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ABSTRACT 

This research was completed in an effort to improve the biofidelity of a finite 

element child model and the accuracy of injury predictions in forward facing child 

restraint seats during numerical simulations of frontal crashes. 

After material alterations to the child model, neck tensile force was found to be 

within the range of cadaver tests and the rotation-moment curves were in good agreement 

with the corridor of the pediatric cadaver head/neck complex tests. 

The altered child model has illustrated more accurate biomechanical responses 

and kinematics; its biofidelity has been improved. The upper and lower neck tensile 

forces of the child model were reduced by approximately 35% and 41%, respectively. 

Tensile deformation of the child neck was increased by 2.75 times while rotational 

deformation increased by 37%. The percentage error of the maximum displacements of 

the child head was reduced from approximately 16% to 13.5%. 
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1. INTRODUCTION 

Each year motor vehicle collisions cause death and injuries to thousands of people 

in North America and throughout the whole world. According to the 2007 report of the 

World Health Organization (WHO), Youth and Road Safety [1], the annual costs of road 

crashes in low-income and middle-income countries was estimated to be between US$ 65 

billion and US$ 100 billion which is more than the total annual amount received in 

development aid. Road traffic crashes and their consequences cost governments 

approximately 2% of their Gross National Product. 

Traffic accidents are one of the leading causes of injuries and fatalities to children 

and young people. More than 1000 young people under the age of 25 years are killed 

every day in road traffic crashes around the world [1]. Fatal injuries for children include 

head and neck injuries. 

Statistics of child fatalities due to vehicle accidents from the year 1995 to 2000 in 

New South Wales [2] showed that children in the 3 to 4 year age group accounted for a 

greater number of passenger fatalities (45.5 percent) than any other age group. Based on 

the 2006 National Highway Traffic Safety Administration (NHTSA) report [3], motor 

vehicle accidents are the leading cause of death for children three years of age. 

To prevent child injuries or fatalities in vehicle crash, one needs to understand the 

kinematic and biomechanical responses of children and predict the risks of injuries when 

they ride as passengers. Anthropomorphic test devices (ATD's) have been used 

extensively in experimental and numerical analyses to understand child kinematics during 

simulated laboratory crash testing. The Hybrid III dummy family, including male, female 

and child dummies, has been officially used as ATD in vehicle development and in 

research on occupant protection. 

The Hybrid III 3-year-old child dummy is one of the child dummy series from the 

Hybrid III family. According to recent studies, Kang et al [4], and Arbogast et al. [5] 

indicated that the Hybrid III 3-year-old child dummy had limitations in kinematic and 

biomechanical responses in frontal crash, especially as a result of the rigidity of the 

cervical and thoracic spine. Unfortunately there is no easy approach to quickly improve 

the biofidelity of physical test dummies. Human-like models developed for simulating 

1 



human performance in vehicle crash events and predicting injuries hold advantages over 

test dummies. Detailed human anatomic geometries, material properties, and information 

from the latest experimental tests and clinical findings can be more easily implemented in 

a human model than in a test dummy. With a human model, parametric and multiple case 

studies can be performed. 

One such human model is the Total Human Model for Safety (THUMS), which 

was developed by a Toyota research laboratory. The model contains detailed body parts, 

organs, and soft tissues based on the anatomic and geometric data of a 50th percentile 

American male. In 2005 and 2006, Mizuno [6] [7] presented a 3-year-old child model 

which was scaled down from the THUMS using a model-based approach. Anatomic, 

geometric, and material data of a 3 year old were partially incorporated into this child 

model. It was validated with the Hybrid III 3-year-old child dummy corridor tests and 

compared with limited available data. 

Child neck injury occurs rarely. However, this injury is fatal. The biofidelity of 

the cervical spine in the child model is critical, not only for the kinematic and 

biomechanical responses of the child neck, but also for the prediction of head injury 

potentials. Since the cervical spine in the child model was scaled from the THUMS 

model, it does not accurately reflect the anatomic geometry and the material properties of 

3-year-olds. In 2005 Ouyang et al. [8] performed a series of pediatric cadaver tests with 

subjects of 10 head/neck complexes of children aged from 2 to 12 years. These 

specimens were subjected to tensile distraction and extension/flexion bending under an 

appropriate combination of non-destructive and destructive loading conditions. This 

pediatric data is the only currently available data for understanding child neck tolerance 

and injury potentials. To the best of the author's knowledge, this pediatric data has not 

been applied to any child models except in an attempt made recently by Tot in 2007 [9]. 

The outcome was limited because of the current level of biofidelity of the Hybrid III 3-

year-old child dummy. 

There exist a small number of child cervical spine and head/neck finite element 

(FE) models. One of them was created by Dupuis et al. in 2005 [10], using the anatomic 

geometric data from the neck of a three-year-old through CT scan and validated against a 

Q3 dummy head/neck component sled tests. Soft tissues, such as ligament and 
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intervertebral discs, used adopted or scaled down material properties from the data in 

available literature. Another study presented by Kumaresan et al. in 2000 [11], in which 

child cervical spine models were developed using three different approaches, 

investigated the child neck biomechanical responses under various loading conditions. 

Scaling down geometrically from an adult human model was considered as Approach 1. 

Incorporating the local anatomic geometry and material properties of a three-year-old 

into the adult human model was considered as Approach 2. Geometrically scaling down 

from an adult human model and incorporating the local anatomic geometry and material 

properties of three-year-olds became Approach 3. It was found that Approach 2 produced 

significantly greater changes in flexibility under all loading modes than the other two 

approaches. The conclusion drawn from this research was that the flexibility of the 

cervical spine of a child was predominantly controlled by local anatomic geometry and 

material properties. 

However, the material properties of these models were not based on data from 

pediatric cadavers. It is difficult to judge the accuracy of the biomechanical responses of 

these models in reflecting a real life child of the same age. 

It is necessary to utilize first-hand pediatric data and clinical findings to improve 

the kinematics and biofidelity of 3-year-old child models. For this resean, the objective of 

the proposed research is to correlate biomechanical response of the cervical spine of the 

child model with pediatric cadaver data. Head kinematics and neck injury potentials will 

be compared with a 3-year-old cadaver sled test in a frontal impact event and real cases 

of car crash accidents. It is expected that the biofidelity of the child model can be 

improved after the incorporation of the pediatric cadaver test data. This would be helpful 

for increasing confidence in child injury predictions as well as vehicle and CRS designs 

for child safety. 
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2. LITERATURE REVIEW 

2.1 Child safety in motor vehicle crashes 

2.1.1 Children fatalities and injuries in motor vehicle crashes and its impact 

Motor vehicles are major transportation tools in most of developed and 

developing countries. In 2007, the World Health Organization (WHO) published a report 

entitled Youth and Road Safety [1] indicating that more than 1000 young people under 

the age of 25 years killed every day in road traffic crashes around the world and that 

motor vehicle crash is one of the leading causes of death for children and young people. 

The report indicates that the nature and severity of the injuries that children and 

youth sustain in traffic collisions are influenced by age and the type of road use. 

Traumatic brain injuries are the leading cause of traffic-related deaths and injuries in all 

countries regardless of income. 

Motor vehicle crashes significantly impact economies of countries all around the 

world. It has been estimated that the annual costs of road crashes in low-income and 

middle-income countries are around US$ 65 billion to US$ 100 billion, which is more 

than the total annual amount received in development aid. Road traffic crashes and their 

consequences have cost governments up to 2% of their Gross National Product. In many 

low-income and middle-income countries, a large proportion of road traffic casualties are 

from the younger wage-earning groups. Even in high-income countries, road traffic 

crashes among young people impose a huge economic burden on societies. In the United 

States of America, crashes involving 15-20-year-old drivers cost the country 

approximately US$ 41 billion in 2002. 

NHTSA [3] indicated that in 2004, traffic crashes were the leading cause of death 

in North America for children aged 3 to 14. During 2005, in the United States, an average 

of 5 children aged 14 and younger were killed and approximately 640 were injured every 

day in motor vehicle crashes. In the same year, 7,493 passenger vehicle occupants 14 and 

younger were involved in fatal crashes. The Canadian motor vehicle traffic collision 

statistics of 2005 [12] indicated 210,629 occupant injuries in vehicle crashes, including 
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17,529 serious injuries and 2,923 fatalities. Within the age range of birth to 4 years, 2,649 

children were injured, 310 were seriously injured, and 24 fatal accidents occurred. 

The recently published report 2006 Annual Assessment of Motor Vehicle 

Crashes [13] presents the latest comparison of data regarding killed and injured children 

aged birth to 3 years in 2005 and 2006 as shown in Table 2.1. This table indicates that 

most children of this group, either killed or injured, were vehicle occupants in the crash 

events. It was also found that in year 2006 the number of children aged 0 - 3 years, as 

vehicle occupants who were killed in vehicle crashes, decreased by 1.6% while the 

number of children injured increased by 5 %. 

Thus it is very important to understand the causes of child injuries and fatalities 

and the relationship between injures and fatalities and child restraint usage and seating 

positions. 

Table 2.1 Comparison of children aged 0-3 killed or injured by role in year 2005 
and 2006 [13] 

Role 
Year 

2005 2006 
% Change 

Killed 
Occupants 

Nonoccupants 

Injured* 
Occupants 

Nonoccupants 

476 
376 

100 

43,000 
40,000 

2,000 

459 
370 

89 

43,000 
42,000 

1,000 

-3.6% 
-1.6% 

-11% 

0.0% 
+5.0% 

-50%** 
'Totals may not add due to rounding. Percentages computed after rounding. 
"Change in nonoccupants injured is statistically significant at the 0.05 level (96% confidence intervals) 

Sources: FARS, NASS GES 

In addition to restraint use and seating position, the crash mode is another major 

factor in child occupant safety. A research group from Toyota Motor Corporation of 

Japan [14] analyzed the National Police Agency data in 1999 and indicated that frontal 

impact accounted for 73% of the fatal accidents and was deemed the leading cause of 

death. A study from Arbogast et al. [5] also showed that in America frontal crashes were 

the most common vehicle accidents and accounted for 45% of the all crash modes in 

2004. 
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Children aged 3 years have been one of the most concentrated group in the child 

occupant protection research as they are representative of a special development stage of 

human beings and are also in the transition stage of child restraint use from rearward 

facing position to forward facing position in some countries such as Sweden. Children in 

the 3 to 4 year age group account for a greater number of passenger fatalities (45.5 

percent) than any other age group. This has been shown by statistics of child fatalities in 

vehicle accidents from 1995 to 2000 in New South Wales [2] 

The following section will review the current studies regarding the effects of 

restraint use and seating position for different child groups including children aged 3, and 

the injury pattern in vehicle crashes. 

2.1.2 Children seating positions, restrains and injury patterns 

Seating position and restraint use play very important roles in child injuries in 

vehicle crashes. Two groups of researchers conducted investigations and analyses on the 

relationships between seating position and restraint configurations and the risk of injury 

among children in passenger vehicle crashes in 2005 [15] [16]. Findings from these 

investigations are summarized in section 2.1.2.1 and brief details of the reports are 

provided in the two subsequent paragraphs. 

The research group from NHTSA has published a technical report, Child 

Passenger Fatalities and Injuries, Based on Restraint Use, Vehicle Type, Seat Position, 

and Number of Vehicles in the Crash [15]. This report was based on the data regarding 

injuries resulting from motor vehicle crashes during the years 1998 to 2002 collected by 

the Fatality Analysis Reporting System (FARS), National and Automotive Sampling 

System (NASS) General Estimates System (GES) of the National Center for Statistics and 

Analysis (NCSA). The objective of this study was to analyze passenger vehicle crashes 

involving children aged birth to 15 years. This study is intended to provide a better 

understanding of where the focus should lie with future safety efforts that seek to 

improve highway transportation for children. 

Another research group from the Children's Hospital of Philadelphia and 

University of Pennsylvania School of Medicine [16] collected data on vehicle crashes 
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that were insured by State Farm Insurance Company in 15 states. This was a cross-

sectional study of children under the age of 16 who were involved in crashes of insured 

vehicles, with data collected through insurance claim records and a telephone survey. A 

probability sample of 17,980 children in 11,506 crashes was collected between December 

1,1998 and November 30,2002. 

Both of the studies divided the children birth to 15 year old into different age 

groups. There were three age groups in NHTSA's study, 0-3 years, 4-7 years and 8-15 

years. Additionally, a group of youth aged 16 and older was considered for perspective 

purposes. The research group from Philadelphia grouped the children differently. They 

divided the children who were involved in vehicle accidents into four age groups in their 

study: 0-3 years, 4-8 years, 9-12 years and 13-15 years. 

2.1.2.1. Restraint use and their effectiveness 

The two studies mentioned above indicated that unrestrained children were more 

likely to be killed or injured, as compared to restrained children. The risk of injury for 

unrestrained children was more than 3 times higher than that for restrained children 

according to the study from the research group from Philadelphia, which included all 

types of passenger vehicles. The NHTSA study made more detailed investigations and 

found that unrestrained children in light trucks and vans (LTVs) in multi-vehicle fatal 

crashes were 2.5 to 5.4 times as likely to be fatally injured as children who were 

restrained, and children in passenger cars were 1.6 to 1.8 times as likely to be fatally 

injured if unrestrained. In fatal crashes, restrained children in passenger cars were more 

likely to be fatally injured than restrained children in LTVs. Figure 2.1 illustrates the 

percent of passengers injured, aged birth - 15 years, by vehicle body type, and restraint 

use among single vehicle crashes [15]. 
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Figure 2.1 Percent of passengers injured, aged birth - 15 years, by vehicle body 
Type, and restraint use among single vehicle crashes [15] 

Additionally, it is reported [17] that the traffic fatalities of children from 1995 to 

2005 show the reduction as illustrated in Figure 2.2. This is due to increased child 

restraint system usage. Table 2.2 shows the statistics of CRS use by child occupants in 

2005. During this year, 7,493 passenger vehicle occupants aged 14 and younger were 

involved in fatal crashes. For those children where restraint use was known, 27 percent 

were unrestrained; among those who were fatally injured, 46 percent were unrestrained. 

Research has shown that lap/shoulder safety belts, when used, reduce the risk of 

fatal injury to front seat occupants (age 5 and older) of passenger cars by 45 percent and 

the risk of moderate-to-critical injury by 50 percent. For light-truck occupants, safety 

belts reduce the risk of fatal injury by 60 percent and the risk of moderate-to-critical 

injury by 65 percent. 

Research on the effectiveness of child safety seats has found them to reduce fatal 

injury by 71 percent for infants (less than 1 year old) and by 54 percent for toddlers (1-4 
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years old) in passenger cars. For infants and toddlers in light trucks, the corresponding 

reductions are 58 percent and 59 percent, respectively. Over the period from 1975 

through 2005, an estimated 7,896 lives were saved by child restraints. 

Number of Fatalities 
1,600 

1,400 

1,200 

1,000 

800 

600 

400 

200 

0 

8-14 Years Old 

1-3 Years Old 

4-7 Years Old 

<1 Year Old 

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

Figure 2.2 Total traffic fatalities among children age 14 and under by age group, 
1995-2005 [17] 

Table 2.2 Restraint use by passenger vehicle occupants involved in fatal crashes by 

age group, 2005 [17]. 

Restraint Used 
Restraint Not Used 14 

Note: Excluding unknown age and restraint use. 
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2.1.2.2. Seating positions 

In the previously identified studies child injuries and fatalities are also 

significantly influenced by seating positions. The data analysis from NHTSA's research 

group was independent of each condition of child restraint usage (restrained or 

unrestrained). In fatal vehicle crashes, the infants in the front seat had the highest fatality 

rate of 33% for restrained condition and 62% for unrestrained condition. When placed 

into the second row seats, infant fatality rates reduced to 20% for restrained condition and 

54% for unrestrained condition. Similarly, children aged 1 - 3 years had a fatality rate of 

18% for restrained condition and 41% for unrestrained condition when seated in the front 

seats compared with fatality rate 13% of infant for restrained condition and 23% for 

unrestrained condition when placed in second row seats. It can be stated that restrained 

children in the front seat were more likely to be fatally injured than restrained children in 

second row seats. It may be true that unstrained children in the second row seat position 

can have a higher fatality rate than restrained children in front seat position. This is 

consistent with the findings of the research group from Philadelphia. Figure 2.3 [16] 

illustrates the cross sectional analysis results of restrained children in front seats versus 

the unrestrained children in the rear seats. From these findings, we understand that child 

restraint use has more effect on injury potential than seating positions. 

Figure 2.3 presents the predictions of risk of serious injury for each seating 

position/restraint category for the overall study sample. For the total sample, it was found 

that injury risks were decreased when the children were appropriately restrained and 

sitting in the rear seat. Combining appropriate child restraint with rear seating position 

provides the best protection for children in vehicle crashes. 
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2.1.2.3. Injury pattern in vehicle crashes 

As the WHO reported in 2007 [1], the nature and severity of injuries that children 

and youth sustain in road traffic collisions are influenced by their age and the type of road 

user they are. Traumatic brain injuries are the leading cause of traffic-related deaths and 

injuries in both high-income countries as well as low-income and middle-income 

countries. As an example, a hospital study of children under 15 years in the United Arab 

Emirates found that head and neck injuries were responsible for 57% of fatalities. 

Common youth injuries in traffic crashes also include limb injuries, abrasions and 

contusions. Arbogast et al. [5] indicated similar results. As Figure 2.4 illustrates, head 

and face injuries were the most common injuries for child passengers while head, 

extremity, and thoracic injuries were the most common for drivers. The study shows that 

35% of the crashes occurred near or at an intersection and frontal crashes were the most 

common (45%) followed by rear impacts (30%) and side impacts (22%). Rollovers 

represent 1.7% of the crashes in 2004. 
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Figure 2.4 Body region distributions of child occupants and adult drivers [5]. 
Reprinted with permission from SAE Paper # 2006-21-0007 © 2006 Convergence Transportation Electronics 

Association and SAE International. 

Parenreau et al. [18] found that rollover crashes involved the highest incidence of 

maximum Abbreviated Injury Scale (AIS) MAIS 3+ injury in children, followed by 

frontal and side impacts. Head and upper extremities were the body regions with most 

frequent serious injuries (AIS 3+). There are two types of injuries for children, contact 

injury and non-contact injury. The seatback, head restraint, B-pillar and interior surfaces 

were common injury sources for contact injuries. 

The pattern and severity of child injuries are also related to the restraint type used. 

For example, during a frontal impact, the child restrained by a lap belt will continue to 

move forward more than an adult because of their increased flexibility, which increases 

the risk of injury to the brain and neck which may result from contact with the front 

seatbacks and other interior surfaces below the beltline. 

Though pediatric cervical spine injury is rare, it is a devastating trauma outcome 

with fatal or life-long debilitating consequences [19]. Pediatric spinal column injuries to 

child occupants account for less than 15% of all spine injuries, and the injury and fatality 

rates caused by spinal cord injuries surpass those of adult passengers. 
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2.1.3 Preventions of children injury in motor vehicle crashes 

2.1.3.1 Current safety standards for children 

As Goldwitz and Van reported in 2006 [20], in the United States there were 60.8 

million children aged 14 or younger, representing 20.7% of the US population base 

according to 2004 US Census estimates. As a result of the growing size and weight of a 

child body, keeping these children safe while riding in motor vehicles is a challenging 

task. Children have biomechanical characteristics that are unique from the rest of the 

population. To ensure the safety of child occupants, the safety requirements including 

restraint system use have been established in certain Federal Motor Vehicle Safety 

Standards (FMVSS). 

The authors of the published paper [20] examined and summarized child occupant 

protection regulations in FMVSS, and also highlighted some child occupant safety issues. 

It can be found in the FMVSS a number of different standards and regulations that are 

specifically designed for or related to child occupants. 

2.1.3.1.1 Federal Motor Vehicle Safety Standard 208 [21] 

This standard is specifically designed for occupant protection in vehicle frontal 

crashes. It addresses the vehicle crashworthiness and occupant restraint system 

requirements. This standard requires that a rear-facing CRS should never be placed in a 

front seat. Two new requirements for advanced airbags will benefit child occupants: 

• Suppression or low risk deployment of frontal passenger air bag with a 12-month 

old CRABI infant dummy, 

• Suppression, dynamic out of position suppression or low risk frontal air bag 

deployment for a 3-year-old dummy (S21) and a 6-year-old dummy. 

• Warnings from this standard are placed in vehicle for the child occupants as well. 

2.1.3.1.2 Federal Motor Vehicle Safety Standard 213 

This standard is directly applied to child occupant safety with requirements of 

specific CRS performance. FMVSS 213 has been significantly changed and expanded 

since it was first introduced in 1971 [22]. The requirements specified in the FMVSS 213 
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are applied to CRSs used in both motor vehicles and aircraft. Some of the major 

requirements include: 

• A CRS is used to restrain children with weight up to 29 kg (65 lbs); 

• For structural integrity requirements, complete separation of structural members 

or partial separation exposing features with a radius of less than 6.4 mm (0.25 in.) 

or protruding above adjacent surfaces more than 9.5 mm (0.375 in.) is not 

allowed; 

• The head injury criteria (HIC) should be less than 1000 based on the calculation 

over a period of 36 ms or less and a limit of 60 g on chest accelerations with 

durations of 3 ms or more; 

• For forward-facing CRS: excursion limits are 720 mm for the head and 915 mm 

for the knees; 

• The angle between the back support surface and the seating surface must not be 

less than 45 degrees after the dynamic simulation test is completed; 

• Buckles must have a release force between 40 and 62 N (9 and 14 lbs) before the 

CRS is tested dynamically (with 9 N (2 lbs) of applied tension), and no more than 

71 N (16 lbs) after being tested dynamically (with an applied tension ranging 

from 50 N to 270 N, depending on the weight range of the CRS); 

• CRSs must be permanently labeled with information specified in FMVSS 213, 

accompanied by printed instruction materials and come with a printed registration 

form; 

• CRSs must be equipped with a means of anchoring the CRS to the lower 

anchorage points in motor vehicles. In addition, CRSs must be designed to allow 

installation in motor vehicles and aircraft with seat belts; 

• Tethers are not required. However, CRSs equipped with tethers are tested both 

with tethers attached and detached; 

• Dynamic sled test is conducted using a modified standard bench seat assembly, a 

modified pulse corridor as shown in Figure 2.5, the Hybrid III (3-year-old, 6-year-

old, and weighted 6-year-old), CRABI (12-month-old), and newborn dummies. 

It needs to be noted that the neck injury criteria that has been included in the 

FMVSS 208 does not appear in the FMVSS 213. This is due to the artifacts of the 
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Hybrid III dummy family used in the vehicle crash tests. The value of the neck injury 

criteria recorded from dummies during crash tests did not reflect child injury in the real 

world vehicle crashes. 

Fidelity of Hybrid III dummies has been widely investigated by many researchers 

in recent years. One of the studies was conducted by Yannaccone et al. [23], simulating 

real-world crashes with a 3-year-old Hybrid-Ill dummy, which was used to analyze the 

dynamic response of a 3-year-old child in a real world crash and the neck injury based on 

the neck injury criteria, Nij. It was found in the study that injury prediction using either 

the neck load data or the Nij values from these tests would lead to a conclusion that many 

of the children exposed to the simulated crashes would have experienced cervical 

injuries, which is not supported by real-world observations. 
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Figure 2.5 FMVSS 213 sled test pulse upper and lower limits. 

2.1.3.1.3 Federal Motor Vehicle Safety Standard 225 

This standard was created for the design requirements of child restraint 

anchorages. The objective is to secure the effectiveness of the CRS through proper use. 

It requires a CRS anchorage system called Lower Anchors and Tethers for Children 

(LATCH). The standard requires two types of anchors for each equipped seating position: 

a tether strap anchor and a pair of lower anchorages. As a load requirement, the tether 

anchor must resist a 10,000 N (2,256 lbs) force for one second. 
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The lower anchorage requirements include: (1) the anchors themselves are 

transverse 6 mm diameter bars that must be rigidly fixed to the vehicle so that they will 

not deflect more than 5 mm under a 100 N (23 lbs) load; (2) a Child Restraint Fixture 

(CRF) essentially locates the lower anchorages in the vicinity of the seat light. The 

strength of the anchorages is specified with respect to the maximum permissible 

displacement of a reference point on a Static Force Application Device (SFAD) that is 

attached to the anchorages. A maximum 175 mm displacement is permitted when an 

11,000 N (2,481 lbs) longitudinal force is applied and a maximum 150 mm when a 

5,000N (1,128 lbs) lateral force is applied. 

2.1.3.1.4 Federal Motor Vehicle Safety Standard 217,220 and 222 

These three standards are related to child occupants within school buses. FMVSS 

217 deals with the emergency exit areas and window retention based on the types and 

capacities of different school buses specifically designed for child occupants. The 

purpose of FMVSS 220 is to reduce the number of deaths and the severity of injuries 

related to body deformation in a school bus rollover. It requires that the roof of a school 

bus should deform less than 130 mm and that emergency exits should still function when 

the school bus is subjected to a load 1.5 times the vehicle weight. 

The requirements in FMVSS 222 are related the designs of seats and barriers, 

head impact protection and the anchorages of wheelchair positioning for a school bus. 

The required maximum loading is based on the number of occupants designed for the 

seat. The clearance between the seats or between the seat and barrier is 102 mm 

(4 inches) when the seat is subjected to a maximum loading 3,114 N for forward facing 

seating and 9,786 N for rearward facing seating, respectively. A barrier must be in place 

if there is no other seat within 610 mm (24 inches) in front of the seat. The barrier must 

meet the same force-deflection requirement as the seat. 

There are also other standards, such as FMVSS 202 (head restraint), FMVSS 

207/210 (seat pull test), FMVSS 209 (seatbelt assemblies) and FMVSS 401 (interior 

trunk release), which are not designed for children but may be applied to child occupants 

with considerations for pediatric anatomic characteristics. 
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2.13.2 Child Restraint System (CRS) 

Based on many years of statistics and research in real world vehicle crashes, 

observations clearly indicate that being restrained lowers a passenger's chance of being 

killed or injured, compared to when a passenger is unrestrained for all crash types [15]. 

The injury pattern and severity are influenced by restraint types [18] [24]. Use of an 

airbag increases the risk of injury and fatality for children. Using adult seatbelts could 

reduce the number of child fatalities but serious injuries may be instead caused by the 

seatbelt itself. Properly utilizing a CRS is the best way to protect child occupants in 

vehicle crashes. 

Child restraint systems have been designed for children based on their age, weight 

and height [25]. Child safety seats are designed for children aged 4 and younger and 

weighing up to 18 kg (40 lbs). Children who weigh between 18 kg and (40 lbs) and 36 kg 

(80 lbs) and less than 145 cm (57 inches) of height should be restrained using low back or 

high back belt positioning booster seats until the vehicle's lap and shoulder belt fits 

correctly. 

Figure 2.6A shows a rearward facing child safety seat applicable to children who 

are younger than 12 months and less than 9 kg (20 lbs) in North America. In Sweden, 

however, children are restrained in a rearward facing child safety seat until at least their 

third birthday. The benefits can be seen from the charts in Figure 2.7 and 2.8 which 

indicate that child fatality and injury rates are much lower in Sweden compared to France 

and Germany [26]. Figure 2.6 (B) and Figure 2.9 illustrate forward facing child seats. The 

5-point harness convertible seat shown in Figure 2.9 can also be placed in the rearward 

facing position. 

To ensure the effectiveness of the child restraint system and to make the 

installation easier, the LATCH system as shown in Figure 2.10 has been required by 

NHTSA for vehicles manufactured after September 1, 2002 [27]. 

As Howard et al. indicated in 2003 [28], the suggestion to keep children in a 

rearward facing position results from the heavy head and weak neck musculature which 

increase an infant and young child's risk of cervical spine injury in a frontal impact 

collision. The neck loads can be reduced and the cervical spine injuries of infant and 

young children can be prevented by turning young children to face the rear of the vehicle. 
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Figure 2.6. Child Restraint Systems (CRS) [25]: 
A. Rearward facing child safety seat; B. Forward facing child safety seat; 

C. High back booster seat; D. Backless booster seat. 
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Figure 2.7 Comparison of child fatality rates in car crashes 

in Sweden and in France [26]. 
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Figure 2.8 Comparison of child injury rates in car crashes 

in Sweden and in Germany [26]. 
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Figure 2.9 Child convertible seat with 5-point harness [25]. 
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Figure 2.10 Lower Anchors and Tethers for Children (LATCH) [27]. 

In 2004, Menon et al. [24] evaluated the effectiveness of different restraint 

systems applied to children. For the evaluation, 18 sled tests were performed with three 

different speeds (24 kph, 40 kph and 56 kph) and four types of restraints (forward facing 

convertible seat, seatbelt positioning high back booster seat and backless booster seat, 

and adult's lap/shoulder belt). The tests were carried out using 3-year-old and 6-year-old 

Hybrid III dummies. The test results for the 3-year-old showed that forward facing 

convertible seats perform better than backless booster seats and adult's lap shoulder belts 

in terms of injury measurement. Since there is a problem of biofidelity for the 6-year-old 

Hybrid III dummy, some values of the injury criteria exceeded the threshold limits at 56 

kph with high back or backless booster seats. The conclusion from this study is that the 

designs of the high back and backless booster seats need to be further investigated and 

improvements to the biomechanical response of Hybrid III dummies are necessary. 

Due to reinforced regulations and child safety education campaigns, statistics of 

real world vehicle crashes have shown that approximately 70% of children aged birth-8 

years are restrained in either a child safety seat or a belt-positioning booster seat [5]. 

Arbogast [5] also found in their study that the tendency of child fatality and injury is 

decreased with an increase of child restraint system use. To further improve child 

occupant safety, it is important to better understand the special anatomical characteristics 

of the child body in its development phase and the injury mechanisms. These topics will 

be discussed in the subsequent sections. 
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2.2 Child anatomy 

Child anatomy differs significantly from adults. They have biomechanical 

characteristics that are unique and vary as a result of age. There is a challenge to keep 

child occupants safe because of the changes in body size and weight in their early 

development stage [20]. Knowledge about the differences in geometry and 

anthropometry between children and adults and the changes in biomechanical response 

and anatomical structure for children is critically important for improving child occupant 

protection. Figure 2.11 demonstrates the relative proportions of a human body from birth 

to adulthood [26]. Subsequent sections will discuss, in detail, growth variations and their 

implications for vehicle safety. 

Relative proportions, birth to adulthood 

At birth 2 years 6 years 12 years 25 years 

Figure 2.11 Development of a human being [26]. 
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2.2.1 Children head development 

A child's head is large and heavy in relation to the rest of the body. The 

proportion of head mass for a child (30% of the body weight at birth) is much higher than 

that of an adult (only 6% of body weight). The face of a child is also relatively small 

compared with the rest of its head and brain. Figure 2.12 illustrates skull profiles from a 

newborn to an adult. In addition to the differences in the weight and size of the head, the 

structure of a child's skull is also considerably different from that of adults. The shape of 

a child's head changes with age. Skulls of young children are thinner and more flexible. 

Direct geometrical skull scaling of an adult skull is not appropriate for biomechanical 

assessment of a child skull. 

Figure 2.12 Skull profiles showing changes in size and shape [29]. 

2.2.2 Comparison of Adult and Child Cervical Spine Anatomies 

2.2.2.1 Adult cervical spine 

Figure 2.13 (A) illustrates the human adult spinal column consisting of cervical 

spine (CI to C7), thoracic spine (Tl to T12), lumbar spine (LI to L5), sacral spine (SI to 

S5) and coccyx (tailbone). The vertebrae are connected by soft tissues, such as 

intervertebral discs, facet joints and ligaments as shown in Figure 2.13 (B) and (C). 
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The cervical spine contains seven vertebrae CI to C7 and there is an intervertebral 

disc between two vertebrae with the exception of the CI and C2. Figure 2.14 (A) and (B) 

illustrates the anterior and axial views of the cervical spine. Figure 2.14 (B) also shows 

the intervertebral disc that consists of two parts, annulus fibrosus on the outside and 

nucleus pulposus at the centre. The soft tissues are responsible for not only maintaining 

the integrity of the cervical spine but also limiting the range of movement between the 

cervical vertebrae under normal conditions [30]. 

Figure 2.13 Human adult spinal column and the soft tissues [31]: (A) Spinal column; 

(B) Vertebrae, intervertebral disc; (C) Ligaments. 
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Ligaments usually resist only uniaxial tensile forces and some ligaments are 

capable of taking tensile forces in a range of directions because of their orientation. 

Cervical intervertebral discs respond to compression, bending, and tension loading 

conditions. Facet joints play a complementary role to the disc and serve as a major 

stabilizing structure for other tissues in the region of the neck. The normal and shear 

forces in the joint resist the external load due to the oblique orientation of the facet 

processes. 

(B) 

(A) 

Figure 2.14 Human adult cervical spine: (A) side view [59]; (B) axial view [31]. 
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2.2.2.2 Child cervical spine 

Many studies on pediatric cervical spines [5] [11] [26] [30] [32] indicate that the 

pediatric cervical spine is not a scaled-down version of an adult cervical spine. Anatomic 

differences between pediatric and adult cervical spines are prominent until approximately 

8 years of age and persist to a lesser degree until approximately 12 years of age. Growth 

and developmental processes occur throughout the first two decades of human life to 

attain skeletal maturity. Child cervical vertebrae change shape progressively throughout 

the years when a child is growing, from the flat vertebrae of small children to the saddle-

shaped vertebrae of adults. Figure 2.15 shows a comparison of the cervical vertebrae of 

children and adults. In the one-year-old vertebra, the ossification centers (centrum and 

neutral arches) are loosely connected by cartilage materials (synchondroses). In the three-

year-old vertebra, the neutral arches fuse with each other posteriorly. In the six-year-old 

vertebra, the neutral arches fuse with vertebral centrum anteriorly. In adult vertebra, 

primary ossification centers (centrum and neutral arches) fuse completely and secondary 

ossification centers (uncinates and bifid spinous process) fuse with primary ossification 

centers. In the one-, three-, and six-year-old, the superior and inferior growth plates and 

the flat vertebral centrum without uncinates are seen. In the adult vertebra, saddle-shaped 

uncinated are seen [11]. By comparison with the adult, pediatric vertebrae have following 

characteristics: 

• lack of the secondary ossification uncinate processes; 

• the connection between vertebra and intervertebral discs of pediatric cervical 

spine are through the medium of growth plates; 

• pediatric discs are characterized by a relatively larger size nucleus with a lack of 

clear demarcation between the loosely embedded fibers in the ground substance 

and nucleus pulposus. 

These structural features indicate that the pediatric spine not only differs 

considerably from adult spines, but also varies among the different ages of the pediatric 

population. 
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Figure 2.15 (a) Schematic of the one-, three, and six-year-old, and adult 
human cervical spine vertebra (superior view), (b) Schematic of the one-, 
three-, and six-year-old and adult human cervical spine functional spinal unit 
(anterior view) [11]. 
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Another factor which makes a child more vulnerable is its disproportionately slender and 

undeveloped neck. There is a similar gradual development of the muscles and ligaments 

in the neck. Human neck vertebrae also change shape progressively throughout growth, 

from a flat vertebra of a small child to the saddle-shaped vertebra of an adult. With a 

saddle-shaped geometry, vertebrae will hold together and support one another if the head 

is thrown forward. A young child lacks this extra protection [26]. It has been confirmed 

by the study of Viccellio et al [32] that the distribution of cervical spine injury (CSI) in 

children who are older than 12 years is similar to that of adults and the majority of CSI in 

younger children is in the area of C1-C2. 

2.3 Injury mechanisms for child occupants in motor vehicle accidents 

The study performed by Arbogast and Winston in 2006 [5] shows that head and 

face injuries were the most common injuries for child passengers who were involved in 

crashes while head, extremity, and thoracic injuries were the most common for drivers. 

Figure 2.4 illustrates the distributions of body injury regions for child occupants and adult 

drivers. 

2.3.1 Child head injuries 

Babies and children are vulnerable when they ride in vehicles as passengers. Their 

heads are large and more massive in relation to the rest of their bodies. If a baby or child 

suffers head injuries, brain damage is often the result, which is generally much more 

serious than facial injuries. Head injuries in babies are frequently more severe because 

their skulls are thinner than adult skulls [26]. 

Statistics from 1991-1999 show that for all children who were between 4 and 12 

years old and injured in vehicle crashes, the rate of head injuries was 50% if unrestrained 

and 30% if a lap -shoulder belt was used [18]. For the injured children who used forward 

facing child restraint system, 19% of them suffered head injuries [33]. 

The brain of a young child can experience large motion relative to its skull because 

the fontanelles allow volume changes in the skull. This relatively large motion may lead 

to shearing injuries of brain tissue. The fontanelles can also permit reduction in 

intracranial pressure [29]. 
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Head injuries may be classified into contact and non-contact types. Contact injuries 

include skull fracture, epidural hematoma, and injuries to the frontal lobe. Head 

excursion and space reduction due to intrusion increase the chances of head impact with 

vehicle interior components, such as seats, pillars and doors. Inappropriate attachment to 

CRS, like a loose harness for example, is another factor that increases the chance of head 

contact due to the increased free head travelling distant during crashes. In either case, it 

increases the potential for head injuries. 

It is believed that children in forward facing child restraint systems (FFCRS) also 

sustained inertial injuries to the head such as subdural hematomas [33]. If the restraint 

applied to the child is loose, it can also increase head acceleration thus contributing to 

this type of injury which is similar to head excursion. Non-contact head injuries, that is, 

inertial head injuries such as hematoma and concussion, result from significant head 

accelerations that a child cannot tolerate. During a vehicle frontal crash event, the head of 

a child moves relative to its torso. Though there is no contact outside the head, the 

contact force between the skull and the brain can result in significant distortion or 

damage. 

Since the head injury criteria (HIC) was developed for adults based on the 

assumption of a rigid skull and research on the likelihood of brain injury due to skull 

fracture, it may inappropriate to apply the HIC to young children [29]. 

In addition, there is debate about non-contact head injuries. In some literature it 

has been indicated that the acceleration of the head is unlikely to reach a level which 

would be injurious to the brain for a car occupant in a crash. This is consistent with the 

findings as noted in the publication by McLean et al. [34] in 1995 and other studies, such 

as Meaney, Thibault and Gennarelli in 1994. The finding shows that there were no cases 

of brain injury without head impact in a series of more than 400 fatally injured road 

users. 

2.3.2 Pediatric cervical spine injuries 

One of the major causes of pediatric cervical spine injury (PCSI) is vehicle 

crashes (30 to 40%) [28]. Head injuries may not be a result of an inertial loding during 

vehicle crash [34], but there is the potential for pediatric cervical spine injury as a result 
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of acceleration of the head with no direct impact during automotive crashes [35]. PCSI is 

rare in young children under the aged 8. It is usually fatal due to the underdeveloped 

cervical spine of children and soft tissues such as ligaments and musculatures in the area 

[36]. In the study of Lustrin [36], different types of pediatric cervical spine injuries and 

their mechanisms were presented. Child cervical spine injuries include spinal cord injury, 

occiput-Cl injury, fractures of the atlas, atlantoaxial injuries such as traumatic 

ligamentous disruption, rotatory subluxation, and odontoid in the level C1-C2 of the 

cervical spine, subaxial injuries (C3-C7), posterior ligamentous injuries, wedge 

compression fractures, and facet dislocations. 

Studies have shown that cervical spine injuries in children occur at the middle or 

lower neck (C4-C7) as reported by Viccellio et al. [32] and Ouyang [8]. Most 

researchers, however, believe that upper level cervical spine injuries (C1-C3) constitute 

the majority of cases of pediatric neck injuries for young children based on real world 

vehicle crash cases and pediatric clinical findings [19] [28] [36] [37] [38]. The findings 

from Viccello et al. [32] and Ouyang et al. [8] that child cervical injuries occur at the 

middle and lower cervical vertebrae may not be appropriate as there were too few cases 

for young children aged 8 and younger in Viccellio's study. Additionally, the testing 

completed by Ouyang et al. [8] investigated only laboratory type pure tensile and bending 

loading conditions. While this study provides critical details associated with the 

biomechanical response of the cervical spine, it does not simulate loading behaviour in 

crash conditions. Furthermore, neck musculature was removed; limiting the 

appropriateness of the conclusions associated with the injury locations of the cervical 

spine. 

Ivancic et al. [39] showed that in adults, the head/Cl joint were also significantly 

more flexible than all other spinal levels and does suffer from upper level cervical spine 

injuries. In general, CSIs are less common in children than in adults, but CSIs in the 

upper level neck in children are approximately two and a half times more common than 

in adults. 

Instability of the pediatric cervical spine is the mechanism of upper cervical spine 

injuries in children. The hyper-mobility of a child's immature spine is a result of its 

relatively large head and weak neck muscles and also the incomplete ossification of the 
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odontoid process. The biomechanical and anatomical characteristics such as ligamentous 

laxity, shallow and angled facet joints, underdeveloped spinous processes, and 

physiologic anterior wedging of vertebral bodies contribute to high torque and shear 

forces acting on the C1-C2 region. 

Among the upper CSIs, traumatic atlanto-occipital dislocation is often fatal and 

resulted from a sudden deceleration. As a result of the unstable atlanto-occipital 

articulation, young children are more vulnerable to cervical spine injury at the oriented 

atlanto-occipital joint area. An excessive deflection or rupture of the tectorial membrane 

and the alar ligaments results in the relative motion between the occiput and vertebrae. 

Bulas et al. [37] suggested that atlanto-occipital dislocation, as an upper neck injury, 

should be considered in all children involved in motor vehicle accidents. 

Other upper cervical spine injuries may occur in the C1-C2 level with fractures of 

the atlas and atlantoaxial injuries such as ligamentous disruption, rotatory subluxation 

and odontoid separation between CI and C2. The fracture of the ring of CI, a so-called 

Jefferson fracture, is caused by axial force and occurs through the anterior and posterior 

arches of CI. It will contribute to spinal cord injury when the fracture results in a 

reduction of the cervical spinal canal. Atlantoaxial injuries with the displacement of 

ligaments and relative rotation between two adjacent vertebrae exceeding their normal 

limits could also damage the spinal cord and the vertebral artery. If atlas fracture occurs 

without atlantoaxial injuries, the neck is considered to have a stable injury. Otherwise, it 

is considered to be an unstable neck injury. 

2.4 Child injury cases studies 

Investigations on pediatric cervical spine injuries in real world vehicle crashes can 

help one to better understand the injury mechanism and biomechanical responses of 

children. There have been crash cases in which children have sustained cervical spine 

injuries with contact or non-contact head impact. 

Two cases studied by Howard et al. [28] were related to two young children who 

were properly restrained in a forward facing child restraint. Both children suffered upper 
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cervical spine injuries but there was no evidence of head contact during the frontal crash 

events. 

In the first case, a child approximately two years old was sitting in a CRS in a 

1994 Honda Accord when the car was directly struck in the left front at a speed of 

approximately 40 km/h (25 mph) by a minivan which lost control. The child sustained an 

occipitocervical dislocation as shown in Figure 2.16 (A) and died from this injury. 

The second case involved a 3 year old child who was positioned in a forward 

facing five point harness child safety seat on the rear side seat of a Toyota 4Runner that 

lost control on a wet highway and hit a rock in a head-on collision at a speed of 60 km/h 

(37 mph). Two adults, one driver and one passenger in the front seat, in the vehicle 

suffered only minor hand or ankle injuries while the child sustained a C2 fracture through 

the base of the odontoid process as shown in Figure 2.16 (B). This child recovered from 

this injury. 

(A) (B) 

Figure 2.16 (A) Occipitocervical dislocation in a 23 month old male involved in a 
frontal collision; (B) C2 fracture through the base of the odontoid process in a 35 

month old child involved in a frontal collision [28]. 
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There was another case that involved 3 young children aged 3, 6 and 7 years who 

suffered different levels of upper cervical spine and head injuries and other injuries with 

evidence of head contact in a vehicle crash. For this case, it was reported by Sochor [38] 

that the vehicle with the three children experienced a full frontal crash with another car in 

a so called T-bone collision with a speed of approximately 45 km/h (28 mph). During the 

crash event all three children wore either an adult's shoulder/lap seatbelt or only a lap 

belt, both of which were considered as inappropriate restraints for young children. The 3-

year-old who was seated in the rear with a lap belt only suffered synovial capsule with 

tectorial membrane hemorrhage (AIS = 2) as shown in Figure 2.17, and other injuries 

such as small bowel perforation (AIS = 3), bilateral iliac wing fractures (AIS = 2) and 

abdominal contusions (AIS =1) , which are typical for lap belt restraint injuries. The 6-

year-old, who was also seated in the rear with lap belt only, experienced tectorial 

membrane hemorrhage with occipital condyle ligamentous injury (AIS = 2), right frontal 

bone depressed skull fracture with underlying subarachnoid hemorrhage (AIS = 3) which 

is considered as typical head contact injury. Other injuries included small bowel 

devascularization (AIS = 4), colon perforation (AIS = 3), L2-3 spinous process avulsion 

fractures (AIS = 2), L4 vetebral body fracture (AIS = 2) and adominal contusion (AIS = 

1). The third child who was 7 years old and restrained with an adult's shoulder/lap 

seatbelt in the front seat sustained cranial nerve palsy (AIS = 2) which was believed by 

the attending neurosurgeon to have resulted from stretching of the nerve by distracting 

the occiput from CI. Other injuries such as bilateral pulmonary contusions (AIS = 4), 

left #2-6 rib fractures (AIS = 3) and lower abdominal contusions (AIS = 1) were also 

experienced by this child. 

Tectorial membrane hemorrhage and occipital condyle hemorrhage are classified 

as threshold-type neck injuries and lower abdominal contusion is the typical lap belt 

injury suffered by young children. From all the cases above we understand the 

importance of appropriate child restraint systems. Even when children are properly 

restrained with CRS there could be an inertial injury to their neck. 
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(A) (B) 

Figure 2.17 (A) MRI of tectorial membrane hemorrhage and (B) Synovial Capsule 
Hemorrhage in 3 year-old [38]. 

Reprinted with permission from SAE Paper # 2006-01-0253 © 2006 SAE International. 

2.5 Predictions of child injury in motor vehicle crashes 

2.5.1 Experimental tests and real world crashes 

For decades, different methodologies have been developed to improve child 

safety and to predict the kinematic response and injury risks of children in motor vehicle 

crashes. There are many different physical tests for improvement of vehicle design in 

occupant safety. Physical tests also serve as baselines for correlations with various 

numerical simulations that are conducted for predictions of occupant injury or fatality, 

kinematic response of the whole human body, risks of injuries to human organs and 

design iterations in different levels. 

Current predictions of child injury risks from vehicle crashes mainly rely on the 

measurements of child ATD in experimental tests. The Hybrid III 3-year-old child 

dummy is used for predicting child injuries and assessing the performance of CRS in 

frontal impact tests. 
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There are several examples of such experimental tests. Following the guidelines 

of the Canadian Motor Vehicle Safety Standard 208 (CMVSS 208), similar to FMVSS 

208 of the United States, a full vehicle frontal impact test was performed by Transport 

Canada using a 2004 four-door Mitsubishi Lancer sedan. The test setup and testing 

procedure were presented by Kapoor et al. in their study in 2006 [40] and by Wang et al 

in their SAE paper in 2006 [41]. The test dummy was a Hybrid III 3-year-old positioned 

in a forward facing convertible CRS with a 5-point harness. The test car impacted a 

stationary rigid barrier with a speed of 48 km/h (30 mph). To assess the potential injuries, 

acceleration pulses from the head, neck and chest and moments and forces from the neck 

of the child dummy were recorded during the test. 

FMVSS 213 frontal dynamic sled test is specially designed for assessments of 

CRS performance and child injury potential in a simulated frontal crash. Sled tests were 

completed at Graco Corporation's sled testing facilities and a Hybrid III 3-year-old child 

dummy was also used. The same position and restraint system as the FMVSS 208 frontal 

crash test were applied to the child dummy. The acceleration pulse was within the 

corridor outlined in FMVSS 213. This is equivalent to an impact speed of 41.7 km/h 

(25.9 mph). The kinematic and biomechanical responses of the child dummy were 

recorded through accelerometers and high speed cameras. More details about this test 

will be discussed in chapter 6 or can be found in the literatures of Wang 2006 [41] and 

Turchi 2004 [42]. 

The test results mentioned above were used in comparisons with the numerical 

simulations. The comparisons of simulation results with tests will be discussed in the next 

section. 

A similar frontal impact sled test with a Hybrid III 3-year-old child dummy was 

presented by Mizuno et al. [6] and [7]. This sled test was conducted under the sled test 

conditions of the United Nations Economic Commission for Europe Regulation 44 

(UNECE R44). In these studies, sled tests were performed with two different CRS 

configurations, namely a 5-point restraint system and a tray shield form restraint system 

as shown in Figure 2.18. The effectiveness of the two types of restraints for protecting 

children from injuries was compared in this study. The acceleration pulse applied to the 

sled was in the corridor specified in the ECER44 requirement as shown in Figure 2.19. 
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The maximum acceleration and the initial velocity were 25g and 50 km/h, respectively. It 

was found in their research that the behaviour of a child in impacts may be difficult to 

predict by using the Hybrid III dummy with its stiff thorax spine box and that there were 

major differences in behaviour of the Hybrid III and child FE models in terms of thorax 

spine flexibility. 

(a) (b) 

Figure 2.18 Test setup in ECE R44 CRS tests with Hybrid HI 3-year-old child 
dummy and CRS (a) 5-point harness; (b) tray shield [6]. 

_^^ 

l/S
' 

E, 
c 
o 

ce
le

ra
t 

o 
< 

300 

250 

200 

150 

100 

50 

0 

-50 

-

/ ff , 
/ /' / / l> 1 

s / ' / 
/ /l / / h i / h i 

« A / 
fi / ft / 

- / ' / 

1 

\ v \ 
\ Vk \ 
\ \v \ 
\ \> \ 

\ V \ \ V \ V 
w w 

re 

' Tray shield 
- 5-point harness 

\ i 
»«a-̂ i»—=̂ ^̂ — Ĵ 
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Menon et al. [24] carried out a series of 18 sled tests performed on a HyGe 

accelerator sled. In these tests 3 and 6-year-old Hybrid III child dummies were used and 

positioned on either side of a standard FMVSS 213 bench seat. Table 3 shows the test 

matrix which includes the 18 tests at three speeds 24 kph, 40 kph and 56 kph and under 

four different restraint conditions: forward facing convertible child restraint (FFC), 

backless belt-positioning booster (NBB), high back belt-positioning booster (HBB) and 

lap shoulder belt (L/S). Figure 2.20 (a), (b) and (c) illustrate the positioning and restraint 

use of the Hybrid III 3-year-old child dummy and Figure 2.20 (d), (e) and (f) illustrate the 

positioning and restraint use of the Hybrid III 6-year-old child dummy. It was found that 

the lowest injury measurements were obtained for the 3-year old in a forward-facing 

convertible child restraint. The 6-year-old demonstrated maximal differential 

performance in the 56 kph test in a belt-positioning booster seat. It was also observed that 

the 6-year-old Hybrid III dummy in the high back booster seat showed extreme cervical 

flexion and chin-face contact with the chest. 

Researchers and engineers usually use the data measured or recorded from the 

child dummies in the experimental tests to predict the levels of injuries and the 

effectiveness of restraint systems applied to child occupants in vehicle crashes. Although 

the Hybrid III dummy family, including the 3-year-old, are considered as state of the art 

ATDs and are required officially by NHTSA for the frontal impact tests, there are 

increasing concerns in recent years about the biofidelity or artifacts of Hybrid III child 

dummies especially in the area of the neck and upper torso. 

Table 2.3 Sled test matrix [24] 

24 kph 
40 kph 
56 kph 

3-year-old Hill 
FFC 
FFC 
FFC 

NBB 
NBB 
NBB 

L/S 
L/S 
L/S 

6-year-old Hill 
HBB 
HBB 
HBB 

NBB 
NBB 
NBB 

L/S 
L/S 
L/S 

Reprinted with permission from SAE Paper # 2004-01-0319 © 2004 SAE International. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 2.20 Child dummy positions and restraint systems: 3-year-old (a) 5-point 

harness child seat, (b) backless booster and (c) shoulder/lap seatbelt; 6 year-old (d) 

backless booster, (e) high back booster and (f) shoulder/lap seatbelt [24]. 

Reprinted with permission from SAE Paper # 2004-01-0319 © 2004 SAE International. 

In 2006 Arbogast [5] pointed out that there are critical differences between the 

responses of the actual human body and predictions from ATDs due to the growing 

pediatric body. This brings the case that pediatric ATDs and their associated injury 

criteria are used as primary tools of assessment for child occupant protection in motor 

vehicles. One of the causes of the differences is the mobility of the human spine and the 

rigidity of current ATD. The head trajectory of the dummy can be significantly different 

when compared to that of a human, which is a result of significant spinal variations 

between the dummy and child. Kang et al. [4] analyzed the neck assessment values of 

Hybrid III ATD, including the 3- year-old child dummy in out-of-position (OOP) tests 

and observed that the 3-year-old child ATD predicted a moderate likelihood of severe 

neck injury while no injury was observed in a comparable cadaver test. They believe that 

the response of the head/neck system of the Hybrid III ATD is an artifact of the ATD and 

therefore may not be representative of a human. They also concluded that the thoracic 

37 



spine of the Hybrid III 6-year-old ATD was not biofidelic in restrained frontal crash tests, 

and the high neck forces and moments resulted from the stiff thoracic spine of the ATD 

are not representative of the true injury potential. 

In the above-mentioned sled tests with 3 and 6 year old Hybrid III child dummies, 

Menon et al. [24] identified typical child injury mechanisms by analyzing real world 

crash data, and conducted the 18 sled tests with 3 and 6-year old Hybrid III ATDs to 

simulate the crash scenarios which had happened or may possibility happen in the real 

world. By comparing with the real world data, they suggested that the neck is lacking in 

biofidelity due to the current ATD's neck showing a higher degree of injury. 

Yannaccone et al [23] simulated real-world crashes with a 3-year-old Hybrid-Ill 

dummy, which was used to analyze the dynamic response of a 3-year-old child in a real 

world crash and the neck injury based on the neck injury criteria, Nij. In the study, the 

biofidelity and kinematic response of the Hybrid III child dummy and the performance of 

the child restraint system with various configurations were investigated. The study 

considered two real cases of children, who experienced severe cervical spine injuries, 

who were similar in size as the 3-year-old Hybrid III dummy. Additionally, in the two 

frontal impacts there was no intrusion into the child position and no improper CRS use. 

In the study, each crash was simulated with the child ATD restrained in three different 

configurations: 

• Configuration 1. ATD restrained as the child was in the actual crash, namely 

booster-with-shield (BWS) child restraint system (CRS) for Case 1 and lap-belt-

only (LBO) restraint system for Case 2. 

• Configuration 2. ATD restrained by a forward-facing, 5-point CRS. 

• Configuration 3. ATD restrained by a tethered, forward facing, 5-point CRS. 

Configuration 1 simulated the actual crash with the ATD restrained as the child 

had been in the crash. Configuration 2 and 3 simulated the manner in which children 

from 9 to 18 kg (20—40 lb) were typically restrained in the United States and in Australia, 

respectively. 

It was found that some of the child injuries predicted in simulated crashes were 

consistent with the findings in documented real world cases. Some others, however, were 

inconsistent. The consistency resulted in the kinematic and dynamic responses observed 
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in experimental tests. Inconsistencies were associated with the use of unity as the limit 

for the neck injury criteria (Nij). A child injury prediction with child Hybrid III child 

dummy using the Nij value from tests would lead to a conclusion that many of the 

children exposed to simulated crashes would experience cervical spine injuries, which is 

not supported by real-world experience. This means that the necks of the current Hyrid 

III child dummies may not be representative of the necks of real children. As a result of 

the real-world results and the lack of knowledge regarding pediatric neck trauma, 

NHTSA decided not to incorporate any neck injury criteria into FMVSS 213 for now, but 

suggest further research into this area. 

Due to the biofidelic limitations of the ATDs used in experimental crash tests, real 

world experience is important in the development of occupant safety [5]. However, it 

would be difficult to understand what really happened to the occupants, especially in 

cases with young children who have been injured or killed in a real world vehicle crash. 

To gain knowledge about pediatric kinematical and biomechanical response, to make 

more accurate injury prediction and also to improve the biofidelity of current child ATDs, 

living subjects or human cadaver tests and component tests such as the head impact test, 

the cervical spine test, and the head/neck complex test are critical. Even human surrogate 

tests can give valuable observations. 

An investigation on the effect of age and gender on 3-D kinematics of the 

pediatric cervical spine was conducted by Greaves et al. in 2007 [43] through 

measurements from 60 child volunteers who were divided into four groups based on age 

and gender: young girls and young boys (4-10 years) and old girls and old boys (11-17 

years). From the study, the research team determined for the first time the reference 

values of the helical axis of motion (HAM) of the pediatric cervical spine in flexion-

extension, axial rotation and lateral bending and explained the relatively high incidence 

of upper cervical spine injuries in young children due to their high HAM location 

compared to adults. Similar volunteer tests, such as sled tests with volunteer subjects 

seated and belted on a rigid seat performed by the National Biodynamics Laboratory of 

France, provided results that were used for the validation of biomechanical models of the 

cervical spine [44]. The force-displacement corridors from volunteer tests were also used 

for correlations of numerical simulations models [6] [7]. 
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Kinematic and biomechanical responses from volunteer tests are a more accurate 

reflection of human body response than ATDs. However, results are specific to loading 

conditions which have to be within the limit of the human body's tolerance for injury. 

Experimental human cadaver tests would be the best approach to evaluate the human 

body's tolerance for external loading and the severity of injuries from vehicle crashes. 

Laboratory testing provides the controlled input environment. However, on-going 

assessment of technology's impact on child injuries in the field is critical [5]. Compared 

to the tests done on adult cadavers, very few pediatric cadaver tests have been reported so 

far and few have been used for studies on children occupant protection and child dummy 

development. 

The first study on pediatric cadaver tests was presented in Twentieth STAPP Car 

Crash Conference in 1976 by Kallieris et al. [45] from the University of Heidelberg. 

Comparisons of the cadaver test results with testing child dummies were performed in the 

research and later in the study of Cassan et al. in 1993 [46]. In [45] four pediatric cadaver 

sled tests were carried out with subjects aged 2.5, 5, 6 and 11 years old in child restraint 

systems to simulate frontal impacts. The test speeds were 30 km/h and 40 km/h. Two 

additional sled tests were conducted with child dummy Alderson VIP-6C under the same 

testing conditions as cadaver tests. Numerous muscular hemorrhages and hemorrhages of 

discs and ligaments were found in the cadaver tests. Though the child cadaver and child 

dummy had similar kinematics in the frontal impact sled tests, the child cadavers showed 

greater deformability and much longer rebound time for the head movement from 

forward to backward in comparison to the child dummy. This child cadaver test data was 

used for the evaluations of other child dummies, namely TNO P3 and CRABI 3-year-old 

and different child restraint systems by Cassan [46]. 

The second child cadaver test was conducted in 1976 at the Highway Safety 

Research Institute of the University of Michigan using a 6-year-old child cadaver. At the 

same time, a similar test using a 3-year-old child dummy was carried out for comparison. 

The results of the tests and the comparisons were reported by Wismans et al. in the 

Twenty-Third STAPP Car Crash Conference in 1979 [47]. The 6-year-old child cadaver 

was similar to a 4-year-old in height and weight and 11-12% greater than the 3-year-old 

child dummy. A Strolee Wee Care child restraint was used and the FMVSS 213 sled test 
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procedure was followed. The tests showed that the child cadaver had a larger forward 

head excursion (370 mm) than the child dummy (300 mm) and higher chest acceleration 

(412 m/sec at 48 ms for cadaver and 340 m/sec at 53 ms for dummy). Again the tests 

indicated that child cadavers had higher mobility of the neck and upper torso with much 

larger downward motion at maximum head forward excursion compared to the child 

dummy. These and all other known pediatric cadaver tests were summarized by Cassan in 

1993 [46]. 

The above-mentioned child cadaver test data has great value for the development 

of child occupant protection methods, child restraint systems, and child dummies. In 

addition to the child cadaver tests, component tests such as head impact, cervical spine 

test, and head/neck complex test, are crucial to understanding the biomechanical 

characteristics of human beings in depth and detail. Such test data is commonly seen for 

adults yet very rarely seen for children. To the best of the author's knowledge, there is 

only one set of pediatric cadaver component test data available. This pediatric cadaver 

component test data was presented by Ouyang et al. in 2005 [8]. Tests used head/neck 

complexes from pediatric donors aged 2-12 years, and non-destructive flexion-extension 

bending, non-destructive tensile step-and-hold tests and tensile distraction loading was 

completed on the cervical vertebra. The head/neck specimen consists of head, cervical 

spine C1-C7 and thoracic spine T1-T2 with the mandible and neck musculature removed 

for the purpose of improving the visualization of the cervical vertebrae. The Tl and T2 

vertebrae were potted in polymethylmethacrylate during the tests. The study 

characterized the response and tolerance of the pediatric cervical spine. This test data 

gives first-hand information about the biomechanical response of pediatric cervical spines 

and the tolerance of injuries under various loading conditions but it has not been applied 

in the development of child models. More details about the test procedure and the 

application of test data in this research will be presented in chapters 4 and 5. 

2.5.2 Numerical simulations with human models in children injury studies 

Numerical simulation models can be applied in practically all areas of research 

and development of vehicle crash safety technologies and occupant protection [48]. The 

advantage of numerical crash simulations over crash tests with crash dummies is that the 
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safety performance of design concepts and the effect of changes in the design can be 

studied efficiently, sometimes even without the use of a prototype. The models can be 

used as a tool of dynamic simulations and analyses to reconstruct real world accidents, to 

study biomechanical response of human body, and to evaluate vehicle performance 

during crashes. The numerical simulation models are classified as either lumped mass 

models, multi-body models, or finite element models. Since the lumped mass model is 

created by simplifying the whole vehicle to a few discrete parts, springs and/or dampers 

using the masses of the vehicle regions in one or two dimensions, it is typically used in 

vehicle development in the concept phase. The multi-body model and finite element 

model can be used towards both vehicle development and occupant protection studies. 

Research and development in the field of child occupant crash protection relies 

heavily on the biofidelity of anthropomorphic test devices (ATDs) used in testing and the 

ability to relate measured parameters on the ATD to injury [23]. The Hybrid III dummy 

family including male, female and child dummies have been officially used as ATD's for 

vehicle crash tests. The Hybrid III 3-year-old child dummy is one of the child dummy 

series from the Hybrid III family. As previously mentioned, the Hybrid III 3-year-old 

child dummy has limited accuracy in predicting child injury from vehicle crashes due to a 

lack of biofidelity. However, there is no easy way to improve the biofidelity of the 

physical test dummy in a short period of time. A human-like model developed for 

simulating human responses in a vehicle crash event and predicting injury and fatality 

holds advantages over a test dummy. The detailed human anatomic geometries, material 

properties, and the results of the latest experimental tests and clinical findings can be 

more easily implemented in a human model. With a human model, parametric and 

multiple case studies can be performed. 

One such human model is the THUMS (Total Human Model for Safety) which 

was developed by a Toyota research laboratory [49]. THUMS has very detailed human 

body parts, organs and soft tissues based on the anatomic and geometric data of a 

50 percentile American male as Figure 2.21 illustrates. THUMS was introduced by 

Oshitaetal. in 2002 [50]. It was developed to investigate the behaviour and injuries to 

various body regions of a mid-size adult American male (AM50) in vehicle crashes. This 

model was developed for the purpose of simulating the responses of the human body 
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under different impact loading conditions. THUMS was first validated for frontal and 

side impacts to the thorax, abdomen, and the hip area using available cadaver test data. In 

2003 Iwamoto et al. [51] presented the new development of many internal organ models 

and a detailed brain model for THUMS which allows researchers and crash safety 

engineers to investigate human body responses and injuries with more detail for impact 

loads. This also applies to other models such as the small female model and the 

pedestrian model, which were developed based on THUMS. THUMS has been used and 

validated to predict lower extremity injuries. In addition, its kinematics has been 

compared with Hybrid III dummy sled tests by Ipek et al. in 2004 [52] with modifications 

at the lower extremity joints. Sawada and Hasegawa successfully applied the THUMS 

model in developing the new whiplash prevention seat in 2005 [14]. 

Figure 2.21 Total Human Total Human Model for Safety (THUMS) developed by 

Toyota research laboratory [49]. 

By comparison, there are not many validated FE child models. Information on 

child cadaver test data as well as child body injuries in car crashes is also very limited. A 

child dummy FE model based on the Hybrid III 3-year-old was developed to predict, 

through numerical simulations the performance of child restraint seats and the behaviour 

of the Hybrid III child dummy in a frontal vehicle crash. A comparison between the 

experimental crash test results using the Hybrid III 3-year-old child dummy in a forward 

facing child safety seat and the numerical simulation results using the FE child dummy 
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model with the same CRS configurations was performed by Turchi et al. in 2004 [42] 

based on the FMVSS 213 standard. The results have shown a good agreement in 

predicting the child dummy head and neck injuries. This model was further used to 

investigate the potential head and neck injuries of a 3-year-old child in rearward facing 

child safety seats. Recently, Wang et al. in 2006 [41] incorporated the FE Hybrid III 

3-year-old child dummy model to numerically and experimentally investigate the child 

occupant injury potential and the performance of child restraint systems with different 

CRS configurations, in accordance with FMVSS 213 and CMVSS 208 safety standards. 

They concluded that the FE model is able to predict the injury potential of the test 

dummy with percentage errors within 5 to 10% and that the completely deformable CRS 

model is more realistic in comparison with the previously developed rigid model. 

A human-like 3-year-old child FE model was presented by Mizuno et al. in [6]. 

This model was developed by scaling from the aforementioned THUMS male adult FE 

model AM50 using the model-based scaling method. Different body parts of the child 

model were scaled using specific scaling factors in accordance to a child's anatomy and 

the anthropometry, and material properties of 3-year-old children. The responses of the 

FE child model were compared with observations from a Hybrid III 3-year-old child 

dummy in a series of sled tests which followed the requirements of UNECE R44. The 

comparison shows that there is a significant deformation difference between the child 

model in FE simulation and the Hybrid III 3-year-old child dummy in the sled test. In the 

study of Mizuno et al. [7] in 2006, a new model of the pelvis region was developed and 

incorporated into the THUMS child model based upon a child's anatomical structure. The 

behaviour of this new model was observed to be more representative of that of a real 

child's pelvis under impact load conditions. As part of this research, comparisons 

between the THUMS numerical model and the Hybrid III 3-year-old dummy using a 

validated fully deformable CRS model under CMVSS 208 crash testing conditions were 

performed [53]. 

The biofidelity of the cervical spine in the child model is critical not only for the 

kinematic and biomechanical responses of the child neck but also for predicting child 

head injury potentials. Since the cervical spine in the child model was scaled from the 

THUMS model, it does not accurately reflect the anatomic geometry and the material 
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properties of a 3-year-old. In 2005 Ouyang et al. [8] performed a series of pediatric 

cadaver tests with subjects of 10 head/neck complexes of ages from 2 to 12 years. This 

invaluable pediatric data is only currently available for understanding child neck 

tolerance and injury potentials. Figure 2.22 shows the pediatric cadaver cervical spine 

extension at C2 and Figure 2.23 shows the pediatric cadaver cervical spine load 

deflection curves. The average deformation when a failure occurred in pediatric cadaver 

head/neck complex tensile tests was about 20 mm. 

tot-
4. 

© 

Moment (Nin) 

Figure 2.22 Pediatric cadaver cervical extension at C2, unfiltered data [8]. 

The original source and copyright owner: LIPPINCOTT WILLIAMS & WILKINS. 
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Figure 2.23 Pediatric cadaver cervical load deflection curve, unfiltered data [8]. 

The original source and copyright owner: LIPPINCOTT WILLIAMS & WILKINS. 

There are some existing child cervical spine and head/neck FE models. One of 

them was created by Dupuis et al. in 2005 [10] using the anatomic geometric data from 

the neck of a three-year-old through CT scan and validated through a head/neck 

component sled tests based on the Q3 dummy. The sled test set up is illustrated in Figure 

2.24. Figure 2.25 shows the physical model of the cervical spine and the finite element 

model of the head/neck complex based on the CT scan data of a 3-year-old child. This 

model was presented by Meyer et al. in 2006 with an updated version [54]. 

The FE model includes the head, seven cervical vertebrae C1-C7, the first 

thoracic vertebra Tl, the intervertebral discs, and the principle ligaments. The material 

properties of this model were either adopted from the numbers available from literatures 

or scaled down from adults. The vertebrae were rigid, the ligaments were modeled using 

nonlinear material properties, and the intervertebral discs were scaled down from an adult 

model using elastic material properties. 
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Figure 2.24 Q3 dummy head/neck component sled test [10]. 

Figure 2.25 (a) Physical model of the cervical spine based on CT scan of a three-

year-old child including skull base (CO) and (b) Complete finite element model of 

the head and neck complex [10]. 

Another study on the FE pediatric cervical spine which was presented by 

Kumaresan et al. in 2000 [11] [55] and in 2001 [30] involved building child cervical 

spine models (C4-C5-C6), as shown in Figure 2.27, using three different approaches to 

investigate the child neck biomechanical responses under various loading conditions: 
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• Approach 1: Geometrically scaled down from an adult human model (see Figure 

2.26), 

• Approach 2: Incorporated the local anatomic geometry and material properties of 

a three-year-old into the adult human model, 

• Approach 3: Geometrically scaled down from an adult human model and 

incorporated the local anatomic geometry and material properties of a three-year-

old. 

Responses obtained using purely overall structural scaling, as defined in 

Approach 1, increased the flexibility slightly. By contrast, the inclusion of local 

component geometrical changes and material property changes to create the three 

individual pediatric cervical spine models, as defined in Approach 2, produced 

significantly higher changes in the flexibilities under all loading modes. When overall 

structural scaling effects were added to the three pediatric models, as defined in 

Approach 3, the increase was not considerably greater. The conclusion drawn from this 

research was that the flexibility of the cervical spine of a child was predominantly 

controlled by local anatomic geometry and material properties. 

Fig. 2.26 Different views of finite element mesh of ligamentous of adult C4-C5-C6 
spine [30]. 
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It should be noted that the material properties of these models were not based on 

the data taken directly from pediatric test data. It is difficult to state that the 

biomechanical responses of these models actually reflect a real life child of the same age 

due to a lack of implementation of child biomechanical neck behaviour. 

To improve a child model's kinematics and biofidelity to a 3-year-old, it is 

necessary to utilize first-hand pediatric data and clinical findings in developing child 

models. Therefore, the objective of the proposed research is to correlate biomechanical 

responses of the cervical spine of the child model with pediatric cadaver data from the 

subjects of head/neck complex specimens. The head kinematics and the neck injury 

potentials will be compared with a 3-year-old cadaver sled test in a frontal impact event 

and real cases of car crash accidents. 
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3. FOCUS OF RESEARCH 

A human-like FE child model is a very useful tool in studying the biomechanical 

response and kinematics of a child in vehicle crashes and to predict the accompanying 

injuries. The child model developed at Nagoya University is one of the few child models. 

This model was scaled from an adult human model, THUMS, which was developed by a 

Toyota Research Laboratory. Though this child model was correlated with the Hybrid III 

3-year-old child dummy and with data from some of the literature available during the 

time of its development, some of the body parts, such as the pelvis and the extremities, 

were modified based on child anatomy and biomechanics. Most of the body parts of this 

child model have not been validated directly with pediatric biomechanical data and clinic 

findings from crashes and/or sled tests. 

The biofidelity of the neck of a child model is critical not only to the prediction of 

child neck injury but also to appropriately predict the kinematics and injuries of a child's 

head in a vehicle crash. The kinematics and the biomechanical response of a child's head 

and neck in vehicle frontal impact is mainly dependent on the tensile and 

extension/flexion bending stiffness of the neck. To the best of the author's knowledge, 

there exists only one study on pediatric cadaver component tests which was completed by 

Ouyang et al. in 2005 [8] with ten subjects of head/neck complexes from children aged 2 

to 12 years old. This study provided pediatric data on the tensile and extension/flexion 

bending stiffness of the neck. Another pediatric cadaver test, which was carried out at 

University of Heidelberg under a sled test condition, provided information about the 

kinematics of children in frontal impact. 

To utilize the invaluable pediatric data from the above mentioned two pediatric 

cadaver tests, this research focuses on: 

1. A thorough comparison of the biomechanical response of the child head/neck FE 

model with pediatric cadaver head/neck complex tests; 

2. Implementation of the biomechanical behaviour of representative samples from 

Ouyang et al. [8] through altered neck data from head/neck model into the child 
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model to improve its biofidelity and to more accurately predict child injury in a 

forward facing CRS during frontal impact crashes; 

3. Comparison between predictions from the child model, utilizing the pediatric 

biomechanical neck behaviour, and results from child cadaver sled tests and cases of 

real world car crash accidents. This study will either prove or disprove the model's 

ability to better predict actual child responses in vehicle crash. 

Due to the complexity of the child model, modifications to the model were 

conducted only on the ligaments, intervetebral discs, and facet joints of the cervical spine 

by adjusting the material properties in the range of elasticity. Alterations in the material 

behaviour of the cervical vertebrae were not considered in this research and should be 

included in future research. The musculature of a child's neck, which may be an 

important factor for the biomechanical response of a child in a vehicle crash, will also not 

been included in this research due to a lack of pediatric information. 
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4. CHILD HEAD/NECK COMPONENT MODEL DEVELOPMENT 

In this research a head/neck component model was first developed to simulate the 

pediatric cadaver head/neck complex tests by Ouyang et al. [8]. Further studies, 

incorporating the biomechanical response alterations of the child head/neck component 

model into the complete child model, will be considered in subsequent chapters. 

4.1 Head/neck cadaver tests 

The pediatric cadaver tests used head/neck complexes from pediatric donors aged 

2-12 years and were tested under the following loading conditions: 

• Non-destructive flexion-extension bending; 

• Non-destructive tensile step-and-hold test; 

• Tensile distraction loading to failure. 

The head/neck specimens consisted of the head, cervical spine (C1-C7) and 

thoracic spine (T1-T2) with the mandible and neck musculature removed for the purpose 

of improving the visualization of the cervical vertebrae. The Tl and T2 vertebrae were 

potted in polymethylmethacrylate prior to testing. 

In the extension/flexion bending tests, the head/neck complexes were set in an 

inverted position and the skull was fixed level to the centre of mass (CG) of the head and 

a pure bending moment was applied to the T1-T2 vertebrae as shown in Figure 4.1(A) 

In the tensile loading test, the thoracic vertebrae T1-T2 were fixed and the tensile 

load was applied at the centre of mass of the head in the vertical direction with freedom 

of anterior-posterior translation and rotation in the sagittal plane as shown in Figure 4.2 

(A). 

The numerical simulation models shown in Figure 4.1(B) and 4.2(B) will be 

presented in the following sections. 
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Figure 4.1 Pediatric cadaver test and CAE simulation set-ups under bending load 

c o n d i t i o n : ( A ) C a d a v e r b e n d i n g t e s t (The original source and copyright owner: LIPPINCOTT 

WILLIAMS & WILKINS) and (B) FE simulation set-up 

t Tensile 
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Figure 4.2 Pediatric cadaver test and CAE simulation set-ups under tensile load 

c o n d i t i o n : ( A ) C a d a v e r T e n s i l e t e s t (The original source and copyright owner: LIPPINCOTT 

WILLIAMS & WILKINS) and (B) FE simulation set-up. 
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4.2 Head/neck component model development 

4.2.1 From child model to head/neck component model 

The base head/neck component model was developed by isolating the head, 

cervical spine and thoracic spine above T3 from the whole child model as shown in 

Figure 4.3. Figure 4.3 (B) illustrates the head/neck component model. This model 

contained all ligaments, intervertebral discs and facet joints above Tl, and all other soft 

tissues including musculatures were removed in compliance with the pediatric cadaver 

head/neck complex test setup. The mandible, however, remained in the head/neck model 

(see Figure 4.3 (C)). In FE simulation this would not cause any visualization problems as 

would be experienced in the physical cadaver test. The contact interfaces and connections 

between the mandible and the cervical spine were carefully removed from the model, 

ensuring that the mandible's presence would not affect the simulation results. However, 

there was a contact interface between two adjacent vertebrae which was defined using a 

static coefficient of friction FS = 0.1, a dynamic coefficient of friction FD = 0.1, and a 

viscous damping coefficient VDC = 20. 

This head/neck component model contained 6187 nodes, 9447 elements, and 152 

parts. 

Figure 4.3 Head/neck component model developments: (A) child model, (B) and (C) 
isolated head/neck component model 
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Figure 4.4 illustrates the enlarged view of the cervical spine (CI to C7) and a part 

of the thoracic spine (Tl to T2). All cervical vertebrae (C1-C7) and the two thoracic 

vertebrae Tl and T2 were modeled using solid elements and rigid material properties. 

Figure 4.4 Enlarged view of cervical spine (C1-C7) and partial thoracic spine 

(Tl to T2). 

Figure 4.5 shows groupings of soft tissues including ligaments, facet joints, and 

intervertebral discs. All of these soft tissues were modeled using elastic material 

properties in the child head/neck component model and in the child model. Ligaments of 

the cervical spine are divided into three groups, namely ligament 1, ligament 2 and 

ligament 3. Ligament 1, including interspinous ligaments (ISL), ligamentum flava (LF), 

anterior longitudinal ligaments (ALL), and posterior longitudinal ligaments (PLL), were 

modeled using membrane elements and fabric material with elastic modulus E = 150.8 

MPa. Both ALL and PLL are located around the intervertebral discs. Ligament 2 

consisted of ligamentum flava between C7 and Tl and the posterior atlanto-occipital 

membrane, which used shell elements and elastic material (E = 15.08 MPa); Ligament 3 

contained only interspinous ligaments (ISL) between cervical vertebrae C2 and C3 and 

was modeled using membrane elements and fabric material (E = 75.4 MPa). Solid 
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elements and elastic material (E = 0.84 MPa) were used for modeling the facet joints 

between two adjacent vertebrae. Intervertebral discs consisted of nucleus pulposus and 

annulus fabrosus. Both nucleus pulposus and annulus fabrosus were modeled using solid 

elements and elastic material (E = 44.3 MPa), and on the outer surface of these two 

portions of the disc there were seatbelt elements used as fiber that connect adjacent 

vertebrae. 

Figure 4.5 Regions of soft tissue components in terms of different material 

properties. 

4.2.2 Loading and Boundary Conditions 

According to the loading and boundary conditions of the pediatric cadaver 

head/neck complex tests there were, in total, three head/neck component models created 

for (i) tensile distraction, (ii) bending extension, and (iii) bending flexion. The loading 

procedures were in compliance with pediatric cadaver head/neck complex tests as 

detailed in the subsequent sections. 
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4.2.2.1 Extension/flexion bending loading conditions 

The constraints of the two models for both bending extension and bending flexion 

were applied identically based on the description of boundary conditions in the cadaver 

head/neck complex tests in section 4.1. The nodes around the circumference of the skull 

at the level of the centre of mass of the head were fixed in all six directions, three 

translations and three rotations in/around the X, Y and Z axes. A pure moment was 

directly applied to Tl vertebra (rigid body) in the sagittal plane (X-Z plane) as shown in 

Figure 4.1 (B). The maximum absolute values of pure moments applied to the neck were 

-2.4 N-m for extension and 2.4 N-m for flexion within 100 ms. The magnitudes of the 

applied moment for both loading cases were the same as in the cadaver tests. The 

specimens were tested under a quasi-static loading condition. With the loading speed as 

indicated above, no significant dynamic effect was observed in the simulation 

predictions. 

4.2.2.2 Tensile loading condition 

The constraint for the head/neck component model under tensile distraction 

loading condition consists of totally fixed Tl and T2 vertebrae and free anterior-posterior 

translation and rotation in the sagittal plane of the head as shown in Figure 4.2(B). The 

quasi-static tensile loading was applied at a speed of 50 cm/s at the centre of mass of the 

head. 

4.2.3 Basic model simulation setup 

The three head/neck component models created so far were used as base models 

(referenced as TensileBase, ExtensionBase and FlexionJJase) as no material 

alterations were performed on any parts within the models. Table 4.1 shows a matrix of 

head/neck component models with associated simulations under different loading 

conditions. The head/neck component models with material alterations of the neck soft 
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tissues, including ligaments, facet joints, and intervertebral discs, shown in the table were 

discussed in chapter 5. 

In the cadaver tests, the Tl and T2 vertebrae were positioned at an angle of 21 

degrees to the horizontal to maintain the natural cervical lordosis. To match the pediatric 

cadaver test conditions the model was tilted forward by 10 degrees in the sagittal plane as 

shown in Figure 4.6. LS-DYNA version 970 revisions 5434a with double precision [57] 

was used for explicit analysis during the simulations. Bending extension/flexion loading 

cases ran for 100 ms while tensile loading cases ran for 40 ms. 

To record normal sectional forces at the upper and lower cervical spine, three 

cross sections were defined separately at cervical spine C2-C3 for the upper neck and at 

C6-C7 for the lower spine (See Figure 4.7). For the upper neck one cross section 

contained all ligaments and joint parts while another contained only the disc. The cross 

section of the lower neck included all ligaments, facet joints, and intervertebral discs 

between C6 and C7. The disc fibre defined using seatbelt elements were eliminated from 

the definitions of both cross sections as it caused fluctuations in the simulation results. 

(A) (B) 

Figure 4.6 Adjustment for the head/neck component model: 
(A) before tilted and (B) after tilted. 
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Upper neck cross sections 

Lower neck cross section 

Figure 4.7 Upper and lower neck cross section definitions. 

Table 4.1 Matrix of head/neck component models under different loading 

conditions. 

Model 

TensileBase 

ExtensionBase 

FlexionBase 

TensileA 

ExtensionA 

FlexionA 

Tensile 

Loading 

X 

X 

Bending 

Extension 

X 

X 

Bending 

Flexion 

X 

X 

Altered 

Neck 

X 

X 

X 

4.3 Data extraction of the head/neck simulation model 

In the pediatric cadaver head/neck complex tensile test, a multi-axial load cell in a 

polling compound under thoracic vertebrae Tl and T2 was used for the measurement of 

the neck tensile force while a displacement transducer on the skull was used to record the 
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head displacement. The force/displacement curves from the tests of the subjects of 

different ages were compared as shown in Figure 2.24. To compare the simulation results 

with the pediatric cadaver head/neck complex tests, the curve of displacement versus 

time was first created using the time history data from a pre-defined node at the centre of 

mass of the head. Then, the normal section force was extracted from the recorded time 

history data. The neck force versus displacement curve was obtained by cross plotting the 

two time history responses from the numerical simulations. 

In the pediatric cadaver head/neck complex bending test a protractor measured the 

absolute T2 rotation at each loading step. The neck rotation/moment response predicted 

from simulation was developed by cross plotting the angular rotation time history of the 

T2 vertebra, being a rigid body, with the applied bending moment. 
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5. COMPARISON OF HEAD/NECK MODEL WITH PEDIATRIC DATA 

In Ouyang's research, ten pediatric cadaver head/neck complex tests were 

conducted. Test data from subjects aged 2 to 7.5 years (9 for bending and 8 for tensile) 

was used for the comparison. The pediatric cervical spine within this age range exhibited 

similar biomechanical conditions, but the anatomic differences between the pediatric and 

adult cervical spine are prominent until approximately 8 years of age. From ages 8 to 12 

there is a transitional period and after age 12, the cervical spine is almost fully developed 

and is comparable to that of an adult [32]. 

It was noticed that one of the test subjects (aged 5 years) was invalid for tensile 

test comparison as damage to the specimen resulted. In order to perform a comparison 

with the pediatric cadaver test data, two groups of simulation models were developed. 

Within the first group, three base head/neck component models, TensileBase, 

ExtensionJBase and FlexionJBase, were developed and used to simulate tensile 

distraction, bending extension, and bending flexion, respectively. These models were 

developed for comparison with the pediatric cadaver head/neck complex tests as an initial 

evaluation of the CAE models. The second group consisted of three head/neck 

component models with altered neck materials (referred to as TensileA, ExtensionA 

and FlexionA as indicated in Table 4.1) which were created using the base models to 

compare the pediatric cadaver head/neck complex tests by adjusting the material 

properties of the cervical spine in terms of the energy and stiffness distribution of the 

parts in the neck region. Details about the material adjustments of the cervical spine are 

described in section 5.2. 

5.1 Comparison of the base model and the cadaver head/neck complex test 

5.1.1 Tensile loading condition 

Under tensile loading conditions, without any alterations in the material properties 

of the parts of the head/neck component model, the maximum sectional force sustained 

by the cervical spine was 4656 N when the skull displacement reached approximately 
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20 mm. The stiffness was 232.8 N/mm while the average tensile stiffness from pediatric 

test data was 35.2 N/mm. Figure 5.1 illustrates the load/skull displacement for the 

pediatric tests and base simulation models. Using linear regression, the stiffness of the 

head/neck component model was observed to be approximately 6.6 times greater than the 

pediatric cadaver finding. This outcome was expected as the FE model of the whole neck 

was scaled down geometrically from an adult human model (THUMS) and the cervical 

vertebrae were modeled using rigid material properties while the ossification process 

during the development of the pediatric cervical spine was not taken into account. 

Although the material properties of the ligament, facet joints, and intervertebral discs 

were modified based on the data of available literature and the flexion of the neck in the 

child model was compared with the corridor of the Hybrid III 3-year-old dummy, the 

current child model exhibits a stiff tensile neck response relative to pediatric 

biomechanical behaviour. 

— 2-year-old 
— 2.5-year-old 

3-year-old 
3-year-old 

— 4-year-old 
— 6-year-old 

6-year-old 
7 5-year-old 

— CAE: Tensile 

30 35 

Figure 5.1 Load/deflection response of the head/neck base model simulation and 

pediatric cadaver head/neck complex tests of 8 specimens aged 2 to 7.5 years. 

10 15 20 25 

Displacement (mm) 
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5.1.2 Extension/flexion bending condition 

Figure 5.2 illustrates the rotation versus bending load curve of the cervical spine. 

Angular displacement which was measured at T2 was consistent with the experimental 

testing procedure. The extension and flexion loading behaviour was basically linear while 

the pediatric cadaver head/neck complex test data generally varied in a nonlinear fashion. 

From these findings it is observed that the cervical spine in the base head/neck 

component model was stiff relative to pediatric biomechanical behaviour. The mean 

bending stiffness of the pediatric neck was 0.041 N-m/degree while the maximum 

bending stiffness of the neck in the base head/neck component model was 0.189 

N-m/degree. 

' -ee-1 ' 
Moment (Nm) 

Figure 5.2 Neck's moment-rotation range (T2) comparison of head/neck base model 

simulation and pediatric cadaver head/neck complex tests of 9 specimens 

aged 2 to 7.5 years. 
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5.2 Parametric Study 

Many factors influence the neck tensile and rotational stiffnesses. The following 

two sections present studies in terms of the energy absorption and stiffness distribution of 

the materials within the child FE head/neck component model. 

5.2.1 Energy absorption in the cervical spine 

Since child cervical spine injures usually occur in the vicinity of the atlas to C3 

and in the vicinity of C5 to C7, the energy absorption by the ligaments, joints and discs in 

these areas were assessed. Appendix C illustrates the time history of the strain energy for 

the parts identified in the regions of interest. The most effective parts in terms of energy 

absorption (greater than 0.5 J) were identified within the C2-C3 area to be the annulus 

fibrosus (AF), interspinous ligaments (ISL), anterior longitudinal ligaments (ALL) and 

posterior longitudinal ligaments (PLL). Additionally, within the C6-C7 area the annulus 

fabrosus, ligamentum flavum (LF), anterior longitudinal ligament and posterior 

longitudinal ligament dominated the strain energy. Figure 5.3 illustrates a subset of data 

within Appendix C illustrating the strain energy as a function of time in the tensile 

simulation. 

Strain energy for parts in the bending simulation illustrated no significant 

contribution. It was believed this may be a result of contact occurring between the 

cervical vertebrae. Material behaviour alteration was based upon parts which illustrated 

significant energy contributions. 
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Figure 5.3 Energy-time curves of the most effective ligaments for energy 

absorption in the vicinities of C2-C3 and C6-C7 of the cervical spine under tensile 

loading condition. 

5.2.2 Altering the material properties 

Kumaresan et al. [11] showed that the biomechanical response is mostly 

influenced by changes in the local geometry and the material properties of the pediatric 

cervical spine and that it is very important to consider the developmental anatomical 

features in pediatric structures to better predict their biomechanical behaviour. To 

improve the neck biofidelity in the current child model, this study focused only on 

material property alterations. 

Based on the energy and stiffness distributions, the elastic modulus of the 

ligaments, facet joints, and intervertebral discs of the cervical spine were altered through 

comparisons of numerical simulation predictions with the pediatric cadaver head/neck 

complex test data in a trial and error process. A uniform reduction scale factor of 1/10 as 

a final choice applied to scale down all ligaments or other soft tissues of the cervical 

spine except the facet joints which utilized a scale factor of 1/4 throughout the parametric 

study as its stiffness contribution was relatively low compared to that of other parts of the 

region. During the material behaviour alteration analysis, it was observed that the 

interspinous ligament (ISL) had a significant influence on the moment/angular 
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displacement response during flexion. Additionally it was found that the annulus fabrosus 

(AF) of the intervertebral discs, anterior longitudinal ligament (ALL) and posterior 

longitudinal ligament (PLL) strongly influenced rotational deformation under extension. 

In order to balance the extension/flexion stiffness of the cervical spine, the reduction in 

the elastic modulus factor (1/8) of interspinous ligaments (ISL) was more than that of the 

annulus fabrosus (AF), anterior longitudinal ligaments (ALL) and posterior longitudinal 

ligaments (PLL) with the exception of the facet joints. Figure 5.4 shows regions of soft 

tissue components with different material definitions (fabric for membrane element or 

elastic for shell or solid element). Both of them used elastic material properties. 

Figure 5.4 Groups of soft tissue components in terms of different material 

properties (elastic modulus). 

Figures 5.5 and 5.6 illustrate some of the intermediate simulation results with 

comparisons of neck force-distraction and moment-flexion/extension time histories with 

the child cadaver head/neck complex tests in the trial and error process of this research. It 

was found that there was clear trend that the maximum neck force decreased with 

deductions of elastic moduli of the neck soft tissues. Table 5.1 shows the original elastic 
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moduli (E) and final reduction factors selected after several times of trial and error. The 

final defined elastic moduli for the material properties were applied in all three head/neck 

component models. Comparisons of the simulation results with the pediatric cadaver 

head/neck complex tests will be presented in section 5.3. 
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Figure 5.5 Force-deflection curve comparison of some head/neck altered model 

simulations and pediatric cadaver tests of specimens aged 2 to 7.5 years. 
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Figure 5.6 Moment-flexion/extension curve comparison of some head/neck altered 

model simulations and upper and lower bounds of pediatric cadaver head/neck 

complex tests. 

Table 5.1 Cervical spine material property alternations. 

Model 

Model 1 
(Basel) 

Model 2 

Model 3 

Model 4 
(Base2) 

Model 5 
(Base2) 

Model 6 

Model 7 

Material Property {elastic modulus) Scale Factor 
Ligamentl 

(Fabric) 
1.0 

E=lS0.8MPa 

1/8-1/10 

1/8-1/10 

1.0 

1.0 

1/8-1/10 

1/8-1/10 

Joint 
(Elastic) 

1.0 
E=0MMPa 

1/4 

1/4 

1.0 

1.0 

1/4 

1/4 

Disc 
(Elastic) 

1.0 
E=44.3MPa 

1/10 

1/10 

1.0 

1.0 

1/10 

1/10 

Ligament2 
(Elastic) 

1.0 
E=l5.08MPa 

1/10 

1/10 

1.0 

1.0 

1/8-1/10 

1/8-1/10 

Ligament3 
(Fabric) 

1.0 
E=7S.4 MPa 

1/8 

1/8 

1.0 

1.0 

1/8 

1/8 

Disc 
Fiber 

1.0 

1/10 

1/10 

1.0 

1.0 

1/10 

1/10 

Comments 

Tensile 

Tensile w/o disc 
fiber 

Tensile w/ disc 

fiber 

Bending 
Extension 

Bending Flexion 

Bending 
Extension 

Bending Flexion 

Note: E - elastic modulus; Ligamentl - LF, ISL, ALL andPLL; 
Joint -facet joint (cartilage); Disc-AF; Ligament2 -posterior atlanto-occipital 
membrane; LF(C7-T1); Ligamenti - ISL(C2-C3) 
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5.3 Comparison of altered head/neck model with cadaver head/neck complex tests 

5.3.1 Tensile loading condition 

Under tensile loading, the stiffness of the cervical spine in the model after neck 

alterations was observed to be in the range of the pediatric cadaver head/neck complex 

tests of eight 2 to 7.5 year old samples, with an average stiffness of 35.26 N/mm. As 

Figure 5.7 illustrates, the numerical predictions of the force-displacement curve 

corresponded to the estimated average corridor of the pediatric cadaver head/neck 

complex tests before the neck deformation reached 10 mm and remained close to the 

upper bound afterwards. The disc fibre that was modeled using one dimensional seatbelt 

elements in the cross section definition caused significant flucuations in the simulation 

force-displacement observations. From this study it has been found that the ligament and 

intervertebral discs predominantly control the tensile stiffness of the cervical spine while 

the tensile deformation of the neck is less affected by the cervical vertebrae. 

0 5 10 15 20 25 30 35 

Displacement (mm) 

Figure 5.7 Load-deflection curve comparison of head/neck altered model simulation 

and pediatric cadaver tests of 8 specimens aged 2 to 7.5 years. 
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5.3.2 Extension/flexion bending condition 

The rotational stiffness of the cervical spine under extension/flexion bending 

conditions was sensitive to the changes to the material properties of the ligaments while 

the sensitivity to changes of intervertebral discs was only within a certain range which the 

scale factor changed to be approximately between 1/16 and 1/8. Figure 5.8 shows the 

comparison between the rotation time histories from the pediatric cadaver head/neck 

complex tests and from the head/neck component model simulations that have 

implemented the altered material characteristics. In this figure, the vertical axis represents 

the rotation deformation of the neck at T2 relative to the head at the level of the centre of 

mass where the constraint was applied, and the horizontal axis represents the extension 

(to the left hand side of the vertical axis) and flexion (to the right hand side of the vertical 

axis) moment applied to T2 of the head/neck component model. 

When the head/neck component model was subjected to extension, the rotation-

moment curve fell in the corridor of the pediatric cadaver head/neck complex tests with 

the moment less than 0.8 N-m. An increase in the applied moment (greater than 0.8 N-m) 

caused the extension stiffness of the cervical spine to be higher than the pediatric cadaver 

head/neck complex tests suggested. In the moment range of 0.8 N-m to 2.4 N-m the 

rotation-moment curve, however, was considered to have a good agreement with the 

corridor of the pediatric cadaver head/neck complex tests. 

Under the applied flexion moment load, the head/neck component model showed 

a better agreement with the pediatric cadaver had/neck complex tests in rotation 

deformation. The rotation-moment curve fell inside the corridor of the pediatric cadaver 

head/neck complex tests. In Figure 5.8, the FE prediction of the flexion/rotation response 

was somewhat stiffer in the applied moment ranging from 0 N-m and 1.6 N-m, and 

tended to be softer after the moment reached approximately 1.6 N-m. The simulation 

illustrates a shear deformation between cervical vertebra CI and C2 when the flexion 

moment approached 1.6 N-m, causing the flexion rotation stiffness reduction. This might 

be a result of the rigid material properties currently used for the cervical vertebrae since 

the immaturity of the pediatric spine and its ossification process are among the major 

influencing factors of the biomechanical response of the pediatric cervical spine. 
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Figure 5.8 Neck's moment-rotation range (T2) comparison of altered head/neck 

component model simulation and pediatric cadaver tests 9 specimens aged 2 to 7.5 

years. 

In comparing the head/neck model simulations before and after alteration of the 

material properties of the cervical spine, significant improvement of the neck 

biomechanical response was observed. The tensile stiffness and the extension/flexion 

rotation stiffness illustrated a good agreement with results of pediatric cadaver head/neck 

complex tests after the alteration of the soft tissue material properties. 
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6. IMPLEMENTATION OF CHILD BIOMECHANICS NECK BEHAVIOUR 

INTO THE CHILD MODEL 

The objective of this research is to improve the biofidelity of the child model and 

to increase the accuracy of predictions of child injury in frontal vehicle crash. The bio

fidelity of the neck in a child FE model is very important as it affects the kinematics of 

the whole child model in the simulations and the accuracy of the child injury predictions. 

The altered material properties of the cervical spine in the head/neck component model 

were obtained based on comparisons with the pediatric cadaver tests by Ouyang et al. [8] 

as presented previously in chapters 4 and 5. Implementation of the altered neck data into 

the child model will be presented in this chapter. A comparison of the simulation results 

before and after the implementation of the altered neck data will be discussed in 

chapter 7. Simulations using the child model were conducted under two different crash 

test conditions, namely, a FMVSS 213 frontal impact sled test condition and a cadaver 

frontal impact sled test condition. 

6.1 FMVSS 213 sled simulation with the child model 

The simulation model consists of the child model, a five-point forward facing 

child restraint system, and a FMVSS 213 bench seat. The setup was in accordance with 

FMVSS 213 requirements. 

The acceleration pulse utilized in the FMVSS 213 sled test simulation was 

obtained from testing completed by Turchi et al. [42], During this test, the sled was 

accelerated towards a fixed seismic mass using pneumatic pressure with an impact 

velocity of 41.7 km/h (25.9 mph). The acceleration pulse experienced by the sled during 

the impact was controlled by a hydraulic damper at the front of the sled. The acceleration 

pulse which the sled experienced in a direction opposite to the impact velocity and the 

lower and upper limits of sled acceleration outlined in FMVSS 213 are illustrated in 

Figure 6.1. This acceleration pulse was applied in the numerical simulations in this 

research. 
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Figure 6.1. Upper and lower FMVSS 213 acceleration/time responses and the actual 

test acceleration /time response [41]. 

Reprinted with permission from SAE Paper # 2006-01-1141 © 2006 SAE International. 

6.1.1 Child model 

The 3-year-old child model presented by Mizuno et al. in 2005 [6] and 2006 [7] 

was developed to investigate injuries to various body regions of a child and to provide 

information that can be difficult to obtain from crash test dummies. Responses of this 

child FE model were compared to the response-based scaling corridor of a 3-year-old. 

The mass of the 3-year-old child model is 16.6 kg and the stature height is approximately 

99.5 cm. 

The dimensions of each body region of the child model were based upon the 

anthropometry data of children from the United States and the material properties of child 

bone were defined based on available data. The response-based corridors and impact tests 

on the Hybrid III 3-year-old child dummy were used to validate the impact responses of 

the neck, thorax, torso, and abdomen of the 3-year-old child FE model. The child model 
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is presented in Figure 6.2. This model is comprised of 66,778 nodes and 97,803 elements. 

Compared to the previous version of the child model developed before 2006 (version 1), 

the child model used in this research (version 2) is a more detailed model including 

implementation of deformability in the skull and brain as well as modeling of a child 

anatomical pelvis. More details about the development of the child model can be found in 

references [6] and [7]. As part of this research, a comparison between simulations with 

the 3-year-old child FE model (version 1) and the Hybrid HI 3-year-old child dummy 

model (completed in accordance to CMVSS 208 frontal impact test configurations) was 

conducted and the comparison results can be found in reference [53]. Findings from the 

comparison between the Hybrid III 3-year-old child dummy model and the child model 

indicated the neck of the Hybrid III 3-year-old child dummy model was significantly 

stiffer than the child model and did not predict the appropriate degree of flexion 

associated with the neck. Figure 6.3 illustrate a sectional comparison of the Hybrid III 

3-year-old dummy model and the child model and comparison of the head rotation about 

the Y-axis. Appendix A presents the modeling differences and comparisons of the 

simulation results between the two versions of the child models through simulations of 

frontal impact following FMVSS 213 sled test requirements. 

Figure 6.2 Three-year-old child model. 
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Figure 6.3 (A) Sectional comparison of the behaviour of the Hybrid III 3-year-old 

dummy model and the child model and (B) Comparison of the head rotation about 

the Y-axis. 

6.1.2 Child restraint system (CRS) and FMVSS 213 bench seat 

Numerical models of the CRS and FMVSS 213 bench seat used in this research 

were based upon the work of Wang et al. [41] and Turchi et al. [42]. Details about these 

models can be found in references [41] and [42]. However, a brief summary of the 

important aspects of these models is presented. The child safety seat, as well as all other 

components of the numerical model including the bench seat, the CRS webbing, and the 

CRS foam pad, was meshed using the Finite Element Model Builder (FEMB). The child 

seat was modeled using computer aided design (CAD) surfaces provided by 

Century/Graco Corp. The CRS was modeled using the elastic/plastic material properties 

based upon tensile test data. The Belytschko-Tsay shell elements (shell element 

formulation number 2 in LS-DYNA [56]) were assigned with thicknesses of 3.5 mm and 

4.5 mm for specific regions of the CRS. Values for the density, Young's modulus, and 

Poisson's ratio were 800 kg/m3, 0.842 GPa, and 0.3 respectively. Additionally, a stress 

versus effective plastic strain curve obtained from the tensile testing results was assigned 
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to the CRS material model. The material model implemented for the CRS utilized the von 

Mises yield criteria. 

The mesh of the child seat was comprised of 12,728 nodes and 13,379 shell 

elements, of which 11935 elements were quadrilateral elements and 1444 elements were 

triangular elements. The final mesh of the deformable child safety seat is illustrated in 

Figure 6.4. Figure 6.5 illustrates the seatbelt, LATCH, top tether, and the five-point 

restraint system. The foam pad was modeled using a selectively reduced solid element 

formulation and the mesh of the foam pad is shown in Figure 6.6. The complete FE 

model including CRS, seat belt webbing, the waist and chest buckles, LATCH and the 

top tether, and the FMVSS 213 bench seat is illustrated in Figure 6.7. 

(A) (B) 

Figure 6.4. (A) Front isometric view of the deformable CRS, (B) Rear isometric view 

of the deformable CRS [41]. 

Reprinted with permission from SAE Paper # 2006-01-1141 © 2006 SAE International. 
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5-point harness 

Top tether 

LATCH 

Figure 6.5 The seatbelt, LATCH, top tether, and the five point restraint system [41]. 

Reprinted with permission from SAE Paper # 2006-01-1141 © 2006 SAE International. 

v£* 

Figure 6.6 The model of the foam pad [41]. 

Reprinted with permission from SAE Paper # 2006-01-1141 © 2006 SAE International. 
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Figure 6.7 Complete FE model of the deformable CRS and FMVSS 213 bench seat. 

6.1.3 Numerical simulation setup under FMVSS 213 sled test condition 

To simulate the FMVSS 213 sled test, the child model was combined with the 

CRS and FMVSS 213 bench seat. The units and the orientation of all components in the 

CRS and bench seat were unified with the child model as illustrated in Figure 6.8. The 

child model, without alterations to the material properties of the neck, was positioned into 

the CRS with adjustment of the harness to match the profile of the child model. The 

simulations were carried out using LS-DYNA version 971, release 7600-1077. The total 

simulation duration was 150 ms for the explicit dynamic analysis. Preloading was 

completed in a dynamic relaxation simulation. Before the dynamic simulation 

commenced, a 200 N preload was applied to the LATCH system and the top tether was 

loaded to 90 N. These preloads are consistent with FMVSS 213 requirements. Tightening 

of the front-adjusting harness strap which was simulated to properly position the child 

model into the CRS was also performed in the dynamic relaxation phase. The length of 

time for this preloading phase depends on the analysis convergence. The dynamic 

relaxation convergence tolerance was set to 0.0001 for all crash simulations. 
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Since this model is large in size (about 152,000 elements) and complicated for a 

variety of human-like components and material properties, the following 

countermeasures were implemented to improve the stability of the numerical simulation: 

• The ligaments of the cervical spine, which were modeled using a membrane 

element formulation and shell elements, were coarsened to reduce the 

numerical instabilities observed in trial simulations; 

• Material properties of the upper abdomen were adjusted such that at large 

strains (approximately 80%) the material begins to significantly harden. This 

technique permits a somewhat stiffer response than may be expected at large 

values of strain but will allow for a more realistic distribution of loading to 

neighbouring finite elements. 

Figure 6.8 Combination of child model with CRS and FMVSS213 bench seat. 
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An acceleration pulse with the magnitude/time history as recorded from the 

experimental tests (as shown in Figure 6.1) was prescribed to the rigid bench seat in the 

positive global X-direction after preloading was completed. No other motion of the rigid 

bench seat in the global Y or Z axes directions was permitted. The ends of the top tether 

and LATCH were constrained to the rigid bench seat. Gravity was applied to the entire 

system. 

There were no changes to the contact interfaces within the original child model 

and the CRS and bench seat. However different contact algorithms were added for 

modeling the contact between the child model and the CRS. The penalty method, which 

consists of placing normal interface springs between all penetrating nodes and contact 

surfaces, was used for all contact algorithms. The contact algorithm 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE with a static coefficient of 

friction FS = 0.5 and dynamic coefficient of friction FD = 0.45 was used to simulate 

contact between the child model, CRS and the foam padding. Additional contacts were 

added to simulate interactions between the hands, arms, head, and legs of the child 

model. Soft constraint formulation was applied to the contact interfaces between all body 

parts except bones. Interfaces between bones used a viscous damping coefficient. 

All simulations were conducted using LS-DYNA on a personal computer with 

dual 2.6 GHz AMD Athlon processors with 2 gigabytes of random access memory 

(RAM). A double precision version of the FE solver was used. Numerical instabilities 

such as inverted solid elements (negative volumes) were observed to occur in the model 

as a result of inappropriate contact. The time step scale factor was reduced to 0.25 to 

counteract the effects of instability. The computational time for each simulation was 

approximately 80 hours. 

A DVD containing the LS-DYNA input file for this simulation (and others) 

accompanies this thesis. 

6.1.4 Implementation of neck data from the altered head/neck component model 

The child model in combination with the CRS and FMVSS 213 bench seat was 

developed as a base model. The adjusted material properties for all parts altered in the 
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head/neck component model were incorporated into this base model and referred to as the 

"child model with neck alterations." The simulation setup of the child model with neck 

alterations was identical to that of the base model. 

Simulation results, in terms of head accelerations, neck deformation, motion, and 

cross-sectional forces, from both child models before and after neck alterations were 

investigated. The bio-fidelity and biomechanical responses of the two child models were 

compared and will be discussed in chapter 7. 

To further evaluate the child model (both the base model and the altered model), 

an additional FE simulation incorporating an acceleration pulse from Kallieris et al. [45] 

was completed. This simulation was conducted as the test in reference [45] incorporated a 

child cadaver and represents an excellent validation metric for the child models. Section 

6.2 will provide brief details on the test completed in reference [45]. 

6.2 Child model simulating a cadaver frontal impact sled test 

6.2.1 Cadaver frontal impact sled test 

Cassan et al. [46] summarized all pediatric cadaver tests performed prior to 1993. 

There were 11 pediatric cadaver tests completed by three different research groups. Eight 

cadaver sled tests were carried out and complete details from the testing were presented 

by Kallieris et al. in 1976 [45]. A comparison study of the kinematics observed in 

restrained child dummies and child cadavers in frontal crashes was also conducted in this 

study. One of the experimental child cadaver tests referenced in this research involved a 

2lA year old male with a mass of 16 kg and a length of 97 cm who is similar to the child 

model. 

The acceleration pulse which this child cadaver was subjected to is illustrated in 

Figure 6.9. The pulse was of trapezoidal shape and had an average deceleration of 18g's 

with a pulse duration of approximately 75 ms. The initial impact velocity of the sled was 

8.6 m/s. A shield type restraint system with trade name Vario (Britax) was utilized in the 

child cadaver test, which is different from the CRS in the numerical simulations. 

However, the model shared similar physical characteristics with the child cadaver in 

terms of mass and height. Furthermore, to the best of the authors' knowledge, 
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observations from this test are the only data available which incorporate a child cadaver 

of similar stature and physical characteristics to the child FE model. Therefore a 

comparison of the kinematics experienced by the child cadaver and the child model was 

completed utilizing the acceleration pulse presented in Figure 6.9. 
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Figure 6.9 Child cadaver testing acceleration pulse 
[45]. 

6.2.2 Simulation setup under cadaver sled test condition 

The simulation setup under the cadaver sled test condition was identical to that of 

the FMVSS 213 numerical simulation with the exception of the acceleration pulse 

applied to the sled bench seat. 

6.3 Data extraction from the child model 

Occupant injury data were extracted from time history information from nodes on 

the head and chest of the child model. Cross sections of the upper and lower neck were 

defined in the child model and used for assessing neck forces. Neck rotation was assessed 

using rigid body time histories of the neck vertebrae. 

Head kinematics was assessed from the time history information of the kinematics 

associated with three nodes contained in the head. One nodal location was at the centre of 
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mass of the head and the remaining two nodes were located on each side of the skull in 

line with the centre of mass when viewed perpendicular to the sagittal plan. Time history 

information of a node located at vertebra T3 of the thoracic spine was used to record the 

translational and rotational response of the chest. 

Head trajectory was determined based upon the motion of the head's centre of 

mass relative to the rigid portion of the bench seat. The neck tensile deformation was 

determined by calculating the distance between CI and Tl and rotational motion was 

based upon the difference in rotation angles associated with CI and Tl. 

The standard SAE J211 [57] was used to filter the time history data from all 

aspects of the child model. SAE J211 was developed for filtering all the experimental and 

numerical data of the vehicle body and of the anthropomorphic test device (ATD). A 

second order butterworth filter was developed as specified in SAE J211 for filtering all 

data. The filters for dummy data channels prescribed by SAE J211 are listed in Table 6.1. 

The child model is different from the ATD as most of the parts of the child model are 

human like and deformable. The data extracted from the simulation contained significant 

oscillations such that the levels of the filters used in this research were adjusted to the 

different result data. 

Table 6.1 SAE J211 filters for child occupant injury data. 

Injury data 
Head Acceleration 

Neck Force 

Neck Moment 

Data channel 
Class 1000 

Class 1000 

Class 600 

Chest Acceleration Class 180 

6.4 Injury parameters 

Pediatric ATD's and their associated injury criteria were used as one of the 

primary tools for predicting child injuries and child occupant protection in motor 

vehicles [5]. The following sections provide details of these injury criteria. 
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6.4.1 Head injury criteria 

The head injury criteria (HIC) are required by the standard FMVSS 213 to 

calculate the risk of head injury for child occupants during vehicle crashes. Equation (1), 

which is used to determine the head injury criteria for the Hybrid III 3-year-old child 

dummy, was applied for various simulations considered in this research. 

-i2.5 

HIC 1 
'2 h i\ 

h resultant •dt ( * 2 - ' l ) (1) 

Where 
a resultant =v^ 2 , 2 , 2 

+ ay +az 

(2) 

The resultant head accelerations in units of g's are calculated using Equation (2) 

where x, y and z-axes formed the local coordinate system located in the head following 

the SAE J211 conversion. The time interval to calculate the head injury criteria is 36 ms 

which followed the FMVSS 213 final rule. The acceptable value of HIC should be less 

than 1000 and the acceleration level of the child's head should not exceed 60 g's for any 

period greater than 36 ms. There is also a proposed value of 570 for the HIC evaluation 

over a 15 ms window for the Hybrid III 3-year-old child dummy. 

6.4.2 Neck injury criteria 

Neck injury criteria are required by the standard CMVSS 208 to calculate the 

neck injury risks of child occupants during vehicle crashes. Equation 3 was used to 

determine the neck injury criteria for the Hybrid III 3-year-old child dummy. 

N« = + 
VFzcJ KMycJ 

(3) 

Though FMVSS 208 contains child neck injury criteria, the current FMVSS 213 

does not regulate neck tolerance measurements due to the increasing concern about the 

biofidelity or artifacts of the Hybrid III child dummy [38]. For this reason, the neck 

injury criteria were not applied to the neck injury prediction in this research. 
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7. COMPARISON OF CHILD MODEL BEFORE/AFTER NECK ALTERATION 

Simulations of frontal crash following the FMVSS 213 protocols were conducted 

using the child model before and after neck alterations. In the following sections, 

comparisons of the kinematics and biomechanical responses of the two child models will 

be presented qualitatively and quantitatively. The head excursion and the neck injury 

potential of the child models will also be compared with the cadaver sled test and a traffic 

accident case. 

7.1 Qualitative Comparison 

The kinematic response of the child models before and after neck alterations at 

different time intervals throughout the simulations are shown in Figure 7.1 for the side 

view and in Figure 7.2 for the cross sectional view. The difference in the kinematic 

response of the two models in the simulations is not obvious until contact between the 

chin and chest occurs at approximately 60 ms. Excursions of the head of both child 

models commence at 27.5 ms and the arms and legs stretch out completely at 

approximately 57.5 ms. 

At 62.5 ms the rotation and excursion of the child head increase more 

significantly in the child model with neck alterations. A greater degree of neck flexion is 

observed at the same time for the altered model. The arms come to contact with the head 

at 85 ms for both child models. Arm/head contact, however, occurs for a longer duration 

for the child model without neck alterations. It was observed that chin/chest contact 

occurred over a longer duration for the child model with neck alterations while the 

separation between the head and chest occurred before 120 ms of simulation time for the 

child model without neck alterations. Both child models rebound and contact the backing 

of the child seat at a time of approximately 105 ms. 
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Time = 0 ms 

Time = 27.5 ms 

Time = 57.5 ms 

Time = 62.5 ms 

Figure 7.1 Child model simulating FMVSS 213 frontal crash side view: before neck 
alterations on the left and after neck alterations on the right 

(continued on the next page) 
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Time = 85 ms 

Time = 105 ms 

Time = 120 ms 

Time = 140 ms 

Figure 7.1 (continued) Child model simulating FMVSS 213 frontal crash side view: 
before neck alterations on left and after neck alterations on the right 
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Before neck alteration After neck alteration 

Time = 27.5 ms 

ms 

Time = 57.5 ms 

Time = 62.5 ms 

Figure 7.2 Child model simulating FMVSS 213 frontal crash cross sectional view: 
before neck alterations on left and after neck alterations on the right 

(continued on the next page). 
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Time = 85 ms 

Time = 105 ms 

Time = 120 ms 

Time = 140 ms 

Figure 7.2 (continued) Child model simulating FMVSS 213 frontal crash cross 
sectional view: before neck alterations on left and after neck alterations on the right 
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At approximately 92.5 ms, significant shear deformation along with the flexion of 

the neck at cervical vertebrae C1-C2 was observed in the simulation of the child model 

with neck alterations. These details are illustrated in Figure 7.3. As the arrow in the 

enlarged local view of this figure indicates, the cervical vertebra C2 has exhibited 

significant position change relative to the CI and the basion of the skull. This 

phenomenon predicts a clinical finding, called an atlanto-occipital dislocation (A. O. D), 

which is often a fatal neck injury for young children. This is not easily identifiable prior 

to the reduction of the elastic characteristics of the soft tissues associated with the 

cervical spine. 

In general, the child model with neck alterations has notably more head rotation, 

larger neck distraction, and longer contact duration between the head and chest. 

Figure 7 3 Detail of neck deformation of the child model at 92.5 ms in cross sectional 
view: the shear deformation of C1-C2 of the child model after neck alterations as 

indicated in the area with an arrow. 
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7.2 Quantitative Comparison of Kinematic and Biomechanical Responses 

In the following sections, a quantitative comparison of the kinematic and 

biomechanical responses of the two child models before and after neck alterations will be 

presented. Specifically, time histories of the following variables will be presented: 

• acceleration, excursion and rotation of the head, 

• tensile forces, deflection and rotational deformation of the neck, and 

• accelerations and deflection of the chest. 

In addition to these variables, the head displacement of the child models will be 

compared with the head trajectory of a similar child from a pediatric cadaver test. The 

prediction of neck injury will be discussed and compared with the case of a crash in a 

documented traffic accident in section 7.3. 

7.2.1 Head Response 

7.2.1.1 Head accelerations and head injury criteria (HIC) 

Figures 7.4 and 7.5 illustrate comparisons of the head accelerations in the global 

X and Z directions of the child models before and after neck alterations. Figure 7.6 

illustrates the resultant acceleration. The accelerations from the two models are almost 

identical to each other in profile, magnitude, and peak duration. The acceleration pulses 

from both models, however, contained significant noise even after a much lower class 

filter (180) was utilized instead of the filter class 1000 recommended in SAE J211 for the 

ATD used in FMVSS 213 crash tests. 

There are two notable peaks observed in the global X and Z head accelerations of 

the child model without neck alterations prior to 65 ms. The first peak occurred at 

approximately 57.5 ms and was caused by the brief contact between the chin and the 

front clip of the child seatbelt before the chin reached the chest. The second peak was 

observed to occur at 62.5 ms and a detailed discussion of the reason for this observation 
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will be provided in section 7.3. Additionally, rationales as to why this was observed in 

the child model will also be addressed in section 7.3. 

Figure 7.7 illustrates a time history of the chin to chest contact force. The peak of 

the contact force occurs at approximately 72 ms. The time history curves are relatively 

smooth before the contact forces reach their peaks. The chin and chest in the child model 

without neck alterations separated from each other at approximately 130 ms. 

Differences in the head accelerations of the two child models during rebound, 

which was estimated to occur at 105 ms, resulted from contact between the arms and 

head which generally occurred from 85 to 97.5 ms. 

Since the head acceleration time history responses do not differ significantly, the 

values of the head injury criteria (HIC) (as shown in Table 7.1) calculated from the 

simulation results for both child models are also similar. 
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Figure 7.4 Head acceleration in X direction. 
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Figure 7.5 Head acceleration in Z direction. 
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Figure 7.6 Head resultant acceleration. 
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Figure 7.7 Chin to chest contact force time. 

Table 7.1: Values of the Head Injury Criteria (HIC) 

Model 

Child Model 
Before Neck Alteration 

Child Model 
After Neck Alteration 

HIC 15 

201 

202 

HIC 36 

292 

305 

160 

7.2.1.2 Head rotation 

Figure 7.8 illustrates a comparison of the head rotation in the sagittal plane of the 

child models before and after neck alterations. It was observed that a difference in head 

rotation commenced at approximately 70 ms. The head of the child model, incorporating 

the child biomechanical response, exhibited more rotation (maximum 125 degrees at 95 

ms) than the unaltered child model (maximum 119 degrees at 85 ms). 
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Figure 7.8 Head rotations in the sagittal plane. 

7.2.1.3 Head displacement and trajectory 

The displacement of the head at the center of gravity has been measured relative 

to the rigid seat bench. Figure 7.9 illustrates the X and Z displacements (relative to the 

rigid seat bench) on the abscissa and ordinate respectively. These profiles represent the 

trajectories of the head mass centre. Greater excursions in both the X and Z directions in 

the child model after neck alterations were observed. This is consistent with results (as 

shown in figure 7.10) from the simulations of the two child models that were subjected to 

the acceleration pulse of the experimental child cadaver test. The head displacement of 

the child model was increased in the X and Z directions by 3% and 5%, respectively, by 

altering the neck material properties. 

Figure 7.10 indicates that the head of the child cadaver appeared to have no 

rebound. This was a result of the failure of the child restraint system and the overturn of 

the child cadaver in the later stage of the test as noted in the high speed video footage of 

the cadaver test. As a result, the comparison between the child model and cadaver was 

limited to simulation timing from the commencement of head rebound. It is obvious that 

the head excursion of the child model after neck alterations is more consistent with the 

findings from the child cadaver tests. The maximum displacements of the head have a 
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percentage error of approximately 16% and 13.5% for the child model before and after 

neck alterations when compared with the child cadaver test. 
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Figure 7.9 Head trajectories under FMVSS 213 frontal impact sled test conditions. 
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Figure 7.10 Head trajectory under cadaver frontal impact sled test conditions. 
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7.2.2 Neck response 

7.2.2.1 Upper neck forces 

Figure 7.11 illustrates the difference in the upper neck (C2-C3) tensile forces 

between the child models. The maximum upper neck tensile force was 1228 N at 70 ms 

and 793 N at 75 ms in the child models before and after neck alterations, respectively. 

The alterations of the neck in the child model reduce the upper neck tensile force by 

approximately 35% and delay the time when the neck force reaches the peak value by 

approximately 5 ms. 

A shift in the upper neck force from distraction to compression emerges at 

approximately 110 ms for the unaltered neck child model when the torso of the child 

contacts the child seat back. The compression force reaches its peak value of 205 N at 

approximately 125 ms. No significant neck compression force is observed in the child 

model after neck alterations. 

0 20 40 60 80 100 120 140 160 

Time (ms) 

Figure 7.11 Upper neck tensile forces. 
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7.2.2.2 Lower neck forces 

As illustrated in Figure 7.12, the time history of the lower neck (C6-C7) force 

varies noticeably in both child models before and after neck alterations. The child model 

after neck alterations exhibited much lower peak values. The duration of the lower neck 

force was increased in both compression and tension throughout the simulations. It was 

observed that for the model without neck alterations that the lower neck force first 

appeared to be in compression until 49 ms. Then, the lower neck was subjected to a 

tensile force between 49ms and 108 ms. The neck force returned to compression between 

108 ms and 134 ms. By contrast, before 132 ms, the neck force from the child model 

incorporating the neck alterations had only one shift from compression to tension at 57 

ms and remained in the tension region until 132 ms. Maximum values of the lower neck 

force were observed to be 624 N in tension and 272 N in compression for the child model 

without neck alterations. Incorporating the biomechanical behaviour of the cervical spine 

into the child model resulted in a peak tensile force of 366 N and 147 N in compression. 

The lower neck force has been reduced by 41% for tensile force and 46% for 

compressive force, respectively, as a result of the neck alteration under the simulated 

FMVSS 213 test. 
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Figure 7.12 Lower neck tensile forces. 
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7.2.2.3 Neck deflection 

Throughout the simulations of frontal crash under FMVSS 213 test conditions, the 

necks of both child models experience tensile deformation as shown in Figure 7.13. It is 

observed that the maximum deflection of the child neck is 8 mm at approximately 73 ms 

and 22.5 mm at approximately 78 ms for the child models before and after neck 

alterations, respectively. An increase of 14.5 mm in neck tensile deformation results from 

neck alterations. Note that the locations of the measurements are at the pedicles of the 

cervical vertebra CI and the thoracic vertebra Tl. 

Figure 7.13 Measurement of Neck Deflection (Cl-Tl): (A) without neck 
alterations and (B) with neck alterations. 
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7.2.2.4 Neck Rotation 

The neck rotation in the sagittal plane is determined by calculating the difference 

in rotation angles between the cervical vertebra CI and thoracic vertebra Tl. Figure 7.14 

presents a comparison of neck rotations from the child models before and after neck 

alterations. An increased rotation angle of 19 degrees after neck alterations was observed. 

It can also be observed that the rotation time history has second peaks when contact 

between the torso of the child and the child seatback occurred. Overall, the maximum 

rotation is 51 degrees at 77 ms and 70 degrees at 82.5 ms for the child models before and 

after neck alterations, respectively. 
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Figure 7.14 Neck rotation in sagittal plane. 

7.2.3 Chest response 

7.2.3.1 Chest accelerations 

Since no significant modifications in the chest area were employed, it is expected 

that the chest acceleration pulses should not change considerably. Figures 7.15, 7.16 and 

7.17 illustrate the chest resultant acceleration and the chest accelerations in the X and Z 

directions. It is important to note that initial accelerations in their unfiltered forms are 

approximately zero at the start of the simulation. Filtered values are not zero due to the 
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filtering of the data. Predictions from the two models were found to be very similar in 

profile and magnitude until the simulation time of approximately 100 ms. After this time, 

contact between the torso and the child seatback pad and the seatback occurred. During 

torso/seatback contact, the chest acceleration pulses display some variation in peak values 

and timing. These changes are due to the differences in head/neck rotations and 

chin/chest contact durations resulting from the biomechanical modifications of the neck. 
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Figure 7.15 Chest Acceleration in the X direction. 
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Figure 7.16 Chest acceleration in the Z direction 
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Figure 7.17 Chest resultant accelerations. 
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7.2.3.2 Chest deflection 

Chest deflection is one parameter used for predicting child injury risks. Figure 

7.18 illustrates chest deflection versus time response for both models. The maximum 

chest deflection is 21.9 mm at approximately 88 ms and 19.5 mm at 91 ms. The reduced 
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peak value and its delayed timing is a result of the observed downward motion of the 

head and neck after the neck alterations and will be discussed in detail in section 7.3 

25 

a 
1 15 
a 
u 
o> 

Before neck alteration 
— After neck alteration 

0 20 40 60 80 100 120 140 160 

Time (ms) 

Figure 7.18 Chest deflections. 

7.3 Discussions 

Head response 

As Figures 7.4 to 7.6 illustrate, the head acceleration time history in the X and Z 

directions and the resultant head acceleration of the child model with neck alterations 

were of similar profile and magnitude as the child model without neck alterations. This is 

essentially because there are no changes in the head mass and the material properties used 

for modeling the head. Secondly, there is evidence that the neck shear force considerably 

increased (as shown in Figure 7.3) while the tensile force decreased. The similar resultant 

acceleration values of the original and modified models illustrate that the head injury 

criteria HIC15 and HIC36 of both child models are consistent as expected. The HIC values 

listed in Table 7.1 are considerably below the critical values of 1000 for HIC36 and 570 

for HIC15 as recommended by the NHTSA for a 3-year-old child in frontal crash. This 

implies that predicting head injury using this child model will lower the risk of head 

injuries for children. This finding is consistent with the 2006 NHTSA report [3]. It is also 
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compliant with the argument that the inertial force from vehicle crash may not reach the 

level necessary to cause child head injuries without direct impact [34]. 

The change in the stiffness of the neck illustrated some local effects on the head 

acceleration pulses. For example, at 57.5ms and 62.5 ms, the local fluctuation of the 

acceleration pulses from the child model before neck alterations still appear even after the 

application of a low level filter, SAE 180, which is of a much lower filter class than is 

required in SAE J211 [57] (SAE 1000 is recommended). With the reduction in the neck 

stiffness of the child model, it was observed that accelerations associated with the head 

did not illustrate significant fluctuations in the time intervals mentioned above. 

Vibrations throughout the simulation are caused by the deformable material used 

for the brain and skull. Originally, there were two versions of the child model as 

presented in chapter 2. In version 1 the brain and skull were not deformable, similar to 

those of the Hybrid III 3-year-old child dummy model. The second version of the child 

model, which is used in this research, employs a deformable material with a low elastic 

modulus for the brain and a high elastic modulus for the skull. The material properties 

used for the brain and skull influence the head acceleration in the frontal crash 

simulations. A comparison of the child models (version 1 and version 2) was conducted 

during this research. Graphs of the results can be found in Appendix A. The figures show 

that the head acceleration time histories exhibit much less fluctuation in version 1 than in 

version 2. 

The majority of head injuries are contact based and may result from contact with a 

seatback or other vehicle interior components. As indicated in Figures 7.8 to 7.10, after 

the neck was altered, the head of the child model exhibits more excursion and rotation, 

and its displacement trajectory is more consistent with a pediatric cadaver. The reduction 

in neck tensile and rotational stiffness increases the risk of child head contact injuries. 

This is in agreement with the findings of Arbogast et al [5] indicating that increased 

compliance in the spine may create an entirely different head trajectory and result in 

severe head contact with interior vehicle structures. 
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Neck response 

Neck injury in children is rare but usually fatal when it occurs. Some of the 

injuries are difficult to diagnose [4] [36] [37]. The biomechanical response of the neck in 

the child model not only influences the head kinematics but is also critical to the accuracy 

of neck injury predictions in the simulations. 

Due to issues the surrounding biofidelity of the Hybrid III dummy in the neck and 

torso [4] [5] [23], it cannot properly predict child neck injury. Because of this, the neck 

injury criteria have been excluded from FMVSS 213. The child model, prior to neck 

alterations, also exhibited unrealistically high neck tensile and rotational stiffnesses in 

comparison with the pediatric cadaver head/neck complex tests under quasi-static tensile 

and extension/flexion bending load conditions [8]. 

There are many factors that influence the tensile and bending stiffnesses of the 

child neck. The musculature, material properties, and local anatomic geometry are the 

most dominate parameters. Active muscles have a more significant effect on the 

biomechanical response than inactive muscles. Clinical findings [58] show that extension 

loading of the neck often leads to injuries in the upper cervical spine. The neck muscles 

act to stabilize and protect the cervical spine as well as to support and move the head. The 

local anatomic geometry and material properties of the child cervical vertebrae are other 

important factors [11] [55]. But as the comparison of the head/neck component model 

showed, the material properties of soft tissues associated with the cervical spine, the 

ligaments, the intervertebral discs, and facet joints, predominately influence the stiffness 

of the child cervical spine. This is consistent with the findings in other studies on the 

biomechanical response of an adult cervical spine [30]. 

Implementation of the adjusted material properties of the cervical spine in the 

child model has resulted in reductions in the upper and lower neck forces in the 

simulation of frontal crashes under FMVSS 213. The maximum upper and lower neck 

tensile forces are decreased by approximately 35% and 41%, respectively. The maximum 

lower neck compression force is also reduced by 46%. 

When comparing the magnitudes of the neck forces as shown in Figure 7.11 and 

7.12, the peak value of the lower neck force is only about half of that of the upper neck 

force in the simulations. Calculations of the neck forces include the ligaments, the 
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cervical intervetebral discs, and the facet joints but exclude the musculatures and other 

soft issues in the neck area. These calculations are similar to the calculations from the 

head/neck component model. The effects of the musculatures of the child neck, however, 

should not be ignored in the prediction of child neck injuries. The active neck can take a 

considerable amount of load and reduce the force subjected to the cervical spine. This is 

true for an adult occupant [58]. However, due to its underdeveloped muscles and 

premature cervical spine, a 3-year-old child experiences the neck injury more often in the 

upper neck region than in the lower neck region. The force distribution along the neck of 

the child model is consistent with clinical findings [28] [36] [3] [38]. 

Ivancic et al. in 2007 [32] found that the joint of the head/Cl was generally more 

flexible than that of the other spinal levels for both adults and children. A typical child 

neck injury is traumatic atlanto-occipital dislocation [37]. Cervical spine injuries in the 

upper level neck are seen two and a half times more often in children than in adults. It has 

been suggested that atlanto-occipital dislocation should be considered in all children 

involved in motor vehicle accidents [37]. Diagnosis of atlanto-occipital dislocation has 

been based on the distance between the tip of the dens to the basion of the skull (DB 

distance). Encouragingly, this child model with the altered neck has demonstrated similar 

injury characteristics in frontal crash simulation as those from clinical findings, as Figure 

7.3 illustrates. It clearly shows a shear deformation between the skull basion and cervical 

vertebra C2 and relative position changes between the CI and C2 due to the cervical 

vertebra rotation and bending flexion deformation of the neck. Howard et al. [28] 

presented a similar child injury and riding condition in a real world crash as shown in 

Figure 2.17 (A). This phenomenon cannot be observed in the child model before the neck 

alteration and in the commonly used Hybrid III 3-year-old child dummy model for frontal 

crash simulations. 

Chest response 

It has been demonstrated by Oi et al. in 2004 [58] that chest resultant acceleration 

increased with increasing delta-V and as the crash severity increased, the peak chest 

deflections also increased. To predict child chest injuries, there are critical values for 

chest acceleration and chest deflection which are currently being proposed by 
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FMVSS 213 for a 3-year-old child; 56 g's for a resultant chest acceleration and 34 mm 

for chest deflection. Peak values of chest acceleration and deflection are in the ranges of 

36 g's to 38 g's and 19 mm to 13 mm, respectively, for both child models before and 

after neck alterations. All values are well below the proposed critical values. 

The chest response of the child model illustrates some changes after the 

adjustment of the neck material properties. Some variations appear later (after 100 ms) in 

the simulations in terms of delayed peak timing and magnitude changes. This is a result 

of the greater levels of neck distraction and rotation in the altered child model. Increased 

head excursion and neck flexion deformation also delayed the influence of head/chest 

contact on chest acceleration and deflection. 
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8. CONCLUSIONS, LIMITATIONS AND FUTURE WORK 

8.1 Conclusions 

A head/neck component model was developed based on the child model 

developed by Nagoya University and compared with pediatric cadaver head/neck 

complex tests under distraction and extension/flexion bending loading conditions. After 

the material properties of the cervical spine in the head/neck component model were 

altered, the tensile and bending stiffnesses of the cervical spine were significantly 

reduced and the force/displacement and rotation/moment responses were in good 

agreement with the corridors of the pediatric cadaver head/neck complex tests. The 

kinematics and the biomechanical response of the child model were notably improved 

once the altered neck data from the head/neck component model were implemented. 

For the research associated with the component testing the following conclusions 

can be made: 

1. Soft tissues, such as ligaments, intervertebral discs, and facet joints, are most 

responsible for the tensile and rotational stiffness of the cervical spine for the 

child model. 

2. The material properties of the soft tissues of the cervical spine in the child model, 

such as the ligaments, intervertebral discs, and facet joints, were altered by 

reducing the elastic modulus by 10 to 12.5 percent. After the material alteration, 

the neck tensile force was within the range of the cadaver head/neck complex 

tests and the rotation-moment curves were in good agreement to the corridor of 

the pediatric cadaver head/neck complex tests. 

For the research associated with the implementation of the neck alterations in the 

child model considering FMVSS 213 and a cadaver sled test the following conclusions 

can be made: 

3. Reduction in the neck tensile and rotational stiffness in the child model after the 

neck alterations reduced the upper neck tensile force by approximately 35% while 

the lower neck tensile force was reduced by 41% and 46% under a compression 

state. 
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4. The head and chest acceleration profiles from the simulations with and without 

the neck alterations remained similar. Values of HIC15 and HIC36 for both models 

are almost identical. 

5. This child model was able to predict detailed mechanisms for neck injury, such as 

atlanto-occipital dislocation, under the same severity as a real world vehicle crash. 

6. The kinematics of the head of the child model has been improved based on 

comparisons between the head trajectory and the pediatric cadaver sled test. The 

head displacement was increased by 3% and 5% in the X and in Z directions, 

respectively. The head rotation was also increased by 5%. Utilizing the altered 

neck biomechanical behaviour, the head trajectory was more consistent with child 

cadaver tests. 

7. The time of contact between the head and chest increased after incorporating 

biomechanical behaviour into the neck of the child model. There was no complete 

separation from the beginning of the head/chest contact to the end of the 

simulation. 

8. Alteration of the neck material properties in the child model illustrated an 

insignificant influence on chest acceleration but some notable differences to chest 

deflection. The chest deflection is approximately 3 mm lower in the child model 

with neck alterations. 

In general, after the material properties of the child neck were altered, the child 

FE model provided more accurate biomechanical responses and kinematics in simulations 

of vehicle frontal impact. Its bio-fidelity has been improved compared to the child model 

without the alterations and the current Hybrid III 3-year-old child dummy FE model. 

8.2 Limitations 

Since the moment/rotation curve of the cervical spine under the extension bending 

load condition deviated slightly from the corridor of the pediatric cadaver head/neck 

complex tests, there is a limitation in this research associated with the rotational stiffness 

of the cervical spine. This could also be due to a lack of modification to the local 

anatomic geometry and material properties of the child cervical vertebrae. Adjustments to 
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the material properties of the neck of the child model were based on strain energy and 

considered only elastic material characteristics (elastic modulus) due to the complexity of 

the model and the limited available clinical and experimental pediatric data. 

8.3 Future Work 

Considerations for the musculature, local anatomic geometry, and biomechanics 

of the cervical vertebrae of children should be a part of future study on the child model. 

Future research should also consider the effect of child brain modeling and its 

contribution to head injury prediction so as to further improve the biofidelity of the child 

model. 
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APPENDIX A 

Comparisons between FE Child Model Version 1 and Version 2 

Child model version 1 was developed in 2005 [6] and version 2 was incorporated 
improvements to version 1 in 2006 [7]. Figure A.l (A) illustrates the child model with 
some soft tissues removed to expose the skeletal structure. The known differences 
between the two versions are as follows: 

The head: The material of brain and skull changed from rigid in version 1 to 
IsotropicElasticPlastic in version 2. Figure A.l (B) illustrates the sectional view of the 
head. 

The total weight of the child model: 15.72 kg in version 1 and 14.91 kg in version 2. 

The femur length: Lvi = 254 mm for version 1 and LV2 = 219 mm for version 2 as 
shown in Figure Al (C). 

Pelvis: The pelvis in version 1 is scaled down from the adult model (THUMS) and the 
pelvis in version 2 is based on the anatomical structures and material properties of a 
child. Cartilage and Y cartilage were added to the pelvis in the child model version 2. 
Figure A.l (D) illustrates the differences between the two models. 

Other changes in child model version 2 are: 

• Change material of forearm bones and hand bones from deformable to rigid; 
• Improvement of joint modeling in wrist region; 
• Add more contact interfaces: 

1. Head - Arm Contact (soft constraint formulation) 
2. Humerus - Forearm bones Contact (FS = 0.3, FD = 0.3) 
3. Knee - Knee Surface Contact (soft constraint formulation) 
4. Head - Harness Contact (FS = 0.5, FD = 0.45) 
5. Buttock interior - Buttock Surface Contact (soft constraint formulation) 
6. Head - Thigh, Knee Contact (soft constraint formulation) 

• Add seatbelt elements (M.serratusanterior) between scapula and rib 
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Head 
Skull 

3-Year-Old Child Model 

Version 1 

Pelvis 
Cartilage Lyi=254 mm 

Lv2=219mm 

(D) (C) 

Note: Lvi - femur length for child model version 1; LV2 - femur length for child model version 2. 

Figure A.1 Child model and its modifications from version 1 to version 2. 
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Frontal Impact Simulations: 

Using FMVSS 213 Sled Test Pulse: 

FMVSS 213 frontal dynamic sled test was completed at Graco Corporation's sled 

testing facilities using Hybrid III 3-year-old child dummy. The testing apparatus 

consisted of a sled with an approximate mass of 635 kg. During a typical impact test, the 

sled was accelerated towards a fixed seismic mass using pneumatic pressure with an 

impact velocity of 41.7 km/h (25.9 mph). The acceleration pulse experienced by the sled 

during the impact was controlled by a hydraulic damper at the front of the sled. Figure 

A.2 illustrates the crash testing facilities. The acceleration pulse which the sled 

experienced in a direction opposite to the impact velocity and the lower and upper limits 

of sled acceleration outlined in FMVSS 213 are illustrated in Figure A.3. 

In the test, the child dummy was positioned and restrained in a forward facing 

five-point restraint system which was secured to the LATCH system. The setup and the 

procedure of the test can be found in the reference of Turchi et al. in 2004 [42] and Wang 

etal.in2006[41]. 

Figure A.2 FMVSS 213 sled test at Figure A.3 FMVSS 213 sled test 
Graco Corporation's sled testing acceleration (with the upper/lower 

facilities (41). limits) versus time curve [41]. 

Reprinted with permission from SAE Paper # 2006-01 -1141 © 2006 SAE International. 

118 



Using Cadaver Test Pulse: 

Experimental child cadaver testing was conducted for frontal crashes at the 

University of Heidelberg. The experimental child cadaver is a 2'/2 year old male with a 

mass of 16 kg and length of 97 cm in a shield form CRS. 

Figure A.4 Sled test with test subject and CRS [45]. 

50 75 100 
Time (ms) 

150 

Figure A .5 Child cadaver testing 
acceleration pulse [45]. 
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Kinematics Comparison (FMVSS 213 Simulations) 

Version'1 Version 2 

Figure A.6 Kinematic response comparison of FMVSS 213 simulations of the child 
model version 1 and version2. 

• The neck and upper torso of the child model version 1 illustrates more 
significant deformation at earlier arrival time. At 60 ms it illustrates a 
significant difference in kinematics between the two versions. 

• The head of the child in version 1 first came to in contact with the chest at 72.5 
ms, and then the head of the child model in version 2 started to contact with the 
chest at 82.5 ms. 

• The behaviours of the arm and hand also showed large difference between the 
two versions. 

• It was noticed that the scapula of the child in version 1 penetrated through the 
chest during the simulation. 
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Kinematics Comparison (FMVSS 213 CAE Simulations) 

Version 1 Version 2 

Figure A.7 Sectional view of kinematic response comparison of FMVSS 213 
simulations of the child model version 1 and version 2. 

• The sections of the child model show more clearly the differences between the 
two models at different time intervals in the simulations. The child model 
version 1 has more significant and earlier deformation than the version 2. 

• The sections show that the head of the child in version 1 came to in contact 
with the chest at 72.5 ms while the head of the child model in version 2 started 
to contact with the chest at 82.5 ms. This contact was delayed by 10 
milliseconds in the version 2 compared to version 1. 

• About 120 milliseconds the deformation of the child model reached the 
maximum. 

• During the analysis of the simulation it was found that the child model version 
1 had more asymmetric deformation than the version 2. 
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Head Acceleration Comparison 
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The head 
accelerations of 
child model 
version 2 are 
higher than version 
1 in both 
simulation cases 
using FMVSS 213 
sled test and 
cadaver test 
acceleration 
pulses. 

The peak 
accelerations of 
the head in the X, 
Z directions and 
the peak resultant 
accelerations from 
the child model 
version 2 appear 
later by 10 ms than 
version 1 in both 
simulation cases 
using FMVSS 213 
sled test and 
cadaver test 
acceleration 
pulses. 

The head 
accelerations from 
the simulation 
using cadaver test 
pulse are lower 
than using FMVSS 
213 sled test pulse. 

Figure A.8 Head acceleration comparison of FMVSS 213 and cadaver sled test 
simulations of the child model version 1 and version2. 
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Chest Acceleration Comparison 
Chest: X Acceleration 
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simulation cases 
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The peak 
accelerations of the 
chest in the X, Z 
direction and the 
peak resultant 
accelerations from 
the child model 
version 2 appear 
later by 10 ms than 
version 1 in both 
simulation cases 
using FMVSS 213 
sled test and 
cadaver test 
acceleration 
pulses. 

The chest 
acceleration pulses 
from the C AE 
simulation using 
cadaver test pulse 
are lower than 
using sled test 
pulse. 

Figure A.9 Chest acceleration comparison of FMVSS 213 and cadaver sled test 
simulations of the child model version 1 and version2. 
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Neck Section Normal Force Comparison 
Lower Neck Section Normal Force 
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Figure A.10 Lower neck section force comparison of FMVSS 213 and cadaver sled 
test simulations of the child model version 1 and version2. 

Comparison of the lower neck section normal force presented in Figure A. 10 
illustrates that the maximum values of the neck tensile force from the child model 
version 2 are higher and commence later than from version 2 in both CAE simulation 
cases. 

Discussion 

The overall comparison of the two version child models shows that the child 
model version 1 exhibits lower stiffness of the neck and upper torso, and softer pulses of 
the head and chest than the version 2. The possible causes for these differences are as 
follows: 

• The material properties of the brain and skull changed from Rigid to 
IsotropicElasticPlastic in version 2; 

• The significant deformation of the shoulder/arm deformation in version 1; 
• The scapula penetrated the chest at shoulder inversion 1; 
• Pelvis change in version 2. 

The kinematics of the upper extremity has significantly changed in version 2. The 
following reasons may be responsible for these changes: 

• The Head - Arm Contact has been added in version 2 and; 
• SEATBELT elements between scapula and rib are new in version 2 (indicated in 

the original input file, but not yet identified in the model); 
• The penetration of the scapula has been eliminated in version 2. 
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APPENDIX B 

The Abbreviated Injury Scale 

The Abbreviated Injury Scale (AIS) provides a ranking of the severity of injury. 

Injuries are ranked on a scale of 1 to 6, with 1 being minor and 6 being an unsurvivable 

injury. The scale represents the threat to life associated with an injury and is not meant to 

represent a comprehensive measure of severity. The AIS is not an injury scale, in that the 

difference between AIS1 and AIS2 is not the same as that between AIS4 and AIS5. 

Injury 

1 

2 

3 

4 

5 

6 

AIS Score 

Minor 

Moderate 

Serious 

Severe 

Critical 

Unsurvivable 
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APPENDIX C 

Strain Energy Distribution of Neck Soft Tissues in the Child Head/Neck 

Component Model 
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Figure A. 10 Strain energy distribution of neck soft tissues in the child head/neck 

component model under tensile loading condition. 

LN: interspinous ligament (ISL); 

LF: ligamentum flavum (LF); 

ALL: anterior longitudinal ligament 

PLL: posterior longitudinal ligament 

ANNULUSOUT: annulus fabrosus intervertebral discs; 

RIGHT CART, LEFT CART: facet joints between two adjacent vertebrae; 

FIBERIN, FIBEROUT: on the out skin of two portions of the disc there were 

seatbelt elements as fiber connecting the adjacent two vertebrae. 
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Copyright Permission 
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Sent: Thursday, July 24, 2008 3:20 PM 
To: Johnson, Gwen 
Subject: Seeking Copyright Permission 

Dear Ms. Gwen Johnson, 

I am writing my thesis , Master of Applied Science degree in Mechanical Engineering at 
the University of Windsor, Ontario, Canada. Within my thesis I would like to use Figures 1 
and 2 and test data of Figures 3 and 4 in the publication "Biomechnical Assessment of the 
Pediatric Cervical Spine Under Bending and Tensile Loading" in SPINE Vol. 30 No. 24, 2005, 
pp. e716-e723 as reference. I am requesting your permission to use these figures in my 
thesis. My thesis would be printed in 5 copies. Two copies would be deposited in the 
University of Windsor Library. One copy would be deposited in the Mechanical Engineering 
Department. The other two copies would be given to individuals. I would very appreciate it if 

you could respond to this at your earliest convenience. 

Thank you very much! 

127 

mailto:Gwen.Johnson@wolterskluwer.com
mailto:zhangl@uwindsor.ca
http://www
mailto:zhangl@uwindsor.ca


Best regards, 

Wencheng Zhang 

MASc. Candidate 

University of Windsor 
Department of Mechanical, Automotive and Materials 
Engineering 
401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4 > Tel: +1 (519) 253-3000 ext. 2619 
Email: zhangl@uwindsor.ca 

Copyright Permission from SAE 

From: "Dawn Frenchak" <dawn@sae.org> 

Subject: RE: Seeking copyright permission 

Date: Wed, 30 Jul 2008 09:12:30-0400 

To: "Zhang Wencheng" <zhangl@uwindsor.ca> 

Dear Sir, 

Thank you for your e-mail in which you requested permission to use Figure 7 from SAE Paper # 
2006-21-0007, Figure 3A and 3B from 2006-01-0253, Table 1 and Figures 2-7 from 2004-01-0319, 
and Figures 1, 2, and 6 from 2006-01-1141.1 understand that these figures and table will be used in 
your thesis at the University of Windsor. 

We request that the following credit line be used for all with the exception of SAE Paper # 2006-21-
0007: 

"Reprinted with permission from SAE Paper # XXXXXX* © XXXX** SAE International." 

(*please insert the paper number and **year of publication) 

Credit line for 2006-21-0007: 

"Reprinted with permission from SAE Paper # 2006-21-0006 © 2006 Convergence Transportation 
Electronics Association and SAE International." 
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