
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2010 

A Nano-Scale Chemical and Structural Characterization of A Nano-Scale Chemical and Structural Characterization of 

Chinook Salmon (Oncorhynchus tshawytscha) Otoliths Using a Chinook Salmon (Oncorhynchus tshawytscha) Otoliths Using a 

FIB and HRTEM FIB and HRTEM 

Desirée E. Chevalier 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Chevalier, Desirée E., "A Nano-Scale Chemical and Structural Characterization of Chinook Salmon 
(Oncorhynchus tshawytscha) Otoliths Using a FIB and HRTEM" (2010). Electronic Theses and 
Dissertations. 8000. 
https://scholar.uwindsor.ca/etd/8000 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarship at UWindsor

https://core.ac.uk/display/275770947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8000?utm_source=scholar.uwindsor.ca%2Fetd%2F8000&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


A Nano-Scale Chemical and Structural Characterization of Chinook Salmon 
(Oncorhynchus tshawytscha) Otoliths Using a FIB and HRTEM 

by 

Desiree E. Chevalier 

A Thesis 
Submitted to the Faculty of Graduate Studies 

Through the Great Lakes Institute for Environmental Research 
In Partial Fulfillment of the Requirements for 

The Degree of Master of Science at the 
University of Windsor 

Windsor, Ontario, Canada 

2010 

© 2010 Desiree Chevalier 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

Bibliothgque et 
Archives Canada 

Direction du 
Patrimoine de l'6dition 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-70587-2 
Our file Notre r6f6rence 
ISBN: 978-0-494-70587-2 

NOTICE: AVIS: 

The author has granted a non-
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriety du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondares ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1 *1 

Canada 



ABSTRACT 

We used a focused ion beam (FIB) to create thin sections from the 

post-hatch and core regions of Chinook salmon (Oncorhynchus tshawytscha) 
c 

otoliths. The nano-scale chemistry and structure of these regions was 

characterized in thin section using scanning electron microscopy (SEM) in 

conjunction with cathodoluminescence (CL) and high resolution transmission 

electron microscopy (HRTEM). The results constrained the relative 

distribution of several elements; silicon-enriched nodules were found in the 

post-hatch otolith, and manganese, an element known to be enriched in the 

greater otolith core, was most concentrated at the center of primordia and at 

the primordia-core interfaces. Calcium was less abundant and carbon was 

observed in greater relative concentrations in the primordia relative to the 

surrounding core. HRTEM revealed a lack of crystallinity in the core relative to 

the post-hatch otolith. This is the first study to successfully thin-section an 

otolith using a FIB and characterize the thin section using HRTEM. 
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CHAPTER 1 

Introduction 
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1.1 THE PROBLEM 

The otolith has quickly become regarded as one of the most important 

tools in modern fisheries research. Providing a record of age and 

environmental exposure throughout life in teleost fish, this information can 

reveal life history events and be used to discern stock populations. The otolith 

also possesses information regarding the embryonic life offish (i.e., the otolith 

core). Formed in some species just a few days after fertilization, the otolith 

core is the pre-hatch portion of the otolith and contains valuable chemical 

information because it incorporates elements from both the natal habitat site 

as well as maternal associations via the yolk sac. Understanding core 

chemistry in particular is important for conservation management and 

provides insight into the mechanisms of early otolith formation. 

Although high resolution microscopy methods, such as transmission 

electron microscopy (TEM), are commonly used for nano-scale chemical and 

structural characterization in minerals, these high resolution methods require 

the creation of thin sections only a few hundred nanometers thickness. 

Biominerals, such as otoliths, do not possess the same structural integrity as 

most minerals due to the presence of organics in the structure, which makes 

the creation of such thin sections difficult or impossible. Physical methods of 

creating thin sections cannot produce sections of appropriate thickness due to 

fracturing during the toming process. The only prior alternative to the creation 

of a physically-milled thin section was to follow a complex methodology of 
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sample preparation that often involved the loss of mineral or biological 

content from the otolith through grinding or demineralization of the sample 

and subsequent chemical treatment. 

The use of a focused ion beam (FIB) for production of thin sections 

was originally developed in materials science but has recently become 

popular in the creation of thin sections in biominerals as well. Despite the 

presence of organic content in these biominerals, the use of a FIB has 

enabled users to mill thin sections without damaging the sample and without 

complex sample preparation. Additionally, this method does not result the de-

mineralization of the sample or loss of organic content. A FIB is also used 

commonly in conjunction with scanning electron microscopy (SEM), which 

uses an electron beam to provide images immediately before or after thin 

section milling using a FIB. 

The goal of this study is to develop a method for creating thin sections 

from both the core and the post-hatch regions of Chinook salmon 

(Oncorhynchus tshawytscha) otoliths using a FIB in conjunction with SEM 

and to provide the first nano-scale chemical and structural characterization of 

FIB-milled thin sections using high resolution transmission electron 

microscopy (HRTEM). 
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1.2 BACKGROUND 

1.2-1 The function and composition of otoliths 

Otoconia are biominerals found in the inner ear of vertebrates and are 

necessary for hearing and balance (HUGHES et al., 2 0 0 4 ) . Composed largely 

(~ 97%) of calcium carbonate (CaC03) in an organic matrix of glycoprotiens 

and proteoglycans (~ 0.2 to 10%), the otoconia form during the embryonic 

stage and are maintained throughout life (BORELLI et al., 2 0 0 3 ; DEGENS et al., 

1 9 6 9 ; HUGHES e t a l . , 2 0 0 4 ; MURAYAMA et a l . , 2 0 0 0 ; MURAYAMA e t a l . , 2 0 0 2 ) . In 

teleost (bony) fish, the otoconia are termed otoliths. Although otoliths have a 

function and composition similar to the otoconia of other vertebrates, they 

have a different structure and grow throughout life by forming daily layers 

accreted from the endolymph fluid of the inner ear (BORELLI et al., 2 0 0 3 ; 

HUGHES e t a l . , 2 0 0 4 ) . 

1.2-2 The teleost otolith: Use in elemental "fingerprinting" 

The chemistry of the endolymph fluid has been shown to be influenced 

by the ambient environment. As water passes through the gills of the fish to 

provide oxygen to the blood, trace elements, along with calcium, carbonate 

and bicarbonate ions and dissolved inorganic carbon are incorporated into the 

blood and then into the endolymph fluid (CAMPANA, 1 9 9 9 ) . As a result, an 

individual otolith will possess a trace element "fingerprint" (< 1% of whole 

otolith) that has been considered reflective of the life history of the individual 
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(CAMPANA et al., 2000). The presence of this trace element signature, along 

with the fact that the inorganic components of teleost otoliths (unlike human 

otoconia) are thought not to be subject to re-absorption after incorporation, 

makes otoliths a valuable and commonly-used tool in fisheries science 

(CAMPANA, 1 9 9 9 ) . 

Otolith micro-chemical assays using LA-ICP-MS (laser ablation 

inductively coupled plasma mass spectrometry) have applications for stock 

delineation of fish as well as for the assessment of population migration, 

structure and mixing, and life-history strategies (CAMPANA, 1 9 9 9 ; THRESHER, 

1999 ) . Additionally, the microchemistry of the otolith core, which is the portion 

of the otolith that forms during the embryonic stage, has become the focus of 

several recent studies because its chemistry is considered reflective of natal 

habitats and maternal signatures in individuals (BROPHY et al., 2 0 0 4 ; CAMPANA 

e t a l . , 2 0 0 0 ; MILLER a n d KENT, 2 0 0 9 ; SECOR e t al . , 2 0 0 1 ; VOLK e t a l . , 2 0 0 0 ; 

WARNER etal., 2 0 0 5 ) . 

1.2-3 The otolith core: microchemistry and microstructure 

Typically less than 20 pm in diameter, the core houses the 

primordium, which is the site of initial nucleation in the otolith (0.5 to 1 pm 

diameter) (KALISH et al., 1995 ) . In some fish species, such as salmonids, 

there are multiple primordia (which may be separate or fused), whereas in 

other species, only one is present (SOKOLOWSKI, 1986) . Chemical assays of 

the otolith core can be challenging due to its small size and while LA-ICP-MS 
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has a resolution capable of differentiating the composition of the otolith core 

from the remainder of the otolith, it cannot provide a nano-scale chemical 

characterization of the core. 

Studies by several authors have provided evidence that the core 

possesses a greater concentration of organic content, an amorphous 

structure, as well as a significantly higher concentration of the element 

manganese (Mn) compared to the post-hatch otolith (BEIER and ANKEN, 2 0 0 6 ; 

BROPHY e t a l . , 2 0 0 4 ; CARLSTROM, 1 9 6 3 ; DEGENS e t al. , 1 9 6 9 ; FREEMAN e t a l . , 

2 0 0 8 ; JOLIVET e t a l . , 2 0 0 8 ; MELANCON e t al . , 2 0 0 8 ; MURAYAMA e t al . , 2 0 0 4 ; 

POUGET e t a l . , 2 0 0 9 ; RUTTENBERG et a l . , 2 0 0 5 ; SOKOLOWSKI, 1986 ; ZHANG a n d 

RUNHAM, 1992 ) . The determinations of element concentrations using L A - I C P -

MS typically assume that the otolith core comprises exclusively inorganic 

material (i.e., 100% aragonite). Therefore, it is necessary to fully understand 

otolith core composition to ensure: 1. the accuracy of elemental data obtained 

using LA-ICP-MS and 2. the validity of interpretations regarding the early life 

history offish that are inferred from these data. 

There are several reasons why more organic content might be 

observed in the otolith core compared with the region of the otolith formed 

later after hatch. Degens et al., (1969), presented the first research on otolith 

proteins. Their isolation of a 150,000 molecular weight (MW) protein, which 

they termed otolin, led them to the conclusion that proteins found in the 

organic matrix of the otolith (which comprises about ~ 0.2 to 10% of the 

otolith) were necessary for the nucleation of the otolith primordia (DEGENS et 
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al., 1969 ) . They presented a theory that protein was associated with 

mineralization because it contained a large proportion of oxygen-rich amino 

acids that were bound to calcium ions (DEGENS et al., 1969 ) . The subsequent 

nucleation and crystal growth produced the aragonite polymorph of calcium 

carbonate (DEGENS et al., 1969 ) . Later studies would provide evidence to 

support the theory presented by Degens et al. ( 1 9 6 9 ) by showing that 

proteins (and their associated enzymes) were necessary for normal formation 

of mollusk shells and otoliths (BELCHER et al., 1 9 9 6 ; MURAYAMA et al., 2 0 0 4 ; 

SOLLNER et al., 2 0 0 3 ) . The enzyme carbonic anhydrase (CAH), which 

provides carbonate for CaCC>3 formation, is an example of such a protein 

product (BEIER and ANKEN, 2 0 0 6 ) . 

While higher organic concentrations may be the cause of the lack of 

crystallinity observed in the otolith core, some research has suggested the 

early core is composed of a mineraloid called amorphous calcium carbonate 

( A C C ) (FREEMAN e t al . , 2 0 0 8 ; LOWENSTAM, 1 9 8 1 ; NEUMANN a n d EPPLE, 2 0 0 7 ; 

POUGET et al. , 2 0 0 9 ; ROSAUER a n d REDMOND, 1 9 8 5 ; SOKOLOWSKI, 1986 ) . It is 

thought that ACC nanoparticles nucleate as a precursor phase in carbonates 

before undergoing a rearrangement event to crystalline CaC03 (FREEMAN et 

al . , 2 0 0 8 ; LOWENSTAM, 1 9 8 1 ; NEUMANN a n d EPPLE, 2 0 0 7 ; POUGET et al . , 2 0 0 9 ; 

ROSAUER and REDMOND, 1 9 8 5 ; SOKOLOWSKI, 1986 ) . These studies also 

suggest that the ACC that composes the early otolith is reduced to only trace 

quantities by adulthood (LOWENSTAM, 1981 ; NEUMANN and EPPLE, 2 0 0 7 ; 

SOKOLOWSKI, 1986 ) . 
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The evidence for abundant organics and an amorphous structure in the 

core is not found in the post-hatch otolith. In particular, the identification of Mn 

peaks in the cores of otoliths illustrates the compositional differences between 

the otolith core and the post-hatch otolith. Ruttenberg et al. (2005) found 

using LA-ICP-MS that otolith cores analyzed across six different species of 

fish were shown consistently to have elevated concentrations of Mn in 

comparison with the region adjacent to the otolith core region. The core was 

considered to have a Mn spike if the Mn concentration was at least three 

times greater than the previous site of ablation (RUTTENBERG et al., 2005). 

The presence of an increased concentration of Mn in the otolith core implies a 

relationship between the early development offish and Mn. Studies in the 

otoconia of other vertebrates, including rats, birds and reptiles, have shown 

Mn deficiencies during development to cause otolith defects and subsequent 

detrimental effects on animal behavior and survival (ERWAY et al., 1 9 7 1 ; 

ERWAY e t a l . , 1 9 8 6 ; HORI a n d IWASAKI, 1976 ) . 

Melancon et al. (2008) also noted in their study of otolith micro-

chemistry using LA-ICP-MS that the calculated concentration of Mn at the 

centre of the core (the primordia) might be underestimated due to 

technological limitations of LA-ICP-MS (a volume of material larger than the 

otolith primordia itself was sampled). While LA-ICP-MS is useful for 

differentiating the core from the post-hatch otolith, it cannot be used to 

address questions of nano-scale chemistry and structure that can provide 
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further insights into otolith development, natal habitat, and the 

characterization of maternal associations. 

1.2-4 Resolving scale-based limitations 

The development of a high-resolution methodology that limits or does 

not require the loss of any organic or inorganic components is desirable for 

the characterization of the nano-scale structure and chemistry of the otolith 

core. 

While wavelength-dispersive electron microprobe (WD-EM) and energy-

dispersive electron microprobe (ED-EM) have both been used for targeted 

elemental analysis in fish otoliths, only LA-ICP-MS and nuclear microscopy 

using proton-induced x-ray emission (pPIXE) methods have been found to 

provide the resolution necessary for the analysis of trace elements within the 

otolith structure (with the exception of Sr, which could also be detected and 

analyzed using WD-EM) (CAMPANA et al., 1 9 9 7 ) . LA-ICP-MS spot size is too 

large for nano-scale chemical analysis and results in permanent loss of the 

sample, while the results of pPIXE in otoliths can be difficult to interpret due to 

interference from sodium (Na) (LIMBURG et al., 2 0 0 3 ; LIMBURG et al., 2 0 0 7 ) . 

Electron microprobes, while able to provide micro-scale maps, can only 

detect elements with a concentration in the parts per thousand range, which 

is significantly more concentrated than the levels that most trace elements 

occur at in otoliths (LIMBURG et al., 2 0 0 7 ) . 
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Scale-based limitations have been identified in the analysis of other 

biominerals as well (i.e., teeth and shells). In these studies, HRTEM and 

synchrotron x-ray fluorescence (XRF) methods have been used to provide 

improved spatial resolution of the chemistry and structure present without 

damage to the sample (KUDO et al., 2 0 1 0 ; LIMBURG et al., 2 0 0 7 ; NALLA et al., 

2 0 0 5 ; SAUNDERS et a l . , 2 0 0 9 ; TEMPLETON a n d KNOWLES, 2 0 0 9 ; WIRTH, 2 0 0 9 ) . 

The challenge in pursuing these methods of analyses is in the sample 

preparation. Resolving the structure of the sample requires the sample to be 

in a thin section (ideally ~ 150 nm thick) to allow the penetration of either an 

electron beam (HRTEM) or x-rays (synchrotron XRF) (TEMPLETON and 

KNOWLES, 2 0 0 9 ) . The production of a thin section ~ 1 5 0 nm thick cannot 

easily be achieved through physical sectioning methods (toming), likely due to 

structural instability in the sample as a result of the organic content present. 

A possible solution to this dilemma is the use of a FIB. This approach 

uses a beam of gallium (Ga) ions approximately 2 to 5 nm in diameter that 

interacts with the sample surface causing a sputtering of atoms, which allows 

for the selective milling of thin sections (STOKES et al., 2 0 0 6 ; WIRTH, 2 0 0 9 ) . 

Additionally, most FIBs are also equipped with an SEM that allows real-time 

imaging of the sample through the interaction of a beam of electrons with the 

sample surface, which causes ions and secondary electrons to be emitted 

and used to form an image (STOKES et al., 2 0 0 6 ) . A FIB has already been 

used successfully to create thin sections from several biominerals including 

shells, teeth and bones (KUDO et al., 2 0 1 0 ; NALLA et al., 2 0 0 5 ; SAUNDERS et 

10 



al., 2009), although it has not yet been used in the creation of thin-sections 

from otoliths. 

In principle, the production of a thin section from an otolith using a FIB 

does not present a challenge. The challenge, however, lies in developing a 

methodology to create a thin section from a specific site of interest, in this 

case, the otolith core. A method of identifying the approximate location of the 

core compatible with the SEM imaging used in real time while FIB milling the 

thin section is required. Otolith growth structures (daily growth rings and 

primordia) are not easily imaged using SEM because the trace element 

variation is often below the detection limit. SEM used in conjunction with a 

cathodoluminescence (CL) detector, however, could be used to successfully 

image growth textures in otoliths. CL uses a photon beam to excite the 

electrons at the sample surface causing the emission of electromagnetic 

radiation from the sample (luminescence) within the visible range (HALDEN et 

al., 2004). Halden et al. (2004) demonstrated using CL and PIXE, that otolith 

regions with the highest Mn concentrations had the brightest luminescence, 

making the otolith core one of the most visible growth features using CL 

based on the Mn-enrichment in the core relative to the post-hatch otolith 

(BROPHY et al., 2004; HALDEN et al., 2004; MELANCON et al., 2008; 

RUTTENBERG et al., 2005). SEM-CL also possesses an advantage over 

traditional CL because it can be combined with energy dispersive x-ray 

spectroscopy (EDS) on the SEM, producing pg/g range chemical maps of an 

area after CL imaging (LANDTWING and PETTKE, 2005). SEM-CL has been 

11 



favoured for the characterization of growth textures in minerals such as quartz 

(LANDTWING and PETTKE, 2 0 0 5 ) , and was also used to discriminate between 

CaCC>3 polymorphs in otoliths (BEAREZ et al., 2 0 0 5 ) . An inherent problem with 

imaging otolith cores using SEM-CL is the low success rate associated with 

the exposure of the otolith core via manual polishing with lapping film. SEM-

CL is a surface technique and if the otolith core is not exposed, luminescence 

may not be observed. This could potentially necessitate the preparation of a 

relatively large number of samples for SEM-CL analysis. 

Using SEM-CL to locate the otolith core and successive milling using a 

FIB constitutes a new methodology for the production of thin sections suitable 

for high resolution microscopy that potentially does not involve any loss of 

organic or inorganic content in the otolith. HRTEM is a relatively accessible 

technology that can be used to perform a nano-scale chemical and structural 

characterization of the FIB-milled otolith thin section. High-resolution EDS 

can be conducted using HRTEM to provide chemical information about the 

sample and fast Fourier transform (FFT) of the images can be used to 

characterize crystalline phases present (BENDERSKY and GAYLE, 2001). 

HRTEM is not a technique that has been used in otoliths in recent years for 

the purpose of characterizing chemistry possibly due to the extensive sample 

preparation that would be required to ready the sample for imaging. Without a 

method of creating a thin-section through some means of physical milling, the 

only way to gain insight into the nano-structures and chemistry of the sample 

would be through the grinding and subsequent chemical treatment of the 
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otolith-derived supernatant (Li et al., 2 0 0 9 ) . When contrasted with the method 

of FIB sectioning for HRTEM analysis, which has been conducted in 

geomaterials and several biominerals, there is a wealth of structural and 

mineralogical data to be gathered without loss of organic or inorganic 

components and complex sample preparation (KUDO et al., 2 0 1 0 ; NALLA et al., 

2 0 0 5 ; SAUNDERS e t a l . , 2 0 0 9 ; WIRTH, 2 0 0 9 ) . 

1.3 OBJECTIVES 

The objectives of this study are: 

1) The development of a methodology that can be used to; 

i) Identify the otolith core 

ii) Provide a preliminary micro-scale chemical 

characterization 

iii) Produce a thin section from the otolith using a FIB 

2) Conduct nano-scale chemical and structural characterization 

of otoliths using thin sections created following the methodology 

outlined in (1) in conjunction with HRTEM. 

3) Interpret this data in the context of the current understanding 

of otolith formation and structure. 

This information may be useful for those seeking higher-resolution 

alternatives to typical LA-ICP-MS analyses in otolith trace element assays. 

For example, Chinook salmon are an anadromous sport fish and conservation 
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and management specialists often rely on core microchemistry in the 

identification of natal habitats and life history characteristics in juveniles to 

make management decisions (KALISH, 1 9 9 9 ; VoLKet al., 2 0 0 0 ; WARNER et al., 

2 0 0 5 ; ZHANG and BEAMISH, 2 0 0 0 ) . Additionally, if the otolith core can be 

successfully thin-sectioned, the structural and chemical information obtained 

will provide further data on the development of the early otolith which may 

facilitate an improved understanding of early otolith formation and 

biomineralization. 
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CHAPTER 2 

A nano-scale chemical and structural characterization of Chinook 
salmon (Oncorhynchus tshawytscha) otolith cores using a FIB 

and HRTEM* 

* This chapter incorporates the outcome of a joint research undertaken in 
collaboration with Dr. Joel Gagnon, Dr. Todd Simpson, and Dr. Christopher 
Weisener. 
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2.1 INTRODUCTION 

Otoliths are found in the inner ear organs of teleost (bony) fish and are 

used for hearing and balance (PARKER, 1903; POPPER et al., 2003). Otoliths 

are composed of predominantly (~ 97 to 99%) calcium carbonate in the 

aragonite polymorph (CaCOs) with an organic matrix containing glycoprotiens, 

proteoglycans and collagens (~ 2 to10%) (BORELLI et al., 2003; CARLSTROM, 

1963; DEGENS et al., 1969; FERMIN et al., 1998; MURAYAMA et al., 2000; PISAM 

et al., 2002; TADASHI, 1996). Daily growth rings are formed in otoliths via the 

precipitation and accretion of organic and inorganic components from the 

endolymph fluid. During this process, trace amounts of other elements 

(up to 1.0 %) may substitute for calcium in the matrix and are thought to 

reflect ambient water chemistry (CAMPANA, 1999). The trace element 

composition is regarded by many as an environmental tracer and is typically 

analyzed using laser ablation inductively coupled plasma mass spectrometry 

( L A - I C P - M S ) (CAMPANA, 1999). This method requires minimal sample 

preparation beyond initial polishing and sectioning of the otolith to produce a 

cross section and sonication to remove debris. Many studies have used LA-

ICP-MS to examine the concentrations and spatial distribution of trace 

elements among several fish species across habitats (CAMPANA, 1999; 

THRESHER, 1999). 

While the post-hatch region of the otolith reflects ambient chemistry 

during post-hatch life, the core region of the otolith, which is formed during 
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embryonic development, represents natal site chemistry as well as maternal 

associations (KALISH et al., 1995 ; VOLK et al., 2 0 0 0 ) . Typically less than 2 0 pm 

in diameter, the otolith core contains one or several primordia, which are the 

initial sites of otolith nucleation (0 .5 to 1 pm diameter) (KALISH et al., 1 9 9 5 ; 

MELANCON et al., 2 0 0 8 ) . Evidence suggests that the core is structurally and 

compositionally different from the post-hatch otolith, containing a higher 

organic content, an amorphous structure and manganese (Mn) enrichment 

(BEIER a n d ANKEN, 2 0 0 6 ; BROPHY e t al . , 2 0 0 4 ; CARLSTROM, 1 9 6 3 ; JOLIVET e t 

a l . , 2 0 0 8 ; LOWENSTAM, 1981 ; MELANCON et al . , 2 0 0 8 ; MURAYAMA e t a l . , 2 0 0 4 ; 

NEUMANN a n d EPPLE, 2 0 0 7 ; POUGET e t al . , 2 0 0 9 ; RUTTENBERG e t a l . , 2 0 0 5 ; 

SOKOLOWSKI, 1 9 8 6 ; ZHANG a n d RUNHAM, 1992 ) . 

Despite the strides made by these studies in identifying the organic 

constituents and general chemistry of the otolith, questions remain about the 

nano-scale chemistry of the otolith. This information is desirable because it 

can reveal the requirements for early development in fish. While LA-ICP-MS 

can be used to differentiate between the core and the post-hatch otolith 

based on Mn-enrichment in the core, laser spot size is variable, down to 

about 6 pm. With the average primordia being ~ 1 to 0.5 pm in diameter, LA-

ICP-MS cannot provide a nano-scale chemical characterization of the otolith 

core. A high-resolution (i.e., nanometer) method that prevents or limits 

alteration of the sample structure and chemistry is needed in order to obtain 

information regarding the structure and composition of otolith cores. In this 

study, we combine a number of micro- and nano-scale sampling, imaging, 
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and analytical methods to obtain structural and compositional information 

from the post-hatch and core region of juvenile Chinook salmon 

(Oncorhynchus tshawytscha) otoliths. This information can provide a more 

accurate assessment of core chemistry that can in turn be used to better 

understand the early life history and maternal associations offish stocks. The 

methods used include transmitted light microscopy, scanning electron 

microscopy (SEM), focused ion beam (FIB) milling and sectioning, and high 

resolution transmission electron microscopy (HRTEM). 

2.2 MATERIALS AND METHODS 

One of the challenges in this study was to precisely correlate micro-scale 

(e.g., otolith sectioning) and nano-scale (e.g., core/primordia sectioning) 

characterization and analysis while maintaining the ability to quickly and 

accurately relocate the same, nano-scale feature (i.e., primordia) within an 

otolith. To achieve this, a procedure was developed where a number of 

analytical methods were employed to spatially reference, sample and 

characterize otolith cores. In, summary, the procedure that was developed 

involved: 

1. Extraction and sectioning of the otoliths. 

2. Application of reference markings on the surface of the sectioned 

otolith using the FIB. 
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3. Identification and preliminary characterization of core regions and 

primordia using micro-scale methods, such as SEM-energy dispersive 

X-ray spectroscopy (SEM-EDS) and SEM cathodoluminescence 

(SEM-CL). 

4. Thin sectioning and chemical and structural characterization using 

nano-scale methods (e.g., FIB and HRTEM). 

2.2-1 Extraction and sectioning of otoliths 

Otoliths from Chinook salmon fry harvested from Lake Ontario, 

Ontario, Canada, were extracted according to the method described by 

Payan et al. (1997). After extraction, otoliths were rinsed with Milli-Q® 

ultrapure water and sonicated for approximately five minutes in a closed 

Petrie dish in Milli-Q® water. Otoliths were then rinsed three times with Milli-

Q® water, mounted on a glass microscope slide and embedded in Crystal 

Bond 509®, a thermoplastic polymer. Otoliths were then polished using Milli-

Q® water and 30-, 12- and 9-micron silica lapping film successively until the 

core region appeared to be exposed upon examination under a Nikon® 

polarizing light microscope in transmitted light. 

2.2-2 Application of reference marks 

A similar methodology of orienting the otoliths, along with the fact that 

they were of similar size (and age) prior to polishing made the location of the 

general core region relatively predictable. Through comparison with 
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annotated light micrographs highlighting the core region of individual samples, 

reference markings (a numbered and lettered grid) was machined onto the 

surface of the otolith using a FIB of gallium (Ga) ions to provide coordinates 

for the relocation of individual primordia within the otolith cores between 

analytical methods. Figure 1 is a secondary electron SEM image of the otolith 

showing the FIB-milled grid on the surface for relocation of the core during 

later FIB thin-sectioning. Application of the reference marks and subsequent 

sectioning was conducted using the Zeiss™ 1540XB FIB/SEM at the Western 

Nanofabrication Facility at the University of Western Ontario, London, 

Ontario, Canada. After reference markings were milled, preliminary 

characterization of the core was conducted at the Great Lakes Institute for 

Environmental Research, University of Windsor, Windsor, Ontario, Canada. 

2.2-3 SEM-CL and SEM-EDS analysis 

An FEI™ Quanta™ 200F field emission gun (FEG) SEM, equipped 

with CL, was used to obtain images (Centaurus® scintillator backscattered 

detector, high vacuum, 300 to 650 nm spectral range) of polished otoliths. 

SEM-CL was used because it is a non-destructive imaging technique that 

possesses several advantages over traditional CL, such as simultaneous 

EDS analysis, which enables the detection of variations in the concentrations 

of minor elements (LANDTWING and PETTKE, 2005). Sample slides were 

carbon-coated prior to imaging and affixed to the stage using double-sided, 
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conductive carbon tape. After primordia were located using CL, samples were 

re-imaged in backscattered electron (BSE) mode under low vacuum (-80 Pa). 

Low vacuum was used in SEM-BSE mode to optimize sample imaging by 

avoiding the excessive charging inherent to high vacuum analysis. The 

electron beam current was maintained between 10 to 20 kV to avoid beam 

damage. Spot size was ~ 3 nm. To determine the spatial distribution of 

elements within the otolith, elemental maps were collected and analyzed 

using an EDAX Sapphire Si(Li) EDS detector and Genesis™ v5.21 software. 

SEM-EDS provided elemental maps that were used to confirm the presence 

of Mn peaks and provide preliminary microchemical data prior to FIB 

sectioning and HRTEM microchemical analysis. Core locations were 

referenced relative to the reference markings previously micro-machined 

using a FIB. 

2.2-4 FIB/SEM analysis 

A FIB of 30 keV Ga ions was used to cut an ~ 250 nm thick section 

from the otolith core. A pair of trenches 60 um x 30 um was FIB-milled on 

either side of a 5 um wide strip containing the otolith core (Figure 2a). The 

course milling used a 10 nA beam of 30 keV energy gallium (Ga) ions 

focused to a beam diameter of ~ 500 nm. Prior to milling, a band of platinum 

(Pt) 2 um thick was FIB-deposited over the region of interest to provide a 

smooth protective surface layer. 
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The exposed cross-section was polished on both sides using a 1nA Ga 

beam (30 keV energy, 100 nm diameter) while simultaneously imaging by 

SEM-BSE under high vacuum. Polishing was terminated once the otolith 

core was exposed and visible in the SEM image. The exposed otolith cross-

section was imaged using a 5 nA beam of 10 keV electrons in SEM-BSE and 

an elemental map of the region was then acquired by EDS. Extended 

exposure to the electron beam caused visible damage to the region around 

the otolith (Figure 3a). The damaged layer was subsequently removed as the 

thin section was FIB-polished to a reduced thickness of 2.5 um. 

The thin section was separated from the remainder of the otolith on 

one side and at the bottom leaving the 40 um x 20 um x 2.5 um thick piece of 

material attached on one side (Figure 2b). The tungsten (W) tip of an End 

Effector™ mounted in the Ascend® Instruments Extreme Access™ lift-out 

manipulator was FIB-milled to produce a pair of tines spaced 2.5 um apart. 

After the tines were wedged over the fixed end of the lamella, the final end 

was detached by FIB milling and the lamella was lifted clear of the trench. 

Prior to final thinning, the lamella was welded to the tungsten tip with 

FIB-deposited Pt to increase the stability of the specimen. The End 

Effector™ was then folded over to form a 3 mm TEM grid. The sample was 

then mounted vertically in a small vice on the sample stage of the FIB/SEM. 

This approach provided precise and stable positioning of the lamella for final 

polishing. The thickness of the lamella was reduced to approximately 1 um 

using a 200 pA Ga beam focused to approximately 50 nm diameter. 
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Progress was monitored by simultaneous SEM imaging. The sample was 

then rotated to view the second side by SEM during the final thinning. A 20 

um wide region of the lamella, centered on the otolith core, was thinned by 

FIB milling using a 30 keV energy, 200 pA beam. The thinning process was 

terminated when the section reached a thickness of 250 nm, although ideal 

TEM thin-section thickness for nanoscale characterization of chemistry and 

structure is between 100 and 150 nm. Curling and buckling of the sample, 

which was observed during the later portion of the thinning process, may 

have been due to the higher organic content and variable concentrations of 

mineral and organic components. A similar extent of buckling and curling was 

not observed in the thin section extracted from a post-hatch region, which 

was possibly due to the fact that organic content occurs in concentrations 

typically below 0.2 to10 % outside the core (DEGENS et al., 1969). 

Prior to sectioning, pockets with a porous or hollowed-out appearance 

were observed in the core region beneath a cluster of primordia (Figure 3b). It 

is possible that the porous texture observed may be the result of lost organic 

content incurred due to the length of the sample storage period (>6 months). 

The observation of this texture solely in the core region after an extended 

period of storage may be due to the loss of organic content that may have 

been present at one time in the otolith core, as organic content degrades over 

time when not properly preserved (i.e. frozen or chemically preserved; 

preservation through freezing or other means were not used for these 

samples). No studies, to our knowledge, have been conducted on the 

28 



degradation of organic material in the otolith relative to storage time, so it is 

difficult to tell what potential impact the storage time had on the organic 

content in the sample. Curling and buckling of the thin section during late-

stage FIB thinning may have occurred due to the presence of this porous 

region within the core. 

2.2-5 HRTEM analysis 

The FIB-milled sections were later retrieved and analyzed using an 

FEI™ Titan™ 80-300 Cubed HRTEM at McMaster University, Hamilton, 

Ontario, Canada. Bright field (BF) images and high angle annular dark field 

(HAADF) scanning TEM (STEM) images were collected at 300 kV. In 

addition, EDS spectra were collected in STEM mode with a probe size of 0.5 

nm or less. 

2.3 RESULTS 

2.3-1 Identification and preliminary micro-scale chemical 

characterization of core region using SEM-CL and SEM-EDS 

Growth structures (e.g., diurnal rings and primordia) were not observed 

using SEM-BSE across the exposed sample surface (Figure 4a, background). 

SEM-CL imaging, however, revealed concentric, daily growth increments 

surrounding several luminescent primordia, each of which was observed to be 

less than 5 um in diameter (Figure 4b). The luminosity of the diurnal 
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decreased with distance from the core region. EDS line scans across the core 

region confirmed the presence of an Mn peak (Figure 4a), corresponding with 

the location of primordium P1 identified using SEM-CL (Figure 4b). 

The visible appearance of growth structures using SEM-CL (that could 

not be observed using SEM-BSE) is likely due to the difference in the limits of 

detection between the two methods. CL is sensitive to trace elements, often 

in the parts per billion range (ppb), while SEM-BSE is not ideal for imaging 

organics because the elements that compose the majority of the sample 

(C,0) are of low atomic mass and do not produce as much backscatter as 

metals or samples with greater concentrations of heavy elements. 

The Mn peak observed via SEM-EDS at primordia P1 (Figure 4a, 

foreground) is consistent with earlier research, which suggests that the 

luminescence observed in otoliths is related to an increased Mn concentration 

(HALDEN et al., 2004). While luminescence was observed in primordia P 1 

through P3 using SEM-CL, SEM-EDS line scans conducted through primordia 

P2 and P3 did not yield detectable Mn as observed with P1, which may be 

due to insufficient polishing resulting in the core not being exposed at the 

sample surface. This highlights a significant challenge encountered during 

otolith core/primordia analysis, as manual polishing is a very inefficient 

method for revealing the otolith core. Due to the manner in which the otolith 

grows (i.e., it accretes around the central core, which houses the primordia), it 

can appear as though the core is well-exposed when, in reality, it may still be 

covered by several 10s of microns of post-hatch otolith. In addition, it only 
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takes a few passes of manual polishing to remove the area of interest 

because the individual primordia are so small. Therefore, the success of 

SEM-CL imaging of primordia is highly dependent upon sample preparation. 

For example, Figure 5 shows luminescence of the otolith core from another 

polished otolith sample. Despite the luminescence observed in the core in 

Figure 5, SEM-EDS did not detect a Mn peak in the core. 

Despite the challenges in initial sample preparation, SEM-CL was 

applied successfully in this study to identify growth textures in otoliths. 

Methods of exposing the otolith core more precisely are required for imaging. 

2.3-2 Thin sectioning and preliminary micro-scale chemical 

characterization of core region using FIB/SEM 

A thin section of 250 nm thickness is shown prior to extraction from the 

surrounding otolith in Figure 2a. The exposed surface of the thin section 

adjacent to the excavated trench was imaged in situ prior to extraction (Figure 

2b) using SEM-BSE. SEM-BSE images (Figure 6a) show that the core region 

contains a number of primordia that are arranged in a cluster formation and 

are chemically heterogeneous. The core boundary and primordia appear 

brighter (Figure 6a), possibly due to higher concentrations of heavier 

elements (such as Mn) producing more backscattered electrons compared to 

the adjacent core regions; however this variation could be affected by 
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structural differences as well. EDS maps collected using a FIB/SEM showed 

that the concentrations of C and O were positively correlated in the exposed 

sample surface, however, a weak, negative correlation was observed 

between the concentrations of C and O relative to Ca at the core boundary 

(Figure 6b). Mn occurred in higher concentrations in the primordia relative to 

the surrounding otolith core region (Figure 6b). 

There was some concern about the ability of a FIB to section 

heterogeneous specimens, such as otoliths, which consist of mixtures of 

relatively hard (e.g., mineral) and soft (e.g., protein) materials. For example, 

Stokes et al. ( 2 0 0 6 ) observed some alteration at the interface between 

mineralized and biological materials after using a FIB in sample preparation. 

Although the majority of the otolith outside of the core contains relatively low 

concentrations (~ 0.2 to 10 %) of organic material, the core has been 

characterized as having a greater concentration of organic compounds 

(DEGENS et al., 1 9 6 9 ; JOLIVET et al., 2 0 0 8 ) . FIB-related alteration at the core-

otolith or core-primordia interface after sectioning was not observed, however, 

some damage to the sample surface was observed after SEM-EDS mapping 

(Figure 3a). This damaged material was removed by polishing with the FIB 

after SEM-EDS mapping to expose fresh, unaltered material for subsequent 

characterization. 
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2.3-3 Nano-scale characterization of otolith chemistry and structure 

using HRTEM 

Two prepared thin sections were imaged and analyzed using HRTEM. 

The first thin section was created from the post-hatch otolith region and was 

~ 200 nm thick. HAADF images of this thin section revealed rounded, lighter-

coloured "nodules" less than 1 pm in diameter that can be assumed to have a 

greater concentration of heavy elements than the lighter adjacent areas 

(Figure 7a). EDS spectra were collected in STEM mode from the centre and 

edge of a nodule as well as from the surrounding adjacent region (Figure 7b). 

EDS spectral analysis on the central region of the nodule showed 

silicon (Si) content was 5.67 times greater by weight (2.38 weight percent, 

spectrum 5) compared with the darker, adjacent region (0.42 weight percent, 

spectrum 7) (Table 1). Atomic and weight percent values for all elements 

within the detection range at each spectral analysis location can be found in 

Table 1. The function of Si in otoliths and many other biominerals is not well 

understood, although in diatoms and sponges it is a major structural 

component and it plays a vital role in the formation of connective tissue in the 

bones and cartilage of mammals and birds (CARLISLE, 1988 ; PERRY, 2 0 0 3 ) . 

D-spacings calculated from HRTEM images showed that the first thin 

section (milled from the post-hatch region) was composed of CaC03 in the 

aragonite polymorph. Measured d-spacing values were consistent at several 

locations, suggesting little structural and compositional variation throughout 
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the thin section. D-spacing values and fast Fourier transform (FFT) images for 

this thin section are included in Table 2 and Figure 8, respectively. 

The second thin section was milled to include the core region of the 

otolith. TEM bright field (BF) images confirmed that this thin section contained 

several primordia (Figure 9a). High resolution images were collected from the 

regions indicated in Figure 9a. Figure 9b shows an interface between a 

primordium and the surrounding core region. While d-spacings could be 

calculated from a few regions of this thin-section where a crystalline structure 

was observed in the HRTEM images (and subsequently interpreted to be a 

relatively close match with aragonite, see Table 3), several regions were 

amorphous and d-spacings could not be calculated. Other regions where 

FFT was attempted (site 5-1 in Figure 9a) did not yield d-spacings consistent 

with any CaC03 polymorph (Table 3 and Figure 10). The more amorphous 

structure observed in the interface region and region 5-1, along with the 

darker appearance, suggests that both regions possess a composition more 

enriched in heavy elements compared with the region in 5-2. While darker 

contrast in TEM-BF can be suggestive of a physically thicker region, the close 

proximity of sites 5-1 and 5-2 (< 25 nm) make variations in thickness an 

unlikely cause for the observed contrast (Figure 9b). 

Our findings corroborate numerous prior studies that have suggested 

that the otolith core has a more amorphous structure than the post-hatch 

otolith, possibly due to the increased presence of amorphous CaC03, or ACC 

(FREEMAN e t a l . , 2 0 0 8 ; LOWENSTAM, 1 9 8 1 ; NEUMANN a n d EPPLE, 2 0 0 7 ; 
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POUGET et al., 2 0 0 9 ; SOKOLOWSKI, 1 9 8 6 ) . Thin sections in this study were 

milled from fry-aged (< 6 months old) otoliths. Juvenile otoliths are thought to 

retain a greater portion of ACC in the core than adult otoliths; therefore, 

variation of the degree of crystallinity in the otolith with age would likely be 

observed (SOKOLOWSKI, 1 9 8 6 ) . The amorphous regions observed in bright 

field TEM images (Figure 8) could also be reflective of increased organic 

content in the core from the presence of proteins necessary for the initiation 

and facilitation of mineralization in the otolith (BELCHER et al., 1 9 9 6 ; KANG et 

al . , 2 0 0 8 ; SOLLNER e t al . , 2 0 0 3 ) . 

EDS spectra were also collected on a single primordium to reveal the 

distribution of major element constituents (C, O, Ca) along with Mn. EDS 

results showed less C, Ca and O in the primordium relative to the adjacent 

core region (Figure 11). Mn, however, appears to be the most concentrated in 

the centre of the primordium and to a lesser degree in the surrounding 

interface between the primordium and core areas (Figure 11). EDS spectra 

collected from these regions, denoted in Figure 11, suggest the formation of 

several chemical gradients. In region 2, located in the central primordium, 

3.3% Mn by weight is observed, while no Mn was detected in regions 5, 8 and 

9, which are located outside the primordium. Additionally, regions 6 and 7, 

analyzed within the interface region between the primordium and the otolith 

core, had an average of 0.67% Mn by weight. A summary of the weight and 

atomic percent values for all elements are shown in Table 4. 
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2.4 DISCUSSION 

These findings agree with those of previous otolith microchemistry 

studies, which detected Mn peaks within the centre of otolith cores of various 

species (BROPHY et al., 2 0 0 4 ; MELANCON et al., 2 0 0 8 ; RUTTENBERG et al., 

2 0 0 5 ) . This study, however, further constrains the localization of Mn on the 

nano-scale by identifying Mn peak concentrations first to be concentrated 

within primordia, via SEM-EDS, then to the core-primordia interface and 

central primordia region via STEM. Due to thickness of the sample it was not 

possible to acquire the highest resolution TEM images possible, which would 

provide greater nano-scale insight into the localization of Mn within the otolith 

primordia. In addition, it is also unclear the effects that storage time may have 

had on the organic content and localization of Mn within the otolith. Future 

studies should attempt to obtain thinner sections, approximately 100 to 150 

nm thick, in order to obtain more nano-scale chemical data. A positive 

correlation between increased concentrations of Mn in the embryo and 

healthy development and growth processes has been observed in several 

species (ERWAY et al., 1971 ; ERWAY et al., 1986 ; HORI and IWASAKI, 1976 ) . 

Studies of Mn deficiencies in mice, rats, guinea pigs, and chicks showed 

deficiency led to several severe otoconial defects, such as a reduction in size, 

or absence altogether (ERWAY et al., 1 9 7 1 ; ERWAY et al., 1986 ) . It is possible, 

based on evidence from this study, that the presence of Mn is vital for early 

development of otoliths in teleosts as well. These findings are consistent with 
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previous findings that indicate the preferential incorporation of Mn into the 

pre-hatch otolith is primarily facilitated by the mother or due to early 

developmental requirements (maternal associations), rather than as a result 

of environmental influences (MELANCON et al., 2008). These data suggest 

that the otolith core and primordia are not chemically, structurally, or 

mechanistically uniform. Reconstructions of life history and natal habitats of 

fish using otolith chemistry must be conducted with knowledge of the 

incongruencies between the pre- and post-hatch otolith, and the preferential 

incorporation of Mn during early development in the otolith. A FIB, in 

conjunction with high-resolution methods such as HRTEM, or perhaps 

synchrotron, provides a bridge to the nanoscale, allowing researchers to 

delve into the chemistry of embryonic development. 
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CHAPTER 3 

Summary, suggestions for future work and conclusions 



3.1 SUMMARY 

This study employed a number of micro- and nano-scale techniques to 

develop a methodology for the preparation of otolith thin sections using a FIB 

and subsequent characterization using HTEM. Otoliths were first polished and 

a numbered grid was FIB-milled onto the sample surface to assist with re-

locating regions of interest (i.e. core, or individual primordia). SEM-CL and 

SEM-EDS were then used to image the otolith and identify the core based on 

the luminescence of Mn. 

The otolith core was then relocated using the previously FIB-milled grid 

under SEM-BSE and a thin section of ~ 250 nm was FIB-milled and included 

the otolith core region. An additional thin section (~ 200 nm thick) was milled 

from a region of the post-hatch otolith. D-spacings collected using FFT of 

HTEM images revealed that the thin-section from the post-hatch otolith was 

composed of aragonite while the inability to collect many d-spacings from the 

core suggested a more amorphous structure, perhaps due to presence of 

ACC or more protein. 

EDS conducted on the post-hatch otolith section showed Si-enriched 

nodules were present (5.67 times more Si by weight in nodules compared to 

adjacent area). In the core thin section, EDS showed less C, Ca and O in the 

primordia relative to the remainder of the core. Increased concentrations of 

Mn were constrained through SEM and HTEM to the centre of the primordia 

and at the core-primordia interface (3.3% and 0.67% by weight, respectively). 
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3.2 SUGGESTIONS FOR FUTURE WORK 

Future work should focus on increasing the number of thin sections in 

order to definitively constrain the microchemistry of the post-hatch otolith and 

the core. In light of the difficulties faced in this study related to sample 

fragility, future studies should also examine the potential effects of storage 

time on structure and organic content in otoliths as samples used in this study 

had a relatively long period of storage (> 6 months). Frozen samples, or 

those with a shorter storage period, could retain more organic content, 

allowing them to be more stable during thinning of the section, although this 

assertion is speculative. Thinner sections (100 to 150 nm), used in 

conjunction with HTEM or synchrotron, could provide more high-resolution 

images than we were able to obtain in this study. Future work could also 

produce thin-sections from the otoliths of other teleost species, in particular, 

those with a single primordium. These studies could examine any differences 

in the structure or chemistry across life stages due to storage and allow for 

comparison with species that have multiple primordia. 

Other suggestions for future work relate to the preparatory steps 

necessary for the exposure of the core prior to sectioning. While our use of 

SEM-CL builds on the work of others who have used this technique to identify 

growth textures in otoliths (BEAREZ, 2 0 0 5 ; HALDEN, 2 0 0 4 ) , exposure of the 

otolith core continues to be a challenge and more accurate methods of 
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polishing otoliths are desirable. The use of a FIB for this type of polishing has 

yet to be evaluated. Future studies could examine the feasibility of FIB 

polishing as a method for exposing the core and/or other features of the 

otolith. 

3.3 CONCLUSIONS 

The goals of this study were to 1) examine the possibility of using a 

FIB in conjunction with SEM to create thin-sections from the otolith and if 

successful, 2) to conduct a nano-scale characterization of chemistry and, 

structure of the post-hatch otolith and the otolith core. As discussed in 

Chapter two, we found that the use of a FIB and SEM proved to be an 

effective method for the production of thin sections from the otolith. This 

study also successfully conducted EDS and collected d-spacings from both 

thin sections to characterize the chemistry and structure of the two samples. 

The implications of the use of a F I B / S E M set-up in the field of otolith 

research can be surmised based on its now widespread use among other 

biominerals (KUDO et al., 2 0 1 0 ; MACLEAN et al., 2 0 0 8 ; NALLA et al., 2 0 0 5 ; 

SAUNDERS et al., 2 0 0 9 ) . The use of a F I B allows researchers the ability to 

create a sample that can be used in conjunction with high resolution 

microscopy in the investigation of the complex organic-inorganic matrices 

associated with biominerals. The relative ease with which thin-sections can 

be created from otoliths using a FIB should also be emphasized when citing 
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its widespread usage. While samples in this study were polished and 

sectioned beforehand, it is not a necessary step, perse. It would only be 

when the aim is to create a thin-section from a particular feature of the otolith 

(e.g., a certain region of growth, or from the core), that more complex sample 

preparation is required prior to FIB sectioning (e.g., polishing, SEM-CL 

identification of the core). 

Despite some limitations encountered during the project, data obtained 

from the use of this methodology reveals new information about otolith 

chemistry and structure on the nano-scale. The identification of Si-enriched 

nodules in the post-hatch otolith, and Mn localizations in specific regions of 

the core, suggests that there are nano-scale localizations of elements in 

otoliths. The mechanism by which certain elements might be enriched in 

particular regions of the otolith is not understood, but these data provide more 

evidence that some aspects of the incorporation of elements in the otolith is 

not a simple process. The occurrence of these locally-enriched areas is likely 

not reflective of the ambient environment, but rather, linked to some role in 

mineralization or development. 

In particular, the finding that Mn is actually localized specifically in the 

central and primordia-core interface regions, provides further evidence for the 

importance of Mn in the early formation of otoliths. Other studies have 

already found that without sufficient Mn, otoconia in other species are 

malformed or absent altogether (ERWAY et al., 1971; ERWAY et al., 1986). 

Since previous studies have provided evidence that Mn-enrichment is from 
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maternal/early development processes (MELANCON et al., 2008), rather than 

from environmental enrichment, it raises the question that if Mn were found to 

be deficient in the maternal contribution (yolk sac), would otoliths form 

properly? Based on the findings of this study, which constrain Mn enrichment 

particularly to the center of the primordia, it seems a realistic assumption that 

Mn is required for the proper development of otoliths and the subsequent 

survival of the individual. 
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Table 1. 

EDS spectra collected via HRTEM from otolith nodules, outside otolith core. 
Table A includes elements analyzed in atomic %; Table B includes elements 
analyzed in weight %. 

A) 

All elements analyzed (Normalized) 

Spectrum In stats. C O Mg Si P Ca Mn 

Spectrum 1 No 23.21 53.07 0.00 0.45 0.03 23.35 0.00 
Spectrum 2 No 21.00 46.97 0.00 1.13 0.04 31.17 0.00 
Spectrum 3 No 23.51 53.18 0.00 0.53 0.02 22.89 0.00 
Sum No 33.31 46.17 0.00 0.61 0.03 19.98 0.00 
Spectrum 
Spectrum 5 Yes 37.35 43.05 0.00 1.61 0.36 18.00 0.00 
Spectrum 6 Yes 37.09 43.52 0.00 0.61 1.01 18.85 0.00 
Spectrum 7 Yes 38.42 42.88 0.00 0.28 0.70 17.59 0.00 

Mean 37.62 43.15 0.00 0.84 0.69 18.14 0.00 
Std. deviation 0.70 0.33 0.00 0.69 0.33 0.64 0.00 
Max. 38.42 43.52 0.00 1.61 1.01 18.85 0.00 
Min. 37.09 42.88 0.00 0.28 0.36 17.59 0.00 

All results in atomic% 

B) 

All elements analyzed (Normalized) 

Spectrum In stats. C O Mg Si P Ca Mn Total 

Spectrum 1 Yes 13.44 40.92 0.00 0.61 0.05 45.10 0.00 100.00 
Spectrum 2 Yes 11.07 32.99 0.00 1.40 0.05 54.84 0.00 100.00 
Spectrum 3 Yes 13.69 41.24 0.00 0.73 0.03 44.46 0.00 100.00 
Sum Yes 20.46 37.78 0.00 0.87 0.05 40.96 0.00 100.00 
Spectrum 
Spectrum 5 Yes 23.54 36.15 0.00 2.38 0.58 37.86 0.00 100.00 
Spectrum 6 Yes 23.30 36.42 0.00 0.90 1.63 39.50 0.00 100.00 
Spectrum 7 Yes 24.47 36.38 0.00 0.42 1.15 37.38 0.00 100.00 

Mean 18.57 37.41 0.00 1.04 0.51 42.87 0.00 100.00 
Std. deviation 5.66 2.90 0.00 0.66 0.65 6.07 0.00 
Max. 24.47 41.24 0.00 2.38 1.63 54.84 0.00 
Min. 11.07 32.99 0.00 0.42 0.03 37.38 0.00 

All results in weight% 
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Table 1. 

D-spacing values calculated from HRTEM images on a thin section milled 
from outside the core region. 

Sample Image Live di(A) di(A) di(A) di(A) peak di(A) peak di(A) peak 
Code # FFT matches matches matches 

location 

TEST HR-1 1 2.77 2.35 2.17 012 112 122 

TEST HR-2 3 2.16 2.80 2.45 122 111 200 

TEST HR4 1 2.93 2.07 2.84 111 221 021 

TEST HR4 2 2.93 2.13 2.84 111 221 021 

TEST HR4 3 3.02 2.07 2.84 111 221 021 

TEST HR5 1 2.93 2.13 2.84 111 221 021 

TEST HR5 2 3.02 2.07 2.84 111 221 021 

TEST HR5 3 3.02 2.07 2.84 111 221 021 
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Table 1. 

D-spacing values calculated from HRTEM images on a thin section milled 
from inside the core region. 

Sample Image Live di(A) di(A) di(A) di(A)peak di(A) peak di(A) peak 
Code # FFT matches matches matches 

location 

S-1 HR-5 1 2.13 2.58 1.64 No close No close No close 
matches matches matches 

S-1 HR-5 2 4.2 2.51 3.17 111 012 021 

S-1 HR-6 1 2.13 2.58 2.61 221 200 012 

S-1 HR-12 1 2.11 2.58 2.67 221 200 012 
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Table 1. 

TEM-EDS spectra collected from multiple sites within the otolith primordia. 
Table A includes elements analyzed in atomic %; Table B includes elements 
analyzed in weight %. 

A) 
All elements analyzed (Normalized) 

Spectrum In stats. C O Mg Si P Ca Mn 

Sum Yes 23.53 47.97 0.29 0.27 0.16 27.57 0.20 
Spectrum 
Spectrum 2 Yes 24.32 48.17 0.13 0.20 0.65 25.24 1.29 
Spectrum 3 Yes 18.40 51.61 0.45 0.57 0.37 28.34 0.26 
Spectrum 4 Yes 23.37 48.44 0.51 0.59 0.22 26.39 0.47 
Spectrum 5 Yes 24.72 47.91 0.00 0.17 0.00 27.56 0.00 
Spectrum 6 Yes 22.27 46.86 0.45 0.52 0.37 29.34 0.18 
Spectrum 7 Yes 27.20 41.32 0.55 0.38 0.41 29.77 0.36 
Spectrum 8 Yes 20.62 48.26 0.10 0.00 0.30 30.90 0.04 
Spectrum 9 Yes 27.54 47.31 0.09 0.74 0.00 24.76 0.00 

Mean 23.55 47.54 0.26 0.36 0.23 27.76 0.30 
Std. deviation 2.91 2.69 0.27 0.29 0.31 2.06 0.41 
Max. 27.54 51.61 0.55 0.74 0.65 30.90 1.29 
Min. 18.40 41.32 0.00 0.00 0.00 24.76 0.00 

All results in atomic% 

B) 

All elements analyzed (Normalized) 

Spectrum In stats. C O Mg Si P Ca Mn Total 

Sum Yes 12.93 35.11 0.33 0.34 0.23 50.56 0.50 100.00 
Spectrum 
Spectrum 2 Yes 13.43 35.44 0.15 0.25 0.93 46.52 3.27 100.00 
Spectrum 3 Yes 9.89 36.95 0.49 0.71 0.51 50.82 0.64 100.00 
Spectrum 4 Yes 12.91 35.63 0.57 0.77 0.31 48.62 1.20 100.00 
Spectrum 5 Yes 13.74 35.46 0.00 0.22 0.00 51.09 0.00 100.00 
Spectrum 6 Yes 11.94 33.46 0.48 0.66 0.52 52.49 0.44 100.00 
Spectrum 7 Yes 14.60 29.54 0.60 0.48 0.57 53.32 0.89 100.00 
Spectrum 8 Yes 10.93 34.08 0.11 0.00 0.41 54.66 0.09 100.00 
Spectrum 9 Yes 15.84 36.24 0.11 1.00 0.00 47.51 0.00 100.00 

Mean 12.91 34.66 0.28 0.46 0.31 50.62 0.76 100.00 
Std. deviation 1.81 2.18 0.30 0.38 0.45 2.69 1.04 
Max. 15.84 36.95 0.60 1.00 0.93 54.66 3.27 
Min. 9.89 29.54 0.00 0.00 0.00 46.52 0.00 

All results in weight% 
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Figure 1. 

Figure 1: SEM-SE (secondary electron) image of sample surface with FIB-
milled grid around the otolith core. 



Figure 11. 

Figure 2: (A) SEM-SE image of two trenches (red) milled using a FIB on 
either side of the created thin section (top highlighted in purple) prior to lift-
out.(B) Thin-section (highlighted in purple) lift-out using a pair of tines cut in 
the tip of a TEM grid-sized Mo foil. Edges of milled trenched denoted in red. 
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Figure 11. 

Figure 3: (A) SEM-BSE image of otolith core region after collection of SEM-
EDS maps. Examples of beam damage can be observed in red bracketed 
regions. Primordia cluster is observed within purple boxed region. (B) SEM 
BSE image of core region prior to SEM-EDS mapping. The "porous" 
region in the green box observed just below the cluster of primordia (purple 
boxed regions, denoted by "P") is possibly due to a loss of organic content 
during storage. The core boundary is denoted by the white line. 
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Figure 11. 

Figure 4: (A) (Background) SEM-BSE image of sample surface; (Foreground) 
The distribution of manganese (cps) across SEM-EDS line scan region (data 
taken along white arrow) where V V denotes Mn peak associated with 
primordia location P1 in (B). (B) SEM-CL image of region shown in Figure 4A. 
Daily increments are visible occurring in concentric bands surrounding a 
central core region housing three luminescent primordia (P1-3). 
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Figure 1. 

100f jm 
Figure 5: SEM-CL image of the core region of a polished otolith. Daily 
increments are visible occurring in concentric bands surrounding a 
luminescent central core region (C). 



Figure 11. 

Figure 6: (A) SEM-BSE image of primordia cluster (purple box) and the core 
boundary (light-coloured band highlighted by white brackets). (B) SEM-EDS 
maps of C (red), O (orange), Ca (yellow) and Mn (blue) collected from sample 
surface shown in Figure 6A. 
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Figure 11. 
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Figure 7: (A) TEM-HAADF image of the thin section milled from a region of 
the post-hatch otolith. Lighter, round nodules appear across sample surface 
area. Protective Pt coating on thin section appears as a bright layer along the 
top of the sample. (B) TEM-HAADF image of nodule; locations where EDS 
spectra were collected are labeled and denoted by small purple squares. EDS 
data included in Table 1. 
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Figure 11. 

Figure 8: Accompanying FFT of locations denoted in Table 2 (d-spacings 
inset). 
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Figure 11. 

Figure 9: (A) TEM-BF image of the thin section milled to include the otolith 
core region. Multiple circular primordia (denoted by "P") appear throughout. 
Numbers denote regions where high resolution images (and in some cases, 
FFT of these images) were collected (B) Bright field image of the interface 
between a primordium and the rest of the otolith core; an amorphous border 
separates the darker primordium interior and lighter exterior core region. 
Region 5-1 and 5-2 denote two areas where FFT (inset, right) was conducted 
on HRTEM images and d-spacings are included that were calculated from 
images of each area. 

61 



Figure 11. 
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Figure 10: FFT images accompanying locations denoted in Table 3. S-5-1 
and S-5-2 are also observed inset in Figure 9B. 
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Figure 11. 
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Figure 11: (A) TEM-HAADF image of a single primordium (large boxed 
region) in the thin section milled to include the otolith core region. Numbered 
boxed regions denote areas where EDS spectra were collected (spectra 
values included in Table 4). (B) STEM element maps of C, Ca, O and Mn. C, 
Ca and O appear to be less concentrated in the primordium. Mn occurs in 
relatively high concentrations at the centre of the primordium, and at the 
interface between the primordium and the surrounding core region. 
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