
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Improved web page traverse using genetic algorithm Improved web page traverse using genetic algorithm

Man Li
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Li, Man, "Improved web page traverse using genetic algorithm" (2009). Electronic Theses and
Dissertations. 8076.
https://scholar.uwindsor.ca/etd/8076

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8076?utm_source=scholar.uwindsor.ca%2Fetd%2F8076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

UMI'

Improved Web Page Traverse Using Genetic
Algorithm

by

Man Li

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2009

© 2009 Man Li

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Vote reference
ISBN: 978-0-494-57565-9
Our file Notre reference
ISBN: 978-0-494-57565-9

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre im primes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

AUTHOR'S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that 1

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

in

ABSTRACT

Correct navigational behavior of a web application is essential to its reliability. An

effective means to improving our confidence in the correct behavior of a web application

is to test it by exploring the possible navigation among the web pages at the client side:

The tester carries out the testing by consecutively clicking the hyperlinks along with

some possible search parameters and checking whether the returned web pages are as

expected. Traditional conformance testing techniques based on graph can be adopted in

this setting to automatically generate suitable test sequences to traverse among client

pages. In this thesis, we present an improvement on T-method for test sequence

generation to reduce considerably its length by making use of a genetic algorithm. Our

experiments show a 34%-68% saving on the test sequence lengths compared to the direct

application of T-method.

IV

DEDICATION

v

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Jessica Chen, for her great ideas, invaluable

guidance and enthusiastic encouragement. Without her help, the work presented here

would not have been possible. Sincere thanks to Dr. Xiaobu Yuan, Dr. Kevin W. Li and

Dr. Dan Wu for their precious time and ardent assistance in the development of this

thesis.

Additional thanks to Dr. Lihua Duan for her contributions and assistance.

Finally, special thanks to my parents Zhigang Li and Xiangli Hu, my husband Kui jiao.

Thank you for putting up with my difficult times and for understanding and endless

supporting me while I complete one of my dreams.

vi

TABLE OF CONTENTS

AUTHOR'S DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF TABLES x

LIST OF FIGURES xii

1. INTRODUCTION AND PROBLEM DESCRIPTION 1

2. REVIEW OF LITERATURE AND BACKGROUND 10

2.1 RELATED WORK 10

2.1.1 WEB APPLICATION VERIFICATION MODELS 11

2.1.2 TESTING MODELS ON WEB APPLICATION 11

2.1.3 SUMMARY 14

2.2 BACKGROUND 15

2.2.1 URL 16

2.2.2 SERVER PAGE, STATIC PAGE AND CLIENT PAGE 17

2.2.3 SESSION AND COOKIE 18

2.2.4 HYPERLINK AND DYNAMIC HYPERLINK 19

2.2.5 THE PROPERTIES OF A CLIENT PAGE 19

vii

2.2.6 ARCHITECTURE OF WEB APPLICATION 21

2.2.7 HISTORY STACK 22

2.2.8 USING BACK BUTTON 22

3. MODELING WEB APPLICATIONS WITH GRAPHS 26

4. IMPLEMENTATION 41

4.1 THE IMPLEMENTATION OF THE CPP ALGORITHM 41

4.2 THE IMPLEMENTATION OF THE GENETIC ALGORITHM 43

4.2.1 DESCRIPTION OF GA 43

4.2.2 CHROMOSOME AND GENOME 46

4.2.3 ENCODING 46

4.2.4 CROSSOVER 47

4.2.5 MUTATION 49

4.2.6 FITNESS FUNCTION 52

4.2.7 THE ALGORITHM 52

5. METHOD EVALUATION 58

5.1 The NUMBER OF BACK EDGES 59

5.2 SIZE OF G 60

5.3 DIAMETER OF G 62

5.4 RATIO OF COOKIE-AFFECTING TRANSTION IN G 64

5.5 SPECIAL CASE 66

6. CONCLUSIONS AND RECOMMENDATIONS 69

APPENDICES 71

REFERENCES 73

viii

VITAAUCTORIS 77

ix

LIST OF TABLES

Table 3.1 explanations of the symbols 35

Table 4.1 GA microbiological and model terminology 45

x

LIST OF FIGURES

Figure 1.1 the website of the eBay 4

Figure 1.2 the graph of part of the website of eBay 8

Figure 2.1 an example of a client page 20

Figure 2.2 the structure of web applications 21

Figure 2.3 history stack operation 23

Figure 3.1 some client page of the website of YahooTravel 30

Figure 3.2 an example graph for the cheap airfare search engine 34

Figure 3.3 an example to show how to use the back button 39

Figure 4.1 an example of the CPP 43

Figure 4.2 block diagram of basic GA cycle 44

Figure 4.3 crossover rule 49

Figure 4.4 mutation rule 50

Figure 4.5 (a) no mutually exclusion 51

Figure 4.5 (b) mutually exclusion 51

Figure 5.1 an illustration of the changes of the lengths of the test sequences according to

the number of back edges of G 60

Figure 5.2 (a) the changes of the lengths of the test sequences according to the increase of

the size of G 61

Figure 5.2 (b) the time changes with the lengths of the test sequences according to the

increase of the size of G 61

Fiugre 5.3 (a) the changes of the lengths of the test sequences according to the increase of

the diameter of G 63
xi

Fiugre 5.3 (b) the time changes with the lengths of the test sequences according to the

increase ofthe diameter of G 63

Fiugre 5.4 (a) the change of lengths of the test sequences according to the ratio of the

privilege transitions 64

Fiugre 5. 4 (b) the time changes according to the ratio ofthe privilege transitions 65

Figure 5.5.1 a special case ofthe changes ofthe lengths ofthe test sequences according to

the increase of the size of G 67

Figure 5.5.2 a special case ofthe changes ofthe lengths ofthe test sequences according to

the increase ofthe diameter of G 68

xii

CHAPTER I

INTRODUCTION AND PROBLEM DESCRIPTION

With the rapid advancement of networking and web technology, more and more

information is being posted into and retrieved from the Web. Web systems are becoming

the primary device for information sharing and retrieval. Some of them now play so

important roles that they have been applied to all major areas. An exiguous mistake in an

online store system may put thousands of people around the world in trouble and lead a

business company to millions of dollars of income loss. Assuring the web system quality

and reliability has become one of our major concerns. The quality of features and

characteristics of a product or services determines its ability to meet stated or implied

needs, and reliability is a measure of success on how the observed behavior of a system

conforms to its specifications. They both directly affect the quality of our daily life.

The existing rigorous software engineering methods and techniques can greatly improve

the quality of the software product. As we place very high expectations on software

engineering methods and techniques to this important application domain to achieve

better effectiveness and higher efficiency, we have great interests in enhanced techniques

for reliability control of web applications. As software testing has been well recognized

as an essential part of software development techniques to gain confidence in the

reliability of the software product, we discuss issues in conducting software testing on

web applications.

1

The correct navigational behavior is a key measurement of the reliability of web

applications. That is, starting from any accessible client page (i.e. a web page displayed

to the clients via web browsers), by clicking on any available hyperlink together with any

possible input data as search parameters, the users should always access the correct

information including both the text and the available hyperlinks on the displayed client

page. To assure the correct navigational behavior of a web application is a non-trivial

task due to the emergence of more and more complex web applications. Although a

simple personal homepage may only consist of a small set of static web pages, a

complicated commercial web application like an online-store system has to handle

various kinds of transaction requests from millions of clients worldwide. One of the

possibilities of checking the correct navigational behavior is to conduct conformance

testing: to test the web application, viewed as Implementation Under Test (IUT), from the

client side by browsing the client pages. Of course, here we need to assume the correct

functionality of the web browser we use during the test procedure, just like we assume

that the operating system is functioning well.

We also assume that the expected navigational behavior of the IUT is available in terms

of a deterministic Finite State Machine (FSM) [10]. An FSM is a 5-tuple

M = (I,0,S,S,A,), where / , O and S are finite and nonempty sets of input symbols,

output symbols and states, respectively. 5 :SxI -» S is the state transition function and

X: S x / -» O is the output function. Here we use each state to represent a client page

and each transition to represent a possible transformation from one client page to another.

The action of triggering a hyperlink, possibly together with some search parameters, is

expressed as the input of the transition, while the characterization of the client page
2

generated by the server page associated with the triggered hyperlink forms the output of

the transition.

Problem description: A test sequence is generated from the specification FSM. In general,

we apply a test sequence that satisfies a certain test criterion to the implementation to

check its correctness by comparing the actual output sequence with the expected one.

Based on the test purpose, a test criterion can be used to generate a test sequence to check,

for example, the correctness of the output, the start or the end states of each transition of

the implementation FSM triggered by a specific input. In the following, we adopt the

well-known transition coverage criterion, i.e., to test each transition at least once. Very

often, we apply results in graph theory to the specification FSM to generate a test

sequence because an FSM can be viewed as a directed graph G = (V, E) where V is a

finite set of vertices and E is a finite set of edges. Each vertex stands for a state of the

FSM and an edge represents a transition. Given a directed graph representing a

specification FSM, we can use an algorithm to resolve the Chinese Postman Problem

(CPP) [9] to generate a test sequence. The CPP is to find a least-cost walk to travel all

edges in a directed graph.

We use part of the website of eBay as a simple example to show how to model a web

application in terms of directed graph. People can enter the home pages of all categories

from the homepage of the eBay to find out more detailed information about each category.

Figure 1.1(a) shows the homepage Px of the website that provides hyperlinks to all

home pages of the main parts of the website where I, is the hyperlink to the web page

3

for the list of the books. Figure 1.1(b) shows web page P2 that lists the hyperlinks to

categories where hyperlinksL2, L3 and L4 refer to the homepages of antiques genus,

collectibles genus and eBay separately. Figure 1.1(c) shows web page P3 which is the

home page of the antiques genus. Here hyperlinks i5and L6 refer to the home page of

the eBay and the web page that lists the hyperlinks to all the categories respectively.

Figure 1.1(d) shows web page P4 which is the home page of the collectibles genus

where hyperlinks Ln and Zg link to the home page of the eBay and the web page that

lists the hyperlinks to all the categories respectively.

I j'A

€2y Welcome! Sign In or register

i All Categories

; Caterings" | fctoksrs ; Mut*, l,uC'J*"

Love tfeep discounts ami free shipping? Check cut the Dally Deal.

Cool itirtf tor y«i

DAILY DEAL

A J

HEWBsvns Sabre SI...

$27.99
MSRF 3?S.3?

sftjjpiMbr

APPit Poe 1GS St...

$29.99
M S * P 5*900

s^iMw
Ss*<raJ!*-:l»Jyveal3

::WMcor«eto «8#y',.,-• /

Welcome

Buy ; Self : Ky eBay j Community Help

Contact us | Site Map

v ' J Search 1 Advanced Searcft

New to ^Say? *•

frig&tXim H *s5t and ^ee

Wan! great buy*? C&sck i t e e out

FEELTHE LOVE

, Rcs<ihtiim &3»#.cr

(a)

4

^J^f -u Welcome! Si j i in or register

' . T * » Ei.., •* Alt Categories

All Categories

J ' JXS* I ^ $ p ,S«H :.My eBay . Community

U SeaitMtiles & descriptions

Browse Cgtegortes

Caiegoiy Fo
. All Categories ^ Al

S Show number of (tans in category

Items ! v j : All Actae

C Show category numbers

Location

v Available on. eBay.com

I Antiques i21247If

Aichileciaiai & Garden (14135)
ftsign Antiques (29497)
Books & Manuscripts (3238)
DBCwafeveArts (33M7)
Etlinffisasriic (47721
Furniture (14184)
Noma & Hearth (851)
Linens STexiitssiPie-1930'; (87131
Maps Atlases & Globes (10366)

KolHxtfcles (2083284) I - - w
^Bsmi i t133Qu7}

Ararrate t97493i
Animation Aft ft-ffiffgcters; {82533)
Arcade. Jukeboxss & Flnbali (10010)
Autographs (7795}
Banks. Registers & Vending (57731
BanwwMMHM
Beads (1340}
Bottles & Instates {147795

U
Jewelry 8 Watches (1830474)

Children's JesieliY (11257)
Designer SrsiKJs (37623)
Engagement & Wedding (74013)
EUBK. Recronta > Tribal {39W0)
Fashion Jwraliv (7363611
Finedaweiiv (98735)
H3ndcrrted. Artisan Jeselrv (58335)
Jewelry Boxes. Cases Si Display (22798)
Jewelry Design & Repair (54615)

LcoseS SJ160552)

(b)

iPltl
^saSsJjJf

1 Cafe y J * ,

Homs > Bo

..; * T •'•' \^t>
•' Welcome!

iAn t t qBes

Antiques

^Caisgerirf s &tthWM$q

l See all items (ass,*?!)

= Antiquities

Ths America?

: Byzantine

Ce&c

• Egyptian

; Fsr Essiern

i Grsek
: Ho»yUrjd

islamic

Near Esst *ro

" n i l i

JECV

ut$

- Of C5

K1

Me*

•'»

Antiques

Architectural & Garden

Banisters

Barn Doors

Beams

Ceiling !ms

Chandeliers. Fixtures, Sccnces

Columns & P&sts

Corbels

Doors

Fms\s

Wmffk Sel l ; My eBay Community; Heip ;

SM.9. Map

f..:iearch|::;^dvEr!tsd 3*s'di

Opt out of the new search experience

PMTiQlif.il

(c)

5

http://eBay.com
http://PMTiQlif.il

43[| u L7
Welcome! Sign in 01 rsgistgi

| " m ' " u u l m \ v ' ' : • •

^ L g ' "
i-uvrvs > euv > Collectibles

Collectibles

Cst^rl®® w$itn ColtectlbI$tii

- See ait items tz.o-t.nm)

•. Advertising

Automobiles

CioUitfic). Sho«s & Acesssorfa-s

C&rmTHjnk;aUon & Utrtitos

Ct?mf;(fl*?fs & High Tech

FQOG & Beverage

Gas & Oil

Govern men!

Animals

Amphibians %> Rs&tUss

Birds

Gats

Dogs

farm & Crjunuysirie

Fish & Marine

Horsss- Msrch. & MsmGrabiisa

Mors^S. M K & ! Hfirses

insects & Butterflies

i ^ I ' l J . - ^ ^ y A^accs^stsfcK

(d)

Figure 1. 1 the website of the eBay

Figure 1.2 shows the directed graph of the above selected part of the website. Web page

Pi, P2, P3 and P4 are represented by vertexes Vi, V2, V3 and V4 respectively. The

transitions ti, ti, ts, tj, /$, to, tymd h represent eight different navigations in the web site

triggered by clicking on hyperlinks Li, L2, L3, L4, L5, Lc„ Lj and Ls in the vertexes V], V2,

F^and V4 respectively.

There are two major tasks in graph-based conformance testing: one is to generate an

input/output sequence, called test sequence, that is both effective in terms of fault

detestability and efficiency in terms of its length; the other is to apply automatically the

generated input sequence to the implementation and compare the output sequence with

6

the expected one. Here we focus on the former problem of generating an efficient test

sequence which represents a traversal among client side web pages.

There are several methods proposed in the literature for test sequence generation,

typically known as T-method [23], U-method [1, 22, 28], W-method [7] and D-method

[11, 14, 33]. For testing web navigation, however, they all converge to the simplest one:

the T-method, with the test criterion to require that each transition in the given FSM be

traversed at least once in the generated path of the test sequence.

In the above example, a generated test sequence is ii/oi, {3/03, h/ 07, ii/oi, {3/03, Ul 04, \5I05,

\%lo%, i 1 /o 1, is/os, i6/06, i2/02,and its length is 12.

Proposed solution: In regard to efficient test sequences in terms of their lengths, we show

in this paper that by making use of the functionality of the web browsers, we can generate

test sequences more efficiently than those generated from the T-method. We present an

algorithm to considerably reduce the test sequence length based on some assumptions by

using the backward and forward button provided by the web browsers as an auxiliary

means to transfer among client pages.

In the above example, suppose that we take into consideration the behavior of the

backward button provided by the browser. A test sequence could be \\lo\, hlo?,, hi 07,

back, \nl 04,15/05, is/os, back \tJof,, 12/02, whose length is 10.

7

file:///5I05
file:///tJof

Figure 1. 2 the graph of part of the website of eBay

The above example is illustrative so the reduction on the test sequence length is not

significant. In reality, if we can make use of the behavior of backward button and forward

button to generate a test sequence, the test sequence could be reduced significantly. We

apply genetic algorithm to provide a solution of generating efficient test sequences.

In [8], a network-flow algorithm was applied to generate efficient test sequences using

back button. Sessions and cookies however are not allowed in the applications. In the

present work we do consider sessions and cookies and their effect on the algorithm. In the

special cases when sessions and cookies are not present, we have also carried out

experiment to compare the lengths of the generated test sequence by using our proposed

algorithm and that of [8].

8

The soundness of our algorithm is provided. The saving on the test sequence length

compared to the one generated by CPP however depends on the graph structure and thus

it is hard to be theoretically calculated. In this regard, we have carried out various kinds

of experiments and we present our result together with our analysis on the quantity of the

reduction of test sequence lengths according to various factors.

The rest of the thesis is organized as follows. We first introduce some notational

background related to web applications in Chapter 2. Then we show how to model web

applications in terms of graphs in Chapter 3. We discuss the major issues in the

implementation of the existing algorithms related to our work in Chapter 4. This is

followed by our experimental results in Chapter 5 which demonstrates the significant

reduction of test sequence length generated by our proposed method. Related work is

then discussed in Chapter 6 and we give some concluding remarks at the end.

9

CHAPTER II

REVIEW OF LITERATURE AND BACKGROUND

2.1 RELATED WORK

In the last decade, there are various types of generic testing techniques explored.

According to the testing methodology, there are white-box testing, black-box testing etc.

Most of them can be used for testing web applications with proper adaptation. Some

general discussions can be found in [19].

For white-box testing, a typical approach is to conduct data flow analysis on the source

code of the server pages and generate proper test suites satisfying certain test selection

criteria. A comprehensive survey on various test selection criteria on data flow testing

proposed in the literature can be found in [36], and how to apply data flow analysis to

testing web applications is discussed in [18].

Along the black-box testing approach, no information about the source code of the server

pages is available: all what we can do with the implementation is to execute it.

Depending on whether the expected behavior is available or not, different research

directions have been taken.

10

2.1.1 WEB APPLICATION VERIFICATION MODELS

Sciascio et al. [29, 30] presents how to verify a web application with Symbolic Model

Verifier (NuSMV) and Computation tree logic (CTL). NuSMV is an updated version of

the SMV symbolic model checker. CTL is a branching-time temporal logic. The model of

a web application is a web graph, which consists of nodes and arcs. In a web graph, nodes

include pages, links, and windows, and the arcs connect the nodes. The browsing from

one page to another following a hyperlink includes at least three nodes and two arcs. The

first arc connects the start page to one of its hyperlinks, and the second connects the

hyperlink to the destination page. All the requirement properties are written in CTL

formulas. A symbolic model verifier, NuSMV, is applied after the web application model

and requirement properties are ready. The final results and counter examples are reported.

In order to make it easy to use model checking tool, a series of patterns are developed.

2.1.2 TESTING MODELS ON WEB APPLICATION

When the expected behavior is unknown, we can first retrieve the design or test cases

from the implementation via reverse engineering techniques. Ricca and Tonella [26, 27]

proposed testing strategy on web site analysis through web browser. A tool called Re Web

is developed to gather all web pages and their relations within one web site, and a

UML-based model for the web site is constructed by this ReWeb. A testing tool,

TestWeb, is responsible for testing the UML web application model. The authors

considered white-box testing on a web application. The testing is mainly concentrated on

web forms of a web application. A test case generation engine inside TestWeb is used to

11

generate test cases, and the generation is based on a reduced graph by removing static

web pages without forms in a navigation paths. VeriWeb is designed to explore client

pages while performing testing at the same time. The derived test cases are then reused

for regression testing.

Kung, Liu and Hsia [16] use an ORD (Object Relation Diagram) based web application

testing model (WTM) for testing web applications. A WTM model of a web application

is created by reverse engineering on the source documents it. The testing work is divided

into three parts: object perspective, behavior perspective and structure perspective. Each

part is tested separately. The object perspective of the WTM describes the class structures

of a web application including request, response, navigation and redirection. The

behavior perspective of the WTM focuses on page navigation, and page navigation

diagram (PND) derived from ORD is employed. Finally a navigation tree started from the

home page is constructed and the testing of the navigation behavior is based on this PND.

The structure perspective of the WTM is related to control flow and data flow

information of a web application. Block branch diagram (BBD) and function cluster

diagrams (FCD) are used respectively for describing control flow and data flow.

Lucca and Penta [20] proposed a base-line testing strategy that creates a testing model by

adding browser statechart to a series of pages with inter-related hyperlinks. [20]

considered the influence of web browser's behaviors on a web application. Each web

browser contains buttons like back, forward and reload. A user's click on one of these

12

buttons can force the browser to display the previously visited page or refresh the current

web page with the same URL. In order to test a web application with browser's behavior,

a statechart of back and forward buttons is constructed with four states, BDFD (Back

Disable, Forward Disable), BEFD (Back Enable, Forward Disable), BEFE (Back Enable,

Forward Enable) and BDFE (Back Disable, Forward Enable). For each navigation path,

e.g. a base line, the testing model is a navigation tree generated by adding the statechart

of browser's behavior. The root of the tree is the home page of the web application, and

each path of the tree is tested separately.

Graunke et al. adopted .̂-Calculus to model web form related web applications in [12].

Each web application in this model is divided into a single server and a single client. The

server contains a table that maps the requested URL to a process program. A client

consists of a current form web page, and all previously visited web pages. Each form

contains variables and the URL that the form data will be sent to. A set of rules is defined

that regulates the transitions from one page to another.

Beek and Mauw [3] used labelled transitions systems to model web applications and the

conformance testing is applied to this model. An MRRTS (Multi Request-Response

Transition Systems), in which request is considered as input and response as output, is

used. With this model, the navigation behaviour of a web application are modeled as

URL label series.

13

2.1.3 SUMMARY

When the expected behavior of a web application is available in terms of graph, our

major task is to generate a test sequence from it. Due to the problem of limited resource

to carry out software testing, much of our effort has been put on reducing the length of

the generated test sequence. This can be accomplished in two ways: one is to

divide-and-conquer, and another is to search for optimal solution for the minimal-length

test sequence. Discussion on the former issue can be found in [2], where the authors

proposed a hierarchical approach to model and test potentially large web applications.

Our approach to checking the correct navigational behavior of a web application falls into

the latter category.

Of course, the specification of the expected behavior of a web application is not restricted

to FSMs: it can take any format according to various test purposes. Chang and Hon [4]

proposed a mechanism to generate test suit based on statistical usage model of the web

applications for link validation. An agent-based framework to automatically generate and

coordinate test agents proposed by Qi, Kung, and Wong [25] is based on

Belief-Desire-Intention model. Lee and Offutt [17, 35] used mutation testing techniques

to generate test cases from XML-based documents.

Most of the test procedure can be carried out either on the server side or on the client side.

For the latter, there must be a web browser involved. A web browser introduces

additional user interface such as the back and forward buttons, the URL address bar. This

interface brings out additional difficulties in formal verification and testing [6] because it

14

complicates the original model of the web applications. At the same time, we will show

in this thesis, that this new feature can also be well used to achieve better solution

towards test sequence reduction.

Lucca and Penta [20] considered that the browser behavior has influences on the

navigation behavior of a web application. According to our analysis on web browser,

although Lucca and Penta proposed a testing method considering browser behavior, the

browser model they used is not sufficient to describe the real browsers we use. It is

necessary to consider the browser cache and history stack on testing a web application.

Duan and Wang [8] presented a network flow algorithm to solve the NP-hard problem of

generating a minimal-length test sequence of hyperlink validation by making use of the

back button provided by the web browsers. The present thesis work also applies back

button feature of web browsers to reduce the length of the generated test sequence. While

[8] does not consider the presence of cookies and sessions, the present work does. Thus,

we are providing a more general solution.

2.2 BACKGROUND

In this part, we introduce some related concepts on web applications, such as the

architecture of web applications, URLs, web servers and dynamic hyperlinks. This is

followed by a brief introduction to graph-based conformance testing.

15

2.2.1 URL

URL stands for Universal Resource Locator. It is used to locate any resources in the

Internet. URL typically consists of a URL scheme, an authority, and a path. An URL

scheme indicates a category of resources, such as http, https, and ftp. The authority

typically consists of the name or IP address of a server and the port number. A path is to

show the relative path of the resource inside the host server in the Internet. The format of

an HTTP URL is often parameterized as: http://<host>: <port>/<path>? <request

parameters>. Here "http://" indicates the resource type is http, and the communication

protocol used to send this request is HTTP. <host> is the web server's IP address. It

identifies a unique web server in the Internet address. <port> is the port number that the

web server uses for HTTP communication. <path> specifies the relative storage position

of the request resource. <request parameters> consists of request parameters a client

passes to the web server. The request parameters can come from the input of the client

and the cookies/sessions. These parameters could be used to compute and generate a

client page. For example, http://www.baidu.com/search?ie=gb2312 shows the basic

elements of a URL. "http://" indicates the resource type is HTTP, "www.baidu.com" is

the domain name and its corresponding IP address can be resolved by querying a DNS

(Domain Name Service) server. The port number is implicit and it is 80 by default,

"search" is a relative directory and "ie=gb2312" is the assignment of a request parameter.

16

http://%3chost
http://
http://www.baidu.com/search?ie=gb2312
http://
http://www.baidu.com

2.2.2 SERVER PAGE. STATIC PAGE AND CLIENT PAGE

When a web application server receives a request message that contains a URL and

cookie (if provided) information from a browser, which can be triggered by clicking on a

hyperlink or typing a URL in the address bar of the browser, it sends back the

corresponding HTML web page according to the request. We call such a corresponding

HTML web page a client page. A client page is an HTML document with embedded

scripts and is rendered by the web browser on the client side. A client page can be

generated from two different template pages: static page and server page. Static pages

have predefined page templates that are stored in a local directory of the web server. The

web server can access these static pages with their file name and file path. For a static

page request, the web server reads that HTML file, packs the file into the response

message and sends the message back to the requested web browser as a client page. A

server page can be a Common Gateway Interface (CGI) script, an Active Server Page

(ASP), a Java Server Page (JSP), or a servlet. If a server page is requested, the web server

dynamically creates a client page according to the information of the request message.

After a client page has been generated, it is packed in a response message like a client

page in the form of a static page and sent back to the requesting web browser.

Here we use the term "page" to stand for both of static and server page. Each web page

has a page ID, to uniquely identify it in the web application. In practice, a web page is

identified by its URL which includes the web server address and the relative directory.

For simplicity, we use numeric page ID instead of the URL of the page.

17

2.2.3 SESSION AND COOKIE

Since HTTP is a stateless protocol, an HTTP server cannot recognize two different

requests from the same client. After a response has been sent to a requested browser that

issued the request, the connection is closed. The web server does not keep any

information about the client. In many cases, some sort of relationship is required between

two requests made by the same client. In order to resolve the problem, the concepts of

session and cookie are introduced into web technology.

A session is the time duration used to uninterruptedly browse client pages spent by a

certain user at a web site (application) from starting to browse the first client page to

closing the web browser. In some web applications, a session is setup after the login of a

client and closed when the client logouts. The concept of session puts a strong emphasis

on recording a certain user's state.

A cookie is a piece of small text that records identification and some related information

of a certain client. It is stored in the web browser. Once the cookie is created on the

client's side, for every further request made by the same user, the cookie is sent along

with the request message until the expiration of the cookie. Based on the cookie

technique, a web application can overcome the shortcoming of HTTP protocol by

recognizing a certain client and establishing a session between a web browser and a web

server.

18

2.2.4 HYPERLINK AND DYNAMIC HYPERLINK

Normally, all pages of a web application are interconnected by hyperlinks. These

hyperlinks form the navigational behavior of the web application. A hyperlink identifies a

unique page that will be requested by a web browser. The format of a hyperlink includes

web server address, relative directory that stores the page, and file name. Here we give

each hyperlink in a certain static or server page a unique linkID which is used to identify

the link to a particular page.

According to the different information of cookies/sessions, database or request

parameters, a hyperlink could be dynamically shown on a client page. Such a hyperlink is

called a dynamic hyperlink. For example, in the online student information system of

the University of Windsor (SIS), after a current student logged into the SIS, the student

can see a hyperlink to view his/her transcript but it is impossible for a non-registered

student to see such a hyperlink after his or her login.

2.2.5 THE PROPERTIES OF A CLIENT PAGE

On abstract level, a client page can be viewed as a pair <T, H> of a set J of text symbols

and a set H of hyperlink symbols. A text symbol represents the information of the text. A

hyperlink symbol represents the existence of a hyperlink: it means that user's clicking on

the hyperlink symbol on a client page can trigger a request message to the server.

19

Note that although the format of a hyperlink symbol and that of a hyperlink are the same,

a hyperlink symbol is however different from a hyperlink used to retrieve a client page. A

hyperlink to retrieve a client page contains host address, request parameter which may

come from cookie or input variables. A hyperlink symbol is a hypertext displayed in a

web page. It does not contain the input from the client to this page.

Figure 2.1 shows an example of a client page that is generated by a single server page. It

is the homepage of the student webmail system of the University of Windsor. In this

client page, the black lines point out all the text and hyperlink symbols: the pair <T, H>.

The hyperlink symbol "Sign in" cannot contain any input of the clients because the input

of the current page has not yet been given.

Text Symbol

ENTER Student SK
Calendars
Panning to graduate?
Fee Information
Fiexibte/Dtetance Learning
Forms & Applications
Registrariai Service Fees
Grade Processing
nABS FYfiiainpd

Hyperlink Symbol

Figure 2.1 an example of a client page

20

2.2.6 ARCHITECTURE OF WEB APPLICATION

Figure 2.2 illustrates a generic architecture of web applications. A web application is an

interactive system which contains web browser, the web application server and the

database. It is a typical 3-tier model. While realizing more complicated functions, the

modern web applications have expanded from a 3-tier model to an N-tier model.

Web
Browser

HTTP
Request

^

HTTP
Response

HTTP
Server

- Static
Web
Page

.-i i

- Server
Pages

• • • i

i

Data
Base

Figure 2.2 the structure of web applications

A web browser is a standard window application and users use it to visit a web

application by clicking hyperlinks or typing in URLs. After sending out a request

message for a client page, the browsers will receive a response message from the web

application server. The message contains the requested client page.

21

2.2.7 HISTORY STACK

A browser's history stack [11] stores the previously visited URLs, and the stack is

maintained by the browser module. Generally speaking, the history stack is a kind of

stack with similar operations as normal stacks. A history stack maintains a stack pointer,

top position and bottom position. The values of these variables determine whether a

backward or forward button can be enabled. Compared with normal stacks, the stack

pointer of the browser's history stack can be moved back and forth if more than one item

is stored in it.

When a browser starts up, its history stack is empty. The stack pointer points to nothing

and the top position and bottom position are set to a null value. At this time, the

backward and forward button are disabled. After a URL is requested and a web page is

received, the URL is pushed into the stack and the stack pointer points to the newly

inserted URL. The top position and bottom position are set to their corresponding values.

The browser's backward and forward buttons are enabled or disabled according to how

many items are stored and according to the position of stack pointer. If the stack has more

than two items and the stack pointer does not point to the first URL stored in the history

stack, the backward button is enabled. This means that there exists an item before the

current item that the stack pointer points to. At this time, a user can click the backward

button, and the stack pointer will move from current position to its previous one. The

URL stored in the position that the stack pointer points to is retrieved and sent to network

interface for requesting its corresponding HTML web page. The page might be returned

22

from local cache or the web server that sent the page before. The use of local cache

depends on the cache policy set in the browser or HTTP cache controls that came with

the received web page.

Similarly, the forward button is enabled when the stack has more than two items and the

stack pointer does not point to the top item in the history stack. The clicks on the forward

button can force the stack pointer moving from the current position to its next one. The

URL that the stack pointer points to is used to request its corresponding web page.

When a user clicks on a backward or forward button and goto menu, the stack pointer

moves back or forth from current position and go to the desired page. If a user clicks on a

hyperlink or types a URL in the browser's address textbox, the URL of newly requested

web page is pushed into the history stack after the browser receives the web page

successfully. Before the push operation, all URLs above stack pointer's current position

are popped up, and after the push operation, the stack pointer points to the top position of

the stack.

D

A

(a) (b) (c) (d)

Figure 2.3 history stack operation

23

B B

Figure 2.3 gives an example to show the operations on the history stack. Figure 2.3(a)

shows that page A's URL A is pushed into the stack after receiving page A. The stack

pointer points to A. In Figure 2.3(b), page B and C have been received and their URLs B

and C are pushed into the stack. In Figure 2.3(c), the user clicks back button twice, and

the stack pointer points to the first URL A. Because page A contains hyperlinks, after a

user clicks a link to page D in page A, page D's URL is pushed into the stack on the

position above A. Before D is pushed into the stack, previous URLs B and C are popped

up.

2.2.8 USING BACK BUTTON

According to major web browsers we use nowadays, such as the Internet Explore,

Mozilla Firefox, Safari, and Opera, each web browser maintains a history stack to keep

the previously visited URLs and uses a stack pointer to record the URL of the current

client page. The history stack can be accessed by making use of the forward button and

the back button on the navigation bar of the browser.

For any two client pages cph cpj in the web application under test, let r be the shortest

path to navigate from cp, to cpj. With the use of the back button, it is possible that there

exists a path r' to navigate from cpt to cpj such that r' is shorter than T. Consequently, by

making use of the back button, the total length of the test sequence may be reduced.

The history stack only stores the URLs of previously visited web pages, so it is possible

that a different web page, rather than the previously visited one, is visited when we select

24

to back a web page in the history stack due to the existence of the cookies. We say a test

sequence % uses the back button properly if it conforms to the semantics of the web

browsers.

25

CHAPTER 111

MODELING WEB APPLICATIONS WITH GRAPHS

A directed graph (digraph) G is defined by a tuple (V, E, L) in which V\s a set of vertices.

E is a set of directed edges between the vertices. Each edge may have a label in L. An

edge e from vertex v, to vertex v,- with label / will be represented by (v„ vf, e), and we say

edge e leaves v, and enters v/.

A path x in a digraph G is either null, denoted by s, or a finite sequence of edges eie2...eu

(k> 1) in G such that for k > 2, the ending vertex of e, is the starting vertex of e,+i for all /

S {1, 2, ..., k-\}. Given path r = e\e2—ek (k> 1), we use starting (r) and ending (r) to

denote the starting vertex of ei and the ending vertex of eu respectively. A tour is a path

starting from and ending at the same vertex.

A digraph is strongly connected if for any ordered pair of vertices (v„ v,) there is a path

from v, to Vj. The graphs we consider here are all strongly connected. In fact, we assume

that all client pages are reachable from the home page and that from any page we can

reach the home page by finite steps of hyperlink clicks. When G is strongly connected, a

postman Tour of G is a tour which contains every edges of E at least once. Given a

graphG = {V,E,cost), where cost is a cost function that associates each edge in E with a

cost. The CPP is to find the minimum-cost Postman Tour in E that traverses each edge of

G at least once.

26

In our context, a web application refers to its server side implementation, which consists

of a set of server pages. Typical server pages include HTML files, Java Server Pages,

Java Servlets, ASPs, PHP files, etc. They can be generally viewed as a piece of program

that dynamically generates client pages. Taking this set of server pages as a black-box

implementation, its behavior is tested from the client side by navigating among the output

client pages.

Each vertex uniquely represents one client page, which is an output of the execution of a

server page. Apparently, we cannot exhaustively enumerate all client pages. For the

purpose of testing, we only select some representations. This can be achieved by the

following two techniques:

We consider a closed system in the sense that the hyperlinks all refer to the server pages

within the same web application. An open system can be modeled in our setting by

augmenting an additional page to represent all the Internet web pages not generated by

the web application under test. If there is a hyperlink in a client page pointing to

www.uwindsor.ca, for example, we can simply represent it as a hyperlink pointing to this

special page.

We can use an abstract representation for a group of similar pages. For example, in a

student information system, when student A and student B both have regular transcripts, a

client page displaying the transcript of A and B both have regular transcripts. In this case,

a client page displaying the transcript of A and a client page displaying the transcript of B

27

http://www.uwindsor.ca

can be considered as members of a same group with a single representative client page. A

label of a graph is an input/output pair in our context.

An input x represents the user's (or the tester's) input. It includes the triggering of a

hyperlink possibly with some user's input data (for form submission) which is used as

search parameters. In practice, people also use hyperlink to represent the hyperlink

together with search parameters. As we mentioned before, here we explicitly separate

these two parts. A URL is associated with each hyperlink together with possible search

parameters and points to unique server page to be executed to generate the next client

page.

An output y represents the characteristics of a client page. For testing purpose, it can be

understood as a multi-set of texts displayed and a multi-set of hyperlinks. The text can be

normal text, images, some places for users to type in input data, the text portion of a

hyperlink, or other non-hyperlink content. A hyperlink can be a normal hyperlink

uniquely identified by its context and the server page it refers to. A client page is correct

if the multi-set of texts and the multi-set of hyperlinks are all correct. Here we do not

consider the test oracle problem on how to automatically check the correctness of various

types of web content against the expected one. Readers interested in this issue are

referred to [5, 21,24, 34].

A transition t is defined by a tuple (v„ vjt x/y) in which v, is the starting vertex, x is the

input, Vj is the ending vertex, and y is the output. A transition (v,, vj, x/y) represents the

28

transformation from client page cp, represented by vertex v, to client page cpj represented

by vertex y, triggered by user's input x.

Let us consider the cheap airfare search engine of the online system YahooTravel.com

('http://travel.valioo.com') as an example web application. Here, we only focus on the

major functionalities of this search engine. In home page cpo, the user can issue a search

by providing search criteria such as the date, departure city, destination city, and so on. If

no such flight is available, a client page with information "Our providers do not have any

flights for your search criteria" will be returned, and we use cpi to denote this client page.

Otherwise, a client page with the detailed information about all the available flights will

be displayed in cp2. When the information for the search criteria is incomplete (e.g., no

destination city is entered) or infeasible (e.g., the return date is before the departure date

for a round trip), an error page cpi will be returned. In client page cp2, the user can select

any available flight for reservation by clicking the corresponding hyperlink. Then the

personal information is required from the user in a new client page cp4. Again, when the

keyed-in personal information is incomplete or erroneous (e.g., no last name is entered or

telephone number contains alphabet letter), client page cps will be prompted to user for

correction. Client page cpc is generated with all the personal and flight information for

the user to review. In cpc, the user can choose "Continue", or "back", which will result in

client page cpi (for request confirmation), and client page cp4, respectively. The "Contact

us" page (denoted by cps) and the home page can be reached by special image hyperlinks

from all the client pages, cpo and cpsare generated by the server page represented by vo,

cpi and cp2 are generated by server page represented by v/, cp4 and cps are generated by

29

http://YahooTravel.com
http://'http://travel.valioo.com'

server page represented by v̂ , cpe is generated by server page represented by vj, cp7 is

generated by server page represented by v4 and cp$ is generated by server page

represented by v.,-. Figure 3.1 shows the web pages of the online system.

L-jHe^e:-..,:R»*«»icn.-raws.GUIDES T Book FWECMSE • Deals my Travel r

SEARCH TRAVEL: | j

Find It Fast
yt^tl ^i^fo? :^vr<? J'J .yi'if-*^ hi'-'s ry~ tf. "9- dnd vscstions

O C'frmc if- i idi © tieaich iMulnuie s :*•» wi:<> FareQsase

' .0 O
i "
' tmti m OtCASI :•••• JKTOW

*2/09/09 fiilwio/os

ADULTS -CONNECTIONS

1 v; .'. I Any v [

(a) cp0

,tli> Our providers do n« t̂ have ar;y flights fc-i your stsarth n i ter ia .

Please try a new search

..._J

(b) cp,

30

M**m:: ''&**&$

* r*^<sj*v s«?a? f N ! M l . ,
Fn 02,13/08 -'.it f •> 02 V 38 •- 11 <

j ^ - \ "*^J8^*ff^^ *1

OUTBOUND

©before 9am.

E! 9am - 3pm

1?J 3pm•- 9pm
RETURN
0before

09sn) - 3pm

03pm - 9pm

i3a«*r 3pm

Assise*. -.

0W<jf>-it(jp

J59M -1

S3Si i

fefil 1
SSS1 |

SS61 |
3i.?s:;]

fro"! i

5i! i
1».§J |

•SMi .'•[

1

:

$961

®

Yahoo! F
multiple in

Air Canada

7

8ft*» Searched B>

Yahoo! Far«Cha$« is now searching

08 am . !:«l am Msn-s!ss> YQG-YYZ • ,
7:H> «m • 8:29 am ifen-stss YYZ-YOG * * « , ' *

$981 AfrCanada;
t">:5f! am • 9:5? am Nan-slap YOG-YYZ
7:2P am . 0:Z9 am MSB-stop YVJ-YQS -*'«MS

(c) cp2

[H Flights | i«2M o t e , s l«3G a r e

Please fix the following errorfsl:
&s Please enter am/a! ci*/

© Rourai-TrSp O One-way

FrOfTI - f liKi ai> airpsH

lYQG

To - Find an airpoi I

(Wo" ~~~™~
[?] Check n*af by airports

Messenc

Depa r t

J02/09/09

Return
I Anytime ! v | |02/10/03

A<Mt cwtd Senior Infant
l l w, 0 i v i 0 v | 0 | v l

»More Search Cations

I Anytime \g£

<ti&;$4W-\

(d) cp3

31

3 Who's traveling?

Za&i traveler** name must mate* the name srs his/her governnwnt-sssued prictc SJ.
Aaibes do not a Bow passsogers to transfer tickets or to chaogs names on tickets.

Traveler
TiratfgHfers name M i 'Lest mrr&t&um&me SufflK

:H
p i lama resident of the European UniciHEU). Wh> vf?

(e) c/?4

We guard your
privacy
dtuaz piedg*? is kmp
your peFsonaJ siforroai&rt

3 Who's traveling?

Each travelers rrsrra must match the name or> hts/ner gcvernirseit-issuet! p-̂ ctc 8J
Airtsie* do not eSew passsogers to transfer tickets or to change names or* iscsets.

Traveler
$& S êesfc specify she ia&tnsnie of this trawter. (M«$$aytt t$i

Tirst/giver! name M.i. *Laat name/surname Suffix

* * « jab

[]] JamaresEJHi'ofttwEifropeanl'nicrtiEiJ}.;.

We gstard your
privacy

(f) cp5

Review trip cost

Total Trip Duration: 15 days /14 nights

1 traveler, round-trip

Total Airfare

Tajseui'd Feet

Total trip cost

$815.00

S146.40

\Zl l*r»ee Assu rance Get an automatic
-*|9 o s t t r e h r t , if another customer books

the same flights at a lower price.

$961.40 USD

Continue booking your flight only.

f mmmai

(G) C/>6

32

Review fare rules, terms, and conditions

- This ticket is non-re fundable.

• Changes to this ticket will incur c.hanf^e.fss-S;.

• This s an international *rip requiring spec ia l ^a i ^ i ^e" - ' ' ' ^Ml tef ; for each traveler.

• See an overview of a8 h* t I applicable for this fare.

• View the complete Grbez *ite f i updated January 27, 2809 which incorpora te theOr fe i lz^s f ;^

• Read the a^iines i^i'

• R e a d t h e ' ~ " v 3"-"<~_:_ i __for"cketP^i3tec*crPius

Please no te : A i least one airline in this trip charges an additional fee for checked baggage. TNs fee is not included
in your total trio- cost. . "< *d

I ag ree and accept t h e O r b t t i s i te t § r ? H S . M M £ * E H M S ^ upda ted January 27,2009 w h i c h Incorpora te t h e
Orb l tz t>I^3M.Mdi'Ll snd all o t he r ru les , t e r m s and c o n a t i o n s r e f e renced above .

(H) cPl

Contact Us

Orbit! Worldwide, Inc.
530 W. Madison
Chicago, Hiincts 536€1
V.SA.

Customer Service
The following emaa addresses and Sinks to phone fiumfcers wffl connect you with custofrter service information for
0rbt2.com. CneaoTicfceis.com, ebscfcersxorfi. RatestoGo.com and HctefClu&.com

• Grbrfct: For more information on customer support visitQrMz..&y$M.$M.M££3&

• ChespTtckets: For mors information on customer support, visit Ci>S3i;tJcK&ts Of-stc-mei support

• ebookers: For more information on customer support, visit gr/cckgrs -?-j,stc;;>gr s^sgcr;

• BoteJCIub. For more information on customer support, visit HmsCl-iS costc-n«?r y j ^ j cH

• RatestoGo; For more information on customer support, visit Sf^M&SxM&^L&tiMPM

Exchanging Paper Tickets (forOrbitz.com, CheapTfckeis.com only J
Or&ftz/ChespTicfcets Tjcxetin-s Department
1361 Premier Drive
Suite 320
Manfcsto MM 56001

(I) cp%

Figure 3. 1 some client pages of the website of YahooTravel

33

http://0rbt2.com
http://CneaoTicfceis.com
http://RatestoGo.com
http://forOrbitz.com
http://CheapTfckeis.com

This part of the web application is specified as digraph G shown in Figure 3.2 and Table

3.1. Here, for 0 < / < 8, vertex v, represents cp,. Since hyperlinks in different client pages

or even within one client page can refer to the same client page, we use xf to denote the

input symbol that can produce y,, where j is some integer, y, denotes the characteristics

of cp,.

Figure 3.2 an example graph for the cheap airfare search engine

34

Symbol

yo

y2

y4

yf.

y«

VI

V3

V5

V?

4

x3

Meaning

The characteristic of client

page cp0

The characteristic of client

page cp2

The characteristic of client

page cp4

The characteristic of client

page cp6

The characteristic of client

page cp8

Client page cpi

Client page cps

Client page cps

Client page cp?

Clicking the hyperlink to vo

with null (search parameters)

in cp«

Clicking one hyperlink to v0

with null (search parameters)

mcpi

Clicking the other hyperlink

to vo with null (search

Symbol

yi

ys

ys

yj

Vo

V2

V4

V6

Vg

XJ

4

A

Meaning

The characteristic of client

page cpi

The characteristic of client

page cps

The characteristic of client

page cps

The characteristic of client

page cp7

Client page cpo

Client page cp2

Client page cp4

Client page cpc,

Client page cps

Clicking the hyperlink to v/

with the no-flight-return

search parameters

Clicking the hyperlink to v/

with correct search

parameters

Clicking the hyperlink to v/

with correct search

35

x4

4

x6

x1

x8

x9
•*o

parameters) in cp/

Clicking the hyperlink to v»

with null (search parameters)

in cp3

Clicking the hyperlink to vn

with null (search parameters)

in cp2

Clicking one hyperlink to vo

with null (search parameters)

incp6

Clicking the other hyperlink

to vo with null (search

parameters) in cpc,

Clicking one hyperlink to v(,

with null (search parameters)

incpz

Clicking the other hyperlink

to vo with null (search

parameters) in cpx

X j

*\

<

X5

4

A

parameters

Clicking the hyperlink to vo

with incomplete search

parameters

Clicking one hyperlink to V2

with flight information

(search parameters)

Clicking another hyperlink

to V2 with flight information

(search parameters)

Clicking the hyperlink to V2

with flight and customer's

information (search

parameters)

Clicking the hyperlink to vj

with flight and customer's

information (search

parameters)

Clicking the hyperlink to V3

with flight and customer's

information (search

parameters)

36

x10

x"

4

xg

xg

Clicking the hyperlink to v»

with null (search parameters)

in ops

Clicking the hyperlink to vo

with null (search parameters)

in cpo

Clicking the hyperlink to vo

with null (search parameters)

in cp2

Clicking the hyperlink to v5

with flight and customer

information (search

parameters)

Clicking the hyperlink to vj

with flight and customer

information (search

parameters)

Clicking the hyperlink to vj

with flight and customer

information (search

X7

x8

x8

x8

Xg

Xg

Clicking the hyperlink to v̂

with flight and customer's

information (search

parameters)

Clicking the hyperlink to vj

with flight and customer's

information (search

parameters)

Clicking the hyperlink to v.5

with flight and customer's

information (search

parameters)

Clicking the hyperlink to vs

with flight and customer's

information (search

parameters)

Clicking the hyperlink to vj

with flight and customer's

information (search

parameters)

Clicking the hyperlink to v̂

with flight and customer's

information (search

37

parameters) parameters)

Table 3. 1 explanations of the symbols

Given a digraph describing the expected behavior of a web application under test, we

would like to see, for each transition t, if we click on a hyperlink (possibly with some

input data) corresponding to an input of the page represented by the starting vertex of t,

then the resulting client page is correctly generated in the sense that both the displayed

text content and hyperlinks are as characterized in the output oft. Furthermore, we would

like to generate an input/output sequence (called a test sequence) from a sequence of

transitions such that each transition in the graph is traversed at least once.

In the above example, suppose that the current navigation history is cpo cp2 cp4 cp6 cpg.

Now we want to visit client page cp7. Without the back button, the shortest path to reach

cp7 is to visit the following client pages in sequence: cpo cp2 cp4 cp6cp7. By making use

of the back button, cpi can be reached by only two clicks: first click the back button to

return to cpr, and then click the hyperlink associated with cp7 in cpg, and Figure 3.3 shows

the shortest path (bold lines).

38

Figure 3.3 an example to show how to use the back button

Note that we do not consider the forward button because its use cannot save the steps of

hyperlink clicks for the navigation between any two client pages.

A complete specification of the cheap Airfares Search Engine application in the above

example consists of 25 vertexes and 118 transitions. With this specification, the test

39

sequence generated by our method is of length 157 while the one generated by CPP is of

236. The saving is 33%.

CHAPTER IV

IMPLEMENTATION

In this section, we give a brief introduction to CPP algorithm which can be applied to our

context without using back button. Then we explain our proposed algorithm by applying

Genetic Algorithm, considering the use of back button.

4.1 THE IMPLEMENTATION OF THE CPP ALGORITHM

To well understand the algorithm to solve the CPP, we introduce some graph-theoretic

terms first. The number of edges going into a vertex v is the in-degree denoted by

deg,„(v), and the number of edges pointing out of a vertex v is the out-degree denoted

by deg0„,(v). Let 8 be the difference between the in and out degrees: S(v) =

deg„„,(v)-deg,„(v). If S(v) = 0, we say the vertex v is balanced. Otherwise, let D+

= {v| S(v)>0} be the set of unbalanced vertices with an excess of out-going edges, and

D~ = {v | 5{v) <0} the set of unbalanced vertices with an excess of in-coming edges. Let

path p,j be a path from vertex v, to vertex y, where v, e D~ and y, e D+. In general, a

CPP may take some of the p^ paths more than once. Let ftj be the number of times the

path py must be taken, specifically, how many times the path must be added to the graph

as an edge to make it Eulerian.

In [13], an algorithm of CPP can be sketched as follows.

Step 1: determine S of each vertex v in graph G . If d (v) = 0 for all v, go to Step 5;

41

Step 2: determine D+ and D mG .

Step 3: For each vertex in G, find the shortest paths piJ and minimal costs c,y to all

vertices by the Floyd-Warshall algorithm [32].

Step 4: find / to minimize <j> = ̂ C ^ by the algorithm of cycle canceling, where

f.j>0 should be integer, £ ^ fu = -<*(') and^T^. fu = S(i).

Step 5: Construct an Eulerian circuit by Fleury's algorithm [31] based on the least cost

paths / -> j and each path repeated fn > 0 times.

The complexity of this algorithm isO(nzm3(\ogn)).

Here we use Figure 4.1 to show the algorithm to solve the CPP. In this figure, the weight

of each edge is ' 1 ' . In Step 1, J(0) = 1, S(Y) = 1 , 5{2) = -1 and S(3) = -\ are

computed. From the result of Step 1, we can determine that D+ = {0,1} and

D~ ={2,3} in Step 2. In Step 3, we determine pn and minimal costsc^. In Step 4,

based on D+, D~, pj} and cn, we find that there are two ways to choose the set of

extra paths. If one path is 2 -> 0, then the other path is 3 -> 1; the alternative is to use

the paths 2-> 1 (from vertex 2, pass by vertex 3, 0, to vertex 1) and 3 -»0 . As it

happens, the choices have the equal cost (c2l +c30 =3 + l,c20 + c3l =2 + 2), and both can

be used for an optimal CPT. Let us say that we choose the paths 2 -> 1 and 3 -» 0. In

Step 4, an Eulerian circuit is found: 0,1,3,0,1, 2,3,0,2,3,0.

42

° .

2

Figure 4. 1 an example of the CPP

4.2 THE IMPLEMENTATION OF THE GENETIC ALGORITHM

The present work focuses on the Genetic Algorithms (GA), a learning algorithm, and its

application to improving the efficiency of the traverse of web pages. GA is a

population-based, robust global optimization method. That is, it is able to find a global

optimal solution without being trapped in local minima. As a result, it has been

successfully employed in a variety of real-life optimization problems.

4.2.1 DESCRIPTION OF GA

GA is a part of evolutionary computing, which is a rapidly growing area of artificial

intelligence. Genetic algorithms are inspired by Darwin's theory about evolution. In

simple words, solution to a problem solved by genetic algorithms is evolved. Idea of

evolutionary computing was introduced in the 1960s by I. Rechenberg. He introduced

"evolution strategies" (evolutionsstrategie in original German). His idea was then

43

developed by other researchers. GA was invented by John Holland and developed by him

and his students and colleagues [15].

The GA is started with a set of solutions (represented by chromosomes) called population.

Solutions from one population are taken and used to form a new population. This is

motivated by a hope, that the new population will be better than the old one. New

solutions (offspring) are selected according to their fitness (the more suitable they are the

more chances they have to reproduce). This evolution is repeated until some condition

(for example the number of populations or improvement of the solution) is satisfied. In

general, there are three genetic operators (processes): selection, reproduction (crossover),

and mutation, which make the transition from one population generation to the next. The

process is shown in Figure 4.2. The microbiological and model terminology are explained

in Table 4.1.

Old Population

Fitness Evaluation

Selection

New Population

Mutation

Figure 4.2 block diagram of basic GA cycle
44

Genetic Term

Chromosomes

genome

Crossover

Mutation

Offspring

Microbiological Definition

Threadlike strand found in the nucleus

made up of a series of genes; carries

genetic information, DNA

Genetic makeup of an organism

Mating of two organisms where genetic

information is exchanged

A change which, when transmitted to

offspring, gives rise to heritable

variations

Results of a cross; "new population"

generated by reproduction

Model Implication

Population of solutions

Solution set

Strata from different

solutions will be exchanged

to produce new ones

Genes within solutions are

randomly changed

New population of solutions

(children)

Table 4.1 GA microbiological and model terminology

From above we can see, the basic GA is very general. There are many things that can be

implemented differently in various problems. The first question is how to create

chromosomes, and what type of encoding we choose. Crossover and mutation are two

basic operators of GA for this. The next question is how to select parents for crossover.

45

This can be done in many ways, but the main idea is to select better parents with the hope

that the better parents will produce better offspring. Note that making new population

only with new offspring can cause lost of the best chromosome from the previous

population.

4.2.2 CHROMOSOME AND GENOME

All living organisms consist of cells. In each cell there is a same set of chromosomes.

Chromosomes are strings of DNA and serve as a model for the whole organism. Here a

chromosome corresponds to an edge-cover, i.e. a path that contains each edge in G at

least once. Each chromosome can be randomly generated to make up an initial population

of solutions.

The complete set of genetic material (all chromosomes) is called genome. In the

experiment, we defined 50 chromosomes as the genome. Each chromosome represents an

edge-cover.

4.2.3 ENCODING

The chromosome should in some way contain information about the solution it represents.

The most common way of encoding is a binary string. The chromosome may look like

this:

Chromosome 1

Chromosome2

1101100100110110

1101111000011110

46

Each chromosome has one binary string. Each bit in this string can represent some

characteristic of the solution. There are many other ways of encoding. This depends

mainly on the problem being considered. For example, one can encode directly integer or

real numbers and sometimes it is useful to encode some permutations.

Binary encoding gives many possible chromosomes even with a small number of alleles.

On the other hand, this encoding is often not natural for many problems and sometimes

corrections must be made after crossover and/or mutation. Here we use permutation

encoding. It can be easily used in ordering problems, such as CPP, RPP, travelling

salesman problem, and task ordering problem. With permutation encoding, every

chromosome is a string of numbers, which represents a number in a sequence. Take CPP

as an example. Each chromosome can express a sequence of transitions, where each

number represents an edge.

Chromosome 1

Chromosome 2

153264798

856723149

4.2.4 CROSSOVER

The crossover operator produces two new offspring from two parent strings, by copying

selected bits from each parent. The bit at position / in each offspring is copied from the

bit at position /" in one of the two parents. Typically, crossover has three types:

single-point crossover, two-point crossover and uniform crossover. Here we apply

single-point crossover.

47

Single-point crossover has one crossover point to be selected. Till this point, the

permutation is copied from the first parent. Then the second parent is scanned and if a

number is not yet in the offspring it is added. Note that there are many ways to produce

the rest after the crossover point. For example, (1 2 3 4 5 6 7 8 9)+ (4 5 3 6 8 9 7 2 1) =

(1 2 3 4 5 6 8 9 7)

In our context, we have used a rule for crossover as following. Here start(o) denotes the

starting vertex of the first transition of c, and end(o) denotes the last vertex of the last

transition of a.

• Let G = <V, E> be a digraph.

• Let C denote a set of edge-covers of G, and ci , C2 eC.

• Let Ci = p oi q, where p, oi and <; are paths.

• Letpatha2 ^C2.

• If start(ai) = starts), end(ci) = end(a2).

• For any edge e eedges (02) - edges (01), e ep or e eq, |a2| < |oi|.

• Then c'=p 02 q e nextgen (C).

Here next_gen(C) denotes the set of the next population of C. And back denotes the input

of clicking the back button. Note that function edge() does not contain any back edge.

This rule is illustrated in Figure 4.3.

48

(Cl)

Vl

o2

V2
(C2)

(C)

Figure 4.3 crossover rule

4.2.5 MUTATION

In addition to crossover operators that produce an offspring by combining parts of two

parents, a second type of operator produces offspring from a single parent. In particular,

the mutation operator produces small random changes to the bit string by choosing a

single bit randomly, and changing its value. Mutation is often performed after crossover.

Crossover and mutation are two basic operators of GA. Performance of GA heavily

depends on them. In order to reduce the test sequence length more significantly, we make

a mutation rule as following:

• Let G = <V, E> be a digraph.

• Let C denote a set of edge-covers of G.

• Suppose that c = p ai a2,... ak<; £C, where p and <;are paths, ai a2, ••• ak G E.

49

• If start (aO = end (ak), cookie (ai) = false, and for all a; (2 <i <k)ai Gporai £g.

• Then c'=p ai back q £ nextgen(C).

This rule is illustrated in Figure 4.4:

a2, ...ak £ porq

Figure 4.4 mutation rule

The above crossover and mutation rules lead to two phenomena, which are the stagnation

(pre-mature) and convergence. The stagnation is due to the random choice of results in a

sub-optimal way. Both the Mutation Rule and the Crossover Rule allow for various ways

to derive the next generation, and as a consequence, may lead to stagnation. The

convergence is due to the use of the back operation in mutation rule and requiring that the

substituted subpath be shorter than the original one in crossover rule. For example, given

an edge-cover c £ C, there may exist various possible choices to derive c' of the next

generation according to the Mutation Rule. Some of these choices can be applied one

after another without conflict while some choices will prevent other derivations.

back

50

G"

Figure 4.5 (a) no mutually exclusion

Choice 1 Choice 2

Figure 4.5 (b) mutually exclusion

Figure 4.5 shows the pre-mature and convergence phenomena. In figure 4.5 (a), G = <V,

E> is a digraph, p,, p2, p3, p4, ps, P6, and p7 are paths, ei, e2, and e3 e E. p2, p3, ps and p6

have appeared before, so we can use the mutation rule to add back edge in G, and then

51

the graph G changes to G'. In graph G', the two back edge backi and back2 do not have

the cross point, so we say backi and back2 are not mutually exclusive. However, in figure

4.5 (b), G = <V, E> is a digraph, pi, p2, P3, p4 and ps are paths, ei and &2 e E. p2, p3, p4

and e2 have appeared before, so we can use the mutation rule to add back edge in G, and

then the graph G can be changed into two different graphs. When choice 2 was selected

choice 1 reduces the length of the test sequence in a better way. Thus the next generation

does not provide the best solution for reducing the length of the test sequence.

4.2.6 FITNESS FUNCTION

The fitness function defines the criterion for ranking potential hypotheses and for

probabilistically selecting them for inclusion in the next generation population. A fitness

function is a particular type of objective function that quantifies the optimality of a

solution (that is, a chromosome) in a GA.

Given the initial genome G= fci,..., c„}, we want to find a feasible subset cmm^c of

N

minimal cardinality in our performance. So the fitness function is f = ^ £ v , where cy
7=1

is the value of they-th generation corresponding to the f-th individual.

4.2.7 THE ALGORITHM

This Genetic Algorithm can be summarized as follows:

1). The Main GA Algorithm

1: Input: G = (V, E), AcceptableFactor, MaxGeneration;

52

2: Output: a set of test sequences and tempGen

3: Algorithm:

4: currentGen := (p

5: tempGen := <p

6: generation := 0;

7: currentGen := InitializePopulation(G);

8: bestfit := minLength(cwrrerc/Gen);

9: While (generation < MaxGeneration and bestfit > AcceptableFactor * |E|)

10: generation := generation + 1;

11: tempGen := crossover(mutation(cw/Te77fGen));

12: currentGen := Select(tempGen, currentGen);

13: bestfit := minLength(cwrre«/Gen);

14: End while

15: Output bestfit;

2). Population Initialization Algorithm

We use the population initialization algorithm to generate the first generation of

chromosomes. Each chromosome is an edge-cover of the graph representing the

application.

1: Input: G = <V,E>, n.

2: Output: IniXGen = {ci, ..., c„}

3: Algorithm:

4: initially InitGen = cp;

53

5: for each k(l ^ k ^ n) do

6: ck= cp;

7: mark all edges in E unvisited;

8: Let current be a randomly selected node from V;

9: while (there exists an unvisited edge e)

10: apply breadth-first-search to find a shortest path p from current to e = («;, nj);

11: append(c*, p)\ II since p has an unvisited edge e, we append it to Q

12: mark e as visited; // after appending e to c* we mark e as visited.

13: current :=nj;

14: end while

15: add(/«//Gen, Ck>;

16: end for

17: Output InitGen;

Since BFS takes 0(|E| + |V|) and there are |E| edges to traverse, Population Initialization

Algorithm takes 0(|E|(|E| + |V|)).

3). Crossover Algorithm

We use crossover algorithm to combine two chromosomes (parents) to produce a new

chromosome (offspring).

1: Input: currentGen = {ci,..., c„}

2: Output: nextGen = {c'i, ..., c'„}

3: Algorithm:

54

4: mark all chromosomes in currentGen unselected; flag =false;

5: while (there exists an unselected chromosome Cj)

6: randomly select an unselected chromosomes CJ;

7: if (no unselected chromosome is left (CJ = <p))

8: then randomly select a chromosome Cj who has been selected before and flag =

true;

9: randomly select a subpath o\ (|oi| >2) of Cj s.t. Cj = piOigi and first (ot) ^ back;

10: select a subpath o2 of Cj s.t start (oi) = start(o2);

11: if (end (oi) = end (c2) & for any edge e e edges (oO - edges (02), e ep or e e<;

&|o2 |<|a,|)

12: c'j:=po2<;;

13: else C'J:=CJ;

14: end if

15: add(«ex?Gen,c'i);

16: if(flag =false)

17: then randomly select a subpath 03 (|a3| > 2) of Cj s.t Cj = p203?2 & first (03) •£

back;

18: select a subpath 04 of Cj s.t start (03) = start (04);

19: if (end (03) = end (04) & for any edge e e edges (03) - edges (04), e ep2 or e

G ? 2 & N < | O 3 |)

20: c'j :=p o4 <;;

21: else c'j :=CJ;

22: end if

55

23: add(«e^Gen,c'j);

24: mark Cj and Cj as selected;

25: end while

26: Output nextGen

Suppose the diameter of G is d. Since the length of each Cj is less than d|E|, Crossover

Algorithm takes 0(d|E|).

4). Mutation Algorithm

In the mutation algorithm we make use of the back button of the browser to reduce the

length of the chromosomes.

1: Input: currentGen = {ci, ..., c„}

2: Output: nextGen

3: Algorithm:

4: for each chromosome Ci e currentGen do

5: if (Cjhas a subpath p = ai &2, ...ak(k>2), s.t c, = pp<;, that

start (ai) = end (ak) & for all a* (2 < i < k) cookie (aj) = false & a; ep or a; eq)

6: then c'=p ai back <;;

7: &dd(nextGen,c');

8: else add(nextGen, Cj);

9: end if

10: end for

56

11: Output nextGen;

Suppose the diameter of G is d. Since the length of each Cj is less than d\E\, Mutation

Algorithm takes 0(d\E\) in the worst case wherep = c/.

From the algorithm, the time complexity of the presented GA is 0(2|£|((i+|p|+|<7|)).

57

CHAPTER V

METHOD EVALUATION

We have conducted experiments to evaluate the performance of our proposed method in

terms of the savings we gain on the test sequence length. This is in comparison to the

direct application of CPP on test sequence generation. All experiments are performed on

a PC with 1.66 GHz CPU. Both methods are implemented in Java and run under Java

Runtime Environment 1.6.0 with 256 Megabytes maximum memory assigned for Java

Virtual Machine.

Let the generation (denoted by g) of our method be 50. We compare the performance of

the two methods according to the following factors of digraphs G-.

• the number of back edges (denoted by b).

• the number of edges in G (denoted by q), also called the size of G.

• the diameter of G (denoted by d), i.e., the greatest value in the

set {efts tan ce(v,,v;) | v/,v/. e V}, where distanceiv^Vj) is the length of a shortest path

from v, to v..

• the ratio of cookie-affecting transitions in G, denoted by r. A transition is

cooking-affecting if it has cookie code 1. We have r = (No. of cookie-affecting

transitions)A/ze.

Note that the stack variable history in our algorithm is different from the history stack of

the browser. Here, it only records the vertices that have been visited by traversing a

58

sequence of transitions with cookie code 0. That is, the execution of these transitions will

not change the cookie values of the web application. If a transition with cookie code 1 is

traversed, the stack variable history will be emptied before pushing a new vertex into it.

In this way, the proper use of the back button is guaranteed and a desired web page can

be visited again by clicking the back button.

The saving is calculated as diff/CPPlength *100%, where diff is the difference between

the length of the test sequence derived by using CPP method and that of ours, and

CPPlength is the length of the test sequence derived by using CPP method.

5.1 THE NUMBER OF IBACKI

In this subsection, we analyze how the change of the number of back edges affects the

lengths of the generated test sequences in our methods. Let the number of vertices in G

be 100 and let q = 160, d = 25, r - 5 and g = 50. We change the number of back edges b.

For each combination of these values, we have randomly selected 100 instances and

calculated the average length of the generated test sequences. The result is shown in

Figure 5.1.

59

—

1 ,. .

1
1

1

_ i
j

1
i

Z11
1

1 '

— —
• Our method
• CPP
.

1

j . _

•_

j

*

. \

— —,
—

• •

500

450

2 400

| 350

§"300

B 250

*» 200

M 150

J 100

50

0
50% 80% 100%

Ratio of the number of back edges over a!! edges

Figure 5.1 an illustration of the changes of the lengths of the test sequences according to

the number of back edges of G

According to this figure, we have the following observations:

O.l .1 Our method considerably reduces the lengths of the test sequences compared to

CPP, leading to 39%-54% of savings;

5.2 SIZE OF G

Now we analyze how the change of the size of G affects the lengths of the generated test

sequences for both methods. Let the number of vertices in G be 100 and let d = 25, r = 5

and g = 50. We increase the value of size q. For each combination of these values, we

have randomly selected 100 instances and calculated the average length of the generated

test sequences. The result is shown in Figure 5.2.

60

2

I
i i.jiihir'IBF^v«'*'***''

»-»»*-»-»•-•

550
500
450
400
350
300
250
200
150
100
50
0

180 184 188 192 196 200 204 208 212 216 220

Size

Figure 5.2 (a) the changes of the lengths of the test sequences according to the increase of

the size of G

240
220
200
180

~ 160
^ 140
g 120
H 100

IPHPi

* »

180 184 188 192 196 200 204 208 212 216 220

Size

Figure 5.2 (b) the time changes with the lengths of the test sequences according to the

increase of the size of G

61

According to this figure, we have the following observations:

0.2.1 Our method considerably reduces the lengths of the test sequences compared to

CPP, leading to 34%-42% of savings;

0.2.2 With the increase of the size of G the increasing rate of the lengths of the generated

test sequences according to our method is similar to that of CPP.

0.2.3 Our method needs more computational time than CPP.

With the increase of the size of G the number of edges increases. As a consequence, the

corresponding path of a desired test sequence needs to traverse more edges, yielding

longer test sequences in general for both methods.

The generations of the base population of our methods is 50, while the CPP is just run

once. Accordingly, the corresponding time by our method is greater than that of CPP.

5.3 DIAMETER OF G

In this subsection, we analyze how the increase of the diameter of G affects the length of

the generated test sequence for both methods. Let the number of vertices in Gbe 100, and

let q = 160, r = 5, and g = 50. We increase the value of diameter d. Again, for each

combination of these values, we have randomly selected 100 instances and calculated the

average length of the generated test sequences. The experimental results are shown in

Figure 5.3.

62

!

600

500

400

300

200

100

0

• «-• •-»'•"•-•-•-•«« a * «-•«••-«-•

20 22 24 26 28 30 32 34 36 38 40
Diameter

Fiugre 5.3 (a) the changes of the lengths of the test sequences according to the increase of

the diameter of G

20 22 24 26 28 30 32 34 36 38 40
Diameter

Fiugre 5.3 (b) the time changes of the lengths with the test sequences according to the

increase of the diameter of G

63

According to this figure, we have the following observations:

0.3.1 Our method considerably reduces the lengths of the test sequences compared to

CPP, leading to 39% - 54% of savings;

0.3.2 With the increase of the diameter ofG, the increasing rate of the lengths of test

sequences generated by CPP is higher than that of ours.

0.3.3 Our method needs more computational time than CPP.

5.4 RATIO OF COOKIE-AFFECTING TRANSITIONS IN G

Here we present our experimental results on how the change of the ratio of

cookie-affecting transitions in G affects the lengths of the generated test sequences. Let

the number of states in G be 100, q = 160, d = 25, and g =50. We increase the value of

the ratio of privilege transitions r. For each combination of these values, we have

randomly selected 100 instances and calculated the average length of the generated test

sequences. The result is shown in Figure 5.4.

M
a
-1

550

500

450

400

350

300

250

200

150

100

A 4^v^****^"-*±*
#"• *̂ w*

—mmmm^M9m
mm

n«»«*
i i i i i i i i i

-•-CPP
HB- Our method

i i i

3 5 7 9 11 13 15 17 19 21 23 25 27

Ratio of privilege transtions

64

Fiugre 5. 4 (a) the change of length of the test sequences according to the ratio of the

privilege transitions

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Ratio of privilege transtions

Fiugre 5. 4 (b) the time changes according to the ratio of the privilege transitions

According to this figure, we have the following observation.

0.4.1 Our method reduces the lengths of the test sequences, leading to 34%-42% of

savings compared to the CPP.

0.4.2 With the increase of the ratio of the cookie-affecting transitions, the increasing rate

of the lengths of the generated test sequences according to our method is similar to that of

CPP.

With the increase of the ratio of the cookie-affecting transitions, there are more

cookie-affecting transitions, executing which the cookie values are changed. Our test
65

sequence generation algorithm empties the stack variable history to guarantee the proper

use of the back button whenever a cookie-affecting transition is about to be traversed. It

follows that there are fewer vertexes in our stack variable history to be used. As a result,

the length of the generated test sequence by our method is increased. However, the CPP

method is not affected by the content of the history stack, and thus the length of test

sequences generated by the CPP method does not change too much in most cases. This

conforms to our observation O.4.2.

5.5 SPECIAL CASE

In this subsection, we consider some special cases. Firstly, we analyze how the increase

in the size of G affects the length of the generated test sequence for both methods when

the ratio of cookie-affecting transitions in Gis 0. Let the number of vertices in G be 100,

and let d = 25, r = 0, and g = 50. We increase the value of size q. For each combination of

these values, we have randomly selected 100 instances and calculated the average length

of the generated test sequences. The result is shown in Figure 5.5.1.

66

s
u
§
s
sr on

•s
5
!*-
o

• S
• w

8f 01

-J

350

330

310

290

270

250

230

710

190

170

-— ; * = = # = * - * ^ * = * r ^ —

-•-CPP

•1 Network flow algorithm -

-A- Our method

±±j&4t4HB*

i i i i i i i i i 150

160 164 168 172 176 180 184 188 192 196 200

Size

Figure 5.5.1 a special case of the changes of the lengths of the test sequences according to

the increase of the size of G

0.5.1 Our method considerably reduces the lengths of the test sequences leading to

36%-46% of savings compared to CPP, and 0%-2% savings compared to the network

flow algorithm.

Then we analyze how the increase of the diameter of G affects the length of the generated

test sequence for both methods when the ratio of cookie-affecting transitions in G is 0.

Let the number of vertices in G be 100, and let q = 160, r = 0, and g = 50. We increase the

value of diameter q. For each combination of these values, we have randomly selected

100 instances and calculated the average length of the generated test sequences. The

result is shown in Figure 5.5.2.

67

100

-•-CPP

••••• Network flow algorithm

-Jr Our method

!

§ • » •
50

0

- * * « - • • » • • - • - HBHHT

22 24 26 28 30 32 34 36 38 40 42

Diameter

Figure 5.5.2 a special case of the changes of the lengths of the test sequences according to

the increase of the diameter of G

0.5.2 Our method considerably reduces the lengths of the test sequences leading to 44% -

68% of savings compared to CPP, and 0%-4% savings compared to the network flow

algorithm.

68

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Web technologies have posed new challenges in our continued endeavor for further

exploring effective and efficient testing techniques. For web applications, the user's

interface comes not only from the one provided by the web applications themselves, but

also from that of the web browsers. Making use of this feature, we have proposed a

method for test sequence generation specially tailored for testing web applications.

The optimization problem of finding a minimal-length test sequence whose

corresponding path traverses each transition in a given graph G at least once is

traditionally reduced to CPP on G. In the literature, the time complexity of the most

efficient algorithms for CPP is 0(p2q3 \ogp). With our proposed method, this time

complexity is 0(|£|(<5?+|p|+|̂ |)). Our experimental result shows significant reduction in the

length of the generated test sequences.

Although a test sequence generated by the CPP satisfying the transition coverage

criterion can accomplish our test purpose, such a test sequence could cause

redundant-testing phenomenon. A static or server page may be contained in two or more

web frame pages and represented by different states. Thus, navigation from this page may

be represented by two or more different transitions in the corresponding directed graph.

For such transitions representing a same navigation, we assume that the correct

implementation of one of them implies that of all of others. However, the test sequence

69

based on the CPP requires that we check all of such transitions and therefore introduces

redundancy into the constructed test sequence. How to deal with this problem remains an

interesting issue.

Some web browsers, such as Internet Explorer, now provide enhanced history browsing

function where any client page whose URL is currently stored in the history stack can be

selected to visit. It remains interesting to study how to use this enhanced function to

further reduce the test sequence length.

70

APPENDICES

APPENDIX A

71

72

APPENDIX B

REFERENCES

[1] A. V. Aho, A. Dahbura, D. Lee, and M. Uyar. An optimization technique for protocol

conformance test generation based on UIO sequences and Rural Chinese Postman Tours.

IEEE Trans Comm., 39(11): 1604-1615, Nov. 1991.

[2] A. Andrews, J. Offutt, and R. Alexander. Testing web applications by modeling with

FSMs. Software systems and Modeling, 4(3): 326-345, 2005.

[3] H. V. Beek and S. Mauw, "Automatic conformance testing of internet applications",

In Proc. of the 3rd International Workshop on Formal Approaches to Testing of Software,

Lecture Notes in Computer Science, vol. 2931, pages 205-222, 2004.

[4] W. K. Chang, S. K. Hon, and C. Chu. A systematic framework for evaluating

hyperlink validity in web environments. In Proc. of 3rd International Conference on

Quality Software 2003, pages 178-185, 2003.

[5] J. Chen and S.Subramaniam. Specification-based testing for GUI-based applications.

Software Quality Journal, 10(3): 205-224, 2002.

[6] J. Chen and X. Zhao. Formal models for web navigations with session control and

browser cache. In Proc. of International Coference on Formal Engineering Methods.

LNCS 3235, pages 46-60. Springer-Verlag, 2004.

[7] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans.

Software Eng., SE-4(3): 178-187, May 1987.

[8] L. Duan, Y. Wang and J. Chen. Enhanced traverse of web pages. In Proc. of the 10th

IEEE High Assurance Systems Engineering Symposium (HASE 2007), 2007.

[9] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985.

73

[10] A. Gill, Introduction to the theory of Finite-State Machines, Mc Graw-Hill Book

Company,Inc, 1962.

[11] G. Gonenc. A method for the design of fault detection experiments. IEEE Trans.

Computers, 19(6):551-558, June 1970.

[12] P. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. "Modeling Web

Interactions". In European Symposium on Programming, 2003.

[13] Harold W. Thimbleby. The directed Chinese Postman Problem. Journal of Software

Practice and Experience. 33(11) pages: 1081-1096. September 2003.

[14] F. C. Hennie. Fault detecting experiments for sequential circuits. In Proc. of5lhAnn.

Symp. Switching Circuit Theory and Logical Design, pages 95-110, 1964.

[15] J. Holland. Adaption in Natural and Artificial Systems. MIT Press. 1975.

[16] D. C. Kung, C. Liu and P. Hsia, "An Object-Oriented Web Test Model for Testing

Web Applications", In The 1st Asia-Pacific Conference on Quality Software (APAQS

2000), pages 111-120,2000.

[17] S. C. Lee and J. Offutt. Generating test cases for XML-based web component

interactions using mutation analysis. In Proc. of the 12th IEEE International Synposium

on Software Reliability Engineering (ISSRE'01), Pages 200-209, 2001.

[18] C. Liu, D. Kung, P. Hsia, and C. Hsu. Structural testing of web applications. In Proc.

ll' IEEE International Symposium on Software Reliability. Pages 84-96, 2000.

[19] G. D. Lucca, A. Fasolino, f. Faralli, and U. de Carlini. Testing web application. In

Proc. of IEEE international Conference On software Maintenance (ICSM' 02), pages

310-319,2002.

74

[20] G. D. Lucca and M. D. Penta, "Considering Browser Interaction in Web Application

Testing", In Proceedings of the 5th IEEE International Workshop on Web Site

Evolution(WSE'03), 2003.

[21] A. Memon, M. Pollack, and M. Soffa. Hierarchical GUI test case generation using

automated planning. IEEE Trans. Software Eng., 27(2): 144-155, 2001.

[22] R. E. Miller and S. Paul. On the generation of minimal length conformance tests for

communications protocols. XEEE/ACMTransactions on Networking, 1(1): 116-129, 1993.

[23] S. Nation and M. Tsunoyama. Fault detection for sequential machines by transition

tours. In Proc. of 11th. IEEE Fult Tolerant Computing Symposium, pages 238-243, 1981.

[24] T. Ostrand, A. Anodide, H Foster, and T. Goradia. A visual test development

environment for GUI systems. In Proc. of ACM SIGSOFT Internation Symposium on

Softeare Testing and Analysis. Volume 23, pages 82-92, 1998.

[25] Y. Qi, D. Kung, and W. E. Wong. An agent-based data-flow testing approach for web

applications. Journal of Information and Software Technology, 48(12):1159-1171, 2006.

[26] F. Ricca and P. Tonella, "Building a Tool for the Analysis and Testing of Web

Applications: Problems and Solutions", In Proc. of Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2001), Lecture Notes in Computer Science,

vol. 2031, pages 373-388, 2001.

[27] F. Ricca and P. Tonella, "Testing Processes of Web Applications", Annals of

Software Engineering, vol. 14, pages 93-114, 2002.

[28] K. K. Sabnani and A. Dahbura. A protocol test generation procedure. Computer

Networks and ISDN Systems, 4(15):285-297, 1988.

75

[29] E. D. Sciascio, F. M. Donini, M. Mongiello, G. Piscitelli, "AnWeb: a System for

Automatic Support to Web Application Verification", In Proc. of the 14th International

Conference on Software Engineering and Knowledge Engineering, 2002.

[30] E. D. Sciascio, F. M. Donini, M. Mongiello, G. Piscitelli, "Web Applications Design

and Maintenance Using Symbolic Model Checking", In Proc. of IEEE the 7th European

Conference on Software Maintenance and Reengineering (CSMR'03), 2003.

[31] S. Skiena. The Algorithm Design Manual. Springer Verlag. 1998.

[32] R.E. Tarjan. Data Structures and network algorithm. Philadelphia, PA: Society for

Industrial and Applied Mathematics, 1983.

[33] H. Ural, X. Wu, and F. Zhang. On minimizing the lengths of checking sequences.

IEEE Transactions on Computers, 46(l):93-99, 1997.

[34] L. White and H. Almezen. Generating test cases for GUI responsibilities using

complete interaction sequences. In Proc. of 11th International Symposium on Software

Reliability Engineering, pages 110-121, 2000.

[35] W. Xu, J. Offutt, and J. Luo. Testing web services by xml perturbation. In Proc. of

IEEE International Symposium on Software Reliability Engineering, pages 257-266,

2005.

[36] H. Zhu, P. A. V. Hall, and J.H.R. May. Software unit test coverage and adequacy.

ACM Computing Surveys, 29:366-427, 1997.

76

VITA AUCTORIS

Name: Li, Man

Place of Birth: Shangqiu, China

Year of Birth: 1983

Education: University of Windsor, Windsor, Ontario, Canada

2006-2009 M.Sc. in Computer Science

Zhengzhou University of Light Industry, Zhengzhou, China

2001-2005 B.A.Sc. in Computer Science and Engineering

Working Experience: Software Developer and Quality Assurance, Wuxi Huayang

Software Co., Ltd. Wuxi, 2005-2006.

77

	Improved web page traverse using genetic algorithm
	Recommended Citation

	ProQuest Dissertations

