128263*19*679-33.333336:128263*214652-^47826:1282638214731-85, 71429:1282638214816-
50,0:128263*214896-0,0:128263«21508*«3«.461 54:1282638216050-
0,0:1282638216126-0.0;128263821620?-0.0:12S2638216288«27.777779;U8;?638225O30-0,0:128263«22$031« 
0,0:1282638225032-53.846157:1282638281677-0.0:1282638281678-
0.0:1282638281679-0.0:1282638281680-0,0:1282638281681-0.0:1282638281682-0. 0:1282638281683-
0,O:12S26382S16S4-O.O;12826382816S5-O,0:12S263S281686-0.0:i28263S2S1687-
0,0:1282638281688-0.0:1282638297297-0.0:1282638297298-0.0:1282638297299-0. 0:1282638297300-
0,0:12S26382973Gl-lOO.0:12S263829?302-0.0:12S263S297303-0.0;i2S2638297304-
0.0:1282638297305-0.0:1282638297306-0, 0:1282638297307-0,0:1282638297308-0.0:1282638297309-
0.0:1282638297310-0.0:1282638297311-0.0:1282638297312-0.0: 
#»##»#####»*###«##«##^##*##*#«»«.# nourid, Bel ief s t a t e 
«t*try,va1ue$*#####*»#»»*####»«###*»«*»»#»«##«*#*»'*«###* ,»####*## 
Rounds: Bel ie f Stat«;<cru5tType-pi*zaSi*e-pia:aaNe»-p1*«aTO|HHrsa) c o n f l i c t value: 
1 0-0-0-0 N 0.0 

X-0-0-0 M 0.2142*172 
1-1-0-0 H 0.14*9011 
1-1-0-0 H 0.4114011 
1-1-0-1 «t 0.59*9011 
o-o-e-0 ' M o.o 

Figure 5.6: The updated history component of proposed dialogue manager for case 2 

Case 3 and 4: Handling conflicts in user information and checking updated history for 

choosing system actions. 
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jSConfWerice Score SB.66667:65 21739100 0:100,3.100 0: 

Figure 5.7: User Interface for case 3 and 4 experiment 

65 



################################# Chat Log ###########################*#######################user 
Type : system A c t i o n : Rewards: c o n f i d e n c e s c o r e : Mode: Response Time s 
welconteMessage 0 0 . 0 ou use rQues t i on 100 66.66667 T a c t i c a l Mode 
3257S ask c r u s t T y p e 0 0 . 0 0U c rus tType 100 65.21739 
T a c t i c a l Mode 2898s ask p i z z a s i z e 0 0 .0 Ou p i z z a s i z e 100 1 0 0 . 0 
s t r a t e g i c Mode 3069s ask p izzaNos 0 0 .0 Ou pizzaNos 100 100 .0 
s t r a t e g i c Mode 2854s ask p izzaVegTopp ing 0 0 . 0 Ou pizzaVegTopping -100 
25 .0 O p p o r t u n i s t i c Mode 2912s ask p izzaVegTopping 0 0 . 0 Ou 
p izzaVegTopping 100 1 0 0 . 0 s t r a t e g i c Mode 2927s ask use rQues t i on 0 0 .0 
0################################# Response Time 
##################################j«f################1282643303737-35. 714287:1282643303770-
66.66667:1282643303798-65.21739:1282643303827-18.518518:1282643316345-65.21739:1282643316347-
23.809525:1282643316349-25.0:1282643316351-0.0:1282643316353-38.46154:1282643316355-
0.0:1282643316357-0.0:1282643316358-0.0:1282643316360-27.777779:1282643333763-0.0:128264 3333764-0.0: 
1282643343294-0.0:1282643343295-0.0:1282643400617-0.0:1282643400618-0.0:1282643400619-
40.0:1282643400620-0.0:1282643400621-0.0:1282643400622-0.0:1282643400623-0.0:1282643400624-
0.0:1282643400625-0.0:1282643400626-0.0:1282643400627-0.0:1282643400629-0. 0:128264340Q630-
O.O:12826434OO633-0.0:12S26434OO634-O.O:12826434O0636-O.O:12826434OO637-0.O:12826434O0638-
0.0:1282643400640-0.0:1282643400641-0.0:1282643400642-0.0:1282643400643-0.0:1282643435139-
0.0:1282643435140-0.0:1282643435141-0.0:1282643435142-0.0:1282643435143-0.0:1282643435144-
0.O:1282643435145-O.0:1282643435146-O.O:1282643435147-O.O:1282643435149-O.0:1282643435150-
0.0:1282643435151-0.0:1282643435152-0.0:1282643435153-0.0:1282643435154-100.0:1282643435155-
O.O:1282643435i57-O.O:1282643435158-O.O:1282643435i59-O.O:128264343516O-0.O:1282643435i61-O.O: 
################################# Round, Be l ie f State entry,values 
###################################################Round#: Bel ie f s ta te : (crustType-pizzasize-
pizzaNos-pizzaTopping) c o n f l i c t value: 
X 0 -0 -0 -0 H 0 .0 

.16304348 

.41304347 

.6630435 

.1255435 

.9130435 

Figure 5.8: The updated history component of proposed dialogue manager for case 3 and 4 

We have collected the results for belief state values for each experiment which have been 

evaluated using our modified POMDP equation. The value 1 represents that the user gave exact 

information for the particular field. The value 0 represents the user's information for that field is 

not provided or conflict with the type of field. 

1-0-0-0 
1-1-0-0 
1-1-1-0 
1-1-1-0 
1-1-1-1 

N 
N 
N 
Y 
N 

0 
0, 
0, 
0, 
0, 

66 



Round# Belief State:(crustType-pizzaSize-pizzaNos-pizzaTopping) Conflict Value 

3-0-0-0 
1-0-0-0 
1-1-0-0 
1-1-2-0 
1-1-1-1 
0-O4M3 
141-04) 
1-1-0-0 
1-1-043 
1-1-14) 
1-1-1-1 
0-04)4) 
14J-Q-0 
i-a-i-3 
1-1-04) 
o-i-i-o 
1-1-1-0 

i - i - i - i 
04J4H) 
1-04HJ 
1-1-0-0 
1-1-1-0 
1-1-143 
1-1-1-1 
0-0-0-0 
1-04-0 
1-1-04) 
i-o-iJO 
1-1-14) 
1-1-1-1 
1-1-1-1 
04)434) 
1-0-0-0 
1-1-04) 
1-1-1-0 
1-1-14) 
1-1-1-1 
1-1-1-0 
1-1-14) 
1-1-1-1 

N 
N 
N 
N 
N 
N 
N 
Y 
N 
N 
M 
N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 
N 
N 
M 
N 
N 
¥ 
N 
N 
N 
N 
N 
N 
M 
N 
N 
¥ 
N 
N 

0.0 
0.16304348 
0.41304347 
0.€630435 
0.913043S 
0.0 
0.0187823 
0.428536? 
0.7903435 
3.8530435 
0.913043S 
0.0 
0.21473942 
0.4892017 
0.6630435 
0.6983019 
0.7356290 
0.9557392 
0.0 
0.1378272 
0.2477291 
0.57537914 
0.7535221 
0.93523917 
0.0 
0.0132713 
0..346723E 
0.05903435 
0.67201734 
0.90271S72 
0.92762934 
0.0 
0.1026389 
0.567S261 
0.5921671 
0.6391259 
0.9595382 
0.1618185 
0.5692827 
0.9685719 

Table 5.1 Experimental Results of Modified POMDP model 

5.3 Discussion 

Case 1: A normal dialogue between the user and the system in pizza - ordering domain. 

For each dialogue states, the dialogue manager updates its history and we have collected the 

belief state values at the end of each dialogue. The component also tracks all possible values 
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required to make decision making and choose best action to respond to the user. The 

following figure shows the results and values updated at each dialogue state. The values are 

arranged to show clearly the system actions at each time steps, belief state values and 

transition between control modes. To track the rewards and transition mode for each dialogue 

state, we have also displayed in the user interface for our experimental purpose. 

Case 2: The experiment shows how the dialogue manager reacts to speech or text errors. The 

system receives a negative reward as it is affected by noisy environment or text errors. Then 

it changes its mode to opportunistic and gives some options to the user. 

Case 3 and 4: Handling conflicts in user information and checking updated history for 

choosing system actions. If the user order for vegetarian pizza and requests for a non-

vegetarian topping results in conflict between the toppings field of the domain. The conflict 

in the values gives the system a negative reward and transitions from scrambled mode to 

opportunistic mode and provides set of options for the user to choose from the list. This is 

also evident that the dialogue manager updates its dialogue history and considers it before 

choosing system actions. The "Y" in the results shows that there is a conflict in the fields. 

5.4 Conclusion 

We have showed the exact results of our proposed POMDP framework using four modes for 

controlling the dialogue. We have also discussed about the limitations of existing dialogue 

manager which has been overcome by our proposed model which is evident from the above 

results. 
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Chapter 6 

Conclusions and Future Work 

Pomdp based dialogue management systems has got more attention in the field of human-

computer interaction between the researchers all around the world. To design and implement 

a dynamic framework for this model is a complex work. Because, if we have simple domain 

then we can design and maintain a dynamic system and it will be cost effective. But recent 

applications of spoken dialogue management have been incorporated Artificial Intelligence 

field to implement a dynamic POMDP - based dialogue management system. As spoken 

dialogue management applications needs good system requirements to implement and 

maintain. We introduced contextual control model into dialogue management to handle this 

issue and provide dynamic decision making in the spoken dialogue systems which is 

impossible with POMDP model alone. 

We have discussed the previous approaches and techniques used in the dialogue 

management along with its limitations. This thesis motivates how to design and develop a 

dynamic based system and the evaluation techniques we used to accomplish the task. We 

have also modified the existing POMDP equations according to the proposed system in order 

to perform according to the specification. Experimental results add more confidence to the 

implemented system. We have done several experiments based on different cases to 

overcome the limitations of existing approaches by using pizza- ordering domain as our test 

bed. The result also proves that our proposed model is effective and performs efficiently by 

handling real - world certainty. 
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Our proposed method in future can be used in both the fields such as dialogue 

management and support systems. During experiments, we predicted minor errors by setting 

different values for the discount factor. In some set of dialogue, the decision is accurately the 

same but in one of hundred cases, if the dialogue is in scrambled mode the system never 

transition to higher level goals. But still it depends on the type of domain the method is 

applied on. 

In future work, we can use both Pomdp and contextual control modes in the field of 

Artificial Intelligence to track the behaviour of the Robot and control its decision making 

features. We can extend the system by adding emotions as input and output to the systems. 

As we all fond of sending emotions in the form of smileys instead of typing the actual text. 

So, we can design a system to process emotional data and understands user intention from 

those emotions. Further, the systems can be made domain independent and language 

independent. It should be developed as a common concept and can be tested with different 

spoken dialogue system applications. We can further import the system to mobile application 

by applying mobile computing techniques in the system. These types of developments in the 

field of dialogue management will dominate the world technology by using avatars and 

robots to act as more natural way in providing support like humans. 
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