Low power two-channel PR QMF bank using CSD coefficients and FPGA implementation

Hongmei Zong
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Zong, Hongmei, "Low power two-channel PR QMF bank using CSD coefficients and FPGA implementation" (2008). Electronic Theses and Dissertations. 7878.
https://scholar.uwindsor.ca/etd/7878

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Low Power Two-Channel PR QMF Bank using CSD coefficients and FPGA Implementation

By

Hongmei Zong

A Thesis

Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at

The University of Windsor

Windsor, Ontario, Canada

2008

Library and
Archives Canada
Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliothèque et
Archives Canada
Direction du
Patrimoine de l'édition
395, rue Wellington Ottawa ON K1Ă 0N4
Canada

Your file Votre référence ISBN: 978-0-494-47038-1
Our file Notre référence
ISBN: 978-0-494-47038-1

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

© 2008 Hongmei Zong

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise retained in a retreival system or transmitted in any form, on any medium by any means without prior written permission of the author.

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University of Institution.

Abstract

Finite impulse response (FIR) filter is a fundamental component in digital signal processing. Two-channel perfect reconstruction (PR) QMF banks are widely used in many applications, such as image coding, speech processing and communications. A practical lattice realization of twochannel QMF bank is developed in this thesis for dealing with the wide dynamic range of intermediate results in lattice structure. To achieve low complexity and low power consumption of two-channel perfect reconstruction QMF bank, canonical signed digit (CSD) number system is used for representing lattice coefficients in FPGA implementation. Utilization of CSD number system in lattice structures leads to more efficient hardware implementation. Many fixed-point simulations were done in Matlab in order to obtain the proper fixed-point word-length for different signals. Finally, FPGA implementation results show that perfect reconstruction signal is obtained by using the proposed method. Furthermore, the power consumption using CSD number system for representing lattice coefficients is less than that obtained by using two's complement number system in two-channel QMF bank. A low complexity and low power twochanneI PR QMF bank using CSD coefficients was realized.

Acknowledgements

I would like to express my sincere appreciation to Dr. Esam Abdel-Raheem and Dr. Mohammed A. S. Khalid, my supervisors, for their invaluable guidance and encouragement. They guided me throughout my thesis with great patience. I would also like to express my gratitude to the other members of my committee, Dr. H. Wu and Dr. W. Abdul-Kader, for their kindness, and assistance. Also, I would like to thank Dr. R. Muscedere for installing software in my workstation and Dr. K. Tepe for offering research utilities in my new office.

There are also many people I need to thank, Junsong Liao, Jiuling Tang and Lan Xu , Raymond Lee and James Wiebe, they give me a lot of help during my master study period. Also I can't forget those days that I worked with my fellow graduate students of ECE, Omer Alryahi, Jason Tong and Thuan Le.

Next, I would like to thank my husband, Yan Wang. Without his understanding and help, I could never reach this milestone. Finally, I would like to express my sincere thank to my parents J. Zong and Y. Zhao for their everlasting support and encouragement in my life.

The computer and FPGA workstations were provided by Canadian Microelectronics Corporation (CMC) and their assistance is gratefully acknowledged.

Table of Contents

Author's Declaration of Originality iv
Abstract v
Acknowledgements vi
List of Figures. x
List of Tables xii
List of Abbreviations xiii
Chapter 1 1
Introduction 1
1.1 Digital Filter 1
1.2 FIR Filter 2
1.3 FIR Filter Bank 3
1.4 Thesis Objectives 4
1.5 Thesis Organization 5
Chapter 2 6
Review of Low Power FIR Filters 6
2.1 Power Consumption Equation 6
2.2 Pipelining and Parallel Processing 7
2.2.1 Pipelining 7
2.2.2 Parallel Processing 9
2.3 CSD Number System for Representing Filter Coefficients 10
2.3.1 CSD Number System 10
2.3.2 FIR Filter Coefficients Represented by CSD Number System 11
2.3.3 Conversion of Two's Complement Number to CSD Number 12
2.4 Computation Sharing 15
2.5 Summary 15
Chapter 3 16
A Practical Lattice Realization of Two-channel PR QMF Bank 16
3.1 Two-channel PR QMF Bank with Lattice Structure 16
3.2 A Practical Lattice Realization of Two-channel PR QMF Bank 18
3.3 Matlab Simulations. 20
3.3.1 Floating-point Simulations 21
3.3.2 Fixed-point Simulations. 23
3.4 Summary 29
Chapter 4 30
FPGA Implementation of Practical Two-channel PR QMF Bank using CSD Coefficients30
4.1 Introduction 30
4.2 FPGA Implementation 32
4.2.1 Lattice Coefficients Represented by CSD 33
4.2.2 Implementation Details 36
4.3 RTL Simulations 37
4.4 FPGA Implementation Results 43
Chapter 5 46
Conclusions and Future Work 46
References 47
Vita Auctoris 51

List of Figures

Number Page
Figure 1.1: DSP system with input and output 1
Figure 1.2: FIR filter structure 3
Figure 1.3: Two-channel FIR filter bank and polyphase structures 4
Figure 2.1: 4 tap FIR filter 8
Figure 2.2: Sequential system and parallel system 9
Figure 2.3: CSD multiplier 12
Figure 2.4: Flow chart for converting two's complement number to CSD number 14
Figure 3.1: Linear phase FIR PR QMF bank 17
Figure 3.2: A practical lattice structure of two-channel PR QMF bank 20
Figure 3.3: Ramp input (floating-point) 21
Figure 3.4: Analysis output H0 (floating-point) 22
Figure 3.5: Analysis output H1 (floating-point) 22
Figure 3.6: Synthesis output (floating-point) 23
Figure 3.7: Fixed-point synthesis output (Coef $(19,11)$, $\operatorname{Mul}(23,12))$ 25
Figure 3.8: Fixed-point synthesis output (Coef $(19,11)$, $\operatorname{Mul}(24,13))$ 25
Figure 3.9: Fixed-point synthesis output (Coef $(19,11), \operatorname{Mul}(25,14))$ 26
Figure 3.10: Fixed-point synthesis output $(\operatorname{Coef}(20,12)$, $\operatorname{Mul}(25,14))$ 26
Figure 3.11: Fixed-point synthesis output (Coef (21, 13), Mul (25, 14)) 27
Figure 3.12: Fixed-point synthesis output (Coef $(22,14)$, Mul $(25,14))$ 27
Figure 3.13 Mean square error ($\operatorname{Coef}(22,14)$, $\operatorname{Mul}(25,14))$ 28
Figure 4.1: Standard RTL design flow 32
Figure 4.2: FPGA implementation of multiplier with CSD coefficients 36
Figure 4.3: FPGA implementation of delay 37
Figure 4.4: Hierarchy of VHDL design 37
Figure 4.5: RTL synthesis output of CSDQMF1 39
Figure 4.6: RTL synthesis output of CSDQMF2 39
Figure 4.7: RTL synthesis output of CSDQMF3 40
Figure 4.8: Absolute error of CSDQMF3 40
Figure 4.9: Mean square error of CSDQMF3 41
Figure 4.10: RTL synthesis output of TwosCompQMF 41
Figure 4.11: Absolute error of TwosCompQMF 42
Figure 4.12: Mean square error of TwosCompQMF 42

List of Tables

Number Page
Table 2.1 Numbers represented by two's complement and CSD 11
Table 2.2 Conversion of two's complement numbers to CSD numbers 13
Table 3.1: Floating-point analysis bank and synthesis bank coefficients 19
Table 3.2: Scale factors applied in QMF bank 20
Table 3.3: Fixed-point word-length 24
Table 3.4: Fixed-point signals definition 28
Table 4.1: Fixed-point analysis filter bank coefficients 34
Table 4.2: Fixed-point synthesis filter bank coefficients 35
Table 4.3 FPGA utilizations 44
Table 4.4: The estimation of power consumption 45

List of Abbreviations

Abbreviation	Definition
ASIC	Application specific integrated circuit
CMOS	Complementary metal-oxide-semiconductor
CSD	Canonical signed digit
CSE	Common subexpression elimination
DCM	Differential coefficient method
DSP	Digital signal processing
FIR	Finite impulse response
FPGA	Field program gate array
HDL	Hardware description language
IIR	Infinite impulse response
LP	Linear phase
LUT	Lookup table
MSE	Mean square error
PDSP	Programmable digital signal processor
PR	Perfect reconstruction
QMF	Quadrature mirror filter

RTL
Register transfer level

WL
Word length

FWL
Fraction word length

IWL

Integer word length

Chapter 1

Introduction

1.1 Digital Filter

In digital signal processing (DSP), a filter removes unwanted parts of the signal, such as random noise, or extracts the useful parts of the signal, such as the components lying within a certain frequency range. There are many examples in which an input signal to a system contains extra unnecessary signals or additional noise which can degrade the quality of the desired portion. For example, in the case of the telephone system, there is no need to transmit very high frequencies since most speech falls within the band of 400 Hz to $3,400 \mathrm{~Hz}$. Therefore, in this case, all frequencies above and below that band are filtered out. Fig. 1.1 shows a digital filter works in DSP systems [1].

Figure 1.1: DSP system with input and output
In Fig. 1.1, $\mathrm{x}(\mathrm{n})$ is the digital input signal, with unwanted signal components, by passing through the digital filter, the desired signal $y(n)$ will be output.

There are two primary types of digital filters: finite impulse response (FIR) and infinite impulse response (IIR). For FIR filters, the output depends on the previous input samples and they have linear phase (LP) characteristics. Also, FIR filters are always stable. For IIR filters, the output depends on the previous input as well as output samples, and they do not have the LP characteristics. IIR filters work well on low-order taps, may not stable for the high-order taps. They are also difficult to implement, due to high complexity.

The basic filter types can be classified into four categories: lowpass, highpass, bandpass, and bandstop [1]. Each is utilized for different applications in DSP.

1.2 FIR Filter

FIR filters are one of the primary types of filters used in digital signal processing. FIR filters are said to be finite because they do not have any feedback. Therefore, if you send an impulse through the system then the output will invariably become zero as soon as the impulse runs through the filter. The mathematic equation of FIR filter is

$$
\begin{equation*}
Y[n]=\sum_{i=0}^{N-1} H[i] X[n-i] \tag{1.1}
\end{equation*}
$$

X represents input signal, H represents the filter Coefficients, Y, the output signal. Here n denotes the current output sample, and N is the number of taps of the filter [2]. FIR filters can be realized in direct, direct canonic, lattice, state-space, parallel and cascade forms [3]. In parallel implementations, there are two popular forms to realize FIR filters: direct form and transposed form [4] as shown in Fig. 1.2. As we can see in the figure, multipliers, adders and delay units are used to implement FIR filters. In the direct form, there are delay units between multipliers. At the time, when $X(n)$ is the input, $N-1$ previous samples are fed to each multiplier input, and the output $Y(n)$ is the sum of product of every multiplier[4]. In the transposed form, the delay units are placed between adders, so the multipliers are fed simultaneously. Thus, in some applications, the transposed form FIR filters is preferred.

(a) Direct form

Figure 1.2: FIR filter structure

1.3 FIR Filter Bank

Systems with different sampling rates are referred to as multirate systems. Multirate analysis/synthesis systems based on digital filter banks are used in many applications [5] [6] [7], such as subband image coding [8], split band voice coding [7] and transmultiplexers. Filter banks work by dividing a signal into frequency bands and then reconstructing the signal from the individual bands [9]. It is necessary to introduce two important concepts in multirate DSP systems: decimation and interpolation. Decimation reduces the sampling rate of a signal, also called downsampling. Interpolation increases the sampling rate of a signal, also called upsampling.

In this thesis, we consider two-channel FIR filter banks. A typical two channel filter bank as shown in Fig. 1.3 (a) [5], it divides an input sequence into its subband components (analysis phase) and reconstructs the sequence from the downsampled version of these subband components (synthesis phase) with little or no distortion [5]. Perfect reconstruction is no amplitude and phase distortion, and it is desired in the design of filter bank systems. Much work has been done on two-channel PR linear phase (LP) FIR filter banks [6] [9] [10] [11]. Novel factorization of the PR filter banks using the well-known polyphase form [see Fig. 1.3 (b) (c)] was reported in [5] [6] [10].

In Fig. 1.3 (a), $H O(z)$ and $H 1(z)$ are the lowpass and highpass transfer functions of analysis bank filters, downsampling and upsampling as the arrow shown between the analysis phase and synthesis phase, $G O(z)$ and $G 1(z)$ are the synthesis filters. $X(n)$ is input signal and $\hat{X}(n)$ is
reconstruction signal [6]. Fig. 1.3(b) and Fig. 1.3(c) show the filter bank with polyphase structures. It is well known that the reconstructed signal $\widehat{X}(z)$ can be related to the input signal $X(z) b y$

$$
\begin{equation*}
\hat{X}(z)=1 / 2[H 0(z) G 0(z)+H 1(z) G 1(z)] X(z)+1 / 2[H 0(-z) G 0(z)+H 1(-z) G 1(z)] X(-z) \tag{1.2}
\end{equation*}
$$

(a) Two-channel FIR filter bank

(b) The polyphase structure of analysis and synthesis filter bank

(c) The relationship between two polyphase metrics

Figure 1.3: Two-channeI FIR filter bank and polyphase structures

1.4 Thesis Objectives

Our research goal is to achieve low complexity and low power consumption in a twochannel PR QMF bank. We have done the investigation about reducing power consumption in filters based on algorithm and structure levels. Then, a practical lattice realization for twochannel PR QMF bank is presented. Canonical signed digit number system is applied in proposed
lattice structure when FPGA implementation is done. The work presented in this thesis is to confirm these three objectives:

- To investigate the novel and existing algorithms and structures to achieve the low complexity and low power consumption for two-channel FIR filter banks.
- To develop a practical lattice structure for hardware implementation of twochannel PR QMF bank.
- To apply CSD number system for representing lattice coefficients in FPGA implementation to achieve low power consumption.

1.5 Thesis Organization

This thesis is organized as follows:

Chapter 2 covers the literature review of algorithms and structures used to realize FIR filters and FIR filter banks with low power consumption and introduce the CSD number system.

In chapter 3, we introduce a two-channel PR QMF bank with lattice structure. A practical fixed-point lattice realization of two-channel PR QMF bank is developed. The Matlab simulations for the practical lattice realization of two-channel PR QMF bank are presented for both floatingpoint and fixed-point.

Chapter 4 introduces the background of DSP algorithms implementation on FPGAs and presents the FPGA implementation details for two-channel PR QMF bank. Then, RTL simulations using different word length for signals are described. Finally the FPGA implementation results are summarized for device utilization and power consumption. In chapter 5 we present conclusions and future work.

Chapter 2

Review of Low Power FIR Filters

The techniques used to achieve reduced power consumption in FIR filters range from algorithmic and architecture levels to gate, switch and device levels [12].In this thesis, we consider algorithm and architecture levels only. A review of technology and algorithms for reducing the power consumption in FIR filters is presented in this chapter. In section 2.1, the power dissipation equation in digital CMOS circuits is described. In the following sections, pipelining and parallel processing, common subexpression elimination, differential coefficients method and CSD number system are discussed.

2.1 Power Consumption Equation

In recent years, reduction of power consumption has become a very critical issue in the design of high-performance VLSI of DSP systems [12]. Computing systems demand minimizing the power dissipation due to limited battery power in portable computing and the difficulty of cooling in high speed signal processing [13]. Thus, it is necessary to know the main causes of power consumption in digital circuits. Power dissipation in digital CMOS circuits can be classified as switching dynamic power consumption and static power consumption [4] [13]. The dominant source of power dissipation in a digital circuit is the dynamic power dissipation which is determined by the following equation:

$$
\begin{equation*}
P_{\text {dynamic }}=\alpha C V_{d d}^{2} f \tag{2.1}
\end{equation*}
$$

Where α is the switching activity factor, C is the capacitance, $V_{d d}$ is the supply voltage, and f is the clock frequency [4]. To achieve low power consumption in circuits one or more of the parameters must be minimized. In the following sections, different technologies and algorithms for reducing power consumption in FIR filters are explained.

2.2 Pipelining and Parallel Processing

Pipelining and parallel processing are two major techniques for developing high speed and low power digital signal processing architectures. Pipelining and parallel processing in DSP systems are architecture level techniques used to reduce the power consumption.

2.2.1 Pipelining

Pipelining is a well-known technique to increase the system performance, and it reduces the effective critical path by introducing pipelining latches along the critical data path [14]. The example listed in the Fig. 2.1 can help us to understand the concept of pipelining. Consider a 4 tap FIR filter in Fig. 2.1(a), T_{M} is the multiplication time and T_{A} is addition time, so the critical path of this filter is $T_{M}+3 T_{A}$. For this FIR system, the sample period and sample frequency are given by equation 2.2 and 2.3.

$$
\begin{align*}
T_{\text {sample }} & \geq T_{M}+3 T_{A} \tag{2.2}\\
f_{\text {sample }} & \leq \frac{1}{T_{M}+3 T_{A}} \tag{2.3}
\end{align*}
$$

As we can see from the equation 2.3 , when increasing the tap of filters, the sampling frequency will be decreased. If some real-time applications require faster sample frequency, the FIR direct form structure can't be used. The answer to the problem may be properly placing the pipelining latches in the DSP architecture, show in Fig. 2.1(b). The critical path is reduced from $T_{M}+3 T_{A}$ to $T_{M}+2 T_{A}$. Thus, the sample frequency can be higher. In pipelined structures, where delay elements are inserted in DSP systems, it leads to a penalty of increasing the latency. The critical path is the longest path between two latches or between an input and a latch, or between a latch and an output, or between the input and the output. The speed of a DSP system depends on the length of the critical path. Latency is the total execution time, that is, the time between the arrival an input sample and the availability of the corresponding output data.

Figure 2.1: 4 tap FIR filter

The detailed power consumption equations both in original direct form FIR filter and pipelined FIR filter are illustrated in the following. The power consumption in the original direct form FIR filter is the same as equation 2.1.

$$
P_{\text {orig }}=\alpha C V_{d d}^{2} f, f=\frac{1}{T_{\text {orig }}}, \text { Where } T_{\text {orig }}: \text { The clock period of the direct form FIR filter }
$$

For pipelined system, if N-level pipelining introduced in the structure, the critical path could be reduced to $1 / \mathrm{N}$ of its original length. The capacitance to be charged and discharged in a single clock cycle is reduced to $1 / \mathrm{N}$ of its original capacitance. To keep the same clock speed, in the same time period only part of capacitance is being charged and discharged, thus the supply voltage can be reduced. The power consumption of the pipelined filter is verified in [14], it is shown in equation 2.4.

$$
\begin{equation*}
P_{\text {pipe }}=\alpha C V_{d d}^{2} f \beta^{2}=\beta^{2} P_{\text {orig }} \quad 0<\beta<1 \tag{2.4}
\end{equation*}
$$

The power consumption in the pipelined system is reduced by a factor of β^{2}, compare to the original direct form FIR system.

2.2.2 Parallel Processing

When multiple outputs are computed in parallel in a single clock period, we have parallel processing. Parallel processing increases the sampling rate by replicating hardware so that several inputs can be processed in parallel and several outputs can be produced at the same time. It also called block processing, and the number of inputs processed in a clock cycle is called block size. Fig. $2.2[14]$ shows the sequential system with single input and single output and 3parallel system. In Fig. 2.2 (b), for the k-th clock cycle, there are 3 inputs $x(3 k), x(3 k+1)$ and $x(3 k+2)$ processed and 3 samples $y(3 k), y(3 k+1)$ and $y(3 k+2)$ output in the same clock cycle. Parallel processing is known as multiple-input multiple-output system.

Figure 2.2: Sequential system and parallel system

In multiple-input multiple-output system, the sample period is different with clock period as the following equation 2.5 shows.

$$
\begin{equation*}
T_{\text {sample }}=\frac{T_{c l o c k}}{L} \tag{2.5}
\end{equation*}
$$

Parallel processing can also be used to reduce the power consumption by using slower clocks. From equation 2.5, $T_{\text {clock }}$ equals to L times $T_{\text {sample, }}$ in order to maintain the same sample rate, the clock period of the L-parallel circuit is increased to L times $T_{\text {seq }}$ (Where $T_{\text {seq }}$ is the propagation delay of the original sequential circuit). It means that the time to charge or discharge capacitance is L times longer. In other words, the supply voltage can be reduced since
there is more time to charge the same capacitance. The power dissipation is reduced in parallel processing as well.

As mentioned above, pipelining reduces the capacitance to be charged or uncharged in one clock period, while parallel processing increases the clock period for charging or discharging the original capacitance. Therefore, pipelining and parallel processing can be combined for realizing low power consumption system.

2.3 CSD Number System for Representing Filter Coefficients

CSD for representing FIR filter coefficients was proposed by many papers [8] [15] [16] [17] [18] [19] [20]. In this section, we give an explanation on how to reduce the complexity of hardware implementation and power consumption in FIR filters by using CSD number system. Also, the conversion method from two's complement number to CSD number is presented.

2.3.1 CSD Number System

Signed digit number system was described by Avizienis [21] in 1961 in order to improve speed in arithmetic computation [17]. The CSD representation of a number is the minimumweight binary signed digit representation [14]. The digit set $\{-1,0,1\}$ is used for CSD number system. CSD number system has the following properties: 1. No two consecutive digits in a CSD number are non-zero. It implies that for an n-digit number, there are at most $n / 2$ non-zero digits. 2. The CSD representing a number contains the minimum possible number of non-zero digits. 3 . The CSD representing a number is unique. Table 2.1 shows a set of numbers represented by two's complement and CSD where 1 represents $\mathbf{- 1}$.

Table 2.1 Numbers represented by two's complement and CSD

Two's Complement	\# of Non-Zero digits	CSD	\# of Non-Zero digits
111111111101010101	14	000000000101010101	5
111111110000001110	11	$0000000 \underline{10000010010}$	3
001011101100110001	9	010100010101010001	7
000000010000010000	2	000000010000010000	2
111111110000010011	11	000000010000010101	4
010001111100110010	9	010010000101010010	6
000000001111111100	8	000000010000000100	2
010010010100101100	7	010010010101010100	7
111111111010101110	14	000000000101010010	4
Total Non-zero digits	85	Total Non-zero digits	40

It is shown from Table 2.1 that the probability of a digit being zero is roughly 75% for CSD and 48% for two's complement, so there are more non-zero digits in two's complement number system to represent a number than in CSD number system. It is presneted in [17] that the probability of a digit being zero is roughly $2 / 3$ for CSD representation and exactly $1 / 2$ for two's complement. Thus, using CSD to represent FIR filter coefficients leads to reducing the implementation complexity of multiplications in FIR filter's structure.

2.3.2 FIR Filter Coefficients Represented by CSD Number System

The properties of CSD representation have been illustrated in the above sections. The number represented by CSD has less non-zero digit than that represented by two's complement. It is well known that multiplication procedure was multiplicand shift and add when there is nonzero digit in multiplier, the more non-zero digits in multiplier, the more shifters and adders needed. Thus, using CSD to represent FIR filter coefficients can lead to reducing the number of shifters and adders in multiplications, meanwhile, the implementation complexity is reduced as well. Obviously, using CSD number system to present coefficients of FIR filter is another method to achieve low power design. Example in Fig. 2.3 shows that input signal x multiplied with a CSD coefficient 0.01010101001 . We can see that multipliers in the filter whose coefficients are expressed as CSD code are realized with wired-shifters, adders and subtracters [18].

Figure 2.3: CSD multiplier

2.3.3 Conversion of Two's Complement Number to CSD Number

In arithmetic computing and digital signal processing, two's complement representation is used more often. In Matlab fixed-point tool box, two's complement number system is used for representation binary numbers. It is necessary to discuss the conversion algorithm from two's complement to CSD in this part. In [23], a conversion table and the flow chart are given for converting two's complement numbers to CSD numbers. They are listed separately in Table 2.2 and Fig. 2.4. The digit x_{i} and x_{i+1} are adjacent digits of the two's complement number and the digit, c_{i}, is CSD digit. In Fig. 2.4, $X=x_{n} x_{n-1} x_{n-2} \ldots . . x_{2} x_{1} x_{0}$ is two's complement number and $C=c_{n-1} c_{n-2} c_{n-}$ $3 . \ldots . \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$ is CSD number [17].

Table 2.2 Conversion of two's complement numbers to CSD numbers

Carry-in	x_{i+1}	x_{i}	Carry-out	c_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	-1
1	0	0	0	1
1	0	1	1	0
1	1	1	1	-1
1	0	1	0	

Figure 2.4: Flow chart for converting two's complement number to CSD number

2.4 Computation Sharing

In this section, some computation sharing algorithms are briefly presented, such as common subexpression elimination (CSE) and differential coefficients method (DCM).

The CSE approach has been proposed in [15] [16] [24] [25] [26]. The CSE techniques deal with the multiplication of one variable with several constants and it focuses on eliminating redundant computations in multiplier blocks using the most commonly occurring subexpressions that exist in the constants [16]. CSE has been utilized as a tool in FIR filter design to reduce the number of arithmetic units (adders and shifters) [27]. However the filter structure obtained using CSE is highly irregular.

The other commonly used algorithm, differential coefficients method (DCM) [28] uses differential coefficients to multiply with inputs instead of the coefficients directly. Since differential coefficients have shorter word length, the resulting design can also use shorter word length, and thus can reduce power consumption [27]. Many papers [27] [28] [29] [30] focus on the different order DCM algorithm. These computation sharing algorithms are not very useful when the structure of FIR filters is not in transposed form.

2.5 Summary

In this chapter, we provide most of the background information that is related to our research work. We first introduce the power consumption equation in digit CMOS circuits, since our objective is to reduce the power consumption in digital filters. Then, pipelining and parallel processing methods for low power FIR filters were presented, and they are based on structure level. Next, the CSD number system is illustrated. Also we analyzed the way that CSD is used to represent coefficients of FIR filter, resulting in low implementation complexity at the algorithm level. Finally, we gave a brief description of CSE and DCM, and these two techniques are used at algorithm level to reduce the power consumption in FIR filters.

Chapter 3

A Practical Lattice Realization of Two-channel PR QMF Bank

In this chapter, we present the practical lattice realization of two-channel perfect reconstruction (PR) QMF bank which is developed during this thesis work. We start by introducing a two-channel PR QMF bank with lattice structure in section 3.1. Then, our proposed practical lattice realization of two-channel PR QMF bank is presented in section 3.2. In the next section, the simulation results are presented for floating-point and fixed-point from Matlab based on our proposed practical lattice structure of two-channel PR QMF bank. Summary is provided in the last section.

3.1 Two-channel PR QMF Bank with Lattice Structure

In some applications it is desirable to have a filter bank in which the analysis filters are constrained to have linear phase. Such systems are called LP filter banks [31]. Meanwhile, a common requirement in most applications is that the reconstructed signal $\widehat{X}(z)$ should be "as close" to $\mathrm{X}(\mathrm{z})$ as possible in some well-defined sense. A filter bank system that is free from aliasing, amplitude, and phase distortions is called a perfect reconstruction filter bank [6]. In this section, we concentrate on two-channel quadrature mirror filter (QMF) bank which satisfies the PR property.

The lattice structure for LP FIR PR QMF banks was presented by Vaidyanathan [31]. The author demonstrated the lattice structure shown in Fig. 3.1. In this structure, the LP and PR properties have been verified [31]. The advantages have been listed as follows in [31]: 1. The lattice has the lowest implementation complexity among all known structures with paraunitary $\mathrm{E}(z)$. 2. Perfect reconstruction property is preserved in spite of coefficient quantization. 3. The analysis filters can provide excellent attenuation. Based on these properties above, the QMF bank with lattice structure is adopted in my thesis.

In Fig. 3.1, the analysis bank, synthesis bank and the details of the building block are shown as the following. $K(m)$ is the lattice coefficient.

(a) Analysis bank

(b) Synthesis bank

(c) Details of building block

Figure 3.1: Linear phase FIR PR QMF bank

3.2 A Practical Lattice Realization of Two-channel PR QMF Bank

To ensure the PR and LP properties, we use the lattice coefficients from [6]. It is a 64 tap FIR filter bank with the number of 32 lattice sections. Table 3.1 shows the floating-point analysis bank coefficients and synthesis bank coefficients and this two set of coefficients are opposite symmetry. They have a high precision and a wide range from -73.3 to 73.3 .

Based on the structure presented in the previous section and the coefficients in Table 3.1, the intermediate results in this structure could be as large as 10^{9}. For fixed-point arithmetic, it requires 30 binary bits to represent the integer part and more than 10 binary bits for the fractional part. Therefore, more than 40 binary digits are needed for the fixed-point signals in this structure and it is not acceptable for hardware implementation. Thus, this lattice structure can't be used for hardware implementation of two-channel PR QMF bank.

In order to solve the problem, scaling factors are introduced in the lattice structure of twochannel QMF bank. Based on analysis of intermediate value of the results in each lattice section from Matlab floating-point simulation, a set of scale factors are obtained. The values and the positions of these factors are listed in Table 3.2. There are 6 scale factors for analysis bank also 6 scale factors for synthesis bank. After introducing these factors, the intermediate results in the QMF lattice structure could be in a reasonable range for hardware implementation. Fig. 3.2 shows the structure of our proposed practical lattice realization of two-channel PR QMF bank. This structure is used in Matlab floating-point simulations, fixed-point simulations and FPGA implementations as well.

Table 3.1: Floating-point analysis bank and synthesis bank coefficients

m	Analysis Coefficients	Synthesis Coefficients
1	-0.16748024178056	31.040193536859
2	-0.98630142049519	-0.68112439023728
3	46.797422738757	0.19132416529613
4	1.0155415002447	0.20699149394524
5	-0.98123943672420	-1.2034512561861
6	71.799272118326	-11.636158464610
7	0.99604836163496	1.0358588647791
8	73.293136853215	2.7082137206053
9	-0.32992582104225	-0.84932894911060
10	-0.58756852009572	34.634777587712
11	0.68608642287498	8.7549576287234
12	-6.8758613928422	-0.20497603236147
13	-1.0899663381059	-0.91309339992145
14	0.70138304837561	14.637818055814
15	1.9359402130086	1.0546765432115
16	32.412571811713	2.2762581355052
17	-2.2762581355052	-32.412571811713
18	-1.0546765432115	-1.9359402130086
19	-14.637818055814	-0.70138304837561
20	0.91309339992145	1.0899663381059
21	0.20497603236147	6.8758613928422
22	-8.7549576287234	-0.68608642287498
23	-34.634777587712	0.58756852009572
24	0.84932894911060	0.32992582104225
25	-2.7082137206053	-73.293136853215
26	-1.0358588647791	-0.99604836163496
27	11.636158464610	-71.799272118326
28	1.2034512561861	0.98123943672420
29	-0.20699149394524	-1.0155415002447
30	-0.19132416529613	-46.797422738757
31	0.68112439023728	0.98630142049519
32	-31.040193536859	0.16748024178056

Table 3.2: Scale factors applied in QMF bank

Scale	Analysis bank						Synthesis bank					
Position	$k 11$	$k 16$	$k 22$	$k 26$	$k 31$	$k 32$	$k 7$	$k 10$	$k 16$	$k 24$	$k 26$	$k 32$
Value	$1 / 128$	$1 / 256$	$1 / 8$	$1 / 4$	$1 / 4$	$1 / 256$	$1 / 64$	$1 / 32$	$1 / 128$	$1 / 32$	$1 / 16$	$1 / 8$

(a)The practical lattice structure of two-channel QMF analysis bank

(b) The practical lattice structure of two-channel QMF synthesis bank

Figure 3.2: A practical lattice structure of two-channel PR QMF bank

3.3 Matlab Simulations

In this section, simulation results from Matlab for the practical lattice realization of twochannel PR QMF bank are presented for both floating-point and fixed-point. The architecture that we used for simulations is illustrated in Fig. 3.2 in the previous section.

3.3.1 Floating-point Simulations

The coefficients listed in Table 3.1 are used in the floating-point simulation. We use ramp signal as the input to analysis bank which is shown in Fig.3.3. After processing by the analysis bank, two outputs H 0 and H 1 are obtained as shown in Fig. 3.4 and Fig.3.5. Then, analysis output HO and H 1 are processed by downsampling and upsampling with factor 2 , the downsampled and upsampled signals are the inputs signal to the synthesis bank. Synthesis bank output known as the reconstructed signal is almost perfect ramp signal with 63 sample delay. It is shown in Fig. 3.6. It is obvious that the floating-point simulations for this design get almost PR performance. Thus, after applying the scale factors in lattice structure of two-channel QMF bank, it can get nearly perfect signal construction.

Figure 3.3: Ramp input (floating-point)

Figure 3.4: Analysis output HO (floating-point)

Figure 3.5: Analysis output H 1 (floating-point)

Figure 3.6: Synthesis output (floating-point)

3.3.2 Fixed-point Simulations

The fixed-point simulations are carried out by using fixed-point tool-box of Matlab. The number system used in Fixed-point simulation is two's complement which has a numeric range of $\left(-2^{\text {IWL-1 }}, 2^{\text {IWL-1 }}-2^{-\mathrm{FWL}}\right)$ and a resolution of $2^{-\mathrm{FWL}}$. Thus, the more bits used for fractional wordlength, the more precision is achieved in the design.

The fixed-point simulation is to select word-length (WL), including integer word-length (IWL) and fractional word-length (FWL) for each variable in the design in order to achieve the precision required by the system and avoid overflow. The fixed-point simulation results from Matlab are very important for register transfer level (RTL) model design in the next chapter and they also can be used to verify the RTL design.

In Matlab fixed-point simulation part, extensive simulations have been done based on different word-length and fractional word-length definitions for coefficients and multipliers in the two-channel PR QMF bank structure and then to analyze and compare these simulation results. Finally, the proper fixed-point word-length is set for all the variables. In this section, the simulations for different WL and FWL definition of variables are illustrated.

For the fixed-point definition of these variables, the input signal x is set to 16 bit for WL and 15 bit for FWL. There are different word-length definitions for coefficients and multipliers in the simulations. They are shown in Table 3.3. For the outputs of analysis bank, synthesis bank and adders, they keep the same WL and FWL definitions as the multipliers'.

Table 3.3: Fixed-point word-length

Variable	Word-length (total, fractional)					
Coefficient	$(19,11)$	$(19,11)$	$(19,11)$	$(20,12)$	$(21,13)$	$(22,14)$
Multiplier	$(23,12)$	$(24,13)$	$(25,14)$	$(25,14)$	$(25,14)$	$(25,14)$

The ramp signal is also used as input signal to analysis bank in fixed-point simulations. The simulation results from the proposed QMF bank with these variable definitions are shown in the following figures. In the first attempt, seen in Fig. 3.7, the reconstruction signal shows distortion for all samples and with large error in the last a few samples. This result is not acceptable. Thus, we increase the word-length for the multiplier to $(24,13)$. The distortion of the reconstruction signal in Fig. 3.8 is not as much as it is in the Fig. 10, but can still be improved. By continuing to increase the word-length of the multiplier to $(25,14)$, as in Fig.3.9, the reconstruction signal is much better than the previous two. However the large error in the last a few samples is not improved by increasing the word-length for multiplier.

In the next step, we keep the multiplier word-length with $(25,14)$, and try to increase the coefficient word-length. In Fig. 3.10, the error in the last a couple of samples is improved by increasing the word-length of coefficients to $(20,12)$. As we can see from Fig. 3.10 , increasing the coefficient word-length will improve the filter's performance. We continued to increase the coefficient word-length in Figure3.11 and 3.12. A best reconstruction signal is obtained in Fig. 3.12 when a coefficient word-length of $(22,14)$ is used. The Mean square error is calculated comparing with floating-point simulation result in Fig.3.13. The maximum MSE is -38.5 dB which is good enough to meet the system requirement. The fixed-point definition for all the variables in the best fixed-point simulation is listed in Table 3.4.

Figure 3.7: Fixed-point synthesis output (Coef $(19,11)$, $\operatorname{Mul}(23,12))$

Figure 3.8: Fixed-point synthesis output ($\operatorname{Coef}(19,11), \operatorname{Mul}(24,13))$

Figure 3.9: Fixed-point synthesis output ($\operatorname{Coef}(19,11), \operatorname{Mul}(25,14))$

Figure 3.10: Fixed-point synthesis output (Coef $(20,12)$, $\operatorname{Mul}(25,14))$

Figure 3.11: Fixed-point synthesis output (Coef $(21,13), \operatorname{Mul}(25,14))$

Figure 3.12: Fixed-point synthesis output (Coef (22, 14), $\operatorname{Mul}(25,14))$

Figure 3.13 Mean square error $(\operatorname{Coef}(22,14), \operatorname{Mul}(25,14))$

Table 3.4: Fixed-point signals definition

signal	Definition (WL, FWL)
input	$(16,15)$
coefficient	$(22,14)$
multiplier	$(25,14)$
adder	$(25,14)$
output	$(25,14)$

3.4 Summary

In this chapter, we first introduced the two-channel PR QMF bank with lattice structure. Then we presented our proposed practical lattice realization of two-channel PR QMF bank and described the reason why we introduced the scale factors. The values and the positions of these scale factors are obtained by analyzing the simulation results. In section 3.3, many simulations were done for different WL and FWL for all variables and the best result from fixed-point simulation is achieved due to the precision requirement of the system. The fixed-point definition for all the variables and the proposed practical lattice structure for two-channel PR QMF bank will be used in the FPGA implementation section.

Chapter 4

FPGA Implementation of Practical Two-channel PR QMF Bank using CSD Coefficients

4.1 Introduction

DSP algorithms have been implemented using application-specific integrated circuits (ASICs) or programmable digital signal processors (PDSPs) for many years. However, Modern FPGAs may be better for implementation DSP designs, since they provide millions of gates, hundreds of adders, built-in DSP support such as embedded multipliers, block RAMs, etc. Many high performance DSP algorithms are implemented in FPGAs [32] [33].

The basic top-down FPGA design flow for DSP algorithms is illustrated in Fig. 4.1 [33]. There are usually two sets of design tools used in this design flow. The first is for developing and analyzing DSP algorithms, such as Matlab. The other is FPGA development and synthesis tool, such as ISE from Xilinx and Quartus II from Altera.

The first step in the design flow is DSP algorithm development and analysis which is accomplished by using high level languages, such as $\mathrm{C}, \mathrm{C}++$ or Matlab. Normally, it is a floatingpoint algorithm model, and it needs to be converted to the equivalent fixed-point model for hardware implementation. After creating and verifying floating-point and fixed-point models, manually or automatically creating the equivalent RTL models and testbenches is called hardware specification. There are some design tools from FPGA vendors can help designers convert fixed-point DSP models to RTL models automatically, such as, system generator from Xilinx and DSP builder from Altera. However, for custom designs, those design tools can't help too much. Thus, we still need to do it manually.

RTL design refers to the methodology of modeling a sequential circuit as a set of registers and a set of transfer functions which describe the flow of data between the registers [33]. The RTL simulation is to verify the functionality of RTL model with the fixed-point DSP algorithm. Timing and resource usage information will be obtained after logic synthesis which is automatically executed by FPGA design software. Physical synthesis followed by logic synthesis, which is typically carried out using FPGA vendor place and route tools. In order to verify the design, equivalence checking is carried out after both logic synthesis and physical synthesis. The last step in the design flow is the generation of a bit file to program the FPGA.

In the following sections, the FPGA implementation of a practical two-channel PR QMF bank using CSD coefficients is illustrated. The implementation results for resource utilization and estimation of power consumption are presented.

Figure 4.1: Standard RTL design flow

4.2 FPGA Implementation

In this section, some FPGA implementation issues are presented. In section 4.2.1, the lattice coefficients for implementation of practical two-channel QMF bank are represented using CSD number system. In section 4.2.2, the implementation methods of multipliers with CSD coefficients and delay elements are presented, also the hierarchy of VHDL design files is described.

4.2.1 Lattice Coefficients Represented by CSD

As we can see from Fig. 3.2, the filter bank operation requires many multiplications and additions. Multiplication, in particular, is extremely complex and power consuming. In order to reduce the complexity of multipliers as well as power consumption, CSD number system is used to represent lattice coefficients for FPGA implementation. In this section, a set of fixed-point coefficients obtained in fixed-point simulations are described.

The fixed-point analysis bank and synthesis bank coefficients used in FPGA implementation are listed in Table 4.1 and Table 4.2, the last two columns in each table show two's complement representation and CSD representation, ($\underline{1}$ denotes -1) respectively. The conversion method shown in Fig. 2.4 is used for converting two's complement numbers to CSD numbers. The wordlength and fractional word-length are 22 digits and 14 digits for two's complement and CSD, respectively.

From Table 4.1 and 4.2, we can see that for each coefficient the number of non-zero digits represented by CSD is much less than that for two's complement. Additions or subtractions used in multiplications are reduced if we use CSD number system to represent coefficients instead of two's complement number system. Meanwhile, the complexity of the multiplication is reduced. Also, the critical path delay could be minimized, especially when the number of taps is large.

Table 4.1: Fixed-point analysis filter bank coefficients

m	Analysis Coefficients	Two's Complement	CSD
1	-0.167480468750000	1111111111010101001000	0000000001010101001000
2	-0.986328125000000	1111111100000011100000	0000000100000100100000
3	46.797363281250000	0010111011001100001000	0101000101010100001000
4	1.015502929687500	0000000100000011111110	0000000100000100000010
5	-0.981262207031250	1111111100000100110011	0000000100000101010101
6	71.799255371093750	0100011111001100100111	0100100001010100101001
7	0.996032714843750	0000000011111110111111	0000000100000001000001
8	73.293090820312500	0100100101001011000010	0100100101010101000010
9	-0.329956054687500	1111111110101011100010	0000000001010100100010
10	-0.587585449218750	1111111101101001100101	0000000010101010100101
11	0.686035156250000	0000000010101111101000	0000000101010000101000
12	-6.875915527343750	1111100100011111110001	0000100100100000010001
13	-1.090026855468750	1111111011101000111101	0000000100101001000101
14	0.701354980468750	0000000010110011100011	0000000101010100100101
15	1.935913085937500	0000000111101111100110	0000001000010000101010
16	32.412536621093750	0010000001101001100111	0010000010101010101001
17	-2.276306152343750	1111110110111001010001	0000001001001001010001
18	-1.054687500000000	1111111011110010000000	0000000100010010000000
19	-14.637878417968750	1111000101011100101101	0001001010100101010101
20	0.913085937500000	0000000011101001110000	0000000100101010010000
21	0.204956054687500	0000000000110100011110	0000000001010100100010
22	-8.755004882812500	1111011100111110101110	0000100101000001010010
23	-34.634826660156250	1101110101011101011111	0010001010100010100001
24	0.849304199218750	0000000011011001011011	0000000100101010100101
25	-2.708251953125000	1111110101001010101100	0000010101010101010100
26	-1.035888671875000	1111111011110110110100	0000000100001001010100
27	11.636108398437500	0000101110100010110110	0001010010100101001010
28	1.203430175781250	0000000100110100000101	0000000101010100000101
29	-0.207031250000000	1111111111001011000000	0000000001010101000000
30	-0.191345214843750	1111111111001111000001	0000000001010001000001
31	0.681091308593750	0000000010101110010111	0000000101010010101001
32	-31.040222167968750	1110000011110101101101	0010000100001010010101

Table 4.2: Fixed-point synthesis filter bank coefficients

m	Synthesis Coefficients	Two's Complement	CSD
1	31.040161132812500	0001111100001010010010	0010000100001010010010
2	-0.681152343750000	1111111101010001101000	000000101010010101000
3	0.191284179687500	0000000000110000111110	0000000001010001000010
4	0.206970214843750	0000000000110100111111	0000000001010101000001
5	-1.203491210937500	1111111011001011111010	0000000101010100001010
6	-11.636169433593750	1111010001011101001001	0001010010100101001001
7	1.035827636718750	0000000100001001001011	0000000100001001010101
8	2.708190917968750	0000001010110101010011	0000010101010101010101
9	-0.849365234375000	1111111100100110100100	000000100101010100100
10	34.634765625000000	0010001010100010100000	0010001010100010100000
11	8.754943847656250	0000100011000001010001	0000100101000001010001
12	-0.205017089843750	1111111111001011100001	0000000001010100100001
13	-0.913146972656250	1111111100010110001111	0000000100101010010001
14	14.637817382812500	0000111010100011010010	0001001010100101010010
15	1.054626464843750	0000000100001101111111	0000000100010010000001
16	2.276245117187500	0000001001000110101110	0000001001001001010010
17	-32.412597656250000	1101111110010110011000	0010000010101010101000
18	-1.935974121093750	1111111000010000011001	0000001000010000101001
19	-0.701416015625000	1111111101001100011100	0000000101010100100100
20	1.089965820312500	0000000100010111000010	0000000100101001000010
21	6.875854492187500	0000011011100000001110	0000100100100000010010
22	-0.686096191406250	1111111101010000010111	0000000101010000101001
23	0.587524414062500	0000000010010110011010	0000000010101010101010
24	0.329895019531250	0000000001010100011101	0000000001010100100101
25	-73.293151855468750	1011011010110100111101	0100100101010101000101
26	-0.996093750000000	1111111100000001000000	0000000100000001000000
27	-71.799316406250000	1011100000110011011000	0100100001010100101000
28	0.981201171875000	0000000011111011001100	0000000100000101010100
29	-1.015563964843750	1111111011111100000001	0000000100000100000001
30	-46.797424316406250	1101000100110011110111	0101000101010100001001
31	0.986267089843750	0000000011111100011111	0000000100000100100001
32	0.167419433593750	0000000000101010110111	0000000001010101001001

4.2.2 Implementation Details

The practical lattice structure of two-channel PR QMF bank in Fig. 3.2 was used for FPGA implementation. There are three basic elements in this structure, CSD multipliers, adders and delay elements.

Multipliers with CSD coefficients can be realized using wired shifters, adders and subtracters. It is easy to implement addition, subtraction and shifting by programming hardware description language (HDL) for RTL model, we used VHDL to describe the RTL model in this thesis work. The same word-length and fractional word-length for multipliers' input and output are used, and 3 more digits are kept for the partial products in multipliers in order to minimize the truncation error [34].

Fig. 4.2 shows an example of using CSD coefficient for multiplication. It shows input X multiplied by a CSD coefficient, 0.01010101001 . There is a shift operation for each non-zero digit, thus, 5 shifts, 1 addition and 3 subtractions are needed in this multiplication. X has the word-length of 25 bits, for partial products after shifting, 28 bits are remained. The multiplication result is truncated to 25 digits after accumulating all the partial products. Note that X and partial products in the multipliers also the output from the multiplier are represented by two's complement number system.

Figure 4.2: FPGA implementation of multiplier with CSD coefficients

The delay element can be implemented using D flip-flop, one D flip-flop can cause one clock delay. If a system sampling frequency equals to clock frequency, two sequent D flip-flops have the function of two sampled delay, as shown in Fig. 4.3.

Figure 4.3: FPGA implementation of delay

The hierarchy of VHDL design is illustrated in Fig.4.4, where CSDQMF is the top model and analysis bank, synthesis bank, adders and multipliers are sub models. The top model described the analysis bank and synthesis bank architectures including inputs and outputs. All these multiplier sub models described the multiplication using CSD coefficients.

Figure 4.4: Hierarchy of VHDL design

4.3 RTL Simulations

Xilinx ISE 9.1i was used for the RTL simulations. Testbenches were designed for testing the RTL models. The output signal from RTL simulations is a binary array. We convert the output signal from a binary array to a decimal array and plot in Matlab environment.

There are four different RTL models, CSDQMF1, CSDQMF2, CSDQMF3, TwosCompQMF, using our practical lattice structure for two-channel QMF bank. The simulation results of these designs are shown in Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.10, respectively. The difference between all these models is that the first three models use the CSD multipliers with different word-length and fractional word-length for coefficients and multipliers, the fourth one is the model which use the multipliers embedded in the target FPGA device.

The simulation result of CSDQMF1 is illustrated in Fig. 4.5, where the WL and FWL for coefficients and multipliers are $(19,11)$ and $(23,12)$, respectively. We can see from the figure that synthesis output is distorted for all samples. The simulation result of CSDQMF2 is shown in Fig. 4.6, the performance of synthesis output is better than the first simulation result with increasing the word-length of multipliers to $(25,14)$,and keep $(19,11)$ for coefficients. Fig. 4.5 and Fig. 4.6 are very similar to that of the fixed-point Matlab simulation results.

Fig. 4.7 shows the simulation result of CSDQMF3, where the WL and FWL are $(25,14)$ for multipliers and $(22,14)$ for coefficients. The simulation described in Fig. 4.7 is the RTL model which used the fixed-point definition listed in Table 3.4. Comparing Fig. 4.7 with Fig. 3.12, the RTL simulation get almost perfect signal reconstruction for our proposed practical two-channel PR QMF bank using CSD coefficients and achieve as good performance as the fixed-point simulation. Furthermore, the absolute error between Fig. 4.7 and floating-point simulation Fig. 3.6 are listed in Fig. 4.8 and MSE is calculated in Fig. 4.9 for the RTL simulation. The maximum MSE for the RTL simulation is -39.5 dB whereas the maximum MSE is -38.5 dB in fixed-point simulation.

The simulation of TwosCompQMF in Fig. 4.10 is the RTL design using the multipliers embedded in the target FPGA chip, in which two's complement number system is applied. The word-length definition for all the signals in this model is the same as CSDQMF3. The synthesis output performance in Fig. 4.10 is a little bit better than the simulation result in Fig. 4.7 and the maximum MSE is -52.4 dB . The reason why we create TwosCompQMF is that we want to compare the QMF bank's performance as long as the resource utilization and estimated power consumption when CSD used for coefficients rather than the common method in the next section.

Figure 4.5: RTL synthesis output of CSDQMF1

Figure 4.6: RTL synthesis output of CSDQMF2

Figure 4.7: RTL synthesis output of CSDQMF3

Figure 4.8: Absolute error of CSDQMF3

Figure 4.9: Mean square error of CSDQMF3

Figure 4.10: RTL synthesis output of TwosCompQMF

Figure 4.11: Absolute error of TwosCompQMF

Figure 4.12: Mean square error of TwosCompQMF

4.4 FPGA Implementation Results

Four designs mentioned in section 4.3 have been implemented in the Xilinx FPGA using ISE 9.1i CAD tool suite. The target device is xc2vp100-6ff1696 from Xilinx Virtex II Pro PFGA family. All these designs were synthesized using most of the default settings. Table 4.3 summarizes the resource utilization after synthesis of these four designs.

The first column shows the resource of the target device, there are 44096 slices and 88192 slices flip flops. The number of four-input LUT is 88192 and the number of 18 bit by 18 bit multipliers is 444 , also, Bounded I/O blocks and global clocks are 1164 and 16 , respectively. The resource utilization for these four designs is shown in Table 4.3.

As we can see from Table 4.3, when we increased the word-length for multipliers and coefficients, the utilization of the slices was increased from 18.5% to 20.2% and 23.8% for the first three designs, however, 14.7% for the TwosCompQMF. The utilization for four-input LUT was also increased from 16.1% to 17.7% and 21.1%, but 11.8% for the fourth design. It make sense that the number of slices and four-input lookup table are increased from CSDQMF1 to CSDQMF3, since the longer word-length used for signals, the more wires and LUTs used for complete the multiplication performance. For TwosCompQMF, Multiplications are accomplished by using the embedded multipliers, there must be saved for the slices and LUTs.

For the number of slices flip flops and bonded I/O blocks, these four designs almost consume the same resource. There is no usage for 18 bit by 18 bit multipliers in the first three designs, but 258 multipliers out of 444 are used in TwosCompQMF. In the bottom of Table 3.4, the total equivalent gate count for these four designs is listed as: 183958, 201620, 236205 and 1181302. It gives us a main idea of the total hardware usage for these four designs, and we will focus on the last two designs. The results show that using the proposed multipliers with CSD coefficients to implement two-channel QMF bank, lead to a reduction of 80% in hardware when compare to the same design which used embedded multipliers.

The maximum clock frequencies obtained after RTL synthesis for the last two designs, are 5.2 MHz and 5.7 MHz , respectively. It can run a little bit fast if the design using embedded multipliers. The speed is not an issue for imaging coding. The design is not required to run a fast speed.

Table 4.3 FPGA utilizations

Design		CSDQMF 1		CSDQMF2		CSDQMF3		TwosCompQMF	
Resource	Available	Used	Utilization	Used	Utilization	Used	Utilization	Used	Utilization
Num. of slices	44096	8159	18.5%	8922	20.2%	10494	23.8%	6479	14.7%
Num. of slices Flip Flop	88192	2760	3.1%	3010	3.4%	3018	3.4%	3009	3.4%
Num. of 4 input LUT	88192	14221	16.1%	15616	17.7%	18674	21.1%	10471	11.8%
Num. of	1164	41	3.5%	43	3.7%	43	3.7%	43	3.7%
Bounded IOBs									
Num. of MULT 18x18s	444	0	0	0	0	0	0	258	58.1%
Num. of GCLKs	16	1	6.3%	1	6.3%	1	6.3%	1	6.3%
Total equivalent gate count	183958		201620	236205					

The power consumption is another key issue that we concern most for FPGA implementation. We estimated the power consumption for the third design CSDQMF3 and TwosCompQMF.

After place and route, the power analysis and estimation tool, Xilinx Xpower, was used for estimating the power consumption. We used the default setting for Ambient temperature, $25^{\circ} \mathrm{C}$ and Air flow, 0 LFW. The clock frequency was set to 5 MHz . Table 4.4 shows the results of the power estimation.

The total estimated power consumption is 55.08 mW for CSDQMF3 and 61.25 mW for TwosCompQMF. There are three different power systems supplied in the FPGA chip. Vcc $\mathrm{C}_{\text {int }}$ 1.50 V is the power for the internal circuitry, $\mathrm{Vcc}_{\text {aux }} 2.50 \mathrm{~V}$ are the powers for the input buffers and auxiliary circuitry and $V_{c c}$ is the power for the I/O block circuitry. The estimated power consumption in $\mathrm{Vcc}_{\text {aux }}$ and $\mathrm{Vcc}_{\mathrm{o}}$ are the same for these two designs, the only exception is $\mathrm{Vcc}_{i n t}$. There is 6.88 mW consumed in the TwosCompQMF design whereas 0.71 mW in CSDQMF3.

The more detailed information of power consumption for different parts, such as clocks, inputs, logic and output are described in Table 4.4 as well. The extra power consumed in TwosCompQMF is the power consumption of clock due to using embedded multipliers. Thus,
using embedded multipliers consume 9% more power in FPGAs than we proposed using CSD coefficients for multiplications in two-channel QMF bank.

Table 4.4: The estimation of power consumption

Design:	CSDQMF3		TwosCompQMF	
Power summary:	$\mathrm{I}(\mathrm{mA})$	$\mathrm{P}(\mathrm{mW})$	$\mathrm{I}(\mathrm{mA})$	$\mathrm{P}(\mathrm{mW})$
Total estimated power consumption:		55.08		61.25
Vcc $_{\text {int }} 1.50 \mathrm{~V}:$	0.47	0.71	4.58	6.88
Vcc $_{\text {aux }} 2.50 \mathrm{~V}:$	20.00	50.00	20.00	50.00
Vcc $_{0} 252.50 \mathrm{~V}:$	1.75	4.38	1.75	4.38
Clocks:	0.04	0.06	4.15	6.23
Inputs:	0.43	0.65	0.43	0.65
Logic:	0	0	0	0
Outputs:				
Vcco25	0	0	0	0
Signals:	0	0	0	0
Quiescent Vcc $\mathrm{aux}_{2} 2.50 \mathrm{~V}:$	20.00	50.00	20.00	50.00
Quiescent Vcc $252.50 \mathrm{~V}:$	1.75	4.38	1.75	4.38

The implementation results from this section show that our proposed practical lattice realization of two-channel QMF bank using CSD coefficients achieve the lower implementation complexity and low power consumption compared with the design using the embedded multipliers in the FPGA chip. Even if the QMF bank performance of the later one is a little bit better than the third one, they all achieved close to perfect signal reconstruction.

Chapter 5

Conclusions and Future Work

In this thesis, we presented the practical lattice structure for two-channel PR QMF bank using CSD number system for representing the lattice coefficients in the FPGA implementation. The performance of proposed design in the aspect of hardware utilization and power consumption shows that a reduction of 80% in hardware utilization and 9% reduction of power consume, respectively. The low complexity and low power consumption of two-channel QMF bank are achieved.

There are two contributions from this thesis work. The first one is that we developed the practical lattice structure of two-channel QMF bank for hardware implementation. It solves the problem of fixed-point realization of wide range of coefficients applied in lattice structure. The second one is that CSD number system is used for representing lattice coefficients in FPGA implementation and obtained nearly PR signal for two-channel QMF bank. To our knowledge, this has not been done by the other researches so far.

There are several ways to expand the work presented in this thesis. First, the RTL design can also be targeted for a custom ASIC implementation, to obtain the area and the power consumption results. Second, the lattice section can be improved by using one multiplier and three adders instead of two multipliers and two adders to reduce the complexity of lattice structure in two-channel QMF further.

References

[1] Li Tan, "Digital Signal Processing fundamentals and applications", Academic press 2008.
[2] Vagner S. Rosa, Eduardo Costa, Jose C. Monteiro and Sergio Bampi "An improved Synthesis Method for Low Power Hardwired FIR filters", SBCCI'04, Sep. 7-11,2004.

Andreas Antoniou, "Digital Signal Processing", McGraw-Hill, 2006.
[4] Qi Yue, Li Zhancai and Wang Qin, "Low power FIR filter based on standard cell", In Proc. IEEE ASIC, 2005.
C. K. Goh and Y.C. Lim, "Novel Approach for the Design of Two Channel Perfect Reconstruction Linear Phase FIR Filter Banks", IEEE Trans on circuits and systems II: Analog and digital signal processing, vol. 45, no. 8, pp. 1141-1146, 1998.

Truong Q. Nguyen and P.P. Vaidyanthan, "Two-Channel Perfect-Reconstruction FIR QMF Structures Which Yield Linear-Phase Analysis and Synthesis Filters", IEEE Trans on Acoustics. Speech and Signal Processing, vol. 37, no. 5, pp. 676-690, May 1989.
D. Estaban and C. Galand, "Application of quadrature mirror filters to split band voice coding scheme" in Proc. IEEE ICASSP, pp.191-195, 1997.
[8] Bor-Rong Horng, Henry Samueli and Alan N. Willson, Jr., "The Design of LowComplexity Linear-Phase FIR Filter Banks Using Power-of -Two Coefficients with an Application to Subband Image Coding", IEEE Trans. On circuits and systems for video technology, vol. 1, no. 4, pp.318-324, 1991.

Shi Guangming, Jiao Licheng and Xie Xuemei, "The Design of Two-Channel PR FIR Filter Bank with Linear-phase Using Evolutionary Strategies," In Proc. IEEE ICSP 2000.
[10]
S. M. Phoong, C.W. Kim, P.P. Waidyanathan and R. Ansari, "A new class of twochannel biorthogonal filter banks and wavelet bases", IEEE Trans. Signal Processing, vol. 43, pp. 649-664, Mar. 1995.
B. R. Horng and A. N. Willson, Jr., "Lagrange multiplier approaches to the design of two channel perfect-reconstruction linear phase FIR filter banks", IEEE Trans. Signal Processing, vol.37, pp. 676-690, May 1989.

Sanjay Sharma, Sanjay Attri , R. C. Chauhan, "Low-power VLSI synthesis of DSP systems", integration, the VLSI journal, vol.36, pp. 41-54, 2003.

Kyungtae Han, Brian L. Evans and Earl E. Swartzlander, Jr, "Low power Multipliers with Data Wordlength Reduction", IEEE 2005.

Keshab K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", New York: Wiley, 1999.

Richard I. Hartley, "Subexpression Sharing in Filters Using Canonical Signed Digit Multipliers", IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 43, no. 10, pp. 677-688, 1996.

Chia-Yu Yao, Hsin-Horng Chen, Tsuan-Fan Lin, Chiang-Ju Chien and Chun-Te Hsu, " A novel Common-Subexpression-Elimination Method for Synthesizing Fixed-Point FIR Filters", IEEE Trans. on Circuits and Systems-I: regular papers, vol.51, no. 11, pp. 2215-2221, November 2004.

Reid M. hewlitt and Earl S. Swartzlander, Jr, "Canonical Signed Digit prepresentation for digital filters", IEEE workshop on Digital Signal Processing Systems, 2002.

Zmitsuru Yamada and Akinori Nishihara, "High-Speed FIR Digital Filter with CSD Coefficients Implementation on $\mathrm{FPGA}^{\prime \prime}$, Proc. of the ASP design automation conference, Asia and south pacific, pp.7-8, 2001.

Mitsuru Yamada and Akinori Nishihara, "Design of FIR Digital Filters with CSD Coefficients Having Power-of-Two DC Gain and Their FPGA Implementation for Minimum Critical Path", IEICE Trans. Fundamentals, vol. E84-A, no.8, pp.19972003, August 2001.

Jun-Hong Lee and Ding-Chiang Tang, "Optimal Design of Two-Channel Nonuniform-Division FIR Filter Banks with $-1,0$, and +1 Coefficients", IEEE Trans. on Signal Processing, vol. 47, no. 2, pp.422-432, February 1999.

Algirdas Avizienis, "Signed-digit number representation for fast parallel arithmetic", IEW Transactions on Electronic Computers, vol. ED-10, pp.389-400, 1961.

Linda S. Debrunner, "Defining Canonical-Signed-Digit Number Systems as Arithmetic Codes", IEEE Conference record of the Thirty-sixth Asilomar Conference on signals, systems, computers 2002.

Fred J. Taylor, Digital Filter handbook, New York: Marcel Dekker, 1983.

Nilanjan Banerjee, Jung Hwan Choi and Kaushik Roy, "A Process Variation Aware Low Power Synthesis Methodology for Fixed-point FIR filters', ISLPED '07, August 27-29,2007.
R. Pasko, P. Schaumont, V. Derudder, S. Vernalde and D. Durackova, "A New Algorithm for Elimination of Common Subexpressions", IEEE Trans. On computeraided design of integrated circuits and systems, vol.18, pp.58-68, 1999.

Mahesh Mehendale, S.D. Sherlekar and G.Venkatesh, "Synthesis of Multiplier-less FIR filters with Minimum Number of Additions", IEEE/ACM International Conference on Computer-Aided Design, 1995.
A. P. Vinod, Chip-Hong Chang and Ankita Singla " Improved Differential Coefficients-Based Low Power FIR Filters: Part I- Fundamentals ", IEEE APCCAS 2006, Dec, 2006.
[28] N. Sankarayya, K.Roy and D. Bhattacharya, "Algorithm for low power and high speed FIR filter realization using differential coefficients", IEEE Trans. Circuits and systems II, vol.44, pp. 487-497, June 1997.

Khurram Muhammad and Kaushik Roy, "A Novel Design Methodology for High Performance and Low Power Digital Filters", IEEE/ACM International Conference on Computer-Aided Design, 1999.

Hunsoo Choo, Khurram Muhammad, Kaushik Roy, "MRPF: An Architectural Transformation for Synthesis of High-Performance and Low-Power Digital Filters", In Proc. Of the Design, Automation and Test in Europe Conference and Exhibition, 2003.
P.P.Vaidyanathan "Multirate Systems and Filter Banks" P T R Prentice-Hall, Inc, 1993.

Haytham Azmi, Hamed Elsimary, M. Jbrahim Youssef, Ahmad Safwat "FPGA based multi-standard configurable FSK demofulator", Integration, the VLSI journal, vol. 36, pp. 145-154, 2003.

Kevin Banovi'c, "Blind Adaptive Equalization for QAM Signals: New Algorithms and FPGA Implementation", University of Windsor, Master's Thesis, 2006.

Michael J. Schulte and Earl E. Swartzlander, Jr, "Truncated multiplication with correction constant", Workshop on VLSI signal processing, VI, 1993.

Vita Auctoris

Hongmei Zong was born in Tianjin, China in 1978. She received her B.Sc degree in Electrical Engineering from Taiyuan University of Technology in 2002. She worked as a hardware engineer about 3 years. She is currently a candidate for the Master's degree in Electrical and Computer Engineering department at the University of Windsor and plan to graduate in summer 2008.

