A study of the E.P.R. spectrum of the calcium(OH)2:gadolinium(3+) system

Barry James Fox
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Fox, Barry James, "A study of the E.P.R. spectrum of the calcium(OH)2:gadolinium(3+) system" (1972).
Electronic Theses and Dissertations. 7993.
https://scholar.uwindsor.ca/etd/7993

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

A study of the E.P.R. spectrum of the calcium $(\mathbf{O H}) 2$:gadolinium(3+) system

A STUDY OF THE E.P.R. SPECTRUM OF THE
 $$
\mathrm{Ca}(\mathrm{OH})_{2}: \mathrm{Gd}^{3+} \text { SYSTEM }
$$

by
Barry James Fox

A Thesis
Submitted to the Faculty of Graduate Studies through the Department of Physics in Partial Fulfillment of the Requirements for the Degree of Master of Science at the
University of Windsor

Windsor, Ontario

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
(B)

UMI Microform EC53114
Copyright 2009 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, MI 48106-1346

APPROVED BY:

The system $\mathrm{Ca}(\mathrm{OH})_{2}$: Gd^{3+} was studied by electron paramagnetic resonance methods, to observe and measure ground state splitting in the Gd^{3+} ion $\left({ }^{8} \mathrm{~S}_{7 / 2}\right)$. Fine structure was observed and the angular variation seemed consistant with a trigonal field.

The Spin Hamiltonian

$$
H=\beta S \cdot g \cdot H+\sum_{n, m} B_{n m} T_{n m}: \begin{array}{ll}
n=0,2,4,6 \\
m & =0,3,6
\end{array}
$$

was solved by an exact diagonalization process and the crystal field terms fitted using a multi-dimensional least squares method. The parameters were found to be

$$
g_{x}=1.990 \pm 0.005 ; g_{y}=1.991 \pm 0.005 ; g_{z}=1.989 \pm 0.006
$$

In gauss

$$
\begin{array}{lll}
b_{2}^{0}=-655.0 ; & b_{4}^{0}=-11 ; & b_{6}^{o}=+4 \\
b_{4}^{3}=+27 ; & b_{6}^{3}=-170 ; & b_{6}^{6}=-0.06 \\
c_{4}^{3}=+2 ; & c_{6}^{3}=+124 ; & c_{6}^{6}=-0.05
\end{array}
$$

The fit had an R.M.S. error of 88 gauss for 63 lines.
It was postulated and is being tested at present that the $B_{22},{ }^{B} 42$ and B_{44} terms should be considered in the Hamiltonian. The intensity ratios were found to be $4: 8: 12: 16: 12: 10: 5$.

The fit including orthorhombic terms had an R.M.S. error of 91 gauss and so offered no improvement. Terms that are non-linear in magnetic field are to be considered next, followed by hyperfine and nuclear Zeeman terms.

ACKNOWLEDGMENTS

The author wishes to thank Dr . F. Holuj for first suggesting this problem and for his guidance during the work. The assistance with the computer analysis so readily given by Dr. W. E. Baylis is gratefully acknowledged. Thanks are also due to Bob Wilson for his help with the experimental work and to my wife, Marilyn, for assistance in recording of data and preparation of diagrams.

TABLE OF CONTENTS
page
ABSTRACT iii
ACKNOWLEDGEMENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER
I. INTRODUCTION AND PURPOSE OF EXPERIMENT 1
II. CRYSTAL STRUCIURE OF $\mathrm{Ca}(\mathrm{OH})_{2}$ 2
III. THEORY 5
A. Electron Paramagnetic Resonance 5
B. The Trivalent Gadolinium Ion 7
C. The Complete Hamiltonian 7
D. The Spin Hamiltonian 9
E. The Spin Hamiltonian for Gd^{3+} 9
(1) Zeeman Term 10
(2) Crystal Field Term 10
(3) Tensor Operator Equivalents 12
F. Calculation of Matrix Elements 15
(1) Hamiltonian 15
(2) Derivative Hamiltonian 17
IV. INSTRUMENTATION 20
A. K-Band Spectrometer 20
(1) Klystron Stabilizer 20
(2) Microwave Circuit 22
(3) External Magnetic Field and Modulation 23
page
B. Proton Magnetometer 23
V. EXPERIMENTAL PROCEDURE 25
A. X-Band 25
B. K-Band 25
(1) Crystal Orientation 25
(2) Angular Variation 26
(3) Measurement of Magnetic Field 26
(4) Measurement of Microwave Frequency 28
VI. DEVELOPMENT OF COMPUTER PROGRAMME 29
A. The Method 29
B. The Flow Chart 34
C. The Data Deck 38
D. Ratc of Convergence 40
VII. RESULTS 41
VIII.DISCUSSION AND CONCLUSION 52
BIBLIOGRAPHY 55
APPENDIX A. Main Program 57
B. RTN 1 Main subroutine 61
C. CEIGEN: - Computes Eigenvalues and Eigen- vectors of a Hermitial Matrix (double precision complex) 66
D. STCM Similarity Transform Converts Matrix Elements to New Basis 70
E. DMINV Inverts a double precision matrix 71
F. DGMPRO Matrix Multiplication of two 74 general double precision matrices
G. Calibration of Field across Magnet Gap 75
VITA AUCTORIS 76
page
II. 1 Structural Data for $\mathrm{Ca}(\mathrm{OH})_{2}$ 4
III. 1 Some Spherical Harmonics expressed in Cartesian Co-ordinates 12
III. 2 Relationship between Crystal Field Parameters including Normalization constant 12
III. 3 Table of Tensor Operator Equivalents 14
III. 4 Matrix Elements of Hamiltonian 16
III. 5 Relationship between $b_{n m}$ and $B_{n m}$ 17
III. 6 Values for Matrix Elements of the Tensor Operator Equivalents 18
III. 7 Matrix Elements of Derivative Hamiltonian 19
V.1 Change in Frequency ranges for Resonators from X-band to K-band 27
VI. 1 Example of Rate of Convergence 40
VII. 1 Location Magnetic Axes 41
VII. 2 Ratio of Line Intensities 42
VII. 3 Proton Magnetometer Measurements of Resonant Fields 44
VII. 4 Resonant Fields Converted to Kilogauss 50
VII. 5 Calculated Values for Crystal Field Parameters 51

LIST OF FIGURES

page
II. Basal Projection of 3 Unit Cells for $\mathrm{Ca}(\mathrm{OH})_{2}$ 3
II. 2 Three Dimensional Representation of the $\mathrm{Ca}(\mathrm{OH})_{2}$ Unit Cell 4
III. 1 Block Diagram of K Band Spectrometer 21
V. 1 Resonator for Proton Magnetometer 26
VI.l Flow Chart for Computer Programme 34
VII. 1 Angular Variation in the XZ Plane (1010) 44
VII. 2 Angular Variation in the YZ Plane (1210) 45
VII. 3 Angular Variation in the XY Plane (0001) 46
VII. 4 Typical Spectrum with Field parallel to Z direction along 0001 axis 47
VII. 5 Typical Spectrum in direction perpendicularto Z
a) Along 1210 directionb) Along 1010 direction48

CHAPTER I

INTRODUCTION AND PURPOSE OF EXPERIMENT

For S-state ions the resultant orbital angular momentum of the electrons is zero so that any degeneracy present in the state can only be due to spin. In such cases the ground state of the ion should not be split by the crystalline electric field. However, ground state splittings of S-state ions have been observed when the ions are placed in a crystalline environment.

The main purpose of this experiment was to observe and measure the ground state splittings produced when $\mathrm{Gd}^{3+}\left({ }^{8} \mathrm{~S}_{7 / 2}\right)$ was placed in the trigonal crystalline fiald of $\mathrm{Ca}(\mathrm{OH})_{2}$ using the methods of Electron Paramagnetic Resonance Spectroscopy.
$\mathrm{Ca}(\mathrm{OH})_{2}$ was chosen as the host crystal as it has a relatively simple structure and provides a substitution site with trigonal symmetry. The trivalent gadolinium ion was chosen as it is an S-state ion from the rare-earth group, and could be successfully introduced into the $\mathrm{Ca}(\mathrm{OH})_{2}$ crystal.

Some of the previous work on the trivalent gadolinium ion in various site symmetries has been carried out by Low ${ }^{1}$ (cubic), Jones, Baker and Pope ${ }^{2}$ (rhombic), Serway and Marshall ${ }^{3}$ (trigonal), Buckmaster, Chatterjee and Shing ${ }^{4}\left(C_{3 h}\right.$ and $\left.C_{3}\right)$.

CHAPTER II

$$
\text { CRYSTAL STRUCTURE OF } \mathrm{Ca}(\mathrm{OH})_{2}
$$

X-ray studies have shown ${ }^{5-8}$ that $\mathrm{Ca}(\mathrm{OH})_{2}$ belongs to the hexagonal system, with space group $\mathrm{P}(3,2 / \mathrm{m}, 1),\left(\mathrm{CdI}_{2}\right.$ type or $\left.\mathrm{D}_{3 \mathrm{~d}}{ }^{3}\right)$. A projection of the structure is shown in Fig. II.l. Ca atoms lie in the invariant positions $(0,0,0)$, with point symmetry $D_{3 d} .0$ and H atoms lie in the special positions $\pm\left(1 / 3,2 / 3, z_{0}\right)$ and $\pm\left(1 / 3,2 / 3, z_{h}\right)$, respectively, both with point symmetry 3 m . Fig. II. 1 shows 3 unit cells showing structure to 4th nearest neighbour and illustrating the relationship of the unit cell to the observed crystal habit. The outlined unit cell contains one molecule. The H positions were first postulated by Bernal and Megaw ${ }^{6}$. They have since been confirmed by x-ray diffraction ${ }^{8}$, neutron diffraction ${ }^{9}$, and nuclear magnetic resonance ${ }^{10}$.

The $\mathrm{Ca}(\mathrm{OH})_{2}$ structure consists of two sheets of hydroxyls lying in the (0001) plane. A sheet of Ca atoms is sandwiched between them. Each Ca atom is surrounded by six $O H$ groups forming a slightly compressed octahedron. Fig. II. 2 is a three dimensional representation of a unit cell illustrating these octahedra. Neutron diffraction studies revealed that the thermal motion of hydrogen is in the (0001) plane only ${ }^{9,11 \text {. Consequently, }}$ there are no hydrogen bonds. The crystal is very soft (2 on Moh ${ }^{\text {i }}$ scale) and has a perfect cleavage along (0001). Structural data is given in Table II.l. Single crystals of $\mathrm{Ca}(\mathrm{OH})_{2}$ were obtained by slow diffusion of NaOH and CaCl_{2} in an aqueous solution free of CO_{2} and O_{2}. They were doped with Gd^{3+} during their growth.

Fig II 2 Three dimensional representation of unit cell ofor $\mathrm{Ca}(\mathrm{OH}) 2^{\circ}$ The calcium ions appear at the corners of the unit cell, surrounded by an octahedron formed by the oxygen ions in planes above and below. The hydrogen ions (shaded) also lie in basal planes but further from the calcium ions

TABLE II l^{12}

Unit cell parameter a_{0}	$3.5844 \AA$
Unit cell parameter c_{0}	$4.8962 \AA$
Unit cell parameter z_{0}	$0.2330 c_{o} \AA$
Structure parameter z_{h}	$0.3950 \mathrm{c}_{0} \AA$
OnH separation	$2.6479 \AA$

A. Electron Paramagnetic Resonance

This phenomenon was first reported by Zavoyskiy $(1945)^{13}$ and refers to themagnetic resonance of permanent magnetic dipole moments of electrons. It is shown in its simplest form by a set of non-interacting paramagnetic ions, each possessing a single unpaired electron and a 'spin only' magnetic dipole moment of $m_{s} g_{s} \beta\left(m_{s}=1 / 2\right)$ where β is the Bohr magnetion and $g_{S}=2.00229$. In a steady magnetic field H, each dipole can orient itself parallel or antiparallel to H, with energies $-1 / 2 g_{s}$ βH and $+1 / 2 \mathrm{~g}_{\mathrm{s}} \beta \mathrm{H}$ (Zeeman splitting). Magnetic dipole transitions can be induced between these two energy levels by applying a high frequency magnetic field polarised perpendicular to H, and with frequency v such that the quantum of high frequency energy equals the separation between levels, i.e.

$$
\begin{equation*}
\mathbf{h} \nu=g_{\mathbf{s}} \beta \mathrm{H} \tag{III.1}
\end{equation*}
$$

There is then resonance absorption corresponding to the dipoles being flipped from the parallel to the antiparallel state and induced emission corresponding to the reverse process.

While the system remains in thermal equilibrium the population of the lower energy parallel state will exceed that of the antiparallel state, so a net absorption of high frequency power results. Saturation of
the system and its accompanying loss of absorption can occur when the rise in temperature caused by the absorption of energy results in an equalization of the two populations.

In the more general case for a free ion with a resultant angular momentum, $\underset{\sim}{J}=\underset{\sim}{L}+\underset{\sim}{S}$ where $\underset{\sim}{L}$ and $\underset{\sim}{S}$ are the orbital and spin electronic angular momentum respectively. The energy levels are then given by

$$
\begin{equation*}
\mathrm{E}= \pm \mathrm{Mg} \beta \mathrm{H} \tag{III.2}
\end{equation*}
$$

where g is the spectroscopic splitting factor and is defined by

$$
\begin{equation*}
g=1+\frac{\mathrm{J}(\mathrm{~J}+1)+\mathrm{S}(\mathrm{~S}+1)-\mathrm{L}(\mathrm{~L}-1)}{2 \mathrm{~J}(\mathrm{~J}+1)} \tag{III.3}
\end{equation*}
$$

and the Bohr magneton

$$
\begin{equation*}
\beta=\frac{\mathrm{eh}}{4 \operatorname{Tm} c} \tag{III.4}
\end{equation*}
$$

M is the projection of the electronic angular momentum J onto the magnetic field direction and so is the electronic magnetic quantum number. The use of M is necessary as the dipole is no longer aligned with, but instead precesses around, the magnetic field H. The frequency of precession is given by,

$$
\begin{equation*}
\omega=g \frac{e}{2 m c} H \tag{III.5}
\end{equation*}
$$

for the energies to correspond to the photon energy

$$
\begin{equation*}
\mathrm{h} \gamma=\mathrm{g} \beta \mathrm{H} \tag{III.6}
\end{equation*}
$$

it can be seen that ΔM can only take the values +1 or -1 , so the selection rule governing allowed transitions is:

$$
\begin{equation*}
\Delta M= \pm 1 \tag{III.7}
\end{equation*}
$$

B. The Trivalent Gadolinium Ion

Gadolinium has the electronic structure

$$
\ldots 4 f^{7} 5 s^{2} 5 p^{6} 5 d^{1} 6 s^{2}
$$

so that the trivalent gadolinium ion has a free ion ground state of ${ }^{8} S_{7 / 2}$ in the $4 f^{7}$ configuration. This indicates that the orbital angular momentum is $L=0$. Consequently, the energy levels will be 8 -fold spin degenerate, splitting into 8 levels when the degeneracy is completely removed as would be expected for spin angular momentum $S=7 / 2$.
C. The Complete Hamiltonian

For a paramagnetic ion in a crystalline field in the absence of a magnetic field, the complete Hamiltonian operator is

$$
\begin{equation*}
\mathrm{H}=\mathrm{T}+\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathbf{s o}}+\mathrm{V}_{\mathbf{x}}+\mathrm{V}_{\mathbf{s} \mathbf{s}}+\mathrm{V}_{\mathbf{s}!} \tag{III.8}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\sum_{k}\left(p_{k}^{2} / 2 m\right) \tag{III.9}
\end{equation*}
$$

is the total kinetic energy of the $k t h$ electron with momentum p_{k} and mass m where the sum is taken over all electrons for the ion.

The Coulomb term V_{c} consists of

$$
\begin{equation*}
v_{c}=-\sum \frac{Z e^{2}}{r_{k}}+\Sigma \frac{e^{2}}{v_{i j}} \tag{III.10}
\end{equation*}
$$

The first term is the Coulomb attraction between the nucleus and the
electron summed over all electrons for the ion.
The $V_{\text {so }}$ term is the potential energy due to spin-orbit coupling and is written

$$
\begin{equation*}
v_{s o}=\sum_{i j} \lambda_{i j} \ell_{i} \cdot s_{j} \tag{III.11}
\end{equation*}
$$

where i and j are summed over all electron S. Assuming Russell-Saunders coupling, then

$$
\begin{equation*}
\sum_{i} l_{i}=\underset{\sim}{L} \text { and } \sum_{j} s_{j}=\underset{\sim}{S} \tag{III.12}
\end{equation*}
$$

so the term becomes

$$
\begin{equation*}
v_{s o}=\lambda \underset{\sim}{L} \cdot \underset{\sim}{s} \tag{III.13}
\end{equation*}
$$

where λ is the spin-orbit coupling constant.
The term V_{x} represents the interaction between the paramagnetic ion with the crystal field potential

$$
\begin{equation*}
v_{x}=-\sum_{k} e_{k} \Phi(\underset{\sim}{r}) \tag{III.14}
\end{equation*}
$$

The term $\mathrm{V}_{\text {ss }}$ represents the magnetic dipole-dipole interaction between electrons and is written

$$
\begin{equation*}
v_{s s}=\sum_{j k} \frac{1}{r_{j k}^{3}}\left[S_{j} \cdot s_{k}-\frac{35 S_{j} \cdot r_{j k} r_{j k} \cdot s_{k}}{r_{j k}^{2}}\right] \tag{III.15}
\end{equation*}
$$

where the sum is extended over all pairs of electrons.
The term V_{s}, represents the magnetic interaction between unpaired electrons and the nuclear magnetic moments (the hyperfine term.)

D. The Spin Hamiltonian

The complete Hamiltonian as written in (III.8) is very difficult to work with, a simpler treatment devised by Abragam and Pryce ${ }^{14}$ makes use of the spin Hamiltonian of the system. The actual spin of the system is replaced by the effective spin S where ($2 S+1$) is equal to the number of electronic levels in the ground state.

The general Hamiltonian is then written as

$$
\begin{equation*}
H=\beta \underset{\sim}{S} \cdot \tilde{g} \cdot \underset{\sim}{H}+\sum_{n, m} B_{n m} T_{n m}+\underset{\sim}{S} \cdot \tilde{A} \cdot I \sim g_{N} \beta_{N} I \cdot \underset{\sim}{H} \tag{III.16}
\end{equation*}
$$

where \tilde{g} and \tilde{A} are $2 n d$ rank tensors. $T_{n m}$ is a tensor operator equivalent and a function of the effective spin operator $\underset{\sim}{S}$. The $B_{n m}$ are crystal field parameters.

The first term is the electronic Zeeman term and the g tensor now incorporates an anisotropic component due to the spin-orbit coupling. Zero field splitting is represented by the crystal field term $\sum_{n, m} B_{n m} T_{n m}$.

In the third term the A tensor describes the magnetic hyperfine interaction and also contains an anisotropic part due to dipolar coupling. The fourth term is the nuclear Zeeman term.

E. The Spin Hamiltonian for Gadolinium

As no hyperfine structure is observed for gadolinium at room temperature, the hyperfine term and the nuclear Zeeman term can be omitted so that the spin Hamiltonian for gadolinium can be written as

$$
\begin{equation*}
H=\beta \underset{\sim}{S} \cdot \tilde{g} \cdot \underset{\sim}{H}+\underset{n, m}{ } B_{n m} T_{n m} \tag{III.17}
\end{equation*}
$$

the terms of which are explained separately in the following paragraphs.
(1) Zeeman Term

Considering a frame of reference that diagonalises the g tensor, the Zeeman term can be written as

$$
\begin{align*}
& H=\beta\left(S_{x} S_{y} S_{z}\right) \cdot\left(\begin{array}{lll}
g_{x} & 0 & 0 \\
0 & g_{y} & 0 \\
0 & 0 & g_{z}
\end{array}\right) \cdot\left(\begin{array}{c}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right) \\
& H=\beta\left(g_{x} S_{x} H_{x}+g_{y} S_{y} H_{y}+g_{z} S_{z} H_{z}\right) \tag{III.18}\\
& H=\beta g_{z} H_{z} S_{z}+\beta / 2\left(h_{+} S_{-}+h_{-} S_{+}\right)
\end{align*}
$$

where

$$
\begin{array}{ll}
h_{+}=\left(g_{x} H_{x}+i g_{y} H_{y}\right) ; & h_{-}=\left(g_{x} H_{x}-i g_{y} H_{y}\right) \\
S_{+}=\left(S_{x}+i S_{y}\right) ; & S_{-}=\left(S_{x}-i S_{y}\right)
\end{array}
$$

This can be written in terms of tensor operator equivalents $T_{n m} \cdot($ See (III.26) and Table III. 3

$$
\begin{equation*}
H=\beta g_{z} H_{z} T_{10}+\beta\left(\frac{h_{+}}{\sqrt{2}} T_{1-1}-\frac{h_{-}}{\sqrt{2}} T_{11}\right) \tag{III.19}
\end{equation*}
$$

(2) Crystal Field Term

The crystal field term represented by $\Sigma \mathrm{B}_{\mathrm{nm}} \mathrm{T}_{\mathrm{nm}}$ is derived as follows. The Hamiltonian of the crystal field is given by

$$
\begin{equation*}
H_{c r} \equiv \sum_{i}-e V\left(x_{i}, y_{i}, z_{i}\right) \tag{III.20}
\end{equation*}
$$

where the crystal field potential V is a function of the position of the ith electron with the sum taken over all of the electrons in the unfilled shell. Assuming it satisfies Laplace's equation, V can be expanded in a series of spherical harmonics

$$
\begin{equation*}
V=\sum_{i} \sum_{n, m} A_{n m} r^{n} Y_{n m}\left(\theta_{i}, \phi_{i}\right) \tag{III.21}
\end{equation*}
$$

Many of the terms will have zero matrix elements and need not be considered.
(a) All terms $\mathrm{n}>6$ will have zero matrix elements. For felectron wave functions the probability density $N^{*} \psi$ can be expanded in spherical harmonics only for $n \leq 6$ so matrix elements $n>6$ vanish.
(b) Similarly all terms for which n is odd have zero elements. The probability density $\psi^{*} \psi$ is an even function while the potential is an odd function for odd n.
(c) The term containing $\mathrm{n}=0$ is an additive constant that is set to zero.

Further reductions can only be made by considering site symmetry. As the gadolinium ion is assumed to substititutionally replace the calcium ion it will be in a site of $D_{3 d}$ point symmetry so that the trigonal form of the crystal field potential must be used. This can be derived by considering the symmetry of the appropriate spherical harmonics $Y_{n m}(\theta, \phi)$. determined by the lowest value of m

$$
\begin{array}{ll}
m=0 & \text { Axial } \\
m= \pm 2 & 2 \text { fold symmetry } \\
m= \pm 3 & 3 \text { fold symmetry } \\
m= \pm 4 & 4 \text { fold symmetry } \\
m= \pm 6 & 6 \text { fold symmetry } \tag{III.22}
\end{array}
$$

and by setting

$$
A_{n o} r^{n} Y_{n o}=U_{n o}
$$

and

$$
\left[A_{n m} Y_{n m}(\theta, \phi)+A_{n(-m)} Y_{n(-m)}(\theta, \phi)\right] r^{n}=U_{n|m|}
$$

then

$$
\begin{equation*}
v_{\text {trig. }}=U_{20}+U_{40}+U_{60}+U_{43}+u_{63}+u_{66} \tag{III.23}
\end{equation*}
$$

Expressing the spherical harmonics in cartesian co-ordinates

TABLE III. 1

$$
\begin{aligned}
& v_{20}=3 z^{2}-r^{2} \\
& v_{40}=35 z^{4}-30 r^{2} z^{2}+3 r^{4} \\
& v_{60}=231 z^{6}-315 r^{2} z^{4}+105 r^{4} z^{2}-5 r^{6} \\
& v_{43}=\left(x^{2}-3 y^{3}\right) x z \\
& v_{63}=\left(11 z^{2}-3 r^{2}\right)\left(x^{2}-3 y^{2}\right) x z \\
& v_{66}=x^{6}-15 x^{4} y^{2}+15 x^{2} y^{4}-y^{6}
\end{aligned}
$$

where

$$
\begin{equation*}
\mathrm{U}_{\mathrm{nm}}=\mathrm{D}_{\mathrm{nm}} \mathrm{v}_{\mathrm{nm}} \tag{III.24}
\end{equation*}
$$

$A_{n m}$ and $D_{n m}$ are related by the normalisation constants in Table III. 2
TABLE III. 2

$$
\begin{array}{ll}
D_{20}=\frac{1}{4} \sqrt{\frac{5}{\pi}} A_{20} & D_{60}=\frac{1}{32} \sqrt{\frac{13}{\pi}} A_{60} \\
D_{40}=\frac{3}{16 \sqrt{\pi}} A_{40} & D_{63}=\frac{1}{16} \sqrt{\frac{13.105}{\pi}}\left|A_{63}\right| \\
D_{43}=\frac{3}{4} \sqrt{\frac{35}{\pi}}\left|A_{43}\right| & D_{66}=\frac{1}{32} \sqrt{\frac{13.21 .11}{\pi}}\left|A_{66}\right|
\end{array}
$$

V can be written in the form $f(r) P_{n m}(\theta, \phi)$ where $P_{n m}(\theta, \phi)$ are assoc. Legendre polynomials. Once $\mathrm{V}_{20}, \mathrm{~V}_{40}$ and V_{60} are known all even potentials up to sixth degree can be found by symmetry.
(3) Operator Equivalents

As gadolinium is an S state ion

$$
\begin{equation*}
\underset{\sim}{L}=0 \quad \text { then } \underset{\sim}{J}=\underset{\sim}{S} \tag{III.25}
\end{equation*}
$$

so that the total angular momentum will be the spin angular momentum $\mathrm{J}=\frac{7}{2}$.
Within the manifold of states for which $J=\frac{7}{2}$ matrix elements for the potential operators may be replaced by appropriate angular momentum operators.

This is achieved by everywhere replacing x, y and z by J_{x}, J_{y}, J_{z} with regard to the fact that J_{x}, J_{y} and J_{z} are non-commuting operators.
e.g.

$$
\begin{equation*}
x y \equiv \frac{1}{2} a\left(J_{x} J_{y}+J_{y} J_{x}\right) \tag{III.26}
\end{equation*}
$$

where α is a multiplying constant so that

$$
\begin{equation*}
v_{20}=\alpha \bar{r}^{2}\left[3 J_{z}^{2}-J(J+1)\right] \tag{III.27}
\end{equation*}
$$

This can be expressed as an angular momentum tensor operator T_{20} which has been normalised incorporating the $\alpha \overline{\mathrm{r}}^{2}$ where

$$
\begin{equation*}
T_{20}=+\sqrt{\frac{1}{6}}\left\{3 \mathrm{~J}_{z}^{2}-\mathrm{J}(\mathrm{~J}+1)\right\} \tag{III.28}
\end{equation*}
$$

The angular momentum operators have been tabulated by Buckmaster et al ${ }^{17}$. The ones of fmportance in this Hamiltonian are listed in Table III. 3. (see next page).

In this form the crystal field can be simply written as:

$$
\begin{align*}
H_{c r} & =\sum_{\mathrm{nm}} B_{\mathrm{nm}} T_{\mathrm{nm}} \tag{III.29}\\
\mathrm{n} & =2,4,6 \\
m & =0, \pm 3, \pm 6
\end{align*}
$$

The spin-Hamiltonian can then be written :

$$
\begin{aligned}
& T_{20}=+\sqrt{\frac{1}{6}}\left[3 J_{z}^{2}-J(J+1)\right] \\
& \mathrm{T}_{40}=+\frac{1}{2} \sqrt{\frac{1}{70}}\left[35 \mathrm{~J}_{2}^{4}-5(6 \mathrm{~J}(\mathrm{~J}+1)-5) \mathrm{J}_{\mathrm{z}}^{2}+\right. \\
& \left.+3\left[\mathrm{~J}^{2}(\mathrm{~J}+1)^{2}-2 \mathrm{~J}(\mathrm{~J}+1)\right]\right] \\
& T_{4 \pm 3}=\mp \frac{1}{2} \sqrt{\frac{1}{2}}\left[\mathrm{~J}_{ \pm}^{3} \mathrm{~J}_{\mathrm{z}}+\mathrm{J}_{\mathrm{z}} \mathrm{~J}_{ \pm}^{3}\right] \\
& T_{60}=+\frac{1}{4} \sqrt{\frac{1}{231}}\left[231 J_{z}^{6}-105(3 J(J+1)-7) J_{z}^{4}+\right. \\
& +21\left(5 \mathrm{~J}^{2}(\mathrm{~J}+1)^{2}-25 \mathrm{~J}(\mathrm{~J}+1)+14\right) \mathrm{J}_{\mathrm{z}}^{2} \\
& \left.-5\left[J^{3}(J+1)^{3}-8 J^{2}(J+1)^{2}+12 J(J+1)\right)\right] \\
& T_{6+3}=\mp \frac{1}{8} \sqrt{\frac{5}{11}}\left[\mathrm{~J}^{3} \pm\left\{11 \mathrm{~J}_{\mathrm{z}}^{2}-(3 \mathrm{~J}(\mathrm{~J}+1)+59) \mathrm{J}_{\mathrm{z}}\right\}+\right. \\
& \left.+\left\{11 \mathrm{~J}_{\mathrm{z}}^{3}-[3 \mathrm{~J}(\mathrm{~J}+1)+59) \mathrm{J}_{\mathrm{z}}\right\} \mathrm{J}_{ \pm}^{3}\right] \\
& T_{6 \pm 6}=\frac{1}{8} J_{ \pm}^{6} \\
& \mathrm{~T}_{1 \pm 1}=\mp \sqrt{\frac{1}{2}} \mathrm{~J}_{ \pm} \\
& \mathrm{T}_{10}=+\mathrm{J}_{\mathrm{z}}
\end{aligned}
$$

$$
\begin{align*}
H=\beta_{z} H_{z} T_{10} & +\beta\left(\frac{h_{+}}{\sqrt{2}} T_{1-1}-\frac{h_{-}}{\sqrt{2}} T_{11}\right)+B_{20} T_{20}+B_{40} T_{40} \\
& +B_{60} T_{60}+\left(B_{43}+1 C_{43}\right) T_{43}-\left(B_{43}-1 C_{43}\right) T_{4-3} \\
& +\left(B_{63}+i C_{63}\right) T_{63}-\left(B_{63}-i C_{63}\right) T_{6-3} \\
& +\left(B_{66}+i C_{66}\right) T_{66}+\left(B_{66}-i C_{66}\right) T_{6-6} \tag{III.30}
\end{align*}
$$

F. Calculation of Matrix Elements
(1) The Hamiltonian

For a manifold of constant J with wave functions ψ_{m} ($h_{\mathrm{r}} \mathrm{m}$ is the z component of angular momentum), the elements in the secular matrix are the integrals

$$
\begin{equation*}
\int \psi_{\mathrm{m}}^{*}\left\{\mathrm{~T}_{N M}\right\} \psi_{\mathrm{m}}^{\prime} \mathrm{d} \tau \equiv\langle\mathrm{~m}| \mathrm{T}_{N M}\left|\mathrm{~m}^{\prime}\right\rangle \tag{III.31}
\end{equation*}
$$

where $T_{N M}$ transform as $Y_{N}{ }^{M}$ and vanish unless $m=m^{2}+M$,

$$
M=m-m^{\prime}
$$

(Proof by use of Wigner coefficients, Condon and Shortley, 1951 ${ }^{20}$).
Using this theorem it can be seen that as M can only take the values $0, \pm 1, \pm 3, \pm 6$, which establishes the non-zero matrix elements of the T_{NM}.

Using the tabulated numerica: values for the matrix elements of the angular momentum Tensor Operators, the spin Hamiltonian matrix is set up as in Table III.4.

TABLE III. 4.

Where the crystal field parameters are related to the conventional parameters b_{n}^{m} by :

TABLE III. 5.

$$
\begin{array}{lll}
b_{2}^{0}=\sqrt{\frac{3}{2}} B_{20} & b_{4}^{0}=3 \sqrt{\frac{10}{7}} B_{40} & b_{6}^{0}=\frac{315}{\sqrt{231}} B_{60} \\
b_{4}^{3}=15 \sqrt{2} B_{43} & b_{6}^{3}=\frac{315}{2} \sqrt{\frac{5}{11}}{ }_{63} & b_{6}^{6}=\frac{315}{2} B_{66}
\end{array}
$$

For computational ease the parameters are expressed in kilogauss, as $B_{\mathrm{nm}}(\mathrm{kg})=.0.0935 \mathrm{~B}_{\mathrm{nm}}\left(\mathrm{cm}^{-1}\right)$.

The values of the matrix elements of the tensor operator equivalents used in the calculation of the Hamiltonian, for a manifold $J=\frac{7}{2}$ are given in Table III.6. (see next page).
(2) The Derivative Spin Hamiltonian

In the fitting process the matrix elements of the derivative
Hamiltonian (DH) are required. The matrix elements of DH are the derivatives with respect to each parameter of the corresponding elements in the matrix H taken one at a time. Each matrix will consist of only one set of elements and their complex conjugates, for example the derivative matrix with respect to the parameter B_{43} will only contain elements parallel to the diagonal but in the 3 off diagonal position and its complex conjugate on the other side of the diagonal. So the matrix elements, the parameter and the off diagonal position can be represented as in Table III. 7.

TABLE III. 7

$$
\mathrm{DH}(\mathrm{GX})=-\frac{\mathrm{T}_{11}}{2} \mathrm{H}_{\mathrm{x}}
$$

$\mathrm{DH}(\mathrm{GY})=\mathrm{i} \frac{\mathrm{T}_{11}}{2} \mathrm{H}_{\mathrm{y}}$

$$
\begin{aligned}
& \mathrm{DH}(\mathrm{GZ})=\mathrm{T}_{10} \mathrm{H}_{\mathrm{Z}} \\
& \mathrm{DH}(\mathrm{~B} 40)=\mathrm{T}_{40}
\end{aligned}
$$

$$
\mathrm{DH}(\mathrm{~B} 2 \mathrm{O})=\mathrm{T}_{20}
$$

$$
\mathrm{DH}(\mathrm{~B} 60)=\mathrm{T}_{60}
$$

$$
\begin{aligned}
& \mathrm{DH}(\mathrm{~B} 43)=\mathrm{T}_{43} \\
& \mathrm{DH}(\mathrm{~B} 63)=\mathrm{T}_{63}
\end{aligned}
$$

$$
\mathrm{DH}(\mathrm{c} 43)=\mathrm{i} \mathrm{~T}_{43}
$$

$$
\mathrm{DH}(\mathrm{C} 63)=\mathrm{i} \mathrm{~T}_{63}
$$

$$
\mathrm{DH}(\mathrm{~B} 66)=\mathrm{T}_{66}
$$

$$
\mathrm{DH}(\mathrm{C} 66)=\mathrm{i} \mathrm{~T}_{66}
$$

$$
6
$$

TABLE III. 6.

$$
\begin{aligned}
& J \quad J_{z} \text { Matrix Element J } \quad J_{z} \text { Matrix Element } \\
& \begin{array}{lllllll}
7 / 2 & -7 / 2 & -3.500000 D & 00 & 7 / 2 & -7 / 2 & 8.573214 D
\end{array} 00 \\
& 7 / 2 \quad-5 / 2 \quad-2.500000000 \\
& 7 / 2-3 / 2 \quad-1.500000 \mathrm{D} 00 \\
& \begin{array}{lrrr}
T_{10}(7 / 2) & 7 / 2 & -1 / 2 & -5.000000 \mathrm{D}-01 \\
7 / 2 & 1 / 2 & 5.000000 \mathrm{D}-01
\end{array} \\
& 7 / 2 \quad 3 / 2 \quad 1.500000 \mathrm{D} 00 \\
& 7 / 2 \text { 5/2 2.500000D } 00 \\
& 7 / 2 \quad 7 / 2 \quad 3.500000 \mathrm{D} 00 \\
& \begin{array}{llrll}
\mathrm{T}_{20}(7 / 2) & 7 / 2 & -1 / 2 & -6.123724 \mathrm{D} & 00 \\
7 / 2 & 1 / 2 & -6.123724 \mathrm{D} & 00
\end{array} \\
& \begin{array}{llll}
7 / 2 & 3 / 2 & -3.674235 D & 00
\end{array} \\
& \begin{array}{lll}
7 / 2 & 5 / 2 & 1.224745 \mathrm{D} 00
\end{array} \\
& \begin{array}{lll}
7 / 2 & 7 / 2 & 8.573214 D
\end{array} 00 \\
& \text { 7/2 -7/2 2.509980D } 01 \\
& \text { 7/2 -5/2 -4.661393D O1 } \\
& \begin{array}{lll}
7 / 2 & -7 / 2 & 2.072548 \mathrm{D} 01
\end{array} \\
& \text { 7/2 } \quad-5 / 2-1.036274 \mathrm{D} 02 \\
& 7 / 2 \quad-3 / 2 \quad-1.075706 \mathrm{D} 01
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 2 \quad 3 / 2 \quad-1.075706 \mathrm{D} 01 \\
& 7 / 2 \quad 5 / 2 \quad \text {-4.661393D } 01 \\
& 7 / 2 \quad 7 / 2 \quad 2.509980 \mathrm{D} 01
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7/2 3/2 1.865293D } 02 \\
& \begin{array}{lll}
7 / 2 & 5 / 2 & -1.036274 \mathrm{D}
\end{array} 02 \\
& 7 / 2 \quad 7 / 2 \quad 2.072548 \mathrm{D} 01
\end{aligned}
$$

$$
\begin{aligned}
& J_{z} \text { represents the initial state of } T_{n m}(7 / 2) \text { and the final state for } T_{n-m}(7 / 2)
\end{aligned}
$$

CHAPTER IV

INSTRUMENTATION

A. K-Band Spectrometer

The k-band spectrometer was of balanced bridge design, using a circulator, with the microwave frequency stabilized against the sample cavity. A block diagram of the system is shown in Fig. IV 1. The microwave power was supplied by a Varian model VA 98 M reflex klystron producing 30 milliwatts of power.

(1) Klystron Stabilizer

The klystron frequency was stabilized to the cavity resonant frequency using a Teltronic Model KSLP Klystron Stabilizer. The stabilizer works on the principle of automatic-frequency control (A.F.C.). A sine wave modulation of approximately 70 KHz was impressed on the reflector voltage, thus causing a small amount of frequency modulation. If the klystron frequency is tuned at or near the cavity resonant frequency, the output detected by the A.F.C. detector will contain a 70 KHz component. The A.F.C. signal is amplified and then applied to the phase sensitive detector (P.S.D.), built into the stabilizer, which compares the signal with the original modulation signal. The result is a D.C. error voltage with a polarity and magnitude proportional to the difference between the klystron oscillator frequency and the resonant frequency of the cavity. The error voltage is applied to the reflector of the klystron in such a manner that the klystron frequency is pulled back to the frequency of the cavity.

Fig IV. 1. BLOCK DIAGRAM OF K BAND SPECTROMETER

(2) Microwave Circuit

Microwaves are prevented from re-entering the klystron by use of an isolator, which is a two-terminal pair microwave ferrite device which makes use of the Faraday effect to permit transmission of microwaves in one direction and prevents their transmission in the opposite direction. A tuneable cylindrical cavity is used as a wavemeter, and an attenuator is used to control the power reaching the sample cavity which may be necessary in cases of saturation.

A three port circulator is used to allow transmission of klystron power to the cavity and power reflected at resonance from the cavity to the detector, without power going directly to the detector or any reflected power returning to the klystron arm. The cavity arm can be matched to the klystron arm by means of a slide-screw tuner. An E.P.R. absorption in the cavity then causes a mismatch, so that power is reflected from the cavity into the detector arm. In practice the cavity is slightly mismatched in order to allow sufficient power to bias the detector crystal.

The magnetic resonant absorption signal is detected by the crystal detector. The resonant signal is pre-amplified and then fed into the Princeton Applied Research (P.A.R.) mode1 JB-6 Lock-in Amplifier, which compares the phase and frequency of the resonant signal with the original $100 \mathrm{KH}_{z}$ modulation signal in a similar way to the P.S.D. (previously described) of the A.F.C. The result is a derivative signal proportional to the resonant signal, which can be displayed on the oscilloscope or chart recorder as a function of magnetic field. To allow display on the oscilloscope the magnetic field is modulated at 60 Hz with a 'Variac', in addition to the 100 KHz . The horizontal sweep of the oscilloscope is
connected to a $60 \mathrm{H}_{\mathrm{z}}$ source and synchronised with the modulation using a phase shifter. The method of oscilloscope display allows one to observe E.P.R. signals when both the magnetic field and crystal orientation are varied. As such it provides a rapid means of studying angular variation.

The cylindrical cavity used is of glass having the inside surface sputtered with gold. Operating in the TEO11 mode the cavity has been successfully used in this laboratory prior to this. Incorporated with the cavity is a rotating mechanism previously developed in this laboratory ${ }^{21}$. It allows rotation of the crystal about a horizontal axis which when combined with rotation of the magnet about a vertical axis means any crystal orientation can be reached for anisotropy studies.
(3) External Magnetic Field and Modulation

The external magnetic field is produced by a 12 inch Varian electromagnet with a 3.5 inch gap and rotating base. The magnet is stabilized by a Fieldial model V-FR 2503 (Varian) control unit, which keeps the field value constant to within one Gauss for several hours. It is possible to get a linear field sweep up to 20 KGauss.

Magnetic field modulation at $100 \mathrm{KH}_{z}$ is generated by an oscillator built into the P.A.R. Lock-in amplifier. This signal is amplified externally and applied to two Helmholtz coils connected in series and mounted on either side of the cavity.

B. Proton Magnetometer

Measurements of magnetic field strength are obtained by means of a proton magnetic resonance oscillator method using an external marginal oscillator, tuning circuit and amplifier, together with a wide band amplifier
and electronic counter, Hewlett-Packard No. 5253. Several complementary probes using rubber as a proton source have been constructed in order to cover the wide frequency range required.

CHAPTER V

EXPERIMENTAL PROCEDURE

A. X-Band
$\mathrm{Ca}(\mathrm{OH})_{2}$ crystals doped with Gd^{3+} were investigated using an X-band spectrometer. Preliminary work indicated small signals whose intensity decreased as the field moved from the crystal axes. The impossibility of obtaining a complete angular variation made it necessary to move to K-band for the increased sensitivity.

B. K-Band

(1) Crystal Orientation

The symmetry of the crystal habit together with perfect cleavage in the basal plane allowed the crystallographic axes to be determined visually within 2°. The crystal was glued with the pin parallel to c-axis [0001] as the tabular nature of the crystal caused the cavity resonance to move outside the klystron range as the crystal rotated for any other mounting.

The magnetic axes of the crystal were determined searching orientations that represented simultaneous turning points of the resonance lines for rotation of the magnet and the crystal. These orientations were plotted on a Wulff net to check that they were mutually perpendicular.

The relationship of the axis of crystal rotation to that of the magnet rotation was checked. A determination was made of the collapse point of a pair of lines on the positive side of the magnet, with the field strength constant the crystal was rotated through exactly 180° and the
collapse point of the same pair of lines searched for on the negative side of the magnet. The midpoint of the two magnet orientations was the axis of crystal rotation. As a result all readings on the magnet scale had to be corrected by -1.4° before plotting on the Wulff net.
(2) Angular Variation

From the positions of the three axes the planes perpendicular to each axis but containing the other two axes were plotted. An angular variation was carried out with a 10° interval for the magnetic field direction moving in each of these planes in turn, $X Y(0001), X Z(1 \overline{2} 10)$ and $Y Z(10 \overline{0} 0)$.
(3) Measurement of Magnetic Field

In order to use the proton magnetometer for magnetic field strength measurements a new set of probes had to be constructed to extend the upper limit of measurement from 30 MHz to the 53 MHz frequency of the high field resonance line. As the coaxial cable from the oscillator to the probe formed part of the tuning circuit it was possible to increase the frequency by shortening the cable and reducing the number turns in the inductor enclosing the proton source (rubber). The frequency was increased to 60 MHz but the intensity of the proton signal became too 10 w to work with.

A satisfactory signal intensity and frequency range was obtained by decreasing the capacitance of the cable by using a grounded brass tube as shielding with the current carried to the inductor by two stiff wires separated from each other and the shielding by spacers set at intervals along the tube, (see Fig. V.1). The change of range of X-band resonators using this probe is given in Table V.l.

TABLE V. 1

Range

Resonator	X-Band Unit	K-Band Unit
Number	MHz	MHz
5	$10.8-16.1$	$13.1-22.5$
6	$14.5-21.7$	$18.7-32.0$
7	$20.0-30.0$	$31.4-56.3$
8		$34.5-61.5$

Actual measurements were made using a double beam oscilloscope. The crystal rotator and magnet scale were set at the required orientation. Each E.P.R. line in turn was centred on one of the oscilloscope beams, using the second beam the P.M.R. line was tuned to the E.P.R. line. The frequency of oscillation was then read from the digital output of the electronic counter. This frequency can be converted to magnetic field strength using the relation

$$
\begin{align*}
\mathrm{h} v & =g_{\mathrm{P}} \beta_{\mathrm{N}} \mathrm{H} \\
\mathrm{H} & =\frac{\mathrm{h}}{\mathrm{~g}_{\mathrm{P}} \beta_{\mathrm{N}}} v \tag{V.1}\\
\mathrm{H}(\mathrm{KGauss}) & =0.234869 \quad \gamma(\mathrm{MHz})
\end{align*}
$$

where $\quad H$ is magnetic field strength
h is Planck's constant
g_{p} is the proton g value
β_{N} is the nuclear magneton
v is the frequency of oscillation.

The accuracy of positioning the least intense E.P.R. lines was improved by using the chart recorder. With the field value set close to resonance, the field was swept over 50 gauss tracing the line on the chart thus allowing the exact centre to be marked and the field backed up to that point using the incremental field setting. The method was checked using the DPPH marker line and there was no loss in accuracy compared to a visual method.
(4) Measurement of Microwave Frequency

A small amount of the free radical α, α^{\prime}-diphenyl- β-picryl hydrazyl was included with the sample to act as a marker to measure the microwave frequency using the relation

$$
\begin{align*}
& \mathrm{h} \nu=\mathrm{g}_{\mathrm{D}} \beta \mathrm{H}_{\mathrm{D}} \\
& \nu=\frac{\mathrm{g}_{\mathrm{D}} \beta}{\mathrm{~h}} \mathrm{H}_{\mathrm{D}} \tag{V.2}
\end{align*}
$$

where $\quad v$ is the microwave frequency
g_{D} is DPPH g value $=2.0036$
H_{D} is the field value of the DPPH resonance.
 box

Fig. V.1.

CHAPTER VI

DEVELOPMENT OF COMPUTER PROGRAMME

A. The Method

The computer analysis was first attempted using a method for exact diagonalization of the generalized spin-Hamiltonian based on a program obtained from Buckmaster et al. . However the necessity of measurements at two frequencies for each orientation made the program unsatisfactory for use in temperature dependence studies to follow.

A method of parameter fitting using multi-dimensional Newton-

Raphson Least-Squares Minimization developed by Dr. W.E. Baylis was used so that the program could be generalized. This enabled it to accept data at any orientation and to fit a curve using data from different orientations rather than different frequencies.

The one dimensional Newton-Raphson Method ${ }^{22}$ is obtained analytically from following condition on the Taylor's series expansion.

$$
\begin{equation*}
f\left(X_{n}+h\right)=f\left(X_{n}\right)+h \cdot f^{i}\left(X_{n}\right)+\frac{h^{2}}{2!} f^{\prime \prime}\left(X_{n}\right)+\ldots=0 \tag{VI.1}
\end{equation*}
$$

where X_{n} is an approximation of the root of the equation. This can be written in partial derivative form as:

$$
\begin{equation*}
\frac{\partial}{\partial X_{n}} f\left(X_{n}+h\right)=\frac{\partial}{\partial X_{n}} f\left(x_{n}\right)+h \cdot \frac{\partial}{\partial X_{n}} f^{\prime}\left(x_{n}\right)+\ldots=0 \tag{VI.2}
\end{equation*}
$$

The problem of fitting the experimental data can be overcome in the following way. The Hamiltonian can be expressed as a function of a number of fitting parameters $p_{i}\left(i=1,2, \ldots I_{\max }\right)$, the experimentally measured magnetic field values B, and other experimental parameters necessary
such as orientation $\hat{\underset{N}{c}}$ or temperature $T . B$ is a function of orientation so that the resonant fields occur as ($\mathrm{N}-1$) values for each of M orientations where N will represent the degeneracy of the ground state. So the Hamiltonian can be expressed as

$$
\begin{equation*}
\mathrm{H}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \mathrm{p}_{\mathrm{I}_{\max }}, \underset{\sim}{\mathrm{B}}, \underset{\sim}{\hat{k}}, \mathrm{~T}, \ldots\right) \tag{VI,3}
\end{equation*}
$$

The Hamiltonian is represented in an n-dimensional basis $\{\mid \alpha>\}$. The matrix elements for the Hamiltonian and its first and second derivatives with respect to the parameters must be known or able to be calculated

$$
\begin{gather*}
<\alpha|H| \beta> \tag{VI.4}\\
<\alpha\left|\partial H / \partial p_{i}\right| \beta> \tag{VI.5}\\
<\alpha\left|\partial^{2} H / \partial p_{i} \partial p_{j}\right| \beta> \tag{VI.6}
\end{gather*}
$$

The matrix elements of (VI.4) are given in Table III. 4 while those for (VI.5) are given in Table III.6. As the parameters occur linearly in the Hamiltonfan with no cross products the elements of (VI.6) will be zero.

For each set of external parameters ($\mathrm{B}, \hat{\mathrm{k}}, \mathrm{T}, \ldots$) (in this case for $M(N-1)$ resonant field values), the Hamiltonian is diagonalized using the subroutine CEIGEN (see appendix). The subroutine is basically an extension of the Jacobi method to Hermitean matrices ${ }^{23,24}$ and is double precision, complex.

A new set of basis vectors $\{\mid i>\}$, (in terms of the original set $\left.\{\mid \alpha>\},\left|i>=\sum_{\alpha}\right| \alpha><\alpha \mid i>\right)$ is then obtained in which the Hamiltonian is diagonal

$$
\begin{equation*}
<i|H| j\rangle=\delta_{i j} E_{i} \tag{VI.7}
\end{equation*}
$$

The difference between one adjacent pair of eigenenergies $\left(E_{k_{1}}-E_{k_{2}}\right)$ will correspond to the transition energy experimentally determined from measurement of the microwave frequency γ_{k}. The correspondence between the pair of eigenenergies chosen and the resonant field representing that transition must be known. In this case the correspondence was determined and the programing simplified by taking all measurements at orientations where the resonant lines were separated and in order.

A least squares sum is formed from:

$$
\begin{align*}
& \left\{\left(E_{k_{1}}-E_{k_{2}}\right)-\nu_{k}\right\}^{2} \tag{VI.8}\\
= & \left\{\left(E_{k_{1}}-E_{k_{2}}\right)-\frac{g_{D} H_{D}}{g s}\right\}^{2} \tag{VI.9}
\end{align*}
$$

where the transition energy in (VI.9) is expressed in units of gauss and is determined from the resonant field of the $\operatorname{DPPH}\left(H_{D}\right)$. The value of the least squares sum f is then determined by summing over the total number of transitions measured ($N-1$) M and dividing by the number of degrees of freedom (N free $=$ number of transitions - number of parameters).

The multi dimensional Newton-Raphson method finds the value of $p=\left(p_{1}, p_{2}, \ldots, p_{i}\right)$, representing a vector in i-dimensional space where i is the number of parameters, such that $\frac{\partial f}{\partial p_{i}}(\underline{\sim})=0$ by solving iteratively the equation for the displacement \oint is

$$
\begin{equation*}
\frac{\partial}{\partial p_{i}} f(\underline{\sim}+\delta) \approx \frac{\partial}{\partial p_{i}} f(\underline{p})+\sum_{j} \frac{\partial^{2}}{\partial p_{i} \partial p_{j}} f(\underline{p}) \delta_{j}=0 \tag{VI.10}
\end{equation*}
$$

The solution is:

$$
\begin{equation*}
\delta_{i}=-\sum_{j} M_{i j} \frac{\partial}{\partial p_{j}} f(p) \tag{VI.11}
\end{equation*}
$$

where $\left(\left(M_{i j}\right)\right)$ is the inverse of $\left(\left(\frac{\partial^{2}}{\partial p_{i} \partial p_{j}} f(p)\right)\right)$
and

$$
\sum_{j} M_{i j} \frac{\partial^{2}}{\partial p_{j} \partial p_{i}^{i}} f(\underline{p})=\delta_{i i^{\prime}}
$$

The inversion is carried out by the subroutine DMINV (see appendix). The value of δ_{i} is then added to p_{i} to give the new estimate of the parameter.

The first and second derivatives of the least squares sum f required in the calculation are determined using perturbation theory.

$$
\begin{align*}
& \frac{\partial f}{\partial p_{i}}=\frac{\partial}{\partial p_{i}} \frac{\sum_{k}\left\{\left(E_{k_{1}}-E_{k_{2}}\right)-\frac{g_{D} H_{D}}{g_{D}}\right\}^{2}}{\text { Nfree }} \\
&=2 \sum_{k}\left(\frac{\partial E_{k_{1}}}{\partial p_{i}}-\frac{\partial E_{k_{2}}}{\partial p_{i}}\right) \frac{\left\{\left(E_{k_{1}}-E_{k_{2}}\right)-\frac{g_{D} H_{D}}{g_{s}}\right\}}{\text { Nfree }} \tag{VI.12}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial^{2} f}{\partial p_{i} \partial p_{j}} & =2 \sum\left\{\left(\frac{\partial E_{k_{1}}}{\partial p_{i}}-\frac{\partial E_{k_{2}}}{\partial p_{i}}\right)\left(\frac{\partial E_{k_{1}}}{\partial p_{j}}-\frac{\partial E_{k_{2}}}{\partial p_{j}}\right)\right. \\
& \left.-\left(\frac{\partial^{2} E_{k_{1}}}{\partial p_{i} \partial p_{j}}-\frac{\partial^{2} E_{k_{2}}}{\partial p_{i} \partial p_{j}}\right) \frac{\left\{\left(E_{k_{1}}-E_{k_{2}}\right)-\frac{g_{D} H_{D}}{g_{s}}\right\}}{\text { Nfree }}\right\} \tag{VI.13}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{\partial E_{k}}{\partial p_{i}}=\lim _{\delta_{i} \rightarrow 0}\left\{E_{k} \frac{\left(p+\delta_{i} \hat{i}\right)-E_{k}(p)}{\delta_{i}}\right\} \tag{VI.14}
\end{equation*}
$$

where $\hat{\sim}$ is a unit vector in i-dimensional parameterspace and where
$\mathrm{E}_{\mathrm{k}}\left(\underline{\mathrm{p}}+\delta_{i} \hat{i}\right)$ is the eigenenergy (corresponding to $\mathrm{E}_{\mathrm{k}}(\underline{p})$ of the Hamiltonian $\mathrm{H}\left(\underline{p}+\delta_{i} \underset{\sim}{\hat{j}}\right)$ to first order in δ_{i}

$$
\begin{equation*}
H\left(\underline{p}+\delta_{i} \hat{i}\right) \approx H(p)+\frac{\partial H(\underline{p})}{\partial p_{i}} \partial_{i} \tag{VI.15}
\end{equation*}
$$

Using perturbation theory the eigenenergy can also be expressed to first order in δ_{i}

$$
\begin{equation*}
E_{k}\left(\underline{p}+\delta_{i} \hat{i}\right)=E_{k}(\underline{p})+\langle k| \frac{\partial H}{\partial p_{i}}|k\rangle \delta_{i} \tag{VI.16}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\frac{\partial \mathrm{E}_{k}}{\partial \mathrm{p}_{i}}=\langle\mathrm{k}| \frac{\partial \mathrm{H}}{\partial \mathrm{p}_{i}}|\mathrm{k}\rangle \tag{VI.17}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial^{2} E_{k}}{\partial p_{i} \partial p_{i}}=\lim _{\delta_{i}, \delta_{j} \rightarrow 0} \frac{E\left(p+\delta_{i} \hat{j}+\delta_{j} \hat{j}\right)-E\left(p+\delta_{i} \hat{i}\right)-E\left(p+\delta_{j} \hat{j}\right)+E(p)}{\delta_{i} \delta_{j}} \tag{VI.18}
\end{equation*}
$$

Now to second order in $\delta^{\prime} s$

$$
\begin{align*}
H\left(\underline{p}+\delta_{i} \hat{i} \sim \delta_{j} \underset{\sim}{j}\right)= & H(p)+\frac{\partial^{H}}{\partial p_{i}} \delta_{j}+\frac{\partial^{2} H}{\partial p_{i} \partial p_{j}} \delta_{i} \delta_{j}+ \\
+\frac{\partial H}{\partial p_{j}} \delta_{j} & +\frac{1}{2}\left(\frac{\partial^{2} H}{\partial p_{i}^{2}} \delta_{i}^{2}+\frac{\partial^{2} H}{\partial p_{j}^{2}} \delta_{j}^{2}\right) \\
& =H(p)+V \tag{VI.19}
\end{align*}
$$

where V may be considered a small perturbation. As the parameters appear linearly in the Hamiltonian the last term goes to zero. By second order
perturbation, the eigenenergies are shifted to

$$
\begin{equation*}
E\left(\underline{p}+\delta_{i} \hat{i}+\delta_{j} \hat{j}\right)=E(\underline{p})+\langle k| V|k\rangle+\sum_{\ell \neq k} \frac{\langle k| V|\ell\rangle\langle\ell| V|k\rangle}{E_{k}-E_{\ell}} \tag{VI.20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial p_{i} \partial p_{j}}=\langle k| \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}|k\rangle+2 \sum_{\ell \neq k} \frac{\langle k| \frac{\partial H}{\partial p_{i}}|\ell\rangle\langle\ell| \frac{\partial H}{\partial p_{i}}|k\rangle}{E_{k}-E_{\ell}} \tag{VI.21}
\end{equation*}
$$

where the matrix elements $\langle k| M|l\rangle$ written in terms of the old basis are

$$
\begin{equation*}
\langle k| M|\ell\rangle=\sum_{\alpha, \beta}\langle k \mid \alpha\rangle\langle\alpha| M|\beta\rangle\langle\beta \mid \ell\rangle \tag{VI.22}
\end{equation*}
$$

The similarity transform is carried out by the subroutine STCM (see appendix D).
B. The Flow Chart

From the flow chart (see next page) the steps in the computational process can be followed. (Fig.VI.1)

1. The input data is read in including all external parameters, initial estimates of the crystal parameters and the values of the tensor operator equivalents required. The input data after conversion is printed out.
2. The matrix elements that are independent of the field are calculated from the matrix in Table III. 4 using the values for matrix elements given in Table III.7. (Main Programme, See Appendix A).
3. The remaining field dependent matrix elements are

Fig VI.l. FLOW CHART FOR COMPUTER PROGRAMME
calculated using the components of the measured field values in addition to the data utilised in 2. (RTN 1 See Appendix B).
4. The Hamiltonian matrix formed in 2 and 3 is then diagonalised exactly using the subroutine CEIGEN (Appendix C) which returns eigenenergies and eigenvectors. The difference between the adjacent eigenvalues provides the basis of the least squares sum while the eigenvectors are used in the similarity transform in the next step. The value of DEVIATION printed out is a measure of the fit.
5. The derivative matrix is then transformed to the new basis in which the Hamiltonian is diagonal, see (VI.22). This then allows calculation of $\mathrm{DE}(\mathrm{I})$, the derivative of the energy with respect to each parameter, see (VI.17) and the second derivative D2E, see (VI.21). From these the 1 st and second derivatives of the least squares sum are formed, D1F(I), see (VI.12) and D2F see (VI.13).

Step 5 is repeated for each parameter in the $I=I+1$ loop, while the computation of the second derivatives is repeated for all parameters J, with each parameter I in the $J=J+1$ loop.

Steps 3 to 5 are then repeated for each of the ($N-1$) resonant fields at a given orientation during the INDEX $=$ INDEX +1 loop, which itself is repeated for each of the M orientations in the $L=L+1$ loop.
6. As D2F involves summation of both I and J simultaneously as well as a summation over all resonant fields it is not completed till the end of step 5. D2F is then inverted using DMINV (see Appendix E) The parameter correction $D(I)$ can then be calculated see (VI.11),
the new estimate of the parameters is then determined

$$
\begin{equation*}
P(I)=P(I)+D(I) \tag{VI.23}
\end{equation*}
$$

The standard deviation for each parameter is then calculated together with an estimate of what the mean square deviation will be, using the new parameter values.
7. The results are printed and control returned to the main program where steps 2 to 7 are repeated for the number of iterations specified.
8. The parameters are converted to whatever units are required and any auxiliary calculations with the parameters may also be carried out here.

As a check on the inversion process and the reliability of the parameter values, the D 2 F and (D2F) ${ }^{-1}$ matrices are multiplied using the subroutine DGMPRO (see Appendix F, based on IBM Routine GMPROD) ${ }^{25}$ to see that the product is the unit matrix (see VI.11).

C. The Data Deck

The data cards incorporated in the program are described below.
Card 1:- Columns 1-5, integer right justified, number of orientations $=$ LM.
This programme handles 12 , MAIN is dimensioned to 16 but some arrays and formats will need to be redimensioned in RTN 1 and CEIGEN for $L M>12$. Columns 6-10, integer, right justified, number of iterations $=I T M$.

Card 2:- Columns 1-5, integer, right justified, size of matrix $=N$ (Degeneracy of ground state). Columns $6 \mathbf{- 1 0}$, floating point number, spin value $=$. Columns 11-15, integer, right justified, number of parameters $=$ IMAX.

Card 3:- Columns 1-80, User name or identification.
Card 4:- Columns 1-80, Description of Experiment.
Card 5:- Values of THETA for each orientation, Columns 1-5, 6-10, ...,76-80.
Card 6:- Values of PHI as for 5 .
Card 7:- Values for DPPH, MHz measured at poleface, columns 1-10, 11-20, ..., 71-80.

Card 8:- As for 7 when $8<L M<16$.
Card 9-20 (for 12 orientations):- Field values in MHz measured at poleface, entered 7 to a card, order determined as increasing magnitude on Z axis. Each card represents one orientation, columns 1-10, 11-20,...,71-80.

Card 21:- Columns 1-10, 11-20,..., 41-50.
Poleface correction $=A D J=0.999934, \underline{\text { Y-intercept }}=\operatorname{CADJ}=0.001436$. Corrects field at poleface to field at centre.

Conversion factor $=$ PMHG $=0.234869$. Converts proton frequency MHz to kg. g value $\underline{D P P H}=G D P=2.00360, g$ value free electron $=G F E=2.00229$.

Cards 22-29 (Number varies):-
Matrix elements of the angular momentum tensor operators required.
Left justified floating point numbers in columns 1-10, 11-20, ..., 71-80. (see Table III.6).

Card 30:- Estimated values of parameters in order shown in Format. Floating point numbers in columns 1-10, 11-20, ..., 71-80.

Card 31:- Remaining parameters or blank card.

D. Rate of Convergence

To indicate the rate of convergence a sample run is shown in

 Table VI.l, giving the mean square deviation in kgauss.
TABLE VI. 1

Iteration Number	Mean Square Deviation (kgauss)
1	0.9190
2	0.0220
3	0.0550
4	0.0022
5	0.0200

When determining the position of the magnetic axes, turning points were found for each resonance line, the mean values and greatest deviation for each line are shown in Table VII.l.

TABLE VII. 1

LINE	Z-AXIS		Y-AXIS		-X-AXIS	
	θ_{X}	θ_{H}	θ_{X}	θ_{H}	θ_{X}	θ_{H}
I	$\begin{array}{r} 81.5 \\ \pm \quad 0.1 \end{array}$	$\begin{aligned} & +1.3 \\ & \pm 0.0 \end{aligned}$	$\begin{array}{r} 351.4 \\ \pm 0.0 \end{array}$	$\begin{aligned} & -0.7 \\ & \pm 0.0 \end{aligned}$	$\begin{array}{r} 84.5 \\ \pm 0.1 \end{array}$	$\begin{array}{r} -87.8 \\ \pm 0.0 \end{array}$
II	$\begin{array}{r} 81.5 \\ \pm \quad 0.0 \end{array}$	$\begin{aligned} & +1.3 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} 351.4 \\ \pm 0.0 \end{array}$	$\begin{aligned} & -0.7 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} 85.5 \\ \pm 0.5 \end{array}$	$\begin{aligned} & -89.9 \\ & \pm 0.0 \end{aligned}$
III	$\begin{array}{r} 81.5 \\ \pm 0.1 \end{array}$	$\begin{aligned} & +1.2 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} 351.1 \\ \pm 0.1 \end{array}$	$\begin{aligned} & -0.7 \\ & \pm 0.0 \end{aligned}$	$\begin{array}{r} 85.9 \\ \pm \quad 0.1 \end{array}$	$\begin{aligned} & -90.7 \\ & \pm 0.0 \end{aligned}$
IV	$\begin{array}{r} 81.4 \\ \pm 0.1 \end{array}$	$\begin{aligned} & +1.1 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} 351.4 \\ \pm 0.0 \end{array}$	$\begin{aligned} & -0.6 \\ & \pm 0.2 \end{aligned}$	$\begin{array}{r} 86.0 \\ \pm 0.1 \end{array}$	$\begin{array}{r} -88.6 \\ \pm 0.0 \end{array}$
V	Saddle	int	$\begin{gathered} 351.4 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & -0.6 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} 86.0 \\ +\quad 0.2 \end{array}$	$\begin{aligned} & -89.2 \\ & \pm 0.1 \end{aligned}$
VI	$\begin{array}{r} 81.6 \\ \pm 0.0 \end{array}$	$\begin{aligned} & +1.2 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 351.4 \\ \pm 0.1 \end{gathered}$	$\begin{array}{r} -0.8 \\ \pm 0.2 \end{array}$	$\begin{array}{r} 85.3 \\ \pm 0.1 \end{array}$	$\begin{array}{r} -91.1 \\ \pm 0.2 \end{array}$
VII	$\begin{array}{r} 81.5 \\ \pm 0.1 \end{array}$	$\begin{aligned} & +1.3 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} 351.4 \\ \pm 0.0 \end{array}$	$\begin{aligned} & \text { Signal } \\ & \text { too small } \end{aligned}$	$\begin{array}{r} 85.5 \\ \pm 0.5 \end{array}$	$\begin{array}{r} -89.9 \\ \pm 0.1 \end{array}$

Means:

	Z-Axis	Y-Axis	-X-Axis
$\bar{\theta}_{X}=$	$+81.5 \pm 0.1$	$+351.4 \pm 0.3$	$+85.7 \pm 1.2$
$\bar{\theta}_{H}=$	$+1.2 \pm 0.1$	-0.7 ± 0.2	-89.6 ± 1.8

Error represents the maximum deviation over a series of readings.

As can be seen from the results, the Z and Y axes are well defined but the axis varies over 3 on the magnet scale. A similar variation in one axis of an angular variation plot is observed for gadolinium in a cubic field (Low ${ }^{1}$). The fact that the X turning points occur at different orientations for each line leads to some uncertainty as to the exact position of the XY plane. This is overcome by using a plane perpendicular to the Z axis that passed through the well defined Y axis. This could lead to a 1^{0} uncertainty for some orientations.

The results of the angular variation carried out in the $X Z, Y Z$ and XY planes may be seen plotted in Figs. VII.1, VII. 2 and VII.3. Typical spectra with the field directed along each of the magnetic axes in turn are shown in Fig. VII.4, Z axis [0001]; Fig. VII.5a, X axis [12 10]; Fig VII.5b, Y axis [1010]. The ratio of the line intensities for these spectra is shown in Table VII.2, where they have been normalised to the theoretical ratio which is also included (figures are given to the nearest integer).

TABLE VII. 2.

Theoretical	$7: 12: 15: 16: 15: 12: 7$
Z Axis	$4: 8: 12: 16: 12: 10: 5$
Y Axis	$2: 6: 11: 16: 11: 7: 4$
X Axis	$3: 7: 13: 16: 10: 6: 2$

For calibration, fields measured at the poleface and the gap centre are recorded in Appendix G. A linear regression analysis was carried out on these values giving a correlation coefficient of 0.9999999921 and a calibration curve of:
$H_{\text {centre }}=0.999934 \mathrm{H}_{\text {poleface }}+0.001436$

Proton Magnetometer readings for the resonant fields at a series of selected orientations, are given in Table VII.3. Using the calibration correction the field values have been converted to kilogauss and are presented in Table VII. 4 together with the field value of DPPH used to measure the microwave frequency.

The values of the crystal field parameters calculated by the fitting programme are presented in Table VII. 5 together with their standard deviations. The calculation was carried through sufficient iterations so that the change in the parameters, $D(I)=0$, to 6 significant figures. In this case 4 iterations were required. A measure of the fit is given by the mean square deviation $=7.98 \times 10^{-3} \mathrm{~kg}$. which gives a R.M.S. deviation $=88$ gauss for 63 resonant fields.

Fig VII, 3. anglat variation in xy plane

Fig VII 5 TYPICAL SPECTRUM IN DIRECTION PERPENDICULAR TO Z AXIS
a: ALONG $1 \overline{2} 10$ DIRECTION
b: ALONG 1010 DIRECTION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE VII. 3

Orientati	n 1	2	3	4	5	6	7	8	9
D.P.P.H.	$\begin{gathered} 35.6104 \\ \pm \quad 02 \end{gathered}$	$\begin{gathered} 35.4821 \\ \pm 05 \end{gathered}$	$\begin{gathered} 35.6126 \\ +\quad 06 \end{gathered}$	$\begin{gathered} 35.6207 \\ \pm 02 \end{gathered}$	$\begin{gathered} 35.4850 \\ \pm 03 \end{gathered}$	$\begin{gathered} 35.4966 \\ \pm 07 \end{gathered}$	$\begin{gathered} 35.5005 \\ \pm 02 \end{gathered}$	$\begin{gathered} 35.6090 \\ +\quad 04 \end{gathered}$	$\begin{gathered} 35.6146 \\ \pm 07 \end{gathered}$
θ	0	90	90	180	90	70	110	71	109
ϕ	0	90	180	0	45	90	90	180	180
Line I	$\begin{gathered} 17.6950 \\ \pm 26 \end{gathered}$	$\begin{gathered} 44.2855 \\ \pm 16 \end{gathered}$	$\begin{gathered} 44.2891 \\ \pm \quad 03 \end{gathered}$	$\begin{gathered} 17.7120 \\ \pm 05 \end{gathered}$	$\begin{gathered} 44.2542 \\ \pm 23 \end{gathered}$	$\begin{gathered} 39.5481 \\ \pm \quad 09 \end{gathered}$	$\begin{gathered} 39.8836 \\ \pm 61 \end{gathered}$	$\begin{gathered} 41.4346 \\ \pm 18 \end{gathered}$	$\begin{gathered} 39.9501 \\ \pm 41 \end{gathered}$
II	$\begin{gathered} 25.2823 \\ \pm 08 \end{gathered}$	$\begin{gathered} 41.2347 \\ \pm 02 \end{gathered}$	$\begin{gathered} 41.5487 \\ \pm 01 \end{gathered}$	$\begin{gathered} 25.2944 \\ \pm 07 \end{gathered}$	$\begin{gathered} 41.3294 \\ \pm \quad 07 \end{gathered}$	$\begin{gathered} 38.7770 \\ \pm \quad 09 \end{gathered}$	$\begin{gathered} 38.9431 \\ \pm 18 \end{gathered}$	$\begin{gathered} 39.6242 \\ \pm 09 \end{gathered}$	$\begin{gathered} 39.4626 \\ +\quad 07 \end{gathered}$
III	$\begin{gathered} 30.8824 \\ \pm 07 \end{gathered}$	$\begin{gathered} 38.0060 \\ \pm 18 \end{gathered}$	$\begin{gathered} 38.0333 \\ \pm 08 \end{gathered}$	$\begin{gathered} 30.8949 \\ +\quad 05 \end{gathered}$	$\begin{gathered} 37.9579 \\ \pm 01 \end{gathered}$	$\begin{gathered} 37.6495 \\ \pm 07 \end{gathered}$	$\begin{gathered} 37.6844 \\ \pm 04 \end{gathered}$	$\begin{gathered} 37.7864 \\ \pm 11 \end{gathered}$	$\begin{gathered} 37.8568 \\ \pm 03 \end{gathered}$
IV	$\begin{gathered} 35.8181 \\ \pm 03 \end{gathered}$	$\begin{gathered} 34.7535 \\ \pm \quad 09 \end{gathered}$	$\begin{gathered} 35.8327 \\ \pm 05 \end{gathered}$	$\begin{gathered} 34.8315 \\ \pm 13 \end{gathered}$	$\begin{gathered} 35.7279 \\ \pm 07 \end{gathered}$	$\begin{gathered} 35.7609 \\ \pm 10 \end{gathered}$	$\begin{gathered} 35.7052 \\ \pm 13 \end{gathered}$	$\begin{gathered} 35.5234 \\ \pm 12 \end{gathered}$	$\begin{gathered} 35.7164 \\ \pm \quad 05 \end{gathered}$
V	$\begin{gathered} 40.7538 \\ \pm \quad 02 \end{gathered}$	$\begin{gathered} 31.9833 \\ \pm 05 \end{gathered}$	$\begin{gathered} 32.2715 \\ \pm 04 \end{gathered}$	$\begin{gathered} 40.7652 \\ \pm 03 \end{gathered}$	$\begin{gathered} 32.0625 \\ \pm 05 \end{gathered}$	$\begin{gathered} 33.4328 \\ \pm 14 \end{gathered}$	$\begin{gathered} 33.3322 \\ \pm 06 \end{gathered}$	$\begin{gathered} 33.2623 \\ \pm 09 \end{gathered}$	$\begin{gathered} 33.4136 \\ \pm \quad 04 \end{gathered}$
VI	$\begin{gathered} 46.3503 \\ \pm 05 \end{gathered}$	$\begin{gathered} 30.0876 \\ \pm 14 \end{gathered}$	$\begin{gathered} 30.1023 \\ \pm \quad 09 \end{gathered}$	$\begin{gathered} 46.3610 \\ \pm 07 \end{gathered}$	$\begin{gathered} 30.0395 \\ +\quad 10 \end{gathered}$	$\begin{gathered} 31.4862 \\ +\quad 21 \end{gathered}$	$\begin{gathered} 31.3851 \\ \pm 09 \end{gathered}$	$\begin{gathered} 31.1551 \\ \pm 19 \end{gathered}$	$\begin{gathered} 31.1828 \\ \pm 09 \end{gathered}$
VIII	$\begin{gathered} 53.9340 \\ \pm 26 \end{gathered}$	$\begin{gathered} 28.5000 \\ \pm 30 \end{gathered}$	$\begin{gathered} 28.6804 \\ \pm 29 \end{gathered}$	$\begin{gathered} 53.9344 \\ \pm \quad 24 \end{gathered}$	$\begin{gathered} 28.5351 \\ \pm 37 \end{gathered}$	$\begin{gathered} 29.7891 \\ \pm \quad 72 \end{gathered}$	$\begin{gathered} 29.6985 \\ \pm 100 \end{gathered}$	$\begin{gathered} 29.3322 \\ \pm 38 \end{gathered}$	$\begin{gathered} 29.9654 \\ \pm 18 \end{gathered}$

The error shown represents the maximum deviation over a series of readings.

Orientation \#		2	3	4	5	6	7	8	9
D.P.P.H.	8.36323	8.33310	8.36374	8.36565	8.33378	8.33650	8.33742	8.36290	8.36421
θ	0.0	90.0	90.0	180.0	90.0	70.0	110.0	71.0	109.0
ϕ	0.0	90.0	180.0	0.0	45.0	90.0	90.0	180.0	180.0
Line I	4.15607	10.40094	10.40179	4.16006	10.39359	9.28835	9.35732	9.73140	9.38276
II	5.93797	9.68445	9.75819	5.94082	9.70669	9.10725	9.14626	9.30622	9.26827
III	7.25318	8.92618	8.93259	7.25611	8.91488	8.84245	8.85065	8.87461	8.89114
IV	8.41234	8.16232	8.18094	8.41549	8.15631	8.39891	8.38557	8.34313	8.38846
V	9.57146	7.51173	7.57941	9.57419	7.53033	7.85215	7.82852	7.81203	7.84764
VI	10.88587	7.06652	7.06997	10.88838	7.05522	7.39498	7.37124	7.31722	7.32373
VII	12.66695	6.69366	6.73603	12.66702	6.70191	6.99679	6.97513	6.88911	7.03782

TABLE VII. 4.

TABLE VII. 5

CRYSTAL FIELD PARAMETERS

$$
\begin{aligned}
& g_{x}=1.990 \pm 0.005 \\
& g_{y}=1.991 \pm 0.005 \\
& g_{z}=1.989 \pm 0.006
\end{aligned}
$$

Parameter	Gauss	Standard deviation	Parameter	Units	
				Gauss	$\left(10^{-4} \mathrm{~cm}^{-1}\right)$
${ }^{\mathrm{B}} 20$	-534.8	0.1	b_{2}	-655.0	-0.6124
${ }^{B} 40$	-3.1	0.5	b_{4}^{0}	-11	-0.011
B_{60}	0.2	0.1	b_{6}	+4	+0.004
B_{43}	1.2	0.6	b_{4}^{3}	+27	+0.03
C_{43}	0.7	0.6	c_{4}^{3}	+2	+0.001
B_{63}	-0.1	0.1	$\mathrm{b}_{6}{ }^{3}$	-170	0.2
C_{63}	0.1	0.1	c_{6}^{3}	+124	0.1
B_{66}	-0.06	0.08	b_{6}^{6}	-9	-0.009
C_{66}	-0.05	0.16	c_{6}^{6}	-9	-0.008

CHAPTER VIII

DISCUSSION AND CONCLUSION

After examining the data the most obvious point for discussion must be the poor fitting achieved with theoretically calculated energy levels (R.M.S. deviation $=88$ gauss). The greatest deviation in the P.M.R. measurements of the resonant fields is ± 0.0100 in 29.6985 MHz measured on line 7 which, due to its low intensity, maintains the largest error throughout the experiment. This represents an error of 2.5 gauss or 0.03%. With the exception of the two end lines the error is, for the most part, less than 0.25 gauss. Considering this, together with some degree of misalignment of the crystal, it would not be unreasonable to expect the R.M.S. deviation of the fitting process to be <5 gauss.

The R.M.S. error is then considerably greater than experimental error which would seem to indicate errors in measurement or orientation of the crystal. However, these data represent a second set of measurements which improved the R.M.S. error from 120 gauss to 88 gauss. As the second set of readings were taken on a different crystal, and the dif. ferences could be attributed to the method of defining the $X Y$ plane, it would seem that the measurements can be accepted as being accurate. The first set tried to define the $X Y$ plane by determining the turning points that occur every 30° (see Fig. VII. 3), while the second method is described in chapters V and VII.

It would then appear that the model used in the theoretical calculations should be checked and may need some changes in the terms
included in the spin Hamiltonian. This can best be done by considering all of the information gathered from the system.

1. The fact that the Y axis is well defined and the X axis is not would appear to indicate an inequivalence of X and Y.
2. The angular variation in the YX plane is symmetric about the Y axis with collapse points spread over 35° but centred around 55° from the Z axis. The angular variation in the $X Z$ plane however is not symmetric about the X axis and collapse points for pairs of lines occur up to 2° different on either side of the X axis, which is to be expected as an hydroxyl ion lies in the $X Z$ plane on one side of the X axis but not on the other. This would seem to indicate an inequivalence of X and Y also. In the $X Y$ plane the angular variation shows a 60° periodicity which is probably associated with the B_{63} as it is the largest trigonal term. This periodicity causes the resonant fields to vary slightly in the X and Y directions up to 40 gauss for some lines (see VII.3).
3. If the behavior of the resonant fields is observed in a cone $\theta=80^{\circ}, 60^{\circ}$ periodicity is noted. However, by the time $\theta=70^{\circ}$ is reached the 60° periodicity disappears and is replaced by a 180° periodicity. A 180° periodicity was also observed for $\theta=60^{\circ}$. A complete angular variation around one of these cones has not been made but 3 turning points have been noted 94° and 91° apart, the discrepancy from 90° probably is due to incorrect setting on the crystal rotator. Only a rough check has yet been made, varying the magnet scale but not the crystal.

The fact that a two-fold symmetry exists for the off-axis positions mentioned in 3 , seems to suggest the need for the inclusion of some orthorhombic terms in the Hamiltonian, namely B_{22}, B_{42} and $B_{44^{\circ}}$

The effect of these terms on the fitting is under investigation at present, and it is hoped that they will prove to be responsible for the present bad fit. Why these effects are found in gadolinium but not in manganese is probably due to the charge compensator associated with the Gd^{3+} ion causing local distortion of the site symmetry.

The intensity ratios in Table VII. 2 show reasonable agreement with the theoretical, the fact that they are all below the theoretical values is probably due to increased line width.

The orthorhombic terms gave a fit with R.M.S. error of 91 gauss and so offered no improvement. For an orthorhombic distortion the charge compensator would have to be in a position off the z axis. With the three fold axis of symmetry associated with the site this would produce three sets of spectra due to the three inequivalent sites that the charge compensator could occupy.

The next stage in the investigation will involve the introduction of terms non-linear in magnetic field and also hyperfine and nuclear Zeeman terms.

BIBLIOGRAPHY

1. Low, W., Phys. Rev. 109, 265 (1958).
2. Jones, D.A., Baker, J.M. and Pope, D.F.D., Proc. Phys. Soc. 74, \# 3, 249 (1959).
3. Marshal1, S.A. and Serway, R.A., Phys. Rev. 171, \#2, 171 (1968).
4. Buckmaster, H.A., Chatterjee, R. and Shing, Y.H., J. Mag. Res. 4, 85 (1971).
5. Megaw, H.D., Proc. Roy. Soc. (London) Al42, 198 (1933).
6. Bernal, J.D. and Megaw, H.D., Proc. Roy. Soc. (London) Al51, 384 (1935).
7. Petch, H.E., Can. J. Phys. 35, 983 (1957).
8. Petch, H.E., Acta Cryst. 14, 950 (1961).
9. Busing, W.R. and Levy, H.A., J. Chem. Phys. 26, 563 (1957).
10. Henderson, D.M. and Gutowsky, H.S., Am. Mineral, 47, 1231 (1962).
11. Pelah, I., Krebs, K. and Imry, Y., J. Chem. Phys. 43, 1864 (1865).
12. Wyckoff, R.W.G., 'The Structure of Crystals', Vol. 2, (Reinhold Pub. Corp., N.Y., 1931).
13. Zavoyskiy, Ye. K. Zh. Eksp. Teor. Fiz. 17, 155 (1947).
14. Abragam, A. and Pryce, M.H.L., Proc. Roy. Soc. A205, 135 (1951).
15. Bleaney and Stevens, Reports on Progress in Physics XVI, 128 (1935).
16. A1'tshuler, S.A. and Kozyrev, B.M., 'Electron Paramagnetic Resonance', Academic Press, p. 45 (1964).
17. Ibid, p.46.
18. Buckmaster, H.A., Chatterjee, R. and Shing, Y.H., J. Mag. Res. 4, 85 (1971).
19. Ibid, p.86.
20. Condon, E.V. and Shortley, G.H., 'The Theory of Atomic Spectra',
21. Holuj, F., Can. J. Phys. 46, 287 (1968).
22. Froberg, C.-E. 'Introduction to Numerical Analysis', Addison-Wesley, 1965, p. 21.
23. Ibid, p.111.
24. IBM Publication 360A - CM, p.165.
25. Ibid, p.95.


```
F(%4OT(Q)! 
```



```
#ra| T (16,0, %)
```



```
Em,AT(7%TM, !
MO"(5%]0%6)
```



```
    F,Q4!(/fl?(F,oT,Qy)!
```



```
    WGT ITG:1.TTH
```



```
    <-\,
```



```
    %%,0%%%
    *&%,
    T\@ ! =1 : 
    |!:! = =14, (1 1%4,
    #%-4
    HT:T T:T-6
```



```
    @4,T,U
```



```
    #1 4% , 1=1-7
```



```
    # ? \ 1 =1 , T:
    3TT 130-T
    6%%M 12&
```



```
    (y-)}=0,
    * "A)=%,14
```



```
    M=:
    TA!=!
    %-0.
```



```
    BA=:3-4%
    Ta* ! - ?
    \ %=%
    T:=%
    "=%-1
# और }\because=1.0
```



```
T&"OH+TB
#-1,+1
OA=?
```

```
<
*"% "w, %"
```



```
Taz=T B+ %
    =1"号字
#%%%
#%=|
\because=-6
```



```
Y S:- TS: %H
T}=|=
O1. \becauseTO!
"#,T,4
(1)=p(1)*世%:
(Q)=W(7) =6%!
P(a)=p(7)*%%
```



```
*(7)=0(7)**
O(%)=0(0)*"T
```



```
OQ)=P(0)*ST
#O\=|(1)*QT
```



```
4, 290, (% (1), 1=7,6)
```



```
&OC T=6,T**
```



```
M! T % 4 
```



```
Q4%
F4n
```


APPENDIX B


```
4%14%*16
M!4,40]?
```



```
M,OBAT(//F!
```



```
    W%AT!/7%OTMOM
```



```
    * Y! I=T,T&Y
```



```
    #4, %=0 n ! ! 
```



```
    (1.)=|,0(L)NO,
```



```
    7\cdotsッツT
    |.T:U U(1--7)
```



```
    %%*(T, (%)%)%%
```



```
*-
```



```
<<w1 +4%
<6% T:0.% n!
```



```
7 4:= ?
|%
```



```
Y&"\AM!
n=%*?
##
T,
\because\because:-1
```



```
TB=TBa+T
#%=1,%T
```



```
\therefore=
4:10=3
|-%
|" पथ! }\because
"(%)=(NAB)
BH=|C&t
I=1-3
#UQ U=Q &
3. #3-7
```



```
40;(1,4%)}+(-1)-1)-1, (1
z=6\vartheta(\because)
4!=-\cdots-%!
    #F 2, %,"!a
```



```
14,4,
#" su& 
|&:%
```

```
A!%=%
# %-1
    4%%
    4y%=1101
    O=2
    << |! =%
    BY T=1%,Ta
    B:= =?
    H-G!!
    O
    1:=1
```



```
    \ddots&%星
```



```
    & \, 1=4, 1-40
```



```
#& C\NGM!
```



```
    OM, T=1%T
```



```
    HO=0.0
    4% TH=5,01
```



```
    \TH-NH+(TM&TO-TH)/2
```



```
    *" 斤! 025
```



```
    T=||T (HTP昗)
```



```
    AB=H|+(%)
```



```
    1 (U(\alpha)
```



```
    &-1+.:-4.--
```



```
    a62 }\quad=1=1
    H(B)=1!(!)/%%
    "a< , 1=10T=
```



```
    AY(1, )=4Q& (5)
    &"aty!:%
```



```
    AT कत 
    4.1:1-1:1: a
        (#)==0.1!
    |SO 1=1, INA,
    TJ=TJ\divINAD
```



```
40 (1)=P(1)+1(1)
    #10T <01
```



```
    ASM,4=x&
    IT-1, AX
    TM, T=1,THAY
    T=TTATHO\T
```



```
    |T= I+I
```



```
    T, I= I-I\therefore.
```



```
    Q| Em,T]H!%
    &<% <, TTH1世
    II=-TM,
```



```
    |, कQ = = , I AX
    TO=T O B A + I
```



```
    p|T,T <"%
```



```
    ,4%
    #4
```


APPENDIX C


```
O
```



```
        JCUGI TMMGS OSTO
```

```
        JCUGI TMMGS OSTO
```



```
CHMCO
```

```
CHMCO
```



```
            PEAL*S COSP,GOSP2,GTABS
```

 PEAL*S COSP,GOSP2,GTABS
 nTMEMSTOM CA(36) OP(64),CSIMP(?)
 nTMEMSTOM CA(36) OP(64),CSIMP(?)
 C CHECK DIREHSTOM
C CHECK DIREHSTOM
C
IF(H-1)1.2,5
IF(H-1)1.2,5
1 PRTMT 20O,O

```
            1 PRTMT 20O,O
```



```
        OFCUTIMNO')
```

 OFCUTIMNO')
 STMP
 STMP
 ? TF(My OO, I) GO TO4
 ? TF(My OO, I) GO TO4
 CR(I)=0HE
 CR(I)=0HE
 & RETURN
 & RETURN
 C
C CDMRATE IDEHTTTY MATQTX
C CDMRATE IDEHTTTY MATQTX
S
5 ANGF= 1. ता-1?
5 ANGF= 1. ता-1?
TE(My Gf,]) CO TM 25
TE(My Gf,]) CO TM 25
TO=-1
TO=-1
\Pi% 20 J=1,0
\Pi% 20 J=1,0
Ti, = IG ta
Ti, = IG ta
!? ? T= 0.0
!? ? T= 0.0
T|=T0+T
T|=T0+T
CR(IS)= %<"O
CR(IS)= %<"O
IC(T EOO , CO(T,) = OMF
IC(T EOO , CO(T,) = OMF
S@ CRTTH!F
S@ CRTTH!F
CMONTH INTTAL AMA FTMAL UTEमS
CMONTH INTTAL AMA FTMAL UTEमS
2% ABMO%=0,OM
2% ABMO%=0,OM
y=0.010
y=0.010
T. =0
T. =0
TR 35 1=10:
TR 35 1=10:
On 25 T-1, %
On 25 T-1, %
T, = ! ! \therefore !
T, = ! ! \therefore !
\# CO(T,)NMCHAG(CO(Y,))
\# CO(T,)NMCHAG(CO(Y,))
AणPQ\& = Mrलmu t x
AणPQ\& = Mrलmu t x
I=(I ,FO\& .) 人! T! S%
I=(I ,FO\& .) 人! T! S%
Y=Y + Y
Y=Y + Y
\#% CHmTHH

```
    #% CHmTHH
```



```
            TM=0
```

 TM=0
    ```
            TM=0
            TH% = ताMa
```

 TH% = ताMa
    ```
            TH% = ताMa
```



```
O= USQ(OS!, )
```



```
|,\cdots = (-1)
Z:=
y={系:|
Y% < 01.Y
```



```
SOF=STAQ*QT
```


Y =
सT $\because=\quad Y=1 \quad \theta$
$\therefore 1=1!\therefore \quad-7$
(1) (-) as + 11509
स्या" = $=$

$\because \quad=\quad \vdots \quad \ddots \quad 1$
4 Min $-\cdots$!
M\% T1 10
$y=\therefore+16$
$H \subset=Z$
$1=1+\quad$
1ツ! = ?

O (1)
©: T! I S

H1:

CUID: = $=$


```
#"%
# % = = a
```



```
H=1, + T
U, = = (1-0)
=0%|L!
|! ! % S , =1 %
|N=, ! +
```



```
|=\: (: )
T* - =%
\because(1)}
(\therefore) = %
```



```
! "%| <=1,
H!= TG & %
104= !1% %
CO=OMEO
Q(##) =. S|(T)!
(H)=1)=O
-1,
```

```
&%%%
#(1):%
```



```
# - % + %
O!, %=0
```



```
4, 54)=?
```



```
1.<-6-1
|=1\therefore{早-6)%
10, \therefore(1-7)*
#, =1, (, (-1)*
*=1, +1, -1
4.06,1+1-1
```



```
<1%]
\because%TT&!%
H: a| !=1.
T=1
1, % - (1, 1-1)/7
0(1, )=7,m
&%% =1 n%?,
1=%-1/, ##, %
A-1+(%)-()/?
1_-1-(1-1) 人,
1%1%(1-1)%
O=1T+1-1
L, =% !+!--!
```



```
BT1:
:%
```



```
O = %n!m
|&% &=0
|!=
    (|)=
U=% %
TO:= A(G)
```



```
H}=\therefore, , (-1
O: &O y=}
T, = = % + % 
```



```
IR TGO=G(I,!)
    H! = %
    (1) = ,
```



```
    1=1%1:%
```



```
    \becauseT =-0
H% द0 E=7,0
Y = < % 
M! =- (%)
|T=K- 
    A(G)== (a)
    A(|)= %M, %
```



```
## T:M(|)
```



```
3, | = 人( | - !
m%&!=1,
A= %%!
HT= ! % 
    M4= - (14)
    |(,|)=S(, %)
A% (.|) = |! !
```



```
A, =: arm
4% %%
```

$\because \cdots$
$3:$

```
#G T=1.%
\because\because:-14
```



```
1.10 1--
<"% 1=1.
1.1%5%
```



```
&-T,!+\square--1
```



```
&=%--
\because, %a,!=1."
\because: 
```



```
&M!
```



```
I:\because\quad |=| (%)
```



```
| =->, (n-1)
|% w (1, (- ) )
#! IG !=1%
|=0.1%
#1, = (1)
|T= |,
A(,|)= - =(.1)
```



```
#S: |=(,)
```



```
<T=-
\% \M Y=0 %
\because=|\square+&
```



```
|= & - O & 
4(1T)= ! ! 
```


\qquad
\qquad

UTER CENTRE

APPENDIX G

Nominal Field in KG	Pole Face MHz	Centre MHz	Difference MHz
4.5	19.4761	19.4754	0.0007
6.0	25.9100	25.9087	0.0013
7.0	30.1988	30.1975	0.0013
8.0	34.4924	34.4913	0.0011
9.0	38.7812	34.7792	0.0020
10.0	43.0726	43.0707	0.0019
11.0	47.3530	47.3503	0.0027
12.0	51.6332	51.6308	0.0024

VITA AUCTORIS

I was born in Belmont, N.S.W., Australia, in 1945, completed Primary Education at Swansea Public School, 1956 and Secondary Education at Belmont High School, 1961. My B.Sc. in Physics was obtained from Newcastle University College in 1964 and my Diploma in Education in 1965. I taught Physics at Wollongong High School, Wollongong, from 1966-68 and at Swansea High School during 1969. I taught at W.F. Herman Collegiate, Windsor, Ontario, from 1969 until 1971 and I am at present completing requirements towards my M.Sc. degree at the University of Windsor, Ontario.

